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Abstract 

Understanding plant roots and root development is key for agricultural productivity as 

roots affect many plant, ecosystem and biogeochemical processes. However, studying root 

development in-situ can be challenging. Minirhizotrons are commonly used for root monitoring, 

and allow non-destructive tracking of root development overtime. Nonetheless, existing 

commercial minirhizotron cameras are expensive and manually operated. Planar optodes are a 

promising technology for quantifying concentrations of soil solutes, but have not yet been paired 

with minirhizotron technology. We developed an inexpensive, automated minirhizotron camera 

system, the RhizoPi camera, built using off-the-shelf computer components that can be paired 

with planar optodes. The purpose of this study was to evaluate the capability and utility of the 

RhizoPi camera system. The objectives were to 1) assess the capabilities and design of the 

RhizoPi minirhizotron camera system and benchmark it against a commercial minirhizotron 

camera; 2) create an image analysis script to analyze minirhizotron images and compare results 

to those of existing commercial software; and 3) develop a method for using the RhizoPi camera 

system for planar optode imaging. Objectives 1 and 2 are the focus of Chapter 2 in which 

soybean (Glycine max L.) was grown in containers under controlled greenhouse conditions. 

Images collected using the RhizoPi camera system were analyzed for percentage of images that 

are roots (root percentage) using a script written in the Python programming language and the 

RootSnap!® software. Although the average root percentage measured by the Python script, 

3.36%, was significantly larger than with RootSnap!, 2.97%, the difference was small in 

magnitude (0.39%). Images collected using the RhizoPi camera were compared to images 

collected on the same day using the commercially-available CID Bioscience CI-600 

minirhizotron camera. Images from the two camera systems were processed to ensure the exact 



  

image frame location was being compared, then processed using RootSnap!. Objective 3 was the 

focus of Chapter 3, in which a method is presented for augmenting the RhizoPi minirhizotron 

camera system with planar oxygen optode technology and techniques. In this method acrylic 

minirhizotron tubes were turned into oxygen sensitive planar optodes by applying oxygen-

sensitive dyes in a strip along the length of each tube. Successful calibrations of these optodes 

are presented as a proof of concept for this method. The RhizoPi camera system is capable of 

collecting research-quality images of roots, and can serve as a platform for deploying planar 

optode technologies for in situ analysis of soil solution chemistry.    
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Chapter 1 - Literature review 

 Abstract 

The global population has quadrupled over the last century. This growth, along with 

rising incomes, increases global food demand. Understanding root development is vital for 

sustaining and increasing agricultural productivity due to the influence of roots on many 

ecosystem and biogeochemical processes. Root research has been inhibited by limitations; most 

notably high labor requirements and high costs of current root imaging equipment and. A 

summary of literature related to the use of minirhizotrons for in situ imaging roots and planar 

optodes for in situ sensing of soil solution chemistry is presented below. Topics reviewed include 

the advantages and disadvantages of minirhizotrons for studying roots, existing commercial 

minirhizotron cameras, development of scientific instruments using Raspberry Pi computers and 

other of-the-shelf computer components, use of the Python programming language for image 

analysis, and the use of planar optode sensors for two-dimensional quantification of soil solution 

chemistry. Understanding this environment is critical. Thus, minirhizotron cameras that are 

inexpensive, fully automated, and complimented by rapid image analysis and soil solution 

chemistry sensing with planar optodes are a promising advancement in the study of soil, root, 

and rhizosphere science.  

   

 Introduction  

 Growing human population and its demands 

Global demands for food and feed are increasing, which stresses land, water, nutrient, and 

soil resources (Eshel and Beeckman, 2013). Plant root systems serve as the nexus between these 

vital resources (Wang et al., 2006). Therefore, there is a need to develop our fundamental 
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understanding of root growth and development, and the impact of the presence of roots on the 

belowground environment. A cost-effective automated minirhizotron camera system combined 

with open-source data analysis to monitor rooting dynamics represents a big step towards 

supporting research to meet the demands of our land, water, nutrient, and soil resources. In this 

chapter I will review the importance of roots, methods of analyzing roots, and inexpensive 

computer tools for root analysis, such as the Raspberry Pi and Python image analysis. 

 

 Importance of plant roots and associated belowground processes 

Although most studies on plant growth have focused on aboveground organisms 

(Balvanera et al., 2006), plant roots and related belowground processes are essential for 

agricultural production and, similarly, for local and global water, carbon and nutrient cycles 

(Eshel and Beeckman, 2013; Kirkham, 2014).  

Although it is clearly important, research on roots has been inhibited by constraints 

imposed by the limitations of technology and the relatively labor-intensive nature of root 

research using existing technologies and methodologies (Persson, 1990). Environmental 

conditions can change through space and time (Polomski and Kuhn, 2002). Thus, temporal 

patterns of root distribution are commonly estimated in the field using repeated sampling, often 

in the form of consecutive soil core sampling (Crossley Jr and Blair, 1991; Rusek, 2001). The 

main issue related to soil core sampling for belowground variables is that spatial variability is 

often combined with temporal sampling. Cores from slightly different locations are inspected 

each day. (Johnson et al., 2001; Smith and Read, 2009). This can be avoided by using 

minirhizotrons, which gather images of soil biota with minimal disruption (Steinaker and 

Wilson, 2008). 
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According to Mancuso (2011), root research has advanced greatly in recent years because 

of significant advances in root imaging technology and methodology. However, most approaches 

have focused on container studies, growth of plants on non-soil media, or genetically modified 

root plants that brighten to grant greater root-soil contrast to promote automated image analysis. 

Limitations, such as small container size and unnatural soil properties or growing conditions, 

exist with each of these methods (French et al., 2012). A key challenge for belowground 

investigations is non-destructively collecting data at spatial and temporal scales that are relevant 

to the studied processes. The merger of belowground imaging and two-dimensional soil sensing 

can address this challenge through the use of minirhizotrons. 

 

 Minirhizotron 

Minirhizotrons have been used for more than 80 years going back to Bates (1937), and 

are viewed as a low-cost alternative to large, underground rhizotrons (Böhm, 1979). Rhizotrons 

normally comprise of an underground cellar or walkway with walls or windows that come into 

direct contact with the natural soil profile (Taylor et al., 1990a). In contrast, minirhizotrons are 

transparent tubes inserted into the soil to permit repeated root observation (Taylor et al., 1990a; 

Gregory, 2006). As the quality of cameras and associated electronics improved, the importance 

of minirhizotrons for studying root dynamics has increased in agronomy, forestry, and other soil 

and plant science disciplines (Hendrick and Pregitzer, 1996). Minirhizotrons have distinct 

advantages over conventional rhizotrons as well as other methods of studying roots in situ. 

However, the technology is not without disadvantages. 
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Advantages 

 The primary advantage of using minirhizotrons is that roots can be non-destructively 

studied in situ (Ephrath et al., 1999). Most other study methods are destructive and demand 

separation of the roots from the soil, generally by washing (Böhm, 1979). Also, minirhizotrons 

are versatile – they can be introduced in a wide diversity of ecological conditions (Gregory, 

2006; Wilson, 2014). Additionally, minirhizotron camera systems that are inserted into the 

minirhizotron tubes facilitate taking sequential root images over extended time periods 

(Hendrick and Pregitzer, 1996; Majdi, 1996). These images can then be analyzed to provide 

quantitative data on root length, mortality, longevity, density, diameter, and architecture 

(Hendrick and Pregitzer, 1996). Moreover, minirhizotrons have the capacity to track specific 

roots from the beginning until senescing without interfering significantly on the fine root 

mechanism (Johnson et al., 2001a). Various commercial and open-source software has been 

developed to facilitate collection and analysis of these images, including RootSnap!™ (CID Bio-

Science, Camas, WA, USA) WinRHIZOTM (Regent Instruments Inc., Ottawa, ON Canada), and 

RootFly 2.0.2 (Zeng et al., 2008). 

 

Disadvantages 

 Although minirhizotrons provide clear advantages over other methods of studying roots, 

there are disadvantages. First, root length data cannot be directly converted into dry mass. 

Therefore, soil cores are necessary to estimate biomass production (Böhm, 1979). Minirhizotron-

based experiments also can be costly, especially with regard to labor and camera costs (Jose et 

al., 2001). Minirhizotron installation plays a critical role in the quality of resulting data due to the 

contact between the soil and the minirhizotron tube. If tube insertion causes compaction it may 

result in artificially low root counts. Conversely, if a gap occurs between the tube and soil due to 
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an over-sized auger hole size, it may result in artificially high root counts as roots follow a path 

of least resistance in the soil along the viewing surface of the tube (Brown and Upchurch, 1987; 

Johnson et al., 2001b).  

A significant factor that limits the minirhizotron method is the considerable amount of 

labor necessary for collecting and analyzing root images (Persson, 1990; Zeng et al., 2008; 

Vamerali et al., 2012a). Currently, commercially available minirhizotron cameras are all 

manually operated and require a researcher to regularly visit field sites to collect images. 

Furthermore, the amount of labor required to analyze root images can be several times the 

amount of labor required to collect the images (Svane et al., 2019). Thus, the requirement for 

manual image collection and analysis limits the number of minirhizotron tubes that can be 

installed in a given experiment, limiting number of treatments and replications. A few 

minirhizotron prototypes, such as AMR-A (RhizoSystems LLC) and SoilCam (Rahman et al., 

2020), have showcased advanced features that automate the counting. However, these features 

have not been adopted by the market, likely because of limitations from image blur, distortion, 

and coloration (using mirrors due to narrow MR tubes), and low positioning accuracy (Rewald et 

al., 2020).  

Despite different endeavors made within the last decade, root image analysis is still based 

on manual root tracing. There have been several automated root tracing techniques and 

algorithms developed for analyzing minirhizotron root images, including Rootfly (Zeng et al., 

2008), RootSnap! (Version 1.3.2.23, CID-Bioscience, Camas, WA, USA), etc. However, the 

utility of these algorithms is limited by low contrast between soil and roots. (Svane et al., 2019). 

Moreover, uneven illumination generated by the light sources, soil property changes, and 

artifacts (scratches, water condensation, etc.) make computerized minirhizotron image 
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examination challenging (Rewald et al., 2020). Lastly, root imaging using minirhizotrons 

provides information only about rooting dynamics. Soil properties must be quantified separately 

from root images. Thus, there is a disconnect in space and time between minirhizotron-imaged 

root data and soil chemical, physical, and biological properties. Although root imaging with 

minirhizotron technologies have advanced knowledge of ecology, plant ecophysiology, and soil 

fertility (Johnson et al., 2001b; Vamerali et al., 2012b; Iversen et al., 2012), these technologies 

alone do not provide further insight into belowground biogeochemical environment.  

