
V
AN ELECTRONIC HORIZONTAL SITUATION INDICATOR

AND DEVELOPMENT SYSTEM

by

JEFF D. LAGERBERG

B.S., Kansas State University, 1984

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1987

Approved by:

Ma^j or Professor
}

EECE

CHAPTER ONE.

TABLE OF CONTENTS

INTRODUCTION

A11BD7 30Sfl5t

Introduction to Digital Avionics 1
Statement of Problem 4
Thesis Overview 5

CHAPTER TWO. THE PROPOSED EHSI

Introduction 7
Navigational Instruments and Concepts ... 9
The EHSI and Display Pages 2 4

Data Page 25
NAV Page 28
ILS Page 31

Conclusion 40

CHAPTER THREE. THE EHSI DEVELOPMENT SYSTEM HARDWARE

Introduction to Hardware 41
The HP-1345A Vector Graphics Display ... 46
The Control Keyboard 49
The Host Computer 53
The ATC-610 Flight Simulator 55
Data Acquistion and Communications Interface . 58

Introduction 58
MC68000 Education Computer Board ... 59
The Interface Board 68

Conclusion 86

CHAPTER FOUR. THE EHSI DEVELOPMENT SYSTEM SOFTWARE

Introduction to Software 88
The TUTOR Software 89
The Interface Board Software 91

Support Subroutines 93
Interrupt Processing 99

The Proposed Host Software 104

TABLE OF CONTENTS CONTINUED

CHAPTER FIVE CONCLUSIONS AND FUTURE WORK

Introduction 106
Future Considerations 106

Display Page Development 107
Ground Testing and Evaluation 108
Prototype Research and Design 109
Flight Testing and Evaluation 110
Marketing the EHSI Ill

Conclusion 112

REFERENCES 114

APPENDIX A. INTERFACE BOARD DEVICE LIST . . . 116

APPENDIX B. INTERFACE BOARD SCHEMATICS 118

APPENDIX C. INTERFACE SOFTWARE LISTINGS . . . 129

ill

LIST OF FIGURES

Figure page

1 VOR Navigational Aid Graphic 12

2 VOR Receiver 13

3 ADF Indicator 17

4 Determining Distance to an NDB 18

5 Waypoint Distance Example 20

6 Instrument Landing System ILS 21

7 The Proposed Data Page 26

8 The Proposed NAV Page 29

9 Runway Alignment Illusion 32

10 The Proposed ILS Page at 7.5 NM 35

11 The Proposed ILS Page at 5.5 NM 36

12 The Proposed ILS Page at 3 . 5 NM 37

13 The Proposed ILS Page at 1.3 NM 38

14 Development System Components Block Diagram 43

15 Development System Components Photo 44

16 HP-1345A I/O and Power Connector 50

17 Control Keyboard 51

18 Data Acquisition and Communication Interface 60

19 Educational Board Ports 62

20 Educational Board Functional Block Diagram 64

21 Address Decode Logic and Memory Segment 66
Enable Signals

LIST OF FIGURES CONTINUED

Figure Page

22 Educational Board Memory Map 67

23 Interface Board (Photo) 69

24 Interface Board Functional Block Diagram 70

25 68000/PC Communications Protocol 78

26 Tutor Operational Flow Chart 90

27 Flow Diagram of Exception Processing 102

LIST OF TABLES

Table Page

1 Device Decode Addresses 7 2

2 Signal Ranges 87

3 Data Package Parameters 92

ACKNOWLEDGEMENTS

The author would like to express his sincere appre-

ciation for the assistance that has been provided to this

manuscript by colleagues, friends and family. A special

thanks to my major professor Dr. Stephen A. Dyer for his

enlightening technical discussions and for his enthusiasm

for the development of the EHSI.

The author is grateful to development team members

Chuck Robertson and Dave Gruenbacher for their testing

and general feedback of the operation of the development

system. The author also acknowledges his Graduate Com-

mittee members Dr. Stephen A. Dyer, Dr. Donald R. Hummels

and Dr. Maarten van Swaay for their time, guidance and

thorough review of the original manuscript.

I am especially indebted to my family for their as-

sistance and support through all my college years and of

course for their many hours of drafting, typing and gen-

eral encouragement on the manuscript. And finally, to my

wife Laurie for her time, patience and encouragement in

helping me see the manuscript through to completion.

CHAPTER ONE

INTRODUCTION

In the aviation industry, digital avionics have

revolutionized air travel by saving fuel, reducing costs,

reducing the pilot's workload and decreasing the chance for

human error. Digital avionics first came onto the scene in

1970 along with the introduction of the wide-body trans-

ports. Delco and Litton Industries inertial navigation

systems were the first to employ both digital computers and

displays [1]. Rockwell Collins followed with the ANS-70

area navigation system for the DC-10. These systems pro-

vided pilots with a new generation of avionic instruments.

The breakthrough for digital avionics came in the

mid 1970's with the advance of the semiconductor technolo-

gy. Advances such as faster processors with more memory

capacity provided the versatility that digital avionics

required. Also, these advances allowed digital avionics to

be less expensive and more reliable than previous analog

designs. This type of versatility led Rockwell Collins to

develop its digital displays for the 757 / 767 Jumbo Jets

[1]. These displays include a digital artificial horizon,

attitude indicator, engine indication and crew alerting

system (EICAS) and an electronic horizontal situation indi-

cator (EHSI). Along with the flight computer, these in-

struments comprise the electronic flight instrument system

(EFIS). The EFIS is responsible for total automatic flight

control of the entire aircraft from just after takeoff to

before landing. Since the EFIS has complete control over

the flight of the aircraft, the Airbus Industrie's A310

uses triple redundancy of the important components [2].

In an effort to ease the transition and to help on

early acceptance of digital avionics, Bendix decided to

offer the airlines digital instruments that contained

analog-to-digital conversion circuits on their front end.

This enabled most equipment to be substituted directly into

the aircraft without change to the aircraft wiring [1].

Due to these efforts and the efforts of many other digital

avionics companies, pilots have now found the digital in-

struments more useful than initially expected. Pilots

found that they rarely referred to navigation charts except

at the start of the flight, but continuously referenced

their EHSI and other digital displays [3]. This signifi-

cantly reduced the pilot's workload by providing the pilot

with engine indication, flight control data, crew alerting

system and navigational parameters.

Pilot's initial skepticism of digital avionics and

their reliability existed in part because it was "going

against the grain." Also, unions feared that digital avi-

onics might reduce the number of pilots in the cockpit.

Now that they have had a chance to become accustomed to

using the EFIS components, the pilots tend to prefer them

over electromechanical instruments. Over the next 2 to 3

years, pilots are expected to further exploit the capabili-

ties of the digital avionics systems [4,5].

Three displays are common to most EFIS: An elec-

tronic attitude indicator (EAI), an electronic horizontal

situation indicator (EHSI) and a display which groups

various flight data. The EAI is essentially the same as

its mechanical counterpart. It shows the relationship of

the aircraft's attitude with respect to the horizon. The

EHSI is an improvement over the mechanical HSI. It not

only points to a VOR or an NDB, it combines the information

about the plane's horizontal relationship to its surround-

ings and displays it pictorially for easier comprehension

of the data. The EHSI depicts the VOR or NDB navigational

fixes and the aircraft's position relative to the naviga-

tional fixes. It shows the recent, present and predicted

ground tracks. Also, heading information as well as air-

speed, wind speed and wind direction are displayed on the

EHSI. The EHSI provides an effective means of instantly

orienting the pilot with the ground by displaying a

"roadmap" of the aircraft's position relative to its

planned course and the relationship to navigation aids in

the vicinity [5].

The data to produce these displays is derived from

the sensors and transducers onboard the aircraft. They

include signals from navigational radios, distance measur-

ing equipment, radar, transponders and even very low fre-

quency Omega Global Positioning System stations. With the

VLF/Omega stations it is possible to have positional accu-

racies to within 0.5 min in latitude and 0.1 min in longi-

tude [6].

Small aircraft in the general-aviation community

should be able to benefit from these digital avionics

advances. The basic problem is that the number of instru-

ments and the amount of information provided to the pilot

is increasing. A single instrument that would integrate

and produce a pictorial representation of the data would be

very beneficial to aircraft operating under single-pilot

instrument flight rule (IFR) conditions. The pictorial

representation would reduce the pilot's workload thereby

making it easier for the pilot to comprehend the impact of

the data even under high-stress situations.

Electronic flight information systems already exist

for the large aircraft. However, no affordable system

exists for the low-end general-aviation community. It is

the purpose of this thesis to propose, describe and develop

an EHSI by which the general-aviation community could bene-

fit. This research will closely parallel and further

develop the ideas presented in the paper entitled "A

Proposed Electronic Horizontal Situation Indicator For Use

In General-Aviation Aircraft" by S. A. Dyer [7].

The thesis will briefly describe the fundamentals of

aircraft navigation in Chapter 2. The proposed operating

modes of the EHSI are also discussed along with how these

display modes can be generated from the various flight

data. To develop such an avionic display, we must design

some type of development system to provide initial testing,

simulation and display technique development. In Chapters

3 and 4 such a working development system is described.

Chapter 3 gives a detailed explanation of the development

system hardware while Chapter 4 details the software used

to control the development system components. Chapter 5

concludes the thesis by suggesting what work needs to be

done to continue the development of the EHSI. These recom-

mendations cover areas which will need consideration as the

EHSI matures toward flight testing.

Since the time frame involved for development of

the EHSI from concept to flight testing is approximately 3

to 4 years, the development was divided up into manageable,

thesis-length tasks. It was my task to introduce the

subject matter and to propose several display pages for the

EHSI. Also, it was my responsibility to design a develop-

ment system that c»uld be used to develop the EHSI pages

and to incorporate simulated flight data. Using the devel-

opment system, the display designers should be able to sit

down at the computer console and through software acquire

all system parameters needed to develop the initial EHSI

displays.

CHAPTER TWO

THE PROPOSED EHSI

In this chapter the proposed EHSI and its operating

modes will be defined. To aid the non-pilot reader var-

ious navigation terms, related aviation concepts and a

basic description of the aircraft's navigational instru-

ments will also be discussed. The proposed display modes

(called pages) for the EHSI, along with a discussion of the

usefulness and data needed to produce such displayswill

thenbe described. At this point in the discussion, the

reader will have a basic understanding of the EHSI end

product. Also, it will become apparent that an efficient

development system will be needed to develop the EHSI.

The digital avionics revolution seems to have over-

looked the need for a useful digital instrument for use by

the general-aviation community. A similar increase in

workload exists for the single pilot flying under Instru-

ment Flight Rule conditions as for the pilots operating

large airliners. The digital instruments of the large

jumbo jets are far too expensive and complex to be used on

the small aircraft. Also, much of the data required to

produce the existing digital avionic displays could not be

acquired on a small aircraft. A new single instrument

should be designed to take advantage of the digital avionic

technology already developed for the large passenger air-

liners. The system must be able to acquire flight informa-

tion from navigational radios and other sensors. This data

must then be processed and presented to the pilot in a

simple pictorial graphic on a digital display. The

displays should show the results of the calculations made

on the flight data and the data input during preflight.

One basic display could show the aircraft's horizontal

relationship to various navigation aids and chosen way-

points as though the observer were several miles above the

aircraft. In addition to the pictorial relationship to

navigation aids, a wealth of flight information can also be

displayed.

Possibilities for digital avionics such as the EHSI

are numerous. If the information is available to the EHSI

system, it can be displayed in some manner to the pilot.

However, it should be kept in mind that the goal of the

instrument is not to overwhelm the pilot with redundant

information but rather to reduce the pilot's workload by

providing a display which will aid in quicker assimilation

of the available data. Before proceeding with a descrip-

tion of the EHSI proposed pages, I will introduce basic

radio navigation concepts and electronic aids to instrument

flying will be discussed.

Navigational Instruments and Concepts

There are, in general, two types of conditions

under which aircraft operate. If the weather conditions

are better than the required minimums established by the

Federal Aviation Administration (FAA), then Visual Flight

Rules (VFR) are in affect. Aircraft operating in this type

of weather are said to be operating under VFR conditions.

When the weather conditions deteriorate and become worse

than the prescribed VFR minimums, then Instrument Flight

Rules (IFR) apply. An aircraft is said to be on an IFR

flight if it is operating under these flight conditions

[8]. A pilot flying under instrument conditions must ig-

nore the senses of sight, sound, and feel associated with

VFR flight and must rely solely on the instruments [9].

This reliance on instruments corresponds to a greater

workload for the pilot flying under instrument conditions.

Today, flying by instruments is considered the prime method

of aircraft control, regardless of the weather conditions

[9]. Therefore, the workload from flying by instruments is

present to some extent even under VFR conditions.

Several navigation systems are available to the

instrument pilot that help answer the question, "Where am

I?" These instruments, used either separately or in combi-

nation, provide the pilot with a geographical fix, or known

position. This is accomplished by determining the distance

and bearing from some known point. If only the bearings

to two known points are available, a fix may still be

obtained by the method of triangulation. These known

points may be prominent obstacles or landmarks such as a

sharp bend in a river or a bridge over the river. The

horizontal direction from the aircraft to the landmark is

the bearing. This is also called a line of position. By

determining two line of positions and there intersection,

one can obtain a geographical fix. Cross-country naviga-

tion can then be accomplished by the pilot continuously

calculating a new fix from new lines of position. This

technique is appropriate only for the pilot flying under

VFR conditions.

When IFR conditions are in effect, different tech-

niques must be used to establish a fix. These techniques

can be classified as radio navigation. This term is

10

derived from the fact that a pilot can follow a predeter-

mined flight path over the Earth's surface by utilizing

different characteristics of radiowaves. Ground-based

navigational facilities are located throughout the country-

side at known geographical points. With the correct

instruments, these facilities may be used to establish a

navigational fix. One type of facility is a very high

frequency omnidirectional range (VOR) navigation aid.

The VOR generates directional information and trans-

mits it by ground equipment to the aircraft, it provides

360 magnetic courses to or from the VOR station. These

courses are called radials and are by convention oriented

from the station as shown in Figure 1 [9]. The VOR

transmits two signals. One has a constant phase at all

points around the VOR and is called the reference signal.

The second signal is electrically rotated at 1800 revolu-

tions per minute which produces a signal with variable

phase around the VOR. In all directions other than magnet-

ic north, the two signals are out of phase. The aircraft

receiver can then measure phase difference to determine the

bearing to or from the VOR.

The resulting bearing is displayed on a VOR receiv-

er shown in Figure 2. The receiver includes an omni-

bearing course selector (OBS) , a course deviation indicator

11

170 Radial

FIGURE 1 . VOR NAVIGATIONAL AID GRAPHIC

12

IB

U

c
>

13

(CDI) and a frequency selector. The desired VOR frequency

is first selected on the receiver. By turning the OBS, the

pilot may select the desired course. The CDI is a needle

hinged to move laterally across the interior of the compass

dial. The CDI indicates the aircraft's deviation from the

selected course (radial), but it shows nothing about the

aircraft's heading. The CDI needle simply centers when the

aircraft is on the selected radial. To fly to a VOR

station, the pilot turns the OBS knob until the CDI needle

centers. The radial shown represents either the heading or

the reciprocal heading that must be maintained to fly over

the VOR station. To determine which heading to fly, the

pilot must reference the TO/FROM flag on the CDI instru-

ment. If the TO flag is displayed and the CDI needle is

centered then the OBS course is the heading that will take

the aircraft to the station. However, if the FROM flag is

displayed then the OBS course displayed is the reciprocal

of the heading that will take the aircraft to the VOR. So

the TO/ FROM flag indicates whether the OBS course will

take the aircraft TO or FROM the station. It does not tell

whether the aircraft is heading to or from the station

[10].

Distance to a VOR can be determined by using the

aircraft's distance measuring equipment (DME). The air-

14

craft's DME transmits a pair of RF pulses which are

received by the ground facility. The ground facility then

generates and transmits a second pair of pulses to the

interrogating aircraft. The DME measures the round-trip

elapsed time and converts this to a distance indication on

the aircraft instrument panel. By using the directional

information of a VOR and the distance information from the

DME, the pilot can establish a geographical fix and a

aircraft heading reference.

Another type of navigation facility is called TACAN

or tactical air navigation system. With the appropriate

equipment, it provides heading and distance information,

simultaneously, to up to 100 aircraft. The aircraft

receives this information, triggered by airborne interro-

gations, from the ground based facility. When VOR and

TACAN facilities are located and operating simultaneously

at the same geographical location, the navigation aid is

called a VORTAC. Bearing information from the VOR is used

and distance information from the TACAN is used to fix the

aircraft's position.

A Non-Directional Homing Beacon (NDB) is a type of

navigation facility which provides a non-directional radia-

tion pattern. The bearing from the nose of the aircraft to

the NDB is shown on an instrument in the cockpit called an

15

automatic direction finder (ADF) shown in Figure 3. Un-

like the VOR CDI, the ADF needle points to the NDB regard-

less of aircraft heading or position. The relative bearing

indicated is thus the angular relationship between the

aircraft heading and the NDB location measured clockwise

from the nose of the aircraft. This relative bearing must

be related to aircraft heading to determine the magnetic

bearing to or from the NDB station. The magnetic bearing

to the station is simply the sum of the magnetic heading

(compass) and the relative bearing (ADF).

The approximate distance to a NDB station may also be

determined if the aircraft is not heading directly toward

or away from the NDB. This is accomplished by the pilot

recording the ADF bearing at the same instant the timing

begins. By recording the new ADF bearing at any time

thereafter and the elapsed time to the new bearing, the

approximate distance to the station may be determined by

the geometrical Law of Sines. Figure 4 shows the air-

craft at Initial point I and terminal point T. The trian-

gle formed is then used to compute the distance to the

station. This distance is only an approximation and is

only valid while the aircraft maintains constant heading

and constant airspeed.

Waypoints are used to allow the pilot to fly to a

16

«o/ 330° 30° \
A^OO^V 60°\

270° m* 9°°H

\.240°
J*N

N^o /

\ 210°
180°

ADF

150° /

FIGURE 3. ADF INDICATOR

17

ADFT

ADFI

(Airspeed Nm/hr)
Time to ADFT (min)

a =
60

A = ADFI - ADFT

B = 360 - ADFI

b = a
»i" (B)
sin (A)

b = Approximate distance from ADFT to the NDB

FIGURE 4. DETERMINING DISTANCE TO AN NDB

18

predetermined point without the need to overfly ground-

based navigation facilities. A waypoint is a predetermined

geographical position on any radial offset from the naviga-

tion facility by a certain distance [8,9]. Therefore,

the pilot can navigate to the waypoint instead of the VOR.

This greatly reduces the congestion over a VOR. This type

of navigation is called area navigation (RNAV). The advan-

tage of the RNAV system stems from the ability to "locate"

the navigation facility wherever it is convenient. Figure

5 shows that the distance flown from A to B, over a

series of waypoints, is much shorter than overflying the

actual stations.

When the weather conditions are IFR, Instrument

Landing Systems (ILS) greatly facilitate the aircraft ap-

proach procedures. An ILS, graphically shown in Figure 6,

is used to direct the aircraft toward the runway

threshold during low or zero visibility [9]. This is done

by providing feedback to the pilot pertaining to the air-

craft's vertical and horizontal position with respect to a

specified glide path and the runway centerline. An ILS

system consists of three components. They are the local-

izer course, the glideslope course and VHF marker beacons.

The VHF localizer antenna array is located on the

centerline at the opposite end of the instrument runway.

19

V0R2

V0R1

FIGURE 5. WAYPOINT DISTANCE EXAMPLE

20

Middle Marker
2/3 mile

FIGURE 6. INSTRUMENT LANDING SYSTEM

21

The localizer unit generates a course reference down the

centerline of the runway and extends approximately 18

nautical miles in both directions. It provides horizontal

guidance to the airport runway. The glideslope furnishes

vertical guidance along the proper descent angle to the

touchdown point on the runway. Unlike the localizer, the

glideslope transmitter radiates signals only in the direc-

tion of the final approach on the "front course." Both the

localizer and the glideslope field patterns are modulated

at two different frequencies. The right side of the local-

izer pattern, looking toward the runway from the front

course, and the lower portion of the glideslope pattern are

modulated at 150 Hertz. The left side of the localizer and

the upper portion of the radiated glideslope pattern are

modulated at 90 Hertz. The localizer signal produces an

angular width of 5 degrees, typically. This produces

localizer widths of roughly 3000 feet at the outer marker

and 900 feet at the middle marker beacons. The glideslope

projection angle above the horizon is typically 3 degrees

and has a thickness of 1.4 degrees. This corresponds to a

typical thicknesses of 475 feet at the outer marker and 75

feet at the middle marker. The intersection of the local-

izer and the glideslope at the outer marker occurs at an

elevation of 1400 feet and 200 feet at the middle marker.

22

This information will be useful during the development of

the ILS Page.

There are typically two VHF marker beacons, previ-

ously mentioned, that are located along the front course of

the landing approach path. They are the outer marker (OM)

and the middle marker (MM) beacons. The radiation patterns

produced by these beacons are fan-shaped with an elliptical

cross section. The OM is located 4 to 7 miles (typically 5

miles) from the runway threshold and indicates the point at

which the glideslope will be intercepted on the localizer

course. The MM is located approximately 3500 feet from the

runway on the localizer front course. It provides another

approach fix on the glide path to the threshold of the

runway. It also typically coincides with the decision

height (DH) established under the Federal Aviation Regula-

tions by the FAA [9]. It represents the lowest altitude

to which descent is authorized on final approach unless

both the following conditions exist: the aircraft is in a

position from which a normal approach can be made and the

approach threshold or landing lights identifiable with the

end of the runway are clearly visible. If upon arrival at

the DH, any of the above requirements are not met, the

pilot must immediately execute the missed approach

procedure

.

23

Compass locators, though not a specific component of

the ILS may be incorporated into the system. They are low

power radio beacons co-located with the OM and MM, and are

used in conjunction with the ADF to guide the aircraft into

the ILS system. Now that the reader has been introduced to

the basic avionic and navigational concepts, the basic EHSI

display pages can be discussed.

The EHSI Pages

Three pages are proposed for display on the EHSI.

They are the Data Page, the NAV Page and the ILS Page.

There are many ways to present the information on the

digital display. However, the current trend is to move

away from duplicating the existing electromechanical

needle-pointer instruments and to move instead toward pic-

torial presentations [5]. The proposed formats of these

three pages form only one of many possible representations

of the available data. Therefore, these pages allow the

group who develops the end product a base from which to

work. It should also be kept in mind that the EHSI is

meant to co-exist with avionic components already on board

general-aviation aircraft. That is, its purpose is not to

eliminate the normal scan of the instruments by the pilot,

24

but rather to supplement this scan by aiding in the as-

similation of the data and overall situational awareness.

Data Page The first page to be discussed is the

Data Page. A vast amount of data is available to the pilot

and much more information can be derived from calculations

on this data. The purpose of the Data Page is to gather,

organize and centrally locate this information on the EHSI

to be viewed by the pilot. Also, the EHSI relieves the

pilot from the laborious calculations by presenting the

results of these calculations on the Data Page. A typical

Data Page may appear as shown in Figure 7.

