# INTEGRATION OF IN SITU AND LABORATORY VELOCITY MEASUREMENTS: ANALYSIS AND CALIBRATION FOR ROCK FORMATION CHARACTERIZATION

by

## RANDI JO LEE ISHAM

B.S., Kansas State University, 2010

## A THESIS

submitted in partial fulfillment of the requirements for the degree

## MASTER OF SCIENCE

Department of Geology College of Arts and Sciences

KANSAS STATE UNIVERSITY Manhattan, Kansas

2012

Approved by:

Major Professor Dr. Abdelmoneam Raef

# Copyright

RANDI JO LEE ISHAM

2012

## Abstract

In this study, laboratory measurements of ultrasonic frequency P- and S-wave velocities were collected and analyzed from two sets of cores. The first set is from a near surface study in southeastern Kansas, and the second set was from the deep subsurface and obtained from a newly drilled well (Wellington KGS 1-32) in Sumner County, KS. Ultrasonic velocities acquired from the second set of cores were then compared with in situ sonic and dipole sonic frequencies of P- and S-waves from well logs. Well log data, core data, and ultrasonic velocity measurements were integrated for Gassmann fluid replacement modeling. The understanding of the velocity and elastic moduli variations at ultrasonic frequencies, along with the comparison of well log velocities can potentially provide improved understanding to establish a beneficial calibration relationship. It could also allow for estimation of shear wave velocities for wells lacking dipole sonic log data. The ability to utilize cost-effective ultrasonic measurements of velocities and elastic moduli in the laboratory, for fluid replacement modeling (Gassmann) in CO<sub>2</sub>-sequestration, as well as, enhanced oil recovery (EOR) projects, would be a significant advance. Potential alternative use of ultrasonic velocities for determining the effects of fluid replacement using Gassmann modeling, when log data is lacking, is an ongoing effort. In this study, the fluid replacement modeling is executed based on sonic and dipole sonic P- and S-wave velocities and compared with results from theoretical modeling. The significance of this work lies in the potential of establishing a calibration relationship for the representative lithofacies of the carbon geosequestration target zone of the Wellington KGS 1-32 well in Sumner County, and enabling the use of ultrasonic measurements of body wave velocities and elastic

moduli in Gassmann fluid replacement modeling. This work, when integrated with continuing effort in mapping lithofacies of the Arbuckle and Mississippian groups, would potentially be of great importance to fluid flow simulation efforts and time-lapse seismic monitoring. This study will utilize Gassmann modeling and a range of measurements and data, which include: well logs and ultrasonic laboratory P- and S-wave measurements and core analysis data.

## **Table of Contents**

| List of Figures                             | vii  |
|---------------------------------------------|------|
| List of Tables                              | xiii |
| Acknowledgements                            | xiv  |
| Chapter 1 - Introduction                    |      |
| Research Significance                       | 3    |
| Chapter 2 - Core Locality and Stratigraphy  | 5    |
| Arbuckle Group                              |      |
| Eminence Dolomite                           |      |
| Gasconade Dolomite                          |      |
| Roubidoux Dolomite                          |      |
| Jefferson City Dolomite and Cotter Dolomite |      |
| Mississippian Group                         |      |
| Kinderhookian Stage                         |      |
| Chouteau Limestone                          |      |
| Sedailia Dolomite                           |      |
| Gilmore City Limestone                      |      |
| Osagian Stage                               |      |
| St. Joe Limestone Member                    |      |
| Reeds Spring Formation                      |      |
| Burlington – Keokuk Limestone               |      |
| Meramecian Series                           |      |
| Cowley Facies                               |      |
| Warsaw Limestone                            |      |
| Salem Limestone                             |      |
| St. Louis Limestone                         |      |
| Genevieve Limestone                         |      |
| Chapter 3 - Methodology                     |      |

| Ult 100 Ultrasonic System                       | 25  |
|-------------------------------------------------|-----|
| Ultrasonic P-wave and S-wave velocities         | 32  |
| Automatic Determination of Velocities           | 32  |
| Manual Determination of Velocities              | 38  |
| Final Velocities and Elastic Moduli Results     | 41  |
| Testing Procedures                              | 42  |
| KDOT Cores                                      | 42  |
| KGS Cores                                       | 43  |
| Gassmann Modeling                               | 44  |
| Chapter 4 - Data and Results                    | 49  |
| Core Information                                | 49  |
| KDOT Core                                       | 49  |
| B8S2                                            | 49  |
| KGS Cores                                       | 63  |
| 4-26                                            | 63  |
| 14-4                                            | 71  |
| 25-3                                            | 78  |
| Amplitude Variations and Attenuation            | 86  |
| Comparison of In Situ and Laboratory Velocities | 89  |
| Gassmann Modeling                               | 95  |
| Chapter 5 - Conclusions                         | 106 |
| References                                      | 107 |
| Appendix A - Core Samples                       | 110 |
| Appendix B - Waveform Graphs and Data           | 124 |
| Appendix C - Gassmann Modeling Data             | 144 |

# **List of Figures**

| Figure 2.1 Map of Kansas indicating core locations. KDOT cores are highlighted with blue    |
|---------------------------------------------------------------------------------------------|
| stars. KGS cores are highlighted with a red star. Image modified from                       |
| http://www.yellowmaps.com/maps/img/_preview/US/blank-                                       |
| county/Kansas_co_lines.jpg5                                                                 |
| Figure 2.2 Surface and subsurface distribution of Pennsylvanian aged rocks in Kansas.       |
| (Moore et al., 1951)                                                                        |
| Figure 2.3 Stratigraphic column including the Auburn Shale and Winzeler Shale Member        |
| that are included in the study. Image from Zellner, 1968                                    |
| Figure 2.4 Stratigraphic column including the Tacket Formation that is included in the      |
| study. Image from Zellner, 19689                                                            |
| Figure 2.5 Stratigraphic column including the Cabaniss Formation that is included in the    |
| study. Image from Zellner, 196810                                                           |
| Figure 2.6 Map of North America highlighting the craton. Image from                         |
| http://www.mnh.si.edu/earth/text/4_1_3_1.html12                                             |
| Figure 2.7 Map of Kansas showing major Kansas subsurface structures. Image from KGS. 13     |
| Figure 2.8 Distribution of Arbuckle rocks throughout Kansas. (Merriam, 1963)                |
| Figure 2.9 Stratigraphic column including the Arbuckle Group that is included in the study. |
| Image from Zellner, 1968 16                                                                 |
| Figure 2.10 Distribution of Mississippian aged rocks throughout Kansas. (Merriam, 1963)     |
|                                                                                             |
| Figure 2.11 Stratigraphic column including the Meramecian Stage of the Mississipian Group   |
| that is included in the study. Image from Zellner, 1968                                     |
| Figure 2.12 Stratigraphic column including the Osagian Stage of the Mississipian Group that |
| is included in the study. Image from Zellner, 1968                                          |
| Figure 2.13 Stratigraphic column including the Kinderhookian Stage of the Mississipian      |
| Group that is included in the study. Image from Zellner, 1968                               |

| Figure 2.14 Generalized Kansas stratigraphic column showing units from the Precambrian       |
|----------------------------------------------------------------------------------------------|
| to the Paleozoic. (Carr et al., 2005)24                                                      |
| Figure 3.1 Physical setup of the lab and the GCTS System. Platens on hydraulic press are     |
| showing face-to-face setup with pressure gauge affixed to the top                            |
| Figure 3.2 Picture of Ult 100 System showing the platens and aluminum core                   |
| Figure 3.3 Sample B8S2 digital P waveform generated from Ult 100 system at 3000 lbf 29       |
| Figure 3.4 Sample B8S2 digital S waveform generated from Ult 100 system at 3000 lbf 30       |
| Figure 3.5 Display showing an example of FFT amplitude spectra of a signal showing           |
| bandwidth frequency used for measurements                                                    |
| Figure 3.6 Automatic picking display for the absolute threshold method from the C.A.T.S.     |
| Ultrasonic software. Image from GCTS User Manual                                             |
| Figure 3.7 Automatic picking display for the relative threshold method from the C.A.T.S.     |
| Ultrasonic software. Image from GCTS User Manual                                             |
| Figure 3.8 Automatic picking display for the relative of first peak method from the C.A.T.S. |
| Ultrasonic software. Image from GCTS User Manual                                             |
| Figure 3.9 Automatic picking display for the first peak time method from the C.A.T.S.        |
| Ultrasonic software. Image from GCTS User Manual                                             |
| Figure 3.10 Automatic picking display for the tangent of first peak method from the C.A.T.S. |
| Ultrasonic software. Image from GCTS User Manual                                             |
| Figure 3.11 Sample B8S2 using automatic determination picking methods for the P-wave at      |
| 500 lbf before dehydration                                                                   |
| Figure 3.12 Sample B8S1 using automatic determination picking methods for the P-wave at      |
| 3000 lbf before dehydration                                                                  |
| Figure 3.13 Enlarged picture of stacked P waveforms showing beginning of waveform,           |
| ellipse indicates area of first arrival                                                      |
| Figure 3.14 Sample B8S1 using manual determination for picking first arrival of the P-wave   |
| at 3000 lbf before dehydration                                                               |
| Figure 3.15 Figure 21. Picture of interactive Excel spreadsheet used for Gassmann            |
| modeling                                                                                     |
| Figure 4.1 KDOT Core B8S2, view parallel to cored axis                                       |
| Figure 4.2 KDOT Core B8S2, view perpendicular to cored axis                                  |

| Figure 4.3 Thin section image of KDOT Core sample B8S2. Image is at 10X magnification                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and in plane polarized light                                                                                                                                                                                                                                                                                                                              |
| Figure 4.4 Thin section image of KDOT Core sample B8S2. Image is at 10X magnification                                                                                                                                                                                                                                                                     |
| and in crossed polarized light                                                                                                                                                                                                                                                                                                                            |
| Figure 4.5 Graph of sample B8S2, P waveform from 500 Lbf to 3000 Lbf prior to sample                                                                                                                                                                                                                                                                      |
| dehydration                                                                                                                                                                                                                                                                                                                                               |
| Figure 4.6 Graph of sample B8S2, P waveform stacked from 500 Lbf to 3000 Lbf after                                                                                                                                                                                                                                                                        |
| sample dehydration                                                                                                                                                                                                                                                                                                                                        |
| Figure 4.7Graph of sample B8S2, S waveform stacked from 500 Lbf to 3000 Lbf prior to                                                                                                                                                                                                                                                                      |
| sample dehydration                                                                                                                                                                                                                                                                                                                                        |
| Figure 4.8 Graph of sample B8S2, S waveform stacked from 500 Lbf to 3000 Lbf after                                                                                                                                                                                                                                                                        |
| sample dehydration                                                                                                                                                                                                                                                                                                                                        |
| Figure 4.9 Graph comparing P-wave velocity (m/s) to increasing lbf for core sample B8S2                                                                                                                                                                                                                                                                   |
| before dehydration. Data used to construct graph in Table 4.3                                                                                                                                                                                                                                                                                             |
| Figure 4.10 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample B8S2                                                                                                                                                                                                                                                                  |
| before dehydration. Data used to construct graph in Table 4.3                                                                                                                                                                                                                                                                                             |
| Figure 4.11 Graph comparing P-wave velocity (m/s) and S-wave velocity (m/s) to Lbf for                                                                                                                                                                                                                                                                    |
| core sample B8S2 before dehydration. Data used to construct graph in Table 4.3 59                                                                                                                                                                                                                                                                         |
| Figure 4.12 Graph comparing P-wave velocity (m/s) to increasing lbf for core sample B8S2                                                                                                                                                                                                                                                                  |
| after dehydration. Data used to construct graph in Table 4.4.                                                                                                                                                                                                                                                                                             |
| after denydration. Data used to construct graph in Table 4.4.                                                                                                                                                                                                                                                                                             |
| Figure 4.13 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample B8S2                                                                                                                                                                                                                                                                  |
| Figure 4.13 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample B8S2 after dehydration. Data used to construct graph in Table 4.4.                                                                                                                                                                                                    |
| Figure 4.13 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample B8S2<br>after dehydration. Data used to construct graph in Table 4.4                                                                                                                                                                                                  |
| <ul> <li>Figure 4.13 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample B8S2 after dehydration. Data used to construct graph in Table 4.4.</li> <li>Figure 4.14 Graph comparing P-wave velocity (m/s) and S-wave velocity (m/s) to Lbf for core sample B8S2 after dehydration. Data used to construct graph in Table 4.4.</li> </ul> |
| <ul> <li>Figure 4.13 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample B8S2 after dehydration. Data used to construct graph in Table 4.4</li></ul>                                                                                                                                                                                  |
| <ul> <li>Figure 4.13 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample B8S2 after dehydration. Data used to construct graph in Table 4.4</li></ul>                                                                                                                                                                                  |
| <ul> <li>Figure 4.13 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample B8S2 after dehydration. Data used to construct graph in Table 4.4</li></ul>                                                                                                                                                                                  |
| <ul> <li>Figure 4.13 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample B8S2 after dehydration. Data used to construct graph in Table 4.4</li></ul>                                                                                                                                                                                  |
| <ul> <li>Figure 4.13 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample B8S2 after dehydration. Data used to construct graph in Table 4.4</li></ul>                                                                                                                                                                                  |

| Figure 4.19 Graph of sample 4-26, P waveform stacked from 500 Lbf to 6570 Lbf,          |      |
|-----------------------------------------------------------------------------------------|------|
| simulating near in situ conditions                                                      | . 67 |
| Figure 4.20 Graph of sample 4-26, S waveform stacked from 500 Lbf to 6570 Lbf,          |      |
| simulating near in situ conditions                                                      | . 68 |
| Figure 4.21 Graph comparing P-wave velocity (m/s) to increasing lbf for core sample 4-2 | 26.  |
| Data used to construct graph in Table 4.6.                                              | . 69 |
| Figure 4.22 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample 4-2 | 26.  |
| Data used to construct graph in Table 4.6.                                              | . 70 |
| Figure 4.23 Graph comparing P-wave velocity (m/s) to S-wave velocity (m/s) for core     |      |
| sample 4-26. Data used to construct graph in Table 4.6.                                 | .71  |
| Figure 4.24 KGS Core 14-4, view perpendicular to cored axis.                            | . 72 |
| Figure 4.25 KGS Core 14-4, view parallel to cored axis                                  | . 72 |
| Figure 4.26 Thin section image of KGS Core sample 14-4. Image is at 4X magnification an | d    |
| in plane polarized light                                                                | . 73 |
| Figure 4.27 Thin section image of KGS Core sample 14-4. Image is at 4X magnification an | d    |
| in crossed polarized light                                                              | . 73 |
| Figure 4.28 Graph of sample 14-4, P waveform stacked from 500 Lbf to 7500 Lbf,          |      |
| simulating near in situ conditions                                                      | .74  |
| Figure 4.29 Graph of sample 14-4, S waveform stacked from 500 Lbf to 7500 Lbf,          |      |
| simulating near in situ conditions                                                      | . 75 |
| Figure 4.30 Graph comparing P-wave velocity (m/s) to increasing lbf for core sample 14- | -4.  |
| Data used to construct graph in Table 4.8.                                              | . 76 |
| Figure 4.31 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample 14- | -4.  |
| Data used to construct graph in Table 4.8.                                              | . 77 |
| Figure 4.32 Graph comparing P-wave velocity (m/s) and S-wave velocity (m/s) to Lbf for  | r    |
| core sample 14-4. Data used to construct graph in Table 4.8                             | . 78 |
| Figure 4.33 KGS Core 25-3, view perpendicular to cored axis.                            | . 79 |
| Figure 4.34 KGS Core 25-3, view parallel to cored axis                                  | . 79 |
| Figure 4.35 Thin section image of KGS Core sample 25-3. Image is at 4X magnification an | d    |
| in plane polarized light                                                                | . 80 |

| Figure 4.36 Thin section image of KGS Core sample 25-3. Image is at 4X magnification and                 |
|----------------------------------------------------------------------------------------------------------|
| in crossed polarized light                                                                               |
| Figure 4.37 Graph of sample 25-3, P waveform stacked from 500 Lbf to 3000 Lbf                            |
| Figure 4.38 Graph of sample 25-3, S waveform stacked from 500 Lbf to 3000 Lbf                            |
| Figure 4.39 Graph comparing P-wave velocity (m/s) to increasing lbf for core sample 25-3.                |
| Data used to construct graph in Table 4.10                                                               |
| Figure 4.40 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample 25-3.                |
| Data used to construct graph in Table 4.10                                                               |
| Figure 4.41 Graph comparing P-wave velocity (m/s) and S-wave velocity (m/s) to Lbf for                   |
| core sample 25-3. Data used to construct graph in Table 4.10                                             |
| Figure 4.42 Attenuation coefficients for the Wellington oil field site                                   |
| Figure 4.43 Attenuation coefficients for sample B6S1, before and after dehydration                       |
| Figure 4.44 Attenuation coefficients for sample B6S2, before and after dehydration                       |
| Figure 4.45 Well log interval for sample 4-26 at 3717 ft (indicated by red arrow) showing                |
| gamma ray (green curve) and sonic and dipole sonic logs (black curves)                                   |
| Figure 4.46 Well log interval for sample 14-4 at 4247 ft (indicated by red arrow) showing                |
| gamma ray (green curve) and sonic and dipole sonic logs (black curves)                                   |
| Figure 4.47 Well log interval for sample 25-3 at 4626 ft (indicated by red arrow) showing                |
| gamma ray (green curve) and sonic and dipole sonic logs (black curves)                                   |
| Figure 4.48 Comparison of P-wave velocities at sonic and ultrasonic frequencies obtained                 |
| from well logs and laboratory measurements (see Tables 4.11 and 4.12)                                    |
| Figure 4.49 Comparison of S-wave velocities at sonic and ultrasonic frequencies obtained                 |
| from well logs and laboratory measurements (see Tables 4.11 and 4.12)                                    |
| Figure 4.50 Comparison of Poisson's Ratio at sonic and ultrasonic frequencies                            |
| Figure 4.51 Graph of theoretical values of sub-critical CO <sub>2</sub> in limestone, comparing velocity |
| of P-waves (m/s) to increasing saturation levels $CO_2$ . Data used to create graph is                   |
| found in Appendix C                                                                                      |
| Figure 4.52 Graph of theoretical values of super-critical $CO_2$ in limestone, comparing                 |
| velocity of P-waves (m/s) to increasing saturation levels $CO_2$ . Data used to create                   |
| graph is found in Appendix C                                                                             |

| Figure 4.53 Graph of theoretical values of sub-critical $CO_2$ in sandstone, comparing velocity of the sandstone of the second | ocity |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| of P-waves (m/s) to increasing saturation levels $CO_2$ . Data used to create graph is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| found in Appendix C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99    |

## List of Tables

| Table 4.1 Physical properties of sample B8S2 prior to dehydration.                      | 50   |
|-----------------------------------------------------------------------------------------|------|
| Table 4.2 Physical properties of sample B8S2 after dehydration.                         | 50   |
| Table 4.3 Velocity of P- and S-waves and elastic moduli of sample B8S2 before dehydrat  | ion. |
|                                                                                         | 56   |
| Table 4.4 Velocity of P- and S-waves and elastic moduli of sample B8S2 after dehydratio | n.   |
|                                                                                         | 56   |
| Table 4.5 Physical properties of sample 4-26.                                           | 64   |
| Table 4.6 Velocity of P- and S-waves and elastic moduli of sample 4-26.                 | 69   |
| Table 4.7 Physical properties of sample 14-4.                                           | 72   |
| Table 4.8 Velocity of P- and S-waves and elastic moduli of sample 14-4.                 | 76   |
| Table 4.9 Physical properties of sample 25-3.                                           | 79   |
| Table 4.10 Velocity of P- and S-waves and elastic moduli of sample 25-3                 | 83   |
| Table 4.11 P- and S-wave velocities from well logs at sonic frequencies                 | 89   |
| Table 4.12 P- and S-wave velocities from laboratory data at ultrasonic frequencies      | 89   |

## Acknowledgements

I would like to give a special thanks to Dr. Abdelmoneam Raef, my supervising advisor, for taking me on as a graduate student and also his integral role in my research. Without his help, this study could not have been completed. My committee members, Dr. Matt Totten and Dr. Keith Miller have also had a great influence on the outcome of my work. I am very grateful for their time and effort put into helping with the progression of this research. I would like to thank Kansas Geological Survey and Department of Energy for granting access to cores from the Wellington project, and Keith Miller and the Kansas Department of Transportation for access to the near surface cores. Also, I want to especially thank Derek Ohl, Robinson Barker, Zac Hasten, Charlotte Philip and all of the graduate students for all they have done over the years. It was through the successful collaboration of all these efforts, that my research was possible. Last but not least, I am forever appreciative of my family and friends for all of their encouragement and support.