 

Available minirhizotron cameras 

 

There are three companies that manufacture minirhizotron cameras at present: i) CID-

BioScience Inc., Camas, WA, USA, ii) RhizoSystems LLC, Idyllwild, CA, USA, and iii) Vienna 

Scientific Instruments & Bartz Technology Corporation. Roberti et al. (2014) compared the CI-

600 In-Situ Root Imager (CID-BioScience) with the automated minirhizotron version A (AMR-

A; RhizoSystems LLC). They used a laboratory approach to compare the primary operations of 

these minirhizotron cameras and evaluated correlated uncertainties. Unlike the CI-600, which is 

manually controlled and works on a scanner-based digital technology and an open system, the 

AMR-A is entirely automated, programmable equipment that operates a digital microscopic 

camera in a closed system.  

Both minirhizotron cameras presented advantages and limitations built in their hardware 

and operation management. For the CI-600, human errors occurred when the manual 

minirhizotron camera was removed and replaced. In contrast, the AMR-A presented unexpected 

heating due to soil conditions, which depended on the number of repetitions in imagery taking. 

The above mentioned factors should be considered when analyzing minirhizotron images so that 
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the technologies can be improved and a better understanding of the belowground processes can 

be achieved (Roberti et al., 2014). 

Using information and communication technology (ICT) to develop and process farming 

information is essential to rural production, management, and operations (Li, 2009). 

The essence of agriculture informatization is to digitize each process in agriculture (animal 

husbandry, crop production, aquaculture, and forestry) through data innovation. Agriculture 

technology increased in sophistication with advances in modern  technology, in particular with 

the advent of broad connectivity and the Internet of Things (IoT) (Yan-e, 2011). 

 

Developing scientific instruments using Raspberry Pis and other inexpensive computers 

Internet of Things (IoT) is the interconnection of extraordinarily identifiable gadgets to 

provide remote monitoring or control assistance (He et al., 2017). The IoT is very prevalent in 

many areas, one example being home automation. The use of single-board computers and open-

source software has allowed do-it-yourself-minded individuals to create their own IOT devices 

inexpensively. (Sruthy and George, 2017).  Inexpensive Raspberry Pi computers (Raspberry Pi 

Foundation) and free, open-source software have helped facilitate this IoT creativity (Gonzalez 

et al., 2016). 

  Raspberry Pi computers are small boards, approximately 8.5 by 5.3 cm. These single 

board computers were initially planned to help to advance coding abilities (Upton and Halfacree, 

2012). Most contemporary models highlight built-in modules for wireless and 

Bluetooth networks (Monk, 2016). Furthermore, the Raspberry Pi Foundation (Cambridge, 

United Kingdom) issues open-source software and accomplices such as camera modules. 

Supplementary sensors or controllers can be attached through USB ports and general-purpose 

input/output pins. Raspberry Pis can operate parallel tasking and information approaches in real-
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time (Alvarez-Rosario and Padovese, 2015). Due to its low price and great capabilities, 

Raspberry Pi computers have gained great  popularity for scientific applications (Tovar et al., 

2018), including data collection and  monitoring systems for agricultural applications, such as 

plant care and selective irrigation to enhance the productivity and efficacy of water management 

(Grindstaff et al., 2019). Raspberry Pis have also been used as part of automated minirhizotrons 

systems for the AMR camera and SoilCam (Rewald et al., 2020; Rahman et al., 2020). In both 

cases, the cameras are fully automated and an image-processing software was developed to 

enable estimations of root growth patterns. 

Alongside advances made for automating image collection for minirhizotrons, similar 

advances have been made in image analysis automation. They have been broadly embraced for 

fast and useful root phenotyping. These technologies have been made accessible through 

commercial software applications (Cai et al., 2015), such as WinRHIZOTM and the open-source 

software options such as SmartRoot (Lobet et al., 2011), RootTrace (Clark et al., 2011), EZ-

Rhizo (Armengaud et al., 2009), Root System Analyzer (Leitner et al., 2014), IJ_Rhizo (Pierret 

et al., 2013), RootNav (Pound et al., 2013), and CRootBox (Schnepf et al., 2018). These software 

solutions, either semi- or fully-automated, were used to investigate roots shown in high-quality 

2D scans (Cai et al., 2015). Some machine learning algorithms were implemented using various 

software packages, such as R, MATLAB, and Python. However, there has been limited success 

in automated minirhizotron image analysis (Zhu et al., 2010; Vicensi et al., 2020).  

 

 Python Images Analysis 

An open-source programming language that is frequently used with Raspberry Pi 

computers is Python (Sanner, 1999). Python is an explained, interactive, object-oriented 

programming language. It presents high-profile data frameworks, such as list and associative 
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arrays called dictionaries, compelling typing and binding, modules, classes, exceptions, and 

automated memory administration. It has an exceptionally clean and refined syntax and still is a 

potent and general-purpose programming language (Sanner, 1999).  

Python supports image analysis through the use of toolkits such as Scikit (Pedregosa et 

al., 2011). Scikit is an open-source image processing toolkit that supports an extensive number of 

file formats, and is suitable with two- and three-dimensional images. The toolkit uses a simple 

programming interface with thematic modules organizing functions according to their aims, such 

as image restoration, apportionment, and analysis. (Gouillart et al., 2016). 

The capacity to gather quality information in a short time or truly redeem high-resolution 

pictures from under-sampled, blurred, and disturbed data can practically enhance experimental 

outcomes, possibly leading to novel disclosures (Farrens et al., 2020). These functions for image 

analysis also can be applied to planar optodes.   

Python pairs well with Raspberry Pi due to its low cost, proficiency in hardware control, 

and analytical capabilities (Sanner, 1999). This makes Python an ideal language for use on a 

Raspberry Pi-based, automated minirhizotron camera system, as it would facilitate both image 

collection and analysis (Rahman et al., 2020). In addition, with the correct hardware accessories, 

Raspberry Pi computers and Python can be used in a minirhizotron camera platform to facilitate 

in situ soil solution chemical measurements with planar optode sensors (Faget et al., 2013).  

 

 Soil solution chemical measurements (Planar optodes) 

According to Darrah (1993) the rhizosphere is described as the soil volume around living 

plant roots influenced by root activity. Understanding this environment is critical, mainly when it 

comes to the biological process analysis (Hinsinger et al., 2005). Therefore, analyzing factors 

such as soil bulk density interactions, spatial and temporal dynamics of O2, pH, and CO2 is vital 
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to comprehend plant roots (Blossfeld et al., 2013b). The standard measuring technique for 

sensing dissolved O2 and CO2 are (micro-) electrodes. However, electrodes are based on the 

electrochemical principle during the evaluation, which requires the electrode to be inserted into 

the biological environment. Thus, the method is invasive and can be disadvantageous for the 

assessment of sensitive bioprocesses. Electrodes have proven to provide excellent quantitative 

data on O2 and CO2 concentration or pH rates under lab and field conditions (Revsbech et al., 

1999; Armstrong, 2000). However, quantitative mapping of these analytes would demand a large 

set of fixed microelectrodes, each covering less than a square millimeter of the analyzed space of 

the growing roots (Fischer et al., 1989). Besides, quantitative data of radial and axial profiles of 

living roots with microelectrodes can only be derived when functioning under artificial 

conditions (Taylor and Bloom, 1998; Bloom et al., 2003). Therefore, non-invasive techniques for 

accurate high-resolution investigations of soil bioprocesses are required. 

Optodes are an emerging technology that overcomes the drawbacks of established 

sensors and technologies to quantify environmental parameters, such as ion-selective electrode 

(ISE). In addition, optodes could be paired with minirhizotron technologies (Blossfeld and 

Gansert, 2012). The measurement principle of oxygen optodes is based on the dynamic 

quenching of a fluorescent indicator through oxygen (Kautsky, 1939). The fluorophore is a 

fluorescent chemical compound that can re-emit light upon excitation. It consumes light within 

the nonappearance of oxygen and transmits the consumed energy as fluorescence with a 

determined intensity and period (Klimant et al., 1995; Hartmann and Ziegler, 1996).  For planar 

sensing, the fluorescent indicator is immobilized on thinned transparent foils. The intensity and 

lifetime distribution on the foil of oxygen-sensitive fluorescence are computed by a digital 

camera system (Glud et al., 1996; Liebsch et al., 2000). Therefore the planar optodes settle some 
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of the limitations of describing oxygen disposal at heterogeneous, three-dimensional interfaces 

with one-dimensional microprofiles (Buffle and Horvai, 2000). The optodes generally appear as 

planar designs, or are applied to ends of fiber optic cables. Both methods are efficient but 

selection of the method is based on the spatial requirements of the analysis.  For example, the 

planar methods facilitate evaluations of larger surface areas and can be used in tank set-ups (e. g. 

Glud et al., 1996; Precht et al., 2004). On the other hand, the fiber design is adapted for 

observing smaller surface areas and in-situ samples in various fields from medicine (Chen et al., 

2013) to environmental research for instance (Klimant et al., 1997).  

Planar optodes are non-invasive sensors that rely on imaging of fluorescent dyes that 

react to changes in soil solution chemistry. Examples of parameter and analytes that can be 

measured are pH (Blossfeld et al., 2013), dissolved oxygen (Larsen et al., 2011b), and carbon 

dioxide (Blossfeld et al., 2013). Planar optode measurements offer an unique opportunity to 

resolve both spatial and temporal variations on a submillimeter scale for a range of analytes 

(Larsen et al., 2011b). This strategy has previously been utilized to study oxygen dynamics 

across various benthic water interfaces, (Precht et al., 2004; Wenzhöfer and Glud, 2004) and, 

very recently, the capability of planar optodes for rhizosphere studies have been presented 

(Jensen et al., 2005).  

In many areas of the world, soil acidity limits agricultural yield. The low content of base 

cations, especially calcium and aluminum toxicities affect root growth and the absorption of 

water and nutrients by plants, usually causing a reduction in crop yields on acid soils (Marsh and 

Grove, 1992; Sumner, 1995; Tang et al., 2003). Thus, optodes speak for a promising technology 

for estimating soil solution chemical concentrations in situ, that has a potential for creating 

practices to solve these field problems in the future. The innovation consists of dyes embedded in 
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plastic that are sensitive to oxygen, acidity, carbon dioxide, and other dissolved substances 

(Blossfeld and Gansert, 2012). The dyes, when energized with light at dye-specific wavelengths, 

fluoresce at intensities that vary with the target analyte concentration. The ratio of the intensity 

of fluourescence across different colors can be used to calibrate these optodes and determine 

analyte concentration at different points. Early studies adopting the colorratiometric method were 

established on a single-CCD camera that splits the emission light into three primary colors: red, 

green, and blue (Jiang et al., 2017). 

Calibrated planar optodes enable repeatable, two-dimensional estimation of analyte 

concentrations at millimeter resolution (Blossfeld and Gansert, 2012). Planar optodes are 

promising and beneficial for a better understanding of the soil biological processes. On the other 

hand, it has its limitations too. In general, the temporal resolution is not a limitation because the 

fluorescence responseof the planar optode occurs within μs of excitation of the dye by the light 

source. However, this requires a transparent pathway for the light to reach the planar optode dye, 

and for light from fluorescence to be transmitted to the light sensor measuring the fluorescence  

(Blossfeld, 2013). Rhizoboxes have been used to solve this problem in laboratory settings, but it 

is challenging in the field.  