The data on the Data Page are organized by function

and items having more importance are surrounded by a box

for ease in scanning the page. There are groups for air-

speed, timers for estimated time of arrival, communications

and navigational frequencies. There are also indicators for

RPM, manifold pressure, temperature and barometric pres-

sure.

It is, of course, important not to get "carried

away" with digital readouts. The Data Page would then

appear to be a blurr of numbers. Pilots tend to prefer a

mix of digital readouts and the "old" analog scales. The

scales give the pilot a quick feeling of the value, while

the digital readout provides a specific digital value that

25

HEADING: 217

|
AIRSPEED: 153 CAS

| (162 TAS)
GNDSPEED: 175

EST WIND: 220/20

ASSIGNED: 3000

| ALTITUDE: 3040T
|

MDA / DH: 1229

ITIMER: 05:39

TIME-OUT: 05:50

ICOM1: 119.151 120.75 NAV1: 112.6
COM2: 121.90 126.30 NAV2: 110.1
RNAV: WP1 8.6/048.0 (112.6) ADF: 242

WP2 0.0/000.0

110.1 S
112.6 S

RPM: 2560

TEMP: 17.0C (62.5 F)

|
TIME: 14:29 EDT| (18:29Z)

MNFLD PRES: 28.9

BAROMETER: 29.92

SINCE L/O: 00:17:36

FIGURE 7. THE PROPOSED DATA PAGE

26

still requires reference to some maximum, minimum or ideal

value [11]. The analog scales on the Data Page for climb

rate and airspeed give the pilot an instant reference as to

the desired condition.

The data for display on the Data Page are acquired

from existing instruments and navigational radios while

other information results from calculations and pilot

input. Such data as magnetic heading, indicated airspeed,

altitude, rate of climb, ADF bearing, RPM, manifold pres-

sure and navigation frequencies are acquired directly from

analog and digital signals of the instruments on board the

aircraft. Items such as estimated wind speed and wind

direction, assigned altitude, MDA/DH and waypoint locations

are input to the EHSI by the pilot prior to or during

flight. Finally, the EHSI performs computations on the

existing data to give an indication of ground track, ground

speed, distance to or from waypoints and estimated times of

arrival.

In addition to performing calculations, the EHSI

monitors possible alarm conditions and displays such condi-

tions in the rectangular area at the bottom of the Data

Page. Examples of such alarm conditions are: exceeding the

maximum variation from the assigned altitude, approaching

stall airspeed, approaching maximum structural airspeed

27

limits of the aircraft, timer timing out, or exceeding

engine operating limits. The thresholds for these alarms

and warnings can be set so that the warning appears early

enough to avoid an alarm condition.

NAV Page The second proposed page is the NAV Page,

an example of which appears in Figure 8. The purpose of

this page is to present the aircraft and its surroundings

in a plan representation with respect to the chosen naviga-

tional fixes. The fix may be a VOR, a VORTAC, an NDB or an

active waypoint. This plan provides the pilot with a very

effective means of relating the aircraft's position to its

surroundings. This is accomplished by means of a graphic

which portrays the aircraft and its horizontal relationship

to navigational fixes as though the observer were a few

miles above the aircraft. The EHSI then computes and

displays the bearings to and from the navigational fix. In

addition, distance information is displayed for VORTAC's,

VOR's and waypoints. For a VORTAC, the distance is simply

the distance given by the DME. For the VOR and the way-

points, the distance is approximated through geometrical

calculations. Distance from an NDB is not easily or ac-

curately determined but may be beneficial during periods

when all other navigational fixes are out of range. This

distance is determined by the technique previously men-

28

AIRSPD:

GNDSPD
152

169

-T-P
10

HDG: 021 TRK: 024

T~T-
ALT: 4000

20 r^
V •

R-048

/ / WPl /

y
10.3NM /
s I 028

LEXA^
s 9.7NM/

./ (ftjw LE
208/ \g/

\7.5NM
/ / °55

155 s //235

EST WIND: 220/21 f
^ RCP BRG: 201

FIGURE 8. THE PROPOSED NAV PAGE

24

tioned on page 16.

The NAV Page also depicts the estimated wind speed

and wind direction which is either input by the pilot or

calculated form available data. The wind direction is

indicated by a small arrow to the left of the aircraft

symbol. The input wind vector is used to predict the

aircraft's ground track. The resulting ground track

heading is shown in the upper right corner of the page.

At the top center of the NAV Page appears the

magnetic heading, enclosed by a sguare for ease of

scanning. This heading information is supplied by the

magnetic compass. A sixty-degree compass rose appears at

the top of the page with the magnetic heading value

centered in the middle of the rose. The compass rose will

rotate so that the indicated heading always appears cen-

tered in the middle of the compass rose. Airspeed and

altitude are also displayed at the top of the NAV Page.

The raw data for the NAV Page are acquired from the

analog instruments and navigational radios. For example,

the ADF indicator is used to establish the bearing to or

from the NDB. The airspeed and altitude values are

similiarly acquired. Calculations on these raw data yield

the present ground track and ground speed. The bearing to

or from a VOR or a VORTAC is indirectly available from the

30

VOR receiver.

The space to the right of the aircraft symbol is

reserved for alarm conditions. However, if no alarm condi-

tions exist this area may be used for the NAV Page graphic.

The same alarm conditions that were discussed for the Data

Page also exist for the NAV Page.

ILS paqe The third and final page to be discussed

is the ILS Page. When on an ILS approach, the pilot con-

tinuously checks the position of the aircraft with respect

to the localizer and glideslope by referencing the local-

izer / glideslope indicator. This instrument is slow to

react to minor changes on the approach, giving little

change in indication until there is a substantial deviation

from the desired position. Also, the CDI can give the

illusion that the aircraft is in perfect position on the

approach path. If the aircraft is at the correct position

on the localizer and glideslope, the CDI needles will be

centered regardless of the attitude or heading of the

aircraft as viewed in Figure 9. Therefore, the pilot

needs to know the rate of change of position in addition to

the instantaneous position with respect to the localizer

and the glideslope. Also, checks should be constantly

performed to ensure proper runway heading alignment previ-

ously described.

31

FIGURE 9. RUNWAY ALIGNMENT ILLUSION

32

It is obvious that the pilot is under a heavy work-

load. This may best be described by an excerpt from the

Instrument Flying Handbook [9]. "The heaviest demand on

the pilot occurs during descent from the outer marker to

the middle marker, when you must maintain the localizer

course, adjust pitch attitude to maintain the proper rate

of descent, and adjust power to maintain proper airspeed.

Simultaneously, the altimeter must be checked and prepara-

tion made for visual transition to land or for a missed

approach. The need for accurate instrument interpretation

and aircraft control can be appreciated, in the complete

ILS, by noting the relationship between CDI/glide path

needle indications and aircraft dis-placement from the

localizer and glide path centerlines." The proposed ILS

Page is designed to relieve an appreciable portion of this

workload from the pilot by centralizing pertinent data and

graphically representing the flight information.

The ILS Page will again use pictorial representation

of the information gathered from the ILS receivers. This

will allow the pilot to have a better feel of the air-

craft's rate of change of position with respect to the

localizer and the glideslope. The EHSI will also make the

computations needed to relieve the pilot to perform more

skilled tasks.

33

The ILS Page may be used as long as the aircraft is

within ten nautical miles of the runway threshold. When

the aircraft is at a greater distance than this, the NAV

Page should be used to direct the aircraft into the ILS

system. A typical ILS Page may appear as shown in Figure

10. This particular situation is for an aircraft 7.5

nautical miles from the runway threshold, on the localizer

and at an altitude which will intercept the glideslope at

the outer marker.

A tunnel to fly in is proposed. The left and right

vertical walls of the tunnel correspond to maximum devia-

tions from the localizer centerline, while the ceiling and

floor of the tunnel correspond to the maximum deviation

from the glideslope. As the reader can see from the rect-

angular tunnel, the glideslope deviation is less than the

localizer deviation. The tunnel is depicted from approx-

imately five nautical miles out to three fourths of a

nautical mile. These distances correspond to the outer

marker and middle marker respectively. Each rectangular

box into the tunnel corresponds to one nautical mile and

the last box in the tunnel corresponds to the middle marker

or the DH window.

Figures 11, 12 and 13 illustrate different pos-

sible situations from when the aircraft enters the tunnel

34

IALT: 21001 HDG: 230 DIST:

DH: 1000

7.5 NM

\w_
^^^ ~^

^^- V—\ ^^

FIGURE 10. THE PROPOSED ILS PAGE AT 7.5 NM

35

[ALT: 2100
|

DH: 1000

HDG: 230 DIST: 5.5 NM
T

OM

FIGURE 11. THE PROPOSED ILS PAGE AT 5.5 NM

36

ALT: 1810|

DH: 1000

HDG: 235 DIST: 3.5 NM
OM

FIGURE 12. THE PROPOSED ILS PAGE AT 3.5 NM

37

FIGURE 13. THE PROPOSED ILS PAGE AT 1.3 NM

38

until the aircraft is at decision height at the middle

marker. Even though this pictorial representation inher-

ently yields much trend information, a higher resolution of

change of position has been provided, as shown by the

change of position indicator at the top center of the ILS

Page. This will give the pilot a quicker indication of the

aircraft's trend. For example, the aircraft may be moving

away from the localizer centerline at five feet per second

but the change in the ILS graphic may not be discernible

until the aircraft is several feet off the centerline. The

change-of-position indicator will instantly show that

there has been a change of position within the tunnel.

This will be indicated by the arrow pointing in the direc-

tion of the change.

The bottom portion of the ILS Page is for alarm and

warning conditions. Such conditions may be runway mis-

alignment, approaching stall speed or approaching decision

height. The top of the ILS Page shows digital values

corresponding to the altitude, decision height, heading and

distance. When the aircraft is over the outer marker, as

in Figure 11, the symbol OM will appear, surrounded by a

square. When the aircraft is no longer over the outer

marker, the square will leave but the OM symbol will remain

as in Figure 12, to remind the pilot of the progress of

39

the approach. The same sequence of events occurs over the

middle marker as shown in Figure 13. At this point the

pilot must make the decision to proceed with the approach

or to declare a missed approach. If a missed approach is

declared, then the pilot could change to the NAV Page and

with the help of this page execute the missed-approach

procedure

.

Now that the proposed EHSI system and proposed pages

have been discussed, it is time to actually develop the

EHSI. To aid in this task, a development system was de-

signed and built. The hardware associated with the EHSI

Development System is described in Chapter 3.

40

CHAPTER THREE

THE EHSI DEVELOPMENT SYSTEM HARDWARE

To develop the EHSI, there must be a way to simulate

an aircraft's instruments and navigational equipment.

There also should be a host microcomputer to acquire and

process this information and other pilot inputs to produce

workable displays. The information should be pre-

processed and available to the host in a convenient format

to keep the host's overhead to a minimum. Here arises the

need for an EHSI Development System.

The EHSI Development System will allow the acquistion

of all pertinent flight data through the host software. It

has a central controller that provides the communications

with the various development system components including

the host computer. The system will allow the host software

and displays to be tested under simulated flight condi-

tions. Eventually, the development system itself could be

a component in the actual flight version of the EHSI.

The EHSI Development System is made up of five major

41

components, as shown in Figure 14 and in the photo of

Figure 15. The first component is the display. The

system will use an HP-1345A high resolution, vector

graphics display. The display is used to present the

various pages and to communicate with the pilot through

messages on the display. The second component is the

Control Keyboard. It consists of a six-by-six matrix key-

pad and a system ON/OFF switch. It is through the Control

Keyboard that the pilot enters all preflight information

and other parameters to control the EHSI display during the

flight. The third component in the development system is

the ATC-610 Flight Simulator. The simulator is a key

component that provides flight simulation data for the host

computer from avionic instruments, navigational radios, and

from other sensors on board the simulator. The flight

simulator also provides an effective means of real-time

testing the EHSI system software running on the host compu-

ter which is the fourth component of the development

system. The host computer is responsible for processing

the data from the flight simulator and from the Control

Keyboard to produce the display pages on the HP-1345A.

Each one of the four components described above pro-

vides an essential function to the overall EHSI Development

System. However, they are intended to operate as separate

42

<

a

SS
W
2
O
&

C
u

-:

H
CO

X

H
z
a
a,

C
u
>
H
D

K

43

Z

o
s
o
u
s
a
EH

K

m

Z
w
s

o
u
>
H
Q

W

O

4 4

units and themselves provide no effective means of communi-

cating with the other system components. Therefore, a

MC68000 microprocessor based Data Acquistion and Communica-

tions Interface was built.

The 68000 based Data Acquistion and Communications

Interface is the main controller and interface for all of

the system components. It provides a means by which all of

the system components can communicate with each other. The

interface provides signal conditioning of all analog and

binary signals from the flight simulator and may, on re-

quest, send these converted digital values to the host

computer for further processing. The interface can send

display commands to the HP-1345A or can provide a path by

which the host can transfer graphic commands to and from

the HP-1345A. In addition, the interface has a Real Time

Clock and Calendar Module so the host can have continuous

knowledge of the time and date. Also, the interface has a

build-in piezo-electric alarm to alert the pilot that a

dangerous condition exists and that he should take imme-

diate action to eliminate the problem.

The interface controls the input of parameters

through the Control Keyboard, and performs the EHSI

initializations prior to the EHSI System Switch being

turned on. Since the interface provides all of the commun-

45

ications with system components, performs all of the data

gathering tasks, controls the display transfers to and from

the HP-1345A, and completes the entire initialization pro-

cess without the aid of the host, the interface will keep

the host overhead processing time to an absolute minimum.

The host may then concentrate on the processing of the data

to produce the various displays for the HP-1345A.

Each one of these components plays an important part

in the EHSI Development System. I will begin by describing

each of the system components in detail and will then show

how it is used and integrated into the system. I will also

describe the Data Acquistion and Communications Interface

in detail since it is the main controller for the entire

development system.

HP-1345A Vector Graphics Display

The Hewlett-Packard 1345A is a high resolution vector

graphics display that has a relatively low cost of $4,000.

Vector graphics implies it is able to plot any graphic

within the 2048-by-2048 addressable point area using one or

more of four basic commands. The viewing area is 9.5 cm

vertical and 12.5 cm horizontal which gives 215 and 164

addressable points, per centimeter, in the vertical and

46

horizontal axes respec-tively. Because of its high resolu-

tion, the HP-1345A can draw both straight and curved

lines. Curved lines are drawn as several straight vectors.

The display weighs 4.4 kg and is capable of operating up to

an altitude of 15,000 feet.

The HP-1345A produces vector graphics on its display

screen in response to digital commands. It has four graphic

commands. The first graphic command is the "Set Condition"

command. It allows the user to set the vector graphic

attributes by selecting from three line intensities, four

line types, and four writing speeds. The second graphic

command, the "Plot" command, allows random vector plotting

within the 2048-by-2048 addressable point area. It allows

the user to select the X and Y coordinates and the beam

control, on or off (for solid or invisible line), while

plotting the vector. The third graphic command is the

"Graph" command. When the X coordinate of a plot will be a

constant increment, this command allows the "Delta X" to be

programmed once and incremented for each new Y coordinate.

The Graph command may also be used with the beam control on

or off. The last graphic command is the "Text" command.

For character generation, the text command is used which

allows the selection of a character from a modified ASCII

character set. The characters can be generated in four

47

programmable orientations (0, 90, 180 and 270 degrees) and

four programmable sizes.

The HP-1345A is used with the option 704, which is a

4k-by-16 bit Vector Memory. With the option installed, the

display refresh is accomplished by the Vector Memory auto-

matically. This eliminates the need for an external source

providing the refresh. The option 704 recognizes two

command groups for programming. The commands are for data

transfer and memory address pointer manipulation.

A data transfer consists of the four graphic commands

described above that are either a read or write to the

vector memory. Address pointer operations are used for

positioning the data in the vector memory. When the inter-

face reads from or writes to Vector Memory, the memory

location reference is determined by the current 16-bit

contents of the Address Pointer. The Address Pointer com-

mand allows the user to program the Address Pointer with a

new value in preparation for data transfer. It should be

noted that the Vector Memory refresh has no effect on the

Address Pointer, and the Address Pointer is auto-

incremented after each read or write cycle. Another

command that affects the Address Pointer is the "Internal

Jump" command. It allows a jump to any other memory loca-

tion in vector memory except a memory location that holds

48

another Internal Jump command. This command essentially

loads the Address Pointer with the Internal Jump address so

command execution will continue at the address specified by

the Internal Jump command.

The HP-1345A is programmed through its 16-bit paral-

lel port I/O Connector shown in Figure 16. The parallel

command transfer is accomplished with a three wire hand-

shake. The three handshake lines are Device Select (DS*)

,

Write (WR*),and Read (RD*). The asterisk (*) symbol repre-

sents a signal that is enabled on a TTL low level. The

Read and Write Cycle Timing diagrams and HP-1345A command

reference may be found in the HP-1345A Digita l Display

Module Designers Manual [12].

Control Keyboard

The Control Keyboard is made up of the EHSI System

Switch and a 36 key command keypad. The Control Keyboard

shown in Figure 17 allows the pilot to start or stop the

EHSI flight system and to input various parameters or

commands to control the system throughout the entire

flight.

The command keypad provides the pilot access to enter

navigation, communications, and ADF frequencies by using

49

SYN

RD

DS

DISCONNECT SENSE

D14

D12

D10

D08

D06

D04

D02

D00

GROUND

RETURN

RETURN

RETURN

2
'

A'

6
"

8C

10

11 12"

13 140

15 16-

17 18
r

19 20C

21 22".

23 24.

25 26O

o o

o o

D15

XACK

AO

RFD/A1

DAV/WR

D13

Dll

D09

D07

D05

D03

D01

GROUND

I/O CONNECTOR

+15 VDC

-15 VDC

+ 5 VDC

POWER CONNECTOR

FIGURE 16. HP-1345A I/O AND POWER CONNECTOR

50

EHSI SYSTEM SWITCH

ON

OFF

\

START
TIMER

BRG/HOLD
INBND TIMER RESET

TIMER
SET

CLOCK

ADF
FLIGHT
DATA
PAGE

MDA/DH ASGN
ALT

EST
WIND

SET/RST
ALRM

VOR1 NAV
PAGE 7 8 9

VOR2 ILS
PAGE + 4 5 6

COM1 CLEAR X 1 2 3

COM2

-

ENTER
,

•

• • /
COMMAND KEYPAD

FIGURE 17. CONTROL KEYBOARD

51

the V0R1 & 2, COM1 & 2, and ADF keys. There is a standard

calculator style keypad with the four basic arithmetic

operations and ENTER and CLEAR keys. It can be used at any

time to add, subtract, multiply or divide. The bottom line

of the HP-1345A display may be used as a scratch pad for

calculations performed on the keypad.

Three keys control which EHSI page is to be dis-

played. They are the ILS PAGE key, the FLIGHT DATA PAGE

key, and the NAV PAGE (navigation) key. The pilot can move

from one page to another by simply pressing the desired

page key. A SET CLOCK key is also provided that permits

the real time clock and calendar to be set at the precise

time by prompting the user for the correct time and date

information. Several other keys allow the pilot to set or

input altitude minimums, minimum descent altitude / deci-

sion height, alarm limits, start or reset the timer, and to

estimate the wind speed and wind direction. Additional

keys could be added to provide the pilot with preflight and

postflight checklists, and missed approach and emergency

procedures

.

The EHSI System Switch on the Control Keyboard is

used to start and to stop the EHSI system. After the system

is turned off, the system enters a wait state. When the

system switch is turned back on, the whole system is re-

52

started, reinitialized, and is ready to continue with the

current flight or to start a new flight.

Host Computer

The host computer is responsible for data processing

and manipulation of all inputs and flight data to produce

the EHSI pages for display on the HP-1345A. Almost any

computer could be used as the host. The only requirements

are that it have a parallel port, with two lines for

handshaking, and be able to run a high level language such

as C.

Originally a VAX 11/750 was considered to serve as

the host computer. But access was limited by a baud rate

of 9600 through a serial port, limiting the net throughput

to approximately 1000 bytes per second. The parallel port

of a PC compatible would provide a net throughput of

approximately 10,000 bytes per second, hence, the PC com-

patible route was used. This will provide an adequate

communications rate to allow the HP-1345A display to

approximate a real-time graphic.

The host computer for the EHSI Development System

will be the Zenith-158 Personal Computer. The Z-158 compo-

nents consist of a composite monochrome video display, a 91

53

key ASCII keyboard, and the computing unit itself. The Z-

158 comes standard with a RS-232C type serial asynchronous

communications port, a Centronics standard parallel printer

(I/O) port, a CPU clock speed select switch which allows

the selection of 4.77 MHz or 8 MHz clock speeds, and six

additional slots on the backplane for expansion. Also, a

socket is provided for the optional 8087 Numeric Data

processor.

The computer is configured with 256K bytes of RAM,

expandable to 640K bytes, which reside on the Intel 8088

CPU motherboard. It uses one 360K byte, double-sided,

double-density, 5.25 inch soft-sectored floppy disk drive.

For mass storage, a 20 megabyte, Winchester Hard Disk

System and Winchester controller board were added.

Since the Zenith is an "IBM PC Compatible," it will

run almost all of the major software for the IBM PC.

Microsoft's C, Version 4.0 has been chosen for the high

level development language. The Centronics standard

parallel port is used as a general purpose I/O port. The

Centronics parallel port drivers limit the data transfer

rate to 1000 characters per second. This transfer rate is

insufficient for the development system communications.

Therefore parallel port drivers were written in 8088 assem-

bly language to communicate at 10,000 characters per second

54

with the Data Acquistion and Communications Interface.

These drivers may be easily called by the C language

programs

.

The Zenith will be operating in the interrupt envi-

ronment and will be taking advantage of the parallel port,

autovectored interrupt number seven. This interrupt

service routine will be utilized by the Zenith software for

recognizing what type of interrupt has occurred. More on

this may be found later in the section on the host

software.

ATC-610 Flight Simulator

The ATC-610 Flight Simulator is FAA-approved and

simulates an IFR-instrument equipped aircraft. It will

provide the host with actual flight simulation data.

The ATC-610 simulator uses analog and hybrid computer

techniques to drive indicators which are similar to the

flight instrumentation found in a typical IFR-equipped

light aircraft [13]. All important analog signals on the

flight simulator were tapped and fed to the analog port on

the Interface Board. Signal-conditioning in the form of

offset, buffering and gain circuitry was provided on the

Interface Board to provide compatible signals to the ADCs.

55

Two eight bit, eight channel ADC's digitize the analog

signals. The following instruments and signals are used by

the development system:

ATTITUDE INDICATOR

VERTICAL SPEED -

MANIFOLD PRESSURE
INDICATOR

COURSE DEVIATION
INDICATOR

ALTIMETER -

AIRSPEED INDICATOR -

ADF BEARING
INDICATOR

DME INDICATOR -

RPM INDICATOR

There are two signals that indicate
bank and pitch attitudes. They show
the attitude of the aircraft in rela-
tion to the natural horizon.