## **Chapter 1 - Introduction**

There has been significant effort placed on enhancement of reservoir characterization and optimization in geosciences. Despite the substantial advancements and gained understanding in this field, there are still a number of uncertainties. Any progress in the ability to more adequately characterize and better understand a hydrocarbon reservoir can mean substantial growth in hydrocarbon recovery or better flow-simulation modeling in CO<sub>2</sub> geosequestration endeavors. To this end, improved reservoir characterization has been the main objective of many studies. These studies have taken a number of approaches and focus on how to go about characterization. In one study, rock physics models were created to validate well log information for formation evaluation (Besheli, 1998). Reduction of the greenhouse gas CO<sub>2</sub> and enhanced oil recovery have been some of the primary driving forces in these efforts. Recent studies have put forth ample resources and effort into carbon geosequestration research (Lackner, 2003). This process involves taking CO<sub>2</sub> from large point-emission sources and injecting it into the subsurface for long-term storage. The first commercial trial of carbon sequestration was in Sleipner oil and gas field in the North Sea (Herzog, 2001). Reservoirs, especially saline aquifers (longterm geological storage) and depleted oil fields (enhanced oil recovery), are prime locations for this potential injection. The addition of  $CO_2$  can alter the reservoir characteristics in a number of ways, such as fluid properties, porosity, etc. Some of the subsurface fluid replacement effects can be approximated by the use of Gassmann fluid replacement modeling. This method has been effective when working within the necessary assumptions, as further discussed in Chapter 3, associated with the modeling technique (Smith, 2003). However, there remain a number of uncertainties and limitations when utilizing velocity analysis for reservoir characterization.

There are a number of uncertainties and unresolved issues with rock physics, but with the advances over the last five decades, it has become a key part of most studies focused on reservoir characterization (Wang, 2001; Sayers and Chopra, 2009). "Rock physics addresses the relationships between measurements of elastic properties made from the surface, well and lab equipment, and intrinsic properties of the rocks, such as mineralogy, porosity and pore shapes; pore fluids; pore pressures, permeability; viscosity, stresses and overall architecture such as laminations and fractures" (Sayers and Chopra, 2009). One of the primary outcomes of rock physics is to increase comprehension of the reservoir's physical properties. Rock properties, fluid properties and environments are the primary influences on seismic properties. Understanding pressures associated with the reservoir is important for drilling purposes and also for seismic applications including lithology discrimination, 4-D and amplitude variation offset (AVO) (Wang, 2001; King 2009; Besheli 1998).

Two distinct pressures exist in a reservoir: confining or overburden pressure (Po) that is generated from the overlying rock strata, and pore or fluid pressure (Pp) that is exerted by the fluid mass. Pd is the net overburden or differential pressure control on seismic properties and can be calculated from the difference between the confining pressure and pore pressure. Rocks with more compliant pore space will exhibit a greater effect from the influence of fluids than those with stiff pores (Wang, 2001). For

2

enhancement of seismic interpretation, a rock physics model can be made in order to establish a calibration relationship between core and log measurements (Besheli, 1998).

Using similar methods to this work, other research has been conducted focusing on the ultrasonic domain. When testing cores at increasing pressures, most cores tend to have an initial rapid increase in velocity followed by a more gradual increase. This pattern is most likely due to the closure of compliant microcracks within the rock (Song, 1965).

Gassmann's fluid replacement modeling can be used to predict velocities after fluid substitution has taken place. This can be done by using velocities saturated with the initial pore fluid (or gas), extracting the bulk and shear modulus, then using Gassmann's relations to recreate velocities with the bulk modulus of the rock with pore space occupied by the substituting fluid (Mavko et al., 2009). Fluid replacement modeling can be very beneficial in reservoir monitoring 4D time-lapse seismic, carbon geosequestration and enhanced oil recovery.

## **Research Significance**

Integration of geophysical data at seismic and laboratory ultrasonic frequencies can pose some noteworthy concerns (Grochau et al., 2009). This study focuses on the understanding of laboratory measurements on cores at ultrasonic frequencies and their integration with sonic and dipole sonic frequencies from well logs to better understand their relationships. The laboratory measurements will generate an analog waveform that is converted to a digital display. Velocities of P- and S-waves at ultrasonic frequencies can be derived from first arrival of these waveforms. From these velocities, bulk modulus, Young's Modulus, Shear (Rigidity) Modulus and Poisson's Ratio can be calculated. The properties are derived from cores using the GCTS ULT-100 system.

There are many ambiguities and unknowns still present in the aspect of geophysics and rock physics. This study concentrates on the effect of frequency dependency on variations in velocity measurements, amplitude and velocity variations with increasing effective stress, and fluid replacement modeling. Translating the understanding of geophysical data collected at seismic frequency into higher frequencies is a current drawback (Grochau et al., 2009). Ultrasonic and sonic frequencies have not been properly understood in this domain.

Fluid replacement modeling conducted in this study could benefit future seismic time-lapse monitoring and verification programs for CO<sub>2</sub> sequestration. Currently, there are a number of limitations associated with Gassmann fluid replacement modeling, so any broadening of the application could have a significant impact on seismic time-lapse monitoring.

## **Chapter 2 - Core Locality and Stratigraphy**

This study includes the analysis of two sets of cores. The first set of cores is from the near surface, and was collected as a part of previous research from various counties in southeastern Kansas (Linn, Greenwood, Elk, and Crawford County). The other set is from the Mississippian System and Arbuckle Group reservoir, and collected from the KGS site in Sumner County, Kansas from the Wellington oil field. Cores used in this study were taken from the Wellington KGS 1-32 well. This well has a total depth of 5240 feet, and the cores were taken from 3717.9, 4247, and 4626.9 feet. The county locations are shown in Figure 2.1.



Figure 2.1 Map of Kansas indicating core locations. KDOT cores are highlighted with blue stars. KGS cores are highlighted with a red star. Image modified from http://www.yellowmaps.com/maps/img/\_preview/US/blank-county/Kansas\_co\_lines.jpg

The first set of cores was acquired from a previous study conducted by Kansas Department of Transportation in collaboration with Dr. Keith Miller from Kansas State University. These cores are Pennsylvanian aged near surface rocks from southeastern Kansas. They are primarily comprised of fine-grained siliciclastics. The second set of cores, provided by the Department of Energy and Kansas Geological Survey, are from the Arbuckle Group and Mississippian System in Sumner County, Kansas.

In southeastern Kansas, rocks of Pennsylvanian age outcrop, as seen in Figure 2.2, and are readily available for near surface studies. The cores included in this research range from Middle to Upper Pennsylvanian Series. Cabaniss Formation of the Cherokee Group, Tacket Formation, Auburn Shale, and Winzeler Shale Member are all represented in the cores from KDOT, as seen in Figures 2.3, 2.4, and 2.5. However, it is noted that in the subsurface, the Cherokee Group can typically not be separated into distinct formations. Stratigraphic data acquired from the KGS.



Figure 2.2 Surface and subsurface distribution of Pennsylvanian aged rocks in Kansas. (Moore et al., 1951)

|                                                          |                  | Member                 | Formation         |       |          |                |     |        |              |              |
|----------------------------------------------------------|------------------|------------------------|-------------------|-------|----------|----------------|-----|--------|--------------|--------------|
|                                                          |                  | Brownville Ls. Mbr.    |                   |       |          |                |     |        |              |              |
|                                                          | T-T/             | Pony Creek Shale Mbr.  |                   |       |          |                |     |        |              |              |
|                                                          |                  | Grayhorse Ls. Mbr.     | Wood Siding       |       |          |                |     |        |              |              |
|                                                          | M                | Plumb Shale Member     | Formation         | р     |          |                |     |        |              |              |
|                                                          | AV               | Nebraska City Ls. Mbr. | 1                 | no    |          |                |     |        |              |              |
| 2 di                                                     | E.               | French Creek Sh. Mbr.  |                   | 1g(   |          |                |     |        |              |              |
| E                                                        |                  | Jim Creek Ls. Mbr.     | Root Shale        | it.   |          |                |     |        |              |              |
| TT.                                                      |                  | Friedrich Shale Mbr.   |                   | 5     |          |                |     |        |              |              |
| L'E                                                      |                  | Grandhaven Ls. Mbr.    |                   | Sor   |          |                |     |        |              |              |
| 1                                                        | 7. <i>F==</i> 1\ | Dry Shale Member       | Stotler Limestone | Ť     |          |                |     |        |              |              |
| -                                                        | L = 1            | Dover Limestone Mbr.   |                   | ha    |          |                |     |        |              | $\mathbf{x}$ |
|                                                          | V                |                        | Pillsbury Shale   | Ric   |          |                | 6   | $\geq$ |              | ш            |
| Stormont                                                 | A =              | Maple Hill Ls. Mbr.    | Zoondolo          |       |          |                | Ш   | ш      | $\geq$       |              |
| Is. bed                                                  | 1                | Warnego Shale Member   | Zeandale          |       |          |                | Н   | Ϋ́     | ш            |              |
| EL                                                       | IE               | Tarkio Limestone Mbr.  | Limestone         |       |          |                | Ш   | Ś      | L.           |              |
|                                                          |                  |                        | Willard Shale     |       |          | ш              | N   | 3S     | Ϋ́           | U            |
| \ <u></u>                                                |                  |                        |                   | d n   | dn       | 9              | A   | 3      | 05           |              |
| 6                                                        | FIE              | Elmont Limestone Mbr.  | Emporia           | gro   | 2        | Ē              | Z   | S      | S            | $\mathbf{a}$ |
| J                                                        |                  | Harveyville Shale Mbr. | Limostono         | q     |          | 5              | Ā   | ~      | 2            | $\mathbf{O}$ |
| $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{f}}}}}$ | THE              | Reading Limestone Mbr. | Limestone         | S     | se       | AN             | F   | A٦     | ¥            | · ·          |
| B                                                        |                  |                        | Auburn Shale      | laha  | aun      |                | NS/ | NI/    | Ë            | N            |
| $\sim$                                                   |                  | Wakarusa Ls. Mbr.      |                   | еп    | /ab      | <sup>2</sup> C | Z   | ٩V     |              | $\cap$       |
|                                                          |                  | Soldier Creek Sh. Mbr. | Bern Limestone    | z     | $\leq$   | $\geq$         | Ш   |        | $\leq$       |              |
| Æ                                                        |                  | Burlingame Ls. Mbr.    |                   |       |          |                | 2   | X      | $\mathbb{X}$ |              |
|                                                          |                  | Silver Lake Shale Mbr. |                   |       |          |                | PEF | NS     | AR           |              |
| Elmo                                                     |                  | Rulo Limestone Member  | ]                 |       |          |                | Ч   | Ξ      | S            |              |
| coal bed                                                 |                  | Cedar Vale Shale Mbr.  | Scranton Shale    | d     |          |                |     | Ы      |              | 1            |
| EF                                                       | How we have      | Happy Hollow Ls. Mbr.  |                   | no    |          |                |     |        |              |              |
|                                                          |                  | White Cloud Shale Mbr. |                   | Subgr |          |                |     |        |              | ٩            |
|                                                          | 0/               | Utopia Limestone Mbr.  |                   | 0X    |          |                |     |        |              |              |
| d                                                        |                  | Winzeler Shale Member  |                   | act   |          |                |     |        |              |              |
| Nodaway                                                  |                  | Church Limestone Mbr.  | Howard Limestone  | S     |          |                |     |        |              |              |
| coal bed                                                 | -IN              | Aarde Shale Member     | ]                 |       |          |                |     |        |              |              |
| E=                                                       |                  | Bachelor Cr. Ls. Mbr.  |                   |       |          |                |     |        |              |              |
| S                                                        |                  |                        | Severy Shale      |       |          |                |     |        |              |              |
|                                                          |                  |                        |                   |       | <u> </u> | I              |     |        |              | I            |

Figure 2.3 Stratigraphic column including the Auburn Shale and Winzeler Shale Member that are included in the study. Image from Zellner, 1968.



Figure 2.4 Stratigraphic column including the Tacket Formation that is included in the study. Image from Zellner, 1968.

| Member                                                                                                                                                                                                                                                          | Formation             |             |               |                   | _              |              |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|---------------|-------------------|----------------|--------------|----------|
| Mulky coal bed<br>Breezy Hill Ls. Mbr.<br>Bevier coal bed<br>Verdigris Ls. Mbr.<br>Croweburg coal bed<br>Fleming coal bed<br>Mineral coal bed<br>Scammon coal bed<br>Chelsea Sandstone Mbr.<br>Tiawah limestone bed<br>Tebo coal bed<br>Weir-Pittsburg coal bed | Cabaniss<br>Formation | rokee Group | INESIAN STAGE | NSYLVANIAN SERIES | NIAN SUBSYSTEM | EROUS SYSTEM | ZOIC ERA |
| Seville (?) Ls. Mbr.<br>Bluejacket Ss. Mbr.<br>Dry Wood coal bed<br>Rowe coal bed<br>Neutral coal bed<br>Warner Sandstone Mbr.<br>Riverton coal bed                                                                                                             | Krebs Formation       | Chei        | DESMOI        | MIDDLE PENN       | PENNSYLVA      | CARBONIF     | PALEO    |

Figure 2.5 Stratigraphic column including the Cabaniss Formation that is included in the study. Image from Zellner, 1968.

The second set of cores was collected from the Mississippian, and the Arbuckle Group formed during the Cambrian to Ordovician. Large packages of carbonates were deposited along the "Great American Bank" during formation of the Arbuckle, which stretched along the edges of the present North American Craton as seen in Figure 2.6 (Wilson et al., 1991). According to Franseen et al. (2004), this area consists of hundreds of meters of largely dolomitized intertidal to shallow subtidal cyclic carbonate rocks overlain by a regional unconformity. The brines were Mg – rich and have been theoretically linked to dolomitization process of the Arbuckle Group on the southern arch.

Due to the sub aerial exposure of the Arbuckle, there was a significant amount of weathering and secondary solution in the upper most areas. This in return generated enhanced porosity and permeability. With the enrichment of pore space and connectivity, this created ideal conditions for a petroleum reservoir (Walters, 1958; Merriam, 1963; Adler, 1971). The uppermost portion of the Arbuckle Group is seen as an oil column that is located directed above a large aquifer (Franseen et al., 2004).



Figure 2.6 Map of North America highlighting the craton. Image from http://www.mnh.si.edu/earth/text/4\_1\_3\_1.html

## **Arbuckle Group**

The Arbuckle Group is found in most areas in the subsurface of Kansas. This excludes areas in the northeastern portion of the state and also in some parts of the Central Kansas Uplift located in Figure 2.7. Extension of the Arbuckle Group across Kansas is seen in Figure 2.7. The Arbuckle is late Cambrian and early Ordovician in age and is comprised of five distinguishable divisions in the southeastern area of Kansas. These divisions include the Eminence, Gasconade, Roubidoux, Cotter and the Jefferson City Dolomites, as seen in Figure 2.9. Looking at the entirety of the Arbuckle Group, it is mainly composed of dolomites. These are all generally dense and crystalline, containing a significant amount of chert in the uppermost part of the group (Merriam, 1963). In the region of focus,

southeastern Kansas, this group ranges from approximately 1000 – 1200 feet in thickness and thins to around 500 feet towards the north (Franseen et al., 2004).



Figure 2.7 Map of Kansas showing major Kansas subsurface structures. Image from KGS.



Figure 2.8 Distribution of Arbuckle rocks throughout Kansas. (Merriam, 1963)

## **Eminence Dolomite**

The Eminence Dolomite is late Cambrian in age and the unit ranges from 0 to 150 feet in thickness. This dolomite contains a significant amount of chert that includes cavities that have been lined by finely crystalline quartz. There is an angular unconformity that separates the Eminence Dolomite and the underlying Bonneterre Dolomite.

## Gasconade Dolomite

The Gasconade Dolomite is early Ordovician in age and the unit ranges from 0 to 200 feet in thickness. The upper portion of the unit contains chert that is darker in color and denser than the other areas. This chert is dark bluish-gray and lightens in color further down in the unit stratigraphically.

## Roubidoux Dolomite

This unit ranges from 150 to 200 feet in thickness and is early Ordovician in age. Throughout Kansas, the Roubidoux Dolomite varies from a sandy dolomite to fine-grained sandstone. Folding and erosion of the rocks in the area preceded the deposition of this unit.

## Jefferson City Dolomite and Cotter Dolomite

These two dolomites consist of coarsely granular cherty dolomite and are grouped together as one unit. They range in thickness from 0 to 650 feet. The upper part of the sequence becomes white and decreases in abundance toward the base. At the base of the unit, white chert becomes more plentiful.



Figure 2.9 Stratigraphic column including the Arbuckle Group that is included in the study. Image from Zellner, 1968.

## **Mississippian Group**

Mississippian aged rocks in southeastern Kansas include the Kinderhookian, Osagian, Meramecian, and Chesteran Series. The Kinderhookian is comprised of the Chouteau Limestone, Sedailia Dolomite and the Gilmore City Limestone, as seen in Figure 2.13. This stage thickens northward towards a basin in Iowa. There is an angular unconformity that separates the Kinderhookian from the overlying Osagian series. The Osagian Series contains the St. Joe Limestone, Reeds Spring Formation, and the Burlington– Keokuk Limestone, as seen in Figure 2.12. The Cowley Facies, Warsaw, Salem, St. Louis and the Genevieve Limestone are all included in the Meramecian Series, as seen in Figure 2.11. The distribution of these rocks throughout Kansas is shown in Figure 2.10.



Figure 2.10 Distribution of Mississippian aged rocks throughout Kansas. (Merriam, 1963)

#### Kinderhookian Stage

#### Chouteau Limestone

Is a greenish-gray limestone, and is referred to as the Compton Limestone in southeastern Kansas. However, the unit in its entirety is only present east of the Nemaha Anticline and ranges in thickness from 0 – 45 feet.

#### Sedailia Dolomite

The upper portion of this unit contains minor amounts of chert and is a buff to gray dolomite. The lower section of the Sedalia Dolomite contains ash gray chert that has distinguishable 'stipple' markings. As a whole, the section thins towards southeast Kansas and ranges in thickness from 0 - 30 feet.

#### Gilmore City Limestone

The Gilmore City Limestone has zones that contain oolites, but most of the unit is a chalky limestone. There are also granules of broken calcareous fossils throughout the unit. This limestone ranges from 0 – 150 in thickness.

### **Osagian Stage**

#### St. Joe Limestone Member

This limestone is semi-granular and white in color. Also, chert is absent in this member, despite being in a stratigraphic area that typically contains significant amounts of chert. However, there are a noteworthy amount of crinoids present. The bed is approximately 45 feet thick in the southeastern Kansas, study area.

#### **Reeds Spring Formation**

The Reeds Spring Formation reaches a maximum thickness around 150 feet. In southwest Kansas, the unit is abundant in dark-gray to brown and semi opaque chert. Siliceous sponge spicules are common throughout the formation.

#### Burlington – Keokuk Limestone

In southeast Kansas the Burlington unit is absent. However, the Keokuk is present and is a siliceous dolomite that contains white tripolitic chert. The chert content is generally around 50% in both weight and volume. The thickness of the unit ranges from 100 to 350 feet.

### **Meramecian Series**

#### *Cowley Facies*

This facies is only present just north of the Oklahoma and Kansas border. Silty, siliceous dolomite and limestone are the major constituents of the series. However, there is also a dolomitic siltstone that contains variable amounts of chert. The chert ranges from dark, opaque, microfossiliferous and chalcedonic. Glauconite is present and is thinly distributed in southeastern Kansas.

#### Warsaw Limestone

The Warsaw Limestone includes significant amounts of chert that have distinguishable characteristics. These characteristics include gray in color, mottled, opaque, and microfossiliferous. Glauconite is also present in the lower portion of this unit, along with sponge spicules. The range of thickness varies from 30 to 250 feet.

19

#### Salem Limestone

In northeast Kansas, this unit is comparatively deficient in chert and locally chert is not present. In the study area, the unit is a silty dolomite that contains noncherty calcarenite interbedded throughout. It also contains microfossiliferous chert that is similar to that of the Warsaw Limestone. In southwest Kansas the unit is coarsely crystalline and is dominated by oolitic limestone, saccharoidal dolomite, dolomitic limestone, and chert. The thickness of the unit ranges from 50 to 200 feet.