Early applications of optical procedures under field conditions have been used to collect 

point data or one-dimensional array data under field conditions with the utilization of optical 

sensors installed on the ends of fiber optic cables (Rickelt et al., 2013; Larsen et al., 2016). 

However, such an approach is limited in the spatial detail provided to only point data along a 

depth gradient.   

An advancement on that approach is to arrange point data in a grid to collect data in two 

dimensions. Schreiber et al. (2012) used this approach by arranging the fiber optic ends in a grid 
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of measurement spots 1.5 mm apart horizontally and vertically. Then the discrete data from each 

fiber was interpolated to achieve a quantitative image. Planar optodes, however, allow two-

dimensional sensing of soil chemistry and, hence, produce a progressively complete picture of 

biogeochemical processes. 

 There are limitations to planar optodes though. Planar optodes do not directly acquire 

original analyte concentration data, but rather the response of the planar optode dye fluorescence 

to analyte concentration (Larsen et al., 2011). Further, the dyes are not transparent to allow 

inspection of roots and other objects, and the soil adjacent to the optode may further obscure 

roots in close vicinity to the optode (Fischer et al., 1989). As a result, the planar optode can 

potentially present a shift of analyte values without an evident root behind the optode. Also, 

calibration issues related to the determination of the indicator concentration have regularly 

inhibited the use of these methods (Caldwell et al., 1992). Another factor to consider is that all 

optical sensors are sensitive to temperature, and the measurements should be compensated in 

case temperature is not kept constant (Borisov et al., 2011). In addition, planar optodes require 

cameras to image the fluorescence. This requires separation of the camera from the planar 

optode, which limits how compact planar optode imaging sysems can be. Lastly, it is essential to 

shield the system from other interfering light sources since the light is the information carrier 

(Blossfeld, 2013). 

 

 Summary 

Over the last century the global population has quadrupled. This growth, along with 

rising incomes, is driving up global food demand. This demand will require agriculture to 

enhance productivity through new technologies. Because roots are essential for plant functions, 
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such as water absorption, nutrient uptake, and anchorage, they can directly affect agricultural 

production. Thus, understanding soil-root interactions remains a topic that needs further 

exploration in order to meet this increased food demand. Non-destructive root study methods, 

such as minirhizotrons, are fundamental for facilitating this exploration. Moreover, coupling this 

method with planar optodes for oxygen rate measurements would be a novel approach to 

understand soil biological processes. These methods have their limitations, such as the need for 

collecting data at various spatial and temporal scales and the demand for intensive labor. Thus, 

automating the measurements would have a significant impact on research. A fully automated 

system can be built on Raspberry Pis to enable the camera functionalities while using Python 

programming for image analysis. In summary, this method can help to elucidate the 

belowground biogeochemical environment.  
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Chapter 2 - Benchmarking the RhizoPi automated minirhizotron 

camera system 

 Abstract 

Understanding plant roots and root growth is critical for agricultural productivity as roots 

influence many plants, ecosystems, and biogeochemical processes. However, investigating root 

development in situ can be challenging. Minirhizotrons are generally used for root monitoring 

and allow non-destructive tracking of root development over time. Existing commercial 

minirhizotron cameras are costly and manually operated. We developed an inexpensive, 

automated minirhizotron camera system, the RhizoPi camera, built using off-the-shelf computer 

components. The purpose of this study was to evaluate the capability and utility of the RhizoPi 

camera system. The objectives were to 1) assess the capabilities and design of the RhizoPi 

minirhizotron camera system and benchmark it against a commercial minirhizotron camera; 2) 

create an image analysis script to analyze minirhizotron images and compare results to those of 

existing commercial software. Images collected using the RhizoPi camera system were examined 

for the percentage of the image that is roots (root percentage) using a script written in the Python 

programming language and the commercial minirhizotron image analysis program, RootSnap!®. 

The average root percentage measured by the Python script, 3.36%, was significantly larger than 

with RootSnap!, 2.97%, though the difference was slight in magnitude (0.39%). Images collected 

using the RhizoPi camera were compared to images collected on the same day using the 

commercially available CID Bioscience CI-600 minirhizotron camera. Images from the two 

camera systems were processed to ensure the exact image frame location was being compared, 

then processed using RootSnap! The two systems (RhizoPi/Python script) and (CI-

600/RootSnap!) were not significantly different, thus validating our inexpensive system for 



23 

research analysis. Therefore, the RhizoPi camera system produces commercial-quality root 

imagery despite the low cost and use of off-the-shelf computer components.   

 

 Introduction  

Roots play a critical role in carbon and nutrient cycling in soils (Eshel and Beeckman, 

2013; Kirkham, 2014). Expanding our knowledge of rooting dynamics is crucial for progressing 

soil science, plant biology, agronomy, and related disciplines. One important instrument used to 

study rooting dynamics is minirhizotrons.  

Minirhizotrons are transparent tubes inserted into auger holes in the soil that help image 

roots using cameras inserted into the tubes (Taylor et al., 1990b). Minirhizotrons and 

minirhizotron cameras are commonly used for in situ monitoring of roots and facilitate non-

destructive tracking of root metrics over time (Bates, 1937). However, existing commercial 

cameras are expensive, usually require manual operation, and have significant labor 

requirements for image analysis (Persson, 1990; Zeng et al., 2008; Vamerali et al., 2012b).  

The development of a low-cost, automated minirhizotron camera system can help 

overcome these challenges. The “RhizoPi” minirhizotron camera system was recently developed 

by the Root Ecology and Hydropedology Laboratory at Kansas State University. It is a fully 

automated minirhizotron camera that takes non-destructive, high resolution, digital pictures of 

the roots and the belowground environment. The camera, presented in the study below, is built 

using primarily off-the-shelf hardware and computer components, in addition to 3D-printed 

parts. This camera operates and takes pictures using software written in the open-source Python 

programming language. The total cost for parts is approximately $300 per camera for all parts, 

which is significantly cheaper than commercial minirhizotron cameras that exceed $20,000 per 
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camera. The low cost of this new camera system facilitates the permanent installation of 

minirhizotron cameras in the field, which in turn facilitates automated image collection on pre-

determined time intervals.  

The goals of this study were to 1) assess the capabilities and design of the RhizoPi 

minirhizotron camera system and benchmark that camera system against a commercial 

minirhizotron camera, and 2) test the algorithm developed to analyze minirhizotron images 

against an existing commercial minirhizotron image analysis software program.   

 

 Material and Methods 

 Greenhouse experiment 

This experiment occurred during the spring of 2021 in a controlled greenhouse 

environment at Kansas State University in Manhattan, Kansas, USA. The imposed treatments 

were a randomized complete block designed with in-furrow arbuscular mycorrhizal fungi (AMF) 

and control. Since the images did not present any AMF infestation, we kept with the camera 

comparisons as the only treatments. It was designed to facilitate two comparisons. First, a 

comparison of the RhizoPi camera system to the CI-600 commercial camera system (CID 

Bioscience, Inc., Camas, WA, USA) using the same image analysis software, RootSnap! ® (CID 

Bioscience, Inc., Camas, WA, USA) for all image analyses. The second comparison was 

between camera systems (camera hardware and software) in which the RhizoPi camera with 

images analyzed using a script written in the Python programming language was compared to the 

CI-600 camera with images analyzed using the RootSnap! program. Glycine max (L.) Merr. 

(soybeans) was chosen as the study species for this experiment.  
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Soybean roots were imaged using both minirhizotron cameras. The CI-600 consists of a 

scanning head that spins inside the tube, capturing images 22 cm tall and 19.56 cm wide that 

represents nearly the full circumference of the minirhizotron tube. The camera is manually 

moved between each of the four positions inside of the tube using an indexing handle. The 

RhizoPi camera system operates differently, and consists of a camera that is horizontally 

stationary and captures an area representing two centimeters of circumference on the tube 

exterior (approximately 30% of the tube). However the RhizoPi camera is automated and moves 

downward incrementally, capturing images 1.25 cm in height at each stopping position along the 

length of the tube. Thus, roots were imaged using the CI-600 camera at depth intervals of 0 to 22 

cm, 22 to 44 cm, 44 to 66 cm, and 66 to 88 cm; and imaged using the RhizoPi camera in 1.0 cm 

increments (ensuring overlap between each 1.25 cm tall image) to 88 cm in depth. These images 

were divided in two groups (0-50 cm and 50-100 cm) for data analysis. 

Soybeans were grown in large polyvinyl chloride (PVC) columns that were 100 cm tall 

and 20 cm in diameter. A minirhizotron tube (6.35 cm diameter x 105 cm long) was inserted into 

each column, then the columns were packed with approximately 37 kg each of potting soil (Pro-

Mix CC40 W/Mycorrhizae) reaching an approximate bulk density of 0.15 g cm-3. To ensure that 

the exact image frame location to be compared, two stripes of dot marks were made along the 

exterior of the minirhizotron tubes using a rotary tool, resulting in a series of  adjoining 

rectangles 2.5 cm wide (along the circumference of the tube) and 1 cm tall (Figure 2.1) from the 

top to the bottom of the tube. Soybeans were sown with three seeds per column then thinned to 

one seedling after germination. The soybean genotype used was KS4117NS (Kansas AES, 

Manhattan, KS, USA) maturity group four. The ten PVC columns were set up in two rows with 

15 cm of distance between plants within rows, and 70 cm distance between rows.  
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Each column was irrigated with 200 mL tap water per day using a drip irrigation system. 

The greenhouse temperature was set to be 18.3°C at night and 26.7°C during the day. The 

photoperiod was set to promote flowering 50 days after planting, starting at 16 hours of daylight 

and dropping 1 hour every two weeks to reach 13 hours. Soybean plants were harvested at the 

second reproductive (R2) growth stage. 

The camera-to-camera comparison was conducted by imaging the soybean roots on the 

same day using both cameras as described above. The images were then pre-processed by Python 

script to crop the images based on the dots at the corner of each rectangle and ensure the same 

image frame location was analyzed. Each image was analyzed using the “Estimate Root %” 

feature in the RootSnap! program which identifies the percentage of each image that is roots 

(root percentage). The camera comparison was made using the camera (CI-600 and RhizoPi) as 

pairwise t test grouped by root depth (0-50 and 50-cm) and also grouped by days after emergence 

(56 and 61 days after emergence). 

The system-to-system comparison was conducted by the entire CI-600 system (hardware 

and software) and RhizoPi (hardware and software) as pairwise t test grouped by root depth (0-

50 and 50-cm) and also grouped by days after emergence (56 and 61 days after emergence). The 

same comparison was made using the entire CI-600 system (hardware and software) and RhizoPi 

(hardware and software) as pairwise t test grouped by root depth (0-50 and 50-cm) and also 

grouped by days after emergence (56 and 61 days after emergence). In this case, each camera 

had the image analyzed using its own software. 

