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Abstract

Deep convolution neural networks (DCNNs) have become extremely common in computer

vision, and due to the availability of easy-to-use libraries, their impact has gone far beyond

the domain of computer vision. Since a DCNN acts like a black box, it is very often difficult

for the user to understand which features of the image contribute to the learning of the

network. The purpose of this work is to explore the reliability of DCNNs as general solutions

to machine vision problems and identify possible weaknesses in which DCNNs can lead to

biased or misleading results. A first experiment shows that for a basic classification of spiral

and elliptical galaxies, the position of the galaxies plays role in the classification. That small

but consistent and statistically significant bias can lead to misleading results when applied

to large datasets. The second experiment has been done with a variety of prominent datasets

in the computer vision domain. Only a portion of the background without any significant

content descriptor has been used, but still, the LeNet5 architecture is able to predict the

image better than the mere chance accuracy. That shows that the classification accuracy,

even when using commonly used datasets, can be biased.
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Introduction

Deep Learning is a machine learning technique that is inspired by the structure of the

human brain. Convolution neural networks(CNN) is arguably the most popular deep learn-

ing architecture. It is a key technology in various domains such as driverless cars, recognize

a stop sign, or differentiating between a pedestrian from a lamppost.1. It is also successfully

applied to recommender systems, natural language processing, automated image and text

interpretation in medicine, insurance, advertisement, public video surveillance, job applica-

tions, or credit scoring, and many more.1 CNNs have an edge over other primitive machine

learning models because it does not require any human intervention to detect important

features of the image in the dataset while learning. 2

A CNN architecture is composed of multiple convolution layers stacked together. The

main part of the architecture is an input layer, an output layer, and many hidden layers in

between. In the hidden layers, a convolution filter is applied to the input data to extract a

feature map which is fed into the output layer to wrap up the working of the convolution

neural network. This complex process of distilling the ordinal features from the image helps

the model to perform wonderful feats, but this complexity is also a curse. The non-intuitive

rules of the hidden layers is often a mystery to the creator and make the network a ”Black

Box” 3

According to past research on CNN architecture, it has been shown that CNN sometimes

produces sub-optimal results in comparisons to existing ML techniques. Research carried out

by2 3 have shown that output of CNN is not superior than result of sentence weight neural

network for detecting spam reviews. Furthermore, it also has been shown that the accuracy

of CNN is lower than the accuracy of a bidirectional encoder-decoder4 when considered for

1https://www.mathworks.com/discovery/deep-learning.html
2https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-

584bc134c1e2
3https://bdtechtalks.com/2021/01/11/concept-whitening-interpretable-neural-networks/
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classification type of problems. In the paper by Zhang et al5 have linked the repetitive

features to be semantically linked to the target attributes. The co appearing features in the

dataset imparts a bias to the target values.

Scientists have been researching the weakness of Deep learning models even when the

models are performing with high accuracy. For instance, a good model can totally extract

wrong features to make a good decision because the CNN learns from the training data to

characterize the task.1 For example if the model needs to classify between a dog and a wolf

it turns out that the classifier can able to detect the snow in the background of the wolf more

precisely than the actual important features that should be used by the model to classify.

Though the model gives a high accuracy rate the reason is the bias in the background of

the training set.1;6 Similarly a classifier used to differentiate between the enemy tank and

friendly tank delivers a high accuracy of classification but turns out to be a good classifier of

sunny or overcast days.1;7 However this example shows how harmful it could be to depend

on the results of a black box with high performing accuracy.

In this paper we study astronomical datasets which uses supervised learning process for

a basic classification between spiral and elliptical morphology. Though the classification

accuracy is above 90% but there is a subtle but consistent bias in the dataset. The different

part of the sky in the training set lead to a consistent bias in the classifier based on the sky

location of the galaxies it attempts to classify. If this bias is ignored it does not reflect the

actual distribution of the morphology in the sky. We also study other several benchmark

dataset in the field of face recognition or biomedical image recognition and object recognition

to find that the classification accuracy of this datasets are driven by dataset bias due to the

data acquisition process and hence lead to false experimental result.

We recommend simple possible solution that can be completed before making any closure

about a classification problem using convolution neural networks.

xi



Chapter 1

The risk in using deep neural

networks for annotating large catalogs

of astronomical images

Abstract

Deep convolutional neural networks (DCNNs) have become the most common solution for

automatic image annotation due to their non-parametric nature, good performance, and

their accessibility through libraries such as TensorFlow. Among other fields, DCNNs is also

a common approach to the annotation of large astronomical image databases acquired by

digital sky surveys. One of the main downsides of DCNNs is the complex non-intuitive

rules that make DCNNs act as a ”black box”, providing annotations in a manner that is

unclear to the user. Therefore, the user is often not able to know what information is used

by the DCNNs for the classification. Here we demonstrate that the training of a DCNNs

sensitive to the context of the training data such as the location of the objects in the sky.

We show that for the basic classification of elliptical and spiral galaxies, the sky location

of the galaxies used for training affects the behavior of the algorithm, and leads to a small

but consistent and statistically significant bias. That bias exhibits itself in the form of
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cosmological-scale anisotropy in the distribution of basic galaxy morphology. Therefore,

while DCNNs are powerful tools for annotating images of extended sources, the construction

of training sets for galaxy morphology should take into consideration more aspects than the

visual appearance of the object. In any case, catalogs created with deep neural networks

that exhibit signs of cosmological anisotropy should be interpreted with the possibility of

consistent bias.

1.1 Introduction

In the past two decades, autonomous digital sky surveys powered by robotic telescopes have

been becoming increasingly important in astronomy, and have been revolutionizing astron-

omy research. The ability to collect far more data than any manually controlled telescope

and make them accessible to the community through the concept of virtual observatory in-

creased the efficiency of telescope systems, leading to unprecedented discovery power8. It

also allows making the astronomy research community broader, as any person with a com-

puter and connection to the Internet can gain immediate access to powerful astronomical

research instruments.

Perhaps the first major comprehensive autonomous digital sky survey is the Sloan Digital

Sky Survey9, with considerable success and revolutionary impact on astronomy. The over-

whelming success of SDSS was followed by other powerful sky surveys such as the Panoramic

Survey Telescope and Rapid Response System10 and the Dark Energy Survey11. Future ven-

tures such as the Vera Rubin Observatory and the space-based Euclid mission will provide

even more powerful imaging capabilities, leading to far greater databases and consequently

discovery power.