#### St. Louis Limestone

The St. Louis Limestone contains widespread beds of oolitic limestone and calcarenite. Noncherty lithographic and sublithographic limestones make up the content of the unit that ranges from 50 to 200 feet in thickness.

#### Genevieve Limestone

The Genevieve Limestone contains interbedded, fine-grained oolitic limestone and calcarenite. This unit is a silty and sandy white limestone that is fossiliferous and ranges in thickness from 30 to 200 feet.

| Ste. Genevieve Limestone |               | RIES            | TEM              | EM          | ERA   |
|--------------------------|---------------|-----------------|------------------|-------------|-------|
| St. Louis Limestone      | AMECIAN STAGE | SSISSIPPIAN SEI | PIAN SUBSYS      | FEROUS SYST | ZOIC  |
| Salem Limestone          | MER           | MIDDLE MI       | <b>IISSISSIP</b> | CARBONI     | - Е О |
| Warsaw Limestone         |               |                 | 2                |             | PAI   |

Figure 2.11 Stratigraphic column including the Meramecian Stage of the Mississipian Group that is included in the study. Image from Zellner, 1968.



Figure 2.12 Stratigraphic column including the Osagian Stage of the Mississipian Group that is included in the study. Image from Zellner, 1968.


Figure 2.13 Stratigraphic column including the Kinderhookian Stage of the Mississipian Group that is included in the study. Image from Zellner, 1968.

| Era-        | System        | Series | Stage      | Stratigraphic Unit |
|-------------|---------------|--------|------------|--------------------|
| mem         |               | Upper  | an         | Wabunsee Group     |
|             |               |        | Virgili    | Shawnee Group      |
|             |               |        |            | Douglas Group      |
|             | nsylvanian    |        | Missourian | Lansing Group      |
|             |               |        |            | Kansas City Group  |
|             | Ре            |        |            | Pleasanton Group   |
|             |               | Middle | esian      | Marmaton Group     |
|             |               |        | De De      | Cherokee Group     |
| zoic        | Mississippian | Upper  |            | Chesterian         |
| oaleo:      |               |        |            | Meramecian         |
| "           |               | Lower  |            | Osagean            |
|             |               |        |            | Kinderhookian      |
|             | Ordovician    | Upper  |            | Maquoketa Shale    |
|             |               |        |            | Viola Group        |
|             |               | Middle |            | Simpson Group      |
|             |               | Lower  |            | Arbuckle Group     |
|             | brian         | Upper  |            |                    |
|             | Cam           | 26401  |            | Reagan Sandstone   |
| Precambrian |               |        |            | Granite, Schist    |

Figure 2.14 Generalized Kansas stratigraphic column showing units from the Precambrian to the Paleozoic. (Carr et al., 2005)

# **Chapter 3 - Methodology**

Ultrasonic velocity measurements have been used in geology and geophysics to gain a better understanding of elastic-wave propagation, elastic properties, and elastic wave attenuation (Simmons, 1965). Grochau and Gurevich (2009) conducted a study using both sonic logs and ultrasonic laboratory velocity measurements to try to better understand Gassmann fluid substitution. The integrated use of these types of data is similar to that of this study. However, it is important to note that there are other fluid substitution models, including, but not limited to, Biot's relations, Marion's bounding average method, Mavko-Jizba squirt relations, and Biot-squirt model (Mavko et al., 2009).

# **Ult 100 Ultrasonic System**

The system used throughout the course of my work was the Ultrasonic Velocity Measurement System (Ult 100) manufactured by GCTS Testing Systems. This system includes the ULT controller, graphical user interface to the controller, platens that contain piezoelectric crystals, and CATS Ultrasonic software. The setup of the system and the lab can be seen in Figure 3.1. The software is installed on a separate computer and all of the appropriate components on the ULT 100 system are then connected, allowing the two systems to interact.



Figure 3.1 Physical setup of the lab and the GCTS System. Platens on hydraulic press are showing face-to-face setup with pressure gauge affixed to the top.

The main use of ultrasonic velocity measurements is to study the elastic properties of rock core samples. Due to the fact that the system is non-destructive, this is an effective method to test cores that require preservation. The Ult 100 system and the accompanying software are able to generate digital waveforms. Using first arrival time, which is the time it takes a wave to propagate through a given medium, the software can determine compression and shear wave velocities. These velocities are then used by the system to calculate dynamic elastic constants such as Young's Modulus, Bulk Modulus, Shear (Rigidity) Modulus, and Poisson's Ratio. The equations for these calculations can be found later in the discussion. GCTS supplied a standard, already prepared, aluminum core that was used as a model for core sample size and basis for first arrival determination. The specimens were cut as close to this size as possible. However, due to the physical restrictions and limited continuous physical preservation of the core, the exact aspect ratio replication was not always possible. The samples were cut perpendicular to the cored axis. Dimensions were precisely measured and volumes and densities were then calculated.

The face-to-face platen measurement, if not already completed by GCTS, needs to be run before any other measurement. This is the arrival time where the platens are placed directly on top of each other with only an acoustic couplant in between the surfaces. This takes a reading with essentially no attenuation involved. The acoustic couplant, in this case honey, eliminates air between the platens. This is important because P and S waves will not propagate through air. During this initial test, it is crucial to ensure that the waveforms are strong and coming through properly. The face-to-face arrival times are used as a constant that are eliminated from the compression and shear waves to determine proper first arrival time using the following equation:

Velocity = (height of specimen)/(arrival time - platen "face-to-face" arrival time)

Once a proper and consistent waveform is detected from the face-to-face measurements, the next step is to test the standard aluminum core provided by the GCTS as seen in Figure 3.2. If there are any problems with the wave detection, then it is necessary to reevaluate the system's connections and the software's parameters. This is also an opportunity to properly grasp how to determine first arrival locations, and therefore times, for both the S-wave and the P-wave. Piezioelectic crystals were used to generate a mechanical vibration from an electric source at ultrasonic frequencies, and an aluminum

27

rod was used as a standard for the system's calibration. The software includes a manual with ideal properties (Vp and Vs) that should be determined by the ultrasonic velocity measurement system for the aluminum sample. Replicating velocities within the standard values for the aluminum core ensures that the system is functioning properly and that the first arrival locations are correct. After running the preliminary tests and making sure there were no malfunctions with the equipment or system, we were able to run our core samples with confidence of the results.



Figure 3.2 Picture of Ult 100 System showing the platens and aluminum core.

Velocity measurements on the rock core specimens generate digital waveforms for both the P- and S-wave, as seen in Figures 3.3 and 3.4. This is also where the location of the signal's first arrival time is determined.



Figure 3.3 Sample B8S2 digital P waveform generated from Ult 100 system at 3000 lbf.



Figure 3.4 Sample B8S2 digital S waveform generated from Ult 100 system at 3000 lbf.



Figure 3.5 Display showing an example of FFT amplitude spectra of a signal showing bandwidth frequency used for measurements.

In this study, both siliciclastic and carbonate rocks were tested using the Ult 100 system. These samples ranged from near surface to approximately 4700 feet in depth. Within the testing parameters of the system, the user is given the option to identify the sample type. This allows the system to use the preset values for the given lithology as a comparison for acquired values. However, if the lithology is unknown, or too complex to fit in a given category of rock type, this selection can be left out without any interference to the software.

Wave propagation through a sample can be affected by a number of factors. Some of these factors include rock type, density, porosity, texture, stress, water content, heterogeneous lithologies and temperature. Randomly oriented discontinuities throughout a sample have the ability to significantly weaken the signal. Operating the system at a low frequency can minimize attenuation losses. Reducing the energy output will minimize excessive wave refraction that can occur with high outputs. The wave refraction may be a problem for short specimens. If there is noise present during the testing, averaging the waveforms will decrease the influence of noise.

## Ultrasonic P-wave and S-wave velocities

It is essential to determine the precise location of the signal's first arrival, because this location is used to determine the wave's velocity.

 $V = L/T_f$ .

Where V is the velocity, L is the sample length and  $T_f$  is first arrival time of signal. The system allows for automatic determination or manually picking of the first arrival.

#### Automatic Determination of Velocities

Determination of velocities is highly dependent on establishment of proper first arrival times. The arrival time methods that are given as options for Automatic Determination from the system are Absolute Threshold, Relative Threshold, Relative of First Peak, First Peak Time, and Tangent of First Peak as stated in the GCTS User Manual.

Absolute Threshold – The arrival time is determined as the value of the first point that passes the absolute threshold. When the signal value is equal to or has been exceeded

32

for the first time. The absolute threshold method is given in millivolts and the default is at 10 mV. This method is shown in Figure 3.6.



Figure 3.6 Automatic picking display for the absolute threshold method from the C.A.T.S. Ultrasonic software. Image from GCTS User Manual.

Relative Threshold – Arrival time is determined as the time value of the first point to pass the relative threshold. The relative threshold is defined as the maximum amplitude of the signal multiplied by the relative threshold as defined. The time value is taken when the signal is equal to or exceeds the relative threshold of the maximum signal amplitude. This is given in percentages and has a default of 3 percent for this method of automatic determination. This method is shown in Figure 3.7.



Figure 3.7 Automatic picking display for the relative threshold method from the C.A.T.S. Ultrasonic software. Image from GCTS User Manual.

Relative of First Peak – This method selects the arrival time to be the time value of the signal at which the first peak amplitude threshold is equaled or exceeded for the first time. This is determined as a percentage of the first peak amplitude. The first peak is established by using the absolute or relative threshold method, or an average using a combination of both. The default is set at 10 percent. This method is shown in Figure 3.8.



Figure 3.8 Automatic picking display for the relative of first peak method from the C.A.T.S. Ultrasonic software. Image from GCTS User Manual.

First Peak Time – This method of determination uses the time value of the signal at the maximum value of the first peak. The first peak is picked using the absolute or relative threshold, or a calculated average of both methods. However, this is not recommended for S-waves, because the first trough is the suggested correct pick. This method is shown in Figure 3.9.



Figure 3.9 Automatic picking display for the first peak time method from the C.A.T.S. Ultrasonic software. Image from GCTS User Manual.

Tangent of First Peak – Arrival time is equal to the signal value at which the tangent line to the first peak touches the mean value of the signal line. Only the first peak values that equal or precede the first peak amplitude upper threshold are used for the calculation of the tangent line. It is also important to note the difference between the First Peak Amplitude Upper Threshold, default of 85 percent, and the First Peak Amplitude Lower Threshold, default of 15 percent. This method is shown in Figure 3.10.



Figure 3.10 Automatic picking display for the tangent of first peak method from the C.A.T.S. Ultrasonic software. Image from GCTS User Manual.

Though automatic determination of velocities can be beneficial, it poses more problems than solutions for picking first arrival times in our project. With low amplitude waves, the program is never able to place an exact location of first arrival and therefore leaves the velocity undermined as seen in Figure 3.11. In Figure 3.12, the amplitude of the wave is high enough for the system to pick a location of first arrival. However, the location of the pick is not in the correct place. The accurate position of the first arrival for the P-wave is shown in Figure 3.14.



Figure 3.11 Sample B8S2 using automatic determination picking methods for the P-wave at 500 lbf before dehydration.



Figure 3.12 Sample B8S1 using automatic determination picking methods for the P-wave at 3000 lbf before dehydration.

## **Manual Determination of Velocities**

Instead of using the automatic determination process from the CATS software, the user can manually select the location on the wave that indicates first arrival. When manual picking, the location to make the pick is where the waveform becomes repeatable. A low amplitude wave can make locating the precise position on the waveform a complicated task and reduces the accuracy of the pick's location. From a number of trial and error efforts of manual picking, we developed the most accurate and effective method possible for this study.

On each core specimen, multiple velocity measurements were run with increasing force. We then exported these waveforms and graphically stacked them to identify the variations occurring. In every case, there was a clear spot of signal departure from the reproducible noise to the first onset of the S waveform. This separation of waveforms indicates the location of first arrival of the signal. However, identifying the departure in waveforms for P-waves involves a different process, because of the smaller amplitude variation at the location of the first arrival. This initially led to the integrated process of using the largest amplitude wave to establish the first arrival time, and then using the first significant peak or trough to create a shift to apply to the rest of the waveforms for a given sample. However, this method always under predicted the velocities, and when applied to the aluminum core (standard), the first arrival never determined the correct velocities. This created a few questions that were answered by stretching the Y-axis to see the site of the much smaller waveform deviation (Figure 3.13). From here, the location on the waveform can be constantly picked for the sample, which will yield proper P-wave velocities. The correct location of the first time arrival is where the waveform begins, indicated by the ellipse in Figure 3.13. Manual determination is preferred and used for this project in order to provide consistency and accuracy with each first arrival pick. After viewing numerous P and S waveforms, we noticed a similar, yet distinctively different, pattern consistently occurring. The P waveform displayed an early onset, followed by low amplitude and erratic waves until a defined waveform was present. However, for the S waveform, there was very low amplitude noise, then a clear departure of the wave for the

first arrival. This could potentially be due to the wave propagation differences in P- and Swaves. To validate this, more research would need to be conducted.



Figure 3.13 Enlarged picture of stacked P waveforms showing beginning of waveform, ellipse indicates area of first arrival.



Figure 3.14 Sample B8S1 using manual determination for picking first arrival of the P-wave at 3000 lbf before dehydration.

# Final Velocities and Elastic Moduli Results

With the specimen's physical properties (height, diameter, mass), density, waveforms, and velocity, the software is then able to calculate Poisson's Ratio, Young's Modulus, Bulk Modulus, and Shear (Rigidity) Modulus. These elastic moduli are measures of the specimen's stiffness and use ratios of stress to strain for calculation.

Poisson's Ratio is dependent on P- and S-wave velocities. It is determined by the ratio of lateral strain to axial strain in an axial loaded specimen. The formula is valid only within the elastic limit of a material.

 $\sigma = (\alpha^{2} - 2\beta^{2})/(2(\alpha^{2} - \beta^{2}))$   $\sigma = (3K - 2G)/(6K + 2G)$   $E = 2G(1 + \sigma) = 3K(1 - 2\sigma)$  K = EG/(3(3G - E)) $Vs = sqrt (G/\rho)$ 

Where  $\sigma$  is Poisson's ratio,  $\alpha$  is velocity of P-waves,  $\beta$  is the velocity of S-waves, E is Young's Modulus, K is bulk modulus, G is Shear Modulus, and  $\rho$  is density.

## **Testing Procedures**

#### **KDOT** Cores

The near surface cores provided from the Kansas Department of Transportation were contributed to the project without a need for them to be returned. This allowed for destructive testing, if necessary. For each sample, we ran ultrasonic velocity measurement tests with an acoustic couplant (honey), and then with increasing uniaxial pressures in 500 lbf (pound force) increments. When measuring less competent rock core specimens, we only measured up to 1000 lbf prior to dehydration, to guarantee preservation of the core. With more competent samples, we measured up to 3000 lbf before dehydration. Pound force can be converted into effective stress of pound per square inch (psi) by taking the lbf and dividing it by the cross sectional area of the core that contacts the platen. Each sample was then dehydrated to a given point, according to its size and lithology. Monitoring and measurements, during the dehydration process, were taken every 30 minutes in order to prevent over drying. Due to the lack of water saturation knowledge for each core, they were removed from the drying oven when mass reduction became insignificant. If the rock is completely dry, predicted velocities will be too fast, so small amounts of moisture are considered to be the "dry rock" (Smith, et al., 2003; Clark, et al., 1980). After dehydration, ultrasonic velocity measurements were taken in increasing increments of 500 lbf up to 3000 lbf on all cores. This data can be found in Chapter 4.

### **KGS** Cores

The cores supplied from Kansas Geological Survey and Department of Energy are part of an ongoing study focused on geologic sequestration of carbon dioxide, and required non-destructive testing. The cores for this study were taken from a range of 3717.9 to 4626.9 feet in depth and were able to naturally withstand more pressure exertion than the other set of cores. For this set of core testing, we again varied the pressures in increments of 500 lbf, but did not dehydrate the cores. This is because the cores are part of a larger, ongoing study and required non-invasive testing or alterations. The pressure testing concluded at the general depth equivalent. Using an approximation of 2.3 g/cm3 as the average overburden grain density, we calculated that one foot of burial is equal to effective stress of one psi. After this calculation, we were able to determine the force needed in lbf to equal the psi each core would be experiencing at in situ conditions in a uniaxial direction. Applied "overburden" stress (psi) = Force (lbf)/cross-sectional surface area of core (square inch)

43

# **Gassmann Modeling**

In rock physics, the fluid substitution problem is considered to be one of the most important issues of concern. Trying to predict the wave velocities after fluid substitution is a complex task, even with the integrated analysis of well logs, cores, and seismic data. Fluid replacement modeling can be very beneficial for reservoir monitoring. As stated by Mavko et al. (2009), Gassmann's relations can estimate the change of a porous media's elastic moduli, at low frequencies, when there is a change in pore fluid saturation. Using both compression and shear velocities, with rocks saturated with the initial pore fluid (or gas), fluid substitution can be performed by extracting the bulk and shear modulus. Then, using Gassmann's relations velocities can be recreated with the bulk modulus of the rock with pore space occupied by the substituting fluid (Mavko et al., 1998). The use of Gassmann's theory has been applicable for modeling fluid substitution through the integration of the saturated bulk modulus, bulk modulus of mineral matrix, bulk modulus of pore fluid, bulk modulus of porous rock frame and porosity. The equation for saturated bulk modulus is seen in the following equation:

$$K_{sat} = K^* + \frac{\left(1 - \frac{K^*}{K_o}\right)^2}{\frac{\Phi}{K_{fl}} + \frac{(1 - \Phi)}{K_o} - \frac{K^*}{(K_o)^2}}$$

Where  $K_{sat}$  is saturated bulk modulus,  $K_o$  is the bulk modulus of mineral matrix,  $K_{fl}$  is bulk modulus of pore fluid,  $K^*$  is bulk modulus of porous rock frame, and  $\Phi$  is porosity. Equation from Mavko et al. (2009).

Prior to completing the calculations based on the substitution of fluids, there are certain petrophysical properties that need to be acquired. The components include rock porosity ( $\phi$ ), bulk modulus of the fluid (Kf), fluid density ( $\rho$ f) of pore space fluids, mineral matrix's bulk modulus (K<sub>0</sub>), and the porous rock frame's bulk modulus (K<sup>\*</sup>). Through the use of laboratory measurements and analysis of wireline log data, all these properties can be identified or deduced (Smith et al., 2003).

Gassmann modeling can accomplish post saturation prediction of velocities after fluid replacement, when working within the necessary assumptions. These assumptions and limitations include the rock being homogeneous (monomineralic) and isotropic, pore space is completely connected, the system is closed, equilibrium of pore pressure has been reached between pores, and the pore fluid does not chemically affect the solid frame (Mavko et al., 2009; Smith, et al., 2003; Adam et al., 2006). Overgeneralization of application, or improper understanding, of these assumptions can produce invalid outcomes (Smith et al., 2003). In order for mathematical simplification, major assumptions have to be made due to the complexity of the rock-fluid system (Grochau and Guerevich, 2008). However, pore geometry, rock symmetry, inclusion geometry and crack density does not affect the equation's applicability as it does for other fluid substitution theories (Adam et al., 2006).

Gassmann's required assumptions constrain the applicability of the fluid substitution method. Generally, limitations include the use of low frequencies and

45

siliciclastic rocks. Seismic frequencies (or lower) are used for Gassmann's relations because at these low frequencies, the fluid within the rock has sufficient time to equilibrate. However, the permeability of the rock and fluid's viscosity and density affect the repose time of the fluid (Adam et al., 2006). According to Wang (2000), Baechle et al. (2005), and Rogen et al. (2005), for oil or brine saturated rocks; Gassmann's relations have a tendency to underestimate ultrasonic velocities, with occasional occurrences of overestimation. The application for carbonate rocks is limited because of the complex heterogeneous mineralogy, internal structures and porosity. With the presence of dolomitization, there can be an increase in overall porosity and permeability due to the dissolution of grains or fossils, which helps validate the Gassmann assumption of continuous pore connectivity (Adam et al., 2006). This could potentially make dolomites, with similar scenarios, more applicable for Gassmann's fluid replacement modeling.

Validity of Gassmann's fluid replacement for time-lapse studies is reliant on a number of assumptions for the field (Grochau and Gurevich, 2008). Seismic anomalies or AVO anomalies can potentially be detected through seismic interpretation when evaluating fluid scenarios using the framework provided from Gassmann (Sbar, 2000; Smith et al., 2003).