 Field experiment 

The software-to-software comparison was performed using images from a field 

experiment using Zea mays L. (corn) with planned irrigation treatments that did not occur due to 
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the lack of necessity because of sufficient rainfall. In this case, the only treatments were the 

compared software (Python script and RootSnap!). The experiment was conducted during the 

2020 corn growing season at the North Central Kansas Experiment Field in Scandia, Kansas, 

USA (39°49′54.56″N, 97°50′23.28″W). The field site is irrigated and has been managed as a 

long-term reduced tillage corn-soybean rotation for at least six years. The site was tilled in the 

early spring before planting, planted on April 21st with 76 cm row spacing and a seed population 

of 74,000 per hectare, and harvested on October 5th, 2020. 

The soil is classified as Crete silt loam (Fine, smectitic, mesic Pachic Udertic 

Argiustolls). The weather is temperate. Average seasonal temperatures (maximum and 

minimum; °C), and cumulative precipitation (mm) were collected from a weather station from 

the Kansas Mesonet Network and are presented in Appendix Figure 2.1 and Appendix Table 2.1. 

The corn hybrid used was Pioneer P1828AM. Nitrogen application rates were balanced for the 

whole experiment and applied when the field was tilled for a total of 200 kg N ha-1 applied. 

Minirhizotron tubes were installed in the field within seven days of plant emergence. 

Each treatment plot followed the east-west orientation of the rows, was 4.6 by 15.2 m in size 

encompassing six rows total. Two minirhizotron tubes were installed in the middle two rows 

between the harvested area at the center and the plot boundaries. A motor-powered, handheld 

auger and wooden jig were used to bore holes approximately 7.5 cm in diameter and 90 cm long 

at a 60° angle from the soil surface in the plant row (Figure 2.2). A one and a half meter acrylic 

minirhizotron tube with a waterproof plug at the base was embedded into each auger hole. PVC 

caps were used to seal the exposed tubes, regulate the light interference, and keep the imaging 

exterior clean and dry. Tubes were anchored in place with wooden stakes and plastic ties to 

prevent the tube raising with the water table in case of rain events. 
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The RhizoPi cameras were installed into the tubes and remained in the field. Root images 

were collected using the RhizoPi and CI-600 camera systems on the same day on a weekly basis 

throughout the growing season. The RhizoPi cameras were removed during CI-600 imaging and 

then replaced. The images capture an area two centimeters wide and 1.25 centimeters long with a 

resolution of 64 dots mm-1 (600 DPI resolution). The cameras were powered from batteries kept 

charged by solar panels installed in each plot. The cameras were controlled using either a tablet 

or laptop computer (Figure 2.3). Images were collected at ten depth positions along each tube. 

Those images were later analyzed for root percentage using both RootSnap! and the Python 

script (Appendix Code 2.1).  

Images collected for this comparison were grouped into two depths, 0-50 and 50-100 cm 

depth and six image collection events: 55, 72, 80, 86, 92, and 115 days after emergence. The 

software comparison (Python script vs. RootSnap!)  was made using the pairwise t test to 

compare images grouped by root depth and days after emergence. Ten images at ten different 

depths were taken per nine minirhizotron observation tubes during six imaging sessions from V4 

to R1 (or DAE), resulting in 540 images total. To quantify root percentage by depth, the images 

were subjected to both RootSnap! and Python script (Appendix Code 2.1), processed to the 

percent area of root related to the image size. Each image's physical size was given in both pixels 

(1280 x 720) and centimeters (2 x 1.25), allowing for calculating pixels/cm scale. 

 Statistical analysis 

The data from the greenhouse and field experiments were both tested for normality using 

the Shapiro Wilk test (Shapiro and Wilk, 1965), and tested for homogeneity of variance using the 

Levene test (Glass, 1966). The greenhouse data was normally distributed, but field experiment 

data was not. Thus, a normalization process was applied to the data using the square root of the 
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values of the quantitative variables. After being transformed, the data again went through the 

normality and homogeneity tests and passed. 

The t-test for independent and paired measures was applied to perform the comparative 

analysis, the multiple comparison analysis - ANOVA with post hoc Tukey. Correlation and 

linear regression analyses also were applied to the data to characterize relationships between the 

quantitative variables (Figure 2.4). In addition to these, agreement analysis between the methods 

was applied using the Conbrach’s alpha test to measure the internal consistency of the data. 

 Results 

 Minirhizotron camera comparisons 

The RhizoPi camera had comparable results to those from the CI-600 camera in the 

greenhouse experiment involving soybean roots. Three sets of example images for both cameras 

from the same location and same day are presented in Figure 2.6. The mean root percentage 

determined using Rootsnap! was 10.67 % (±3.37%) for the RhizoPi camera, which was greater 

than the 9.92% (±3.84%) found using the CI-600 (Figure 2.5). That difference was significant 

(p=0.02), but was small in magnitude (0.89% ±3.44).   

 Exploring this difference by days after emergence we found a significant difference 

(p=0.03) between the RhizoPi (9.57% ±3.62%) and CI-600 (8.52% ±3.57%) cameras at 56 days 

after emergence, though there was no longer a significant difference by 61 days after emergence 

(p=0.25) (Figure 2.7).  In comparing cameras by depth, there was no significant difference 

(p=0.24) between the two cameras at the 0-50 cm depth, but there was (p=0.01) at the 50-100 cm 

depth. In these deeper depths the RhizoPi root percentage (11.90% ±3.23%) was greater than the 

CI-600 (9.86% ±3.92%) (Figure 2.8). The results comparing both cameras using the RootSnap! 

software including measurements between dates and depths are presented on   
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Table 2.1. 

 Minirhizotron Camera System Comparisons  

The two cameras were also compared as a minirhizotron camera system in which the 

images from each camera were analyzed using the respective image analysis software program 

(The RhizoPi camera and the Python script versus the CI-600 camera and RootSnap!). Three sets 

of example images for both software programs from the same image frames are presented in 

Figure 2.10, which is visible a similar pattern on identifying roots from both software. This was 

performed using the soybean root images in the greenhouse study. Across all images there was 

no significance difference (p=0.56) in root percentages observed between the two systems 

(Figure 2.9). The mean root percentages were 9.53% (±4.07) for the RhizoPi using the Python 

script and 9.28% (± 3.84) for the CI-600 using RootSnap!. 

However, there were differences observed when comparing the systems for a given 

imaging session (Figure 2.11). At 56 days after emergence the RhizoPi/Python script system root 

percentage (11.32% ± 2.87%) was significantly greater (p=<0.001) than the CI-600/RootSnap! 

system (8.52% ±3.57%). This difference had reversed by 61 days after emergence where the CI-

600/RootSnap! system (11.33% ± 3.62) had a significantly greater (p=<0.001) root percentage 

than the RhizoPi/Python script system (7.78% ± 4.39). Conversely, when the two systems were 

compared by depth (Figure 2.12), no significant differences were observed at either the 0-50 cm 

(p=0.33) depth or the 50-100 cm (p=0.05) depth.  The results comparing both systems including 

measurements between dates and depths are presented on Figure 9 and Table 2.2. 

 Image analysis software comparisons 

In the field study in which corn root images taken using the RhizoPi camera were 

analyzed by both the Python script and RootSnap!, a small (0.38%) but significant difference 
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(p=<0.001) between the two image analysis programs was detected (Table 2.3 and Figure 2.13). 

The average root percentage measured using the Python script was 3.35% (±0.69%), and the root 

percentage measured using Rootsnap! was 2.97% (±0.97%). Although that difference was 

significant, an agreement analysis was applied to identify whether results from the two programs 

were consistent. It determines how closely related a set of items are as a group to measure the 

scale reliability of the data. A Cronbach’s alpha value of 0.6146 was found, indicating moderate 

internal consistency between the Python script and the RootSnap! software (Table 2.6). 

According to the Cronbach (1951) criterion, alpha values  depict “almost perfect” internal 

consistency at values greater than 0.8, moderate consistency between 0.6 and 0.41, reasonable 

between 0.4 and 0.21, and small less than 0.21. 

Observing the analysis from both software within different days after emergence, it was 

possible to find that there were significant differences on most of the dates which are reported on 

Table 2.3.  

 Grain yield 

Average yields for corn in 2020 was 83.38 kg/ha per plot (15.24 m long x 4.57 m wide).  

 Discussion 

The RhizoPi minirhizotron camera system performed comparably to the CI-600 

minirhizotron camera. The images produced by the RhizoPi camera have excellent quality and at 

a higher default resolution than the CI-600. One advantage of the CI-600 camera is it images 

nearly the entire circumference of the minirhizotron tube, producing an image 21.59 cm in length 

by 19.56 cm of tube circumference. However, disadvantages of that camera are that it is 

significantly more expensive, has to be manually operated, and operates slowly in order to get 

the highest resolution possible (23.6 dots mm-1). The RhizoPi camera is low cost and operates 
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automatically, producing high resolution (64 dot mm-1) images. This disadvantage of the RhizoPi 

camera is it captures a smaller amount of the circumference of the minirhizotron tube, resulting 

in a strip of imaged area covering nearly the full length of the tube, but only 2 cm wide. 

However, this small area imaged can be overcome by adding additional cameras to the RhizoPi 

platform that are oriented towards different sections of the minirhizotron tube.  

A comparison of the two cameras was performed using image analysis in greenhouse and 

field experiments. The camera-to-camera comparison, using the same software (RootSnap!) 

showed that there was a small in magnitude, yet significant difference in root percentage with the 

RhizoPi produced images that resulted in greater root percentages than for images produced by 

the CI-600. This can be attributed to the greater resolution in the RhizoPi (64 dots mm-1) camera 

compared to the CI-600 (23.6 dots mm-1) (Table 2.7) due to a more detailed image that helps the 

software to better track the root percentages. In addition, the LED light and the Raspberry PI 

NOIR (no infrared filter) camera used in the RhizoPi presented a brighter image (Figure 2.6), 

which may contribute to greater contrast in the images, leading to a greater detection of roots. 

Roberti et al. (2014) observed a limitation from the CI-600 when resolving smaller objects, 

which could stem from limited contrast in CI-600 images. 

We found no statistical difference overall between the RhizoPi/Python script system and 

the CI-600/RootSnap! systems. Thus, the question remains whether there is a difference between 

the hardware or the software or even both. This is a critical point, because lack of agreement 

between minirhizotron camera systems may lead to minirhizotron studies not being comparable. 

Therefore, we decided to compare the same images from the RhizoPi camera for different 

software (Python script and RootSnap!) and we found no difference between software programs 

on root percentage area. This lack of difference may be attributed to the threshold settings for 
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both software programs, which are set by the user and help adapt the software programs to the 

respective image quality.  

Exploring differences found between the two software programs for the same images, we 

found that the Python script produced greater root percentages than RootSnap!, though that 

difference was small in magnitude. This result can be attributed to the fact that the Python script 

is an automated system, while the RootSnap! program requires a person to operate the software 

to determine root percentage. Because one of the minirhizotron tube drawbacks is that the water 

can condense (Böhm, 1979) on the tube surface, the automated Python script may falsely count 

condensation as roots, and thus overestimate root percentages. In this case, the RootSnap! avoids 

some overestimated root percentages considering its manual operation. Further improvements to 

the Python script will be necessary to reduce non-root features from being counted as roots.  