This instrument indicates vertical-
velocityor rate-of-climb to a range
of +/-2000 fpm.

Indicates intake manifold pressure
which will vary with RPM, throttle and
mixturesetting, and altitude.

The deviation indicator consists of
a dial and a needle hinged to move
laterally across the dial. The needle
indicates deviation from the selected
radial or its reciprocal.

Standardaltimeter which displays in-
dicated altitude. This shows the
approximate height of the aircraft
abovea meansea level.

This provides the pilot with Indicated
Airspeed in knots and miles per hour.

This display indicates the relative
bearing fromthe nose of the aircraft
to athe Non Directional Beacon (NDB)

.

Distance Measuring Equipment is cali-
brated to 20 NM. It is automatically
coupled to the selected VOR and indi-
catesthe distance to that VOR.

Indicates propeller revolutions per
minute.

^^tLGEAR " Binary si*nal that indicates the gearPOSITION INDICATOR position, down and locked, or gear in
anyother position.

56

TO/FROM/OFF FLAG -

OUTER MARKER -

MIDDLE MARKER

PERCENT POWER

DELTA X & Y
POSITION

This flag shows that the coursese-
lected by the omni bearing selector
willtakethe aircraft to or from the
VOR station. It does not tell that the
aircraft isheading to / from the sta-
tion. The OFFflag indicates the sig-
nal is unreliable.

Indicates the aircraft is over the
outermarker beacon.

Indicates the aircraft
middlemarker beacon.

is over the

This signal is generated within the
flight simulator. It combinesmixture
and throttle settingsto determine
percent of operating power.

This signal is also generated within
the flight simulator. Delta X is the
difference between the X coordinates
oftheairplane and the selected VOR
within the simulator's rectangular
coordinatesystem. Delta Y is the dif-
ference between the Y coordinates.
Together these signals can give the
angulardistancebetween the VOR and
the aircraft whichisused forcurrent
radial information of selected VOR.

These simulator signals are non-uniform, non-sym-

metric analog signals. For example, the airspeed indicator

analog signal varies from to +15 Volts DC, while the

manifold pressure signal fluctuates between 6.7 to 8.3

Volts DC. There are two analog to digital converters (ADC)

on board the Data Acquistion and Communications Interface.

One ADC accepts unipolar inputs from to 10 Volts. The

second ADC is configured to accept bipolar signals at +/- 5

57

Volts. The flight simulator signals were conditioned by

several analog techniques including amplification, attenua-

tion and level shifting. These conditioned signals were

then applied to the ADCs. In addition, to guarantee the

flight simulator would not become "loaded" by these analog

circuits, extremely high input impedence operational ampli-

fier buffers were used on all signal inputs. The actual

analog circuits will be described in the next section and

schematics may be found in Appendix B.

Data Acguistion and Communications Interface

The Data Acquistion and Communications Interface is

reponsible for linking and controlling all of the EHSI

Development System components. All "paths" between the HP-

1345A, the flight simulator, and the Control Keyboard pass

through the interface. Therefore, the interface provides

the data communications and data transfer bridge between

the host computer and the other development system

components

.

The host computer utilizes the interface to establish

bidirectional communications with the HP-1345A. This data

transfer occurs at a speed such that the pages on the HP-

1345A appear to be operating in real time. The host is

58

aware of the state of all signals on the flight simulator.

This is accomplished by the host simply requesting the

information from the interface via a basic command. The

interface also informs the host immediately when the

Control Keyboard becomes active.

The Data Acquistion and Communications Interface per-

forms all of the above tasks and provides as much data

preprocessing as possible to keep the host's overhead to a

minimum. This will allow the host to maintain real time

processing. In addition, the host communication with the

interface is accomplished with just four basic commands

under an interrupt environment. In order for the reader to

fully understand how the interface operates, I will

describe the parts of the interface and also describe how

to use the interface.

The Data Acquisition and Communications Interface

consists of two major components. They are the 68000

Educational Board and the Interface Board shown in Figure

18. The Educational Board's 68000 microprocessor provides

the interface with the intelligence. The Interface Board

is used for all communications with the other system compo-

nents and provides signal conditioning for the flight simu-

lator analog signals.

68000 Educational Board This board is produced by

59

n
a.

<
o

w
u
<
fa

e
w
H
2

Eh

as
o <
a. in

U m fa

O ^ <
J Eh 2
< PS fa L'l

z O x H
< a. Eh

os «
to

a Q o o «
o X Di fa o ^
H < H CI

< o fa EH < o
J pa B a J o J
ZJ > J o D z u
E fa J S 2 ^H Z
M Sri < M 2 Ed S
w fa J U] o e: o

fa < u H H s
H o a, j Eh Eh H
X 2. j 83 ^H E
u EH Eh < O a J OS
t-H

-
03 fa M z < <

>J C O < J o fa J
b u fa (X fa u « <

Z^X
<

o
Q H
Z W
<
d

0) O
m f->

z
c
u

.J
<
Z

o n U
o hH Oh
o H rt
CO < f)
U3 u

Q
Ed

m

fa

u
<
fa

fa

fa

Eh

Z

z
o
<-^

Eh

u
D
z
<

o

O
u
<

<
EH

<
a

GO

Motorola Inc. and is intended for educational use. It pro-

vides an effective means for developing hardware and soft-

ware for a 68000 microprocessor based system. The MC68000

16-bit microprocessor, memory, Centronics standard parallel

printer port, and serial I/O communications are located on

a single printed circuit card [14]. The Educational Board

has a resident firmware monitor called "TUTOR." The user

must connect an RS-232C compatible "dumb" terminal to the

educational board to access the TUTOR monitor. The dumb

terminal is connected to port 1 of the Educational Board

and provides a means of data entry and program monitoring.

The ports of the Educational Board are shown in Figure 19.

The terminal used with the Educational Board is the Zenith-

29 Video Display Terminal, it has a 12 inch cathode ray

tube, which displays 25 rows and 80 columns. The Z-29

terminal provides I/O capability between the user and the

Educational Board. A summary of the Educational Board's

features include:

4 megahertz M68000 MRU

32k bytes of DRAM

16k bytes of firmware in ROM "TUTOR"

Twoserial communication portswhich areRS-232C

compatible and have selectable baud rates.

Centronics compatible parallel printer interface

61

PORT 2

(J4>

PORT 1

RS232C

'

1

|

PORT 4

(J2)

1
.

PORT 3

(Jl)

-12 VDC

12 VDC

*5 VDC

GROUND

O
o
o
o

RESET SWITCH I I
—^ I

ABORT SWITCH CM

MC68000L4

AUX I/O HEADER (J16)

v>
FIGURE 19. EDUCATIONAL BOARD PORTS

62

Audio tape serial I/O port.

2 4 -bit programmable timer

Wire-wrap area provided for custom circuits

RESET and ABORT function switches.

The Educational Board has two function buttons that

allow termination of a program or reinitialization of the

board. The RESET button is the black button located on the

lower edge of the board. Again refer to Figure 19. This

button causes all processes to be halted, reinitializes the

board, and restarts TUTOR. The ABORT button is the red

button located next to the RESET button. The ABORT button

causes a level seven interrupt which vectors control back

to TUTOR. No registers are changed and the system does not

get reinitialized. The ABORT button is used by the

programmer to halt program execution during software

debugging.

A functional block diagram of the educational board

is shown in Figure 20. Even though the board has many

features, the EHSI Development System will only use the

board's 68000 and bus signals, user RAM and the TUTOR

programming and operating monitor. This will make the

transition to a stand-alone 68000 microprocessor system

smooth once the EHSI development is completed.

63

lis!

it,
. s

-J
<

-9-

U

i S

if

The Educational Board contains a memory segment

decoder, shown on page 181 of Appendix B (for convenience

reproduced in Figure 21). This provides the user with

address decode lines for several memory segments within the

memory map shown in Figure 22. The Interface Board will

use two of these signals, El and E6. Active low signal El

is used to enable the two 8k X 8 bit EPROMs which will

eventually hold the interface software. El signal is ena-

bled for the memory segment $20000 to $2FFFF. E6 is an

active high signal called M6800 Page Address Decode. This

is a 64k byte segment of the system memory map reserved for

M6800 type peripherals. Signal E6 is produced as follows.

After the MC68000 asserts signal E6, it then waits for

valid peripheral address signal line (VPA*) to be taken low

by an external device. The processor then synchronizes

itself to the 6800 E clock and continues its bus cycles.

Memory segment E6 will be used by all other devices on the

Interface Board such as the PIA's, Real Time Clock, and

analog to digital converters (ADC)

.

The 68000 Educational Board is used to control the

Interface Board. The Educational Board provides an area

for an "Auxiliary I/O Header" (designated J16) which is a

50 pin, right angle, wire-wrap header. It is through this

wire-wrap header that the bus and control signals used by

65

ENABLE
SIGNAL ADDRESS SEGMENT DESCRIPTION

El* $20000 - S2FFFF EHSI EPROM AREA

E2* $40000 - $4FFFF USER SEGMENT

E3* $50000 - $5FFFF USER SEGMENT

E4* $60000 - $6FFFF USER SEGMENT

E5* $70000 - $7FFFF USER SEGMENT

E6 $30000 - $3FFFF M6800 SYNCHRONOUS
PERIPHERALS PAGE

ALL SIGNALS ARE ACTIVE LOW (*) EXCEPT E6.

LS138

memory enable
periph. enable

IOH-Oei

FIGURE 21. ADDRESS DECODE LOGIC AND
MEMORY SEGMENT ENABLE SIGNALS

6 c

$000
$007

ROM RESET EXCEPTION VECTORS

$008
$3FF

RAM EXCEPTION VECTOR TABLE

$900
$1F 9F
$1FA0~
$1FFF

EHSI SCRATCHPAD

EHSI DATA PACKAGE (95 BYTES)

$2000
$37FF

EHSI SUBROUTINE AREA

$3800
$3FFF

EHSI LOOKUP TABLES

$4000
$5FFF

EHSI MAIN PROGRAM AREA

TSWtT
$7FFF VECTOR MEMORY MIRROR

$8000
$BFFF ROM TUTOR FIRMWARE MONITOR

$C000
$FFFF NOT USED

$10000

$1FFFF

EDUCATIONAL BOARD
I/O DEVICES

$20000

$2FFFF
El* (2) 8k x 8 EHSI EPROMs

$30000

$3FFFF
$40000

$4FFFF_
S50000

$5FFFF
$60000"

_$6F_FFF_

$70000

$7FFFF

E6 M6800 PERIPHERAL PAGE
EHSI PIA's, A/D's, REAL TIME CLK

E2*

E3*

E4*

E5*

$80000

$FFFFF
NOT USED

* DENOTES ACTIVE LOW SIGNAL

FIGURE 22. EDUCATIONAL BOARD MEMORY MAP

67

the Interface Board are acquired. A ribbon cable then

connects these signal lines to the Interface Board. The

header pin number with corresponding signal designation

is shown in Appendix B, page 119.

Interface Board The Interface Board is the other

major component of the Data Acquisition and Communications

Interface. A photo of the Interface Board is shown in

Figure 23. It is the interface for communications between

the 68000 Educational Board, the ATC-610 Flight Simulator,

the Control Keyboard, the HP-1345A display and the host

computer. Therefore, the interface is used to link the EHSI

Development System components together. A functional block

diagram of the interface may be found in Figure 24.

The Interface Board has five ports which are used to

control the development system components, a real time

clock/ calendar, an alarm horn circuit to alert the pilot

for emergency conditions and 16k bytes of EPROM space used

for the final version of the interface software. The five

ports on the Interface Board are the 50-pin signal port

from the Educational Board, the 26-pin port for the HP-

1345A display, the 20-pin port for the Command Keyboard,

the 26-pin port for the flight simulator analog signals

and the 26-pin parallel port for communications with the

host. The Data Acquistion and Communications Interface

68

Illlllill

oeeteff

w

b
a,

w
H
3

3
(3

69

a
X
M K
6- O

o
< CJ
u

*r

CD

- z
Wl O
X cc
u a

H

m

i 1

8 g

a:

O
a.

C£

O
s

en u
O -J

X -J

<
at
<
a*

r-~
,
CO

o

in

n a
<H O
i a.
a
X

X
a

<
tr. PS< o

<
a. _:

z

o
z

•J z
< o
z •-•

cn a
z
o
u

H 5

1

c

ao

to

Eh

< a

<
6-

<
2

c
f
z
c
o

CC 3
< y
< m

O

cfl

en w
U D
e o
Q u
a u
< a

Cfl

en

Q
C
<

1 L_
i

'

;

vi cfl

en £
u cu
E -
a a.
a s
< a

w
as

< w
< tL

Q 3
a

J Cfl

o at
(X u
E~ t»
Z b
O =>

o a

1 i /

\

/ \

/

2
C
1

o
SIGNAL

CONNECTOR

FROM

/TO o
O
o

<
o
a
i

Ed

yz

70

schematics may be found in Appendix B.

The Interface Board uses the 50-pin connector to

access the bus and control signals on the 68000 Educational

Board. These signals are the data lines, address lines,

clock lines, 68000 interrupt request line, enable lines and

control lines. The signals are first buffered by LS244 and

LS245 (Ul - U5) bus driver integrated circuits before going

on to the appropriate destinations on the Interface Board.

The data lines are tri-state and enabled only when El or E6

are asserted. This indicates that the program is refer-

encing either one of these memory segments. The direction

of these data buffers is determined by the processor R/W

control signal.

The address lines and Educational Board signal E6 are

used by decoders U8 and U9 to provide address decode lines

within the M6800 Address Decode Page (E6). A memory map

for the E6 page is shown in Table 1. The table tabulates

the decode addresses for the various devices on the Inter-

face Board. The addresses are fully decoded, therefore,

there are not multiple addresses within the E6 memory

segment that may enable the same decoder output. Each

decoder has eight output enable lines. The following nota-

tion will be used to describe the decoder output enable

lines. EN14* implies decoder 1 line 4 will go low when the

71

ADDRESS

EN10*
$30001
$30003
$30005
$30007
EN11*
$30009
$3000B
$3000D
$3000F
EN12*
$30011
$30013
$30015
$30017
EN13*
$30019
$3001B
$3001D
$3001F
EN14*
$30021
$30023
$30025
$30027
EN15*
$30029
$3002B
$3002D
$3002F
EN16*
$30031
$30033
$30035
$30037
EN17*
$30039
$3003B
$3003D
$3003F

TABLE 1.

DEVICE

DEVICE DECODE ADDRESSES

(DECODER #1)

PIA #1
PIA #1
PIA #1
PIA #1

PIA #2
PIA #2
PIA #2
PIA #2

PIA #3
PIA #3
PIA #3
PIA #3

PIA #4
PIA #4
PIA #4
PIA #4

PIA #5
PIA #5
PIA #5
PIA #5

PIA #6
PIA #6
PIA #6
PIA #6

A/D #1
A/D #1
A/D #1
A/D #1

A/D #1
A/D #1
A/D #1
A/D #1

DESCRIPTION FUNCTION

PORT A DATA REGISTER CONTROL
PORT A CONTROL REGISTER
PORT B DATA REGISTER IRQ INPUTS
PORT B CONTROL REGISTER

PORT A DATA REGISTER HP DATA
PORT A CONTROL REGISTER LSB
PORT B DATA REGISTER HP DATA
PORT B CONTROL REGISTER MSB

PORT A DATA REGISTER KEY MATRIX
PORT A CONTROL REGISTER COLS.
PORT B DATA REGISTER KEY MATRIX
PORT B CONTROL REGISTER ROWS

PORT A DATA REGISTER BINARY I/P
PORT A CONTROL REGISTER
PORT B DATA REGISTER SPARE
PORT B CONTROL REGISTER

PORT A DATA REGISTER PAR PORT
PORT A CONTROL REGISTER
PORT B DATA REGISTER SPARE
PORT B CONTROL REGISTER

PORT A DATA REGISTER FUTURE
PORT A CONTROL REGISTER
PORT B DATA REGISTER FUTURE
PORT B CONTROL REGISTER

ANALOG INPUT #1 BANK
ANALOG INPUT #2 PITCH
ANALOG INPUT #3 VERT SPEED
ANALOG INPUT #4 DELTA X

ANALOG INPUT #5 DELTA Y
ANALOG INPUT #6 MAN PRES.
ANALOG INPUT #7 CDI/ILS
ANALC)G INPUT #8 GLIDESLOPE

72

TABLE 1. DEVICE DECODE ADDRESSES CONTINUED

(DECODER #2)

ADDRESS DEVICE DESCRIPTION FUNCTION

EN20*
$30041 A/D #2 ANALOG INPUT #9 ALTIMETER
$30043 A/D #2 ANALOG INPUT #10 AIRSPEED
$30045 A/D #2 ANALOG INPUT #11 COMPASS
$30047 A/D #2 ANALOG INPUT #12 ADF
EN21*
$30049 A/D #2 ANALOG INPUT #13 DME
$3004B A/D #2 ANALOG INPUT #14 % POWER
$3004D A/D #2 ANALOG INPUT #15 RPM
$3004F A/D #2 ANALOG INPUT #16 SPARE
EN2 2*
$30051 NONE AVAILABLE ADDRESS DECODE LINE
$30053
$30055
$30057
EN23*
$30059 NONE AVAILABLE ADDRESS DECODE LINE
$3005B
$3005D
$3005F
EN24*
$30061 CLK/CAL TEST ONLY
$30063 CLK/CAL TENTHS OF SECONDS
$30065 CLK/CAL UNITS OF SECONDS
$30067 CLK/CAL TENS OF SECONDS
EN25*
$30069 CLK/CAL UNITS OF MINUTES
$3006B CLK/CAL TENS OF MINUTES
$3006D CLK/CAL UNITS OF HOURS
$3006F CLK/CAL TENS OF HOURS
EN26*
$30071 CLK/CAL UNITS OF DAYS
$30073 CLK/CAL TENS OF DAYS
$30075 CLK/CAL DAY OF WEEK
$30077 CLK/CAL UNITS OF MONTHS
EN27*
$30079 CLK/CAL TENS OF MONTHS
$3007B CLK/CAL YEARS
$3007D CLK/CAL STOP/START THE CLOCK
$3007F CLK/CAL INTERRUPT SYSTEM

73

appropriate address is decoded.

The second Educational Board enable line used by the

Interface Board is enable signal El. El is asserted for an

address in the range from $20000 to $2FFFF. This 64k byte

El segment is used to enable the EPROMs (U34, U35) on the

Interface Board. The two 81c x 8 bit EPROMs store the high

and low order bytes of the interface software. The 16k-

bytes of EPROM space reside at $20000 to $23FFF within the

El memory segment. The EPROM circuit will be discussed in

more detail later in this Chapter.

As mentioned earlier, the Interface Board has five

ports from which the development system components are

controlled. These ports allow the components to be con-

trolled and allow a means to communicate information to the

host computer. I will now describe the function of each

port and the hardware associated with each port. Also, I

will describe the hardware used for interrupt processing.

One of the most important ports on the interface is

the HP-1345A display port. All communications with the HP

display are handled through this port. The port is a

bidirectional, 16-bit parallel port with three handshake

lines and consists of two 8-bit ports of Peripheral Inter-

face Adapter #2 (U18). The PIA's two 8-bit ports are

capable of input or output. PIA #1 is used as a general

74

purpose control PIA. The three handshake lines for the

parallel port originate from this PIA. All data lines

are buffered by two bidirectional bus drivers U20 and U21.

An LS245 (U6) buffer, is used to buffer the three handshake

lines DS*, RD*, and WR*. Please refer to page 120 of

Appendix B for a schematic of the HP-1345A parallel port.

The data lines and handshake lines are supplied to

the HP-1345A via a 26 pin, wire-wrap connector on the

Interface Board. Four signal lines on the HP-1345A's

parallel port that are unused. They are SYNC (used for

external refresh), XACK* (for very fast data transfers), A0

and Al. The HP-1345A has a test display that appears on

power up whenever the "disconnect sense" line is not

grounded. Since the display is used to show the EHSI

pages, the disconnect sense line is tied to ground. The

actual programming of the HP-1345A Vector Graphics Display

will be explained in the software section of the next

chapter.

An 8-bit parallel port with a two wire handshake is

used to communicate with the Zenith-158 Personal Computer.

Port A of PIA # 5 is used as the 8-bit, bidirectional,

parallel port. Refer to page 123 of Appendix B for a

detailed schematic of the parallel port. The two handshake

lines, used to control the data transfer to and from the

75

Interface Board, originate from PIA #1, the control PIA.

These two handshake lines are of special interest and will

be described in a moment.

The Zenith's parallel port is used as a general

purpose I/O port. The data transfers will be bidirec-

tional. The Zenith User's Manual states that its parallel

port may be used for input as well as output. However,

there is a problem with the Zenith parallel port hardware.

Since in the 8088 microprocessor system, the address and

data lines are multiplexed on the same bus, the data lines

must be latched by flip-flops. U261 (LS374) is used by the

Zenith for the purpose of latching data at the output of

the parallel port. This works well. However, when the

port is used for input, U261 is still latched with the last

character output to the port. Therefore, when the port is

read through input buffer U260 (LS244), the latched output

data is read instead of the input data at the port connec-

tor. The solution was to tri-state the output latch (U261)

during a read cycle. This solution was easily implemented

since the latched outputs are able to go to high impedence

through application of a TTL high level to pin 1 of U260.

The RPA* signal, which enables the read buffers, was

inverted and applied to pin 1 of U26I. This will send the

latched outputs to high impedence during a read cycle. The

76

inverter (LS04) rides "piggyback" on U261. The hardware

modification has no effect on the parallel printer port

operation.

A bidirectional, tri-state data buffer on the

Interface Board is controlled by the Zenith-158 to isolate

the Interface Board from the Zenith parallel port during

non-transfer states. Only two handshake lines will be used

for communications between the Interface Board and the

Zenith-158. The two lines represent a data strobe and a

data acknowledge. In order to keep the number of handshake

lines to a minimum, the two lines will be used for bidirec-

tional communications. Since the same handshake line repre-

sents a data acknowledge when transfer is in one direction

and a data strobe when communication is in the other direc-

tion, it becomes confusing to use the names acknowledge and

strobe. Therefore, the names Outshake and Inshake are

used. Outshake represents a pulse output on the output

handshake line by the Interface Board. Outshake will re-

present a data strobe or acknowledge, depending on the

direction of communications. Please refer to Figure 25.

Inshake is used to represent the input handshake line. A

pulse accepted on this line by the Interface Board may

represent a data strobe or acknowledge depending on the

direction of the data transfer. When the Inshake pulse

77

DATA

ACQUISTION

AND

COMMUNICATIONS

INTERFACE

1_ INSHAKE 1

(STROBE)

DATA BUS

19 OUTSHAKE j-g

(ACKNOWLEDGE)

ZENITH

Z-158PC

TRANSFER TO 68000 FROM ZENITH

l- INSHAKE

DATA

ACQUISTION

AND

COMMUNICATIONS

INTERFACE

(ACKNOWLEDGE)

DATA BUS

19 OUTSHAKE g£
(STROBE)

ZENITH

Z-158PC

TRANSFER TO ZENITH FROM 68000

FIGURE 25. 68000/PC COMMUNICATIONS PROTOCOL

;b

represents a data strobe for the Zenith-158, the 68000 uses

the pulse to initiate interrupt processing.

