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II^!TRODUCTIOK

The statistical technique kno\,m as "analysis of variance" is a

conmonly used statistical method by which estimates of a number of

variances are made and by which the significance of the differences

betv;een these estimates is determined. This technique was intro-

duced by R. A. Fisher in 1920 to partition the variance of the ob-

servations into components ascribable to different causes as well

as to obtain the analysis and tests of significances of treatment

effects in agricultural and biological research.

There are two main purposes of using analysis of variance: l)

to estimate a set of parameters in a model and to test the null hy-

pothesis that a linear subset of those parameters is equal to zero;

and 2) to be used as a basis for estimation of variance components.

Because of the different purposes of analysis of variance tech-

niques, different fundamental assumptions are made. Based on these

two kind of uses, Eisenhart (19A7) denoted the two fundamentally

different types of analysis of variance as fixed models and random

models respectively, commonly known as Model I and Model II. l/ith

fixed effects the investigator is interested in the computation of

means, regression ,coefficients, standard errors, tests of signifi-

cance, orthogonal comparisons, interactions and mean separation

procedures; whereas, vdth random effects one is interested in the

estimation of variance components.

The elementary theory of variance components analysis has been

discussed by Daniels (1939), Crump (19A6) and Eisenhart (19A7).



Cochran and Crump (19A6) have considered briefly "the variance compo-

nents problem in a balanced one-way classification. In higher-vray

classifications, a number of different methods of analysis are in

common use. Chief among these are the so called methods of fitting

constants and weighted squares of means described by Yates (193A)

for experiments based on Model I. Estimates of variance components

may be obtained by the device of equating observed and expected mean

squares

.

Estimating variance components for a three-way classification

with unequal subclass numbers has discussed by C. R. Eerderson

(1953). Ke assumed some of the first order interaction effects and

second order interaction effects negligible and considered the mixed

model case because a random model is not alv/ays appropriate. For

example, data related to year effects should be regarded as fixed

rather than random. Henderson discussed three different methods of

calculating variance components. The method which is simplest in

computation leads to biased estimates. One of the others yields

unbiased estimates, but the computation is laborious.

More recently, Norman Bush and R. L. Anderson (1963) described

and illustrated an analytic procedure for obtaining variances of

estimates of variance components for the two-way classification and

developed this procedure in a general multivray classification, when

there are unequal numbers of observations in the subclasses. Three

unbiased estimating procedures for a tvro-way classification are dis-

cussed and compared by them. Two of the procedures are based on

Yates's methods of fitting constants and weighted squares of means.



The third procedure which uses unadjusted sums of squares was

developed by C. R. Eenderson (1953), and extended by LeRay and

C-luckowski (1961) explicitly for experiments based on Model II.

The purpose of this report is to describe and illustrate, I'ri.th

the aid of a numerical example, some different unbiased methods for

estimating variance components by using a complete three-vray classi-

fication linear model with unequal subclass numbers.

7 .., =>J + a^ + b. + c. + (ab) + (ac) + (be)
^hijk h i J hi hj ij

+ (abc) + e
^ 'hij hijk

where /j : the population mean;

a, b, c: the population main effects;

(ab), (ac), (be), (abc): the population two factor and three

factor interaction effects;

e: a random observation error assumed normally and independently

2
distributed with a mean zero and 6 .

h = 1, 2,..., p;

i~l, *-,•••> J-5

= 1> 2,..., m;

k = 1, 2,..., n^^^.



BASIC TIEOKI

Consider the general-linear-hypo-fchesis model of full rank. It

can be '.rritten in vector form:

y = X B + e

vhere

Y = X =

^1 ^
""21 ""22

nl n2

=^M
2p

• • • •

• • • J^

np

/»!

B = e =

^ e
\ P /

' n .

In detail, each random variable y^ depends on p knovm quantities

Xj_n, ..., Xj_ and on p unknown parameters bp.,., b^ vhere x^. = 1 or

for all i, j.

2
The method of least squares may be used to estimate B and c5 ,

2
where 6 - var(y^) (i = 1, 2,.., n). Thus, the vector B is to be

chosen so as to minimize

ei= e'e = (Y - XB)'(Y - XB) ,

which is accomplished by letting

^(^'Q) = 2X»Y - 2X'xS = .

B B

A

Now X'XB = X'Y is called the normal equation. The least-squares

estimate of B is

-1
B = S X« Y



%f-

2
where S = X'X. The unbiased estimate of a based on the least squares

'J

estimate of B is given by

i f ^ (Y - XB) ' (Y - X3)- Y'(I - X s'^OY
/ n - p n - p

By "the Gauss-Markoff Tneoren, the best (ninimum-variance) linear

(linear functions of the Y^j^) unbiased estimate of B is given hy least

A -1
squares; that is, B = S X'Y is the best linear unbiased estimate of

B.

Consider again the nodel Y = XB + e. It may be partitioned so

that Y = X-L r]_ + X2 r2 + e

where r]_ is of dimension r x 1, r2 of dimension (p - r) x 1.

In the analysis of variance, the total sum of squares is Y'Y

and B'X'Y is the reduction due to B (denoted as R(B)). Thus R(B)

consists of the product of the vector B', v;hich is the solution of

the normal equations, and the corresponding elements of the right-

hand' side; i. e., X'Y.