The difference attributed to the software may be related to its parameterization. In this 

case, the parameterization criteria for the RootSnap! agrees with the visualization of the Pearson 

correlation coefficient (0.46) (Table 2.6). The parameterization criteria for the RhizoPi software 

used the CV2 package from Python with morphological transformations. Thus, these 

transformations are simple operations based on the image shape for making boundaries of the 

foreground object, such as soil and roots (Figure 2.10). The fact that we do not have a reference 

value for the actual percentage of the root limits the assessment of the software's accuracy. 

Although there is a difference between software and hardware of the systems, and the 

results of the same images using a different software, there is a correlation between results from 

both software (Figure 2.4). The fact of an existing proportionality between the values may 

indicate a relative precision and that eventually, both software will need calibration.  
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The observed differences between days after emergence and depth showed inconsistency, 

potentially due to analysis limitation between old and new roots. Some researchers have been 

trying to quantify the age and/or health of fine roots by color through image analysis, such as 

Dannoura (2008). However, the color nomenclature used by researchers to define root health is 

unstandardized and ambiguous (Roberti et al., 2014). Therefore, a calibration for the specific 

crop should be made before collecting data. In addition, growing roots in containers can obtain a 

different behavior when compared with field experiments. 

With this innovation and permanently installed cameras, automation is now possible 

under in situ growing conditions or extensive mesocasm container studies. Even though 

minirhizotrons have expanded in utilization, there is still much to be discovered. Many previous 

studies have been small-scale or involved a limited number of species and at unique sites 

(Gregory, 2006; Wilson, 2014), which makes it harder to other species and locations (Kobiela et 

al., 2016). Therefore, more studies are necessary to examine multiple species and their 

interactions on the field to fill in some of the knowledge gaps of the world's diverse plant 

environments (Wilson, 2014). 

 

 Conclusion 

The RhizoPi camera system was designed to use off-the-shelf components and 3D printed 

parts, costing about approximately $300 per camera. The design will be released as an open-

source design, thus ensuring an affordable and accessible minirhizotron camera platform. This 

affordability of the RhizoPi camera combined with the automated operation may lead to 

increased use of minirhizotron cameras and root imaging that will facilitate computer visioning 

of roots. The key result from this study is that the RhizoPi camera design, in its current form, 
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produces imageries that are comparable to those produced by a commercial minirhizotron 

camera. Further, these imageries are produced using a camera designed for affordability and 

automated operation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 

 References 

Bates, G. 1937. A device for the observation of root growth in the soil. Nature 139(3527): 966. 

Böhm, W. 1979. Methods of studying root systems. Springer Science & Business Media. 

Cronbach, L.J. 1951. Coefficient alpha and the internal structure of tests. Psychometrika 16(3): 

297–334. doi: 10.1007/BF02310555. 

Dannoura, M., Y. Kominami, H. Oguma, and Y. Kanazawa. 2008. The development of an 

optical scanner method for observation of plant root dynamics. Plant Root 2: 14–18. doi: 

10.3117/plantroot.2.14. 

Eshel, A., and T. Beeckman. 2013. Plant roots: the hidden half. CRC press. 

Glass, G.V. 1966. Testing Homogeneity of Variances. Am. Educ. Res. J. 3(3): 187–190. doi: 

10.3102/00028312003003187. 

Gregory, P.J. 2006. Plant roots: growth, activity, and interaction with soils. Blackwell Pub, 

Oxford ; Ames, Iowa. 

Kirkham, M.B. 2014. Principles of soil and plant water relations. Academic Press. 

Kobiela, B., M. Biondini, and K. Sedivec. 2016. Comparing root and shoot responses to nutrient 

additions and mowing in a restored semi-arid grassland. Plant Ecol. 217(3): 303–314. 

doi: 10.1007/s11258-016-0571-3. 

Persson, H. 1990. Nutrient cycling in terrestrial ecosystems: field methods, application, and 

interpretation (A.F. Harrison, P. Ineson, and O.W. Heal, editors). Elsevier Applied 

Science, London ; New York. 

Roberti, J.A., M.D. SanClements, H.W. Loescher, and E. Ayres. 2014. Traceable calibration, 

performance metrics, and uncertainty estimates of minirhizotron digital imagery for fine-

root measurements (B. Bond-Lamberty, editor). PLoS ONE 9(11): e112362. doi: 

10.1371/journal.pone.0112362. 

Shapiro, S.S., and M.B. Wilk. 1965. An analysis of variance test for normality (complete 

samples). Biometrika 52(3–4): 591–611. doi: 10.1093/biomet/52.3-4.591. 

Taylor, H.M., D.R. Upchurch, and B.L. McMichael. 1990. Applications and limitations of 

rhizotrons and minirhizotrons for root studies. Plant Soil 129(1): 29–35. doi: 

10.1007/BF00011688. 

Vamerali, T., M. Bandiera, and G. Mosca. 2012. Minirhizotrons in Modern Root Studies. 

Measuring Roots. Springer, Berlin, Heidelberg. p. 341–361 

Wilson, S.D. 2014. Below-ground opportunities in vegetation science (R. Kalamees, editor). J. 

Veg. Sci. 25(5): 1117–1125. doi: 10.1111/jvs.12168. 



37 

Zeng, G., S.T. Birchfield, and C.E. Wells. 2008. Automatic discrimination of fine roots in 

minirhizotron images. New Phytol. 177(2): 549–557. doi: 10.1111/j.1469-

8137.2007.02271.x. 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

Figures and Tables 

 

 
Figure 2.1. Minirhizotron tube with stripe dots to ensure the exact image frame location 

was being compared. 

  



39 

 

Figure 2.2. Installed minirhizotron with a 60° angle. 
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Figure 2.3. Field operation of the RhizoPi camera system. 
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Figure 2.4. Estimated value for RhizoPi and RootSnap! regression. 
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Figure 2.5. Comparing camera to camera (CI-600 x RhizoPi) using RootSnap! software. 
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Figure 2.6. Camera comparisons. CI-600 (left) and the RhizoPi (right). 
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Figure 2.7. Comparing camera to camera (CI-600 x RhizoPi) using RootSnap! software for 

different days after emergence (56 and 61). 
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Figure 2.8. Comparing camera to camera (CI-600 x RhizoPi) using RootSnap! software for 

different depths (0-50 cm and 50-100 cm). 
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Figure 2.9. Comparing system to system (RhizoPi/Python script x CI-600/RootSnap!). 
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Figure 2.10. Software comparisons with RootSnap! (left) and Python script (right) images 

for the corn roots. The values of root percentage estimations were A- 14.31% and B-

17.48%; C-17.8% and D-19.02%; E- 17.8% and F-19.02%. 
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Figure 2.11. Comparing system to system (RhizoPi/Python script x CI-600/RootSnap!) for 

different days after emergence (56 and 61). 
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Figure 2.12. Comparing system to system (RhizoPi/Python script x CI-600/RootSnap!) for 

different depths (0-50 cm and 50-100 cm). 
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Figure 2.13. Comparing software to software (Python script x RootSnap!) for RhizoPi 

images. 
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Figure 2.14. Distribution of camera software by days after emergence (DAE). 
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Figure 2.15. Comparison of two software (Python script x RootSnap!) for the RhizoPi 

images within depths. 
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Table 2.1. Camera comparison (CI-600 vs. RhizoPi) using RootSnap! software analysis of 

soybean root images from all dates and depths. 

Camera Days after emergence (DAE) Depth (cm) 

   56 61 0-50 50-100 

 

Mean 

(%) 
SD 

Mean 

(%) 
SD 

Mean 

(%) 
SD 

Mean 

(%) 
SD 

Mean 

(%) 
SD 

RhizoPi 10.67 3.37 9.57 3.62 11.76 2.58 10.14 3.31 11.9 3.23 

CI-600  9.92 3.84 8.52 3.57 11.05 3.69 9.62 3.81 9.86 3.92 

p-value 0.02  0.03  0.25  0.24  0.01  
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Table 2.2. System comparison (RhizoPi/Python script vs. CI-600/RootSnap!) of soybean 

root images from all dates and depths. 

System Days after emergence (DAE) Depth (cm) 

   56 61 0-50 50-100 

 

Mean 

(%) 
SD 

Mean 

(%) 
SD 

Mean 

(%) 
SD 

Mean 

(%) 
SD 

Mean 

(%) 
SD 

RhizoPi/Python 9.53 4.07 11.32 2.87 7.78 4.39 10.48 3.78 6.93 3.79 

CI600/RootSna

p!  
9.28 3.84 8.52 3.57 11.33 3.62 9.8 3.78 10.3 4.09 

p-value 0.56  <0.001  <0.001  0.33  0.05   
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Table 2.3. Paired comparison of image measurements. 

Measurement  Mean (%) Standard Deviation 

Python script 3.35 0.69 

RootSnap! 2.97 0.97 

Comparison  Mean Difference Standard Deviation of the 

difference 

p-value 

CI600 x RhizoPi -0.38 0.89 <0.001 

*p-value for the paired comparison t-test; p-value <0.05 indicates statistical significance. 
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Table 2.4. Comparison of two softwares (Python script x RootSnap!) for the RhizoPi 

images within days after emergence. 

                              Software    

 Python script RootSnap!  

Days After emergence Mean (%) SD Mean (%) SD p-value 

55 3.43 0.67 2.74 1.07 <0.001 

72 3.62 0.55 3.08 1.04 <0.001 

80 3.19 0.68 3.04 0.86 0.1170 

86 3.30 0.67 2.94 1.09 <0.001 

92 3.12 0.77 2.90 0.86 0.0106 

115 3.85 0.37 3.33 0.75 <0.001 
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Table 2.5. Comparison of two softwares (Python script x RootSnap!) for the RhizoPi 

images within depths. 

 

  

Depth (cm) 

 0-50 50-100 

 Mean (%) SD Mean (%) SD 

Python script 3.41 0.65 3.29 0.73 

RootSnap! 3.02 0.97 2.91 0.97 

p-value  <0.001  <0.001  
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Table 2.6. Description of agreement analysis between camera software. 

(%) Degrees of Agreement  Linear model   

Measurement  Python 

script 

RootSnap! Cronbrach’s 

alpha 

r  R² Equation p-value 

(test F) 

Model    0.61 0.4693 

(<0.001) 

21.86% 

 

Y = 2.36 

+ 0.33X  

<0.001 

Minimum 1.79 0.04      

Mean 2.97 3.36      

Median 3.05 3.36      

Standard 

Deviation 

0.78 0.69      

Maximum   29.16 27.61      

Cronbach's alpha regarding the agreement between the measures. In this case, 0.61 is a 

substantial amount. 
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Table 2.7. Camera's Feature and Specifications for CI-600 and RhizoPi hardwares. 