Through the use of an interactive Excel spreadsheet that includes macro functions used to calculate Gassmann's equation, I was able to complete some theoretical velocity modeling. This interactive spreadsheet was provided by Dr. Abdelmoneam Raef from Kansas State University, and uses Gassmann's equation to model post fluid replacement effects on a given rock medium. As shown in Figure 3.15, this worksheet shows the initial situation of the rock and the associated properties. These can be modified based on what

46

type of fluid and rock skeleton are being modeled. Porosity, which is a major factor in velocities after saturation, can be changed to mimic realistic and theoretical reservoir values. This is helpful, because porosity is an extremely important factor in reservoir characterization and fluid substitution effects on porosity can potentially be seen as an outcome of velocity variation. For this study, we did both theoretical modeling and modeling for the Sumner County, Kansas field site.

For the modeling based solely on theory, we used average values for a sandstone and limestone, and sub-critical and super-critical CO<sub>2</sub>. This was completed to note that the largest control on P-wave velocity variation is a change in CO<sub>2</sub> saturation. The data used for and derived from this modeling can be seen in Appendix C. The modeling conducted for the field site in Sumner County, Kansas used the integration of measurements from both the laboratory and well logs. Two cores were selected for fluid replacement modeling: 4-26 at a depth of 3717.9 feet and 14-4 from a depth of 4247 feet. From the depth of these cores' extraction, Vp and Vs were taken from the sonic and dipole sonic logs. Porosity, grain density and initial water saturation were taken from the whole core analysis done by Weatherford Labs. At room conditions, the density of the core was calculated using mass and volume of the core. We also ran near ultrasonic velocities at *in situ* conditions to derive the inverse of the bulk modulus. Through the integration of these properties and inputting them into the interactive excel spreadsheet, we can model the outcome of Vp, Vs, density, bulk modulus, and Poisson's ratio at a given saturation of a hydrocarbon.

| SACS: Calculation of the effect of CO2-saturation |                   |                 |                          |                          |                      |             |       |
|---------------------------------------------------|-------------------|-----------------|--------------------------|--------------------------|----------------------|-------------|-------|
| INITIAL SITUATION                                 |                   | NEW SITUATIO    | N                        | CONSTANTS                |                      |             | Units |
| Velocities from a ro                              | ck with water     | Velocities from | the same rock with a new |                          |                      |             |       |
| saturation Sw and hydro                           | carbon saturation | water saturati  | on Sw2 and hydrocarbon   |                          |                      |             |       |
| Shc are kn                                        | lown              | saturation      | Shc2 are determined      |                          |                      |             |       |
| SAT ROCK                                          |                   | SAT ROCK (GA    | ASSMAN)                  |                          |                      |             |       |
| Vp(Sw)                                            | 2000              | Vp(Sw2)         | 1152                     |                          |                      |             | m/s   |
| Vs(Sw)                                            | 630               | Vs(Sw2)         | 655                      |                          |                      |             | m/s   |
| RHO(Sw)                                           | 1994              | RHO(Sw2)        | 1844                     |                          |                      |             | kg/m3 |
| K(Sw)                                             | 6.921E+09         | K(Sw2)          | 1.392E+09                |                          |                      |             | Pa    |
| Sw                                                | 1.00              | Sw2             | 0.00                     |                          |                      |             |       |
| Poisson(Sw)                                       | 0.445             | Poisson(Sv      | 0.261                    |                          |                      |             |       |
| ROCK SKELETON                                     |                   |                 |                          | SANDSTONE                | SHALE                | OTHER       |       |
| Lithology                                         | SS                |                 |                          | SS                       | SH                   | OTHER       |       |
| POR                                               | 0.3500            |                 |                          |                          |                      |             |       |
| RHOs                                              | 2650              |                 |                          | 2650                     | 2700                 | 2700        | kg/m3 |
| COMPs                                             | 2.710E-11         |                 |                          | 2.710E-11                | 2.530E-11            | 2.530E-11   | 1/Pa  |
| Ко                                                | 3.690E+10         |                 |                          | 3.690E+10                | 3.953E+10            | 3.953E+10   | Pa    |
| INITIAL HYDROCAR                                  | BON               | NEW HYDROC      | CARBON                   | WATER                    | OIL                  | GAS         |       |
| Hvdrocarbon                                       | WATER             | Hvdrocarbo      | gas                      | water                    | oil                  | gas         |       |
| Shc                                               | 0.00              | Shc2            | 1.00                     |                          |                      | Ű.          |       |
| RHOhc                                             | 1090              | RHOhc2          | 660                      | 1090                     | 850                  | 660         | kg/m3 |
| COMPhc                                            | 4.200E-10         | COMPhc2         | 1.429E-08                | 4.200E-10                | 6.300E-10            | 1.429E-08   | 1/Pa  |
| TOTAL FLUID (water                                | + hc)             | TOTAL FLUID 2   | 2 (water + hc2)          |                          |                      |             |       |
| COMPI                                             | 4.200E-10         | COMPfi2         | 1.429E-08                |                          |                      |             | 1/Pa  |
| Kfl                                               | 2.381E+09         | Kfl2            | 7.000E+07                |                          |                      |             | Pa    |
| DRY ROCK (GASSM                                   | IAN)              |                 |                          |                          |                      |             |       |
| Vp(dry)                                           | 1184              |                 |                          |                          |                      |             | m/s   |
| Vs(dry)                                           | 701               |                 |                          |                          |                      |             | m/s   |
| RHO(drv)                                          | 1613              |                 | CALCULAT                 | TION OF VELOCITIES AFTER | R FLUID SUBSTITUTION |             | ka/m3 |
| K(drv)                                            | 1.206E+09         |                 |                          |                          |                      |             | Pa    |
| Poisson(drv)                                      | 0.231             |                 |                          |                          |                      |             |       |
|                                                   |                   |                 |                          | AUTHOR: Rob A            | rts                  |             |       |
|                                                   |                   |                 |                          |                          |                      |             |       |
| ALL Values in Bro                                 | own have been e   | entered         | 0.07                     | 100000000                | 7000000              | 1.42857E-08 |       |
|                                                   |                   |                 |                          |                          |                      |             |       |
|                                                   |                   |                 |                          |                          |                      |             |       |

Figure 3.15 Figure 21. Picture of interactive Excel spreadsheet used for Gassmann modeling.

# **Chapter 4 - Data and Results**

# **Core Information**

# **KDOT** Core

#### **B8S2**

Core sample B8S2 is from the near surface core set, provided by Dr. Keith Miller, in collaboration with the Kansas Department of Transportation from a previous project. The rest of the core data from this set are found in Appendix A. Each core, from the near surface set, has corresponding physical parameters (height, diameter, mass before and after dehydration, and density before and after dehydration). These cores were available for invasive testing, so we were able to dehydrate them to see effects of residual fluids on the elastic properties of the rocks.



Figure 4.1 KDOT Core B8S2, view parallel to cored axis.

Figure 4.2 KDOT Core B8S2, view perpendicular to cored axis.

| Sample | Height (mm) | Diameter (mm) | Mass before dehydration (g) | Density before dehydration (g/mm^3) |
|--------|-------------|---------------|-----------------------------|-------------------------------------|
| B8 S2  | 98          | 50            | 522.5                       | 2.42E-03                            |

Table 4.1 Physical properties of sample B8S2 prior to dehydration.

| Sample | Height (mm) | Diameter (mm) | Mass after dehydration (g) | Density after dehydration (g/mm^3) |
|--------|-------------|---------------|----------------------------|------------------------------------|
| B8 S2  | 98          | 50            | 522                        | 2.71E-03                           |

Table 4.2 Physical properties of sample B8S2 after dehydration.



Figure 4.3 Thin section image of KDOT Core sample B8S2. Image is at 10X magnification and in plane polarized light.



Figure 4.4 Thin section image of KDOT Core sample B8S2. Image is at 10X magnification and in crossed polarized light.

From thin section analysis, as seen in Figures 4.3 and 4.4, sample B8S2 is both grain and matrix supported with sub rounded to angular quartz grains with low porosity. This sample also has calcite cement and shows small amounts of micas, feldspars, and oxides. Looking at the grains in thin section view could potentially explain variations in attenuation differences based on pore and grain architecture. Thin section images of other cores used in this study can be found in Appendix A.



Figure 4.5 Graph of sample B8S2, P waveform from 500 Lbf to 3000 Lbf prior to sample dehydration.



Figure 4.6 Graph of sample B8S2, P waveform stacked from 500 Lbf to 3000 Lbf after sample dehydration.



Figure 4.7Graph of sample B8S2, S waveform stacked from 500 Lbf to 3000 Lbf prior to sample dehydration.



Figure 4.8 Graph of sample B8S2, S waveform stacked from 500 Lbf to 3000 Lbf after sample dehydration.

These stacked waveforms, as seen in Figures 4.5, 4.6, 4.7, and 4.8, give insight to the increase in attenuation and velocity with an increase in effective stress for near surface cores. Tables 4.3 and 4.4 show the P-wave and S-wave velocities and elastic moduli for varying effective stress. Stacked waveform graphs and elastic moduli data tables for the remaining core data can be found in Appendix B.

| Lbf  | P wave (m/s) | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
|------|--------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| 500  | 5291         | 2756         | 0.31            | 54200908              | 48516240           | 20627456            |
| 1000 | 5328         | 2788         | 0.31            | 55372376              | 48947120           | 21111044            |
| 1500 | 5374         | 2808         | 0.31            | 56165436              | 49846264           | 21401176            |
| 2000 | 5415         | 2819         | 0.31            | 56702100              | 50836544           | 21574448            |
| 2500 | 5476         | 2821         | 0.32            | 57003300              | 52577280           | 21603564            |
| 3000 | 5527         | 2826         | 0.32            | 57356100              | 54008036           | 21676508            |

Table 4.3 Velocity of P- and S-waves and elastic moduli of sample B8S2 before dehydration.

| Lbf  | P wave (m/s) | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
|------|--------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| 500  | 5343         | 2731         | 0.32            | 53542968              | 50461644           | 20233050            |
| 1000 | 5483         | 2753         | 0.33            | 54764576              | 54125740           | 20567060            |
| 1500 | 5490         | 2772         | 0.33            | 55391780              | 53975444           | 20840276            |
| 2000 | 5530         | 2782         | 0.33            | 55866052              | 54964076           | 20992832            |
| 2500 | 5558         | 2797         | 0.33            | 56458536              | 55498864           | 21217812            |
| 3000 | 5627         | 2801         | 0.34            | 56850356              | 57498972           | 21288864            |

Table 4.4 Velocity of P- and S-waves and elastic moduli of sample B8S2 after dehydration.



Figure 4.9 Graph comparing P-wave velocity (m/s) to increasing lbf for core sample B8S2 before dehydration. Data used to construct graph in Table 4.3.



Figure 4.10 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample B8S2 before dehydration. Data used to construct graph in Table 4.3.


Figure 4.11 Graph comparing P-wave velocity (m/s) and S-wave velocity (m/s) to Lbf for core sample B8S2 before dehydration. Data used to construct graph in Table 4.3.



Figure 4.12 Graph comparing P-wave velocity (m/s) to increasing lbf for core sample B8S2 after dehydration. Data used to construct graph in Table 4.4.



Figure 4.13 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample B8S2 after dehydration. Data used to construct graph in Table 4.4.



Figure 4.14 Graph comparing P-wave velocity (m/s) and S-wave velocity (m/s) to Lbf for core sample B8S2 after dehydration. Data used to construct graph in Table 4.4.

Figure 4.9 and 4.12 are showing velocity of P-wave in comparison with increasing effective stress before and after dehydration. Velocities of P-waves before dehydration are lower than the curve for post core dehydration. This is most likely due to the decrease in the presence of fluid and therefore the decrease in attenuation. However, the S-wave velocity curves exhibit a reverse characteristic. The velocities increase after dehydration, and this is due to the calculation of S-wave velocities, as seen in the following Vs equation.

$$V_p = \sqrt{\frac{K + \frac{4}{3}\mu}{\rho}}$$
$$V_s = \sqrt{\frac{\mu}{\rho}}$$

Where Vp is P-wave velocity, K is the bulk modulus,  $\mu$  is the shear modulus,  $\rho$  is the density, and Vs is the S-wave velocity. So by decreasing the density of the cores from dehydration, we see an increase in S-wave velocity. Figures 4.11 and 4.14 show the change in P- and S-wave velocities in regards to a change in Lbf. There is an interesting change in wave character from before and after dehydration. However, there is a general trend of increasing wave velocity with an increase in effective pressure.

## **KGS** Cores

### 4-26

Core sample 4-26 is from the deep surface core set, provided by Dr. Saugatta Datta, in collaboration with the Department of Energy in collaboration with the Kansas Geological Survey and others. This core was extracted from the Mississippian Group from the Wellington KGS 1-32 well in Sumner County, Kansas. The rest of the core data from this set are found in Appendix A. Each core has corresponding physical parameters (height, diameter, mass, and extraction depth). These cores were not available for invasive testing, due to their role as a part of an ongoing study, so we were unable to dehydrate them to see effects of residual fluids on the elastic properties of the rocks.



Figure 4.15 KGS Core 4-26, view perpendicular to cored axis.

Figure 4.16 KGS Core 4-26, view parallel to cored axis.

| Sample | Height (mm) | Diameter (mm) | Mass (g) | Density (g/mm^3) |
|--------|-------------|---------------|----------|------------------|
| 4_26   | 79.3        | 42.3          | 216.8    | 1.95E-03         |

Table 4.5 Physical properties of sample 4-26.



Figure 4.17 Thin section image of KGS Core sample 4-26. Image is at 4X magnification and in plane polarized light.



Figure 4.18 Thin section image of KGS Core sample 4-26. Image is at 4X magnification and in crossed polarized light.

From thin section analysis, sample 4-26 is primarily a finely crystalline dolomite with evidence of matrix porosity and zones of silicification. Some opaque black sulfides or oxides were seen as well as some precipitants. Throughout this thin section, there was some evidence of potential oil staining. Looking at the grains in thin section view could potentially explain variations in attenuation differences based on pore and grain architecture. Additional thin section images from the cores involved in this study can be found in Appendix A.



Figure 4.19 Graph of sample 4-26, P waveform stacked from 500 Lbf to 6570 Lbf, simulating near in situ conditions.



Figure 4.20 Graph of sample 4-26, S waveform stacked from 500 Lbf to 6570 Lbf, simulating near in situ conditions.

These stacked waveforms, as seen in Figures 4.19 and 4.20, give insight to the increase in amplitude and velocity with an increase in effective stress for deep surface cores. Table 4.6 show the P-wave and S-wave velocities and elastic moduli for varying effective stress for sample 4-26. Stacked waveform graphs and elastic moduli data tables for the remaining core data can be found in Appendix B.

| Lbf  | P wave (m/s) | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
|------|--------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| 500  | 4780         | 2506         | 0.31            | 42643828              | 37482148           | 16271530            |
| 1000 | 4921         | 2526         | 0.32            | 43675668              | 40693616           | 16529789            |
| 1500 | 4987         | 2531         | 0.33            | 44034108              | 42285960           | 16598567            |
| 2000 | 5003         | 2536         | 0.33            | 44209056              | 42642476           | 16654880            |
| 2500 | 5020         | 2536         | 0.33            | 44260656              | 43078424           | 16654880            |
| 3000 | 5052         | 2540         | 0.33            | 44480992              | 43828348           | 16711478            |
| 3500 | 5173         | 2536         | 0.34            | 44696984              | 47106556           | 16654880            |
| 4000 | 5173         | 2557         | 0.34            | 45342560              | 46725336           | 16940794            |
| 4500 | 5173         | 2557         | 0.34            | 45342560              | 46725336           | 16940794            |
| 5000 | 5176         | 2575         | 0.34            | 45877984              | 46514620           | 17174860            |
| 5500 | 5198         | 2570         | 0.34            | 45806200              | 47160348           | 17115892            |
| 6000 | 5231         | 2579         | 0.34            | 46165648              | 47899484           | 17234140            |
| 6500 | 5286         | 2588         | 0.34            | 46572728              | 49260372           | 17346472            |
| 6570 | 5286         | 2593         | 0.34            | 46725480              | 49170584           | 17413812            |

Table 4.6 Velocity of P- and S-waves and elastic moduli of sample 4-26.



Figure 4.21 Graph comparing P-wave velocity (m/s) to increasing lbf for core sample 4-26. Data used to construct graph in Table 4.6.



Figure 4.22 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample 4-26. Data used to construct graph in Table 4.6.



Figure 4.23 Graph comparing P-wave velocity (m/s) to S-wave velocity (m/s) for core sample 4-26. Data used to construct graph in Table 4.6.

Figures 4.21 and 4.22 show a consistency with the near surface cores in regards to an overall increase in velocity with an increase in effective stress. Figure 4.23 shows the change in P- and S-wave velocities in regards to a change in Lbf. There is a general trend of increasing wave velocity with an increase in effective pressure.

#### 14-4

Core sample 14-4 is from the deep surface core set, provided by Dr. Saugatta Datta, in collaboration with the Department of Energy in collaboration with the Kansas Geological Survey and others. This core was extracted from the Arbuckle Group from the Wellington KGS 1-32 well in Sumner County, Kansas. The rest of the core data from this set are found in Appendix A. Each core has corresponding physical parameters (height, diameter, mass, and extraction depth). These cores were not available for invasive testing, due to their role as a part of an ongoing study, so we were unable to dehydrate them to see effects of residual fluids on the elastic properties of the rocks.



Figure 4.24 KGS Core 14-4, view perpendicular to cored axis.

Figure 4.25 KGS Core 14-4, view parallel to cored axis.

| Sample | Height (mm) | Diameter (mm) | Mass (g) | Density (g/mm^3) |
|--------|-------------|---------------|----------|------------------|
| 14_4   | 56.3        | 42.3          | 155      | 1.96E-03         |

Table 4.7 Physical properties of sample 14-4.



Figure 4.26 Thin section image of KGS Core sample 14-4. Image is at 4X magnification and in plane polarized light.



Figure 4.27 Thin section image of KGS Core sample 14-4. Image is at 4X magnification and in crossed polarized light.

Sample 14-4, as seen in thin section, is a primarily sub anhedral to anhedral dolomite, intergrown with some quartz grains. The texture ranges from fine-grained to coarsely crystalline. Porosity is inconsistent and varies from intercrystalline to vuggy. Looking at the grains in thin section view could potentially explain variations in attenuation differences based on pore and grain architecture. Additional thin section images from the cores involved in this study can be found in Appendix A.



Figure 4.28 Graph of sample 14-4, P waveform stacked from 500 Lbf to 7500 Lbf, simulating near in situ conditions.



Figure 4.29 Graph of sample 14-4, S waveform stacked from 500 Lbf to 7500 Lbf, simulating near in situ conditions.

These stacked waveforms, as seen in Figures 4.28 and 4.29, give insight to the increase in amplitude and velocity with an increase in effective stress for deep surface cores. Tables 4.8 show the P-wave and S-wave velocities and elastic moduli for varying effective stress. Stacked waveform graphs and elastic moduli data tables for the remaining core data can be found in Appendix B.

| Lbf  | P wave (m/s) | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
|------|--------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| 500  | 4604         | 2705         | 0.24            | 48441324              | 30640116           | 19588020            |
| 1000 | 4667         | 2757         | 0.23            | 50144476              | 31163378           | 20353824            |
| 1500 | 4796         | 2792         | 0.24            | 51922204              | 33751576           | 20875666            |
| 2000 | 4910         | 2839         | 0.25            | 53886428              | 35775836           | 21572474            |
| 2500 | 4933         | 2846         | 0.25            | 54234980              | 36243844           | 21683560            |
| 3000 | 4943         | 2870         | 0.25            | 54932480              | 36007284           | 22048230            |
| 3500 | 5054         | 2886         | 0.26            | 56096556              | 38646236           | 22294568            |
| 4000 | 5154         | 2870         | 0.28            | 56238432              | 41723048           | 22048230            |
| 4500 | 5206         | 2902         | 0.27            | 57472120              | 42497360           | 22545070            |
| 5000 | 5232         | 2910         | 0.28            | 57861384              | 43062980           | 22671906            |
| 5500 | 5259         | 2918         | 0.28            | 58254084              | 43638404           | 22799814            |
| 6000 | 5396         | 2936         | 0.29            | 59489056              | 47199324           | 23058904            |
| 6500 | 5424         | 2943         | 0.29            | 59893260              | 47842688           | 23190110            |
| 7000 | 5424         | 2943         | 0.29            | 59893260              | 47842688           | 23190110            |
| 7500 | 5453         | 2943         | 0.29            | 60035880              | 48673952           | 23190110            |

Table 4.8 Velocity of P- and S-waves and elastic moduli of sample 14-4.