A hardware interrupt is provided on the parallel port

of the Zenith-158 PC. The interrupt is initiated when the

Z-158 PC receives a pulse on its strobe or Inshake line.

The interface software will utilize this hardware to

interrupt the Zenith when the clock data has changed, when

a key has been pressed on the Control Keyboard, or to

signal the host software that the EHSI has been turned on

or off. More about 68000 interrupt processing may be found

in the EHSI Development System Software chapter that

follows.

The Control Keyboard consists of a 36 key keypad and

the EHSI System Switch. The keypad, shown on page 121 of

Appendix B, is organized as a six-by-six matrix. The

buttons are common by rows and common by columns. The

common row wires are connected to Port B of PIA #3 and the

column wires to Port A of PIA #3 via the 20-pin Control

Keyboard connector. The rows are always left in the output

logic low state. The three AND gates (U28) are wired to

the columns. The columns will all read as TTL logic level

high when no keys are depressed and the output of the AND

gates will be high. When any key is pressed the column of

the depressed key will be at a TTL low logic level and the

79

output of the AND gate will go low. This signal is called

KEYIRQ*. It is tied to the processor interrupt line and to

a interrupt flip flop latch shown on page 122 of Appendix

B.

This hardware interrupt logic is used to recognize

and start key identity interrupt processing whenever a key

is pressed on the keypad. The key identity is determined

by the KEYIRQ* interrupt service routine as follows. All

of the row and column wires are pulled up to +5 volts

through 4700 ohm resistor networks. In the normal state,

the interface software will ground the rows by outputting

logic low level on Port B of PIA#3. The columns are then

read. If any columns are found to be a logic low level, a

hardware interrupt is generated to the 68000. This will

indicate to the processor that a key has been pressed

somewhere in the column that went low. When this KEYIRQ

interrupt is generated by a depressed key, the 68000 out-

puts a logic low level on Port A of PIA #3. The columns

are now at a TTL logic low. The rows are then read

through Port B of PIA #3. The row having a TTL low logic

level will indicate the row of the depressed key. Now that

the column and row of the depressed key are known, the key

number can be determined.

The EHSI System Switch on the Control Keyboard is a

80

simple SPST switch that is grounded on one side, and has a

4700 ohm pull-up resistor to +5 Volts on the other side.

The switch is used to start and to stop the EHSI system.

When the switch is in the "OFF" position, the SPST switch

forms an open circuit and the system switch input becomes a

TTL high level. With the switch in the "ON" position, the

input goes to a TTL low level. The EHSI System Switch

input is on pin 13 of PIA #1, Port B.

A MM58174 (U7) Real Time Clock and Calendar is pro-

vided on the Interface Board and is used inform the host of

current time and date information. The clock/calendar

schematics are on page 124 of Appendix B. The clock is

decoded at addresses $30063 to $3007F and the time and date

registers are memory-mapped to the addresses shown in Table

1. The clock has a battery backup of three volts. This

provides uninterrupted operation of the time register up-

dates during power down. The clock device contains an

interrupt timer which generates a logic low interrupt out-

put upon timer time out. This interrupt is called CLKIRQ*.

Like KEYIRQ*, it is tied to the processor interrupt line

and to a interrupt flip-flop latch. The timer may be

programmed to interrupt every 60, 5 or 1/2 seconds. The

clock timebase is generated from a 32.768 kHz crystal-

controlled oscillator and can be adjusted by tuning a

81

capacitor located next to the real time clock chip (U7).

There are two 8192 x 8 bit UV erasable programmable

read only memories (MCM68764) onboard the Interface Board.

They will be used to store the final version of the inter-

face software. The 68000 has a 16-bit data bus with the

memory organized as 8-bits or one byte. The two EPROMs are

8-bit devices. Therefore, one EPROM (U34) will store the

low order byte of a word and the second EPROM (U35) will

store the high order byte of the 16-bit word. The EPROMs

will be enabled whenever address decode signal El ($20000 -

$2FFFF) is low and when the processor is in a read cycle

(signified by R/W being high).

The EPROMs operate from a single power supply and

have maximum access time of 450 nanoseconds. A Data

Transfer Acknowledge (DTACK*) signal is generated and re-

turned to the 68000 whenever the El signal is decoded.

DTACK* provides an asynchronous bus cycle to allow the

68000 to interface to devices with various access times.

The DTACK* signal is returned approximately 500 nanoseconds

after the EPROMs are enabled. This will provide enough

time for the EPROMs to access the data. The EPROM DTACK*

line is connected to a three-input AND gate with open

collector output. The other inputs of the AND gate are

tied high through a 4700 ohm resistor. These inputs are

82

provided as future DTACK* inputs. The open collector AND

gate output is connected to DTACK* connec-tion point E7 on

the 68000 board, as shown on page 124 of Appendix B.

Three devices on the Interface Board can initiate

exception or interrupt processing. They are the real time

clock, the Command Keyboard and the host computer via the

parallel port. Positive edge triggered flip-flops (U32,

U33) are provided to latch these interrupts. As shown on

page 122 of Appendix B, the outputs from the flip-flops go

to bits 4-7 of PIA #1, Port B. The flip-flops used to

latch the interrupts are provided for two reasons. The

first reason is so the keyboard does not give multiple

interrupts for one key closure and the second reason is to

catch all interrupts in case an interrupt comes and goes

while the software is servicing an interrupt of a higher

priority. The flip-flops have clear inputs that enable the

software to clear the interrupt latches, via bits 4-7 of

PIA #1, Port A, once the interrupt service routines have

finished.

The analog portion of the interface board consists of

two analog-to-digital convertors, signal conditioning of

the analog flight simulator signals for the analog-to-

digital convertors and an alarm circuit. Two AD7581 analog-

to-digital (ADC) convertors are used to digitize the analog

83

flight simulator signals. The AD7581 is a microprocessor

compatible 8 bit, 8 channel memory buffered ADC. It con-

sists of an 8 bit successive approximation ADC, an 8

channel analog multiplexer, an 8 x 8 bit dual-port RAM and

microprocessor compatible control logic.

The conversion takes place on a continuous, channel

sequencing basis using the M6800 E clock from the 68000 as

the ADC clock. Converted digital data values are automati-

cally transferred to the proper location within the 8x8

bit dual-port RAM onboard the ADC. Any channel of the

dual-port RAM may be read at any time. The ADC may be used

for unipolar (O V to +10 V) operation or for bipolar (+5 to

-5V) operation. ADC #1 has analog inputs through 7 (AIN0-

AIN7) and is used in the bipolar mode. ADC #2 is applied

analog inputs 8 through 15 (AIN8-AIN15) and operates in the

unipolar mode. An AD581 is used as a external precision

voltage reference by the AD7581's shown on page 128 of

Appendix B. The sixteen analog signals each have their own

address within the M6800 address decode page E6. These

addresses are shown in Table 1. Four decoder enable

signals are used to select the ADC's. EN17* and EN18*

select ADC #1 and EN20* and EN21* select ADC #2.

An alarm circuit, shown on page 122 of Appendix B, is

used to sound a piezo-electric buzzer when a pilot gets

84

into a dangerous situation. The buzzer itself is rated to

15 iA at a maximum volatge of 20 Volts DC. At 15 mA and

+15 Volts the alarm is extremely loud. A volume control

potentiometer is used to vary the current through the

piezo-electric buzzer from a minimum of 0.13 milliamps to a

maximum of 1.1 milliamps. A monostable multivibrator is

used to cycle the alarm buzzer on and off at a rate of 5

cycles per second. The multivibrator is enabled by bit

of PIA#1, Port B. The alarm will alert the pilot that an

alarm condition exists and that immediate corrective action

should be taken.

The actual analog signals from the flight simulator

are non-uniform and non-symmetric signals. Some are uni-

polar or bipolar, others range from 6.7 V to 8.3 V while

still others only have two possible states and can be

classified as binary signals. Due to this uniqueness of

each signal, analog circuitry was used to signal condition

the analog signals before they could be applied to the

ADCs.

Nineteen flight simulator signals are taken from the

instruments of the flight simulator. Four are binary

signals and fifteen are analog signals. The signals are

acquired from within the flight simulator at points such as

potentiometers, selector switches, avionic instruments,

85

etc. Table 2 shows the voltage range of each signal,

the type of signal after conditioning and where the signal

was acquired from within the flight simulator. All signals

are first fed through various configurations of an opera-

tional amplifier circuit which has an input impedance on

the order of Terra ohms. This ensures that the flight

simulator is essentially isolated and does not "see" the

interface board. Next, the operational amplifier circuits

translate the analog voltage levels into the proper range

before the signals can be applied to the ADCs. The signals

are then digitized by the ADCs and are ready to be pro-

cessed by the EHSI software.

In Chapter 4, the EHSI Development System Software

will be described. This software is used to control the

Data Acquisition and Communications Interface and the host

computer. I will first describe the software that controls

the Interface then the host software will be discussed.

86

z
c

E-

<
E
PS

o
ft

Z

o
Eh

2

is o: K co (n s

U U M U U

o o
OS OS

o o eh co in

—

.

a

o
u

in m
2 2
H M
ft ft

2 2
t-H M
ft ft

Z

ft

OS OS OS OS K OS

04 ft

o o
ro CJ Q r^ {J OJ

mmaoaaoaajcQaaS

2 2
M »-H

ft ft

OS OS OS OS OS OS OS

OS ft

os a. a. os

m m m m

OS o
o >-H H
H Eh >
<
iJ a Eh
id 2 <
E o O
>—

)

u H
to

si
2

Eh < <

«C z O
o Eh

co m
+1 +1 +1

U
Eh

> >
> >

+ 1 +1

O
OS

a o u a ^-^

X j j Eh rj Wo CO W a 00< ft a E ft <
Eh M Q CO ftJ Z H M Eh ft E ft w
ft < Q J J. >-H o a EQ E o o < eC tj < a

u
2
<

J *: ^ o
ft OS ft <

< < Eh

S)

OE
O

E E
os ft

1

>
ft ft

H rH

CJ

>

87

CHAPTER FOUR

THE EHSI DEVELOPMENT SYSTEM SOFTWARE

The development system software is used to control

the entire development system. The software can be divided

into three parts. These are the TUTOR software, the Inter-

face Board software and the host software. This section

will begin with a brief introduction to the EHSI develop-

ment system software. The three major divisions of

software listed above will then be discussed in detail.

The Tutor software is used as a monitor/operating

system to provide a link between the user and the 68000

Educational Board. It is also used for 68000 assembly

language program development and for debugging the assembly

language software, in this case the interface software.

The interface software provides control for the interface

board's communication with the other development system

components including the host. The host is responsible for

the development of the software which produces the displays

on the HP-1345A.

88

The Tutor Software

The Educational Board's TUTOR firmware provides a

self-contained programming and operating environment. It

resides on two 8k x 8 ROM devices and interacts with user

via commands entered into a dumb terminal. The commands

allow the user to:

1. Display or modify memory

2. Display or modify internal 68000 registers

3. Execute a program

4. Control I/O resources.

The operational mode of TUTOR is shown in Figure 26. An

additional function is available in TUTOR called TRAP 14

handler. it allows the user programs to utilize various

routines within TUTOR. TUTOR is used to assemble, dis-

assemble, debug the interface software, and acts as a

system monitor. It will also be used to boot the interface

software in the final version of the development system.

For a detailed explanation of all TUTOR commands, please

refer to Chapter 3 of the MC68000 Educational Computer

Board User's Manual [14].

89

COMMAND
LINE INPUT

FROM
TERMINAL

EXECUTE
COMMAND
FUNCTION

YES

NO

DOES
COMMAND LINE

CAUSE USER PROGRAM
EXECUTION

/

JUMP TO USER
PROGRAM AND

BEGIN
EXECUTION

FIGURE 26. OPERATIONAL MODE OF TUTOR MONITOR

HO

The Interface Software

In order to provide communications between the devel-

opment system components, the interface software was

developed. The interface software runs under the TUTOR

operating environment. The interface software consists of

a main program, support subroutines and interrupt control/

service routines. The software provides initialization of

the interface board and other development system compo-

nents, in addition, the interface software is responsible

for continuously updating the data package with the digi-

tized flight simulator signals, the clock time values and

the last key pressed on the command keyboard. The data

package is generated by the 68000 so the host can have a

convenient and concise package of the system parameters.

The data package parameters and location in RAM are shown

in Table 3. The data package may be sent to the host on

request using one of the four basic interface commands.

Four interface commands allow the host to communicate

with the development system components and to access system

parameters. The commands are:

Command #1) Transfer the data package to the host

Command #2) Transfer HP-1345A commands from the host

to vector memory

91

TABLE 3. DATA PACKAGE OF SYSTEM PARAMETERS

H LOCATION DATA PACKAGE ENTRY
$1FA0 NUMBER OF ENTRIES IN DATA TABLE
$1FA1 BANK
$1FA2 PITCH
$1FA3 VERTICAL SPEED
$1FA4 DELTA X POSITION
$1FA5 DELTA Y POSITION
$1FA6 MANIFOLD PRESSURE
$1FA7 COURSE DEVIATION INDICATOR
$1FA8 GLIDESLOPE
$1FA9 ALTIMETER
$1FAA AIRSPEED
$1FAB COMPASS / DIRECTIONAL GYRO
$1FAC ADF
$1FAD DME
$1FAE PERCENT POWER
$1FAF RPM
$1FB0 SPARE UNIPOLAR ANALOG INPUT
S1FB1 BINARY INPUTS

BIT GEAR UP / DOWN
BIT 1 TO / FROM / OFF FLAG
BIT 2 TO / FROM / OFF FLAG
BIT 3 OUTER MARKER
BIT 4 MIDDLE MARKER
BIT 5 SPARE
BIT 6 SPARE
BIT 7 SPARE

$1FB2 LAST KEY PRESSED ON COMMAND KEYBOARD
$1FB3 MONTH
$1FB4
$1FB5

DAY OF THE WEEK (01 = SUNDAY)
DATE

$1FB6 HOURS
$1FB7 MINUTES
$1FB8 SECONDS

92

Command #3) Read a block of HP-1345A commands from

the vector memory and send to the host

Command #4) Toggle the alarm on the interface board

The interface software was developed in a modular

fashion using the "top-down" style of structured pro-

gramming. The system is designed to operate under the

interrupt environment. This implies that there are very

few lines of code within the main program loop. Almost all

of the work is accomplished by the interrupt service and

support routines.

Support Subroutines Eleven subroutines are used by

the main and interrupt programs. They involve initializing

development system components, reading or sending HP-1345A

commands to vector memory, setting the real time clock's

time registers, finding which key is pressed on the command

keyboard, getting the digitized values for the analog

flight simulator signals, and performing communications

with the host computer via the parallel port. The subrou-

tines are all written to avoid destroying registers, if

possible. Subroutines will aid in making the interface

software more modular and structured. This will make the

code more readable and easier to debug. Also, the use of

subroutines instead of the same code will provide higher

code densities. The subroutines used by the main program

93

will now be described functionally. For detailed documen-

tation and actual 68000 code please refer to Appendix C.

The first two subroutines are INTPIA and INTVCM,

which are used for initialization. INTPIA is used to

initialize a port of a PIA. Each individual bit in both

Port A and Port B, of the PIA, may be designated for input

or output. To establish the direction of these bits the

port control register must first be set to zero. If the

bit is to be an output bit, then the bit in the data

direction register must be a one. If the bit is to be an

input bit, there must be a zero in the data direction

register. After the direction is established, $04 must be

written to the port control register. Now the actual port

pins will be referenced when writing to or reading from a

PIA port.

INTVCM will initialize the HP-1345A's vector memory.

When the HP-1345A is turned on the contents will be unknown

since synchronous refresh can only occur after an "internal

jump to 4095 ($8FFF)" command. The memory is filled with

internal jumps to 4095 during the development system ini-

tialization process. The subroutine also places a NOP

($0000) command in location 4095 since an internal jump in

memory can not jump to another internal jump command.

The next three subroutines are used to write/read

94

commands to/from vector memory. The three subroutines are

SNDCMD, SNDLST, AND RDVCM.

SNDCMD is used to send a single HP-1345A command to

vector memory. The 16-bit command may be either a graphic

command, a vector memory address pointer command or an

internal jump command. The proper handshake to transfer

the command is controlled by this subroutine.

SNDLST allows vector memory to be sent an entire list

of commands. The subroutine is given the starting address

of the list and the number of commands in the list. Again,

so that code is not repeated, subroutine SNDCMD is called

to send each individual command.

RDVCM is used to read a block of HP-1345A commands

from vector memory. The subroutine is sent the starting

and ending addresses of the block to be read. The subrou-

tine then sets the vector memory address pointer to the

first command in the block to be read. The handshake lines

are then used to give a read cycle handshake to the vector

memory. This continues until the entire block is read.

The commands are stored in RAM onboard the 68000 Educa-

tional Board. This RAM location is called vector memory

mirror and resides from $6000 to $7FFF (4096 words). The

block read from vector memory is stored in the same order

and at the same location in the mirror RAM (offset by

95

$6000) that it resided in HP vector memory. Subroutine

SETCLK uses this subroutine to save the current graphic

prior to prompting the user for time data.

GETKEY is called by the KEVIRQ service routine. It

determines which key has been pressed on the control key-

board. The subroutine determines which column and row the

pressed key is in. It then stores the pressed key number

in the "data package", which is an area of memory reserved

for simulator instrumentation data and associated informa-

tion. If no key was found to be pressed, GETKEY returns a

value of 37 in the key location of the data package.

SETCLK is used to set the real time clock and calen-

dar on the interface board. The subroutine first saves the

current HP-1345A display by storing it in the vector memory

mirror RAM. It then takes control of the display and

prompts the user for time and date information. The clock

is then started by the user when the data becomes valid.

The interrupted display is then restored to vector memory

from the mirror RAM. The entire process is accomplished by

the interface software. Again, this is to keep the host's

overhead to a minimum.

ANALOG retrieves the digital values representing the

analog flight simulator signals. The sixteen channels from

ADC #1 and #2 are retrieved and stored in the Data Package.

96

This subroutine is called from the main program's main

loop. Therefore, the Data Package will continuously

(except during an interrupt) be updated with the current

signal values.

Three subroutines are used for communications with

the host computer. They are OUTSHAKE, INSHAKE AND ERROR.

OUTSHAKE is used to send a pulse on the output hand-

shake line of the parallel port. The pulse may represent a

data acknowledge or a data strobe depending on the direc-

tion of communications between the interface and the host.

The pulse width can be varied by the programmer changing

one instruction in this subroutine. It is currently set

for a 25 microsecond pulse, which is more than adequate.

INSHAKE is also used for communications with the

host. It waits for an input pulse on the input handshake

line. This pulse may represent a data strobe or a data

acknowledge depending on the direction of communication.

The subroutine will wait for a maximum of 45 milliseconds

for the line to go active and also 45 milliseconds for the

line to go inactive. Therefore, the pulse width can vary

from a minumum of 15 microseconds to a maximum of 45 milli-

seconds. Hence, it is very forgiving of a "sloppy" pulse.

If the subroutine waits more than 45 milliseconds, either

for active of inactive status, the subroutine ERROR is

97

called to trap the error.

ERROR is used to display an error condition on the Z-

29 terminal so it may be brought to the attention of the

user. There are four possible errors that may be flaged.

They are Strobe Error, Acknowledge Error, Illegal Memory

Error and Vector Memory Error. These are described in the

documentation provided in Appendix C.

The main program starts out by initializing the

system and the system parameters. It intializes all Pe-

ripheral Interface Adapters (PIA) and their ports and then

initializes all interrupts. The Real Time Clock also gets

initialized as well as the HP-1345A Vector Memory. The

last initialization involves setting up the interrupt vec-

tors for exception processing.

After all initializations are complete, the main

program will display the message "INITIALIZATIONS COMPLETE"

on the terminal and then instructs the pilot to "CONTINUE

TO THE FLIGHT SIMULATOR." The main program then waits for

the pilot to turn the EHSI System Switch on.

When the EHSI System Switch is turned on, the EHSI

ready message will appear on the HP-1345A and all inter-

rupts will be enabled. The 68000 will then inform the Host

that the system is up and running and to start normal data

processing. Now the main program enters its very short

98

main loop. Once in the main loop, the program goes about

its task of continuously updating the "Data Package" and

monitoring the EHSI System Switch. The main loop is the

point that is interrupted when interrupt processing

occurs.

The program constantly monitors the state of the EHSI

System Switch. When the system is shutdown the main

program disables all interrupts, displays a shutdown

message and informs the Host of the shutdown. It then

waits for the system switch to be turned back on. When it

is turned back on, the system and the entire initialiaztion

process is restarted.

It is important to note that the main loop of the

main program consists of just a few lines of code. Since

the system is operating under an interrupt environment,

most all of the work is done by the interrupt service

routines.

Interrupt Processing Interrupt processing software

design was chosen over the polling method for one important

reason. Polling may be adequate now, however when the host

software is compiled to run on the 68000, polling will not

be adequate. Although interrupt programming code is more

complex, it is a more efficient means of servicing periph-

99

erals since the overhead is small compared to polling.

This will become important when the host software is added

to the interface software.

The Interface Board hardware is designed to take

advantage of the level 4, autovectored interrupt #28 within

the 68000. The clock interrupt, keyboard interrupt and

host parallel port interrupt are wired so that any one

interrupt may produce a level 4 interrupt.

When the 68000 receives a level 4 interrupt it com-

pletes the current task and then pushes the return address

of the next instruction and the status register onto the

stack. The processor then changes the interrupt priority

mask to ignore interrupts equal to or less than level 4.

The processor uses the interrupt vector to form an address

by multiplying the vector (#28 or $1C) by four. This will

point to $70 within the exception vector table. At this

address in RAM, the INTERRUPT CONTROL ROUTINE (ICR)

starting address is found (32 bits). The ICR is respon-

sible for determining what device is requesting the inter-

rupt and then executes the appropriate service routine. In

order for the reader to understand the interrupt routines

it is important to first understand the theory of the

interrupt processing programs.

The 68000 may be interrupted by three devices, the

100

clock, the keyboard and the parallel port. The clock

interrupt timer can be programmed to interrupt every 60, 5

or 1/2 seconds or not at all. The keyboard generates a

level 4 interrupt whenever a key is pressed on the command

keyboard. The Zenith-158 can interrupt the 68000 by

sending a pulse (data strobe) on the 68000's input hand-

shake line of the parallel port. Figure 27 shows the

interrupt control routine's flow chart which will now be

discussed.

When the 68000 receives an interrupt, it vectors con-

trol to the INTERRUPT CONTROL ROUTINE (ICR). The ICR

determines which device is requesting the interrupt by

checking the interrupt status bits of PIA #1, Port B, bits

7 through 4. After determining the device (which bit of

the interrupt status bits) that is requesting the service,

it then multiplies the bit number by four and uses this as

a vector offset to point to the address of one of the three

service routines. The three service routines are COMIRQ,

KEYIRQ and CLKIRQ. (Note there are four available inter-

rupt bits in the interrupt status bits but only the three

are used. This allows for future addition of an additional

interrupt)

.