As digital sky surveys image hundreds of millions and even billions of astronomical ob-

jects, it is clear that manual analysis of the data is impractical. One of the most challenging

tasks in the analysis of the image data acquired by digital sky surveys is the morphological

analysis of extended objects. Unlike point sources, extended objects can have a complex

morphology, and their analysis requires sophisticated computational methods. Tasks related

2



to automatic annotations of galaxies can include broad classification of galaxies to ellipti-

cal or spiral12–15, or annotation of a more comprehensive set of morphological descriptors of

galaxies16;17. Other tasks can include automatic detection of rare galaxies18–21, unsupervised

analysis of galaxy morphology22, or separating galaxies from stars23.

In the past decade, deep convolutional neural networks (DCNNs) have been becoming

increasingly more common in machine vision. Their good performance combined with their

non-parametric approach and the availability of open-source libraries makes DCNNs an

effective solution that allows achieving good performance, yet with reasonable development

efforts. As they become popular in almost all fields that involve machine vision, DCNNs

have also been becoming very common in astronomy. Among other tasks, they are also

used for automatic annotation of galaxy images12;17;24–27. Due to their efficiency and speed,

DCNNs are currently the immediate solution for the annotation of very large datasets of

galaxy images.

However, while DCNNs have the important advantages mentioned above, they also have

several weaknesses. One of the main downsides of DCNNs is the “black box” nature of its

classification process. DCNNs are trained by data samples, and the weights are determined

during training to optimize the performance. However, the rules by which the classifications

are made are complex and non-intuitive, making it difficult to conceptualize the way the

classifications are being made by the neural network. Since it is difficult to define what the

DCNNs “learn” from the data, such systems should be used with caution28;29.

Here we demonstrate that a DCNN system used through a typical supervised machine

learning process to identify galaxy morphology can provide good accuracy in the classification

of the galaxies, but at the same time can have a subtle but consistent bias. When applied

to large datasets, that bias can lead to consistently biased catalogs. If the bias is ignored

in the consequent analysis of the catalog, it can lead to observations that do not reflect the

distribution of the data in the real sky.
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1.2 Method

We train a neural network to classify between elliptical and spiral galaxies. The distribution

of elliptical and spiral galaxies in one part of the sky is expected to be statistically the same

as the distribution of elliptical and spiral galaxies in other parts of the sky. That is, when

the dataset of galaxies is large, the shape of elliptical galaxies observed in a certain RA

and declination range is expected to be the same as the shape of elliptical galaxies in any

other RA and declination range. In other words, an expert observing an image of a random

elliptical galaxy, and given no other information about the object, will not be able to make

a knowledgeable guess of the RA and declination of that galaxy.

According to the null hypothesis, the neural network is trained by the morphology of

the galaxies, and therefore the classification output of the neural network depends only on

the morphology of the galaxy. In that case, if the deep neural network is trained with a

high number of galaxies, it will perform the same way (within statistical error) regardless of

the location of the test galaxy in the sky. Otherwise, the neural network is sensitive also to

the location of the galaxy in the sky and therefore can lead to a certain bias. Even if such

bias is small when annotating a very large number of galaxies that bias can be statistically

significant. For instance, if in a certain part of the sky the neural network tends to classify

more galaxies as the spiral, a catalog generated by that network will show cosmological

anisotropy such that a certain direction of observation has more spiral galaxies compared to

other directions of observation.

In this study, we train a deep neural network to classify between elliptical and spiral

galaxies by using training galaxies imaged in the same part of the sky. We then compared

the results using the same test set, but such that the training spiral galaxies are taken

from one part of the sky, and the test spiral galaxies are taken from another part of the

sky. If the neural network classifies galaxies just by their morphology, both neural networks

should provide the same confusion matrix, within statistical error. However, if the confusion

matrices are different, it means that the neural network also learns differences in the sky

background, and can be affected based on the location of the galaxy in the sky. When
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applied to a large dataset, such behavior of the neural network can lead to differences in the

distribution of the annotations based on different parts of the sky. That can consequently

lead to slightly but consistently biased data products.

1.2.1 Deep convolutional neural network

The deep convolutional neural network used in this experiment is an expansion of the com-

mon LeNet-5 architecture30, implemented using the Keras library31;32, and adjusted to the

input size of images with the dimensionality of 120×120 pixels. The deep neural network

model is based on the sequential model of Keras with five convolution layers and four max-

pooling layers. These layers are followed by flattening and fully connected layers.

The activation function used in most layers of the convolutional neural network is Rec-

tified Linear Unit (ReLU), except for the output layer, where we use the sigmoid activation

function. Figure 1.1 shows the diagram of the structure of the convolutional neural network.

During compilation, the model uses the Adam (Adaptive Moment Estimation) optimizer33,

with an adaptive learning rate, and the binary cross-entropy is used as the loss function

because of binary classification.

1.3 Data

Datasets from two major digital sky surveys were used - SDSS and Pan-STARRS. To have

the training and test sets of spiral galaxies, we used catalogs of galaxies annotated by their

broad morphology to spiral and elliptical galaxies. The image data in both datasets are the

120×120 JPG images downloaded by using the cutout service.

For SDSS, the annotation of spiral and elliptical galaxies were taken from a catalog of

galaxies annotated by their broad morphology34;35. Each galaxy in the catalog is provided

with its annotation, and the certainty of the annotation in the range (0.5,1), where 1 is

the maximum certainty for the galaxy to belong in the morphological type it is annotated.

To ensure the accuracy of the annotations, only galaxies with a certain threshold of 0.9 or
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Figure 1.1: Diagram of the structure of the convolutional neural network.

higher were used. These galaxies have certainty of their annotation of ∼98% compared to

the “superclean” Galaxy Zoo annotations34. The total number of galaxies in the catalog is

∼ 2.9 · 106.

A similar catalog was also used For the Pan-STARRS data. The catalog of Pan-STARRS

galaxies contained ∼ 1.7 · 106 automatically annotated galaxies imaged by Pan-STARRS36.

Like with the SDSS galaxies, only galaxies with annotation certainty of 90% or higher were

used, to ensure that the dataset for training and testing the neural network is clean.

