THE YIELD LINE ANALYSIS OF CONCRETE SLABS

" by

b
S| gT\
GURDIAL SINGH SANDHU " °

B.S., Panjab University (India) 1968
Post Graduate Diploma, Panjab University 1969

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

RKANSAS STATE UNIVERSITY
Manhattan, Kansas

1970

Approved by:

ajor Profefsor




ng

IR

ok

/1970 | TABLE OF CONTENTS

SF243. o
(ém_opsrs.........................

INTRODUCTION o 4 « o s s o s o s o a s » s o o o« « = » &

HISTORICAL REVIEW OF THE DEVELOPMENTS OF YIELD
LINE THEORY FOR SLABS . . . . . ¢ « ¢ o o o = o « =

ASSUMPTIONS MADE IN YIELD LINE THEORY . . . . . +. « .
SIGN CONVENTIOV FOR FORCES AND MOMENTS AND NOTATIONS.
JOHANSEN'S STEPPED YIELD CRITERION v e s L e o = =
YIELD LINE ANALYSIS BY WORK METHOD. .« . .-. S R H B B
YIELD LINE ANALYSIS BY THE EQUILIBRIUM METHOD . . . .
AEFINE SLABS. & & % & = # & & & % & = & s & & 5 & & w
POINT LOADS AND YIELD LINES FORMING CIRCULAR FANS . .
CORNER EFFECTS. e 4 & s = s & + s s s s e s e e & = =
EFFECT OF CORNER LEVERS ON CQLLAPSE.LOAD. e o o * o s
CONCLUSIONS. « & & + s % & ® & B § & @ = % % % @ & & % ¥
BEPERBIX & « % = 4 5 & & & & = & 8 & & & 8 & & & % & 5
ACENOWLEDGMENTS . & s & o o o & ® o 9 ® @ & % % & & & & @

BIBLI OGRAPHY - L] - L] L3 - - - - - - - - - - - - - . . - -

Page

13
15
24
38
43
49
50
52
53
56

57




1.
L2
235
14.
15
16
17.

18.

19.
20,
2l1a.

21b,

LIST OF FIGURES

Pattern where rigid regions are in equilibrium
from moments alone. .« « « ¢« ¢ & ¢ o & ¢ 2 0 . .

Patterns where moments alone do not keep rigid
region in equilibrium.. . « « « + « o & « o . .

Patterns where rigid regions are in equilibrium
under the action of nodal forces. . « « « . . .

Positive forces acting on a slab element., . . .

Poéitive moments acting-on a slab elemént;. . .
Moment rotation relation;hip for slabé. : %5 4 8
Sign conventions and notations. . . ¢ ¢ . ¢ . .
Moment key line notation. « « ¢« « ¢« « « ¢« &« .+ &
Typical yield line patterns.. « « « « o ¢« « « «
Stepped yield line criterion. . . « « « . . . .
Rectangular slab with uniform loading.,. . . . .

Rectangular slab with one edge free. . . . . .

Skew slab supported on two opposite sides.. . .

. Two yield line meeting at a point.. - . . . . .

Moments on yield lines. . « -« « « « & « o & o &

NOdal forCES - ] ] L] - . - - - . - - L] - - - - -

Nodal forces acting at the junction of yield lines.

Node where the three yield lines have different
isotropic reinforcement. . . ¢ « ¢ o « & o o

Yield line intersecting a free edge.. . . . . .
A rectangular slab with uniform loading.. . . .
Slab supported on three edges.. « . « « + o . .

Stepped yield 1ine eriteriOn. » « » = =« = = = =

Page

W' o @ uw

10
11
12
14
17
19
22
25
27
27

29

30
37
38
41
41




Figure

22,
232
24,
25,
26,
27.
28.
29 .
30.
3.
32,
33,
34,
35 5

36.

Slab.wiﬁh an opening.

Line load..

Actual
Affine
Actual

Affine

slab.
slab.
slab.

slab.

Formation of a fan of

Circular fan.

yield

Clamped circular slab..

Clamped square slab with uniform load.

Balcony with a point load at the corner.

Corner levers..

Corner levers..

-
)

lines.

Triangular slab with uniform loading.

Triangular slab with uniform loading.

LIST OF TABLES

Values of pLz/m,for square slabs. , .,

Page

36
40
41

41

42

42
44
44

. 46

48
48
49
51
53
55

51




THE YIELD LINE ANALYSIS OF CONCRETE SLABS

By Gurdial Singh Sandhu

SYNOPSIS

Yield line analysis for the'predictioh of ultimate flex-
ural strength of reinforced concrete slab is presented in this
report. The various aspects of modern yield line analysis,
historicai review of the subjectﬂ assumptions Sn which it is based,
yield line criteria for slabs ana.methodé of analysis are des-
cribed in detail . The theoretical strength obtained by yieid
line analysis are in good agreement with the experimental results.

The use of the technique is illustrated by numerical examples.




INTRODUCTION

An important aim of an engineer is to see that his structure
has a suitable factor of safety against failure. The majority
of structures all over the world have been designed using the
elastic theory. An accurate indication of the factor of safety
against failure is not obtained because the material may be act-
ing ﬁlastically under the load it is designed to carry. There-
fore, thefe is increasing desire!émong engineefs to design the
structure by the ultimate load téchnique;

In the case of slabs, elastic methods of design are verf
complicated, and for slabs of irregular shape, the elastic analy-
sis is so complicated that without the help of a computer it is
impossible to obtain an adequate solution.

An alEernative technique, the yield line analysis is an
ultimate léad method in which the load at which a slab will fail
is assessed. 1Its main virtue is that no matter how complex the
slab shape or loading configuration, it is always possible to
obtain a realistic value of collapse load. It is relatively
simple to apply and many of the solutions predicted by this method
have been substantiated experimentally. All these advantages
make this method a design technique with which every structural
engineer should be familiar.

The purpose of this report, therefore, is to describe the
various aspects of modern yield line analysis in detail, beginning
with the historical review of the subject and assumptions on which

it is based, yield line criteria for slabs, and methods of analysis.




HISTORICAL REVIEW OF THE DEVELOPMENT
OF YIELD LINE THEORY FOR SLABS
In order to appreciate what lies behind some of the most

recent developments, it is important to recall how the yield line
theory has evolved simuléaneously with alternative methods for

the plastic design of slabs. The pioneer of the yield line theory
is Professor K.W. Johansen (1?, who provided not merely the intro-
ductory theory but also a great number of practical examples, .He
assumed that failure of a slab occurs when 1ine$ along which the
steel has yielded (which are ideaiized énd called yield lines)
have together formed a valid yield line mechanism. Once the valid
mechanism has been determined the work method can be used to es-
tablish failure load by equating the expenditure of energy due to
external loads at failure to the internal dissipation of energy on
all the yield lines acting together, It is not certain that the
failure load found is the smallest for the given value of bending
moment. Hence, the most critical layout of yield linés is found
by trial and error or by differentiation.
_ When the most critical layout has been found for a given pat-
- tern of yield lines, it will be found that if the overall equili-
brium of the individual rigid regions between yield lines such as
A and B in Fig. 1 is examined, usipg only the moment along the
vield lines to uphold the rigid region; then the regions are not

always in equilibrium. Hence Ingerslev (2) was not completely

*Number in parentheses refers to references listed in the biblio-
graphy.




right in presenting the idea that regions A and B were Kept in
equilibrium éolély by the moments along the yield lines. This
will not be true for unsymmetrical slabs (Fig. 2) because there

will be nodal forces acting as junctions of yield lines.