COMIRQ service routine is initiated by the host

sending a data strobe to the parallel port. When the 68000

101

1.02

is interrupted by the host, there will be an interface

command number on the data bus of the port sent from the

host. COMIRQ multiplies this vector by four and uses it as

an offset to retrieve one of the four interface command

service routine addresses. There are space available for

seven interface command vectors, however only four commands

are used at this time.

Interface Command #1 transfers the contents of the

data package to the host. Interface Command #2 is used by

the host to transfer HP-1345A commands to vector memory.

Interface Command #3 is used to read a block of vector

memory commands (specified by the host) and transfers them

to the host. Interface Command #4 will toggle the alarm on

the interface board. Detailed documentation of these

interface commands may be found in Appendix C.

KEYIRQ is the second interrupt service routine. This

routine is initiated on an interrupt caused by any key

being pressed on the control keyboard. The routine calls

subroutine GETKEY which returns the number of key pressed.

If key number 3 6 is pressed, then subroutine SETCLK is

called to set the real time clock/calendar. If the key is

not number 36, then the key number is put in the data

package and sent to the parallel port after which the host

is interrupted via a pulse on the outshake line.

103

CLKIRQ is the third interrupt service routine. When-

ever the real time clock interrupt timer times out (60, 5

or 1/2 second) this routine is executed via the ICR. The

routine first reads the seconds, minutes, hours, days, date

and month and stores this data in the data package. The

routine then alerts the host that the time has changed by

sending the arbitrary time change vector ($60) on the

parallel port. The host may then turn around and ask for

the data package (using interface command #1) to get the

new time values.

After an interrupt has been serviced, the service

routine returns back to the ICR. The ICR then executes the

RTE instruction which pulls the return address off the

stack and then places it in the program counter. The

exception processing is complete when the main program

execution continues.

Proposed Host Software

The host software can be divided into two parts. The

first part is communications software and the second part

is EHSI display development software.

The communications software is responsible for trans-

ferring data back and forth between the host and the other

104

EHSI development system components. It must also be able

to supply the EHSI development software with current flight

simulation data. The development software should be re-

sponsible for using the information from the communications

software to develop EHSI displays.

I propose to have the communications software run

(keyed from some interrupt) as a background process. This

will provide the host with communications and data package

information from the 68000 Data Acquisition and Communica-

tions Interface. This information would be read by the

communications software and stored at some location in

RAM. This location should be agreed upon by the display

development software and the communications software

(background process).

The EHSI display development software will be free-

running and not be part of the communications software

interrupt processing. The host development software will

generate displays from the data (data package information

stored in the reserved memory location) and will be able to

call the communications software to send the display data

to vector memory.

105

CHAPTER FIVE

RECOMMENDATIONS FOR FUTURE WORK

AND

CONCLUSION

Now that the proposed EHSI and display pages have

been presented, it is time to use the EHSI Development

System to develop and evaluate the initial phase of the

EHSI. This development is only the first of many phases

the EHSI will go through. There will be many areas that

will need consideration during the EHSI development. In

this chapter, I will give recommendations for work to be

completed and also comment on areas that may need consider-

ation as the EHSI matures.

Future Considerations

The phases of development of the EHSI fall into one

of five general categories. The first task is to develop

the display pages. Once developed, the group may begin

ground testing of the raw EHSI system. After the perfor-

106

mance evaluations are complete the next step will be to

research and design a flight test prototype. Extensive

flight testing should occur during this phase of develop-

ment. By constant evaluation and possible prototype

redesign the EHSI should progress toward completion. Once

the development group feels confident about the product,

the question of whether to market the EHSI can be con-

sidered. In this chapter, I will discuss each one of these

development phases, recommending work to be considered.

Display Page Development The first work is ob-

viously to use the EHSI Development System to develop

workable display pages. This is accomplished by using the

host computer to acquire and process the needed information

to produce display pages in the format described in Chapter

2. At this point it must also be determined how much

information is to be entered by the pilot during preflight.

This includes information such as navigation and communica-

tion frequencies, estimated wind speed and direction, way-

point locations etc. The development of a typical opera-

tional sequence would be helpful to maintain consistency

and helpful for display operation.

Once the basic display page development software is

operational, it should be compiled and assembled into 68000

machine code to be executed by the 68000. This will take

107

the slow host computer out of the processing loop. Also,

any effort to move away from the dependancy on the host

will be beneficial during prototype design. After the

initial pages have been developed, ground testing and

evaluation of the EHSI system should begin.

Ground Testing and Evaluation Once the basic

system is operational, ground testing and simulation should

begin. This phase of development is for evaluating and

refining the display pages. Also, it should be determined

what details or portions of the pages are not possible to

produce. Are these problems due to the poor accuracies of

the flight simulator and will the actual avionics yield

higher accuracies? Questions such as these should be

evaluated.

The EHSI performance should continuously be evalu-

ated. This evaluation may be by actual IFR rated pilots or

by someone within the development group. The progress of

the EHSI end product should always be evaluated and certain

questions should be asked about the direction of the EHSI.

These questions should include: Is the EHSI remaining

basic or is there too much information cluttering the

display pages? Does the EHSI reduce the pilot's workload

or is the pilot having to juggle more data and make more

decisions? Is the information presented in a format that

108

will aid in comprehension of the data? Have we highlighted

so much data that the essential parameters don't stand out?

Do the pages include all the appropriate information for

the particular phase of flight? The answers to these

questions should not be the opinion of one individual but

should come from evaluations of the group members and from

several IFR rated pilots. The results of these evaluations

should be used to refine the EHSI to the point where it is

possible to begin building an EHSI prototype.

EHSI Prototype Research and Design Once the EHSI

has been refined, it is time to consider a prototype. By

this time in the development it will be known what data

will be required to produce the display pages. The same

data must somehow be acquired from the instruments onboard

the actual aircraft. It is doubtful the data will be

available in the same form as on the flight simulator.

However, directly or indirectly the data needed can be

acquired. The data may directly be available from the

instruments via a digital bus or a analog signal or the raw

data may have to be indirectly produced by sensors or

transducers. This area will require a great deal of

research into the manufacturer's avionic components and how

the EHSI will interface to them.

Other areas must be considered before the EHSI

109

prototype is designed. Redundancy of the vital components

should be considered. Power requirements and reliability

will certainly need consideration. The Federal Aviation

Administration's rules and guidelines for electronic

avionic components should be researched and incorporated

into the design. These are just a few of many areas to be

considered before the actual prototype is designed. Once

these questions have been answered and once the prototype

has been designed, it is time for flight testing and

evaluation.

Flight Testing and Performance Evaluation When

the EHSI prototype is completed it should be ready for the

next phase of the EHSI development, actual flight testing.

This phase begins with the temporary installation of the

EHSI unto the aircraft. The installation and interfacing

to instruments should have no effect on the operation of

existing instrumentation.

Once the system is installed, flight testing and

evaluation may lead to further refinement. The refinements

or modifications should proceed as smoothly as possible.

The refinements could be as simple as removing the EPROMs

on the EHSI interface and simply reprogramming them on the

ground to be reinstalled in the aircraft. Again, the same

type of questions should be posed as during ground testing

110

and simulation. In addition, it should determined if the

pilots are depending on the EHSI too much or not enough.

The testing and evaluation loop should continue until the

EHSI development group is satisfied with the performance of

the system. The next step includes research into the

possibility of marketing the EHSI.

Marketing the EHSI If the EHSI development group

decides that there does indeed exist a niche in the market

for this digital avionic instrument, the next step would be

to market the EHSI. Research should be conducted to estab-

lish the market where the EHSI could benefit the most. The

EHSI should then be targeted at this market. Cost should

be determined to allow a profit margin and to allow it to

remain affordable to the small aircraft owners. The EHSI

design should be protected against copyright infringment

and also the EHSI design group should be protected against

possible loss of benefits and time due to a duplicate

system appearing on the market.

Research should determine the best method of market

approach. Should the group sell the complete design to an

avionic manufacturer or just sell the right to production?

Should it be promoted as an add on to an existing elec-

tronic instrument system or be part of the standard equip-

ment on new aircraft?

Ill

Conclusion

Instrument rated pilots, flying under IFR condi-

tions, have a wealth of information available to them. The

problem exists that this information is not getting

utilized because there is too much data to be processed by

the pilot and not enough time to process it. Also, the

data presented by the electromechanical instruments is in

some cases not informative or is presented in a format that

is not immediately comprehendible.

The general-aviation community would benefit from a

digital avionic instrument that would truly provide a man-

machine interface by relating the flight information to the

pilot in much the same way as the digital avionics in large

commercial airliners.

In this thesis an Electronic Horizontal Situation

Indicator was proposed. Through three simple display page

graphics, the pilot is presented with information about his

horizontal relationship with the surroundings, a central-

ized place for pertinent flight data and a unique presenta-

tion of the aircraft's position while on an ILS approach.

The Data Page provides information about the character-

istics of the flight and of the aircraft. The NAV Page

112

presents the aircraft's horizontal relationship to the

surroundings in a plan presentation. The ILS Page provides

the pilot with an effective indication of the aircrafts

position and trend while on an instrument approach.

To develop such an instrument as the EHSI, it was

necessary to design and build an EHSI Development System.

The development system consists of an ATC610 Flight Simu-

lator, a Zenith-158 "IBM" compatible computer, an HP-1345A

Vector Graphics display, a Command Keyboard and a Data

Acquistion and Communications Interface that ties it all

together. The host computer processes the data acquired and

produces workable display pages for the HP-1345A. The

development system hardware is discussed in Chapter 3. A

discussion of the development system software and the pro-

posed host software is given in Chapter 4. A great deal

of work remains to be completed to continue the development

of the EHSI. Chapter 5 gives recommendations for future

work to be considered as the EHSI matures. This work

involves display development, ground testing, prototype

design, flight testing and product market evaluation.

113

REFERENCES

[I] Technical Survey, "New Avionic Systems Offer Effi-
ciency, Safety Benefits," Aviation Week & Space
Technology , Vol. 116/16, April 19, 1982, p-52.

[2] Lerner, J.L., "The Automated Cockpit," IEEE Spec-
trum , Feb. 1983, p-57.

[3] "Cockpit Crew," Aviation Week S Space Technology
,

July 5, 1982, p-37.

[4] Scott, W.B., "Avionics Firms Invest in Digital De-
signs," Aviation Week & Space Technology , Oct. 3,

1983, p-103.

[5] "Digital Avionics Unaffected by Turndown," Aviation
Week & Space Technology , Nov. 9, 1981, p-181.

[6] Stein, J.S., "Navigation System Capabilities In-
crease," Aviation Week & Space Technology ,

Dec. 21, 1981, Vol. 115, p-70.

[7] Dyer, S.A., "A Proposed Electronic Horizontal Sit-
uation Indicator for use in General-Aviation Air-
craft," Proceedings of 1982 Position, Location
and Navigation Symposium , pp. 198-205.

[8] U.S. Navy Hydrographic Office, Air Navigation ,

Ch. 4 and Ch. 6.

[9] U.S. Dept. of Transportation FAA, Instrument Flying
Handbook , 1980.

[10] Kershner, W.K., Instrument Flight Manual , Iowa
State University Press, Second Edition, 1969.

[II] "Computers in the Cockpit," Oshkosh Air Show
Seminar, Oshkosh WI., 1985.

[12] Hewlett-Packard Inc., HP-1345A Digital Display
Module Designers Manual , 1981.

114

REFERENCES CONTINUED

[13] ATC Division of Electronic Assoc. Inc., ATC 610
/710 Flight Simulator Service Manual .

[14] Motorola Inc., MC68000 Educational Computer Board
User's Manual , Second Edition, 1982.

[15] Stern, M. , "757-767 Cockpit," Radio Electronics ,

Part 1, Feb. 1983, p-39, Part 2, March 1983 p-43.

[16] Stein, K.J., "Navy Evaluates Pictorial Cockpit
Display," Aviation Week & Space Technology ,

Sept. 12, 1983, p-88.

[17] Kocivar, B. , "Revolution in the Cockpit: The New
Jetliners," Popular Science , Nov. 1982, p-58.

[18] Kershner, W.K., The Student Pilot's Flight Manual ,

Iowa State University Press, Third Edition, 1970.

[19] Yannone, R.M. , "Expert Systems in The Fighter of
The 1990 's," IEEE Aerospace and Electronic Systems
Mag. , February 1986.

[20] Elson, B.M., "NASA Studies Business Aircraft
Avionics," Aviation Week & Space Technology,
April 26,1982 p-119.

[21] Julian, K., "Preventing Midair Collisions," High
Technology , July 1985, p-48.

[22] Scott, W.B., "New Electronic Instruments Displayed"
Aviation Week & Space Technology , Sept. 28, 1981,
p-77.

[23] Donoghue, J. A., "Airbus A320 Cockpit: An Electric
Experience," Air Transport World , March 1986, p-38.

115

APPENDIX A

INTERFACE BOARD DEVICE LIST

DEVICE DEVICE DESCRIPTION # PINS

Ul 74LS245 20
U2 74LS245 20
U3 74LS244 20
U4 74LS244 20
U5 74LS244 20
U6 74LS244 20
U7 MM58174 REAL T 16
ua 74LS138 16
U9 74LS138 16
U10 74LS00 14'

Ull 74LS08 14
U12 74LS28 14
U13 74LS04 14
U14 74LS32 14
U15 MC6821 PIA #1 CONTROL 40
U16 MC6821 PIA #3 KEYBOARD 40
U17 MC6821 PIA #5 PARALLEL PORT 40
U18 MC6821 PIA #2 HP-DATA 40
U19 MC6821 PIA #4 BINARY INPUTS 40
U20 74LS245 HP-DATA BUS LSB 20
U21 74LS245 HP-DATA BUS MSB 20
U22 AD7581 ADC #1 28
U23 AD7581 ADC #2 28
U24 74LS00 14
U25 74LS27 14
U26 74LS175 DTACK DELAY 16
U27 SPARE SOCKET 16
U28 74LS11 14
U29 74LS15 14
U30 74LS08 14
U31 74LS32 14
U32 SPARE SOCKET 16
U33 SPARE SOCKET 16
U34 MCM68764 8K X 8 EPROM LSB 24
U35 MCM68764 8K X 8 EPROH MSB 24

116

Device Device Description # Pins

U36 LF353 DUAL OP AMP 8

U37 LF353 DUAL OP AMP 8

U38 LF353 DUAL OP AMP 8

U39 LF353 DUAL OP AMP 8

U40 LF353 DUAL OP AMP 8

U41 LF353 DUAL OP AMP 8

U42 LF353 DUAL OP AMP 8

U43 LF3 53 DUAL OP AMP 8

U44 LF347 QUAD OP AMP 14
U45 LF347 QUAD OP AMP 14
U46 LF347 QUAD OP AMP SPARE 14
U47 LF347 QUAD OP AMP SPARE 14
U48 LF353 DUAL OP AMP 8

U49 LF353 DUAL OP AMP SPARE 8

U50 74HC32 CMOS OR GATE 14
U51 SPARE SOCKET 14
U52 74LS245 20

117

119

irmr
ill sll

<H

rM Hi'

±±±

Bj< < < 4 < .

N=

« 3 < <

sooooooo

o o u o o

3H>

r
e 5 ? * f * *

r

/),////,

A

1
AAA A AAAA

j
j

3

120

-
c

121

e.

<

<

a
z
<

<
—
-

-

c
o

122

8
3

2

1 s

B Q

I
§

1 CO

1 i

12J

124

125

BmilCi KMD niOfT SIMULATOR
MW£C CDNWEOOt »-25 CDNHECTER

ANALOG INPUTS 0-7 SIGNAL CONDITIONING

126

Tt J* MO

H r-pQ

r-Sfe^W

ftSu

ao.9itn 2 1 lOOkfl 1

3 CCWASS/CfflO

loitn aTsskh "j !
I

lootn I

-Kttr

ANAU3G INPUTS 8-15 SIGNAL CONDITIONING

127

vvvvvvvv YYYYYYYY

i

1J8

**
**
* *

* MAIN PROGRAM *

* *

* EHSI DEVELOPMENT SYSTEM *
* *
**
**

DATE PROGRAMMER
AUGUST 28, 1986 JEFF LAGERBERG

**

PURPOSE

To control the EHSI Development System by initializing
the system and controlling the start-up and shutdown
of the system. The main program also is responsible
for updating the "Data Package" for data processing by
the Host.

DESCRIPTION

The main program starts out by initializing the system
and the system parameters. It intializes all Periph-
eral Interface Adapters (PIA), their outputs, and then
initializes all interrupts. The Real Time Clock also
gets initialized as well as the HP-1345A Vector Memo-
ry. The last initialization involves setting up the
interrupt vectors for exception processing.

After all initializations are complete, the main
program will display the message "INITIALIZATIONS
COMPLETE" on the terminal and then instructs the pilot
to "CONTINUE TO THE FLIGHT SIMULATOR." The main pro-
gram then waits for the pilot to turn the EHSI System
Switch on.

When the EHSI System Switch is turned on, the EHSI
ready logo will appear on the HP-1345A and all inter-
rupts will be enabled. The 68000 will then inform the
Host that the system is up and running and to start
normal data processing.

The main program now enters its very short main loop.
Once in the main loop, the program goes about its task
of continuously updating the "Data Package" and
monitoring the EHSI System Switch. The main loop is
the point that is interrupted when interrupt
processing occurs.

129

**

DESCRIPTION CONTINUED

The program constantly monitors the state of the EHSI
System Switch. when the system is shutdown the main
program disables all interrupts, displays a shutdown
message and informs the Host of the shutdown. It then
waits for the system switch to be turned back on.
When it is turned back on, the system and the entire
initialiaztion process is restarted.

It is important to note that the main loop of the main
program consists of just a few lines of code. Since
the system is operating under an interrupt
environment, most all of the work is done by the
interrupt service routines.

**

ORG. $20900
START MOVE .

L

#8,D3
LF1 MOVE.B #$A,D0

MOVE.B #248, D7
TRAP #14
DBRA D3 , LF1
MOVE .

B

#$D,D0
MOVE .

B

#248, D7
TRAP #14
MOVE .

L

#30, D3
SP1 MOVE .

B

#$20, DO
MOVE .

B

#248, D7
TRAP #14
DBRA D3,SP1
MOVE .

L

#$39D4,A5
MOVE.L #$39E8,A6
MOVE .

B

#227, D7
TRAP #14

PIA#1PA MOVE .

L

#$30001, A0
MOVE .

B

#$FF,D0
JSR INTPIA
MOVE .

B

#$0F, $30001

PIA#1PB MOVE .

L

#$30005, A0
MOVE .

B

#$3, DO
JSR INTPIA
MOVE.B #3, $30005

SEND EIGHT LINE FEEDS
TO THE TERMINAL

OUTPUT CHARACTER HANDLER

SEND CARRIAGE RETURN
OUTPUT CHARACTER HANDLER

SEND THIRTY SPACES
TO THE TERMINAL

OUTPUT CHARACTER HANDLER

DISPLAY "EHSI SYSTEM RUNNING"
ON THE TERMINAL

OUTPUT STRING HANDLER

INIT PIA #1 PORT A OUTPUT

INIT CONTROL BITS

INIT PIA #1 PORT B O/P I/P

INIT CONTROL BITS

MAIN PROGRAM

130

**
**

MAIN PROGRAM CONTINUED

**
**

INIT PIA #2 PORT A OUTPUT

INIT PIA #2 PORT B OUTPUT

INIT PIA #3 PORT A INPUT

INIT PIA #3 PORT B OUTPUT

OUTPUT LOW ON ALL ROWS

INIT PIA #4 PORT A INPUT

INIT PIA #5 PORT A OUTPUT

CLEARS INTERRUPT TIMER
THREE READS CLEARS

INTERRUPT OUTPUT LOGIC

CLEAR CLOCK TEST MODE
MAKE SURE CLOCK IS RUNNING

INIT HP VECTOR MEMORY

CHECK VCM COMMUNICATIONS
SET HP ADDR POINTER TO $FF

SEND AN HP COMMAND

SET UP TO READ BACK THE CMD
READ BACK ONLY ONE WORD CMD
PUT CMD IN VCM MIRROR RAM

PIA#2PA MOVE .

L

#$30009, AO
MOVE .

B

#$FF,D0
JSR INTPIA

PIA#2PB MOVE .

L

#$3000D,A0
JSR INTPIA

PIA#3PA MOVE .

L

#$30011, AO
MOVE .

B

#0,D0
JSR INTPIA

PIA#3PB MOVE .

L

#$30015, AO
MOVE .

B

#$FF,D0
JSR INTPIA
MOVE .

B

#0, $30015

PIA#4PA MOVE .

L

#$30019, AO
MOVE .

B

#0,D0
JSR INTPIA

PIA#5PA MOVE .

L

#$30021, AO
MOVE .

B

#$FF,D0
JSR INTPIA

CLK INIT MOVE .

B

#0,$3007F
MOVE .

B

$3007F,D0
MOVE .

B

$3007F,D0
MOVE .

B

$3007F,D0
MOVE .

B

#0, $30061
MOVE .

B

#1,$3007D

INIT VCM JSR INTVCM

CHK VCM MOVE . B #0,D3
RECHECK MOVE .

W

#$C0FF,D0
JSR SNDCMD
MOVE .

W

#$7818, DO
JSR SNDCMD
MOVE .

L

#$FF,D0
MOVE .

L

#$FF,D1
JSR RDVCM

MAIN PROGRAM

**
**

MAIN PROGRAM CONTINUED

**
**

IRQ VTR

CMPI.W
BEQ
CMPI .

B

BNE
MOVE .

B

JSR
DBRA

JSR
MOVE .

L

MOVE.W

#$7818,$61FE
IRQ VTR
#0,D3
RECHECK
#4,D2
ERROR
D3 , RECHECK

INTVCM
#$2500, $70
#$2300, SR

IS THE COMMAND THERE?
IF SAME COMMAND, CONTINUE
IS IT THE FIRST TIME
IF NOT FIRST TIME RECHECK
SET ERROR FLAG TO VCMERR
SEND ERROR TO TERMINAL
RECHECK COMMUNICATIONS W/ VCM

REINITIALIZE VECTOR MEMORY
PUT VECTOR IN $70=$00002 500
SET IRQ PRIORITY TO LEVEL 3

LF2

SP2

LF3

SP3

LF4

MOVE .

L

MOVE.B
MOVE .

B

TRAP
DBRA
MOVE .

L

MOVE .

L

MOVE .

B

TRAP
DBRA
MOVE .

L

MOVE.L
MOVE .

B

TRAP
MOVE .

L

MOVE .

L

MOVE .

B

TRAP
DBRA
MOVE.L
MOVE .

B

MOVE .

B

TRAP
DBRA
MOVE.L
MOVE.L
MOVE.B
TRAP
MOVE.L
MOVE .

L

MOVE .