For Pan-STARRS data, datasets of galaxies were taken from two opposite hemispheres

in the sky. The RA ranges of the sky regions used in the experiments are (0o − 20o), and

(180o − 200o). The declination in both cases is (0o − 20o). These regions were chosen for
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being far from each other in the sky, but also because they contain a sufficient number of

galaxies. Additionally, a dataset of Pan-STARRS galaxies in the RA range (180o − 200o)

and declination range of (20o− 40o) is also used. The sky regions used in the SDSS data are

RA ranges (230o − 260o) and (15o − 35o) for the RA. The declination range is (−10o − 40o).

Table 1.1 summarizes the number of objects taken from each sky region in each sky

survey, and the number of objects used for testing and training. Naturally, the training

and test sets are completely orthogonal, and no galaxies can be assigned for training in one

experiment, and for testing in another experiment.

Dataset Sky RA Dec Train Train Test Test
Survey range range Elliptical Spiral Elliptical Spiral

1 Pan-STARRS 0o-20o 0o-20o 3000 3000 8000 8000
2 Pan-STARRS 180o-200o 0o-20o 3000 3000 8000 8000
3 Pan-STARRS 180o-200o 20o-40o 3000 3000 8000 8000
A SDSS 230o-260o -10o- 40o 2000 2000 3000 3000
B SDSS 15o-35o -10o- 40o 2000 2000 3000 3000

Table 1.1: The datasets used in the experiment, and the number of training and test galaxies
in each dataset. RA and declination ranges are in degrees.

1.4 Results

The DCNN method described in Section 1.2.1 was tested with different combinations of

the datasets described in Section 1.3. For the baseline experiment, we trained and tested

the model with the galaxies in the same right ascension and declination ranges. Table 1.2

shows the confusion matrix when classifying the Pan-STARSS galaxies using the spiral and

elliptical galaxies from Dataset 1 for both training and test purpose. The number of training

and test galaxies are specified in Table 1.1.

Elliptical Spiral
Elliptical 7850 150

Spiral 756 7244

Table 1.2: Confusion matrix of the classifications when using Dataset 1 for both training
and testing.

As the table shows, more spiral galaxies were incorrectly classified as elliptical galaxies

compared to elliptical galaxies classified incorrectly as a spiral. Therefore, if applied to a
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very large dataset of galaxies, it will show a slightly higher fraction of elliptical galaxies than

spiral galaxies. However, a slight bias is expected from any classifier, and such bias is not

necessarily expected to lead to an observation of large-scale anisotropy.

The reason a bias in the classifier is not expected to lead to an observation of anisotropy

is that such bias is expected in all parts of the sky. That is, regardless of the location of the

test galaxies in the sky, a higher number of elliptical galaxies is expected, and therefore the

ratio between elliptical and spiral galaxies is not expected to change throughout the sky.

Since the number of elliptical and spiral galaxies is certainly not expected to be equal,

and since the separation between spiral and elliptical galaxies is not strictly due to the many

in-between cases, a slight but consistent bias of the algorithm might not necessarily lead to

false large-scale anisotropy. Certainly, the performance of such algorithms also depends on

the imaging, as higher resolution images allow to better identify spiral features of galaxies,

increasing the number of spiral galaxies compared to elliptical galaxies36. If spiral features

are identified, that indicates that the galaxy is indeed spiral. However, if spiral features are

not identified it could also be because the image resolution does not allow the identification

of the spirality of the galaxy36.

The same analysis was also done using Dataset 2. Table 1.3 shows the confusion matrix

when classifying the Pan-STARSS galaxies using Dataset 2 for both training and testing.

Elliptical Spiral
Elliptical 7699 301

Spiral 450 7550

Table 1.3: Confusion matrix of the classification when using Dataset 2 for both training
and testing.

The error rate for the spiral and elliptical galaxies is somewhat different from the error

rate shown in Table 1.2, and the difference provides a certain indication of a link between

the performance of the classifier and the part of the sky from which the galaxies are taken.

However, in these two experiments, the training and test data are different, and therefore no

conclusive evidence of a link between a consistent bias of the classifier and the part of the

sky from which the training data are taken can be inferred.
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To further investigate a possible link between the part of the sky from which the training

data are taken and a consistent bias of the classifier, the training set was designed such that

the spiral galaxies were taken from Dataset 1, and the elliptical galaxies from Dataset 2. The

test galaxies are all from Dataset 1. Table 1.4 shows the confusion matrix of the predictions

made by the classifier.

Elliptical Spiral
Elliptical 7749 251

Spiral 408 7592

Table 1.4: Confusion matrix of the classifications when using spiral galaxies from Dataset
1, elliptical galaxies Dataset 2 for training, and all test galaxies from Dataset 1 for testing.

As the table shows, although the test galaxies are the same, the distribution of the

galaxies is different from the results of the experiment shown in Table 1.2. According to

Table 1.4, more spiral galaxies are classified correctly, while more elliptical galaxies are

classified incorrectly.

According to Table 1.4, ∼49.02% are predicted as a spiral, and therefore the probability

of a galaxy to be predicted as the spiral in that dataset is 0.4902. According to the results

of Table 1.2, merely 7,394 galaxies were classified as a spiral. According to the binomial

distribution, if the success probability is 0.4902, the probability of having 7,394 or less

successful events is P < 10−5. That shows that although the test set is identical, the

predictions are significantly different when using training data from different parts of the

sky.

The high probability shows that if the classifier was applied to galaxy images that are not

labeled with ground truth, it would have shown a statistically significant difference between

the frequency of spiral galaxies in the sky region of (0o < α < 20o, 0o < δ < 20o) and

the frequency of spiral galaxies in the sky region (180o < α < 200o, 0o < δ < 20o). These

differences could be interpreted as evidence for cosmological-scale anisotropy.

To further examine a possible link between the selection of the training data and the

behavior of the classifier, a similar experiment was performed such that the training data was

spiral galaxies from Dataset 1 and elliptical galaxies from Dataset 2. Then, the performance
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of the classifier was tested with test data from Dataset 2. Table 1.5 shows the confusion

matrix of the experiment.

Elliptical Spiral
Elliptical 7791 209

Spiral 462 7538

Table 1.5: Confusion matrix of the classifications when using spiral galaxies from Dataset
1, elliptical galaxies from Dataset 2 for training, and Dataset 2 used for testing.