Fig. 1., Pattern where rigid regions are in
equilibrium from moments alone.

Fig. 2. Pattern where moments alone do not
keep rigid regions in equilibrium.
Johansen (1) must be complimented on being the first to ob-
serve this. The concept of nodal forces is shown in Fig. 3.

Johansen found that these nodal forces, which were statically



equivalent to the unknown twisting moments and shears, had some
special valués when the worst (the moment across the yield line
being the maximum value for a given load) pattern of yield lines
was investigated.

Until about 1950 there still remained a certain disconcert-
ing feature about both the equilibrium and work methods. This
was that although both methods could be used to find the most
critical layout of a particular pattern, it always seemed poééible
to discover a slightly more complicated patterp‘whose critical

layout gave an even lower collapse load.

NEGATIVE YIELD LINES

+ DOWNWARD NODAL FORCE
* UPWARD NODAL FORCE
o ZERO NODAL FORCE

POSITIVE YIELD LINES

Fig. 3. Pattern where rigid regions are in
equilibrium under the action of nodal
forees.



This problem was answered when rules for limit analysis were
stated by ProfeQSOr W. Prager (3). These rules indicated that the
lowest failure load had been reached if one could find coinci-
dental "upper" and "lower" bound solutions. The conditions re-
quired to establish an uéper~ or lower-bound solution were essen-
tially as follows.

(A) Upper Bound Solution (A solution, based on an assumed

‘mechanism, which gives’' a correct or tpo high, value of

the collapse load.) ’

(1) A valid mechanism, which satisfies the boundéry
conditions, should be found.

(2) Work equations should be satisfied.

(3) Either the material stays rigid or else it de-
forms plastically.

(a) Where deformation takes place the direction
of strains is defined by a mechanism. The
direction of strains must in turn define the
yield stresses. (This is known as the yield
line criterion.)

(B) Lower Bound Solution (Which gives oversafe or correct

value of the collapse load)

(1) A complete stress field must be found everywhere
satisfying the differential equations of equili-
brium.

(2) The forces and moments at the edges must satisfy

the boundary conditions.



(3) At no point can the principal stresses vioclate thg
yield line criterion.

Once the rules for limit analysis had been established, there
werersustained efforts to find the coincidental "upper" and "lower"
bound solutions for different boundary conditions. However, very
few lower bound solutions Qere possible. The main difficulty en-
countered with lower bound technique lies in defining the stress
fields between separate regions.) Not even the simple case of-a
clamped isotropic square slab has as yet been ;blvgd rigorously.

In 1957, Mansfield (6) invented a method of finding the most
critical layout for a system of yield lines involving noncircular
"fans" of any shape. 1In 1961, Wood (4,5) presented a cyclic nodal
formula for three yield lines, each governed by a different iso-
tropic mesh of feinforcement. Many engineers like Jones (5), and
Rwiecinski, (7) have contributed to the development of the yield
line theory in recent years.

Recent tests have shown that the design of slabs by yield
line theory is quite safe. Generally speaking, therefore, the
yield line theory meets with growing acceptance, which is a tri-

bute to Johansen, its founder.
ASSUMPTIONS MADE IN YIELD LINE THEOQRY

Before the technique of yield line analysis is described, it
is important to appreciate that the method of analysis 1s a great
simplification of the true behavior of a reinforced concrete slab.
The actual force and moment systems which act on a small element

in a slab under load are shown in Fig. 4 and Fig. 5.




Fig. 5. Positive moments acting on a slab element.

If all the moments and forces acting on a slab element are
considered and the equations compatible with the deformation sys-
tem as well as satisfying conditions are written, it is antici-
pated that the resulting equations would be unsolvable. Instead
it is possible only to develop techniques which involve simple
expressions for the values of normal moments (Mn or Ms). Thus
when studying the behavior of a slab at ultimate load, it has been
assumed that collapse load could be arrived at by considering the

bending action only.



It has also been assumed that there is no elastic deforma-
tion, therefére; the material either stays rigid or else it goes
plastic. The idealized moment-rotation curve is shown in Fig. 6.
The elastic deformations are negligible in comparison with the
plastic ones This means.that it is assumed that the parts of the
slabs between yield lines remain plane, and that all the de-
formations take place at the yield lines. Yield lines must then
be straight, as they form the intersections between inclined
plates when the slab is in the deflected state,- From the geometry
of the deformed slab it can be seen that yield lines or yield
lines produced must pass through the intersection point of the

axes of rotation of the two slab parts adjacent to the yield line.

t IDEALISED

MOMENT

p CURVATURE

Fig. 6. Moment rotation relationship for slabs.

Axes of rotation of slab parts generally lie along linear supports,
or pass over column heads. Typical yield line patterns are shown

in Pig. 9.
SIGN CONVENTION FOR FORCES AND MOMENTS AND NOTATIONS

The sign convention that will be used for forces is that

downward acting forces will be assumed positive and will be re-
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presented by +. Upward forces, which are assumed negative, are
represented By a dot+. The sign convention for normal and twist-
ing moment is as shown in Fig., 7-b. The vector notation to re-

present the moments along the yield line is shown in Fig. 7-c¢ and

7-d.
. A
——— 3
AJB A /Z )
Positive Yield Positive Moments on Positive Positive
Line Each Side of Yield Normal Twisting
Line Moment Moment
Vectors Vectors
(a) {(b) (c) (d)

Fig. 7. Sign convention and notations.

MOMENT KEY NOTATION

It is usual to express the ultimate bending strength of a
slab in terms of moment per unit width of the slab. The moment
key lines at the side of the slab are an abbreviated form of the
statement "the normal moment/unit length on a yield line in this
direction is the value given." Thus the moment key line marked
m implies that if a yield line is in the direction of that moment
key line, the normal moment/unit length along the yield line is
m, If the key lines are drawn solid it implies positive bending
strength; the key lines are shown broken for negative bending

strength. Key lines are at right angles to the reinforcement as



shown in

Fig. 8.
m
REINFORCEMENT
-
um
Fig. 8. Moment key line notation.

)

{MOMENT KEY
LINE)

m

(MOMENT KEY
LINE)

HIM
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SIMPLE SUPPORT

POSITIVE
E YIELD LINE

’ T\\\\ ARPRL AR RETERWRSSSS \T

’/
o r o . i :
| simMPLE SUPPORT ¥ AXES OF ROTATfON—ri _
| I
NEGATIVE
FIXED
SUPPORT

Fig. 9. Typical yield line crack patterns.
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JOHANSEN'S STEPPED YIELD CRITERION

Although there are other possible yield criteria for evalua-
ting the magnitude of the normal moments on the yield lines, this
is still the yield criteria in common use. The basic assumptions
underlying it are as follows.

(1) The normal and twisting moments on a yield line can be
obtained by considering each band of reinforcement in turn, the
total efféct being the addition Bf the individual effects.