For the partitioned model, the normal equations are:

/ Xi Xi Xi X2 W ri \

^
/ XI Y

I

\ X^ Xi X^ X2 / I r2 j \ X^ Y y

If only the elements in r2 are used in the model from which

we obtain the normal equations, the reduced normal equations

^2 ^^2 ^ -^2 ^

comes out, from which we get r^ Xi Y = R(r2) (unadjusted). The

quantity B'X'Y - r^ X^ Y ^,dll be called reduction due to r, adjusted

for r^ (denoted as R(r, I ^2^) f such that

R(r3_j r2) = R(B) - R(r2) .



If Xf X2 = 0, the X'X natrix is diagonal in blocks and t-^ will

be said to be orthogonal to rg. Generally speaking, if hi,..,, bp

are all orthogonal, then X'X is a diagonal matrix, the reduction due

to any set of the B adjusted for any other set is simply the reduc-

tion due to that particular set of the B ignoring the other set.

In the case where X is not of full rank, this is equivalent to

saying X'X is singular and has no inverse, and an examination of the

system to see whether a solution exists is necessary. Since X'X is

of dimension p x p and rank k <i p, there are an infinite number of

different vectors B that satisfy X'XB = X'Y. It night be interesting

to see whether there are any linear functions of Y that give rise

to unbiased estimates of B. The linear combination A'B ( A is a

vector of kno\m constants) is estimable if and only if there exists

a solution S r = A , Also it should be noted that there are exactly

K linearly independent estimable functions, where K is the ranic of X.

Therefore, in the light of least squares normal equations, some

restrictions have to be imposed in order to make X'X of full ranlc.

(Graybill (I96l)).

If the one-way classification is taken for example, the model

will be

yij = >^ + a^ + e^j

a direct method of obtaining estimates of the a^ as deviations from

p is to impose the restriction on the least-squares equations that

z: a. = 0, the coefficients of one of the a., say a_, must be sub-
i=l 1 i' "^ p'

tracted from the coefficients of the other a.. One of the simplest



restrictions would be to sijnply delete the a^ equation and the column

of coefficients for a , and solve the remaining equations to obtain

estimates of the unknowns, (Earvey (i960)).

The techniques developed for estimating variance components,

which we shall illustrate, is based on these concepts.

*»"
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ESTBIATION C3F VARIANCE CaiPOI-JEKTS

l). Unadjusted sirns of squares;

Under Eisenhart's Model II, it is assumed that, except for ]a,

all elements of the model are uncorrelated variables vuth mean zero

and variances a^ , 0^, 0^, 0^^, a^^, o^^, a^^^, or o^. Sums of

squares can be computed as in the standard analysis of variance of

corresponding orthogonal data. In the method of unadjusted sums of

squares suggested by Henderson (1953), one equates these computed

sums of squares to their expectations and solves for the unlcnovm

variances.

Thus, the following quantities are computed:

T = EEEEyhijk
h 1 J k **

A = C y? /n. B = IZ y^. /n .

j^ "h..,' n,

.

X •^•* ••^*

C = Z: y^ . /n AB = Z: E: y^ . \.

AC = 21 E= y^ . /n. BC = ZZ i;: y^ • . /n .

.

ABC =c ci;: yj .
.

/n. . . N=r:cnn...
h i J

hij« ni3 h i j ^^J

GF = y^ /il
• • • •

Next, the expectations of the above quantities are computed,

2
Under the assumptions of Model II, the coefficient of ju and the

variances in these expectations are as shown in the folloxd.ng table:



2 2 2 2 2

K

4 2

°abc

N

.y.

T K N N N H N

A K N h h ^ ^ ^3 ^S
P

B N h N h ^ % % % L

C K ^ % N ^ ^ ^ s M

AB N N N ^0 N ^0 ^10 \o \

AC K K ^1 N hi N
.^1 hi %

BC N % N N hz \2 N hz %
ABC K N N N \z h3 ^3 N

^A

CF N Kn; K,r I^A K,„ hp. KlQ ^n 1

where N=:|:f^:r^.

S. = number of filled subclasses.
X

The quantities K , K ,..., K are computed as follows:

% = 5 ^ %i. / ^.

.

^10 " ? f ^' ""^ij/ ""^i-

% =^?^4ij/ ^h.. Ki2 =2ZCE:n|i/ n.ij

Ka = 5 ? 4./ n. i. % = C C C nii/ HM

j

%=^^<ij/M. % = 5="h../N

^6 =^? ^ 4ij/ ^i. %5 = f ^i./ ^^

h=^>rA,i/\.i %6=^^./N

K3 =Y? ""^i/ ""..J ^17 =^5^ %i./ K

X9 =C )- >- nl,y n.
. J.

K18 = C ^ ni/ N
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'^9=f^''a/'' '=ao=5F?4/«

If the data were orthogonal, the sums of squares in the analysis ',

of variance would be:

^ong A = A - CF

" B = B - CF

» C = C - CF

AB =AB-A-B+CF

AC =AC-A-C+CF

BG=BC-B-C+GF

ABC = ABC - AB - AC - BC + A + B + C - CF

Error = T - ABC

This method xdll now be applied to data taken from Henderson (1953)

(B) (0

Sire

(A)

Year

Herd
1 2 3 A

Total

1
1
2

3

3 - lAU 2 - 981
- 1766 2 - 862

5

j
5 - 2395
6 - 2623

- 1609
: 5 - 1609

2 I

3

1 - ii04 3 - 1270

5 - 2109
- 1563 2 - no

A - 167A
5 - 2109
6 - 2303

3

1
2

3 - 1705
- 2310 2 - 113A

3 - 1705
6 - 3AA4

-

A

1

3

3 - 1113 5 - 1951
3 - 1291 6

8 - 306A
- 2457 , 9 - 37A8

T t Ja 1 7 - 2931 21 - 9983 16 - 6959 13 - A806 57 - 24679
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The conputations of K's and the expectations of these quantities

are presented in the following tables:

Table 1

T 57

A 57

B 57

C 57

AB 57

AC 57

BC 57

ABC 57

CF 57

/J
ab ac J'bc

57 57

abc e

57 57 57 57 57 57 57 57

57 19.51 39.22 19.51 39.22 15.10 15. IC A

21.2^9 57 2A.O/^ 21.U3 15.16 2^.04 15.16 A

30.33 18.51 57 11.62 30.33 18.51 11.62 3

57 57 ^6.-^6 57 A6.A6 ^^6.^6 A6.A6 U

57 22.57 57 22.57 57 22.57 22.57 6

37.35 57 57 37.35 37.35 57 37.35 10

57 57 57 57 57 57 57 17

16.05 U.93 19.11 5.28 10.19 6.19 3.88 1

Table 2

A - GF
I
/iO.95 A. 58 20.11 U.23 29.03 8.91 11.22

B - CF
i 5.AA A2.07 -i.98 16.21 A.97 17.85 11.28

C - CF

AB - A -B
+ CF

AC - A -C
+ CF

BC - B -C
+ CF

ABC-AB-AC
-BO+A+B

T - ABC

3

3

2

7

U.28 3.58 37.89 6.3A 20.U 12.32 7.7A

I

I
-5.U -A. 58 2.31 21.28 2.27 13.51 20.08

-U.28 -.52 -20.11 -3.28 -2.36 -A. 85 -.27

1.58 -3.58 -A.93 9.52 2.05 20.6A U.A5

-1.58 0.52 -2.31 -12.58 -9.29 -17.57
-11.38 -3

RHM

11,12A,007

10,776,451

10,893,666

10,776,278

10,963,029

10,146,183

10,970,369

10,973,517

10,685,141

40

91,310

208,525

91,137

-16,947

-721,405

-14,434

650,190

150,490
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where KM is the total sum of squares (uncorrected) of corresponding

factors

.

The solution to these eight equations presented in Table 2 is:

Ca = a,9A2.3135

2
a^ = 10,^69.0888

a' = 26,020.9606

a^^ = -39,82^.5215

a^ = -78,729.3598

o-^ = -23,208.66A5

4c = 75,351.1685

ol = 3,762.2500
6
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2). "Correcting" the data for mixed model:

The bias in estimating variance components due to the assumption

that fixed elements of the model are random variables can be eliminated

by '= correcting" the data for a mixed model. It v;as used by Hazel and

Terrill (19A5) on data which vrere orthogonal except for the fixed

effects. By using this method, Henderson (1953) obtained least squares

estimates of fixed effects, used the corrected data in place of the

original data and proceeded as in the previously discussed method.

Consider, in the general case, the linear model

ya = 1^ K- x^a + e„ a = 1, 2,..., N
i=l

where x's are 1 or Oj the e's are uncorrelated xd.th mean zero and

2
variance Oq,

If the b's are all fixed, the least squares equations for esti-

mating them are:

.g cii bi = Yi

t C2i bi = Y2

• • •

il
Cpibi=Yp

where G^. = r: x^^ x.^ and Y^ = n^ x^^ y^.
•^ a=l a=l

It is sometime necessary to impose one or more linear restriction

on the estimates in order to obtain a solution to these equations.

Now suppose the b,,..., b are fixed and also that for all i = 1,

2,.,., s and the least square estimates have the property that



u

E(K^ - K ) = i^ eg, then the data can be corrected as follows:

^a = ya -
iJi ^i ^a .

To illustrate this method \d.th our data, Henderson would assume

that the a's were fixed. First the least squares estimates of the a's

were computed. This is done most simply by estimating them jointly

vath a's and d's to form the equations, where a's refer to the fixed

effect (year, in this case) while d's refer to the interaction of the

other two random effects.

Looking at the data, these equations are:

7ai + 3dii + dgi + 3d^i = 2931

21^2 + 2d;j_i + Adi2 + 3d2i +3^i + IA^2 "^ ^d^i = 9983

1633 + 2d-L2 * 5^2 ^ ^^3 ^ ^^2 "^
^^A3 ^ ^^^^

13a^ + 5^12, + 2d23 "*" ^43 ' ^^^^

3% + 2^2 + 5% = 2395

Aag + 233 + 6d-L2 = 2628

333 + 6a^ + 9d^3 = 37A8

These equations reduce to the ones shown in Table 3.

Table 3

A ^^ A ^

^1 ^2 ^3 ^U

3.825 -3.825 -73.500

-3.825 6.A92 -2.667 101.500

-2.667, 6.000 -3.333 a.333

-3.333 3.333 -69.333

One restriction must be imposed before a solution is obtainable,
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Let a, = 0. Then the solution is:

a-^ = 12.08

a^ = 20.80

82 = 31.30

Using the a's to correct the data, the two-factor tables would be as

shown in Table A - 6.