B

TRAP
DBRA

#3,D3
#$A,D0
#248, D7
#14
D3 , LF2
#28, D3
#$20, DO
#248, D7
#14
D3,SP2
#$39E8,A5
#$3A00,A6
#227, D7
#14
#3,D3
#$A,D0
#248, D7
#14
D3 , LF3
#26, D3
#$20, DO
#248, D7
#14
D3,SP3
#$3A00,A5
#$3A20,A6
#227, D7
#14
#6,D3
#$A,D0
#248, D7
#14
D3 , LF4

MAIN

SEND THREE LINE FEEDS
TO THE TERMINAL

OUTPUT CHARACTER HANDLER

SEND 28 SPACES
TO THE TERMINAL

OUTPUT CHARACTER HANDLER

DISPLAY "INITIALIZATIONS
COMPLETE" TO THE TERMINAL

OUTPUT STRING HANDLER

SEND THREE LINE FEEDS
TO THE TERMINAL

OUTPUT CHARACTER HANDLER

SEND 26 SPACES
TO THE TERMINAL

OUTPUT CHARACTER HANDLER

DISPLAY "CONTINUE TO FLIGHT
SIMULATOR" TO THE TERMINAL

OUTPUT STRING HANDLER

SEND SIX LINE FEEDS
TO THE TERMINAL

OUTPUT CHARACTER HANDLER

132

MAIN PROGRAM CONTINUED

LOGO

SYSUP

CLR.L
MOVE .

L

MOVE .

H

JSR
MOVE .

W

BTST
BEQ
JSR
MOVE .

W

JSR

MOVE .

B

JSR
MOVE .

B

JSR
MOVE .

L

MOVE .

B

JSR

ENIRQS OR.B

ENCLKIRQ MOVE.B

MAIN

SYSDN

SHUTDN

MOVE.B
JSR
MOVE .

B

BTST
BNE

AND.B
MOVE.W
BSET

MOVE .

L

CLR.L
MOVE .

W

JSR
MOVE.L
MOVE .

B

JSR
MOVE .

B

JSR
MOVE.B
JSR

Dl
#S3A90,A0
(A0)+,D1
SNDLST
#$C000,D0

#3, $30005
SYSON
SNDCMD
#0,D0
SNDCMD

#$65, $30021
OUTSHAKE
#$2,D2
INSHAKE
#$30021, AO
#0,D0
INTPIA

#$F0, $30001

#$0C,$3007F

#24,$1FA0
ANALOG
$30019, $1FB1
#3, $30005
MAIN

#$0F, $30001
#$2700, SR
#0, $30005

#$3AA4,A0
Dl
(A0)+,D1
SNDLST
#$30021, AO
#$FF,D0
INTPIA
#$66, (AO)
OUTSHAKE
#2,D2
INSHAKE

MAIN

SET UP LOGO FOR DISPLAY
ON THE HP DISPLAY

SEND THE LOGO TO VECTOR MEM.
SET UP ADDRESS POINTER

WAIT FOR SYSTEM ON SWITCH
LOW OFF, HIGH ON
SET ADDRESS POINTER TO $0000
SEND A NOP WHERE JUMP WAS SO

LOGO CAN BE DISPLAYED

SEND SYSTEM UP VECTOR TO HOST
SEND STROBE TO HOST
SET ERROR FLAG TO ACKERR
WAIT FOR ACKNOWLEDGE
MAKE PARALLEL PORT INPUT

ENABLE ALL INTERRUPT REQUESTS

ENABLE INTERRUPT INTERVAL

PUT NUM OF ENTRIES IN DATA PAK
PUT ANALOG VALUES IN DATA PAK
PUT BINARY INPUTS IN DATA PAK
CHECK TO SEE IF SYSTEM IS ON
IF ON, GO THRU MAIN AGAIN

DISABLES INTERRUPTS
DISABLE ALL INTERRUPT LEVELS
TURN ALARM OFF IF ON

DISPLAY SYSTEM SHUTDOWN MSG

MAKE PARALLEL PORT OUTPUT

SEND SHUT DN VECTOR TO HOST
STROBE THE HOST
SET ERROR FLAG TO ACKERR
WAIT FOR ACKNOWLEDGE

PROGRAM

133

MAIN PROGRAM CONINTUED

WAITON

SELF

BTST
BEQ
MOVE .

L

DBRA
BTST
BEQ
BRA

#3, $30005
WAITON
#4000, DO
DO, SELF
#3, $30005
WAITON
START

WAIT FOR SYSTEM TO BE
TURNED BACK ON

DEBOUNCE SYSTEM ON SWITCH

SYSTEM STILL ON ?

RESTART SYSTEM

MAIN PROGRAM

134

***********************, ***********************************+++++

PURPOSE:

SUBROUTINE INTPIA

To initialize the direction of a port of a
PIA

INITIAL CONDITIONS: The address of the port data register to be
intialized is passed in register AO.L. The
port direction byte is passed in register
DO.B when the subroutine is called. If a
bit in DO.B is a one, then the direction of
that bit will be output. If the bit is a
zero, then it will be an input bit.

The port data direction register and port
control registers are initialized according
to the direction specified.

No register are affected. AO.L and DO.B are
returned undisturbed.

i, i, i,m i:ililitttt

ACTION:

REGISTER USAGE:

START

END

ORG.
MOVE .

L

MOVE.L
ADDA .

L

CLR.B
MOVE .

B

MOVE .

B

MOVEA.L
RTS

$20000
Al,$900
A0,A1
#2,A1
(Al)
DO, (A0)

#4, (Al)
$900, Al

SAVE Al REGISTER
COPY A0 TO Al. A0=PORT DATA.
Al=PORT CONTROL REG.
CLEAR PORT CONTROL REG.
SET DIRECTION OF PORT DATA
SET BIT #2 OF PORT CONTROL
RESTORE Al
RETURN TO CALLING ROUTINE

SUBROUTINE INTPIA

135

**

SUBROUTINE INTVCM

PURPOSE: To initialize the HP-1345A Vector Memory

INITIAL CONDITIONS: This subroutine requires no parameters to be
passed to it.

ACTION: Vector Memory is initialized by placing an
"Internal Jump to 4095" command in all memo-
ry locations except locaion 4095 which will
hold a NOP. This initialization process is
performed because synchronous refresh of the
HP-1345A's display can only occur after an
internal jump command has been executed.
There must be a NOP in location 4095 because
internal jumps are not allowed to branch to
another jump command.

REGISTER USAGE: No registers are affected.

**

LOOP

ORG.
MOVEM.L
MOVE .

L

MOVE .

L

MOVE .

L

MOVE . B
ORI.B
ANDI.B
MOVE .

B

CLR.B
MOVE . B
ANDI.B
MOVE .

B

ORI.B
MOVE .

B

MOVE .

L

MOVE.B
MOVE .

B

ANDI.B
MOVE .

B

ORI.B
MOVE .

B

DBRA
CLR.B
CLR.B

S2001A
D0-D1/A0-A2,
#$30001, A0
#$30009, Al
#$3000D,A2
(A0) ,D0
#$0B,D0
#$FB,D0
DO, (A0)
(Al)
#$C0, (A2)
#$FE,D0
DO, (A0)
#$01, DO
DO, (A0)
#4094, DI
#$FF, (Al)
#$8F, (A2)
#$FE,D0
DO, (A0)
#01, DO
DO, (A0)
Dl , LOOP
(Al)
(A2)

$904 SAVE REGISTERS
PIA #1 PORT A DATA (CONTROL)
PIA #2 PORT A DATA (LSB OF HP)
PIA #2 PORT B DATA (MSB OF HP)
GET THE CONTROL BITS
SET UP HP DEVICE SELECT
SET UP DIRECTION OF BUFFERS

SET ADDR. PTR. TO $0000 OF VCM

TAKE HP WRITE LINE LOW
(STROBE WR LINE)

TAKE HP WRITE LINE HIGH

INIT. VECTOR MEMORY LOOP CTR.
SEND $FF TO HP LSB PORT
SEND $8F TO HP MSB PORT
TAKE HP WRITE LINE LOW

TAKE HP WRITE LINE HIGH

POINT TO NEXT VCM. LOCATION
SEND $00 TO HP LSB PORT (NOP)
SEND $00 TO HP MSB PORT

SUBROUTINE INTVCM

**

SUBROUTINE INTVCM CONTINUED

**

ANDI.B #$FE,DO TAKE HP WRITE LINE LOW
MOVE.B DO, (AO)
ORI.B #05, DO TAKE HP WRITE LINE HIGH
MOVE.B DO, (AO)

RESTORE MOVEM.L $904 , D0-D1/A0-A2 RESTORE REGISTERS
END RTS RETURN TO CALLING ROUTINE

SUBROUTINE INTVCM

137

***************************** ***********************************

SUBROUTINE SNDCMD

PURPOSE: To send a HP-1345A command to vector memory

INITIAL CONDITIONS: The 16-bit HP-1345A command is passed to the
subroutine in register DO.W.

ACTION: The command is sent to the location pointed
to by the current vector memory address
pointer or if the command is an address
pointer command, then it will be sent to the
vector memory address pointer.

REGISTER USAGE: No registers are affected.

w****.**.*..**.****^^,,,,,^,^,^,,,^,,,^^^^^^^

START

END

ORG.
MOVEM.L
MOVEA .

L

MOVEA.L
MOVEA.

L

MOVE.B
ORI.B
ANDI.B
MOVE .

B

MOVE .

B

LSR.W
MOVE .

B

ANDI.B
MOVE.B
ORI.B
MOVE .

B

MOVEM.L
RTS

$20086
D0-D1/A0-A2,$
#$30001, A0
#$30009, Al
#$3000D,A2
(A0) ,D1
#$0B,D1
#$FB,D1
Dl, (A0)
DO, (Al)
#8, DO
DO, (A2)
#$FE,D1
Dl, (A0)
#$05, Dl
Dl, (A0)
$914,D0-D1/A0

914 SAVE REGISTERS
PIA #1 PORT A DATA (CONTROL)
PIA #2 PORT A DATA (LSB OF HP)
PIA #2 PORT B DATA (MSB OF HP)
GET HP CONTROL BITS
SET DIRECTION
SET HP DEVICE SELECT
PUT BACK TO HP CONTROL PORT
SEND LSB OF COMMAND TO HP PORT
MOVE MSB TO LSB
SEND MSB OF COMMAND TO HP PORT
TAKE HP WRITE LINE LOW

TAKE HP WRITE & SELECT LINE HI

•A2 RESTORE REGISTERS
RETURN TO CALLING ROUTINE

SUBROUTINE SNDCMD

**

SUBROUTINE ANALOG

PURPOSE: to perform analog to digital conversion of
the sixteen analog inputs and send the digi-
tal values to the "Data package"

INITIAL CONDITIONS: This subroutine requires no parameters to bepassed to it.

ACTI0N: The sixteen digital values, corresponding to
various flight instruments and controls arepassed to the "Data Package." The data
package is located at $1FA0 to $1FB9. The
sixteen digital values corresponding to theanalog inputs are located at $1FA1 to S1FB0
within the data package.

REGISTER USAGE: No registers are affected.

***************************************,m

START

AGAIN

END

ORG. $200C4
MOVEM.L D0/A0-A1,$928
MOVE.L #$1FA1,A0
MOVE.L #15,00
MOVEA.L #$30031, Al
MOVE.B (A1),(A0)+
ADDA.L #2,A1
DBRA DO, AGAIN
MOVEM.L $928,D0/A0-A1
RTS

SAVE REGISTERS
SET UP THE DATA PACKAGE PTR.
SET LOOP CTR.
SET ADC PTR.
PUT VALUE IN DATA PACKAGE
POINT TO NEXT ANALOG ADDRESS
GET NEXT VALUE
RESTORE REGISTERS
RETURN TO CALLING ROUTINE

SUBROUTINE ANALOG

139

SUBROUTINE GETKEY

PURPOSE: To determine what key has been pressed on
the command keyboard

INITIAL CONDITIONS: This subroutine requires no parameters to be
passed to it.

ACTION:

REGISTER USAGE:

GETKEY determines the number of the key
pressed in the six-by-six command keyboard
matrix. There are thirty-six keys on the
keyboard. The value of the key pressed isreturned in register D2.B and in the data
package at location S1FB2. A value of
thirty-seven is returned if no key was found
pressed by GETKEY.

Register D2.B is used to hold the key value
on return. No other registers are affected.

ORG.
START MOVEM.L

MOVE.L
MOVE .

L

MOVE.L
COLUMNS MOVE.B

CMP.B
BNE
DBRA.L
MOVE .

B

JMP
CONTINUE MOVE.B

JSR
MOVE .

B

MOVE .

L

JSR
MOVE .

L

MOVE .

B

MOVE .

L

ROWS MOVE .

B

CMP.B
BNE
DBRA
MOVE .

B

JMP
GOON MOVE .

W

S200F0
D0-D1/A0-A1
#$30011, AO
#$30015, Al
#$200, D2
(A0) ,D1
#$FF,D1
CONTINUE
D2 , COLUMNS
#37, D2
RETURN
#$FF,D0
INTPIA
#0,D0
A1,A0
INTPIA
#$30011, A0
DO, (A0)
#$200, D2
(Al) ,D0
#$FF,D0
GOON
D2 , ROWS
#37, D2
RETURN
#-l,D2

it*********************,,

$934 SAVE REGISTERS
KEYBOARD COLUMNS
KEYBOARD ROWS
SETUP KEY DELAY
READ COLUMNS
ANY KEY PRESSED
IF KEY IS PRESSED CONTINUE

RETURN NOKEY VALUE

MAKE COLUMNS PORT OUTPUT

MAKE ROWS PORT INPUT

KEYBOARD COLUMNS PORT
OUTPUT ZEROS ON COLUMNS
SET UP WAIT FOR KEY DELAY
READ THE ROWS
IS A KEY PRESSED
IF A KEY IS PRESSED, GO ON

RETURN NOKEY VALUE

INITIALIZE KEY COUNT

SUBROUTINE GETKEY

140

************************************** **************************

SUBROUTINE GETKEY CONTINUED

*********************** *,******,********** titwiJt

FINDROW ADDQ.W #1,D2
LSR.B #1,D0
BCS FINDROW
MULU.W #6,D2

FINDCOL ADDQ.W #1,D2
LSR.B #1,D1
BCS FINDCOL

RETURN MOVE.B D2,$IFB2
MOVE.B #0,D0
JSR INTPIA
MOVE.B #$FF,DO
MOVE.L A1,A0
JSR INTPIA
MOVE.L #$30011, AO
MOVE.B #0,(A1)
CMP.B #$FF,(A0)
BNE WAIT
MOVE.L #$1000, DO
DBRA DO, SELF
CMP.B #$FF, (AO)
BNE WAIT
MOVEM.L $934,D0-D1/A0-A1 RESTORE REGISTERS
RTS RETURN TO CALLING ROUTINE

WAIT

SELF

RESTORE
END

FIND WHICH ROW
CHECK NEXT ROW

SIX KEYS PER ROW
FIND WHICH COLUMN
CHECK NEXT COLUMN

RETURN KEY IN DATA PACKAGE
CHANGE COLS PORT TO INPUT

CHANGE ROWS PORT TO OUTPUT

OUTPUT ZEROS ON THE ROWS
IS KEY STILL PRESSED

WAIT FOR KEY TO SETTLE

MAKE SURE KEY IS RELEASED

SUBROUTINE GETKEY

***********************,,«,l„n*.,„„m^ ***********************

SUBROUTINE RDVCM

PURPOSE:

vlcto'r'Uo"
00

* °
f HP" 1345A C °mmandS fr°m

INITIAL CONDITIONS: The St t a(Jdress Qf ^^
dS L and ?h

r me
f°

ry iS PaSSSd in registerDO.L and the ending address of the block ispassed in register DLL.
ACTION:

REGISTER USAGE:

The block of HP-1345A commands are read from

»irro
r
r
n
HA
m
M°7 ""? 7^ t0 the vector *™°™mirror RAM located at $6000 to $7FFF The

the saTe f"™,
VeCt°r Demory wil1 "side atthe same location in the vector memorvmirror as it did in vector memory except Itwill be offset by $6000.

except it

othl
SterS D,°- L 3nd D1 - L are destroyed. Noother registers are affected.

••"—•*«*«.«.««.««„..„„^w«.„^„m,#^mwm
START

READ

ORG.
MOVEM.L
CLR.L
MOVE .

W

MOVE .

W

MOVE.L
ORI.W
JSR
LSL.L
ADDI.L
MOVE.L
SUB.W
MOVE .

B

ORI.B
ANDI.B
MOVE.B
MOVE.B
MOVE .

L

JSR
MOVE . L
JSR
MOVE .

B

ANDI.B
MOVE.B
MOVE .

B

MOVE.B

$201C6
D2-D3/A0-A2
D2
D0,D2
D0,D3
#$30001, Al
#$C000,D0
SNDCMD
#1,D2
#$6000, D2
D2,A2
D3,D1
(Al) ,D0
#3, DO
#$F3,D0
DO, (Al)
#0,D0
#$30009, A0
INTPIA
#$3000D,A0
INTPIA
(Al) ,D0
#$FD,D0
DO, (Al)
$3000D, (A2)+
$30009, (A2)+

$944 SAVE REGISTERS
PREPARE D2 FOR START ADDR COPYCOPY STARTING ADDR INTO D2
COPY STARTING ADDR INTO D3
CONTROL DATA REG. PTR
FORMAT ADDR. PTR. COMMAND
SEND THE COMMAND
MULTIPLY START ADDR BY TWO
ADD VCM MIRROR BASE ADDR
A2 HOLDS VCM MIRROR BASE ADDR
Dl HOLDS NUMBER OF VCM READS

SET CONTROL FOR DIR, DS , WR,RD

CHANGE HP-DATA PORT LSB TO I/P

CHANGE HP-DATA PORT MSB TO I/P

GET CONTROL BYTE
BRING RD LOW

READ MSBYTE INTO VCM MIRROR
READ LSBYTE INTO VCM MIRROR

SUBROUTINE RDVCM

**

SUBROUTINE RDVCM CONTINUED

**

ORI.B #2, DO BRING RD HIGH
MOVE.B D0,(A1)
DBRA Dl , READ
MOVE.B #$FF,DO
MOVE.L #$30009, AO
JSR INTPIA
MOVE.L #$3000D,A0
JSR INTPIA
MOVE.B (A1),D0
ORI.B #$F,D0
MOVE.B D0,(A1)

RESTORE MOVEM.L $944 , D2-D3/A0-A2 RESTORE REGISTERS
END RTS RETURN TO CALLING ROUTINE

CHANGE HP-DATA PORT LSB TO O/P

CHANGE HP-DATA PORT MSB TO O/P

SET CONTROL

SUBROUTINE RDVCM

143

***************************************,*,**** iJt1ti « it ,lii44tJt)kllii

SUBROUTINE SNDLST

To send a list of HP-1345A commands to
vector memory

CONDITIONS: The starting address of the list to be sent
is passed to the subroutine in register
AO.L. The number of 16-bit HP-1345A
commands in the list is passed in register

The list of commands are sent to vector mem-ory starting at the current location of thevector memory address pointer. The list maycontain a vector memory address pointercommand to position the pointer for the listthat follows.

PURPOSE:

INITIAL

ACTION:

REGISTER USAGE: Register
the last
registers

AO.L will point to the byte after
command in the list. No other
are affected.

*********""•M******************.*,**.,*.***^^^^^^

START

CONTINUE

END

ORG.
MOVE.L
DBRA
MOVE .

W

JSR
DBRA
MOVE .

L

RTS

$20256
DO, $958
Dl , CONTINUE
(A0)+,D0
SNDCMD
Dl, CONTINUE
$958, DO

SAVE DO
DECREMENT Dl AND CONTINUE
GET COMMAND FROM LIST
SEND COMMAND TO VECTOR MEM.
ARE ALL COMMANDS IN LIST SENT"3

RESTORE DO
RETURN TO CALLING ROUTINE

SUBROUTINE SNDLST

144

**********»******************i,** i,1,i, i,t t. 1, i,**i,i,**1,** i,i,* ililt*****t***

PURPOSE:

INITIAL CONDITIONS:

ACTION:

REGISTER USAGE:

SUBROUTINE SETCLK

To set the Real Time Clock/Calendar

This subroutine requires no parameters to be
passed. It may be executed by pressing the
Set clock key on the command keyboard at anytime after the EHSI system is on. All time
values are input by the user.

The subroutine saves the current HP-1345Adisplay and then takes control of the
display to prompt the user for various time
inputs.

When all time data has been input thesubroutine allows the user to start the
clock at the instant the data is valid.
HP-1345A display is then restored tt
setting prior to setting the clock.

No registers are affected.

The
its

***************************.**.**.*****,.*»„»M.„,„„^M
START

NEXT

WAIT1

AGAIN

ORG.
MOVEM.L
AND.B
CLR.L
MOVE .

L

JSR
MOVE .

L

MOVE .

L

MOVE .

L

MOVE .

L

CLR.L
MOVE.W
JSR
MOVE.L
CMPI.B
BEQ
JSR
CMPI .

B

BPL
CMPI .

B

BMI

$2026E
D0-D3/A0-A2
#$0F, $30001
DO
#100, Dl
RDVCM
#$980, Al
#$3824, A0
#5, DO
#$37FF,A2
Dl
(A0)+,D1
SNDLST
#1,D3
#$FF, $30011
WAIT1
GETKEY
#25, D2
INVALID
#$FA, $30011
INVALID

$ 9 5C SAVE REGISTERS
DISABLE INTERRUPTS
READ VEC MEM STARTING AT ZERO
READ 100 COMMANDS IN VEC. MEM.

POINTER FOR CLOCK CAL. DATA
START ADDR. FOR PROMPT LISTS
FIVE + ONE CLOCK INPUTS
START ADDR OF KEY LOOKUP TABLE

GET NUMBER OF CHR. IN LIST
SENT THE LIST TO VCM.
TWO DIGITS PER ENTRY
WAIT FOR A KEYSTROKE

WHAT KEY WAS PRESSED
CHECK FOR VALID ROW

CHECK FOR VALID COLUMN

SUBROUTINE SETCLK

145

*********************************1, i,1,1, i, i, i, i, 1, i,t***1,i,t i, i,1, ti, i, i, ti, i, i, t, i, i,

SUBROUTINE SETCLK CONTINUED

MOVE .

B

CMPI.B
BPL
MOVE .

B

DBRA
DBRA
BRA

INVALID MOVE.L
MOVE .

L

MOVE .

W

JSR
MOVE.L
CLR.L
MOVE.W
JSR

WAIT2 CMPI .

B

BEQ
MOVE .

W

JSR
MOVE .

W

JSR
MOVE .

L

MOVE .

L

BRA
CONTINUE CLR.L

MOVE .

W

JSR
WAIT3 CMPI .

B

BEQ
MOVE .

B

MOVE.B
MOVE .

B

MOVE .

L

MOVE.L
MOVE .

L

MOVE .

B

MOVE.B
MOVE .

B

MOVE .

B

MOVE.B
MOVE .

B

TIME MOVE .