(2) For each band of reinforcement taken on its own the
yield line may be considered to be divided into small steps ﬁaral-
lel to, and at right angles to, the reinforcement, as shown in
Fig, 10.

(3) All reinforcement crossing the yield line is assumed to
yield.

(4) All reinforcement is assumed to stay in its original
straight line when the steel yields, i.e., there is no "kinking"
of the steel in crossing the yield line.

(5) When each band of reinforcement is considered on its
own, on the small steps ar right angles to the reinforcement there
is only a normal moment/unit length m while on the steps parallel
to the reinforcement there is neither normal nor twisting moment.

(6) The values of normal and twisting moments on the yield
line are such that they are equivalent to the components of the
normal moments on the steps.

On the basis of the above assumptions, consider the yield
line shown in Fig. 10 whose orientation to the m moment key line

is ¢, where ¢ is the angle measured clockwise from m to the yield



line.

‘m (MOMENT KEY LINE)

NORMAL MOMENT m ON —p/
SUCH FACES

Fig. 10. Stepped yield line criterion.

If a length L of the yield line is considered, the normal moment
on the steps parallel to the m moment key line is equivalent to
mn/unit length and twisting moment mns/unit length acting along
the yield line over a length L,

Now from the Fig. 10 it is clear that

m, = m cosz¢ (1)

mg =M siné cosé (2)

Wwhen there are several sets of reinforcement crossing the yield

14

line, the total value of mn and mns will be the sum of the separate

effects of the reinforcement so that in general

n 2
m_ = > m. cos ¢, (3)
n o1 1 i

n
m.. = Ezi m, cosg¢; sing; (4)
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where mi is the magnitude of a typical moment key line and ¢y
is the angle measured clock-wise from the moment key line mi to
the yield line.

Jones and Wood (6), after carefully studying other yield line
criteria, have suggested the following yield line criteria. The
value of the normal moment m, = Egi m, c052¢i will be accepted as
being r?liable for designers. However, the value indicated for
the twisting moment on yield lines m.g = E%imi sin¢i cosé, should

be held suspect and not insisted upon.
YIELD LINE ANALYSIS BY WQRK METHOD

The virtual work method is based on the principle that the
external work done by the applied loads in causing a small virtual
displacement is equal to the internal work done, or energy dissi-
pated in rotation along the yield lines. Thus,rhaving postulated
a yield line pattern at failure, the first step is to give any
convenient point in the slab a virtual deflection of A, in terms
of which the corresponding deflection of all other parts of the
slab may be calculated. Total work done by the loads to produce

this deflection is given by
External work done = Ep = Z_U- pAdxdy (5)

- where dx dy is the area of element (dxx dy). Consider p =
distributed load on the slab at collapse, then the energy dissi-
pated in rotation at a yield line is the total moﬁent along the
yield line multiplied by the rotation at the yield line. If an

is the normal rotation, which can be calculated in terms of the

virtual deflection 4, then the total internal work done is given



le

by

Internal work done ED = (mn L Bn) (6)

where m. = normal moment/unit length of yield line and ¢ =
yield line length. The solution for the slab is obtained by
equating the external work done to the internal energy absorbed,
therefore,

ZJ'J-p A dx dy = (mn L en) (7)

Equation (7) can be used to determine m. for a given loading p,
if the yield line pattern is known. However, equation (7) can
also be used to determine the worst yield line pattern. The
moment across the yield line being the maximum value, the worst
yield pattern corresponding to a load p will give a maximum

valud for m. from equation (7) as compared to other patterns. 1If
a type of pattern is assumed in accordance with the support con-
ditions and characterized by a number of unknown parameters Xy
XKyt Xyreans equation (7) may be written

m = f(xl, Xyr Kyreeees P) (8)

The correct yield pattern then is formed by the maximum criteria

3

.é}f_ =0 (9a)
1

of

3%, = 0 —

af _

i 0 (9c)

and the final moment m is determined by substituting the corres-

ponding parameter values in equation (8).
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Example 1l: Find the collapse loads for a rectangular slab
(as shown in Fig. 11) with isotropical reinforcement, simple

supports and subjected to a uniformly distributed load p.

a b g h

» I
W | 2

? | |

/] |

/] | |

Y \ | D |

5‘ | |

2: I | m

1! | |
L E A = - £ c .

7 | | m

y 2 |

y / : B |

/

2 | } \

|

Iy | e |

da Vi ME J

8L l (1-28)L | gL |

Fig. 11l. Rectangular slab with uniform loading.

Line ef is given unit deflection. For the distributed load,
instead of dealing with the whole of a rigid region we can con-
veniently subdivide the trapezoidal areas B and D each into two
triangular areas and a rectangular area. Now the center of gra-
vity of each of the three triangular areas abe, aed, and dec each
deflect 1/3, as do the triangles within the area ghjk. The cen-
ter of gravity of two rectangular areas bgef and ckfe deflect by

1/2. Hence

1

N pld(1-28) L%]

W] =

External work done Ep = p(2u3L2) +

opL2 (3-28) (10)

I
oV
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To calculate the internal dissipation of energy the x and y axes
chosen will be the same for 3ll regions. Since region A is simi-
lar to region C, and region B similar to D, the moment and rota-
tion vectors need only be inserted on regions A and B.

The dissipation of work in the lines relative to region A

is given by

Dp=1 (m2oe) + (myiyay)} (11)

but By=0 and moment vector cd is equivalent torlines cr, fe, and

_ _ _ 1 _ 2
Edsothatmx—L,mX*mandsx—m-—E-

vector cd and ex point in the samezdirection, the dissipation of

Since the moment

work 1is positive and

E _ 2 _ 2m
2 N s

(12)
For region B, the moment vector da is equivalent to the moments

on the yield lines de and ea, and we therefore find 6x=0, ay =
1

2T’ £Y = aL and my = m Hence,
E _ 1 _
DB = 0 + makL E = U.ITI/B
Total dissipation of energy = 2(E + E_ )
D D
A B
_ 2 a
= 2m (El- + -B-)
= 2m 2
F (28 + o) (13)

The work equation is, therefore, as follows

1 2 _ 2m
3 apL” (3-28) = ngzﬂ + o

&

2
1 ofrfe =3B, (14)

m - 2
P 2 2B + a



For m/p to be maximum fl(B) df1(ST

fzte) B at,, (8)

Therefore 2
- 3 - 48

38 - 28
28 + a2 2

or 482 + 4a28 - 3a2 = 0.

The solution of the above equation is

B = % a [/(3 + uz) - u]

(15)

Example 2: Find the collapse load for a rectangular ortho-

tropically reinforced slab as shown in Fig. 12.

Fig. 12. Rectangular slab with one edge free.