Table A

Herd 1

Year

2 3 4 Total

1
2

3

A

1377.76
391.92

1076.76

2559.20
1176.10
3795.90
1794.50

820.40
3484.80
1092.40
1228.60

1609
740

2457

6366.36
5792.32
4888.30
6556.86

Total 28A6.ii;i 9325.70 6626.20 4806 23604.34

Table 5

Sire 1
Year
2 3 4 Total

1
, 2

3

28A6.A4 5500.10
3825.60 3917.80

2708.40 4806

8346.54
7743.40
7514.40

Total 28A6.U 9325.70 6626.20 4806
1

23604.34

Table 6

Sire

Herd 1 2 3 Totja

1
2

3

2296.16
1563.02
1611.10
2871.26

2461.20
2005.00
3277.20

1609.00
2219.80

3685.60

6366
5792
4888
6556

.36

.82

.80

.86

Total 8346.54 7743.40 7514.40
j
23604 .34

The method of unadjusted sums of squares, which can be applied

to this new corrected data, will lead to new estimates.
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3). General least squares

The mathematical model of a three-way classification can be ex-

pressed in matrix notation as

y = X B + e

and the normal equations are

X'XB = X'Y = G T3 T^ T^ T^t T^^ T^^ ^abc

where G is the grand total and T's are the subtotal of corresponding

effects indicating by subscripts. Under the assumptions of Model II,

the A, B, G, AB, AC, BC and ABC and e are independently distributed

2 2 2 2
as N(0, o-gl), N(0 tf^l),..., N(0, Oqy>c^) and N{0, cJgl) respectively,

where I is the identity matrix of suitable order.

Before applying this method to the example, it seems more con-

venient to take two classes each with three variables of classifica-

tion to illustrate the techniques with the effects 82, b2, C2 and

all interactions associated with them deleted. (In general, any one

class in each variable of classification can be deleted.)

Thus, the deleted X'X, deleted B' and deleted X'Y can be ex-

pressed as:

W = X'X^el. =

N
^.. ^1. ^.1 "^1. "1.1 ^11 "^11

^.. ^1. \,1 ^1. "1.1 ^111 "ill

^1. ^11 '^l. "ill ".11 "ill

°..l "ill "1.1 ''.ll "ill

"11. "ill "ill "ill

"1.1 "ill "ill

".11 "111
i

"111 i

>
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=<5el. ^ ^1 ^1 °1 (ab)^^ (ac)^^ (bc)^^ (abc)^^^

^^^(^'^^'del.
= ^ \l ^bl "^cl ^{ab)ll '^(ac)ll

"^(bc)!! ^(abc)lll

where W is a syimnetrlc matrix (only the diagonal and super-diagonal

elements are written down here) and the subscript "del." indicates

that the class (es) deleted.

The matrix of deleted vectors D may be expressed in this way:

D =
^1.

^2.1

^ ^ ^A °5 Hi

^.2. "..2 ^12. ^1. ^2. ^.2 ^.1 ^.2 ^.12 ".21 ".22

"L2. "l.2 "l2. ° ° \.2 ° ° ^12 ^21 "L22

^21

^21

n
'.12

^12

^1. ° "l12 ^211 ^12 ".12 ° °

^21 ^11 ^21 ° ^.1 ° ".21

^21 °

"L12
°

"L12 ° °

"L21

^11

(a) (b) (c)

^11 °

(ab)

^11 ^

(ac) (be)

^
^12 ^21 "l22 "211 "212 "221 "222

"112 "121 ^2
"112 "211 "212

"121 "211 "221

"n?,

"121

"211

(abc)
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where \ (i = 1,..., 7) indicates the deleted coluran(s) of corresponding

effects shown in parentheses. This can equivalently be rewritten as

[,, B
del.

c„ (ab),^ (at)o-, (a^)oo (^c)
'12 21 '22 '12

(ac)23^ (ac)22 (bc)i2 ^^°^21 ^^°^22 ^^^°^121

(abc)Q^22 (a^c)i22 ^^^°^211 ^^^°^212 ^^^°^221

(abc)222
t - W B*^

where &» is the row matrix in the previous step.

To get the coefficients of the variance components, Harvey (i960)

suggested to form the (abc) interaction. Consider

SS ABGgjjj^
^j2. effects = ^^ ^all " ^^ ^jj,a,b,c,ab,ac,bc.

The first tern of the right hand side is the uncorrected sum of

squares of the subclasses. .

2
SS Rail = SS Subuncorrected = ^^^ yhij./%ij

E(SS R^-Li) = N/? + NcjJ + No^ + No^ + NoJ^ + NoJ^ + No^^ + NoJ^^

For the second term of right hand side, it can be shown that

% - X'X^gi. for abc
'

N
".1. ^.1 "^1. ^.1 ^11

"ll. ^.1 \l. "l.l "ill

".1. ".11 "ll. "ill ".11

"..1 "ill "l.l ".11

"ll. "ill "ill

"l.l "ill

n
.11
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%1 ^12 ^13 ^lA

^1
=

°2.. ^2. ^.2 "12. "21. "22.

"12. "1.2 "12.

"21. ".12 "21.

1^5 °16

"1.2 "2.1 "2.2 ".12 ".21 ".22

"1.2 ° ° "112 "121 "122

"112 "211 "212 ".12 ° °

"2.1 ".21 ° "121 "211 "221 ° "2.1° ° ".21
°

n^^ "112° ° "112° °

"121° "121° °
n^^O

"211° ° ° "211° n^i^O

T^^O

"112° °

"121°

^17

"ll2 "l21 "l22 "211 "212 "221 "222

"112 "121 "122 ° ° ° °

"112 ° ° "211 "212 ° °

"211 ° "221
°

a

"211° ° °
J

It is obvious that W^, U-|_ are obtained from W by deleting the

column and row corresponding to (abc); D-]_ is obtained from D by dele-

ting the last row. (In the general case we should delete all the

rows and columns corresponding to the deleted effects).