Specifications CI-600 RhizoPi 

Image Size 
21.59 cm × 19.56 cm (8.5 in × 7.7 

in) 
2.0 cm × 1.25 cm 

Scan Speed 

30-150 seconds depending on 

scanning resolution (3.9 dot/mm- 

23.6dot/mm) 

5 seconds per image 

Image Resolution 3.9, 11.8, and 23.6 dot/mm 720*1280 and 64 dot/mm 

Computer 
Handheld tablet 

 

Laptop with self-made 

app 

Software 

CI-600 In-Situ Root Imager 

and RootSnap! 

 

RhizoPi app and python 

programming language 

Interface 
USB Cable 

 
Wi-Fi 

Scan Head Dimensions 

34.3 cm long × 6.35 cm 

diameter 

 

40 cm long x 6.35 

diameter 

Scanner Unit Weight 
0.75 kg 

 
3 kg 

System Requirements 

Microsoft Windows XP, Vista, 7, 8, 

10 1GB Memory/RAM 1GHZ+ 

Processor 

 

2 Raspberry PI zero with 

+32GB SD card 

Operation Manually operated 
Fully automated and 

manually operated modes 

Cost $18,000 total 
$ 300 for parts 

$ 300 for labor 
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 Appendix 

 
Appendix Figure 2.1. Daily precipitation and maximum temperature for the 2020 growing seasons at Scandia, KS. 

 

 

   



61 

 

Appendix Table 2.1. Scandia, KS weather data. Monthly average maximum temperature 

and total precipitation for 2020 (Kansas State University Mesonet, 2021). 

Month 
Average Maximum 

Temperature  (˚C) 

Average Minimum 

Temperature (˚C) 

Average 

Precipitation 

(mm) 

April 21.86 4.32 0.788 

May 21.06 9.3 2.30 

June 30.86 17.57 3,403 

July 29.55 18.61 6,426 

August 29.44 16.25 0.524 

September 24.85 9.59 1,176 

October 20.72 1.54 0 
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Appendix Table 2.2. Comparing camera to DAE (CI-600 x DAE) and (RhizoPi x DAE). 

Days after emergence (DAE) 

 56 61   

 Mean (%)   SD Mean (%) SD p-value 

      

CI-600 8.52 0.53 11.33 0.54 0.0004 

RhizoPi  9.68 0.54 11.84 0.42 0.0033 

Difference  -1.05 0.49 -0.70 0.60 0.65 

*T test for comparison of independent groups 

 

Both cameras showed increases in root percentages between the two imaging sessions 

(Appendix Table 2.2). A significant increase (p=0.0033) was observed from 9.68% (± 0.54) at 56 

days after emergence to 11.84% (± 0.42) at 61 days after emergence using the RhizoPi camera. 

Similarly, a significant increase (p=0.0004) from 8.52% (± 0.53) to 11.33% (± 0.54) was 

observed using the CI-600 camera during the same imaging sessions, respectively.    
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Appendix Table 2.3. Comparing camera to depth (CI-600 x Depth) and (RhizoPi x Depth). 

   Depth   

 0-50 cm  50-100 cm   

 Mean (%) SD Mean (%) SD p-value 

      

CI-600 9.79 0.46 10.30 0.85 0.56 

RhizoPi  10.28 0.42 11.90 0.72 0.06 

Difference -0.51 0.43 2.04 0.73 0.08 

*T test for comparison of independent groups 

 

As shown in Appendix Table 2.3, there was no significant difference between the 0-50 

cm depth and the 50-100 cm depth for either the RhizoPi (p=0.06) or CI-600 (p=0.56) cameras.  
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Appendix Table 2.4. Comparing system to DAE (RhizoPi/Python x DAE) and (CI-

600/RootSnap! x DAE). 

Days after emergence (DAE) 

 56  61   

 Mean (%) SD Mean (%) SD p-value 

System      

RhizoPi/Python 11.27 0.42 7.75 0.64 <0.001 

CI-600/RootSnap! 8.52 0.53 11.33 3.62 <0.001 

Difference 2.8 0.56 -3.55 0.93 <0.001 

 

The results of comparisons between imaging session within a given camera system are 

reported in Appendix Table 2.4. For RhizoPi/Python script system, the average root percentage 

significantly decreased (p=<0.001) from 11.27% (±0.42) at 56 days after emergence to 7.75% 

(±0.64) at 61 days after emergence. The CI-600/RootSnap! system significantly increased 

(p=<0.001) from 8.52% (±0.53) at  56 days after emergence to 11.33% (±3.62) at 61 days after 

emergence (Appendix Table 2.4).  
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Appendix Table 2.5. Comparing system to depth (RhizoPi/Python x Depth) and (CI-

600/RootSnap! x Depth). 

   Depth   

 0-50 cm  50-100 cm   

 Mean (%) SD Mean (%) SD p-value 

System      

RhizoPi/Python script 10.46 0.46 6.93 0.77 0.0002 

CI-600/RootSnap! 9.79 0.46 10.3 0.85 0.5913 

Difference 0.68 0.70 -3.36 1.27 0.0049 

*p-value <0.05 indicates statistical significance. 

 

The results of comparisons of root percentages between the 0-50 cm depth and 50-100 

cm depth for a given system is shown in Appendix Table 2.5. A significant difference 

(p=0.0002) between the 0-50 cm depth (10.46% ± 0.46) and 50-100 cm depth (6.93% ± 0.77%) 

was observed for the RhizoPi/Python script. However, no significant difference (p=0.5913) was 

observed between depths for the CI-600/RootSnap! system.   
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Appendix Table 2.6. Comparison between depth levels and software images. 

 Depth  

 0-50 cm 50-100 cm  

 Mean (%) Standard 

Deviation 

Mean (%) Standard 

Deviation 

p-value 

Python script 3.41 0.65 3.29 0.73 0.06 

RootSnap! 3.02 0.97 2.91 0.97 0.21 

      
*p-value for the t-test for comparison of independent groups; p-value <0.05 indicates statistical 

significance. 

The comparison between depths for a given image analysis software program is shown in 

Appendix Table 2.6. No significant differences were observed between the 0-50 cm and 50-100 

cm depths for either RootSnap! (p=0.21) or the Python script (p=0.06). 
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Appendix Code 2.1. Python code for percentage analysis 

# import libraries 

import cv2 

import numpy as np 

import matplotlib.pyplot as plt 

from PIL import Image 

import os, sys 

import pandas as pd 

import glob 

 

# folder with images 

path_to_folder = r'C:\\Users\\josecpp\\Desktop\\python_work\\All_files'  

 

# list all images in the folder 

imgs = glob.glob(path_to_folder + '/*.jpg') 

 

# print listed imgs 

print(imgs) 

 

# define objects for dilation 

kernel = np.ones((8,8), np.uint8) 

kernel2 = np.ones((12,12), np.uint8) 

 

# create an empty list to store the dilation of each img 

_imgs = [] 

_csv = [] 

 

# loop through all imgs 

for i in imgs: # i = imgs[0] 

     

    print('Processing img: {0}'.format(i)) 

     

    # read img 

    img = cv2.imread(i) 

 

    ret,thresh1 = cv2.threshold(img,170,255,cv2.THRESH_BINARY) 

    opening = cv2.morphologyEx(thresh1, cv2.MORPH_OPEN, kernel) 

    erosion = cv2.erode(opening, kernel2, iterations = 1) 

    dilation = cv2.dilate(erosion, kernel2, iterations = 1) 

     

    # bands 

    red = dilation[:,:,0] 

    green = dilation[:,:,1] 

    blue = dilation[:,:,2] 

     

    # overall calculate root percentage 

    overall_root_percentage = len(dilation[dilation>0])/dilation.size * 100 

 

    red_rp = len(red[red>0])/red.size * 100 

    green_rp = len(green[green>0])/green.size * 100 

    blue_rp = len(blue[blue>0])/blue.size * 100 

 

 

    # add img dilation to empty list 

    _imgs.append(dilation) 
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    # add root_percentage to dictionary to create a panda data.frame 

    

_csv.append({'img_id':i,'overall_root_percentage':overall_root_percentage, 

                 'red_rp':red_rp, 

                 'green_rp':green_rp, 

                 'blue_rp':blue_rp}) 

     

    # save fig 

    fig_name = 

os.path.join('results',os.path.basename(i).replace('jpg','png')) 

 

    fig = plt.figure(figsize=(10, 10)) 

    grid = ImageGrid(fig, 111,  # similar to subplot(111) 

                    nrows_ncols=(2, 2),  # creates 2x2 grid of axes 

                    axes_pad=0.5,  # pad between axes in inch. 

                    ) 

 

    for ax, im, t in zip(grid, [red, green, blue, _imgs[-1]],title): 

        # Iterating over the grid returns the Axes. 

        ax.imshow(im) 

        ax.set_title(t) 

 

    fig.savefig(fig_name,dpi=300) 

 

# csv with with root percentage 

root_percentage_df = pd.DataFrame(_csv) 

root_percentage_df.to_csv('results/dataframe.csv') 
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Chapter 3 - Minirhizotron based planar optodes 

 Abstract 

Analyses of both rooting dynamics and soil solution chemistry are important for 

understanding belowground processes. Unfortunately, methods for monitoring root development 

and soil solution chemistry have been separated by location, time, or both, due to issues 

associated with sampling. Planar optical sensors (optodes) are an emerging technology that 

overcomes the hindrances of established sensors and technologies, and can be used to quantify 

environmental parameters. Planar optodes are non-invasive sensors that rely on fluorescent dyes 

that fluoresce at different intensities based on the concentrations of analytes dissolved in the soil 

solution. Planar optodes are a proven technology for quantifying concentrations of soil solutes, 

but the need for imaging the dyes through transparent surfaces has primarily restricted their use 

to laboratory settings. To date, planar optodes have not been coupled with minirhizotrons, which 

are transparent tubes inserted into auger holes in the soil. Minirhizotrons are traditionally used 

with cameras that are inserted into the tube to repetitively image roots in contact with the outside 

of the tube. We developed an inexpensive, automated minirhizotron camera system, the RhizoPi 

camera using off-the-shelf computer components. In this Chapter we present a method for using 

the RhizoPi camera system as a platform for imaging planar oxygen optodes on the exterior of 

minirhizotron tubes. In this method, acrylic minirhizotron tubes were transformed into oxygen 

sensitive planar optodes by applying oxygen-sensitive dyes in a strip along the length of each 

tube. Successful calibrations of these optodes are presented as proof of concept for this method. 

The RhizoPi camera system can collect research-quality images of roots and serve as a platform 

for deploying planar optode technologies for in situ analysis of soil solution chemistry, thus 
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opening up the possibility of simultaneous collection of soil solution chemistry and root data 

from the same location.   

 Introduction 

Understanding the relationship between plant roots and belowground processes is 

essential to agriculture productivity and understanding water, carbon, and nutrient cycles 

(Richter et al., 1999; Kirkham, 2014). Developing a low-cost, automated tool for imaging and 

analyzing belowground processes is fundamental for meeting the food demands of a growing 

human populations. A challenge for belowground analysis is non-destructively collecting data at 

relevant spatial and temporal scales. Current methods rely on extracting soil samples to 

quantitatively investigate the physiochemical parameters of the rhizosphere (the volume of soil 

impacted by surrounding plant roots), thus modifying biogeochemical and physical conditions of 

significance. Since root development is driven by the biogeochemical conditions within the soil 

environment, the ability to measure the soil solution chemistry without disturbing the soil and 

root would represent a significant scientific breakthrough.  