—

REGION a
(b)

b T

/|

REGION B
(c)

19
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Line bc is given a unit deflection and the expenditure of energy
by external loads is easily calculated by noting that centers of
gravity of the triangles within the areas abgf and cdeh each de-

flect by 1/3, and the center of gravity of the area bchg deflects
2 2a a(l-23)

by 1/2. Thus Ep = pL 3 + 5
= 7 apL?(3-2 ) (16)

Since the pattern is symmetrical the moment vector arrows need
only be inserted along line fb together with the rotation vector
8an and!%B. If the dissipation of work relative to region A is

considered first, the rotation vector 6 and moment vector on

AA
region A along fb should be superimposed on the x and y axes to

determine the sign of the vector components, as shown in Figqg.
12b. From this it can be seen that there is no x component of

the rotation @ Thus ax=0, e , M _=m and py=uL. Hence

AA° y 8L’ Ty

- 1 _
DA—O‘l'mC!LB—-L-—

mIB

For region B only line fb is considered since clearly the same
amount of work is dissipated along line ce. The rotation vector
6p and the moment vector along line fb on region B have been

superimposed on x and y axis in Fig. 12c, from which it can be

14 ; .

seen th = . = =—_

that ey 0,,mx pm, Ex BL and ex 2L Hence work done in 1line
fb relative to region B is E = UEM .

DB a
Total dissipation of work in line fb is E = B, BEI
D fb g8 a

and since line ce is similar to fb,

Total dissipation of work = %% (a2 + uBZ) (17)

The work equation is found by equating Equation (16) to (17).
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1.2 _2m , 2, .2
Hence = apL.(3-2B) ol (e +uB")
or 2
8. L ofu? SRR (18)
P 12 a2 kug

For m/p to be maximum

38 - 28% _ 3 - 48
at u62 Sk

or

3y 82 + 4a2g - 322 = 0

The solution of the above equation is

2
4
“EE[/E*fz' ] (19)

It may be noted that maximum value of 8 = 0.5.

W)

Example 3: Consider a skew slab with skew reinforcement,
simply supported on two opposite edges and subjected to a uniform
load p/unit area and a point load P at the center of the span.

The postulated yield line pattern is shown in Fig, 13 in
which point e is given a ujit deflection. The directions of x
and y axes are normal to the two faces of the slab. Since the
pattern is symmetrical, only regions A and B need be considered

in detail. Starting with Region A, » can be inserted together

AA'
with the moment vectors along the positive yield line. The ex-

AA'
as is the moment vector along da which is equivalent to the mo-

ternal negative moment vector is in the same direction as @

ment vectors along the lines de and ea. All the components of

work are therefore positive.
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X

Fig. 13. Skew slab supported on two opposite sides.
The work done in the positive yield line is calculated first.
It is clear that e _=0, since a line normal to the X axis is paral-
lel to the axis of rotation of region A and can be found by draw-
ing a line normal to the Y axis and passing through point e, from

which we find ey=l/BL, p§=L, and my=um. For the negative yield

line ad ax=o, ey= 3T zy=L and.my=ium, hence
E _ 1 : i
DA = (pmL. 3L + iumL B—L)

For region B, the vector addition of the moments on ce and ed is
a vector of length cd. This point is in the same direction as
eBB so that work components are positive. By=0 and ex are found,

by drawing a line normal to the X axis passing through e, to be

2cosy
L L

cd on to the X axis is ZBLcoszw and m =m so that E

The projection of the equivalent moment vector of length

2
D =4Amcos” y
B

since regions A and C, and B and D are similar. Hence the total
dissipation of energy
E_ = 2uym(1+1i)

D : + 8Bmcos’y (20)




The work done by external loads is easily found to be

2812 + p

W =

E =
p P

2 2
*jpBL + P

Equating (19) to (21), we get

2

z + BBcoszwl =

m[2p

Wi N

23

(21)

(22)

No particular difficulty exists with this problem, but the main

point of interest is that the loading is mixed. Hence, write

this equation in the form

3p
m = -3:;-1;31.2 (pLZ i ZB) 4

2u(1+i)+832coszw

To simplify put 3P
pL

= P,, 2u(l+i) = u,

and coszw = K

Now m/p will be maximum when

(P, + 28)B _ P, + 48

u° & KB2 2cB
or
2 - du, _ Mo _

The only real solution of (25) is

= 2o kP,
B = <P, [ 1 +/1 + T

(23)

(24)

(25)
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Substituting the value of B in (23)

2 2
pL J/r 9cos” ¢
i S =S 3 - 1l + (26)
24cos“y u(l+i}sz4

For valid values of B, the only restriction is that 28L shall

not be wider than the slab.
YIELD LINE ANALYSIS BY THE EQUILIBRIUM METHOD

Unitl recenfly, the equilibrium method of solving yield line

patterns has been called an alternative to the work method. Cer-
tainly the method seems different from the work method in that the
equilibrium of each of the rigid regions is considered. It is
guite clear, however, that the equilibrium method is the work
method presented in another form. The equilibrium method accredi-
ted to Professor K.W. Johansen (1) can be stated as follows.
When a layout of yield lines provides the stationary maximum mo-
ment for a particular pattern, certain forces termed nodal forces
must be inserted at the junction of the yield lines or slab edges
for the purpose of maintaining equilibrium.

Each rigid region considered on its own is then in equilibrium
under the action of these forces, the moments along the yield
lines and the externally applied loads. Since the magnitude of
these nodal forces can often be predetermined from theorems given
by Johansen (1), the stationary maximum condition can be found by
obtaining equilibrium equations for the rigid regions. Before
some examples are solved illustrating the use of equilibrium _

equations, it would be proper to know how the nodal forces are
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calculatéd.

Johansen's (1) first theorem states that the sum of the for-
ces acting at a node is zero. Whatever system of statically
equivalent forces acts on a region on one side of a yield line,
equal and opposite forces act on the region on the other side of
the line. The basic process by which Johansen (1) established
the value of nodal forces, which is further extended by Wood and
Jones (5), is as_follows.

In order to calculate the nodal force between two yield lines
it is first necessary to consider the equilibrium of a small tri-

angular region abd marked A' in Fig. 14.

Fig. 14. Two yield line meeting at a point.

Let the first yield line ab be governed by the moment key
lines mf and ume ana the second yield line bc by the moment key
lines m_ and M which may have an orientation different from the
mf and HpTMg moment key lines. The angle between first and second

yield lines is measured clockwise from the first line to the




second line. Let the statical equivalent of the twist and

shears along ab; acting at b on region A', be kba and that due
to the short length of yield line bd be kbd' The "incomplete"
nodal force (incomplete because the whole line bc is not con-

sidered) has the wvalue

kA'b = kbd * kba (26)

The equilibrium of region A' is now considered. If the
steel which yields across yield line ab is alsélyielding across
line ad, the path of ab and ad may be conceived as being stepped
in the direction of me and WMo with the result that m, and m _
values which are assumed for convenience to act along these 1lines
are equivalent to normal moments deufmf and eb me shown by the
vector arrows. Since de is the net sum of the steps in the HeMe
direction and eb that in the me direction, the effect of the mo-
ments on ab and ad is the same as the normal (mn)f and twisting
moment (mns)f along the direction and length of db due to the
reinforcement mesh f£. The sense in which they act externally on
region A' is shown in Fig. 16. We still have to consider the nor-
mal moments m. and twisting moments moo acting on bd due to re-
inforcing mesh, and these act externally on region A' in the sense
given in Fig. 15. Thus the total effect of the normal and twist-
ing moments along ab, ad, and bd is a normal moment/unit length
[(mn)s - (mn)f]s and a twisting moment [:(mns)s - (mns)f]s acting
along bd. (mns) indicates the reinforcing mesh involved, while
the second letter suffix, 1:6:, ans)s]s indicates the direction
along which the moment should be calculated.