Then, the normal equations are

"ill

"ill

"ill

^1
=

"ill

"ill
1

"ill

"ill

\h B]_i' = X«Y

where X'Y J — X'Y del. for (abc) ~ [^ ^a "^b "^c ^ab ^ac "^bc

-1,
then SS R^,a,b,c,ab,ac,bc = [^'^Jl "i [x'YJi

and E(SS R^,a,b,c,ab,ac,bc) = ^( [^'^Jl ^^f^^l)'
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For X'Y it is equivalent to write ¥. U-, B-.

Hence, for calculating the expectation of SS R ,a,b,c,ab,ac,bc *^®

only interest is in the diagonal elements of \J-^, Uj W-j^ U-]_, DJ^^ U^ D^^,

D', h:^ D,.,..., D4„ w:^ D,„, the final result of E(SS ABC^^.
^^^i)

is
'12 "1 "12'

.-1

E(SS ABC^^j, all) = (N - Wi22 " ^^ °il ''^1 ^11

+ (N - W^33 - tr D.^ l^^ D^T.rl

1

:-l
*- (N - W^ - tr D

.
U^- D,

13

+ (N-W,„-trDj;^l.J5;lD^^
155

+ (N - \l
166

tr D.5 V.rl D^5

a

2

c

2

^ab

°ac

be
.-1 ^ N 2

4- (N - H^^^ - tr D^^ ...^ .^^

+ (N - tr 5' W-1 U^ - tr D'^ W'^ D^^) a^^^

E(MS ABCgjj^ all) is obtained by dividing this T:^ the degree of

2

freedom for the (abc) interaction and adding Ce to it. Note that the

coefficient of a^, a^,..., a^^ should vanish in this equation.

Next, work out the coefficients of variance components for the

first order interactions by considering that:

SS ABa^j^^^a,b,c,ac,bc ' ^^ ^^,a,b,c,ab,ac,bc ~ ^^ ^>j,a,b,c,ac,bc;

^2 ^-^adj.ju,a,b,c,ab,bc ^ ^^ ^/^,a,b,c,ab,ac,bc " ^^ ^ju,a,b,c,ab,bcj

SS BG = SS P — SS R
adj.yu,a,b,c,ab,ac ',u,a,b,c,ab,ac,bc y,a,b,c,ab,ac.

The first terms of the right hand sides are already at hand. The

second terms of the right sides are needed. It is enough to vjork out

one of then since the others follow the same procedure. In

SS R
^,a,b,c,ab,ac ,

the necessar'/ matrices are as follows:
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'n
"l.. ".1. "..1 "ll, "l.l

'".11 "ill

"l.. "11. "l.l "11. "l.l "ill "ill

^'2
= " 1 ".11 "ll. "ill

"..1 "ill "l.l

^2 = ".11

".11

"ill

"ill

"ll. "ill "ill "ill f

s "l.l_ "ill "ill
1 ^

and ^ = jU a]_ ^1 °1 (ab)]_3_ (ac)3_]_

which is obtained from W and B'^^^ by deleting the corresponding

elements for (be) and (abc).

^21 ^22 °23 D,

^2
=

'2/, "25

"2.. ".2. "..2 "12. "21. "22. "l.2 "2.1 "2.2

° "12. "1.2 "12.
° ° "1.2 ° ^

° "21.
° "112 "211 "212

"121 "211 "221 ° "2.1 °

n,,^ C

n
"21. " ".12

"2.1 ".21
°

n
112 "112 °

"121 °

^26

•121

'27

".12 ".21 ".22 "ll2 "l21 "l22 "211 "212 "221 "222

n. n.
112 "121 "122 "112 "121 "122

\12

n

112

.21

"121 °

112

112

n
121

"121 °

"211 "212 ° °

"211 ° "221
°

v;hich is formed by deleting (bo), (abc) from D and

1

X'Y Vr^DjD^jB.

"f
.''
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,-1
^2 U2 D2 B<*
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= B«'[W2 U2 Dg"

E(SS BC .. V ^v „^) is obtained by taking the diagonal elements

of IJ2, U^i ^'.'2^ U21, U^2 "2^ U22, 2^1 Wi^ D21..., D^7 IJ2^ D27 as the

coefficient of variance components of corresponding effects in the ex-

pectation form and subtracting from E(SS R;, a,b,c,ab,ac,bc) ^"^ dividing

2

by the degrees of freedom of the (be) interaction, and adding Cg to it.

2 2 2 2 2 2.
Note that the coefficients of u , a^, cj^,, ^c > ^'ab* ^ac vanish.

Last, to find the coefficient of the variance components for the

main effects, the follovdng formulas are applied to work with the same

technique.

SS k^^.^ ;i,b,c,bc = 2S R^,a,b,c,bc - ^^ ^u,b,c,bc

SS Bg,^j^ ;j,a,c,ac = ^S Ry,a,b,c,ac " ^S Ry,a,c,ac

SS C , . ^ ^ = SS R , V - SS R,, „ , „,
•^ adj.;ui,a,b,ab ju,a,b,c,ab >J,a,b,ab .