Figure 4.30 Graph comparing P-wave velocity (m/s) to increasing lbf for core sample 14-4. Data used to construct graph in Table 4.8.



Figure 4.31 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample 14-4. Data used to construct graph in Table 4.8.



Figure 4.32 Graph comparing P-wave velocity (m/s) and S-wave velocity (m/s) to Lbf for core sample 14-4. Data used to construct graph in Table 4.8.

Figures 4.21 and 4.22 show a consistency with the near surface cores in regards to an overall increase in velocity with an increase in effective stress. Figure 4.32 shows the change in P- and S-wave velocities in regards to a change in Lbf. There is a general trend of increasing wave velocity with an increase in effective pressure.

#### 25-3

Core sample 25-3 is from the deep surface core set, provided by Dr. Saugatta Datta, in collaboration with the Department of Energy in collaboration with the Kansas Geological Survey and others. This core was extracted from the Arbuckle Group from the Wellington KGS 1-32 well in Sumner County, Kansas. The rest of the core data from this set are found in Appendix A. Each core has corresponding physical parameters (height, diameter, mass, and extraction depth). These cores were not available for invasive testing, due to their role as a part of an ongoing study, so we were unable to dehydrate them to see effects of residual fluids on the elastic properties of the rocks.



Figure 4.33 KGS Core 25-3, view perpendicular to cored axis.

Figure 4.34 KGS Core 25-3, view parallel to cored axis.

| Sample | Height (mm) | Diameter (mm) | Mass (g) | Density (g/mm^3) |
|--------|-------------|---------------|----------|------------------|
| 25_3   | 55.8        | 42.2          | 155.1    | 1.99E-03         |

Table 4.9 Physical properties of sample 25-3.



Figure 4.35 Thin section image of KGS Core sample 25-3. Image is at 4X magnification and in plane polarized light.



Figure 4.36 Thin section image of KGS Core sample 25-3. Image is at 4X magnification and in crossed polarized light.

Observation from thin section indicates that sample 25-3 is a sub euhedral to euhedral dolomite. The dolomite rhombohedras have darker centers with lighter rims. It also contains some oxides, zones with opaque oxide precipitants, intergranular fill, minor clay filled fractures, and silica growth within pore space. This core also shows variable porosity. Looking at the grains in thin section view could potentially explain variations in attenuation differences based on pore and grain architecture. Additional thin section images from the cores involved in this study can be found in Appendix A.



Figure 4.37 Graph of sample 25-3, P waveform stacked from 500 Lbf to 3000 Lbf.



Figure 4.38 Graph of sample 25-3, S waveform stacked from 500 Lbf to 3000 Lbf.

These stacked waveforms, as seen in Figures 4.37 and 4.38, give insight to the increase in attenuation and velocity with an increase in effective stress for deep surface cores. Tables 4.10 show the P-wave and S-wave velocities and elastic moduli for varying effective stress. Stacked waveform graphs and elastic moduli data tables for the remaining core data can be found in Appendix B.

| Lbf  | P wave (m/s) | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
|------|--------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| 500  | 5026         | 2886         | 0.25            | 41508384              | 28130270           | 16549463            |
| 1000 | 5125         | 2925         | 0.26            | 42788416              | 29535282           | 16999144            |
| 1500 | 5217         | 2961         | 0.26            | 43990940              | 30853176           | 17424032            |
| 2000 | 5293         | 2936         | 0.28            | 43768604              | 32847282           | 17124956            |
| 2500 | 5355         | 2961         | 0.28            | 44596572              | 33745892           | 17424032            |
| 3000 | 5469         | 2961         | 0.29            | 45046220              | 36207232           | 17424032            |

Table 4.10 Velocity of P- and S-waves and elastic moduli of sample 25-3.



Figure 4.39 Graph comparing P-wave velocity (m/s) to increasing lbf for core sample 25-3. Data used to construct graph in Table 4.10.



Figure 4.40 Graph comparing S-wave velocity (m/s) to increasing lbf for core sample 25-3. Data used to construct graph in Table 4.10.



Figure 4.41 Graph comparing P-wave velocity (m/s) and S-wave velocity (m/s) to Lbf for core sample 25-3. Data used to construct graph in Table 4.10.

Figure 4.41 shows the change in P- and S-wave velocities in regards to a change in Lbf. There is a general trend of increasing wave velocity with an increase in effective pressure.

After analysis of the velocity graphs, the inconsistency in the graph pattern could be due to creation and closure of micro cracks within the core. Further research needs to be completed to verify if this is in fact the case, but if so, there is potential applications for fracture monitoring. Additional images of core samples and thin sections can be found in Appendix A, and waveform and elastic moduli data can be found in Appendix B.

## **Amplitude Variations and Attenuation**

Each core sample exhibited an amplitude increase with an increase of pressure. This amplitude variation can potentially be used in time-lapse monitoring from amplitude response. The effective pressure is equal to the overburden pressure minus the pore pressure. When monitoring a given reservoir for a specific type of event, there should be a predictable pressure scenario. The pressure scenario should also be in cohesion with the amplitude response. During CO<sub>2</sub> sequestration monitoring, pore pressure would increase. With the increase in pore pressure, there would be a decrease in effective pressure. This could potentially translate into a decrease in amplitude. However, if there were a leak of CO<sub>2</sub>, then this might create an increase in amplitude response. Similarly, after well log velocities are acquired, they should respond in a predictable way. Velocity and amplitude variations could play a role in the feasibility of using time lapse seismic monitoring for CO<sub>2</sub> sequestration.

$$A_c = A_o e^{-\alpha x}$$

Where  $A_c$  is the peak amplitude of the core's waveform,  $A_o$  is the initial peak amplitude from the face-to-face test, and x is the length of the sample (in meters). From the integration of this data, we can solve for  $\alpha$ , which is the attenuation coefficient.



Figure 4.42 Attenuation coefficients for the Wellington oil field site.



Figure 4.43 Attenuation coefficients for sample B6S1, before and after dehydration.



Figure 4.44 Attenuation coefficients for sample B6S2, before and after dehydration.

As seen in Figures 4.43 and 4.44, after dehydration, there is a decrease in the attenuation coefficient. The fluid reduction subsequently lowers the attenuation. Also, when looking at the difference in the attenuation curves compared to thin section properties, it can be suggested that the difference in curve character could be based on a difference in crystalline texture. More research is necessary to thoroughly understand these effects and influences of pore and grain architecture. This difference could be potentially due to the difference between grain supported and matrix supported rock, with an influence from compliant versus stiff cracks. Attenuation of waves can, however, be an important factor in reservoir characterization.

# **Comparison of In Situ and Laboratory Velocities**

| Well log at So | nic Frequency |              |              |
|----------------|---------------|--------------|--------------|
| Sample         | Depth (ft)    | P wave (m/s) | S wave (m/s) |
| 4_26           | 3717.9        | 4986.09521   | 2911.45286   |
| 14_4           | 4247          | 5208.47573   | 2989.70083   |

Table 4.11 P- and S-wave velocities from well logs at sonic frequencies.

| Laboratory at |      |              |              |
|---------------|------|--------------|--------------|
| Sample        | Lbf  | P wave (m/s) | S wave (m/s) |
| 4_26          | 6570 | 5286         | 2593         |
| 14_4          | 7070 | 5453         | 2943         |

Table 4.12 P- and S-wave velocities from laboratory data at ultrasonic frequencies.

Sonic and dipole sonic velocities were acquired from well log data, as seen in Figures 4.46, 4.48, and 4.50. These velocities were then input into Gassmann's fluid replacement modeling scenarios for cores 4-26 an 14-4, and were representative of the Mississippian and Arbuckle respectively.



Figure 4.45 Well log interval for sample 4-26 at 3717 ft (indicated by red arrow) showing gamma ray (green curve) and sonic and dipole sonic logs (black curves).



Figure 4.46 Well log interval for sample 14-4 at 4247 ft (indicated by red arrow) showing gamma ray (green curve) and sonic and dipole sonic logs (black curves).



Figure 4.47 Well log interval for sample 25-3 at 4626 ft (indicated by red arrow) showing gamma ray (green curve) and sonic and dipole sonic logs (black curves).



Figure 4.48 Comparison of P-wave velocities at sonic and ultrasonic frequencies obtained from well logs and laboratory measurements (see Tables 4.11 and 4.12).



Figure 4.49 Comparison of S-wave velocities at sonic and ultrasonic frequencies obtained from well logs and laboratory measurements (see Tables 4.11 and 4.12).



Figure 4.50 Comparison of Poisson's Ratio at sonic and ultrasonic frequencies.

When comparing P-wave velocities at sonic and ultrasonic frequencies, as seen in Figure 4.48, we see that, for these cores, velocities from ultrasonic data yielded higher values than at sonic frequencies. Also, the shift in velocity difference was relatively comparable. However, the comparison for S-wave velocities, as seen in Figure 4.49, resulted in lower velocities from ultrasonic frequencies. The difference in velocities for S-waves was more erratic and less similar. So the next step we took was comparing Poisson's ratio at the different frequencies, as seen in Figure 4.50. Poisson's ratio can be seen in the following equation.

 $\sigma = (\alpha^2 - 2\beta^2) / (2(\alpha^2 - \beta^2))$ 

Where  $\sigma$  is Poisson's ratio,  $\alpha$  is velocity of P-waves and  $\beta$  is the velocity of S-waves. So with substantial core data, there could be potential in calibrating a relationship to determine S-wave velocities where dipole log data is lacking.
#### **Gassmann Modeling**

From using the interactive Excel spreadsheet we were able to generate predicted velocities of P- and S-waves, density, bulk modulus and Poisson's ratio in a given medium with variation in CO<sub>2</sub> saturations. Gassmann's relations in terms of P-wave velocity, bulk modulus, shear modulus, density, and porosity can be seen in the following equations.

$$\left(V_p\right)_{sat}^2 = \frac{K_p + K_{dry} + \frac{4}{3}\mu}{\rho_{sat}}$$



Where Vp is P-wave velocity, Vs is S-wave velocity, K is bulk modulus,  $\mu$  is shear modulus,  $\rho$  is density, K<sub>sat</sub> is saturated bulk modulus, K<sub>o</sub> is the bulk modulus of mineral matrix, K<sub>fl</sub> is bulk modulus of pore fluid, K<sup>\*</sup> is bulk modulus of porous rock frame, and  $\Phi$  is porosity. Equations are from Murphy et al. (1991) and Mavko et al. (2009), respectively.

We ran both theoretical and two deep surface core scenarios for Gassmann modeling. The outcome of Gassmann's relation proves that fluids, due to their lack of rigidity, do not affect Vs on the first order of magnitude. For the theoretical modeling, I ran four different scenarios including sandstone and limestone with both super-critical and sub-critical CO<sub>2</sub> at various saturations. Figures 4.51, 4.52, 4.53, and 4.54 are the graphical representation of the results. Based on interpretation of the graphs, the greatest difference within a rock type is that P-wave velocities in the limestone are more dependent on porosity than the sandstone. The theoretical modeling suggests that the velocity of the P waves decreases with increased porosity in each rock type due to the additional pore space present in the rock matrix. Limestone has a larger variation of pore spaces than sandstone. While Gassmann's equation is best applied to siliciclastic rocks, the equation is still applicable for carbonates, although it is not as robust. When saturation levels of CO<sub>2</sub> increase, so does the pore pressure. There is a constant increase in the velocity of the P waves at a given porosity. This linear increase can be used to potentially prove the effectiveness of 4-D seismic monitoring of CO<sub>2</sub> in geological sequestration. If the trend would be interrupted while monitoring, it would indicate a possible leak of CO<sub>2</sub> that could potentially have significant effects on the surrounding rock strata.



Sub-Critical CO<sub>2</sub> in a Limestone

Figure 4.51 Graph of theoretical values of sub-critical  $CO_2$  in limestone, comparing velocity of P-waves (m/s) to increasing saturation levels  $CO_2$ . Data used to create graph is found in Appendix C.



Super-Critical CO<sub>2</sub> in a Limestone

Figure 4.52 Graph of theoretical values of super-critical  $CO_2$  in limestone, comparing velocity of P-waves (m/s) to increasing saturation levels  $CO_2$ . Data used to create graph is found in Appendix C.



#### Sub-Critical CO<sub>2</sub> in a Sandstone

Figure 4.53 Graph of theoretical values of sub-critical  $CO_2$  in sandstone, comparing velocity of P-waves (m/s) to increasing saturation levels  $CO_2$ . Data used to create graph is found in Appendix C.



#### Super-Critical CO<sub>2</sub> in a Sandstone

Figure 4.54 Graph of theoretical values of super-critical  $CO_2$  in sandstone, comparing velocity of P-waves (m/s) to increasing saturation levels  $CO_2$ . Data used to create graph is found in Appendix C.



Figure 4.55 Map showing three different porosity classes for the top of the Mississippian in the Wellington field. Class 1, indicated in dark green, is porosity values greater than 12%. Class 2, indicated in sea foam green, is porosity values from 8 to 12%. Class 3, indicated in yellow, is porosity values less than 8%. The red areas on the map represent ambiguous areas. Well of interest is Wellington KGS 1-32. Image from Ohl, D. R., and Raef, A. B. (under review, 2012).



Figure 4.56 Map showing three different porosity classes for the top of the Arbuckle in the Wellington field. Class 1, indicated in dark green, is porosity values greater than 12%. Class 2, indicated in sea foam green, is porosity values from 8 to 12%. Class 3, indicated in yellow, is porosity values less than 8%. The red areas on the map represent ambiguous areas. Well of interest is Wellington KGS 1-32. Image from Ohl, D. R., and Raef, A. B. (under review, 2012).



Figure 4.57 Graph showing the change in velocities of P-waves in relation to  $CO_2$  saturations for sample 4-26. Classes correlated with Figure 4.55. Data used to create graph is found in Appendix C.



Figure 4.58 Graph showing the change in velocities of P-waves in relation to  $CO_2$  saturations for sample 14-4. Classes correlated with Figure 4.56. Data used to create graph is found in Appendix C.

For the deep core Gassmann modeling for sample 4-26 and 14-4, we used the core porosity, determined by Weatherford Laboratories, for the lowest end of the porosity values. For the two other cases, in each model, we used the percentage values derived from Ohl, D. R., and Raef, A. B. (under review, 2012) for the various classes of porosities. Modeling for properties of the core 4-26, showed greater variability in regards to a change in porosity than seen for core 14-4. When looking at permeability data, 14-4 has much higher values than 4-26. So it could potentially model more similarly to sandstone, due to the interconnectivity of the pore space. However, they both displayed a general increasing trend with increasing levels of CO<sub>2</sub> saturation. The modeling completed for the porosity classes in the Wellington field, as seen in Figure 4.57, could provide substance for the feasibility of time lapse seismic monitoring for geosequestration of carbon dioxide, in regards to variation in porosity across the field.

## **Chapter 5 - Conclusions**

From the integration and analysis of laboratory ultrasonic measurements, well logs, thin sections, and Gassmann fluid replacement modeling, there are implications of feasibility for time lapse seismic monitoring for CO<sub>2</sub> sequestration. Ultrasonic velocity measurements can be used in a number of ways to better understand elastic properties of rocks. Elastic moduli and rock data, derived from the dry rock frame, allow applications of Gassmann modeling for fluid substitution for different petrophysical properties. This study has provided some baseline data for modeling fluid replacement effects, as well as noting change in amplitude and velocity response as a function of a change in effective stress. This response could be used for time-lapse monitoring of CO<sub>2</sub> injection in terms of saturation or potential leakage. During injection, if there were a leak, you would be able to note the change of amplitude and velocity in near surface formations being affected by the CO<sub>2</sub>. The change would be caused by the increase of pore pressure, which would reduce the effective pressure. Modeling for two main petrophysical facies for the Wellington field has been conducted, and would enable study feasibility of time lapse seismic monitoring of future geosequestration in the Arbuckle. Also, wave attenuation variation could be linked to micro cracks. If attenuation is impacted on a micro scale, then there could be potential of viability for use in fracture monitoring.

## References

- Adam, L., Batzle, M., Brevik, I. (2006). Gassmann's fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies: Geophysics, 77(6), 173-183.
- Adler, F. J. (1971). Future petroleum provinces of the mid- continent, region 7; in, Future Petroleum Provinces of the United States—Their Geology and Potential: American Association of Petroleum Geologists, Memoir 15, 985- 1120.
- Artola, F. A. V., Alvarado, V. (2006). Sensitivity analysis of Gassmann's fluid substitution equations: Some implications in feasibility studies of time-lapse seismic reservoir monitoring: Journal of Applied Geophysics, 59, 47-62.
- Batzle, M., Wang, Z. (1992). Seismic properties of pore fluids: Geophysics, 57(11), 1396-1408.
- Besheli, S. A., Hendi, S. S., Vali, J. (1998). Reservoir Characterization by Seismic Attributes With Vp & Vs Measurement of core samples (a "Rock Physics" study): Geophysics Department, RIPI-NIOC.
- Bickle, M. J. (2009). Geological carbon storage: Nature Geoscience, 2, 815-818.
- Carr, T. R., Merriam, D. F., Bartley, J. D. (2005). Use of relational databases to evaluate regional petroleum accumulation, groundwater flow, and CO<sub>2</sub> sequestration in Kansas: AAPG Bulletin, 89(12), 1607-1627.
- Castagna, J. P., Batzle, M, Eastwood, R. L. (1985). Relationship between compressional-wave and shear-wave velocities in clastic silicate rocks: Geophysics, 50(4), 571-581.
- Clark, V. A., Tittman, B. R., Spencer, T. W. (1980). Effects of volatiles on attenuation and velocity in sedimentary rocks: Geophysics, 85, 5190-5198.
- Franseen, E. K., Byrnes, A. P., Cansler, J. R., Steinhauff, D. M., Carr, T. R., and Dubois, M. K. (2003). Geological Controls on Variable Character of Arbuckle Reservoirs in Kansas: An Emerging Picture, No. 59.
- Franseen, E. K., Byrnes, A. P., Cansler, J. R., Steinhauff, D. M., Carr, T. R. (2004). Current Research in Earth Sciences, Bulletin 250, part 2.
- Franseen, E. K., Byrnes, A. P., Cansler, J. R., Steinhauff, D. M., Carr, T. R., Dubois, M. K. (2003). Geological Controls on Variable Character of Arbuckle Reservoirs in Kansas: An Emerging Picture, No. 59.

- Grochau, M., Gurevich, B. (2009). Testing Gassmann Fluid Substitution: Sonic logs Versus Ultrasonic Core Measurements, 57, 75-79.
- Haldorsen, H. H., Damsleth, E. (1993). Challenges in Reservoir Characterization: Geohorizons, 77(4), 541-551.
- Han, D., Batzle, M. L. (2004). Gassmann's equation and fluid-saturation effects on seismic velocities: Geophysics, 69(2), 398-405.
- Herzog, H. J. (2001). What Future for Carbon Capture and Sequestration?: Environmental Science and Technology, 35 (7), 148-153.
- King, M. S. (2009). Recent Developments in Seismic rock physics. International Journal of Rock Mechanics and Mining Sciences, 46(8), 1341-1348.
- Lackner, K. S. (2003). Climate Change: A Guide to CO<sub>2</sub> Sequestration. Science, 300(5626), 1677-1678.
- Mavko, G., Mukerji, T., Dvorkin, J. (1998). The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media (First ed.). United Kingdom: Cambridge University Press.
- Mavko, G., Mukerji, T., Dvorkin, J. (2009). The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media (Second ed.). United Kingdom: Cambridge University Press.
- Merriam, D. F. (1963). The Geologic History of Kansas. Lawrence, Kansas: University of Kansas Publications.
- Moore, R. C., Jewett, J. M. (1942). Oil and gas fields of Kansas: Mines, 32(10), 481.
- Moore, R. C., Jewett, J. M., and O'Connor, H. G. (1951). Rock formations of Chase County, Kansas: Kansas Geol. Survey, 11, part 1, 1-16.
- Purcell, C., Harbert, W., Soong, Y., McLendon, T. R., Haljasmaa, I. V., McIntyre, D., JiKich, J. (2009). Velocity measurements in reservoir rock samples from the SACROC unit using various pore fluids, and integration into a seismic survey taken before and after CO<sub>2</sub> sequestration flood: ScienceDirect, 2323-2331.
- Sayers, C. M., Chopra, S. (2009). Rock physics: Leading Edge, 28(1), 15-16.
- Sbar, M. L. (2000). Exploration risk reduction: An AVO analysis in the offshore middle Miocene, central Gulf of Mexico: The Leading Edge, 19, 21-27.