26
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Fig. 15. Moments on yield lines.

Fig. 16. Nodal forces.

When moments are taken about ad for the forces and moments

shown in Fig. 16, for the equilibrium of region A', we get

(kbd + kba) bd sin(¢+64) + [(mn)s - (mn)f]Sb dcos (¢+8¢)

+ I(mns)s = (mnslf]sb d sin(¢+64¢) (27)

If we divide by bd and when 6¢>0 it will be found that

kbd + kba = [(m.n)S - (mn)f]scot¢+[(mn )S-(m ) ] (28)

s ns' f's




Equation (28) does not give the value of the nodal forces but it
may be used to evaluate it as follows. Consider the three lines
meeting at a point as shown in Fig. 17a and let the moments on
each be determined by three different meshes, 1, 2, and 3. For
the equilibrium of small triangle A', we can use equation (28)
by noting that the first line of its boundary relates to mesh 1
and the second to mesh 3. Thus changing 1 for £ and 3 for s in
equation (28).

kpa + Kpa = [{my) 3=(m) T qcotey 3+ [im, ) g-(m ) 15 (29)

Similarly for region B'

) (30)

kKpg ¥ Kpe = [(my) 3=(m) ] cote, g+ [(m ) g=(m ),]4

where kbe is the statical equivalent of shears and twists along
be acting at B on region B' if the statical equivalent of line be
acting at b on region B is kbe' Then we have *kbe acting on

region A (Fig. 17b). Hence

-k (31)

28
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() | (b)

Fig. 17. Nodal forces acting at the junction of yield lines.

When we substitute for kba and k e from (29) and (30), it will be

b
found that

k12 = “kpg-lm,) 3=(m,) ;1 jc0te) - [{m, ) 4= (m )15

* kpg t Um ) g-m) ) goote, g+ Im ) g-(m 515

or

ko= lmy) = (my) gl gootey 3= lmy) 5= my) gl geote, g+ lim )y =(m )]

(32)
The cyclic form for the nodal force equation (32) is considered to
be most useful. Equation (32) need not, however, be used every
time and there are certain types of nodes which occur so frequent-

ly that certain standard solutions derived from equation (32)

should be known. These solutions are as follows.
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(1) Node where the three yield lines have different iso-
tropic reinforcement is shown in Fig. 18. Since the reinforce-
ment is isotropic, [(mn)l]3 =my, {(an2]3 =m,, [(mn)3]3 = mg

AND Hﬁmhj3=[h%sb]3=[h%shl3=0

Hence

k (ml-m3(cot¢13 - {mz—m3)cot¢23 (33)

12 ~

Fig. 18. Node where the three yield lines have different
isotropic reinforcement.

(2) Where three lines have the same reinforcement, then
= = = 34
m, = m, = my, hence, k;, = 0. | (34)
(3) Yield line intersecting a free edge is shown in Fig. 19,
Two lines will be regarded having zero moment value and a third
having some specified value.

k¢ = (mn coty + mns}e (35)

If the reinforcement for the vield lines is isotropic and of
value m, then (mns)é =0. (ane = m, hence kw = m,coty (36)

With orthotropic reinforcement provided the reinforcement is

perpendicular and parallel to an edge, then (mns)e = 0 and we get
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k¢ = (mn)e coty “ (37)

where (mn)e is the value of moment key line parallel to edge.

\m

Fig. 19. Yield line intersecting a free edge.

Now some examples using the equilibrium method will be solved.

Example 1: Isotropically reinforced rectangular slab simply
supported on four sides and subjected to a uniform load p/unit
area.

The pattern is shown in Fig, 20 for the two equilibrium equa-
tions taken about the axes of rotation of region A and B. The
nodal forces for e and f must be obtained since e and f are gover-
ned by the same mesh. It has been shown previously that all nodal
forces at such nodes are zero.

If moments are taken about the axis ad for region A, the
yield lines around region A give a moment maL about the axis ad,

so that moL = % puBL2 . % BL = é pa82L3 or




32

1 5s%L2 ; (38)

If moments are taken about axis ab for region B, it will be

found that
Bu2L3 & (1—2B)a2L3
mL = p 12 8

1 2.2
a b

o g ;._LLLI!I!'IIII}//III/{JIIJlll/r/ilzlf.f.r_rlj, PPy P
7 B 4
] E
1 A £ ¢ £ m
A L

UL ': ;
/ C
/ D 4
] 4
g ~

Y d o

!Il/l.rll{lrllflll[ll:[lil }/1/;;;/;,,,,,,,,,,,

—
paliose (1-2B T <5 —]

Fig. 20, A rectangular slab with uniform loading,

The moments about ab are equal to the moments about ad. This
condition gives the critical value of 8. Egquating equations (38)

and (39) we get

a” (3-4Rg) - 82/6
or
482 + 4a28 - 3a2 =0
B = é-[ 35% = 6 = &° } (40)

The critical value of m is obtained by substituting the value of
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B into (38) or (39). Hence

2
m'—*%T pu2L2 [/3+az-u] | (41)

As is seen, no differential process_is required to establish the
critical value of m as in the work method. In this example the
nodal forces have been zero. In the next solution, however, the
moment due to nodal forces will be considered.

Example 2: Orthotropically reinforced rectangular slab sim-

ply supported on.three sides and free on the fourth, subjected
to a uniform load p/unit area.

The yield line pattern is shown in Fig. 2la and the nodal
forces at ¢ and 4 are evaluated from equation (36). Considering
point c, the angle ¢ is the angle obtained when rotating clock-

wise from the yield line, thus

ky = kA = (mh)ecotw R (mn)e = um

C
coty = -B/a Hence. kA = =ym B/a (42)
c
. BL 1 (1-2 b
e | qr ﬁ-LL—p-laq—ﬁL—)-l '_q_BL-_-)-*
f é */. * + é + 4
Z v 7 | |
Vs L m
4 “
4 & B F — 1
A - m
7 A E " o
aL f L
g -
. Z ¢
-] <
" L
y % 1
7] ”
~ L
ﬁ -
P ~ I
£ I I (T 7 ¢7 T TN I (T T 77 77 7 77 777 777777777 aQ —
Fig. 2la. Slab supported on three edges Fig. 21b. Stepned
yield-line

criterion.
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As the sum of the forces at ¢ is zero, kB = um B/a and by
S : c
symmetry kcd = UmB/a and k = —-um B/a.

A
When taking moments fog yield line ca about axis ab for re-
gion B only moments on the steps parallel to ab have any effect
and the magnitude of the moment will be the sum of the lengths
in that direction, which is oL multiplied by the normal moments
on these steps, giving a moment of maeL. When taking moments for
region A about af for line ca only, it will be!found the same way

that the moment is umgL. Line dg also gives pmRL about axis ag.