Although root imaging with minirhizotron technologies has progressed in ecology, plant 

ecophysiology, and soil fertility studies (Johnson et al., 2001b; Vamerali et al., 2012b; Iversen et 

al., 2012),  it does not directly contribute to belowground measurements of soil chemistry. To 

obtain insights on rhizosphere biogeochemistry, minirhizotrons must be paired with technology 

that facilitates simultaneous soil chemistry data collection. Planar optical sensors (optodes) are a 

promising technology for quantifying chemical soil solutions. This technology consists of 

chemically-sensitive dyes embedded in plastic. To date there are dyes sensitive to oxygen, 

acidity, carbon dioxide, and other dissolved substances (Blossfeld and Gansert, 2012). The dyes, 

once excited with light at dye-specific wavelengths, fluoresce at intensities that vary with the 
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target analyte concentration. This fluorescence is then imaged using cameras. Once calibrated,  

planar optodes facilitate repeatable, two-dimensional analysis of analyte concentrations at the 

millimeter resolution (Blossfeld and Gansert, 2012). 

The coupling of planar optode technologies with an automated minirhizotron camera is 

an important progression in soil, root, and rhizosphere research. It facilitates in situ analysis of 

root and fungal hyphae attributes that are paired with soil solution chemistry measurements at the 

same time and location in the soil. In this chapter I will present a method for coupling the 

minirhizotron with planar optode. The developed technique is based on the method originally 

presented by Larsen et al. (2011a).  

 

 Material and methods 

The oxygen sensitive optode sensor is based on the oxygen-sensitive luminophore, 

platinum(II) octaethylporphyrin (PtOEP) (Lee and Okura, 1997; Oguri et al., 2006). Platinum (II) 

octaethylporphyrin is commercially available from Frontier Scientific (frontiersci.com). 

According to Larsen et al. (2011a), the brightness of the platinum(II) systems can be 

significantly enhanced by linking the indicator with an antenna dye that operates as an energy 

contributor for the indicator. The antenna dye efficiently receives the excitation light-energy and 

shifts the energy to the indicator, which is a principle attributed to light harvesting (Mayr et al., 

2009). The principle of light harvesting employs energy transfer (ET) from donor to acceptor dye 

molecules (Lian et al., 2019). The donor dye serves as antenna for the excitation light and 

transfers the energy to the analyte sensitive acceptor dye (indicator) (Mayr et al., 2009). In this 

study, the dye from Macrolex® fluorescence yellow 10GN (MY) was used as the antenna dye, 
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which is available through LANXESS (lanxess.com). The antenna and indicator dyes present 

excellent absorption spectra for excitation with commercially-available high power blue LEDs.  

A reliable ratio of antenna to indicator dye in this research has been determined to be 

1%/1% (wt/wt) in a 4% polystyrene matrix (Larsen et al., 2011a). The antenna dye, indicator 

dye, and polystyrene were dissolved in toluene to form a solution. In this case, the solution was 

made with 40 mg of indicator dye, 40 mg of antenna dye, 2 g of polystyrene and 50 g (43 ml) of 

solvent (Toluene) as described by Waldo et al. (2019) and Turner et al. (2020). This solution was 

stirred in a beaker until all polystyrene is dissolved over the course of several hours.  

 

 Creating Planar Oxygen Optodes with Minirhizotron Tubes 

The planar optode dyes were applied to minirhizotron tubes as a spray using an airbrush 

(model 200, Badger Air-Brush Company, Franklin Park, IL, USA) connected to a small air 

compressor (6 Gallon Portable Electric Pancake Compressor, Ridge Tool Company, Elyria, OH, 

USA). Use of the airbrush ensured an even application of the optode dye solution. 

Minirhizotrons were coated with the dye solution in a fume hood (Figure 3.1), and dye was 

applied until a consistent orange color was achieved (Figure 3.2).  One batch of dye coats 

approximately two 2.5 cm x 95 cm optodes (approximately 240 cm2). Once the dye had dried, 

the sensor was covered with a black, waterproof  silicone (black window & door caulk 100%, 

type II,  Momentive Company, Waterford, NY, USA) which functions as an optical insulation to 

diminish light-scattering artifacts from the soil and roots (Glud et al., 1996). The black silicone is 

oxygen permeable but does not allow light to be transmitted. This silicone was applied to the 

optode surface first with a caulk gun, then smoothed by hand with a spatula to a consistent 

thickness of approximately 1 mm thick.  
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 Modification of the RhizoPi Minirhizotron Camera System for Imaging Planar Optodes 

The oxygen-sensitive luminophores are excited by blue light from LEDs as described by 

Larsen (2011a). The RhizoPi camera uses LEDs (NeoPixel Stick - 8 x 5050 RGB LED with 

Integrated Drivers, Adafruit industries) that can be set to emit light of different wavelengths and 

colors, including blue, which was used for imaging the dyes here. Further, cameras specially 

made without infrared filters are required on DSLR cameras as described by Larsen (2011a). The 

RhizoPi camera is built using NOIR Raspberry Pi cameras (Raspberry Pi Foundation). Different 

than Larsen (2011a), no additional filters were placed over the LEDs or over the camera lens for 

imaging the planar oxygen optodes on the minirhizotron tubes.   

 Imaging procedures 

Images were recorded by the RhizoPi camera five seconds after the LEDs were turned 

on. We found that a five second exposure time led to an improved response in fluorescence 

compared to the 0.5-1.5 s exposure time used by Larsen et al. (2011a). Each raw JPG file 

collected by the camera was transferred by Wi-Fi to a laptop computer and later analyzed. 

Processing of the stored images was performed using a script (Appendix Code 3.1) written in the 

Python programming language (Python, version 3.8, Python Software Foundation). That script 

performs five functions in sequence, including importing modules, importing images in Joint 

Photographic Experts Group (JPEG) format, standardized cropping of images for analysis, 

getting data from the images in red, green, and blue (RGB) format, combining the RGB values in 

the output, and finally plotting the relation between oxygen and pixels. 

 Calibrating the images 

A calibration tank 0.45 m long by 0.2 m wide by 1.1 m tall was constructed using 2.5 cm 

thick expanded PVC panels (Figure 3.3). The joints were made water-tight by using PVC primer 
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and glue on each joint, and the joints screwed together. The tank was filled with deionized water. 

A calibrated dissolved oxygen meter (oxygen sensor) was placed in the center of the tank under 

water to monitor oxygen concentrations. Compressed nitrogen and oxygen gas was bubbled into 

the bottom of the tank through aquarium tubing and an aquarium air stone.  The regulators on the 

compressed gas tanks were adjusted to achieve desired dissolved oxygen concentrations based on 

the readings from the oxygen sensor. 

The minirhizotron tubes with planar optodes coated at the external part of the tube were 

held under the water during this process and were clamped in place to prevent shifting or 

floating. The optodes were rolled with a foam paint roller to remove any bubbles on the surfaces 

of the optodes, then were allowed to equilibrate at each oxygen concentration. The optode 

responds to oxygen concentrations quickly. However, the use of gases to adjust oxygen 

concentration in the calibration tank results in turbulence and some variability. Thus, it is 

recommendable to wait at least five minutes to allow the oxygen concentration of the water in 

the calibration tank to reach a steady state condition before imaging the optode. The cameras 

were then operated to collect images at each position for the respective oxygen concentrations.  

The tested oxygen concentrations are presented in Table 3.1, according to the calibrated 

dissolved oxygen meter (oxygen sensor). A 0% oxygen concentration was achieved using a 20 

g/L sodium sulfite solution. 

As described per Larsen (2011a), we used the pixel intensity for calibrating the oxygen 

sensor, the ratio between the intensity of the two green images, and the intensity of the 

corresponding red image simultaneously recorded by the camera (Eq. 1).  The green images are 

controlled by luminescence from Macrolex yellow coumarin. The luminescence emission 

controls the red image from the PtOEP. The Macrolex yellow is not quenched by oxygen, and 
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luminescence intensity is not affected by the oxygen concentration. Thus, the pixel intensity ratio 

can be calculated as 

R =
Red − Green

Green
 

Equation 3.1 

 

where R is the pixel intensity ratio, Red the intensity of the red pixels, and Green the pixel 

intensity of the two green images recorded by the image sensor. There is a possibility that the 

pixel intensity of red or green can be attributed to the amount of dye applied to a specific portion 

of the planar optode. However, since the two dyes are mixed prior to application to the optode, 

the constant green fluorescence functions as an internal reference. Thus, change in red 

fluorescence can be attributed primarily to responses to dissolved oxygen concentration and not 

be influence by the amount of dye applied to the optode at that location.  

The optode responsiveness is nonlinear with greatest sensitivity at low oxygen rates.  

 

𝑅

𝑅0
= [α + (1 − α) (

1

1 + Ksv ∙ C
)] 

Equation 3.2 

 

where α is the unquenchable portion of the luminescence signal, Ksv the Stern-Volmer (Klimant 

and Wolfbeis, 1995) quenching constant, R the (red-green)/green luminescent intensity ratio, R0 

is the ratio in the lack of oxygen, and C the oxygen concentration. Because temperature has a 

noticeable influence on the oxygen sensor's performance (Borisov et al., 2006), it is essential to 

implement sensor calibration at the determined temperature. Thus, calibrations were conducted 

adopting equation 3 

C =
𝑅0 − 𝑅

Ksv ∙ (R − R0 ∙ α)
 

Equation 3.3 
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 Results 

 Sensor calibration 

The calibration for the oxygen planar optode at position two is shown in Figure 3.4, the 

values are in Table 3.1, and the calibration for the other positions are in Appendix.  

A common trend on the calibration curve for the oxygen planar optode is shown in Figure 

3.5. The optode’s response in terms of pixel intensity is inversely correlated to the oxygen rates 

(%). In this case, as the oxygen rates increase, more energy absorbed from the blue LED is being 

quenched by dissolved oxygen resulting in less fluorescence and lower pixel intensity. Red (R) is 

inversely correlated with the percent oxygen concentration and obtained a value equal to 212.8. 

In addition, green (G) signal serves as an internal reference and obtained a value of 30.7 as 

shown in Figure 3.5. Both figures (Figure 3.4 and Figure 3.5) are examples of calibrations 

performed at each of five positions along the length of the planar optode.  

 Discussion and Conclusion 

The RhizoPi camera coupled with the planar optode approach can be a useful technology 

for investigating rooting dynamics and other belowground processes that influence soil 

chemistry, with the added benefit of non-destructively collecting such data at exact location and 

temporal resolution.  