Let us now illustrate this method with the data used before. It

involves four classes for A (year), four for B (herd) and three for G

(sire). VJhen the restriction was imposed, suppose, a,, b^ and c^ and

all their combinations are deleted. The form of W = X'X^^^^ and D

represented \i±th the empty cells omitted is as follov.'s:
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\J =

57 7 21 16 16 15 9 20 17 3 1 6 3 7 2 9 2 7 13 8 9

7 7 3 1 7 3 1 3

21 21 6 3 7 13 8 6 3 7 13 8

16 16 2 9 2 9 2 9 2

16 3 6 2 16 5 6 3 6 2 3 2 A 2

15 1 3 9 15 A 5 1 3 9 1 3 5

9 7 2 9 3 6 7 2 3 A 2

20 7 13 5 A 3 20 3 1 2 3 3 7 13

17 8 9 6 5 6 17 A A 2 5 2 8 9

3 3 3 3 3 3

1 1 1 1 1 1

6 6 6 2 A 6 c 2 4

3 3 3 3 3 3

7 7 7 3 4 7 3 A

2 2 2 2 2 2

9 9 9 5 9 5

2 2 2 2 2 2

7 3 3 1 7 3 1 7

13 13 2 3 3 13 2 3 3 13

8 8 4 4 8 A A 8

9 9 2 5 2 9 2 5 2 9

5 3 2 . 5 C 5 3 3 2

6 ^ 2 6 6 A 2 A 2

A 1 3 A 4 1 3 1 3

5 5 5 5 5 5

3 3 3 3 3 3

6 A 2 6 6 A 2 A 2

3 3 3 3 3 3

1 1 1 1 1 c c 1

2 2 2 2 2 2

A ^ 4 A A A

3 3 3 3 3 3

3 3 3 3 3 3

A ^ ii A A c A

2 2 2 2 2 2

5 5 5 5 5 c 5

2 2 2 2 2 2
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56/^536312^334252 24679

3010003100000000 2931

2 4303A0024334000 99S3

0205020000000252 6959

5600003024000200 6632

0045000100300050 6086

00 0360000034002 5149

5040303120330000 8838

0605060004004252 8181

3000003000000000 14U
0010000100000000 404

0400000024000000 2747

00300000 0300000 1270

0000340000034000 4015

0200000000000200 862

0005000000000050 3672

0000 20000000002 1134

3010003100000000 2931

2030300020330000 X'Y = 5907

0400040004004000 4076

0205020000000252 4105

5000003020000000 2395
0600000004000200 2628

0040000100300000 1674

00050C0000000050 2109

00003000000300 00 : 1705

0000060000004000 3444
3000003000000000 uu
0010000100000000 1 404
2000000020000000 981

0400000004000000 1766
0030000000300000 1270

0000300000030000 1705
0000040000004000 1 2310
0200000000000200 862

0005000000000050 2109
00000000C00CC002

4

1134
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D =

13 17 20 3 5 3 6 7 13 5 6 9 u 3 5 2 6

3 c c

5

3 7 3 7 4 3 4 3

5 5 c 5 5 5

2 6 c 2 6 L 2

a 3 5
c c c

c

c c

c c

c

c c

c c

4 A A u

3 3 5 c

5

(all zeroes )
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The difficult result is obtained when this technique is applied

to this particular data. Because of the unsuited degree of freedom

under this full threc-;gay classification model, i;hich is used here

as an example, it is impossible to get the sums of sqaures and mean

squares for their interactions.

The unhappy result for three effects comes out as below:

SS Ag^^.^ ^,b,c,bc = SS Rjj,a,b,c,bc - 22 ^Ai,b,c,bc

= 21,980,989. 8A - 15,^66,266.60

= 6,5U,723.2/^

E(SS A^^^.. ^^b,c,bc) = E(SS Rp,a,b,c,bc) " ^^^S R^,b,c,bc^ "

= Li.63 o| + 34.02 0^^ + 37.65 o^^ + 5,000,009.46 o^-qc >

22 Baaj.^,a,c,ac = 2S R;4,a,b,c,ac " 22 Rju,a,c,ac

= 567,056,630,100,000100 - 29,760,589.27

= 567,056,600,339,410.73 ,

E(SS B3^j.^^^3^,^3,) =E(SS R^,a,b,c,ac) -^(23 R^^^^,^^,)

= -490.21 4 - 845.83 cf^^ - 441.49 ct^q - 456.81 a^^
^

SS C ,

.

^ , = S3 R , , - SS R , -

adj. jj ,a,b,ab i«,a,b,c,ab ju,a,b,ao

2S R^^^^,^^^^^ = 15,195,614.17
^

^(SS
R,,3,b,e,ab^

= 56.17 a^ + 83.04 ^ ^ 40.19 ^ + 42.854,^

The SS Ru a b ab cannot computed for this example.
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/^). Method of fitting constant

'
, This method involves computation of nean squares by a conven-

tional least squares analysis of non-orthogonal data. One equates

the mean squares to their expectations and solves for the unknoim

variances. K. Bush and R. L. Anderson (1965) used the technique for

a three factor design and applied it to the problem of estimating

variance components. The sums of squares are computed as follows:

SS A = SS(A
I

B,C) = SS R^^a^t,c ' ^S R^^^^^

SS B = SS(B
I

A,C) = SS R^,a,T,,c " ^S R,,a,c ^^ .

SS C = SS(C
I

A.B) = SS R^^a^t^c - SS a^,a,b

SS AB = SS I^^,a,b,c,ab,ac,bc " ^^ ^p,a,b,c,ac,bc

SS AC = SS R^,a,b,c,ab,ac,bc ~ ^^ ^^,a,b,c,ab,bc

SS BC = SS R^^a,b,c,ab,ac,bc " ^^ ^;u,a,b,c,ab,ac

SS ABC = SS R311 - SS R^,a,b,c,ab,ac,bc

With this method the sums of squares for error and the inter-

action remain the same as with the complete least-squares analysis

(general least square method). Also the coefficient for the inter-

action mean squares rem.ain the same. The difference is that in this

method the sums of squares for three main effects are the same as

when the interactions were assumed to be non-existent. The coeffi-

2 2 2
cients for cJa, tfb» <^o ^^ ^^^ expectation of the mean squares for

A, B, G, respectively, also remain the same as when interaction was

disregarded.