If moments are taken about ag for region A, then

2
aper + 28um o or3fee” | (1-28) az}
a 3 )
or
syém = L pa?e? (3-48) (43)
If moments are taken about ba for region B
2
_ umg . - PeBL” = BL
or 2
B 1 2.2
m(l - EEI) = 7 PaB“L (44)

The critical value of 8 is found by equating equation (43)
to equation (44) and we get

3u8% + 4a%8 - 3% = 0 (45)
This is the quadratic equation in B, the solution of which is
2 [

When this value is substituted into either equation (43) or

w0
0
e
IS
+
R|T
i

g_] (46)
3

(44), it will give
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usz 9
m= B (4 + 50 -2 (47)
" (s } 5

It will be recalled that the cyclic nodal force equation is
based on the assumption that we are dealing with a stationary
maximum condition for a particular variable. If varying a parti-
cular parameter gives a non-stationary maximum solution, then we
can still use nodal force theory but the nodal forces, except by
symmetry, are unknown relative to that parameter, It is quite
possible to have certain nodal forces in a patéérﬂ for which
equation (32) is valid together with others whére it is not wvalid.
The next solution gives an interesting example of this relation-
ship.

Example 3: A square slab simply supported on four sides
having a hole with an irregular shape with a uniform load of p/unit
area except over the hole.

The assumed pattern for the slab is shown in Fig. 22, Since
yield lines tend to be drawn toward holes it is almost certain
that the line passing through the corners a and f will be attrac-
ted to the corners of the holes at b and h. Thus having fixed the
lines ab and fh, the nodal forces at b and h cannot be evaluated
by equation (32) and their value is unknown. Since symmetry only
exists about the center line marked, no conclusions about these
values can be drawn. It will, therefore, be assumed that kah=-k.
Hence, kbh=k and by symmetry kab=—k. The yield line passing through
the corners d and g will be assumed to intersect the hole at a
distance BL from gd. Since it is assumed that BL is a variable,

the nodal forces at c and i can be calculated from equation (36),
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8fm _ 8Bm
from which it will be found that kBi = B AND kCi e
£ g
T B
L/2 +
. i A C .
A . ;
—a— m
. — ¢ —L/4 m
g +
L/4 - *
L/4
+ | a
i/t vl L/tsle 12
Fig. 22, Slab with an opening.
For region A, taking moments about af
1 1 - 31111 111
or
m+k = 1—4 pL2 (48)
For region B, taking moments about fg
1 mL+mBL+§ L.m--3- -1 kL
4 3 8 4
- 3, 1111 111 1 3 3 138
SRl Tt TRt Gt s
or
L2
m(1+88) - k = B2 (35 - 368] (49)




For region C taking moments about gj

Il _ 88°mL _ 23 .3,1,1
B "3 ~— P FT*3
or
2
3 .27 & ] -
m = 5 pb” | (50)
2 1-9—646 ,
Eliminating k from equations (48) and (49) gives
pL? '
m(2 + 88) = 197 (43 - 368) _ (51)
Hence from equations (50) and (51), we obtain the quadratic
equation
82 + 0.09738 - 0.116 = 0 (52)

The solution of which is
B = 0.295

From the way the pattern is drawn the solution is valid provided
0 < B < 0,5, and this condition is therefore satisfied since
B = .295. When this value of B is substituted into either equa-

tion (50) or (51), it is found that

_ pt?

m= 3579

The position of line ab and fh is correct because these are the

lines of least ¥®&sistance.

37
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AFFINE SLABS

If the analysis of an orthotropic or skew reinforcement slab
is compared with that of a similarly shaped isotropic slab, it
will be found that there is a certain similarity between the ex-
pressions obtained at equivalent stages in the analysis. This
similarity was first observed by Jochansen (1) who invented the
concept of "éffine“ slabs, 2An affine slab is an isotropic slab
which, fof the purpose of analysis, may be conéidéred to be equiva-
lent to an orthotropic or skew slab and is obtained by transform- |
ing it into an affine slab.

Unfortunately not all orthotropic or skew slabs can be trans-
formed into simpler equivalent isotropic slabs, but when such a
transformation is possible, the solution mavy be obtained more
rapidly from the affine slab. Then from the original skew or
orthotropic slab. Jones and Wood (5) gives the transformation
rule as follows.

. If a skew, or orthotropic, slab has reinforcement in two
constant directions, such that the ratio of the ultimate moments
due to each set of reinforcement taken separately is constant
throughout the slab, then there exists an isotropic slab which
gives a corresponding solution to the skew or orthotropic slab.
The solution is such that the deflection at corresponding points
in the affine slab are the same as in the skew slab. If at any
point on the dkew or orthotropic slab, the ultimate moments due
to the separate bands of steel m and ym, then the strength of the

isotropic slab at the corresponding point is m in all directions.
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The affine slab is drawn such that all distances measured in the
direction of-thé m reinforcement reméin the same, and this direc-
tion forms one coordinate axis for both slabs, which will be |
called the first coordinate axis. The second coordinate direction
in the skew slab follows the um reinforcement, but the second
corresponding coordinate direction in the affine slab is taken

at right angles to the first m reinforcement axis. All distances
in the affine slab in this second coordinate direction are ob-
Fained by dividing corresponding lengths in thé skew slab by fu.
In addition all corresponding total loads in the affine slabs

are cbtained by dividing the original total loads by Ju sin ¥y
where y is the angle between the two directions of reinforcement
in the skew slab. It is important to establish the transformation
rules for commonly occuring loads.

(A) Uniform Occuring Load of Intensity p. Consider a skew

element x, y, then the area is siny .dxdy. The corresponding
dxdy
]

affine element is

,» hence by the rule stated above

p sinydxdy _ p' dxdy
JU siny Jir
or

p' = p ' (53)

(B) For a Point Load

Vo E
P’ = Asiny Sl

(C) Line Loads, For a line load of intensity p per unit

length, as shown in Fig. 23, let x, y be the skew coordinate

lengths of the line then the total load is 5'./;2+y2+2xy COSY.
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The corresponding total load on the affine slab will be

' /xz + yz/u

P
so that
p'_ 1 J/;2+y2+2xy cosy
— 2,2
S siny Y
Y
um
"--.\
|m
]
!
1y
Y #" "k =
. ¢
\ oy

Fig. 23. Line Load.
When y = 90, i.e., an orthotropic slab, the above eguation

p' = 13'/ /u c052¢ + sin2¢ (55)

where ¢ is the angle between the direction of the line load and the

reduces to

first coordinate axis. Now we shall solve some examples on affine
transformation. o

Example: Rectangular orthotropic slab simply supported on
three sides with free edge. |

The solution for a rectangular isotropic slab is

_ 12m u2+82 (56)

a2L2 38—232

where
1/2

-k (e ) 2] (57)
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BL, denotes the distance along the edge to the point where the

yield line meets the free edge.
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Fig. 24. Actual slab. Fig. 25. Affine slab.

The length L, on the orthotropic slab, is arbitrarily placed in

the m-~reinforcement direction so that this is the same dimension

on the affine slab. If a,L is the length in the pm-reinforcement

direction for the orthotropic slab, the affinity rules require

aslh = Jual, so that the corresponding ratio of the sides is

a6, = afi. Also B,L = BL, there being no change in that direction.
The solution for the orthotropic slab can therefore be writ-

ten by substituting the value of o« in equation (54), since the

intensity of the distributed load does not change, thus

| 2 2
p = A2um [“° [u* B } (58)

aoL2 38, — 28.°




42

where 2
a, L 4 wa1/2 _ 2 -
= [ (g F 2) : §} (59)

¥ a,

which is the same result as obtained by the work method.