B

SUBA.L
DBRA

0(A2,D2) ,D2
#$A,D2
INVALID
D2, (Al) +
D3,WAIT1
DO , NEXT
CONTINUE
A0,$978
D0,$97C
#$C046,D0
SNDCMD
#$399C,A0
Dl
(A0)+,D1
SNDLST
#SFF, $30011
WAIT2
#$C046,D0
SNDCMD
#$8FFF,D0
SNDCMD
$978, AO
$97C,D0
AGAIN
Dl
(A0)+,D1
SNDLST
#$FF, $30011
WAIT3
$983, $984
$982, $983
$981, $982
#9,D1
#$982, Al
#$3007B,A2
#0,$3007F
$3007F,D0
$3007F,D0
$3007F,D0
#0, $30061
#0,$3007D
(Al)+, (A2)
#2,A2
Dl , TIME

GET KEY FROM LOOK-UP TABLE
CHECK FOR PERIOD OR DIVIDE

HOLD CLOCK DATA
GET SECOND OF TWO DIGIT ENTRY
NEXT CLOCK CALENDAR ENTRY
ENTRY COMPLETE. CONTINUE
SAVE CURRENT LIST PTR.
SAVE LOOP PARAMETER CTR.
COXX IS SET ADDR. TO FIRST NOP

START ADDR OF "INVALID KEY"

DISPLAY INVALID KEY, TRY AGAIN

WAIT FOR ANOTHER KEYSTROKE

POINT TO PLACE WHERE 8FFF WAS
SEND THE ADDR PTR COMMAND
PUT 8FFF BACK IN THAT POSITION
SEND THE INTERNAL JUMP COMMAND
RESTORE AO
RESTORE DO
END OF INVALID KEY ROUTINE

DISPLAY THE LIST
"PRESS ANY KEY TO START CLOCK"
WAIT FOR ANY KEY

PREPARE TIME REGISTERS
PREPARE TIME REGISTERS
PREPART TIME REGISTERS
NINE REGISTERS TO UPDATE
START ADDR OF TIME VALUES
START ADDR OF TIME REG'S
CLEAR INTERRUPT TIMER CHAIN
THREE READS CLEARS INTERRUPT

OUTPUT LOGIC

CLEAR THE TEST MODE
STOP THE CLOCK
UPDATE TIME REGISTER
POINT TO NEXT TIME REGISTER

SUBROUTINE SETCLK

146

*************************** *************************************

SUBROUTINE SETCLK CONTINUED

***********************, ****************** **********************

MOVE.B #1,$3007D
CLR.L Dl
MOVE .

W

(A0)+,D1
JSR SNDLST

WAIT4 CMPI .

B

#$FF, $30011
BNE WAIT4
MOVE .

L

#S0FFFFFF,D0
SELF DBRA DO, SELF
WAIT5 CMPI .

B

#$FF, $30011
BEQ WAIT5
MOVE .

W

#$C000,D0
JSR SNDCMD
MOVE .

L

#$6000, AO
MOVE.L #100, Dl
JSR SNDLST
ORI.B #$F0, $30001
MOVE .

B

#$0C,$3OO7F
RESTORE MOVEM.L $95C,D0-D3/A0
END RTS

START CLOCK
DISPLAY "CLOCK/CALENDAR IS SET
PRESS ANY KEY TO CONTINUE"
SEND THE ABOVE PROMPT TO HP
WAIT FOR KEY RELEASE

DEBOUNCE DELAY

WAIT FOR CONTINUE KEY

RESET VCM ADDR. PTR. TO $0000
SEND THE ADDR. PTR. COMMAND
RESTORE VCM TO PRIOR DISPLAY
100 COMMANDS WERE FIRST READ
RESTORE VECTOR MEMORY
ENABLE INTERRUPT REQUESTS
SET INTERRUPT TIMER TO 60 SEC.

A2 RESTORE REGISTERS
RETURN TO CALLING ROUTINE

SUBROUTINE SETCLK

147

**

SUBROUTINE OUTSHAKE

PURPOSE: To send out a pulse on the output handshake
line of the parallel port

INITIAL CONDITIONS: This subroutine requires no parameter to be
passed to it.

ACTION: The pulse on the output handshake line has a
pulse width of approximately 25 micro-
seconds. The actual pulsewidth can be
varied according to the value in DO.L. The
expression for the pulsewidth is

3 * (DO + 1) + 4 microseconds.

The pulse represents a Data Acknowledge when
the Host is sending data to the 68000 inter-
face and represents a Data Strobe when the
68000 is sending data to the Host.

REGISTER USAGE: No registers are affected.

«***4«*«»*4*4***44«mm*»)t»mim (,1 4 ([,ijjtl , 1,„j,11)1J1,jjjj

ORG. $203F0
START MOVE .

L

D0,$9C8
MOVE.L #6, DO
BCLR #1, $30005

SELF DBRA DO, SELF
BSET #1, $30005

RESTORE MOVE .

L

$9C8,D0
END RTS

SAVE REGISTER DO
SET PULSE LOW WIDTH
BRING OUTSHAKE LOW
PULSE WIDTH =

3 * (DO + 1) + 4, MICRO SEC.
HOLD OUTSHAKE LOW
TAKE OUTSHAKE HIGH
RESTORE REGISTER DO
RETURN TO CALLING ROUTINE

SUBROUTINE OUTSHAKE

************************************ ****************************

SUBROUTINE INSHAKE

PURPOSE: To wait for an input handshake pulse from
the Host through the parallel port

INITIAL CONDITIONS: This subroutine requires no parameters to be
passed to it.

ACTION: The subroutine will wait for a pulse on the
input handshake line of the parallel port.
The pulse width should be greater than 15
microseconds. The subroutine will wait a
maximum of approximately 45 milliseconds for
the strobe to go low. Also, it will wait
for 45 milliseconds for the strobe line
to go back high.

If the Host does not respond within either
one of these timeout times, the 68000 will
display the appropriate error message on the
terminal via the subroutine ERROR. It is
then attempted to restablish normal communi-
cations with the Host.

REGISTER USAGE: No registers are affected.

H»«HH 441n,tJ„jj„» 44„tl^

START
ORG.
MOVE .

L

MOVE .

L

HIGH BTST
BEQ
DBRA
JSR
BRA

CONTINUE MOVE.L
LOW BTST

BNE
DBRA
JSR

RESTORE MOVE .

L

END RTS

$20414
D0,$9C8
#6000, DO
#2, $30005
CONTINUE
DO, HIGH
ERROR
RESTORE
#6000, DO
#2, $30005
RESTORE
DO, LOW
ERROR
$9C8,D0

SAVE REGISTER DO
INITIALIZE TIMEOUT DELAY
WAIT FOR INSHAKE TO GO LOW
IF LOW CONTINUE
TRY AGAIN
TIMEOUT EXCEEDED DISPLAY MSG.

INITIALIZE TIMEOUT DELAY
WAIT FOR INSHAKE HIGH
IF INSHAKE IS HIGH RETURN
TRY AGAIN
TIMEOUT EXCEEDED DISPLAY MSG
RESTORE REGISTER DO
RETURN TO CALLING ROUTINE

SUBROUTINE INSHAKE

***************************************i,i, i,n, i, i, i, i, i, i, 1, ti, i,i, ili, i, ililititiii!

SUBROUTINE ERROR

PURPOSE: To trap and display the appropriate error
condition on the terminal

INITIAL CONDITIONS: Subroutine error is sent an error flag in
register D2.B. The possible error flaas
are: "

D2=l **> STROBE ERROR <** THE 68000 DID NOT
RECEIVE THE EXPECTED STROBE FROM THE HOST INTHE ALLOTTED AMOUNT OF TIME.

D2=2**> ACKNOWLEDGE ERROR <** THE 68000
DID NOT RECEIVE THE DATA ACKNOWLEDGE FROM
THE HOST IN THE ALLOTTED AMOUNT OF TIME.

D2=3 **> ILLEGAL INTERFACE COMMAND <** THE
68000 RECEIVED AN ILLEGAL INTERFACE COMMAND
FROM THE HOST.

D2=4 **> VECTOR MEMORY ERROR <** THE 68000WAS UNABLE TO ESTABLISH COMMUNICATIONS WITHTHE HP-1345A.

ACTION: The subroutine determines what the errorcondition is and displays the eror messaqe
on the terminal

.

REGISTER USAGE: No registers are affected.

ORG.
MOVEM.L
MOVE .

L

MOVE .

B

MOVE .

B

TRAP
DBRA
MOVE .

L

MOVE .

L

MOVE .

B

TRAP
CMPI.B
BEQ
CMPI .

B

BEQ
CMPI .

B

BEQ

$20450
D0-D1/D3/A0/A5-
#7,D3
#$A,D0
#248, D7
#14
D 3, HERE
#$3A20,A5
#$3A2B,A6
#243, D7
#14
#1,D2
STRBERR
#2,D2
ACKERR
#3,D2
CMDERR

A6,$9CC SAVE REGISTERS

INSERT SEVEN LINE FEEDS
SEND LINE FEEDS TO TERMINAL

STARTING ADDRESS
ENDING ADDRESS
DISPLAY '•***>" ON TERMINAL

CHECK FOR STROBE ERROR

CHECK FOR ACKNOWLEDGE ERROR

CHECK FOR ILLIGAL COMMAND ERR

SUBROUTINE ERROR

**

SUBROUTINE ERROR CONTINUED

**

CHECK FOR VECTOR MEMORY ERRORCMPI.B #4,D2
BEQ VCMERR
BRA RESTORE

STRBERR MOVE.L #$3A38,A5
MOVE.L #$3A44,A6
BRA DISPLAY

ACKERR MOVE.L #$3A44,A5
MOVE.L #$3A55,A6
BRA DISPLAY

CMDERR MOVE.L #$3A55,A5
MOVE.L #$3A6E,A6
BRA DISPLAY

VCMERR MOVE.L #$3A6E,A5
MOVE.L #$3A81,A6
NOP

DISPLAY MOVE.B #243, D7
TRAP #14
MOVE.L #$3A2B,A5
MOVE.L #$3A38,A6
MOVE.B #227, D7
TRAP #14

RESTORE MOVEM.L S9CC, D0-D1/D3/A0/A5-A6 RESTORE REGISTERS
END RTS RETURN TO CALLING ROUTINE

SET UP POINTERS FOR ERROR MSG

SET UP POINTERS FOR ERROR MSG

SET UP POINTERS FOR ERROR MSG

SET UP POINTERS FOR ERROR MSG

CALL DISPLAY HANDLER

SET UP POINTERS

DISPLAY "<***" ON TERMINAL

SUBROUTINE ERROR

**

INTERRUPT CONTROL ROUTINE

INITIAL CONDITIONS:

To determine, control and initiate service
of an interrupting device

There are three devices that may request
service. The three interrupts and their
priority are:
1. COMIRQ COMMUNICATIONS THROUGH PAR-

ALLEL PORT WITH HOST
2. KEYIRQ COMMAND KEYBOARD IS ACTIVE
3

.

CLKIRQ REAL TIME CLOCK

REGISTER USAGE:

This Interrupt Control Routine checks the
interrupt status bits of PIA #1 Port B to
determine which interrupt is requesting the
service. The routine then fetches the ad-
dress of the service routine from a look-up
table and transfers control to that particu-
lar service routine. After the service
routine has serviced the interrupt, the
control is returned to the interrupted pro-
gram via the Interrupt Control Routine.

No registers are affected.

**

ORG. $20500
START MOVEM .

L

D0-D1/A0,$98C
MOVE .

L

#$3AC0,A0

MOVE .

W

#7, DO
MOVE .

B

$30005, Dl
NEXT BTST D0,D1

BEQ IRQ
CMPI .

B

#4, DO
BEQ NOIRQ
DBRA D0,$NEXT

IRQ BCLR #7, $30001
LSL.W #2, DO
LEA.L -16(A0,D0.W) ,A0
MOVE .

L

(A0) ,A0
JSR (A0)
BSET #7, $30001

NOIRQ MOVEM.

L

$98C,D0-D1/A0
END RTE

SAVE REGISTERS
BASE ADDR. FOR ADDRESS OF
SERVICE ROUTINE
INITIALIZE TEST BIT NUMBER
GET IRQ STATUS
TEST BIT DO OF IRQ STATUS
BRANCH IF IRQ BIT FOUND
CHECK TO SEE IF NO IRQ

CHECK NEXT IRQ BIT DO
DISABLE PAR PORT INTERRUPTS
MULTIPLY BY FOUR FOR OFFSET
GET ADDR. OF ADDR. OF ROUTINE
GET ADDRESS OF ROUTINE
EXECUTE SERVICE ROUTINE
ENABLE PAR PORT FOR INTERRUPTS
RESTORE REGISTERS
RETURN FROM INTERRUPT

INTERRUPT CONTROL ROUTINE

152

**

SUBROUTINE COMIRQ

PURPOSE: To control the communications with the Host
through the parallel port of the 68000 in-
terface

INITIAL CONDITIONS: When the Host interrupts the 68000, it has
the interface command vector number on the
data bus of the parallel port. The 68000
uses this vector as an offset to fetch the
address of the Interface Command routine.
There are space available for seven inter-
face commands, however only four commands
are used at this time. The four commands
are:
CMD 1. THE HOST IS REQUESTING THE "DATA

PACKAGE" BE SENT
CMD 2. THE HOST REQUESTS THAT THE FOLLOWING

HP-1345A COMMANDS BE SENT TO VECTOR
MEMORY

CMD3. THE HOST REQUESTS THAT A CERTAIN
BLOCK OF HP-1345A COMMANDS BE READ
BACK TO THE HOST FORM VECTOR MEMORY

CMD4. THE HOST REQUESTS THE ALARM TO BE
TOGGLED

ACTION: After it is determined which interface
command is to be executed, the COMIRQ
routine transfers control to that service
routine. On completion of the service, this
routine clears the COMIRQ interrupt and
returns to the Interrupt Control Routine.

REGISTER USAGE: No registers are affected.

****t4*«****»***4*«**i t,»(» 1»H 11 ,»1,„1J,)r,M,,jli,)|lt)l ,1 , (1Jjl(|t41

ORG. $20546
START MOVEM.L D0-D2/A0

, $998 SAVE REGISTERS
MOVE.L #$3AD0,A0 A0 BASE ADDR FOR CMD ADDR'S
CLR.W DO CLEAR DO
MOVE.B $30021, DO READ COMMAND AT PARALLEL PORT
CMPI.W #8, DO CHECK FOR ILLEGAL COMMAND
BMI OK EIGHT LEGAL COMMANDS
JSR OUTSHAKE ACKNOWLEDGE ILLEGAL COMMAND
MOVE.B #3,D2 DISPLAY "ILLEGAL COMMAND,

COMMAND IGNORED"

SUBROUTINE COMIRQ

153

**

SUBROUITINE COMIRQ

**

JSR ERROR SEND COMMAND ERROR MSG.
BRA RESTORE RESTORE AND RETURN

OK LSL.W #2, DO MULTIPLY BY 4 FOR OFFSET
LEA.L -4(A0,D0.W) ,A0 FORM INTERFACE COMMAND ADDR.
MOVE.L (AO),AO GET ADDRESS OF INT CMD ROUTINE
JSR (AO) EXECUTE INTERFACE COMMAND

RESTORE MOVEM.L $998 , D0-D2/A0 RESTORE REGISTERS
END RTS RETURN TO CALLING ROUTINE

SUBROUTINE COMIRQ

154

**

SUBROUTINE INTERFACE COMMAND #1

PURPOSE: To transfer the "Data Package" to the Host

INITIAL CONDITIONS: This subroutine requires no parameters be
passed to it and is initiated by the Host
sending a value of $01 to the 68000 through
the parallel port. This value represents
Interface Command #1.

ACTION: The data package is sent to the Host via the
parallel port and handshake lines. The data
package consists of pertinent data such as
digital values for the sixteen analog
channels, last key pressed, time, date, a
byte of binary inputs and the first entry in
the package holds the number of entries in
the data package.

This subroutine watchs for error conditions
such as the Host failing to acknowledge a
data transfer. When an error occurs the
subroutine "ERROR" is called. Subroutine
ERROR will display the error condition on
the terminal. This subroutine then tries to
restablish communications with the Host to
continue data transfer. After the data
package transfer is complete, the subroutine
restores all registers and returns to the
COMIRQ routine.

REGISTER USAGE: No registers are affected

**

START

NEXT

ORG. $20590
MOVEM .

L

D0-D2/A0,$9A8
JSR OUTSHAKE
MOVE .

L

#$30021, A0
MOVE .

B

#$FF,D0
JSR INTPIA
MOVE .

L

#$1FA0,A0
CLR.L DO
MOVE.B (A0) ,D0
MOVE.B #2,D2
MOVE .

B

(A0)+, $30021
JSR OUTSHAKE
JSR INSHAKE
DBRA DO , NEXT

SAVE REGISTERS
ACKNOWLEDGE INTERFACE CMD #1
CHANGE PARALLEL PORT TO OUTPUT

GET BASE ADDR OF DATA PACKAGE

GET NUMBER OF ENTRIES IN PACK.
SET ERROR FLAG TO ACKERR
SEND ENTRY TO PORT
SEND STROBE PULSE
WAIT FOR ACKNOWLEDGE PULSE
POINT TO NEXT ENTRY

SUBROUTINE INTERFACE COMMAND #1

155

**

SUBROUTINE INTERFACE COMMAND #1 CONTINUED

**

BSET #7,$30001 ENABLE PAR PORT FOR INTERRUPTS
MOVE.L #530021, AO CHANGE PARALLEL PORT TO INPUT
MOVE.B #0,D0
JSR INTPIA

RESTORE MOVEM.L 59A8 , D0-D2/A0 RESTORE REGISTERS
END RTS RETURN TO CALLING ROUTINE

SUBROUTINE INTERFACE COMMAND #1

156

**

SUBROUTINE INTERFACE COMMAND #2

To transfer HP-1345A commands from the Host
to vector memory

PURPOSE:

INITIAL CONDITIONS: This subroutine requires no parameters be
passed and is initiated by the Host sending
a value of $02 to the 68000 through the
parallel port. This value represents Inter-
face Command #2.

ACTION: This subroutine reads an HP-1345A command
from the Host and sends it to vector memory.
The transfer continues until the most sig-
nificant byte read has a value of $FF. This
value signifies that the Host has sent the
last command. The subroutine terminates the
data transfer, restores the registers and
returns to the COMIRQ routine.

The subroutine watches for errors such as
the Host failing to send another Data Strobe
when the 68000 is expecting it. When an
error occurs the subroutine "ERROR" is
called. It will display the error condition
on the terminal.

REGISTER USAGE: No registers are affected

************************************ ****************************

ORG. $205EA
START MOVEM.L D0/D2,$9A8

JSR OUTSHAKE
MOVE .

B

#1,D2
NEXT JSR INSHAKE

MOVE .

B

$30021, DO
CMPI .

B

#$FF,D0
BEQ DONE
JSR OUTSHAKE
LSL.W #8, DO
JSR INSHAKE
MOVE .

B

$30021, DO
JSR SNDCMD
JSR OUTSHAKE
BRA NEXT

DONE JSR OUTSHAKE
RESTORE MOVEM.L $9A8,D0/D2
END RTS

SAVE REGISTERS
ACKNOWLEDGE INTERFACE CMD #2
SET ERROR FLAG TO STBERR
WAIT FOR STROBE PULSE
READ MSB OF HP COMMAND
TRANSFER COMPLETE? ($FF)

SEND ACKNOWLEDGE PULSE FOR MSB
MOVE DATA TO MSB OF DO
WAIT FOR DATA STROBE
READ LSB OF HP COMMAND
SEND CMD TO VECTOR MEMORY
SEND ACKNOWLEDGE PULSE FOR LSB
GET NEXT COMMAND
ACKNOWLEDGE DONE SIGNAL
RESTORE REGISTERS
RETURN TO CALLING ROUTINE

SUBROUTINE INTERFACE COMMAND #2

157

**

SUBROUTINE INTERFACE COMMAND #3

PURPOSE: To read a block of HP-1345A commands from
vector memory

INITIAL CONDITIONS: This subroutine requires no parameters be
passed by the calling routine and is
initiated by the Host sending a value of $03
to the 68000 through the parallel port.
This value represents Interface Command #3.

ACTION: The Host first sends two 16-bit words which
represent the starting address and ending
address of the block to be read from vector
memory. The subroutine uses the startig
address and formats a memory address pointer
command to set-up the vector memory address
pointer to the first memory location of the
block to be read.

The block is then read, a byte at a time and
sent back to the Host. When the transfer is
complete, the ports are restored to their
proper direction, the registers are restored
and the control is transfered back to the
COMIRQ routine.

REGISTER USAGE: No registers are affected

t»»»4«t**«*»4Jm«t»(H,* 4M44 t«tl |,14iJJH4„„tt ,4,,,,lr„, t„

START
ORG. $20630
MOVEM.L D0-D3/A0,$9A8
JSR OUTSHAKE
MOVE .

B

#1,D2
JSR INSHAKE
MOVE .

B

$30021, DO
LSL.W #8, DO
JSR OUTSHAKE
JSR INSHAKE
MOVE .

B

$30021, DO
JSR OUTSHAKE
JSR INSHAKE
MOVE .

B

$30021, Dl
LSL.W #8,D1
JSR OUTSHAKE

SAVE REGISTERS
ACKNOWLEDGE INTERFACE CMD #3
SET ERROR FLAG TO STRBERR
WAIT FOR STROBE PULSE
READ MSB OF START ADDRESS
MOVE LSB OF DO TO MSB
SEND ACKNOWLEDGE
WAIT FOR STROBE
READ LSB OF START ADDRESS
SEND ACKNOWLEDGE
WAIT FOR STROBE
READ MSB OF ENDING ADDRESS
MOVE LSB OF Dl TO MSB
SEND ACKNOWLEDGE

SUBROUTINE INTERFACE COMMAND #3

158

**

SUBROUTINE INTERFACE COMMAND #3 CONTINUED

**

JSR INSHAKE
MOVE .

B

$30021, Dl
JSR OUTSHAKE
MOVE.W D0,D3
HOVE .

L

#$30021, A0
MOVE .

B

#$FF,D0
JSR INTPIA
SUB.W D3,D1
MOVE .

W

D3,D0
ORI.W #$C000,D0
JSR SNDCMD
MOVE .

B

#0,D0
MOVE .

L

#$30009, AO
JSR INTPIA
MOVE .

L

#$3000D,A0
JSR INTPIA
MOVE.B $30001, DO

ORI.B #3, DO
AND.B #$F3,D0
MOVE .

B

DO, $30001
MOVE .

B

#2,D2
READ BCLR #1, $30001

MOVE .

B

$3000D, $30021
JSR OUTSHAKE
JSR INSHAKE
MOVE .

B

$30009, $30021
BSET #1, $30001
JSR OUTSHAKE
JSR INSHAKE
DBRA D1,READ
BSET #7, $30001
MOVE .

B

$30001, DO
ORI.B #$0F,D0
MOVE .

B

DO, $30001
MOVE.B #$FF,D0
MOVE .