As the table shows, when compared to the classifications of the same set of galaxies with

a neural network that was trained with galaxies from the same sky region as the test data,

the number of misclassified spiral galaxies increases from 450 to 462, and the number of

misclassified elliptical galaxies decreases from 301 to 209. If the probability of misclassified

elliptical galaxy is 301
8000

= 0.037625, the probability of having 209 or fewer misclassified

elliptical galaxies from the 8,000 galaxies that were classified is (P < 10−5). Because the

galaxies have ground-truth we can be certain that the reason for the difference is not of

astronomical origin, but the higher similarity of the test elliptical galaxies from Dataset 2

and the training elliptical galaxies from Dataset 2, which leads to a consistent bias in the

classification.

In another experiment, the training set contained spiral galaxies from Dataset 2 and

elliptical galaxies from Dataset 1. Tables 1.12 and 1.7 show the confusion matrix when

applying the classifier to the test samples of Dataset 1 and Dataset 2, respectively.

Elliptical Spiral
Elliptical 7592 408

Spiral 551 7449

Table 1.6: Confusion matrix of the classification when training the neural network with
spiral galaxies from Dataset 2, elliptical galaxies from Dataset 1, and testing the classifier
with spiral and elliptical galaxies from Dataset 1.

The results show that although the training set is the same in both cases, each dataset

provided different results. For the test samples of Dataset 1, a higher number of spiral

galaxies was misclassified as elliptical galaxies, while when classifying the test samples of

Dataset 2 more elliptical galaxies were classified as spiral galaxies. That is, the classifier
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Elliptical Spiral
Elliptical 7514 486

Spiral 342 7658

Table 1.7: Confusion matrix of the classification when the spiral galaxies of the training set
are from Dataset 2, the elliptical galaxies of the training set are from Dataset 1, and the test
samples are the test galaxies from Dataset 2.

showed 7,857 spiral galaxies in Dataset 1, and 8,144 spiral galaxies in Dataset 2. Because

the galaxies are annotated with ground truth, we can conclude that the reason for the

difference is not an actual higher number of spiral galaxies in the real sky at (180o < α <

200o, 0o < δ < 20o), but a higher similarity of the galaxies in the test set to the galaxies

in the training set that were taken from the same part of the sky. However, if the galaxies

did not have ground truth, the difference could have been interpreted as an indication of

cosmological-scale anisotropy.

1.4.1 Difference between close sky regions

The experiments above tested for the impact when the different classes in the training set

are imaged in opposite hemispheres. To test whether the same bias also occurs when the

classes of the training data are acquired in closer regions, another experiment was done such

that the different sky regions are neighboring.

Table 1.8 shows the confusion matrix when the neural network was trained with elliptical

galaxies from Dataset 2, and spiral galaxies from Dataset 3. Dataset 2 was used for testing.

These results are compared to the confusion matrix of Table 1.9, showing the classifications

when the same test set was used, but the neural network was trained with elliptical galaxies

from Dataset 3, and spiral galaxies from Dataset 2. The two confusion matrices show some

differences in the classifications, but less substantial than when the training set was taken

from different parts of the sky in opposite hemispheres.
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Elliptical Spiral
Elliptical 7755 245

Spiral 600 7400

Table 1.8: The confusion matrix when the classifier is trained with elliptical galaxies from
Dataset 2, and spiral galaxies from Dataset 3. The test set is the test galaxies from Dataet
2.

Elliptical Spiral
Elliptical 7702 298

Spiral 516 7484

Table 1.9: The confusion matrix when the neural network is trained with elliptical galaxies
from Dataset 3, and spiral galaxies from Dataset 2. The test set is the test galaxies from
Dataet 2.

1.4.2 Experiments with SDSS data

In addition to the Pan-STARRS data, we also tested data from the Sloan Digital Sky Survey

(SDSS). Table 1.10 shows the confusion matrix of the classifications of the test galaxies of

Dataset A when the classifier was trained with training spiral galaxies from Dataset A, and

training elliptical galaxies from Dataset B. As before, no galaxies were included in both the

training and test sets.

Elliptical Spiral
Elliptical 2704 296

Spiral 31 2969

Table 1.10: Confusion matrix of the classification of SDSS dataset when training the con-
volutional neural network with spiral galaxies from Dataset A and elliptical galaxies from
Dataset B. The test samples are from Dataset A.

Table 1.11 shows the confusion matrix when using the same training set as was used for

the experiment shown in Table 1.10. As the table shows, the number of misclassified spiral

galaxies increases to 85, while the number of misclassified elliptical galaxies drops to 109.

If the probability of an elliptical galaxy to be misclassified as the spiral galaxy is ∼0.0987,

the binomial distribution probability to have 109 or fewer misclassified elliptical galaxies is

P < 10−5.

Like with the Pan-STARRS data, the analysis shows that the classifier shows the different

ratios of elliptical and spiral galaxies even when the test set is identical. Because the test

12



samples are the same, and the algorithm is the same, the only possible explanation for the

difference is the use of a different training set. For example, the increase in the number of

galaxies classified as elliptical galaxies can be linked to the fact that the neural network was

trained with elliptical galaxies imaged in the same part of the sky of the test samples, while

the training spiral galaxies were imaged in a different part of the sky. The bias is statistically

significant. Therefore, using that neural network to classify galaxies in the entire sky would

lead to a statistically significant difference between the frequency of spiral galaxies in different

parts of the sky, which might provide evidence of cosmological-scale anisotropy.

Elliptical Spiral
Elliptical 2891 109

Spiral 85 2915

Table 1.11: Confusion matrix of the classification of SDSS galaxies when training the neural
network with spiral galaxies from Dataset A and elliptical galaxies from Dataset B, and test
set is the test samples of Dataset B.

A similar experiment was done such that the training set was made of spiral galaxies from

Dataset B and elliptical galaxies from Dataset A. Tables 1.12 and 1.13 show the confusion

matrices when testing the neural network with test data from Dataset A and Dataset B,

respectively. As the confusion matrices show, the bias identified in the results is consistent

with the results of the previous experiment.