Apparently, \d.th the knowledge of the technique developed in
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the last section, the result for our data can be easily obtained.

This result \ih±ch is presented below seems a little better than the

previous one:

SS A^^.^ ^^^^,
= SS R^^^^^^, - SS R^^^^,

= 10,708,039.83 - 22,66A,122./^0

= -11,956,082.57 ,

^(SSA^,.^^^,^,)=E(SSR^^^^,^^)-E(SSP^^,^^)

= 21.51 ^l
+ 18.33 dl^ + 17.56 6^^ + 5.62 6^^^ ,

^ ^adj.>j,a,c " ^^ ^-u,a,b,c " ^^ ^;u,a,c

= 10,708,039.83 - 12,266,277.05

= -1,558,237.22 ,

E(SS B3,., ^^,^,)
= E(SS R^^,^^^,) - E(SS R^^3^,)

= 31.56 til + B.U c5ab + 12.81 <^^ + 9.19 oj^c »

SS C ,

.

, = SS R , ^ - SS R„ ^ ,

adj. >u,a,b >iJ,a,b,c /i,a,b

= 10,708,039.83 - 16,162,807.63

= -5,45^,767.80 ,

E(SS 03,3..^,,,^) =E(SS R^^3^^^,) - E(SS R^^^^^)

= 5.05 4 + l'7-^6 cl^ + 2.89 a^c + 5.29 o-J^c
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5). Weighted squares of neans:

Vrnen all degrees of freedom among a set of subclasses are par-

titioned into a set of orthogonal comparisons, as is done in factorial

analysis, the estimates of all constants are determined from the sub-

class neans. In this case weights are easily determined that are

useful for computing sums of squares, variances of estimates of

constant and coefficients of variance components.

Bush and Anderson (1963) suggested for this procedure that sums

of so^uares required are in the form of

-1 .-1

SS. = r' C.
J J

Cj (A 'A) C^.

A
C! r

Ixt s X s sxt txL

vhere r is simply a vector of the sample neans for the non-empty cells

of the design; (A'A)" is a diagonal matrix in which the diagonal

elements are the reciprocals of the cell frequences; the C-matrix

reflects a contrast betvreen effects and is of rank s; t is the number

of occupied cells and j = 1, 2, ... .

Let Q. = C.

t X t

CI (A'A)"-^ Cf-'-
J *J

CI = C. B C

A . A
SS. = r' Q. r

,

J J

as J varies, only the Q-matrix is altered. Regardless of the total

number of observations in the experiment, the dimension of the Q-

matrix depends only on the number of non-empty cells in the experi-

ment. So far as a three-way classification is concerned, a numerous

possible C '-matrix can be constructed, and usually it is convenient

for us to choose that each row in C refers to a contrast. Although
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these are not orthogonal contrasts, orthogonal contrasts can be deri-

ved from them. If any cell is empty, the column associated with the

empty cell is oiaitted in each C.

To apply this method for our numerical example, we have

'0.333 1

(A'A)
-1

1.000

0.333

0, 500
Z

^ -

-

0.333

0.333

0. 200

0.250

0.250

0.500

0.200

z
0.500 _

,
,, ...

" r

-i

4

0.250

0.333
1

S 0.200

.
0.500

1

• r •. 0.167

r = [A71.333 404.000 371.000 490.500 423.333 568.333 390.200

441.500 577.500 431.000 421.800 567.000 390.750 430.333

321.800 370.000 409.500
J

.
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Tae C '-matrices may be chosen as:

111 121 Ul 211 221 231 2/,l 212 232 312 322 332 323 3-^3 ^13 A23 U3

111-1-10-100000 00000\
A=!000000 0-1 -1101 00000
000000000000110-1-1'
l-101-lOOOOOOOOOOOOi

B=i000000 01-110-1 000 00
0000000000001-101-1'
0001010-1-100000000

c = 0000000000-1010000
1-10-11000000000000

AB=|00 000 0-1110-10 00 00
0000000000001-10-11

AC : fail

BC = (000 00 0-110 00 000)

ABC=(OOOOOOOI-IOOOOCOCO)
The expected values of the sums of squares are shoi-m as follows:

E(A) = trCV^ Qjo-J + tr(V^^ Q^)^ + trCV^^ Q^)^ + ^^^(Qa)4c

+ (a - 1)0-6

E(B) = tr(Vb Q^) al + trCVg^ %)al^ + trCV^c Qb)<^c + ^""^^hKho

+ (b - l)ae

E(C) = tr(V^ Q^)^^ + tr(V3^ Q^)al^ + trCV^^ Q^)c^3 + tr(Q^)o3^^

+ (c - 1)0-3
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2 . . ,. V 2 ^ , , ,> 2
E(AB) = trCVg^b Qab^^^ab + ^^(^ab^^abc + ^^^ ' ^^^e

E(AC) = tr(V^^ Q^^)4 + tr(Q^^)4^ + (ac - Do^

E(A3C) = tr(Q^^^)oJ^ ,

2
vliere V^^ = a^ J^ ® J^ ® Iq

2

^c = ^ ^c ® "^b
®

-^a

\b = 4jc®^b®^a

\c = 4^o®'^b®^a

V = °bc ^c ^ ^b ® ^a

"^abc - °abc •'abc . .
'

'
.