Example 2: Skew slab simply supported on four sides, sub-

jected to uniform load p/unit area (Fig. 26).
The skew slab will be transformed to an isotropic slab with

a = %% r BL = B,L and p' = p. For the rectangular slab the solu-
tion is '
= & 2.2 3-4g _
m= 35 Pa L (——3—4 (60)

where
g = % i [ [(3e%) = a] ' (61)

The solution for the skew slab can therefore be written by

inspection from equation (60) after substituting for a« and 8.

Lo L f g F e rf e g £ FF 7 o L et s

e S 7P F 77 ilf 2 I P //ﬂ’
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Fig. 26. Actual slab.
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Thus

Op ik pd Ry (62)

and

Bo::%% [J(3U+a°2)—a°] (63)

These examples indicate that a "library" of solutions, collected

for isotropic slabs, would have an extensive application.
POINT LOADS AND YIELD LINES FORMING CIRCULAR FANS

In the previous sections only straight yield line patterns
were studied. However, there are certain circumstances in which
the knowledge of what will be termed as fan mechanisms could be
very useful.

In the corner of a slab, for example, it is quite common to

see a set of yield lines radiating from a common focus and forming

an elaborate cut-off, whereby the simple corner "lever" is re-
placed by a set of multiple triangles forming a "fan" as shown
in Fig. 28.

As far as the designer is concerned, there is no compulsion
to consider the effect of circular fans if there is only a dis-
tributed load. He will mereiy obtain slightly more accurate re-
sults by doing so. However, when heavy concentrated loads are
present, fans centered on the point loads frequently form, and

the failure load may be significantly reduced.

43
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ZERO DEFLECTION EVERYWHERE
IN THIS CUT-OFF PORTION
IN CORNER.

DEFLECTION A

Fig. 28. Formation of a fan of yield lines.
DISSIPATION OF ENERGY IN CIRCULAR FANS OF YIELD LINES

To find the dissipation of energy in a fan of radius R,
total angle in plane ¢, and polar deflection A, consider any
small component triangle of height R, and arc length R d¢ as shown
in Fig. 29. Using the directions r and ¢, as in polar coordinates,
then dissipation of energy by the vector method is given b&

B, = 2 m 2o, + m,2,0,) (62)

)

=]
©

Fig. 29, Cirecular fan.

Axes r and ¢ are always at right angles (locally). The fact
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that there is zero displacement all around the boundary of the
fan makes the rotation of the rigid element about the radius, ar,

equal to zero. This leaves only m¢, £ 6, to discuss. B¢ is the

$" ¢
rotation about the ¢ axis, so that B¢= %. The vector guantity
m¢£¢ is split into two parts. First there is energy dissipated
by the negative yield line on the boundary for which m¢ denotes
the circumferential moment key line -im and % is equal to Rdé¢.
Secondly the two positive radial lines bounding the element to-
gether add up to the same vector length Rdé. The combined dissi-
pation of energy is m(l+i) Rd¢-A/R. Thus the total dissipation
of energy is E, = ﬁénﬂl+i)Ad¢ = m(l+i)A¢ and for complete cir-

°

cular fan ¢=27. Hence,

E, = 2mm(1+i)s ,_ (65)

CONDITIONS UNDER WHICH EXTENSIVE FANS WILL DEVELOP

While no hard and fast rule can be given for the development
of fan mechanisms, there are some definite tendencies which can be
ocbserved from a survey of many examples, The c@nditions likely to
promote a fan mechanism can be summarized as follows:

(1) Heavy concentrated loads.

(2) Absence of top-reinforcement in corners of slab.

(3) Restraining moments on edges of slab,

(4) Acute angle corners.

(5) Free edges especially opposite corners.

Now some typical examples involving circular fans will be solved.




Example 1: Circular slab with distributed load p/unit area
and with poiﬁt icad P at the center.

Consider the slab shown in Fig. 30 where the negative yield
line has a.radius R. The point under load P has a deflection A.

The expenditure of energy by the external loads is

2

E = P.A + "1; DA (66)

The dissipation of energy is given by

ED = 2am(l+i)m

Equating the dissipation of energy to its expenditure

P + % nRzp
0= R (67)
If there is no point load
2
- PR
m = 27 (I+L (68)

Fig. 30. Clamped circular slab.

If the distributed load is negligible compared to the point load,

then p
m = 2w (L+1) (69)

46




In equation (69) all reference to the radius R has disappeared
which means ﬁhaf with only a point load a comﬁlete fan of any
radius could form with no change of collapse load, and also that
p = 2mm(1l+i) is the collapse load for a clamped slab of any shape
carrying only a point load P. The only ﬁecessary condition is
that the boundary must be capable of a restraining moment of -im
at all points.

Example 2: Clamped square slab subjected -to a uniform load.

If a complete inscribed circular fan, of radius R = %, is |
considered for distributed load then from equation (68), we get

2

m = E%E when i = 1, but this complete circular fan gives the

same solution as does the simple diagonal collapse mode (solu-

tion given in Ref. 5). A more critical mode occurs when fans of

only limited extend form in the corners, as in the simple arrange-

ment shown in Fig. 31. We have R = % Sec(n/4 - ¢/2), and the ex-

penditure of energy by the external loads over the fans is equal

to % R2-¢-% , then the work equation is

4[2m¢ + 4m cot(n/4 + ¢/2)] =

£ G- % tan(n/4-4/2)+ %%—ZSécz(w,/tl—rp/Z)]
from which .
o = ‘lﬁ% (3) sec®(n/4-9/2) + tan (n/4-4/2)
$/2 + cot(n/4 + ¢/2) e
when ¢ = 30°, we obtain
m = EEE (71)

47




Fig. 31.

Example 3:

Point load at the corner of a balcony.

Clamped square slab with unidorm load.

48

This problem is solved by postulating a fan of limited ex-

tent shown in Fig. 32, with rigid regions each side of it bounded

by yield lines.

and

which gives

and

Fig. 32.

We have work equation as follows.

2i m tan¢e + m{1l+i) (n/2 - 2¢) =P
%13 = 2i m Sec®s - 2m(1+i) = O

3
tan ¢ = J1i

Balcony with a point load at the corner.

2m i + m(l+i) (n/2 - 2 tan_l jg;
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when i = 1, indicating top reinforcement at full intensity cover-
ing the whole area locally, the fan disappears and is replaced by

the single yield line system of mode a, which gives P = 2imZ-1 =2im.
2

CORNER EFFECTS

As we have seen in the last section, positive yield lines
entering corners tend to fork before reaching the corner pro-
ducing fans and reducing the ultimate load on the slab.

The small slab segments marked A are known as corner levers
and the factors which decide whether they form or not are the
amount of top sSteel reinforcement provided at the corners and the
degree of restraint at the corner. For example, at one corner
of an isotropic square slab one of the three patterns may exist,

as shown in Fig. 33.