Although the classifier is the same classifier trained with the same data, the misclassifi-

cations of Dataset A are completely different than the misclassifications of Dataset B. When

testing the classifier with the test data of Dataset A, much more galaxies are classified as

elliptical compared to the confusion matrix produced when the classifier was tested with

Dataset B. Given that the probability of a test spiral galaxy in Dataset A to be misclassified

as an elliptical galaxy is 0.165, the probability to have 154 misclassified galaxies or less is

P < 10−5.
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Elliptical Spiral
Elliptical 2933 67

Spiral 495 2505

Table 1.12: Confusion matrix of the classifications of SDSS galaxies when training the
neural network with spiral galaxies from Dataset B and elliptical galaxies from Dataset A.
The test set is spiral and elliptical galaxies from the test samples of Dataset A.

Elliptical Spiral
Elliptical 2837 163

Spiral 154 2846

Table 1.13: Confusion matrix of the classifications of SDSS galaxies when training the
neural network with spiral galaxies from Dataset B and elliptical galaxies from Dataset A.
The test samples are the test spiral and elliptical galaxies from Dataset B.

1.5 Conclusion

As autonomous digital sky surveys generate vast pipelines of image data, including billions

of extended objects with complex morphology, a solid approach to analyze the morphology

of these objects is by applying deep convolutional neural networks. For the purpose of

supervised machine learning, these networks are trained automatically with labeled “ground

truth” samples, and can then annotate any given new data based on the rules deduced in

the training stage.

The application of convolutional neural networks to large image databases collected by

digital sky surveys can produce large catalogs of annotated objects. It is expected that these

data products will be used by other researchers to answer questions that were difficult to

address observationally in the pre-information era, such as the large-scale structure of the

universe.

However, while deep neural networks can provide fast annotation with a high level of

accuracy, they are based on complex and non-intuitive data-driven rules that are difficult to

interpret and fully understand. Therefore, these rules can reflect not just the morphology of

the galaxy, but in fact any piece of information by which the neural network can differentiate

between the different classes of images it is trained with.

Here we show that while deep convolutional neural networks provide good annotation
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accuracy, the training process can potentially introduce subtle but consistent biases. Namely,

we show that unbalanced distribution of the sky location of the galaxies in the training set

can lead to a consistent bias of the classifier, which can lead to a bias in the classifier based on

the sky location of the galaxies it attempts to classify. When applied to very large databases

typical to astronomical sky surveys, even a small bias can become statistically significant,

and might even mislead potential users of data products generated by deep neural networks

into false conclusions.

The examples shown in this paper are focused on specific datasets and annotation tasks,

and it is very reasonable to assume that many systems based on deep neural networks

are not biased. However, these examples demonstrate that such systematic bias can exist,

and should be taken into considerations when designing neural networks for annotation of

astronomical images, and when using data products generated by these neural networks.

Cosmic variance, different atmospheric conditions, and even different states of the hardware

when training data are acquired can affect the training of an artificial neural network, and

allow the network to learn non-astronomical information that can differentiate between the

classes in the training set.

Deep convolutional neural networks have become increasingly more common in astronomy

and can be used for a broad range of tasks. However, as such neural networks heavily rely

on training data, it is difficult to acquire training data that evenly covers all parts of the sky

under all weather conditions and status of the hardware. Therefore, when analyzing data

using deep neural networks, a certain bias is expected. The use of data products produced

by these networks should therefore be used with consideration of the advantages as well as

the disadvantages of deep neural networks and should be matched to tasks for which such

data annotation process is scientifically sound.
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Chapter 2

Evaulation of the reliability of deep

convolutional neural network fordata

science

2.1 Abstract

Convolutional neural networks (CNNs) have been becoming a key paradigm used in data

science with image data. CNN provides superior performance yet without requiring the user

to develop specific algorithms. With the availability of easy-to-use libraries, CNNs have

become the default solution for image classification problems in data science. However, one

of the disadvantages of CNNs is the complex non-intuitive rules that can often be consid-

ered“black box”. Therefore, CNNs are vulnerable to learning from irrelevant information in

the datasets they are trained with. Here we test the reliability of CNNs in image classifi-

cation problems in several different tasks. The experiments show that CNNs can provide

promising classification accuracy even when they are trained with a dataset that does not

contain any relevant information, or can be systematically biased by irrelevant information

in the image data. The presence of such consistent irrelevant data is difficult to identify and

can therefore lead to false or biased experimental results. Possible solutions to this downside
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of CNNscan be control experiments, as well as other protective practices to validate the

results and avoid biased conclusions based on CNN-generated annotations.

2.2 Introduction

Automatic analysis of image data has been becoming an important part of data science.

Motivated by the increasing availability of digital imaging and large storage devices, the

ability to analyze large databases of images is now pivotal in discovery from data in a broad

range of domains.

Convolution Neural Networks (CNNs) have become a primary tool in the analysis of

image data, making automatic image analysis with machine learning more powerful and

more accessible. CNN’s allow learning directly from the pixels, and therefore can be used

for a very broad range of image analysis problems yet without the need to develop specific

algorithms. The ability to analyze different types of images without designing specific algo-

rithms, combined with superior performance, made CNN the default solution for automatic

analysis of image data. With the availability of open-source libraries, CNNs have been made

accessible to users who are not necessarily machine learning experts, expanding the use of

CNN’s far beyond the machine learning community.

By learning directly from the pixels, CNNs identify complex non-intuitive features that

can be used to identify the images, and in the case of supervised machine learning can

associate each image with its class. However, learning from the pixels without the need to

design specific image content descriptors rewards the CNN for using any possible information

in the visual content that can discriminate between the different image classes. That can

include information that is relevant to the image classification problem at hand, but also

information that might not necessarily be driven by the intended content of the images.

For instance, pixels might have different values based on subtle differences in the lighting

conditions at the time of imaging, slight changes in the position of the camera or subject,

and even differences in the temperature of the CCD when the images are taken.

Benchmark datasets can be biased for different reasons. For instance, in the context of
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benchmarks for object recognition, the perception of the people annotating the samples or

selecting the samples for the dataset can lead to bias, especially when the dataset is collected

from the web37–40. That bias can be shown experimentally by the fact that training an

algorithm with one benchmark dataset and testing it with another dataset leads to weaker

results compared to training and testing using the same benchmark37. That difference in

performance is counter-intuitive, especially give that larger training sets are expected to

provide stronger or equal performance to smaller training sets, and therefore the weaker

performance can be considered evidence to dataset bias37.