Simmon, G. (1965). Ultrasonics in Geology: IEEE, 53(10), 1337-1345.

Singh, Y. Y. (2009). Reservoir Properties Prediction in the West Baram Delta Through Data Integration Constrained by Rock Physics: Leading Edge, 28(12), 1486-1497.

- Smith, T. M., Sondergeld, C. H., & Rai, C. S. (2003). Gassmann Fluid Substitutions: A Tutorial: Geophysics, 68(2), 430-440.
- Souder, W. W. (2002). Using Sonic Logs to Predict Fluid Type: Petrophysics, 43(5), 412-419.
- Tao, H., Chang-Chun, Z., Fa-Gen, P., Ke-Ying, R., Fan-Da, K., Ge, S. (2010). Laboratory study of fluid viscosity induced ultrasonic velocity dispersion in reservoir sandstones: Applied Geophysics, 7(2), 114-126.
- Vernik, L., Hickman, S., Lockner, D., Rusanov, M. (1994). Ultrasonic velocities in cores from the Kola superdeep well and the nature of subhorizontal seismic reflections: Journal of Geophysical Research, 99(B12), 24,209-24,219.
- Wang, Z. Z. (2001). Fundamentals of seismic rock physics: Geophysics. 66(2), 398-412.
- Wilson, J. L., Fritz, R. D., Medlock, P. L. (1991). The Arbuckle Group—Relationship of Core and Outcrop Analyses to Cyclic Stratigraphy and Correlation; in, Arbuckle Core Workshop and Field Trip, KS Johnson, ed: Oklahoma Geological Survey, Special Publication 91-3, 133-144.
- Zellner, D., 1968. "Stratigraphic Succession in Kansas." Bulletin 189. Lawrence, KS: University of Kansas Publications.
- Zeller, D. E. (1968) 2008. Classification of rocks in Kansas, revised by Kansas Geological Survey Stratigraphic Nomenclature Committee; in, The Stratigraphic Succession in Kansas: Kansas Geological Survey, Bulletin 189, 81 p., chart.

# **Appendix A - Core Samples**

# **KDOT Cores**

#### B5S2



KDOT Core B5S2, view parallel to cored axis. KDOT Core B5S2, view perpendicular to cored axis.



Thin section image of KDOT Core sample B5S2. Image is at 10X magnification and in plane polarized light.



Thin section image of KDOT Core sample B5S2. Image is at 10X magnification and in crossed polarized light.

| Sample | Height (mm) | Diameter (mm) | Mass before dehydration (g) | Density before dehydration (g/mm^3) |
|--------|-------------|---------------|-----------------------------|-------------------------------------|
| B5 S2  | 92.5        | 49.5          | 418.3                       | 2.47E-03                            |

Physical properties of sample B5S2 prior to dehydration.

| Sample | Height (mm) | Diameter (mm) | Mass after dehydration (g) | Density after dehydration (g/mm^3) |
|--------|-------------|---------------|----------------------------|------------------------------------|
| B5 S2  | 92.5        | 49.5          | 415.4                      | 2.33E-03                           |

Physical properties of sample B5S2 after dehydration.



## B6S1

KDOT Core B6S1, view parallel to cored axis. KDOT Core B6S1, view perpendicular to cored axis.



Thin section image of KDOT Core sample B6S1. Image is at 10X magnification and in plane polarized light.



Thin section image of KDOT Core sample B6S1. Image is at 10X magnification and in crossed polarized light.

| Sample | Height (mm) | Diameter (mm) | Mass before dehydration (g) | Density before dehydration (g/mm^3) |
|--------|-------------|---------------|-----------------------------|-------------------------------------|
| B6 S1  | 100         | 49.75         | 481.1                       | 2.23E-03                            |

Physical properties of sample B6S1 prior to dehydration.

| Sample | Height (mm) | Diameter (mm) | Mass after dehydration (g) | Density after dehydration (g/mm^3) |
|--------|-------------|---------------|----------------------------|------------------------------------|
| B6 S1  | 100         | 49.75         | 477.9                      | 2.46E-03                           |

Physical properties of sample B6S1 after dehydration.



KDOT Core B6S2, view parallel to cored axis. KDOT Core B6S2, view perpendicular to cored axis.



Thin section image of KDOT Core sample B6S2. Image is at 10X magnification and in plane polarized light.



Thin section image of KDOT Core sample B6S2. Image is at 10X magnification and in crossed polarized light.

| Sample | Height (mm) | Diameter (mm) | Mass before dehydration (g) | Density before dehydration (g/mm^3) |
|--------|-------------|---------------|-----------------------------|-------------------------------------|
| B6 S2  | 94          | 49.5          | 403.8                       | 2.44E-03                            |

Physical properties of sample B6S2 prior to dehydration.

| Sample | Height (mm) | Diameter (mm) | Mass after dehydration (g) | Density after dehydration (g/mm^3) |
|--------|-------------|---------------|----------------------------|------------------------------------|
| B6 S2  | 94          | 49.5          | 402.5                      | 2.23E-03                           |

Physical properties of sample B6S2 after dehydration.



### **B8S1**

KDOT Core B8S1, view parallel to cored axis. KDOT Core B8S1, view perpendicular to cored axis.



Thin section image of KDOT Core sample B8S1. Image is at 4X magnification and in plane polarized light.



Thin section image of KDOT Core sample B8S1. Image is at 4X magnification and in crossed polarized light.

| Sample | Height (mm) | Diameter (mm) | Mass before dehydration (g) | Density before dehydration (g/mm^3) |
|--------|-------------|---------------|-----------------------------|-------------------------------------|
| B8 S1  | 97.5        | 49.5          | 457.6                       | 2.72E-03                            |

Physical properties of sample B8S1 prior to dehydration.

| Sample | Height (mm) | Diameter (mm) | Mass after dehydration (g) | Density after dehydration (g/mm^3) |
|--------|-------------|---------------|----------------------------|------------------------------------|
| B8 S1  | 97.5        | 49.5          | 455.8                      | 2.43E-03                           |

Physical properties of sample B8S1 after dehydration.



### **B9S3**

KDOT Core B9S3, view parallel to cored axis. KDOT Core B9S3, view perpendicular to cored axis.



Thin section image of KDOT Core sample B9S3. Image is at 4X magnification and in plane polarized light.



Thin section image of KDOT Core sample B9S3. Image is at 4X magnification and in crossed polarized light.

| Sample | Height (mm) | Diameter (mm) | Mass before dehydration (g) | Density before dehydration (g/mm^3) |
|--------|-------------|---------------|-----------------------------|-------------------------------------|
| B9 S3  | 95          | 49.5          | 441.6                       | 2.23E-03                            |

Physical properties of sample B9S3 prior to dehydration.

| Sample | Height (mm) | Diameter (mm) | Mass after dehydration (g) | Density after dehydration (g/mm^3) |
|--------|-------------|---------------|----------------------------|------------------------------------|
| B9 S3  | 95          | 49.5          | 432.6                      | 2.37E-03                           |

Physical properties of sample B9S3 after dehydration.



## B10S2

KDOT Core B10S2, view parallel to cored axis. KDOT Core B10S2, view perpendicular to cored axis.



Thin section image of KDOT Core sample B10S2. Image is at 10X magnification and in plane polarized light.



Thin section image of KDOT Core sample B10S2. Image is at 10X magnification and in plane polarized light.

| Sample | Height (mm) | Diameter (mm) | Mass before dehydration (g) | Density before dehydration (g/mm^3) |
|--------|-------------|---------------|-----------------------------|-------------------------------------|
| B10 S2 | 52.5        | 49.5          | 225.5                       | 2.73E-03                            |

# Physical properties of sample B10S2 prior to dehydration.

| Sample | Height (mm) | Diameter (mm) | Mass after dehydration (g) | Density after dehydration (g/mm^3) |
|--------|-------------|---------------|----------------------------|------------------------------------|
| B10 S2 | 52.5        | 49.5          | 221.2                      | 2.19E-03                           |

Physical properties of sample B10S2 after dehydration.

# **Appendix B - Waveform Graphs and Data**

## **KDOT Cores**





Graph of sample B5S2, P waveform from 500 Lbf to 1000 Lbf prior to sample dehydration.



Graph of sample B5S2, P waveform from 500 Lbf to 3000 Lbf after sample dehydration.



Graph of sample B5S2, S waveform from 500 Lbf to 1000 Lbf prior to sample dehydration.



Graph of sample B5S2, S waveform from 500 Lbf to 3000 Lbf after sample dehydration.

| B5S2 Before Dehydration |              |              |                 |                       |                    |                     |
|-------------------------|--------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| Lbf                     | P wave (m/s) | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
| 500                     | 5135         | 1644         | 0.44            | 18317308              | 53492452           | 6347267             |
| 1000                    | 5224         | 1674         | 0.44            | 18926316              | 55873400           | 6555503             |

Velocity of P- and S-waves and elastic moduli of sample B5S2 before dehydration.

| B5S2 After Dehydration |              |              |                 |                       |                    |                     |
|------------------------|--------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| Lbf                    | P wave (m/s) | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
| 500                    | 5102         | 1827         | 0.43            | 22062650              | 50427688           | 7729990             |
| 1000                   | 5182         | 1835         | 0.43            | 22457446              | 52178252           | 7861782             |
| 1500                   | 5209         | 1843         | 0.43            | 22636430              | 52758856           | 7923198             |
| 2000                   | 5235         | 1850         | 0.43            | 22984488              | 53232576           | 8047579             |
| 2500                   | 5256         | 1857         | 0.43            | 22994842              | 53736812           | 8047579             |
| 3000                   | 5344         | 1863         | 0.43            | 23181218              | 55832260           | 8100784             |

Velocity of P- and S-waves and elastic moduli of sample B5S2 after dehydration.

B6S1



Graph of sample B6S1, P waveform from 500 Lbf to 3000 Lbf prior to sample dehydration.



Graph of sample B6S1, P waveform from 500 Lbf to 3000 Lbf after sample dehydration.



Graph of sample B6S1, S waveform from 500 Lbf to 3000 Lbf prior to sample dehydration.


Graph of sample B6S1, S waveform from 500 Lbf to 3000 Lbf after sample dehydration.

| B6S1 Before Dehydration |              |              |                 |                       |                    |                     |
|-------------------------|--------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| Lbf                     | P wave (m/s) | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
| 500                     | 5294         | 1970         | 0.42            | 27262284              | 56569564           | 9601656             |
| 1000                    | 5333         | 1981         | 0.42            | 27572550              | 57438536           | 9708685             |
| 1500                    | 5473         | 2037         | 0.42            | 29151102              | 60438748           | 10267274            |
| 2000                    | 5501         | 2058         | 0.42            | 29730166              | 60922988           | 10478202            |
| 2500                    | 5526         | 2061         | 0.42            | 29836290              | 61570716           | 10511394            |
| 3000                    | 5478         | 2070         | 0.42            | 30043936              | 60135104           | 10603253            |

Velocity of P- and S-waves and elastic moduli of sample B6S1 before dehydration.

| B6S1 After Dehydration |              |              |                 |                       |                    |                     |
|------------------------|--------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| Lbf                    | P wave (m/s) | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
| 500                    | 5587         | 2207         | 0.41            | 33722060              | 60776828           | 11979206            |
| 1000                   | 5684         | 2214         | 0.41            | 33995240              | 63359908           | 12050124            |
| 1500                   | 5459         | 2236         | 0.4             | 34384104              | 56877188           | 12286669            |
| 2000                   | 5587         | 2241         | 0.4             | 34667620              | 60278048           | 12344740            |
| 2500                   | 5634         | 2257         | 0.4             | 35171284              | 61344956           | 12521427            |
| 3000                   | 5671         | 2271         | 0.4             | 35622384              | 62155816           | 12681690            |

Velocity of P- and S-waves and elastic moduli of sample B6S1 after dehydration.



Graph of sample B6S2, P waveform from 500 Lbf to 3000 Lbf prior to sample dehydration.



Graph of sample B6S2, P waveform from 500 Lbf to 3000 Lbf after sample dehydration.



Graph of sample B6S2, S waveform from 500 Lbf to 3000 Lbf prior to sample dehydration.



Graph of sample B6S2, S waveform from 500 Lbf to 3000 Lbf after sample dehydration.

| B6S2 Befor | e Dehydration |              |                 |                       |                    |                     |
|------------|---------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| Lbf        | P wave (m/s)  | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
| 500        | 5125          | 1842         | 0.43            | 21601018              | 48525532           | 7575005             |
| 1000       | 5225          | 1873         | 0.43            | 22329782              | 50498900           | 7827855             |
| 1500       | 5350          | 1945         | 0.42            | 24052100              | 52631760           | 8446237             |
| 2000       | 5165          | 1973         | 0.41            | 24592864              | 47962692           | 8692873             |
| 2500       | 5123          | 1998         | 0.41            | 25132956              | 46702888           | 8910442             |
| 3000       | 5129          | 2018         | 0.41            | 25590316              | 46461388           | 9086165             |

Velocity of P- and S-waves and elastic moduli of sample B6S2 before dehydration.

| B6S2 After | Dehydration  |              |                 |                       |                    |                     |
|------------|--------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| Lbf        | P wave (m/s) | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
| 500        | 5118         | 1930         | 0.42            | 23485096              | 47239928           | 8286075             |
| 1000       | 5131         | 1950         | 0.42            | 23962914              | 47300812           | 8464078             |
| 1500       | 5167         | 1964         | 0.42            | 24292630              | 47968644           | 8580357             |
| 2000       | 5211         | 1971         | 0.42            | 24499208              | 48892212           | 8647885             |
| 2500       | 5204         | 2003         | 0.41            | 25226388              | 48363648           | 8926112             |
| 3000       | 5266         | 2034         | 0.41            | 26010644              | 49428088           | 9208647             |

Velocity of P- and S-waves and elastic moduli of sample B6S2 after dehydration.

| <b>B8S1</b> |
|-------------|
|-------------|



Graph of sample B8S1, P waveform from 500 Lbf to 3000 Lbf prior to sample dehydration.



Graph of sample B8S1, P waveform from 500 Lbf to 3000 Lbf after sample dehydration.



Graph of sample B8S1, S waveform from 500 Lbf to 3000 Lbf prior to sample dehydration.



Graph of sample B8S1, S waveform from 500 Lbf to 3000 Lbf after sample dehydration.

| B8S1 Before Dehydration |              |              |                 |                       |                    |                     |
|-------------------------|--------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| Lbf                     | P wave (m/s) | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
| 500                     | 5359         | 1855         | 0.43            | 24043768              | 58839828           | 8395787             |
| 1000                    | 5391         | 1906         | 0.43            | 25322868              | 59062896           | 8863183             |
| 1500                    | 5395         | 2040         | 0.42            | 28763868              | 57436292           | 10152904            |
| 2000                    | 5337         | 2087         | 0.41            | 29794204              | 55387308           | 10562730            |
| 2500                    | 5398         | 2119         | 0.41            | 30863510              | 56453844           | 10953185            |
| 3000                    | 5398         | 2143         | 0.41            | 31511250              | 56129456           | 11202544            |

Velocity of P- and S-waves and elastic moduli of sample B8S1 before dehydration.

| B8S1 After Dehydration |              |              |                 |                       |                    |                     |
|------------------------|--------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| Lbf                    | P wave (m/s) | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
| 500                    | 5199         | 1978         | 0.42            | 26913214              | 52996648           | 9507539             |
| 1000                   | 5274         | 2033         | 0.41            | 28365524              | 54188820           | 10039067            |
| 1500                   | 5305         | 2081         | 0.41            | 29635898              | 54335276           | 10515928            |
| 2000                   | 5359         | 2109         | 0.41            | 30421484              | 55358844           | 10799929            |
| 2500                   | 5405         | 2143         | 0.41            | 31393570              | 56088276           | 11158478            |
| 3000                   | 5462         | 2162         | 0.41            | 31924594              | 56573848           | 11353389            |

Velocity of P- and S-waves and elastic moduli of sample B8S1 after dehydration.



Graph of sample B9S3, P waveform from 500 Lbf to 1000 Lbf prior to sample dehydration.



Graph of sample B9S3, P waveform from 500 Lbf to 3000 Lbf after sample dehydration.



Graph of sample B9S3, S waveform from 500 Lbf to 1000 Lbf prior to sample dehydration.



Graph of sample B9S3, S waveform from 500 Lbf to 3000 Lbf after sample dehydration.

| B9S3 Before Dehydration |              |              |                 |                       |                    |                     |
|-------------------------|--------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| Lbf                     | P wave (m/s) | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
| 500                     | 5229         | 1298         | 0.47            | 11948077              | 60624760           | 4071858             |
| 1000                    | 5305         | 1306         | 0.47            | 12091725              | 62474620           | 4119158             |

#### Velocity of P- and S-waves and elastic moduli of sample B9S3 before dehydration.

| B9S3 After Dehydration |              |              |                 |                       |                    |                     |
|------------------------|--------------|--------------|-----------------|-----------------------|--------------------|---------------------|
| Lbf                    | P wave (m/s) | S wave (m/s) | Poisson's Ratio | Young's Modulus (kPa) | Bulk Modulus (kPa) | Shear Modulus (kPa) |
| 500                    | 5280         | 1362         | 0.46            | 12859237              | 60122272           | 4390759             |
| 1000                   | 5322         | 1423         | 0.46            | 14002470              | 60631668           | 4790414             |
| 1500                   | 5356         | 1442         | 0.46            | 14372362              | 61320024           | 4918888             |
| 2000                   | 5370         | 1451         | 0.46            | 14562924              | 61586056           | 4985290             |
| 2500                   | 5405         | 1457         | 0.46            | 14672100              | 62436036           | 5021822             |
| 3000                   | 5538         | 1461         | 0.46            | 14766237              | 65840488           | 5047868             |

Velocity of P- and S-waves and elastic moduli of sample B9S3 after dehydration.