[V DT T ENSIELPY]

AXIS OF
ROTATION

Corners not held Corners held' Corners held Corners held
down ; down: i =0 down: i =1 down: i = 1
(a) (b) (c) (d)

Fig. 33, Corner levers,

If the corner is not held down, when load is applied it will
rise off its supports, rotating about an axis as shown in Fig. 33a.
At failure this must be accompanied, for geometrical reasons, by

the formation of positive yield lines making a Y pattern. If
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the corner is held down the amount of top steel present will
control the yieid line pattern. If ﬁhere is no top reinforcement
the pattern will be similar to that for the case when corners

are free to rise, but a negative yield line of zero strength will
form across the corner, as shown in Fig. 33b. If there is some
top reinforcement but not sufficient to give a yield line moment
egual to positive yield line moment, then a longer, narrower
corner lever will form, as shown in Fig. 33c. When top steel

is such that a negative yield line moment is edual to positive
yield moment then no corner lever will form, and a positive yield

line will reach the corner, as shown in Fig. 334.
EFFECT OF CORNER LEVERS ON COLLAPSE LOAD

Consider the square slab shown in Fig. 34, in which the axes
of the main diagonals intersect the corners at 45°. A solution
for the collapse load on the slab may be found by virtual work
or by the equilibrium method. Full solutions are given by Johansen
(1). The slab is assumed to be simply supported, with the cor-
ners held down. Top steel is provided in the corner only, to give
a yield moment of im on the negative yield lines forming across
the corner. The result of the analysis is tabulated in table 1
for various values of i. It can be seen that the lowest value of
the ratio pLz/m is 22 when no top reinforcement is provided, com-
pared with 24 when no corner lever is formed. The values in the
table also indicate that quite a small amount of top steel in the
corner reduces the loss of ultimate load carrying capacity con-

siderably.




21

k814X

Fig. 34. Corner levers,

The data of Table 1 shows that, in practice, all that is
necessary in the case of slabs with right angle corners without
any top reinforcement is to reduce the sollapse load by 9 per

cent compared with that calculated for full corner restraint.

Table 1. Values of pLz/m
for square slabs with corner effect.

i B, /L B8, /L pL2 /m
0 0.159 0.52 22.0
0.25 | 0.11 0.57 23.0
0.50 | 0.069 0.62 23.6
1.00 0 0.707 24.0

A more dangerous Situation exists in the case of acute angle
corners. Fans are formed in case of such slabs and the slab should

be analyzed for those fans.
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CONCLUSIONS

Johansen's stepped yield criterion is considered adequate
for evaluating the normal moments on yield lines. Vector com-
ponent technigue involves less work than the arithmetic technique
for calculating the internal dissipation of work.

The equilibrium method is the work method presented in a-
nother arithmetic form, and the choice of which method should be
used depends on the experience of the designer; The work method
gives quick results in some typical slab boundary conditions
whereas the equilibrium method may give quick results with some
other more difficult boundary conditions.

There is no necessity for considering the fan mechanism when
the slab is carrying a distributed load only. However, when
heavy concentrated loads are involved, it is important to analyze
the slab considering fan mechanisms.

For analysis of skew or orthotropic slabs, a library of
solutions collected for isotropic slabs is very useful. Al-
though yield line patterns with corner levers give lower values
of collapse loads, they are often neglected in the analysis of
slabs with right angle corners. However, as discussed in this

report, the collapse load thus found is reduced by nine per cent.
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APPENDIX

NUMERICAL SOLUTIONS

Find the ultimate moment for a triangular slab 20 feet by
10 feet, as shown in Fig. 36, supporting a uniform load of 250

P E

Fig. 35. Triangular slab with uniform loading.

Generally a trial layout will never be very far from the
critical layout if the yield lines running into supported corners
are such that they tend to bisect the corner angle, and this is the
basis of the choice of layout shown in Fig. 34.

Point d is given a unit deflection and since ad is inclined

1 1l
, A€, = e_d., 6 = ——— and 6 =
171 171 AA a;e, BB dlfl.

Hence dissipation of energy in regions A and B is given by

at 45°

_ 1
Ed = malel X il

! T
lel+mXalf1¥I—2m
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Now expehditure of energy by loads is given by

Ep = 250 X 1/3X15 X 10 X 1/2 = 6250 1lb. ft.
Eguating Ed to Ep, we get

m = 3125 1lb. ft.
The alternative layouts are now tried.
Trial 2: e, = 2.5'" (The figure is drawn to scale and

lengths are measured)._

; B, By 4.5 7 ] _
which give Ed = m [—7— + 25 = 2.2 M

Trial 3: e, = 7.6"'

(o}
0]
]

5" which gives

Ed = m [1§§ + 7%3] = m(1.52 + .67) = 2.19m

Each of these trials gives the value of m which is less than the
first trial. Hence the first pattern is close to the maximum
value.

Now the same problem will be solved by the equilibrium me-
thod. A numerical technique can also be used with the equilibrium
method. Strictly speaking, the nodal force values given by equa-
tion (32) are valid only for the stationary maximum position for
the parameters. If a trial layout is drawn which is not that
corresponding to the stationary makimum position, then we may not
use these nodal force values. If, however, we use the values and
obtain equilibrium equations for each rigid region, we will obtain
numerical values for m for each rigid region. The values of m
for each region will be different, if the layout is not a sta-

tionary maximum layout. By observing the various m values, it is




possible to see which way the layout should be changed in order
to make the m values the same for each region. The numerical

process is now described.

Now let us first consider trial 2 in which the value of y=90°

with nodal forces being zero.

% 4,5 = 250 % 10 = 355 % 555

or m 1840 1b. ft.

4360 1b. ft.

or m2

Considering trial 1, k¢=m coty; hence

_ 10 x 6 6

m, - ml coty = 2500

1
b = 785 (1 - .212)m; = 2500

3100 £t. 1bs.

x 250

"
W o

m, x 6 + m, cot 78° x 6 = =5
1,212 m, = 3750

m, 3100 ft. 1lbs. = 3125 f£t. 1bs,

which is the value we obtained in the case of the work method.
b4 '

Fig. 36. Triangular slab with uniform loading.
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ABSTRACT

The yield line analysis for the prediction of ultimate
flexural strength of a reinforced concrete slab is presented.

The analysis is based on the formation of a yield line pattern,
the location of which depends on loading and boundary conditiong.
The yield line theory is simplified, by making some assumptions,
to analyze even complex slabs with limited mathematical effort.
The resulﬁs obtained by yield line analysis aré in good agreement
with the experimental results. |

For the behavior of a slab at ultimate load it has been
assumed that the collapse load could be arrived at by considering
the bending action only. It has also been assumed that the
elastic deformations are negligible in comparison with the plastic
ones and that the slab will not fail until a valid mechanism is
formed. The general crack pattern may be deduced logically
from the position of the load and boundary configuration of the
slab. Once the general crack pattern is known, collapse load
may be calculated by the virtual work method or the equilibrium
method.

A skew or orthotropic slab should be transformed into an
isotropic slab. A "library" of solutions, collected for isotropic
slabs, would be of much help.

There is no need for considering the fan mechanism when
the slab is carrying a distributed load only. However, when
heavy concentrated loads are involved, it is important to analyze

the slab considering fan mechanism.




Although yield line patterns with corner levers give lowerr
value of coliapée loads, they are generally neglected in the
analysis of slabs with right angle corners and the collapse load
thus found is reduced by nine per cent. In the case of acute

angle corners, the slab should be analyzed for fan mechanisms.