.

• '

\.^J Note that, @ indicates the direct product of two matrices and

3L = I(P X P); Jq = J(P X P) a matrix of all ones. These derivations

can be simplified by noting that for a three-vray classification,

^ = <i\-' ^^l^-" <^l\* ^Ih^^"- ^Ic^c'' %o\c

t X t 2 2

°abc abc " e e •

The dimensions of the matrices involved in these computations

are dependent only on the number of occupied cells (t) and not the

number of observations (n)»
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The result is presented as follovra;

SS A = r' Qg r = 2,906.22

SS B = r» Q^ r = 62,15^^.26

SS C = r' Qg r = 3,330.31

SS AB = r' Qg^ r = A25,3U.10

SS BC = r' Q^ r = 36,992.00

SS ABC = r' Qg^^g r = 36,992.00

The coefficients in the expected suns of squares are:

tr(V^ Q^) = 18.3A

*^(^ab ^a) = 0-°

tr(Qg) = 8.04

tr(V^ Q^) = 6.76

•t^(VabQb) =0.0
\ t '

tT{\^ Q^) =10.88 \_.^^:

tr(Qb) = 7.66 ,.
-

tr(Vc Qq) = 5,9A

tr(V^c Qc) =7.^ ''

tr(Qc) = 7,U

^^^\^ Qab) = 1-26

tr(Qg^) =7.76

^^\c%o^ =^-°0

tr(Q^^) = A. 00

tr(Qabc) = ^-OO
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DISCUSSION

Some points are vorthy of mention. By applying other methods it

becomes clear why Henderson (1953) chose the model:

yhijk = ^ -^
«h ^ ^i

-^ °j "• ^^°^ij
•*" "Mjk

to apply to his numerical example. Application of a complete three-

way classification model to this particular data is destined to failure.

This is not surprising when one looks at the table for the AC interaction:

Total
(c) (A) Year

Sire 1 2 3 U

1 7 13

2 8 9

3 7 13

20

17

20

Total 21 16 13 57

The degree of freedom of this interaction is obviously zero and

this prevents one from working \<d.th a complete model. Furthermore, this

example has 31 empty cells out of total A x A x 3 = 4-8.

The methods presented herein have their own peculiar characteristics.

The first technique depends upon unadjusted sums of squares. An increas-

2 2 2 2 2
ing Cq, say, causes an increasing varC^i^) and varCc^), if o^, o^,, and

2
their interactions as well as Og are held fixed. In the last tv;o methods,

2 2 2
the varCcg) remains invariant over any change in Og and o^, and vice

versa.

I'Jhere possible one should use the complete model since Karvey (i960)

indicated that estimates of variance components obtained from least-

squares analysis, presumbly h^ve smaller sampling errors than others.
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AN ABSTRACT OF

ESTl-fATION OF VARIA]^ICE CC-TOICKTS

IN A TKREE-WAY CLASSIFICATION

The purpose of this report is to describe some different unbiased

methods for estimating variance components by using a complere three-

way classification linear model with unequal subclass numbers. The

methods are discussed by C. R. Henderson, W. R. Harvey and R. L. Ander-

son.

Under Eisenhart's Model II, it is assumed that, except for jj, all

elements of the model are uncorrelated variables with mean zero and

2 2 2
variances Oq, o^,.,, or Oq, In the method of unadjusted sums of squares

the sums of squares are computed as in the standard analysis of variance

of corresponding orthogonal data. This method suggested by Henderson

equates computed suns of squares to their e::^ectations and solves for

the unknoxm variances.

The bias in estimating variance components due to the assumption

that fixed elements of the model are random variables can be eliminated

by "correcting" the data for a mixed model. Henderson obtained least

squares estimates of fixed effects, and used the corrected data in place

of the original data for computation,

r Harvey discussed the general least squai^s method for a two-vray

classification. The mathematical model can be expressed lay matrix

notation.

Y = X B+ e .

For a three-way classification, the normal equations are
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X'ZB = X'Y =
^a ^b "^c ^ab ^ac "be ^abcj

'

vjhere G is the grand total and T's are subtotals of corresponding effects

indicated by subscripts. Under the assumptions of Model II, the A, 3, C,

2 2
AB, AC, 3C, ABC and e are independently distributed as N(0, o^l), N(0,(J^I)

2 2
..,, N(0, cr^^jgl) and N(0, a^l) respectively, vAiere I is identity matrix

of suitable order.

The method of fitting constants involves computation of mean squares

by a conventional least squares analysis of non-orthogonal data. The

mean squares are equated to their expectations and the resulting system

solved for the unknovm variances, N. Bush and R. L. Anderson developed

the techJiique for a three factor design and applied it to the problem

of estimating variance components. The difference between this and the

general least square method is that in this method the sums of squares

for the three main effects are computed are the same as when the intei^

acrions were assumed to be non-existant.

Bush and Anderson using weighted squares of means require that sums

of squares be in the form

SS. = r« C.
r

Cj (A« A) C^.

-1
CI r

Ixt txs S X s sxt txl

where r is simply a vector of the sample means for the non-empty cells

of the design; (A'A) is a diagonal matrix in which the diagonal elements

are the reciprocals of the cell frequences; the C -matrix reflects a con-

trast betvreen effects and is of rank s; t is the number of occupied cells

and j = 1, 2,... .