L

#$30009, AO
JSR INTPIA
MOVE .

L

#$3000D,AO
JSR INTPIA
MOVE.L #$30021, AO
MOVE .

B

#0,D0
JSR INTPIA

RESTORE MOVEM.L $9A8,D0-D3/A0
END RTS

WAIT FOR STROBE
READ LSB OF ENDING ADDRESS
SEND ACKNOWLEDGE
COPY STARTING ADDRESS INTO D3
CHANGE PARALLEL PORT TO OUTPUT

Dl IS NUMBER OF VEC MEM READS

FORMAT ADDRESS POINTER COMMAND
SET ADDR PTR TO STARTING ADDR
CHANGE HP LSB PORT TO INPUT

CHANGE HP MSB PORT TO INPUT

SET NEW DIR AND BUFFER CONTROL
OF HP DATA PORT
SET WR AND RD LINES HIGH
SET HP DEVICE AND DIR LOW

SET ERROR FLAG TO ACKERR
BRING HP READ LINE LOW
SEND MSB TO PARALLEL PORT
SEND STROBE PULSE FOR MSB
WAIT FOR ACKNOWLEDGE PULSE
SEND LSB TO PARALLEL PORT
BRING HP READ LINE HIGH
SEND STROBE PULSE FOR LSB
WAIT FOR ACKNOWLEDGE PULSE
READ NEXT VEC. MEM. LOCATION
ENABLE PAR PORT INTERRUPTS
GET HP CONTROL BITS
SET DIR DEVICE WR AND RD HIGH

CHANGE HP LSB PORT TO OUTPUT

CHANGE HP MSB PORT TO OUTPUT

CHANGE PARALLEL PORT TO INPUT

RESTORE REGISTERS
RETURN TO CALLING ROUTINE

SUBROUTINE INTERFACE COMMAND #3

159

**

SUBROUTINE INTERFACE COMMAND #4

PURPOSE: To sound or silence the alarm

INITIAL CONDITIONS: This subroutine requires no parameters be
passed and is initiated by sending the Host
a value of $04 to the 68000 through the
parallel port. This value represents a
Interface Command #4.

ACTION: This subroutine toggles the alarm on the in-
terface board. The alarm is used to alert
the pilot of an alarm condition such as
empending stall, gear up on an approach etc.
The Host sends Interface Command #4 to turn
the alarm on and sends the command again to
turn the alarm off.

REGISTER USAGE: No registers are affected

**

ORG. $20750
START JSR OUTSHAKE ACKNOWLEDGE INTERFACE CMD #4

BCHG #0, $30005 TOGGLE THE ALARM OUTPUT
END RTS RETURN TO CALLING ROUTINE

SUBROUTINE INTERFACE COMMAND #4

160

**

PURPOSE:

SUBROUTINE KEYIRQ

To determine and process the key pressed on
the command keyboard

INITIAL CONDITIONS: This subroutine requires no parameters be
passed and is initiated when any key on the
command keyboard is pressed.

ACTION:

REGISTER USAGE:

This subroutine calls another subroutine
called "GETKEY" which will return the value
of the key pressed in register D2.B and in
the Data Package. If a value of $37 is
returned from GETKEY, then no key was found
pressed and this subroutine returns to the
calling routine. If a valid key is returned
from GETKEY, the key is sent to the parallel
port and the Host is interrupted. When the
Host acknowledges the key value, this sub-
routine will return to the calling routine.

No registers are affected

**

ORG. $20760
START MOVEM .

L

D0/D2/A0,$9BC
JSR GETKEY
CMPI .

B

#37, D2
BEQ NOKEY
CMPI .

B

#36, D2
BNE CONTINUE
JSR SETCLK
BRA NOKEY

CONTINUE MOVE .

L

#$30021, A0
MOVE .

B

#$FF,D0
JSR INTPIA
MOVE.B D2, $30021
MOVE .

B

#2,D2
JSR OUTSHAKE
JSR INSHAKE
BSET #7, $30001
MOVE.L #$30021, A0
MOVE .

B

#0,D0
JSR INTPIA

NOKEY BCLR #6, $30001
BSET #6, $30001

RESTORE
END

MOVEM. L
RTS

$9BC,D0/D2/A0

SAVE REGISTERS
GET THE VALUE OF KEY PRESSED
WAS THERE A KEY FOUND
IF NO KEY THEN RETURN
CHECK FOR SET CLOCK KEY
IF NOT SET CLOCK KEY, CONTINUE
SET THE CLOCK/CALENDAR
AFTER CLOCK IS SET, RETURN
CHANGE PARALLEL PORT TO OUTPUT

SEND VALID KEY TO PAR. PORT
SET ERROR FLAG TO ACKERR
STROBE THE HOST
WAIT FOR ACKNOWLEDGE
ENABLE PAR PORT INTERRUPTS
CHANGE PARALLEL PORT TO INPUT

CLEAR KEYBOARD INTERRUPT

RESTORE REGISTERS
RETURN TO CALLING ROUTINE

SUBROUTINE KEYIRQ

161

**

SUBROUTINE CLKIRQ

PURPOSE: To read the Real Time Clock and Calendar and
send the time data to the data package

INITIAL CONDITONS: This subroutine requires no parameters be
passed to it and is initiated by the real
time clock interrupt.

ACTION: The subroutine is initiated by the real time
clock interrupt timer. The clock will in-
terrupt at a predetermined interval such as
one-half second. This subroutine will read
the BCD numbers corresponding to the time
and date and convert these numbers to binary
numbers. The binary numbers are then
supplied to the data package.

To alert the Host that the time has changed,
the time vector ($60) is placed on the par-
allel port data bus and the Host is inter-
rupted. After receiving a Data Acknowledge
from the Host, the subroutine clears the
clock interrupt, restores registers and
returns to the calling routine.

REGISTER USAGE: No registers are affected

** ********************

START
ORG.
MOVEM.L
MOVE.B
MOVE.L
MOVE.B
AND.W
MULU.W
MOVE .

B

AND.B
ADD.B
MOVE.B
MOVE.B
AND.W
MULU.W
MOVE.B
AND.B
ADD.B
MOVE.B

$207CA
D0/D2/A0,$9BC
$30063, DO
#$1FB9,A0
$30067, DO
#$F,D0
#10, DO
$30065, D2
#$F,D2
D2,D0
D0,-(A0)
$3006B,D0
#$F,D0
#10, DO
$30069, D2
#$F,D2
D2,D0
D0,-(A0)

SAVE REGISTERS
DUMMY READ TO SETUP READ LOGIC
SET UP DATA PACKAGE POINTER
READ TENS OF SECONDS
CLEAR DATA4 - DATA7

READ THE ONES OF SECONDS
CLEAR DATA4 - DATA7
ADD TENS AND ONES OF SECONDS
PUT IN THE DATA PACKAGE
READ TENS OF MINUTES
CLEAR DATA4 - DATA7

READ THE ONES OF MINUTES
CLEAR DATA4 - DATA7
ADD TENS AND ONES OF SECONDS
PUT IN THE DATA PACKAGE

SUBROUTINE CLKIRQ

162

**

SUBROUTINE CLKIRQ CONTINUED

**

RESTORE
END

MOVE .

B

AND.W
MULU.W
MOVE .

B

AND.B
ADD.B
MOVE .

B

MOVE .

B

AND.W
MULU.W
MOVE .

B

AND.B
ADD.B
MOVE .

B

MOVE .

B

AND.B
MOVE .

B

MOVE .

B

AND.W
MULU.W
MOVE .

B

AND.B
ADD.B
MOVE .

B

MOVE .

B

MOVE .

L

MOVE .

B

JSR
MOVE.B
JSR
MOVE .

B

JSR
BSET
MOVE .

L

MOVE .

B

JSR
MOVE .

B

MOVE .

B

MOVE .

B

BCLR
BSET
MOVEM.L
RTS

$3006F,D0
#$F,DO
#10, DO
$3006D,D2
#$F,D2
D2,D0
D0,-(A0)
$30073, DO
#$F,D0
#10, DO
$30071, D2
#$F,D2
D2,D0
D0,-(A0)
$30075, DO
#$F,D0
D0,-(A0)
$30079, DO
#$F,D0
#10, DO
$30077, D2
#$F,D2
D2,D0
D0,-(A0)
$30063, DO
#$30021, AO
#$FF,D0
INTPIA
#$60, $30021
OUTSHAKE
#2,D2
INSHAKE
#7, $30001
#$30021, AO
#0,D0
INTPIA
$3007F,D0
$3007F,D0
$3007F,D0
#5, $30001
#5, $30001
$9BC,D0/D2/A0

READ TENS OF HOURS
CLEAR DATA4 - DATA7

READ THE ONES OF HOURS
CLEAR DATA4 - DATA7
ADD TENS AND ONES OF HOURS
PUT IN THE DATA PACKAGE
READ TENS OF DAYS
CLEAR DATA4 - DATA7

READ THE ONES OF DAYS
CLEAR DATA4 - DATA7
ADD TENS AND ONES OF DAYS
PUT IN THE DATA PACKAGE
READ DAY OF THE WEEK
CLEAR DATA4 - DATA7
PUT IN THE DATA PACKAGE
READ TENS OF MONTHS
CLEAR DATA4 - DATA7

READ THE ONES OF MONTHS
CLEAR DATA4 - DATA7
ADD TENS AND ONES OF MONTHS
PUT IN THE DATA PACKAGE
DUMMY READ
MAKE PARALLEL PORT OUTPUT

SEND THE TIME VECTOR TO PORT
SEND DATA STROBE
SET ERROR FLAG TO ACKERR
WAIT FOR ACKNOWLEDGE
ENABLE PAR PORT FOR INTERRUPTS
CHANGE PARALLEL PORT TO INPUT

THREE READS CLEARS CLOCK IRQ

CLEAR CLOCK INTERRUPT LATCH

RESTORE REGISTERS
RETURN TO CALLING ROUTINE

SUBROUTINE CLKIRQ

163

**

MEMORY USAGE DEFINED

**

SCRATCHPAD RAM

TEMPORARY STORAGE OF REGISTERS
AVAILABLE SCRATCHPAD RAM

$900-$9E3 TEMPO
$9E4-$1F9F AVAIL

KEYPAD LOOKUP TABLE

Location Value
$3800 $0A
3801 0A
3802 0A
3803 00
3804 OA
3805 OA
3806 OA
3807 OA
3808 OA
3809 01
380A 02
380B 03
380C OA
380D OA
380E OA
380F 04
3810 05
3811 06
3812 OA
3813 OA
3814 OA
3815 07
3816 08
3817 09

Description
KEYPAD LOOKUP TABLE

KEY

KEY 1

KEY 2

KEY 3

KEY 4

KEY 5

KEY 6

KEY 7

KEY 8

KEY 9

HP-1345A GRAPHIC COMMANDS FOR SETCLK ROUTINE

Description
Number of commands in list
Set address ptr to zero
Plot X
Plot Y
E
N

Location Value
$3824 $0032
3826 C000
3828 00C0
382A 1600
382C 4945
382E 494E

164

Location Value Description
3830 4954 T
3832 4945 E
3834 4952 R
3836 4920 SPACE
3838 4954 T
383A 4957 W
383C 494F
383E 4920 SPACE
3840 4944 D
3842 4949 I

3844 4947 G
3846 4949 I

3848 4954 T
384A 4953 S
384C 4920 SPACE
384E 4946 F
3850 494F
3852 4952 R
3854 4910 SPACE
3856 4945 E
3858 4941 A
385A 4943 C
385C 4948 H
385E 4910 SPACE
3860 4945 E
3862 494E N
3864 4954 T
3866 4952 R
3868 4959 Y
386A 0200 Plot X
386C 1400 Plot Y
386E 4945 E
3870 494E N
3872 4954 T
3874 4945 E
3876 4952 R
3878 4910 SPACE
387A 4959 Y
387C 4945 E
387E 4941 A
3880 4952 R
3882 8045 Internal Jump to Address $45 (69)
3884 C045 Address Pointer to $45 (69)
3886 0000 NOP
3888 8FFF Internal Jump to $FFF (4095)
388A 0007 Number of commands in list
388C C029 Address Pointer to $29 (41)

165

Location Value
388E 494D
3890 494F
3892 494E
3894 4954
3896 4948
3898 8045
389A 0011
389C C029
389E 4944
38A0 4941
38A2 4959
38A4 4910
38A6 4918
38A8 4930
3 8AA 4931
3 8AC 493D
38AE 4953
38B0 4955
38B2 494E
38B4 4944
38B6 4941
38B8 4959
38BA 4929
38BC 8045
3 8BE 0006
38C0 C029
38C2 4944
38C4 4941
38C6 4954
38C8 4945
38CA 8045
38CC 0007
38CE C029
38D0 4948
38D2 494F
38D4 4955
38D6 4952
38D8 4953
38DA 8045
38DC 0009
38DE C029
38E0 494D
38E2 4949
38E4 494E
38E6 4955
38E8 4954
38EA 4945

Description
H
O
N
T
H
Internal Jump to $4 5 (69)
Number of commands in list
Address Pointer to $29 (41)
D
A
Y
SPACE
(

1

s

u
N
D
A
Y

)

Internal Jump to $45 (69)
Number of commands in list
Address Pointer to $29 (41)
D
A
T
E
Internal Jump to $45 (69)
Number of commands in list
Address Pointer to $29 (41)
H

u
R
S
Internal Jump to $45 (69)
Number of commands in list
Address Pointer to $29 (41)
M
I
N
U
T
E

166

Location Value Description
38EC 4953 S
38EE 8045 Internal Jump to $45 (69)
38F0 0020 Number of commands in list
38F2 COOO Address Pointer to $00 (00)
38F4 0100 Plot X
38F6 1400 Plot Y
38F8 4950 P
38FA 4952 R
38FC 4945 E
38FE 4953 S
3900 4953 s
3902 4920 SPACE
3904 4941 A
3906 494E N
3908 4959 Y
390A 4910 SPACE
390C 494B K
390E 4945 E
3910 4959 Y
3912 4910 SPACE
3914 4954 T
3916 494F O
3918 4920 SPACE
391A 4953 S
391C 4954 T
391E 4941 A
3920 4952 R
3922 4954 T
3924 4920 SPACE
3926 4943 C
3928 494C L
392A 494F O
392C 4943 C
392E 494B K
3930 8FFF Internal Jump to $FFF (4095)
3932 0034 Number of commands in list
3934 COOO Address pointer to $00 (00)
3936 0100 Plot X
3938 1300 Plot Y
393A 4943 C
393C 494C L
393E 494F O
3940 4943 c
3942 494B K
3944 492F /
3946 4943 C
3948 4941 A

167

Location Value Description
394A 494C L
394C 4945 E
394E 494E N
3950 4944 D
3952 4941 A
3954 4952 R
3956 4920 SPACE
3958 4949 I

395A 4953 S
395C 4920 SPACE
395E 4953 S
3960 4945 E
3962 4954 T
3964 0100 Plot X
3966 1200 Plot Y
3968 4950 P
396A 4952 R
396C 4945 E
396E 4953 S

3970 4953 S
3972 4920 SPACE
3974 4941 A
3976 494E N
3978 4959 Y
397A 4920 SPACE
397C 494B K
397E 4945 E
3980 4959 Y
3982 4920 SPACE
3984 4954 T
3986 494F O
3988 4920 SPACE
398A 4943 C
398C 494F
398E 494E N
3990 4954 T
3992 4949 I
3994 494E N
3996 4955 U
3998 4945 E
399A 8FFF Internal Jump to $FFF (4095)
399C 001A Number of commands in list
399E 0140 Plot X
39A0 1200 Plot Y
39A2 4949 I

39A4 494E N
39A6 4956 V

168

Location Value Description
39A8 4941 A
39AA 494C L
39AC 4949 I

39AE 4944 D
39B0 4920 SPACE
39B2 494B K
39B4 4945 E
39B6 4959 Y
39B8 4920 SPACE
39BA 4920 SPACE
39BC 4920 SPACE
39BE 4954 T
39C0 4952 R
39C2 4959 Y
39C4 4920 SPACE
39C6 4941 A
39C8 4947 G
39CA 4941 A
39CC 4949 I
39CE 494E N
39D0 8FFF Internal Jump to $FFF (4095)
39D2 xxxx Not used

POWER UP AND ERROR MESSAGES DISPLAYED
ON ZENITH TERMINAL

Location Value Description
$39D4 07 Bell
39D5 45 E
39D6 48 H
39D7 53 S
39D8 49 I
39D9 20 SPACE
39DA 53 S
39DB 59 Y
39DC 53 S
39DD 44 T
39DE 45 E
39DF 4D M
39E0 20 SPACE
39E1 52 R
39E2 55 U
39E3 4E N
39E4 4E N
39E5 49 I
39E6 4E N
39E7 47 G

169

Location Value Description
39E8 49 I
39E9 4E N
39EA 49 I

39EB 54 T
39EC 49 I

39ED 41 A
39EE 4C L
39EF 49 I

39F0 5A Z

39F1 41 A
39F2 54 T
39F3 49 I

39F4 4F
39F5 4E N
39F6 53 S
3 9F7 20 SPACE
39F8 43 C
39F9 4F
39FA 4D H
39FB 50 P
39FC 4C L
39FD 45 E
39FE 54 T
39FF 45 E
3A00 43 C
3A01 4F
3A02 4E N
3A03 54 T
3A04 49 I

3A05 4E N
3A06 55 U
3A07 45 E
3A08 20 SPACE
3A09 54 T
3A0A 4F
3A0B 20 SPACE
3A0C 46 F
3A0D 4C L
3A0E 49 I

3A0F 47 G
3A10 48 H
3A11 54 T
3A12 20 SPACE
3A13 53 S
3A14 49 I
3A15 40 H
3A16 55 u

170

Location Value Description
3A17 4C L
3A18 41 A
3A19 54 T
3A1A 4F
3A1B 52 R
3A1C 07 Bell
3A1D 07 Bell
3A1E 07 Bell
3A1F 07 Bell
3A2 07 Bell
3A21 0D CR
3A22 20 SPACE
3A23 20 SPACE
3A24 20 SPACE
3A25 20 SPACE
3A26 2A *

3A27 2A *

3A28 2A *

3A29 3E >
3A2A 20 SPACE
3A2B 20 SPACE
3A2C 3C <
3A2D 2A *

3A2E 2A *

3A2F 2A *

3A30 0A LINE FEED
3A31 0A LINE FEED
3A32 OA LINE FEED
3A3 3 OA LINE FEED
3A34 OA LINE FEED
3A35 OA LINE FEED
3A36 OA LINE FEED
3A37 OA LINE FEED
3A38 53 S
3A39 54 T
3A3A 52 R
3A3B 4F
3A3C 42 B
3A3D 45 E
3A3E 20 SPACE
3A3F 45 E
3A40 52 R
3A41 52 R
3A42 4F
3A43 52 R
3A44 41 A
3A4 5 43 C

171

Location Value Description
3A4 6 4B K
3A47 4E N
3A4 8 4F
3A49 57 W
3A4A 4C L
3A4B 45 E
3A4C 44 D
3A4D 47 G
3A4E 45 E
3A4F 20 SPACE
3A50 45 E
3A51 52 R
3A52 52 R
3A53 4F
3A54 52 R
3A55 49 I

3A56 4C L
3A57 4C L
3A58 45 E
3A59 47 G
3A5A 41 A
3A5B 4C L
3A5C 20 SPACE
3A5D 49 I

3A5E 4E N
3A5F 54 T
3A60 45 E
3A61 52 R
3A62 46 F
3A63 41 A
3A64 43 C
3A65 45 E
3A66 20 SPACE
3A67 43 C
3A68 4F
3A69 4D M
3A6A 4D H
3A6B 41 A
3A6C 4E N
3A6D 44 D
3A6E 56 V
3A6F 45 E
3A70 43 C
3A71 54 T
3A72 4F
3A73 52 R
3A74 20 SPACE

172

3A75 4D M
3A76 45 E
3A77 4D H
3A78 4F
3A79 52 R
3A7A 59 Y
3A7B 20 SPACE
3A7C 45 E
3A7D 52 R
3A7E 52 R
3A7F 4F
3A80 52 R
3A81-8F XX NOT USED

HP-1345A GRAPHIC COMMANDS FOR POWER UP
AND SHUTDOWN MESSAGES

Location Value Description
$3A90 $0009 Number of commands in list
3A92 C000 Address pointer to $00 (00)
3A94 8FFF Internal Jump to $FFF (4095)
3A96 Address Pointer
3A98 0398 Plot X
3A9A 12E8 Plot y
3A9C 5945 E
3A9E 5948 H POWER UP MESSAGE
3AA0 5953 S
3AA2 5949 I
3AA4 000C Number of commands in list
3AA6 COOO Address pointer to $00 (00)
3AA8 7818 Set HP-1345A mode
3AAA 0378 Plot X
3AAC 12E8 Plot Y
3AAE 5953 S
3AB0 5948 H
3AB2 5955 U
3AB4 5954 T EHSI SHUTDOWN MESSAGE
3AB6 5944 D
3AB8 594F O
3ABA 5957 W
3ABC 594E N
3ABE 8FFF Internal Jump to $FFF (4095)

173

INTERRUPT VECTORS FOR SERVICE ROUTINES

Location Value
$3AC0 XXXXXXXX
3AC4 000027CA
3AC8 00002760
3ACC 00002546

(Interrupt Vectors fo:

$3ADO 00002590
3AD4 000025EA
3AD8 00002630
3ADC 00002750
3AE0 XXXXXXXX
3AE4 XXXXXXXX
3AE8 XXXXXXXX

Description
Spare Interrupt Request Line
Clock Interrupt Request Line
Key Interrupt Request Line
Communications Int. Req. Line

COMIRQ Service Routines)
Interface Command #1 Routine
Interface Command #2 Routine
Interface Command #3 Routine
Interface Command #4 Routine
Spare Interface Command Vector
Spare Interface Command Vector
Spare Interface Command Vector

$3AF0 - $3FFF Available Space

174

AN ELECTRONIC HORIZONTAL SITUATION INDICATOR

AND DEVELOPMENT SYSTEM

by

JEFF D. LAGERBERG

B.S., Kansas State University, 1984

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1987

ABSTRACT

Within the general-aviation community there exists a

need for an affordable avionic instrument that would reduce

the workload of a pilot flying under instrument flight

conditions. An Electronic Horizontal Situation Indicator

(EHSI) is described that would integrate navigational in-

formation and flight data to produce graphics on a high-

resolution display module. Three graphic pages are sug-

gested that present the flight information in a way that

will greatly enhance the pilot's situational awareness of

the aircraft's surrounding environment.

To develop the EHSI system and integrated displays

it is necessary to have a development system that will

simulate, gather and process the flight data required to

produce the EHSI graphics. An EHSI Development System is

presented which accomplishes the task of gathering and

preprocessing the data from the pilot, from navigational

radios and from conventional avionic instruments on board a

flight simulator. The development system will have knowl-

edge of all pertinent flight data and is able to transfer

the data to a host computer via a two-wire handshake paral-

lel port. The development system's host computer then

processes the information to produce the graphic pages for

the EHSI.