# **Appendix C - Gassmann Modeling Data**

## **Theoretical Modeling**

| Sandstone with Subcritical CO2 |     |         |         |           |  |  |  |
|--------------------------------|-----|---------|---------|-----------|--|--|--|
| 15% Porosity                   |     |         |         |           |  |  |  |
| CO2 Saturation                 | Vp  | Density | l       | К         |  |  |  |
| 0.05                           | 843 | 1986    | 1674198 | -5.39E+09 |  |  |  |
| 0.1                            | 705 | 1979    | 1395195 | -5.82E+09 |  |  |  |
| 0.15                           | 650 | 1971    | 1281150 | -5.97E+09 |  |  |  |
| 0.2                            | 621 | 1964    | 1219644 | -6.04E+09 |  |  |  |
| 0.25                           | 604 | 1956    | 1181424 | -6.09E+09 |  |  |  |
| 0.3                            | 592 | 1949    | 1153808 | -6.12E+09 |  |  |  |
| 0.35                           | 583 | 1941    | 1131603 | -6.14E+09 |  |  |  |
| 0.4                            | 577 | 1934    | 1115918 | -6.16E+09 |  |  |  |
| 0.45                           | 572 | 1926    | 1101672 | -6.17E+09 |  |  |  |
| 0.5                            | 569 | 1918    | 1091342 | -6.18E+09 |  |  |  |
| 0.55                           | 566 | 1911    | 1081626 | -6.19E+09 |  |  |  |
| 0.6                            | 564 | 1903    | 1073292 | -6.20E+09 |  |  |  |
| 0.65                           | 562 | 1896    | 1065552 | -6.20E+09 |  |  |  |
| 0.7                            | 561 | 1888    | 1059168 | -6.21E+09 |  |  |  |
| 0.75                           | 560 | 1881    | 1053360 | -6.21E+09 |  |  |  |
| 0.8                            | 559 | 1873    | 1047007 | -6.22E+09 |  |  |  |
| 0.85                           | 559 | 1865    | 1042535 | -6.22E+09 |  |  |  |
| 0.9                            | 558 | 1858    | 1036764 | -6.22E+09 |  |  |  |
| 0.95                           | 558 | 1850    | 1032300 | -6.22E+09 |  |  |  |
| 1                              | 558 | 1843    | 1028394 | -6.23E+09 |  |  |  |

### Sub-critical CO<sub>2</sub> in Sandstone

Modeled P-wave velocity, density, impedance, and bulk modulus for various levels of subcritical  $CO_2$  saturations in sandstone at 15 percent porosity.

| Sandstone with Subcritical CO2 |      |         |         |           |
|--------------------------------|------|---------|---------|-----------|
| 20% Porosity                   |      |         |         |           |
| CO2 Saturation                 | Vp   | Density | I       | К         |
| 0.05                           | 1763 | 1984    | 3497792 | -6.40E+08 |
| 0.1                            | 1731 | 1974    |         | -8.92E+08 |
| 0.15                           | 1722 | 1964    |         | -9.80E+08 |
| 0.2                            | 1720 | 1954    |         | -1.02E+09 |
| 0.25                           | 1721 | 1944    |         | -1.05E+09 |
| 0.3                            | 1723 | 1934    |         | -1.06E+09 |
| 0.35                           | 1725 | 1923    |         | -1.08E+09 |
| 0.4                            | 1779 | 1986    |         | -1.09E+09 |
| 0.45                           | 1732 | 1903    |         | -1.09E+09 |
| 0.5                            | 1735 | 1893    |         | -1.10E+09 |
| 0.55                           | 1739 | 1883    |         | -1.10E+09 |
| 0.6                            | 1743 | 1873    |         | -1.11E+09 |
| 0.65                           | 1748 | 1863    |         | -1.11E+09 |
| 0.7                            | 1752 | 1853    |         | -1.12E+09 |
| 0.75                           | 1756 | 1843    |         | -1.12E+09 |
| 0.8                            | 1761 | 1833    |         | -1.12E+09 |
| 0.85                           | 1765 | 1823    |         | -1.12E+09 |
| 0.9                            | 1770 | 1813    |         | -1.12E+09 |
| 0.95                           | 1775 | 1802    |         | -1.13E+09 |
| 1                              | 1779 | 1792    |         | -1.13E+09 |

Modeled P-wave velocity, density, impedance, and bulk modulus for various levels of sub-critical  $CO_2$  saturations in sandstone at 20 percent porosity.

| Sandstone with Subcritical CO2 |      |         |         |          |
|--------------------------------|------|---------|---------|----------|
| 25% Porosity                   |      |         |         |          |
| CO2 Saturation                 | Vp   | Density | I       | К        |
| 0.05                           | 2076 | 1981    | 4112556 | 1.73E+09 |
| 0.1                            | 2061 | 1969    | 4058109 | 1.55E+09 |
| 0.15                           | 2060 | 1956    | 4029360 | 1.49E+09 |
| 0.2                            | 2063 | 1944    | 4010472 | 1.46E+09 |
| 0.25                           | 2067 | 1931    | 3991377 | 1.44E+09 |
| 0.3                            | 2072 | 1918    | 3974096 | 1.43E+09 |
| 0.35                           | 2078 | 1906    | 3960668 | 1.42E+09 |
| 0.4                            | 2084 | 1893    | 3945012 | 1.41E+09 |
| 0.45                           | 2090 | 1881    | 3931290 | 1.41E+09 |
| 0.5                            | 2097 | 1868    | 3917196 | 1.40E+09 |
| 0.55                           | 2103 | 1855    | 3901065 | 1.40E+09 |
| 0.6                            | 2110 | 1843    | 3888730 | 1.40E+09 |
| 0.65                           | 2117 | 1830    | 3874110 | 1.39E+09 |
| 0.7                            | 2124 | 1818    | 3861432 | 1.39E+09 |
| 0.75                           | 2131 | 1805    | 3846455 | 1.39E+09 |
| 0.8                            | 2139 | 1792    | 3833088 | 1.39E+09 |
| 0.85                           | 2146 | 1780    | 3819880 | 1.39E+09 |
| 0.9                            | 2154 | 1767    | 3806118 | 1.39E+09 |
| 0.95                           | 2161 | 1755    | 3792555 | 1.38E+09 |
| 1                              | 2169 | 1742    | 3778398 | 1.38E+09 |

Modeled P-wave velocity, density, impedance, and bulk modulus for various levels of sub-critical  $CO_2$  saturations in sandstone at 25 percent porosity.

| Sandstone with Subcritical CO2 |      |         |         |          |
|--------------------------------|------|---------|---------|----------|
| 30% Porosity                   |      |         |         |          |
| CO2 Saturation                 | Vp   | Density | 1       | К        |
| 0.05                           | 2243 | 1979    | 4438897 | 3.15E+09 |
| 0.1                            | 2237 | 1964    | 4393468 | 3.01E+09 |
| 0.15                           | 2240 | 1949    | 4365760 | 2.97E+09 |
| 0.2                            | 2246 | 1934    | 4343764 | 2.94E+09 |
| 0.25                           | 2253 | 1918    | 4321254 | 2.93E+09 |
| 0.3                            | 2261 | 1903    | 4302683 | 2.92E+09 |
| 0.35                           | 2269 | 1888    | 4283872 | 2.91E+09 |
| 0.4                            | 2278 | 1873    | 4266694 | 2.91E+09 |
| 0.45                           | 2287 | 1858    | 4249246 | 2.90E+09 |
| 0.5                            | 2296 | 1843    | 4231528 | 2.90E+09 |
| 0.55                           | 2305 | 1828    | 4213540 | 2.90E+09 |
| 0.6                            | 2314 | 1813    | 4195282 | 2.89E+09 |
| 0.65                           | 2324 | 1797    | 4176228 | 2.89E+09 |
| 0.7                            | 2333 | 1782    | 4157406 | 2.89E+09 |
| 0.75                           | 2343 | 1767    | 4140081 | 2.89E+09 |
| 0.8                            | 2353 | 1752    | 4122456 | 2.89E+09 |
| 0.85                           | 2363 | 1737    | 4104531 | 2.89E+09 |
| 0.9                            | 2373 | 1722    | 4086306 | 2.89E+09 |
| 0.95                           | 2384 | 1707    | 4069488 | 2.89E+09 |
| 1                              | 2394 | 1692    | 4050648 | 2.89E+09 |

Modeled P-wave velocity, density, impedance, and bulk modulus for various levels of sub-critical  $CO_2$  saturations in sandstone at 30 percent porosity.

| Sandstone with Supercritical CO2 |              |         |          |           |  |
|----------------------------------|--------------|---------|----------|-----------|--|
|                                  | 15% Porosity |         |          |           |  |
| CO2 Saturation                   | Vp           | Density | l        | К         |  |
| 0.05                             | 1135         | 1989    | 2.26E+06 | -4.24E+09 |  |
| 0.1                              | 903          | 1984    | 1.79E+06 | -2.18E+09 |  |
| 0.15                             | 802          | 1980    | 1.59E+06 | -5.53E+09 |  |
| 0.2                              | 744          | 1975    | 1.47E+06 | -5.71E+09 |  |
| 0.25                             | 707          | 1970    | 1.39E+06 | -5.80E+09 |  |
| 0.3                              | 680          | 1965    | 1.34E+06 | -5.89E+09 |  |
| 0.35                             | 661          | 1960    | 1.30E+06 | -5.95E+09 |  |
| 0.4                              | 646          | 1956    | 1.26E+06 | -5.99E+09 |  |
| 0.45                             | 634          | 1951    | 1.24E+06 | -6.02E+09 |  |
| 0.5                              | 625          | 1946    | 1.22E+06 | -6.04E+09 |  |
| 0.55                             | 617          | 1941    | 1.20E+06 | -6.06E+09 |  |
| 0.6                              | 610          | 1936    | 1.18E+06 | -6.08E+09 |  |
| 0.65                             | 605          | 1932    | 1.17E+06 | -6.10E+09 |  |
| 0.7                              | 600          | 1927    | 1.16E+06 | -6.11E+09 |  |
| 0.75                             | 596          | 1922    | 1.15E+06 | -6.12E+09 |  |
| 0.8                              | 592          | 1917    | 1.13E+06 | -6.13E+00 |  |
| 0.85                             | 589          | 1912    | 1.13E+06 | -6.14E+09 |  |
| 0.9                              | 587          | 1908    | 1.12E+06 | -6.14E+09 |  |
| 0.95                             | 585          | 1903    | 1.11E+06 | -6.15E+09 |  |
| 1                                | 583          | 1898    | 1.11E+06 | -6.16E+09 |  |

#### Supercritical CO<sub>2</sub> in Sandstone

Modeled P-wave velocity, density, impedance, and bulk modulus for various levels of supercritical  $CO_2$  saturations in sandstone at 15 percent porosity.

| Sandstone with Supercritical CO2 |      |            |          |           |
|----------------------------------|------|------------|----------|-----------|
|                                  | 20   | % Porosity |          |           |
| CO2 Saturation                   | Vp   | Density    | I        | К         |
| 0.05                             | 1857 | 1988       | 3.69E+06 | -1.02E+07 |
| 0.1                              | 1782 | 1981       | 3.53E+06 | -5.17E+08 |
| 0.15                             | 1755 | 1975       | 3.47E+06 | -7.22E+08 |
| 0.2                              | 1743 | 1968       | 3.43E+06 | -8.27E+08 |
| 0.25                             | 1736 | 1962       | 3.41E+06 | -8.92E+08 |
| 0.3                              | 1733 | 1956       | 3.39E+06 | -9.35E+08 |
| 0.35                             | 1731 | 1949       | 3.37E+06 | -9.67E+08 |
| 0.4                              | 1730 | 1943       | 3.36E+06 | -9.90E+08 |
| 0.45                             | 1730 | 1936       | 3.35E+06 | -1.00E+09 |
| 0.5                              | 1731 | 1930       | 3.34E+06 | -1.02E+09 |
| 0.55                             | 1732 | 1924       | 3.33E+06 | -1.03E+09 |
| 0.6                              | 1733 | 1917       | 3.32E+06 | -1.05E+09 |
| 0.65                             | 1735 | 1911       | 3.32E+06 | -1.05E+09 |
| 0.7                              | 1737 | 1904       | 3.31E+06 | -1.06E+09 |
| 0.75                             | 1739 | 1898       | 3.30E+06 | -1.07E+09 |
| 0.8                              | 1741 | 1892       | 3.29E+06 | -1.07E+09 |
| 0.85                             | 1743 | 1885       | 3.29E+06 | -1.07E+09 |
| 0.9                              | 1745 | 1879       | 3.28E+06 | -1.08E+09 |
| 0.95                             | 1748 | 1872       | 3.27E+06 | -1.08E+09 |
| 1                                | 1750 | 1866       | 3.27E+06 | -1.09E+09 |

Modeled P-wave velocity, density, impedance, and bulk modulus for various levels of supercritical  $CO_2$  saturations in sandstone at 20 percent porosity.

| Sandstone with Supercritical CO2 |      |         |          |          |
|----------------------------------|------|---------|----------|----------|
| 25% Porosity                     |      |         |          |          |
| CO2 Saturation                   | Vp   | Density | 1        | К        |
| 0.05                             | 2131 | 1986    | 4.23E+06 | 2.21E+09 |
| 0.1                              | 2088 | 1978    | 4.13E+06 | 1.81E+09 |
| 0.15                             | 2075 | 1970    | 4.09E+06 | 1.67E+09 |
| 0.2                              | 2070 | 1962    | 4.06E+06 | 1.60E+09 |
| 0.25                             | 2069 | 1954    | 4.04E+06 | 1.55E+09 |
| 0.3                              | 2069 | 1946    | 4.03E+06 | 1.52E+09 |
| 0.35                             | 2071 | 1938    | 4.01E+06 | 1.50E+09 |
| 0.4                              | 2073 | 1930    | 4.00E+06 | 1.48E+09 |
| 0.45                             | 2076 | 1922    | 3.99E+06 | 1.47E+09 |
| 0.5                              | 2079 | 1914    | 3.98E+06 | 1.46E+09 |
| 0.55                             | 2082 | 1906    | 3.97E+06 | 1.45E+09 |
| 0.6                              | 2085 | 1898    | 3.96E+06 | 1.44E+09 |
| 0.65                             | 2089 | 1890    | 3.95E+06 | 1.44E+09 |
| 0.7                              | 2093 | 1882    | 3.94E+06 | 1.43E+09 |
| 0.75                             | 2097 | 1874    | 3.93E+06 | 1.43E+09 |
| 0.8                              | 2101 | 1866    | 3.92E+06 | 1.42E+09 |
| 0.85                             | 2105 | 1858    | 3.91E+06 | 1.42E+09 |
| 0.9                              | 2109 | 1850    | 3.90E+06 | 1.42E+09 |
| 0.95                             | 2113 | 1842    | 3.89E+06 | 1.41E+09 |
| 1                                | 2117 | 1834    | 3.88E+06 | 1.41E+09 |

Modeled P-wave velocity, density, impedance, and bulk modulus for various levels of supercritical  $CO_2$  saturations in sandstone at 25 percent porosity.

| Sandstone with Supercritical CO2 |      |            |          |          |
|----------------------------------|------|------------|----------|----------|
|                                  | 30   | % Porosity |          |          |
| CO2 Saturation                   | Vp   | Density    | I        | К        |
| 0.05                             | 2282 | 1984       | 4.53E+06 | 3.52E+09 |
| 0.1                              | 2253 | 1975       | 4.45E+06 | 3.21E+09 |
| 0.15                             | 2246 | 1965       | 4.41E+06 | 3.10E+09 |
| 0.2                              | 2245 | 1956       | 4.39E+06 | 3.05E+09 |
| 0.25                             | 2247 | 1946       | 4.37E+06 | 3.01E+09 |
| 0.3                              | 2250 | 1936       | 4.36E+06 | 2.99E+09 |
| 0.35                             | 2253 | 1927       | 4.34E+06 | 2.97E+09 |
| 0.4                              | 2258 | 1917       | 4.33E+06 | 2.96E+09 |
| 0.45                             | 2262 | 1908       | 4.32E+06 | 2.95E+09 |
| 0.5                              | 2267 | 1898       | 4.30E+06 | 2.94E+09 |
| 0.55                             | 2272 | 1888       | 4.29E+06 | 2.94E+09 |
| 0.6                              | 2277 | 1879       | 4.28E+06 | 2.93E+09 |
| 0.65                             | 2282 | 1869       | 4.27E+06 | 2.93E+09 |
| 0.7                              | 2288 | 1860       | 4.26E+06 | 2.92E+09 |
| 0.75                             | 2293 | 1850       | 4.24E+06 | 2.92E+09 |
| 0.8                              | 2299 | 1840       | 4.23E+06 | 2.92E+09 |
| 0.85                             | 2305 | 1831       | 4.22E+06 | 2.91E+09 |
| 0.9                              | 2310 | 1821       | 4.21E+06 | 2.91E+09 |
| 0.95                             | 2316 | 1812       | 4.20E+06 | 2.91E+09 |
| 1                                | 2322 | 1802       | 4.18E+06 | 2.91E+09 |

Modeled P-wave velocity, density, impedance, and bulk modulus for various levels of supercritical  $CO_2$  saturations in sandstone at 30 percent porosity.

| Limestone with Sub-Critical CO2 |     |         |         |           |
|---------------------------------|-----|---------|---------|-----------|
| 15% Porosity                    |     |         |         |           |
| CO2 Saturation                  | Vp  | Density | I       | К         |
| 0.05                            | 639 | 1986    | 1269054 | -5.99E+09 |
| 0.1                             | 456 | 1979    | 902424  | -6.39E+09 |
| 0.15                            | 372 | 1971    | 733212  | -6.53E+09 |
| 0.2                             | 321 | 1964    | 630444  | -6.60E+09 |
| 0.25                            | 286 | 1956    | 559416  | -6.64E+09 |
| 0.3                             | 260 | 1949    | 506740  | -6.67E+09 |
| 0.35                            | 240 | 1941    | 465840  | -6.69E+09 |
| 0.4                             | 223 | 1934    | 431282  | -6.71E+09 |
| 0.45                            | 209 | 1926    | 402534  | -6.72E+09 |
| 0.5                             | 197 | 1918    | 377846  | -6.73E+09 |
| 0.55                            | 187 | 1911    | 357357  | -6.73E+09 |
| 0.6                             | 178 | 1903    | 338734  | -6.74E+09 |
| 0.65                            | 170 | 1896    | 322320  | -6.75E+09 |
| 0.7                             | 163 | 1888    | 307744  | -6.75E+09 |
| 0.75                            | 156 | 1881    | 293436  | -6.76E+09 |
| 0.8                             | 151 | 1873    | 282823  | -6.76E+09 |
| 0.85                            | 145 | 1865    | 270425  | -6.76E+09 |
| 0.9                             | 140 | 1858    | 260120  | -6.77E+09 |
| 0.95                            | 135 | 1850    | 249750  | -6.77E+09 |
| 1                               | 131 | 1843    | 241433  | -6.77E+09 |

#### Sub-critical CO<sub>2</sub> in Limestone

Modeled P-wave velocity, density, impedance, and bulk modulus for various levels of subcritical  $CO_2$  saturations in limestone at 15 percent porosity.

| Limestone with Sub-Critical CO2 |      |         |         |           |
|---------------------------------|------|---------|---------|-----------|
| 20% Porosity                    |      |         |         |           |
| CO2 Saturation                  | Vp   | Density | I       | К         |
| 0.05                            | 1644 | 1984    | 3261696 | -1.44E+09 |
| 0.1                             | 1608 | 1974    | 3174192 | -1.70E+09 |
| 0.15                            | 1598 | 1964    | 3138472 | -1.79E+09 |
| 0.2                             | 1595 | 1954    | 3116630 | -1.83E+09 |
| 0.25                            | 1595 | 1944    | 3100680 | -1.86E+09 |
| 0.3                             | 1596 | 1934    | 3086664 | -1.88E+09 |
| 0.35                            | 1598 | 1923    | 3072954 | -1.89E+09 |
| 0.4                             | 1601 | 1913    | 3062713 | -1.90E+09 |
| 0.45                            | 1604 | 1903    | 3052412 | -1.91E+09 |
| 0.5                             | 1607 | 1893    | 3042051 | -1.91E+09 |
| 0.55                            | 1611 | 1883    | 3033513 | -1.92E+09 |
| 0.6                             | 1614 | 1873    | 3023022 | -1.92E+09 |
| 0.65                            | 1618 | 1863    | 3014334 | -1.92E+09 |
| 0.7                             | 1622 | 1853    | 3005566 | -1.93E+09 |
| 0.75                            | 1626 | 1843    | 2996718 | -1.93E+09 |
| 0.8                             | 1630 | 1833    | 2987790 | -1.94E+09 |
| 0.85                            | 1634 | 1823    | 2978782 | -1.93E+09 |
| 0.9                             | 1638 | 1813    | 2969694 | -1.94E+09 |
| 0.95                            | 1643 | 1802    | 2960686 | -1.94E+09 |
| 1                               | 1647 | 1792    | 2951424 | -1.94E+09 |

Modeled P-wave velocity, density, impedance, and bulk modulus for various levels of sub-critical  $CO_2$  saturations in limestone at 20 percent porosity.

| Limestone with Sub-Critical CO2 |      |         |         |          |
|---------------------------------|------|---------|---------|----------|
| 25% Porosity                    |      |         |         |          |
| CO2 Saturation                  | Vp   | Density | l       | К        |
| 0.05                            | 1981 | 1981    | 3924361 | 9.66E+08 |
| 0.1                             | 1963 | 1969    | 3865147 | 7.78E+08 |
| 0.15                            | 1961 | 1956    | 3835716 | 7.14E+08 |
| 0.2                             | 1963 | 1944    | 3816072 | 6.81E+08 |
| 0.25                            | 1967 | 1931    | 3798277 | 6.61E+08 |
| 0.3                             | 1971 | 1918    | 3780378 | 6.48E+08 |
| 0.35                            | 1977 | 1906    | 3768162 | 6.39E+08 |
| 0.4                             | 1982 | 1893    | 3751926 | 6.32E+08 |
| 0.45                            | 1988 | 1881    | 3739428 | 6.26E+08 |
| 0.5                             | 1994 | 1868    | 3724792 | 6.22E+08 |
| 0.55                            | 2000 | 1855    | 3710000 | 6.18E+08 |
| 0.6                             | 2007 | 1843    | 3698901 | 6.15E+08 |
| 0.65                            | 2013 | 1830    | 3683790 | 6.13E+08 |
| 0.7                             | 2020 | 1818    | 3672360 | 6.10E+08 |
| 0.75                            | 2027 | 1805    | 3658735 | 6.08E+10 |
| 0.8                             | 2034 | 1792    | 3644928 | 6.07E+08 |
| 0.85                            | 2041 | 1780    | 3632980 | 6.05E+08 |
| 0.9                             | 2048 | 1767    | 3618816 | 6.04E+08 |
| 0.95                            | 2055 | 1755    | 3606525 | 6.03E+08 |
| 1                               | 2062 | 1742    | 3592004 | 6.02E+08 |