One of the solutions to the problem of dataset bias is to increase the variability in the

datasets. That can be done by reducing the dataset bias by using data augmentation41;42,

combining different datasets38, or synthetically change the variability of the dataset38.

Benchmark datasets used in the domain of machine learning aim at representing the real

world as reliably as possible37, allowing to development and compare the performance of dif-

ferent algorithms that solve general common problems such as automatic object recognition

or face recognition. However, in data science datasets are often collected for one single ex-

periment, and used by a single research team. That might make it more difficult to identify

and characterize all possible biases in the dataset. While substantial work has been done to

analyze bias in datasets that were collected from the web, here we focus on biases in datasets

collected in a controlled environment and well-defined data acquisition processes.

Assuming no bias in the dataset, the performance of a convolutional neural network

achieved when analyzing that dataset can be trusted as an indication of the presence of a

signal in the dataset. The application of the trained CNN to large datasets can be used to

make a discovery in the data. However, if the dataset is biased in a certain way, that bias

could lead to signals driven by the bias rather than by the actual data. That misleading

situation can be carried on to the application of the CNN to the analysis of the large dataset,

and consequently to false discoveries that are consistent and statistically significant but are

driven by dataset bias.

A controlled data acquisition process does not necessarily guarantee unbiased datasets.

For instance, a medical dataset for automatic image-based diagnostics can be acquired at
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more than one clinic. If the positive cases are not distributed equally across the different

clinics, a CNN can learn the features that characterize a certain clinic, and in fact, develop

an algorithm for “clinic prediction” rather than identification of the actual medical condition

being analyzed. Because different clinics can use different hardware, different settings, and

different technicians, it is extremely difficult to guarantee that the image acquisition process

in all clinics is identical.

An example of such bias was demonstrated using microscopy data, where an algorithm

could predict the treatment applied to cells in microscopy images43. But the ability to

classify the cells was also driven by the imaging session rather than the morphology of the

cells44. That was shown by the consistency of the results regardless of the presence of cells

in the images, demonstrating that the signal was driven by the background noise rather than

the cells44. In many cases the visual features leading to the bias are too subtle to notice by

eye, making it difficult to notice the presence of the bias, and leading the experimentalist

to believe that the predictions made by the CNN reflect the ability of the CNN to identify

differences between the visual content. Consequently, the experimentalist might reach certain

conclusions regarding the differences between the image classes.

Here we study several different datasets acquired in a controlled process. That includes

benchmarks used for common tasks such as object recognition and face recognition, but

also datasets used for discovery-driven research in the medical and astronomical domains.

We show that in many cases the application of the CNNs to the datasets leads to results-

driven by dataset bias related to the data acquisition process, and can therefore lead to

false discoveries. To avoid biased results, we propose simple control experiments that should

be performed before making conclusions from the result of the application of convolutional

neural networks to image data.

2.2.1 Medical images

As an example of a dataset of biomedical images, the dataset COVID-CT was used. Details

about the dataset are shown in Table 2.1. The dataset was used for CoroNet45, a deep
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convolution neural network that can identify COVID-19 infection from chest X-ray images.

COVID-CT has two classes such that each class has 349 images for both training and testing

purposes.

Figure 2.3 shows examples of original chest x-rays images from the dataset, and a 20×20

pixels sub-images from the top left corner of the original image. The human eye is not able

to identify differences between the different classes based on the cropped sub-images alone,

as these are blank background area that does not contain images of any part of the body. As

Table 2.1 shows, despite the absence of information related to COVID in the seemingly blank

background subsets, the DCNN was able to achieve classification accuracy much higher than

mere chance.

Classification accuracy of ∼62.5% was observed with the original dataset for COVID-CT

when classifying the images into COVID or non-COVID using LeNet-5 architecture. This

shows that the dataset of the sub-images provided better prediction than the original dataset,

which can be due to the signal from the differences in the imaging process is stronger than

the signal from the medical condition reflected by the images. A dataset of subset images is

more consistent, allowing the DCNN to learn the subtle but consistent differences between

the images originated from the imaging process. Another possible reason could be due to

the reduction in the size of the image from 311×224 pixels to 32×32 pixels to fit the LeNet-5

architecture. In this process, there can be a loss of data in the images which resulted in

much lower classification accuracy.

No Dataset classes # training images # test images Image size Accuracy (%)
1 COVID-CT 2 558 140 20×20 pixels 67.14
2 Four classes 4 960 240 20×20 pixels 41.25
3 Kvasir 8 3200 800 20×20 pixels 30.75

Table 2.1: Medical Images

The second biomedical dataset is the “Four classes”, also taken from the CoroNet45. In

this dataset the chest X-rays were separated into the classes COVID, normal, pneumonia

bacterial and pneumonia viral. Table 2.1 shows that in total there is 1200 images for training

and testing, where each subject has 300 images.

Figure 2.3 shows the original image and also the cropped topmost left corner of the
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Figure 2.1: Example images from COVID-CT and a 20×20 portion of the top left corner
separated from the original images. Only the sub images were used for the classification.

original image. As the figure shows, the cropped images are extremely similar and cannot

be classified easily by the naked eye. Therefore a convolution neural network was used to

distinguish the classes based on only the crop images. The classification accuracy of the

group of cropped images is ∼41.25%, which is higher than the random classification of the

images that would be ∼25%.

The same architecture when used on the original dataset whose size was reduced to 32×32

pixels to fit the CNN gave a classification accuracy of ∼77.50% whereas the accuracy of

classification using the cropped images is ∼41.25%. This shows even though the classification

accuracy decreases the CNN can classify some of the images correctly to their label based

on only a portion of the background and not the entire image.

The Kvasir dataset46is a biomedical dataset that contains images by Endoscopic exami-

nations of the GI tract. The images are collected using endoscopic equipment at Vestre Viken

Health Trust (VV) in Norway The data is carefully verified by one or more medical experts

from VV and the Cancer Registry of Norway (CRN). The data comprises 4000 images which

are divided into 8 classes, each class has 500 images.
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Figure 2.2: Example images from four classes and a 20×20 portion of the top left corner
separated from the original images. Only the sub images were used for the classification

Figure 2.2 shows the actual image and the pruned images of size 20×20 pixels that have

been cropped from the topmost left corner of the original dataset to classify the images

into their respective classes. It is apparent from the Figure 2.2 it is almost impossible to

distinctly classify the images into their respective labels without any external help. LeNet-5

architecture apparently can perform this distinction with an accuracy of ∼30.75% even when

the images do not give any information about the Endoscopic examinations of the GI tract.