Compared to the color ratiometric planar optode imaging approach proposed by Larsen 

(2011a), the minirhizotron coupled with planar optodes presents many benefits. Most notably, 

combining planar optode and minirhizotron technology will facilitate use of planar optodes in 

field applications. In addition, both root data and soil solution chemistry data can be collected 

from the same tube at the same time across a range of soil depths with repeated and non-

destructive sampling.  
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This method did require minor modifications to both the RhizoPi camera system and the 

planar optode method introduced by Larsen et al. (2011). For example, the RhizoPi camera must 

use a Raspberry Pi NOIR camera rather than a standard Raspberry Pi camera. Also, for the 

solvent for the dye solution, toluene (Waldo et al., 2019; Turner et al., 2020) was used instead of 

chloroform proposed by Larsen (2011a). Moreover, the ratio decreases more than 65% when the 

oxygen concentration increases from 0 to 100% air saturation. Larsen (2011a) obtained a higher 

ratio (75% decreased from 0-50% of air saturated). We believe that, with similar modifications to 

the RhizoPi camera system and planar optode methodology, this approach can be adapted to all 

planar optode sensors that display a dynamic color change as a function of analyte concentration.  

In conclusion we note that planar optode sensors are a proven technology. We have 

shown that, with minor changes to the RhizoPi camera system and planar optode methodology,  

planar optodes can be coupled with minirhizotrons, thus opening up the possibility of using the 

planar optode sensors in field applications. Notably, the low-cost and automated function of the 

RhizoPi minirhizotron camera system will keep the labor and equipment costs for the planar 

optodes in field settings low. Accessibility will also be improved through open licensing of the 

software scripts  and the RhizoPi camera system design.  
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 Figures and Tables 

 
                     Figure 3.1. Tubes and airbrush into the fume hood for coupling the planar optode. 
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Figure 3.2. Coding color after painting. 
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Figure 3.3. Optode calibration tank system. 
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Figure 3.4. An example oxygen optode calibration curve. Dots are mean 

pixel values for an area of 3 cm2. This curve is from position 2 of the 

calibrated optode. 
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Figure 3.5. Pixel intensity of the Red and Green image at different oxygen concentrations 

for position 2. 
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Table 3.1. Oxygen rates, red, green and pixel intensity values for optode calibration of 

position 2. 

Oxygen rates 

(%) 

Red Green Pixel intensity 

0 212.86 30.7 370.96 

9 192.35 31.63 328.96 

20.7 186.05 27.65 303.39 

40.9 178.09 31.04 287.09 

61.2 173.58 26.02 271.06 

80 172.37 21.8 252.57 

100 120.89 26.61 245.92 
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Appendix Figure 3.1. Pixel intensity of the Red and Green image at different oxygen 

concentrations for position 1. 
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Appendix Figure 3.2. Pixel intensity of the Red and Green image at different oxygen 

concentrations for position 2. 
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Appendix Figure 3.3. Pixel intensity of the Red and Green image at different oxygen 

concentrations for position 2. 
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Appendix Figure 3.4. Pixel intensity of the Red and Green image at different oxygen 

concentrations for position 4. 
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Appendix Figure 3.5. Pixel intensity of the Red and Green image at different oxygen 

concentrations for position 5. 
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Appendix Figure 3.6. Calibration curve for the oxygen optode in position 1. Dots are mean 

pixel values for an area of 3 cm2. 
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Appendix Figure 3.7. Calibration curve for the oxygen optode in position 3. Dots are mean 

pixel values for an area of 3 cm2. 
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Appendix Figure 3.8. Calibration curve for the oxygen optode in position 4. Dots are mean 

pixel values for an area of 3 cm2. 
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Appendix Figure 3.9. Calibration curve for the oxygen optode in position 5. Dots are mean 

pixel values for an area of 3 cm2. 
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Appendix Table 3.1. Oxygen rates, Red, Green and pixel intensity values for optode 

calibration of position 1. 

Oxygen rates 

(%) 

Red Green Pixel intensity 

0 205.4 50.2 347.64 

9 194.31 43.2 328.27 

20.7 186.92 26.71 295.61 

40.9 178.7 31.69 274.08 

61.2 171.55 27 268.35 

80 164.69 25.81 249.73 

100 130.19 25.79 239.51 
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Appendix Table 3.2. Oxygen rates, Red, Green and pixel intensity values for optode 

calibration of position 3. 

Oxygen rates 

(%) 

Red Green Pixel intensity 

0 200.131 31.81 328.98 

9 189.93 25.88 314.85 

20.7 185.63 22.46 296.08 

40.9 157.76 31.16 276.85 

61.2 153 33.96 260.59 

80 151.01 20.06 252.57 

100 128.97 30.22 237.56 
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Appendix Table 3.3. Oxygen rates, Red, Green and pixel intensity values for optode 

calibration of position 4. 

Oxygen rates 

(%) 

Red Green Pixel intensity 

0 212.86 43.85 324.76 

9 183.14 21.37 308.37 

20.7 180.18 25.58 293.17 

40.9 160.31 32.7 283.33 

61.2 159.16 30.19 279.81 

80 156.57 29.7 266.37 

100 125.32 33.4 237.56 
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Appendix Table 3.4. Oxygen rates, Red, Green and pixel intensity values for optode 

calibration of position 5. 

Oxygen rates 

(%) 

Red Green Pixel intensity 

0 226.33 43.85 356.88 

9 195.51 33.59 337.25 

20.7 193.6 30.6 310.4 

40.9 185.87 31.16 298.91 

61.2 161.53 31.83 286.43 

80 159.53 27.61 266.37 

100 121.19 26.5 243.98 
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Appendix Code 3.1. Python code for RGB analysis  

# Import modules  

 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

%matplotlib inline 

import cv2 

from scipy import stats 

 
# Creating a Data set for each oxygen percentage   

 

images_0 = [cv2.imread(file) for file in 

glob.glob("Calibration/T5/0%/*.jpg")] 

images_14 = [cv2.imread(file) for file in 

glob.glob("Calibration/T5/14.4%/*.jpg")] 

images_20 = [cv2.imread(file) for file in 

glob.glob("Calibration/T5/20.7%/*.jpg")] 

images_40 = [cv2.imread(file) for file in 

glob.glob("Calibration/T5/40.9%/*.jpg")] 

images_61 = [cv2.imread(file) for file in 

glob.glob("Calibration/T5/61.2%/*.jpg")] 

images_80 = [cv2.imread(file) for file in 

glob.glob("Calibration/T5/80%/*.jpg")] 

images_102 = [cv2.imread(file) for file in 

glob.glob("Calibration/T5/102%/*.jpg")] 

images = [image_0,image_7, image_10, image_15, image_21, image_26, image_31, 

image_35,image_41, image_50, image_62, image_79, image_80, image_98] 

 
#Checking the images shape/size 

print (image_10.shape) 

 
# Plotting the image file 

 

plt.imshow(image_10) 

 
#Cropping Image 

#Create a list of all cropped images from the loop 

 

c=[] 

for i in range(0,len(images)): 

    cropped_image = images[i][540:740,1080:1280, :] # Select 200x200 in the 

middle of the image 

    c.append(cropped_image) 

    plt.imshow(cropped_image) 

 
# Create variable names and oxygen ratios 

 

images_names = ["image_0”,”image_14”, “image_20”, “image_40”, “image_61”, 

“image_80”, “image_102] 

oxygen_rates = [0, 14.4, 20.7, 40.9, 61.2, 80, 102] 

df_mean=pd.DataFrame(columns = 

['images','oxygen_rates','red','green','blue','pixel_intensity']) 

 

#index to get folder name 
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ind = 0 

 

# For each cropped image, get the images_names, oxygen_rates, and RGB values 

to store in a data frame  

for crop_image in c: 

    #image index 

    img = c[ind] 

         

    #oxygen rates 

    oxygen = oxygen_rates[ind] 

     

    #image names 

    image = images_names[ind] 

         

 

    # Extract mean data in separate variable for manipulation 

    red = crop_image[:, :, 0].mean() #Extract mean of red pixel values 

    green = crop_image[:, :, 1].mean() #Extract mean of green pixel values 

    blue = crop_image[:, :, 2].mean() #Extract mean of blue pixel values 

 

 

    #separate values as list, so we can append it! 

    #values = [image_names,oxygen_rates,red,green,blue] 

    df_mean = df_mean.append({'images':image, 'red':red, 

                              "green":green,'blue':blue, 

'oxygen_rates':oxygen},ignore_index=True) 

 

 

    #add index, to get the proper folder name! 

    ind = ind + 1 

 
#Create the variable Pixel intensity - Sum of RGB   

df_mean["pixel_intensity"]= df_mean[["red", "green", 

"blue"]].sum(axis='columns') 

 

#Rounding the Data Frame values 

df_mean.round(decimals=2) 

 
# Plotting histograms to analize the rgb data in single bands 

plt.figure(figsize=(12,8)) 

 

plt.subplot(1,3,1) 

plt.hist(df_mean['red'],color= 'r') 

plt.xlabel("Red", size=13) # Adding axis x label for red band and its size 

plt.yticks([0.5,1,1.5,2,2.5]) # Adjusting the y axis scale for red band 

 

plt.subplot(1,3,2) 

plt.hist(df_mean['green'],color= 'g') 

plt.xlabel("Green", size=13) # Adding axis x label for green band and its 

size 

plt.yticks([0.5,1,1.5,2,2.5]) # Adjusting the y axis scale for green band 

 

plt.subplot(1,3,3) 

plt.hist(df_mean['blue'],color= 'b') 

plt.xlabel("Blue", size=13) # Adding axis x label for blue band and its size 

plt.yticks([0.5,1,1.5,2,2.5]) # Adjusting the y axis scale for blue band 
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# Compare Oxygen and Pixel intensity with 

 

x = np.array(df_mean["pixel_intensity"]) #Generate data 

y = np.array(df_mean["oxygen_rates"]) 

plt.plot(x, y, 'o') #Create scatter plot 

m, b=np.polyfit(x, y, 1) # Adding line that best fits 

plt.plot(x, m*x + b, color='b') # m =slope, b =intercept 

 

# Adjusting graph  

 

plt.plot(color=blue) # Plotting the graph 

plt.xlabel('Pixel intensity(px)') # Defining the axis (x,y) 

plt.ylabel('Oxygen(%)')  

plt.title("Oxygen x Pixel Intensity") # Adding title 

plt.savefig("../Output/Project-Image.png") # Output - Save the graph to .png 

object 

 
# Fit linear model using linregress 

 

df_mean[["oxygen_rates"]] = df_mean[["oxygen_rates"]].apply(pd.to_numeric) 

x= df_mean["pixel_intensity"] 

y= df_mean["oxygen_rates"] 

fit_info = stats.linregress(x, y) 

 

# Display individual parameters 

 

print('slope:',fit_info.slope) 

print('intercept:',fit_info.intercept) 

print('r:',fit_info.rvalue) 

print('r-squared:',fit_info.rvalue**2) 

print('p-value:',fit_info.pvalue) 

 
# Output - Save dataframe to .csv object 

 

df_mean.to_csv("../Output/df_Project-Image.csv") 

 

 

 