Convolution Neural Network when running on the original dataset whose original size

was reduced to 32×32 pixels to fit the model gives a classification accuracy of ∼73.75%. The

decrease in the classification is due to the less information provided by only a portion of the

background and not the entire image and yet the accuracy of determining the images to the

correct labels is greater than randomly assigning the images which show that background

also holds a lot of information to classify the images correctly.

2.2.2 Face recognition

For face datasets, the Yale Faces A and the Yale Faces B were used. The database Yale

Faces A has 15 subjects where each subject has 11 face images. The Yale Faces B has 28

subjects, where each subject has 585 images.

The Yale Faces B was transformed into a dataset of the same number of images, where

each image in the original dataset was transformed into an image containing the 27×20
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Figure 2.3: Example images from KSVAIR and a 20×20 portion of the top left corner
separated from the original images. Only the sub images were used for the classification.

pixels of the top left corner in the original image. That part of the image contained just the

background, which was visually identical in all images. Figure 2.4 and 2.5 shows the five

images of the five subjects in each dataset. As the figure shows, the images of all subjects

seem identical to the unaided human eye.

In The Yale Faces A the background was removed from the image, leading to an artificially

blank background. In the case of the Yale A dataset each image was transformed such that

the 22×29 pixels from the forehead of each subject were used. Unlike Yale B, in which no

pixel containing any feature of the face or hair was used, in Yale A the small images contained

pixels representing the skin of the person. However, the images did not contain information

that allows identifying the face by visually looking at the image, or to even identify that

the image is a face or any other part of a person’s body. Figure 2.5 shows examples of the

original face images and the smaller images that were used for classification by CNN.

The classification accuracy of the dataset was measured by using the LeNet-5 CNN

architecture. The number of epochs is 120. The number of training and test images in each

dataset and the classification accuracy of each dataset are shown in Table 2.2.

e
No Dataset classes # training images # test images Image size Accuracy (%)
1 Yale Faces A 15 132 33 22×29 pixels 54.552
2 Yale Faces B 28 13104 3276 27×20 pixels 87.79

Table 2.2: yaleFaces.

Although all images are visually similar to each other, CNN was able to classify the

25



Figure 2.4: Example images from Yale Faces B and a portion of the topmost left corner
separated from the original images. Only the sub images were used for the classification.

Figure 2.5: Example images from Yale Faces A and a portion of the forehead images
separated from the original images. Only the forehead images were used for the classification.

images with accuracy far higher than mere chance. With 15 subjects, the mere chance

accuracy of Yale Faces A is ∼7%, while the mere chance accuracy expected for the Yale

Faces B dataset is ∼3%. The dramatically higher classification accuracy shows that the

CNN identifies discriminating features that are not necessarily related to the faces, and

therefore not related to the machine learning problem at hand. That shows that even if the

CNN achieves classification accuracy higher than mere chance, it does not necessarily mean

that the CNN is indeed able to identify faces, but could identify features of the dataset that

allows discrimination between the different subjects.

The CNN algorithm when tested on the original Yale Faces A dataset produces a clas-

sification accuracy of ∼96.97% which reduces to ∼54.55% when the transformed dataset of

segmented images are used. It is prominent from Figure 2.5 that the segmented image is

only a portion of the forehead that has the least information about the entire class but the

complex convolution neural network can recognize the classes or the object more accurately

than a mere chance of classification.

Correspondingly, Yale Faces B dataset classifies with an accuracy of ∼99.97% even when
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the images are converted to a size of 32×32 pixels. Though there was a significant drop in

the accuracy from the original dataset when a cropped images were combined into training

sets but the artificial neural network is still able to predict the training dataset by studying

the background of the image and not the content descriptor of the original image. This

shows the bias in the image dataset as it can be classified even without the real image as

shown in Figure 2.4

2.2.3 Object recognition

The object recognition was done on two datasets: COIL-20 and the COIL-100. COIL-20

contains 20 object classes and each object has 72 images whereas COIL-100 has 100 subjects

and each contains 72 images.47 48

A separate subset of each dataset was created from the COIL-100 and COIL-20 using

the package Image slicer. The image slicer divided each image into 32 parts and only one

section of the segmented image was used. The image slice which contains the topmost left

side of the original image was used for evaluation purposes. The segmented image has a size

of 21×21 pixels whereas the original image of the datasets has a size of 128×128 pixels.

The segmented image contains no information about the object but it is a subsection of

the background. The minute underlying difference in each image is impossible to be detected

by an unaided eye but complex architecture like LeNet-5 can distinguish those images from

each other. The LeNet-5 algorithm uses a complex non-linear function that can differentiate

between each target class that is present in the dataset. Figure 2.6 and Figure 2.7 depict the

segmented images and the original images alongside each other which is a clear indicator that

using a complex convolution neural network makes the task of classification using segmented

image possible.

No Dataset classes # training images # test images Image size Accuracy (%)
1 COIL-20 20 1152 288 21×21 pixels 35.42
2 COIL-100 100 5760 1440 21×21 pixels 27.85

Table 2.3: Datasets used for testing the classification of object recognition benchmarks using
deep neural networks.
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Figure 2.6: Example images from COIL-100 and the seemingly blank images of the back-
ground separated from the original images. Only the blank sub-images were used for the
classification.

The details about the number of images used for training and testing purpose is given

in the Table 2.3. For dataset COIL-20 and dataset COIL-100 dataset the accuracy using

random choice is ∼5% and ∼1% respectively. The higher rate of accuracy using CNN

clearly illustrates that the model can capture the hidden compounded relationship between

the segmented image and the target label. CNN with the help of intricate architecture can

retrieve information in the pixels of the background image and this knowledge acquired helps

to classify the task with higher accuracy.

The classification accuracy of COIL-20 dataset using un-segmented images comes around

∼98.61%, whereas the classification accuracy when using segmented images drops down to

∼35.42%. Likewise, the classification accuracy of the undivided COIL-100 dataset is ∼96.46

%, but when the dataset is divided the classification accuracy falls to ∼27.48%. It is clear

that there is a substantial decrease in classification accuracy when using the doctored dataset,

but it is still able to differentiate between some of the images and not assigning labels using

random chance.
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Figure 2.7: Example images from COIL-20 and the seemingly blank images of the back-
ground separated from the original images. Only the blank sub-images were used for the
classification.

2.3 Proposed solutions to CNN classification bias

One of the premier advantages of convolution neural networks (CNNs) is their innate power

to select a feature map automatically when supplied with training images. However, the

downside of that nature might in some cases lead to potential weaknesses. The automated

process of feature map selection without human interference may lead to the use of features

that are not necessarily a reflection of the image analysis problem at hand. The classification

accuracy provided by the CNN can therefore in some cases be misleading.

Several practices can be used to avoid misleading results due to classification bias driven

by consistent yet irrelevant features. Firstly, the background of an image can provide sub-

stantial information about the soundness of the image acquisition process. By separating

small seemingly blank sub-images of the background we can create a control dataset made

with just background information. The ability of a CNN to identify the correct class based on

the background alone can alert on the existence of certain anomalies in the data acquisition

process. These anomalies are difficult to detect, but CNN can use them to make a classifi-

cation at accuracy higher than its actual ability to classify these images when anomalies are
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not present. That is if a CNN can predict the class of an image based on its background with

accuracy higher than mere chance, the overall classification accuracy achieved by that CNN

on the entire dataset might be biased, and therefore no strong assumptions can be made on

the ability to use that CNN as a valid solution.

Another approach that can be used in acquiring the training set and test set in two

separate data acquisition sessions. The common practice of acquiring the entire dataset

and then randomly splitting the data into training and test sets can allow CNNs to make a

stronger classification accuracy by using information from the imaging session. Separating

the acquisition of the training and test sets will ensure that no features that can identify the

session in the training set can be used by the CNN to identify the images in the test set.

That is if each class of images is acquired in a single imaging session, and then separated

into training and test samples, a CNN can associate an image to its session to increase its

ability to correctly classify the images. If all test samples are acquired in a different session

than the training images, the session information cannot be used to associate test samples

with training samples of the same class.

Avoiding the acquisition of data in sessions can also improve the reliability of benchmark

datasets used by CNN’s. For instance, if each sample is acquired in a separate session, the

CNN will not be able to use the subtle but significant information that reflects the imaging

session. Imaging each class in a single separate session is a risky practice that can allow

CNN’s classify the imaging session (e.g., lighting conditions, the temperature of the CCD,

etc) rather than the subjects in the images.

Finally, the use of feature engineering, in which the features are pre-designed and known

to the user can avoid using automatically generated feature maps that might partially reflect

information that is not relevant to the image problem at hand.

2.4 Conclusion

Dataset bias has been discussed in the computer vision literature in the context of the

ability of benchmark datasets to reflect the real world and provide a reliable reflection of the
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performance of algorithms when applied to real-world problems. In data science, however,

dataset bias can lead to false discoveries, especially when the experimentalist analyzes the

data without being aware of potential biases.

Here we study biases that are not driven by a human selection of the samples or prefer-

ences in the annotation process but driven by the image acquisition process. These biases

are very difficult to identify and are not expected as controlled image acquisition is often

expected to control also for the possible biases.

The datasets used in this experiment cover a broad range of image classification problems,

ranging from medical image-based diagnostics, face recognition, astronomical images, and

object recognition datasets. The main commonality between all experiments is that the

original datasets were rendered such that each dataset was converted to a new dataset with

just the top left corner. The new datasets contained a seemingly blank background, with no

clear visual information about the machine learning problem at hand. However, the CNN

was still able to predict with accuracy significantly higher than the expected mere chance

accuracy. That shows that the CNN can make use of information that is not relevant to

the image classification problem, and mislead the experimentalist to believe that the CNN

can identify between the different image classes. The CNN makes at least a partial use of

background data irrelevant to the visual content of interest, but due to the nature of CNN,

the impact of the background is difficult to identify.

Removing the background from the images will not provide a solution to the problem, or

make the datasets unbiased. The presence of a signal in the background merely allows isolat-

ing the signal from the foreground area, which changes between classes. But the presence of

the signal in the background indicates that the signal might also present in the foreground,

making it difficult to know whether the information used by the CNN for prediction is based

on the relevant visual differences between the classes, on the subtle biases, or a combination

of both.

A simple artificial neural network can make the association between image data and labels

even without the presence of the visual content by which the images were labeled. That can

be explained by the signal originating from the image acquisition process. For instance, if
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all subjects of a certain class were imaged during a single imaging session, while all subjects

of another class were imaged during another imaging session, the neural network might

identify between the imaging sessions rather than between the types of subjects. Subtle

lighting conditions or different temperatures of the CCD at the time of imaging can allow

a neural network to identify the imaging session, and use that information to predict the

correct label.

CNN’s learn directly from the image pixels and do not require a step of tailoring specific

numerical visual content descriptors. While that advantage makes CNNs much more general

and easier to use than virtually any “shallow learning” algorithm, they largely work as

“black boxes”. The user is not necessarily always aware of what information is being used

by the CNN to make its predictions, and therefore using CNNs also has the risk of learning

contextual information or other pieces of information that the CNN can use to make better

predictions, although not part of the image classification problem at hand.

Therefore, CNNs should be used with caution, and the results provided by CNN should

be analyzed carefully. Datasets analyzed by CNNs are sometimes acquired without having

CNN analysis in mind, such as biomedical image datasets. In such cases, the application of

CNN to these datasets should be done by also using control experiments, such as classifying

just the seemingly blank background to ensure the prediction is random.

When acquiring a new image dataset to classify automatically using CNNs, it is suggested

to avoid imaging each class in a single imaging session. Imaging samples from the different

classes in random order can be more effective for avoiding CNN classification based on the

identification of the imaging session rather than the visual content of interest.

Being easy to use, powerful, and accessible through available open-source libraries, CNNs

have been becoming extremely popular, and the default solution to image analysis problems.

However, while CNN is superior to previous approaches, they also have the downside of

overfitting and uncontrolled learning. When a growing population of people who are not

machine learning experts uses CNNs, it is important to inform all users also with the possible

weaknesses of CNN and avoid experiments that might seem scientifically sound, but in fact,

provide biased or unreliable results.
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