Modeled P-wave velocity, density, impedance, and bulk modulus for various levels of sub-critical  $CO_2$  saturations in limestone at 25 percent porosity.

| Limestone with Sub-Critical CO2 |      |         |         |          |
|---------------------------------|------|---------|---------|----------|
| 30% Porosity                    |      |         |         |          |
| CO2 Saturation                  | Vp   | Density | l       | К        |
| 0.05                            | 2164 | 1979    | 4282556 | 2.46E+09 |
| 0.1                             | 2155 | 1964    | 4232420 | 2.31E+09 |
| 0.15                            | 2157 | 1949    | 4203993 | 2.26E+09 |
| 0.2                             | 2163 | 1934    | 4183242 | 2.23E+09 |
| 0.25                            | 2169 | 1918    | 4160142 | 2.22E+09 |
| 0.3                             | 2177 | 1903    | 4142831 | 2.21E+09 |
| 0.35                            | 2184 | 1888    | 4123392 | 2.20E+09 |
| 0.4                             | 2193 | 1873    | 4107489 | 2.19E+09 |
| 0.45                            | 2201 | 1858    | 4089458 | 2.19E+09 |
| 0.5                             | 2210 | 1843    | 4073030 | 2.19E+09 |
| 0.55                            | 2218 | 1828    | 4054504 | 2.18E+09 |
| 0.6                             | 2227 | 1813    | 4037551 | 2.18E+09 |
| 0.65                            | 2236 | 1797    | 4018092 | 2.18E+09 |
| 0.7                             | 2246 | 1782    | 4002372 | 2.18E+09 |
| 0.75                            | 2255 | 1767    | 3984585 | 2.18E+09 |
| 0.8                             | 2265 | 1752    | 3968280 | 2.17E+09 |
| 0.85                            | 2274 | 1737    | 3949938 | 2.17E+09 |
| 0.9                             | 2284 | 1722    | 3933048 | 2.17E+09 |
| 0.95                            | 2294 | 1707    | 3915858 | 2.17E+09 |
| 1                               | 2304 | 1692    | 3898368 | 2.17E+09 |

Modeled P-wave velocity, density, impedance, and bulk modulus for various levels of sub-critical  $CO_2$  saturations in limestone at 30 percent porosity.

| Limestone with Supercritical CO2 |     |         |           |  |  |  |
|----------------------------------|-----|---------|-----------|--|--|--|
| 15% Porosity                     |     |         |           |  |  |  |
| CO2 Saturation                   | Vp  | Density | К         |  |  |  |
| 0.05                             | 978 | 1989    | -4.90E+09 |  |  |  |
| 0.1                              | 712 | 1984    | -5.79E+09 |  |  |  |
| 0.15                             | 587 | 1980    | -6.12E+09 |  |  |  |
| 0.2                              | 511 | 1975    | -6.29E+09 |  |  |  |
| 0.25                             | 458 | 1970    | -6.39E+09 |  |  |  |
| 0.3                              | 418 | 1965    | -6.46E+09 |  |  |  |
| 0.35                             | 387 | 1960    | -6.51E+09 |  |  |  |
| 0.4                              | 362 | 1956    | -6.55E+09 |  |  |  |
| 0.45                             | 341 | 1951    | -6.57E+09 |  |  |  |
| 0.5                              | 323 | 1946    | -6.60E+09 |  |  |  |
| 0.55                             | 308 | 1941    | -6.62E+09 |  |  |  |
| 0.6                              | 294 | 1936    | -6.63E+09 |  |  |  |
| 0.65                             | 283 | 1932    | -6.65E+09 |  |  |  |
| 0.7                              | 272 | 1927    | -6.66E+09 |  |  |  |
| 0.75                             | 262 | 1922    | -6.67E+09 |  |  |  |
| 0.8                              | 254 | 1917    | -6.68E+09 |  |  |  |
| 0.85                             | 246 | 1912    | -6.69E+09 |  |  |  |
| 0.9                              | 238 | 1908    | -6.69E+09 |  |  |  |
| 0.95                             | 232 | 1903    | -6.70E+09 |  |  |  |
| 1                                | 226 | 1898    | -6.71E+09 |  |  |  |
| *                                |     |         |           |  |  |  |

#### Supercritical CO<sub>2</sub> in Limestone

Modeled P-wave velocity, density, and bulk modulus for various levels of supercritical CO<sub>2</sub> saturations in limestone at 15 percent porosity.

| Limestone with Supercritical CO2 |              |         |           |  |  |  |  |  |
|----------------------------------|--------------|---------|-----------|--|--|--|--|--|
|                                  | 20% Porosity |         |           |  |  |  |  |  |
| CO2 Saturation                   | Vp           | Density | К         |  |  |  |  |  |
| 0.05                             | 1746         | 1988    | -7.44E+08 |  |  |  |  |  |
| 0.1                              | 1664         | 1981    | -1.32E+09 |  |  |  |  |  |
| 0.15                             | 1635         | 1975    | -1.52E+09 |  |  |  |  |  |
| 0.2                              | 1621         | 1968    | -1.63E+09 |  |  |  |  |  |
| 0.25                             | 1613         | 1962    | -1.70E+09 |  |  |  |  |  |
| 0.3                              | 1609         | 1956    | -1.74E+09 |  |  |  |  |  |
| 0.35                             | 1606         | 1949    | -1.77E+09 |  |  |  |  |  |
| 0.4                              | 1605         | 1943    | -1.80E+09 |  |  |  |  |  |
| 0.45                             | 1605         | 1936    | -1.82E+09 |  |  |  |  |  |
| 0.5                              | 1605         | 1930    | -1.83E+09 |  |  |  |  |  |
| 0.55                             | 1606         | 1924    | -1.84E+09 |  |  |  |  |  |
| 0.6                              | 1607         | 1917    | -1.85E+09 |  |  |  |  |  |
| 0.65                             | 1608         | 1911    | -1.96E+09 |  |  |  |  |  |
| 0.7                              | 1609         | 1904    | -1.87E+09 |  |  |  |  |  |
| 0.75                             | 1611         | 1898    | -1.88E+09 |  |  |  |  |  |
| 0.8                              | 1613         | 1892    | -1.88E+09 |  |  |  |  |  |
| 0.85                             | 1615         | 1885    | -1.89E+09 |  |  |  |  |  |
| 0.9                              | 1617         | 1879    | -1.89E+09 |  |  |  |  |  |
| 0.95                             | 1619         | 1872    | -1.89E+09 |  |  |  |  |  |
| 1                                | 1621         | 1866    | -1.90E+09 |  |  |  |  |  |

Modeled P-wave velocity, density, and bulk modulus for various levels of supercritical  $CO_2$  saturations in limestone at 20 percent porosity.

| Limestone with Supercritical CO2 |      |         |          |  |  |  |  |
|----------------------------------|------|---------|----------|--|--|--|--|
| 25% Porosity                     |      |         |          |  |  |  |  |
| CO2 Saturation                   | Vp   | Density | К        |  |  |  |  |
| 0.05                             | 2043 | 1986    | 1.48E+09 |  |  |  |  |
| 0.1                              | 1994 | 1978    | 1.05E+09 |  |  |  |  |
| 0.15                             | 1979 | 1970    | 9.05E+08 |  |  |  |  |
| 0.2                              | 1972 | 1962    | 8.27E+08 |  |  |  |  |
| 0.25                             | 1970 | 1954    | 7.79E+08 |  |  |  |  |
| 0.3                              | 1970 | 1946    | 7.47E+08 |  |  |  |  |
| 0.35                             | 1970 | 1938    | 7.23E+08 |  |  |  |  |
| 0.4                              | 1973 | 1930    | 7.06E+08 |  |  |  |  |
| 0.45                             | 1975 | 1922    | 6.92E+08 |  |  |  |  |
| 0.5                              | 1978 | 1914    | 6.81E+08 |  |  |  |  |
| 0.55                             | 1981 | 1906    | 6.72E+08 |  |  |  |  |
| 0.6                              | 1984 | 1898    | 6.65E+08 |  |  |  |  |
| 0.65                             | 1987 | 1890    | 6.59E+08 |  |  |  |  |
| 0.7                              | 1991 | 1882    | 6.53E+08 |  |  |  |  |
| 0.75                             | 1995 | 1874    | 6.48E+08 |  |  |  |  |
| 0.8                              | 1998 | 1866    | 6.44E+08 |  |  |  |  |
| 0.85                             | 2002 | 1858    | 6.41E+08 |  |  |  |  |
| 0.9                              | 2006 | 1850    | 6.37E+08 |  |  |  |  |
| 0.95                             | 2010 | 1842    | 6.35E+08 |  |  |  |  |
| 1                                | 2014 | 1834    | 6.32E+08 |  |  |  |  |

Modeled P-wave velocity, density, and bulk modulus for various levels of supercritical  $CO_2$  saturations in limestone at 25 percent porosity.

| Limestone with Supercritical CO2 |      |         |          |  |  |  |  |
|----------------------------------|------|---------|----------|--|--|--|--|
| 30% Porosity                     |      |         |          |  |  |  |  |
| CO2 Saturation                   | Vp   | Density | К        |  |  |  |  |
| 0.05                             | 2208 | 1984    | 2.86E+09 |  |  |  |  |
| 0.1                              | 2175 | 1975    | 2.53E+09 |  |  |  |  |
| 0.15                             | 2166 | 1965    | 2.41E+09 |  |  |  |  |
| 0.2                              | 2164 | 1956    | 2.35E+09 |  |  |  |  |
| 0.25                             | 2165 | 1946    | 2.31E+09 |  |  |  |  |
| 0.3                              | 2167 | 1936    | 2.28E+09 |  |  |  |  |
| 0.35                             | 2170 | 1927    | 2.27E+09 |  |  |  |  |
| 0.4                              | 2174 | 1917    | 2.25E+09 |  |  |  |  |
| 0.45                             | 2178 | 1908    | 2.24E+09 |  |  |  |  |
| 0.5                              | 2183 | 1898    | 2.23E+09 |  |  |  |  |
| 0.55                             | 2188 | 1888    | 2.23E+09 |  |  |  |  |
| 0.6                              | 2192 | 1879    | 2.22E+09 |  |  |  |  |
| 0.65                             | 2197 | 1869    | 2.21E+09 |  |  |  |  |
| 0.7                              | 2203 | 1860    | 2.21E+09 |  |  |  |  |
| 0.75                             | 2208 | 1850    | 2.21E+09 |  |  |  |  |
| 0.8                              | 2213 | 1840    | 2.20E+09 |  |  |  |  |
| 0.85                             | 2219 | 1831    | 2.20E+09 |  |  |  |  |
| 0.9                              | 2224 | 1821    | 2.20E+09 |  |  |  |  |
| 0.95                             | 2230 | 1812    | 2.20E+09 |  |  |  |  |
| 1                                | 2235 | 1802    | 2.19E+09 |  |  |  |  |

Modeled P-wave velocity, density, and bulk modulus for various levels of supercritical  $\rm CO_2$  saturations in limestone at 30 percent porosity.

### **KGS Modeling**

#### **4-26**

| Shc (w) | Shc (CO2) | Vp (Sw2) | Vs (Sw2) | Rho (Sw2) | K (Sw2)  | Poisson (Sw2) |
|---------|-----------|----------|----------|-----------|----------|---------------|
| 0.83    | 0.17      | 4912     | 2914     | 2735      | 3.50E+10 | 0.228         |
| 0.75    | 0.25      | 4909     | 2915     | 2732      | 3.49E+10 | 0.228         |
| 0.7     | 0.3       | 4909     | 2916     | 2731      | 3.49E+10 | 0.227         |
| 0.65    | 0.35      | 4909     | 2917     | 2729      | 3.48E+10 | 0.227         |
| 0.6     | 0.4       | 4909     | 2918     | 2728      | 3.48E+10 | 0.227         |
| 0.55    | 0.45      | 4910     | 2918     | 2726      | 3.48E+10 | 0.227         |
| 0.5     | 0.5       | 4911     | 2919     | 2725      | 3.48E+10 | 0.227         |
| 0.45    | 0.55      | 4911     | 2920     | 2723      | 3.47E+10 | 0.227         |
| 0.4     | 0.6       | 4912     | 2921     | 2722      | 3.47E+10 | 0.227         |
| 0.35    | 0.65      | 4913     | 2922     | 2710      | 3.47E+10 | 0.227         |
| 0.3     | 0.7       | 4914     | 2922     | 2719      | 3.47E+10 | 0.226         |
| 0.25    | 0.75      | 4916     | 2923     | 2717      | 3.47E+10 | 0.226         |
| 0.2     | 0.8       | 4917     | 2924     | 2716      | 3.47E+10 | 0.226         |

Modeled P-wave velocity, S-wave velocity, density, bulk modulus, and Poisson's Ratio for various levels of CO<sub>2</sub> saturations for sample 4-26 at 7.1 percent porosity.

| Shc (w) | Shc (CO2) | Vp (Sw2) | Vs (Sw2) | Rho (Sw2) | K (Sw2)  | Poisson (Sw2) |
|---------|-----------|----------|----------|-----------|----------|---------------|
| 0.83    | 0.17      | 4939     | 2915     | 2733      | 3.57E+10 | 0.233         |
| 0.75    | 0.25      | 4940     | 2917     | 2729      | 3.56E+10 | 0.232         |
| 0.7     | 0.3       | 4940     | 2918     | 2727      | 3.56E+10 | 0.232         |
| 0.65    | 0.35      | 4942     | 2919     | 2725      | 3.56E+10 | 0.232         |
| 0.6     | 0.4       | 4943     | 2920     | 2723      | 3.56E+10 | 0.232         |
| 0.55    | 0.45      | 4944     | 2921     | 2721      | 3.56E+10 | 0.232         |
| 0.5     | 0.5       | 4946     | 2922     | 2719      | 3.55E+10 | 0.232         |
| 0.45    | 0.55      | 4947     | 2924     | 2716      | 3.55E+10 | 0.232         |
| 0.4     | 0.6       | 4949     | 2925     | 2714      | 3.55E+10 | 0.232         |
| 0.35    | 0.65      | 4951     | 2926     | 2712      | 3.55E+10 | 0.232         |
| 0.3     | 0.7       | 4953     | 2927     | 2710      | 3.55E+10 | 0.232         |
| 0.25    | 0.75      | 4954     | 2928     | 2708      | 3.55E+10 | 0.232         |
| 0.2     | 0.8       | 4956     | 2929     | 2706      | 3.55E+10 | 0.232         |

Modeled P-wave velocity, S-wave velocity, density, bulk modulus, and Poisson's Ratio for various levels of CO<sub>2</sub> saturations for sample 4-26 at 10 percent porosity.

| Shc  | Shc (CO2) | Vp (Sw2) | Vs (Sw2) | Rho (Sw2) | K (Sw2)  | Poisson (Sw2) |
|------|-----------|----------|----------|-----------|----------|---------------|
| 0.83 | 0.17      | 4951     | 2916     | 2731      | 3.60E+10 | 0.234         |
| 0.75 | 0.25      | 4952     | 2918     | 2727      | 3.59E+10 | 0.234         |
| 0.7  | 0.3       | 4953     | 2919     | 2725      | 3.59E+10 | 0.234         |
| 0.65 | 0.35      | 4955     | 2921     | 2722      | 3.59E+10 | 0.234         |
| 0.6  | 0.4       | 4957     | 2922     | 2719      | 3.59E+10 | 0.234         |
| 0.55 | 0.45      | 4959     | 2923     | 2717      | 3.59E+10 | 0.234         |
| 0.5  | 0.5       | 4961     | 2925     | 2714      | 3.58E+10 | 0.234         |
| 0.45 | 0.55      | 4963     | 2926     | 2712      | 3.58E+10 | 0.234         |
| 0.4  | 0.6       | 4965     | 2928     | 2709      | 3.58E+10 | 0.234         |
| 0.35 | 0.65      | 4967     | 2929     | 2706      | 3.58E+10 | 0.233         |
| 0.3  | 0.7       | 4969     | 2930     | 2704      | 3.58E+10 | 0.233         |
| 0.25 | 0.75      | 4972     | 2932     | 2701      | 3.58E+10 | 0.233         |
| 0.2  | 0.8       | 4974     | 2933     | 2699      | 3.58E+10 | 0.233         |

Modeled P-wave velocity, S-wave velocity, density, bulk modulus, and Poisson's Ratio for various levels of CO<sub>2</sub> saturations for sample 4-26 at 12 percent porosity.

| Shc (w) | Shc (CO2) | Vp (Sw2) | Vs (Sw2) | Rho (Sw2) | K (Sw2)  | Poisson (Sw2) |
|---------|-----------|----------|----------|-----------|----------|---------------|
| 0.8     | 0.2       | 5195     | 2992     | 2774      | 4.17E+10 | 0.252         |
| 0.75    | 0.25      | 5196     | 2993     | 2772      | 4.17E+10 | 0.252         |
| 0.7     | 0.3       | 5197     | 2994     | 2770      | 4.17E+10 | 0.252         |
| 0.65    | 0.35      | 5199     | 2995     | 2769      | 4.17E+10 | 0.252         |
| 0.6     | 0.4       | 5200     | 2996     | 2767      | 4.17E+10 | 0.252         |
| 0.55    | 0.45      | 5201     | 2997     | 2765      | 4.17E+10 | 0.252         |
| 0.5     | 0.5       | 5203     | 2998     | 2764      | 4.17E+10 | 0.252         |
| 0.45    | 0.55      | 5204     | 2999     | 2762      | 4.17E+10 | 0.251         |
| 0.4     | 0.6       | 5206     | 3000     | 2761      | 4.17E+10 | 0.251         |
| 0.35    | 0.65      | 5207     | 3000     | 2759      | 4.16E+10 | 0.251         |
| 0.31    | 0.69      | 5208     | 3001     | 2758      | 4.17E+10 | 0.251         |
| 0.25    | 0.75      | 5210     | 3002     | 2756      | 4.17E+10 | 0.251         |
| 0.2     | 0.8       | 5211     | 3003     | 2754      | 4.17E+10 | 0.251         |

#### 14-4

Modeled P-wave velocity, S-wave velocity, density, bulk modulus, and Poisson's Ratio for various levels of  $CO_2$  saturations for sample 14-4 at 7.55 percent porosity.

| Shc (w) | Shc (CO2) | Vp (Sw2) | Vs (Sw2) | Rho (Sw2) | K (Sw2)  | Poisson (Sw2) |
|---------|-----------|----------|----------|-----------|----------|---------------|
| 0.8     | 0.2       | 5202     | 2994     | 2771      | 4.19E+10 | 0.252         |
| 0.75    | 0.25      | 5204     | 2995     | 2769      | 4.19E+10 | 0.252         |
| 0.7     | 0.3       | 5206     | 2996     | 2767      | 4.19E+10 | 0.252         |
| 0.65    | 0.35      | 5207     | 2997     | 2765      | 4.19E+10 | 0.252         |
| 0.6     | 0.4       | 5209     | 2998     | 2763      | 4.19E+10 | 0.252         |
| 0.55    | 0.45      | 5211     | 2999     | 2761      | 4.19E+10 | 0.252         |
| 0.5     | 0.5       | 5213     | 3001     | 2759      | 4.19E+10 | 0.252         |
| 0.45    | 0.55      | 5215     | 3002     | 2756      | 4.19E+10 | 0.252         |
| 0.4     | 0.6       | 5217     | 3003     | 2754      | 4.19E+10 | 0.252         |
| 0.35    | 0.65      | 5219     | 3004     | 2752      | 4.18E+10 | 0.252         |
| 0.31    | 0.69      | 5221     | 3005     | 2750      | 4.18E+10 | 0.252         |
| 0.25    | 0.75      | 5223     | 3006     | 2748      | 4.18E+10 | 0.252         |
| 0.2     | 0.8       | 5225     | 3008     | 2746      | 4.18E+10 | 0.252         |

Modeled P-wave velocity, S-wave velocity, density, bulk modulus, and Poisson's Ratio for various levels of CO<sub>2</sub> saturations for sample 14-4 at 10 percent porosity.

|         | 01 00 <u>2</u> 00.00 |          | -P       | - P P -   |          |               |
|---------|----------------------|----------|----------|-----------|----------|---------------|
| Shc (w) | Shc (CO2)            | Vp (Sw2) | Vs (Sw2) | Rho (Sw2) | K (Sw2)  | Poisson (Sw2) |
| 0.8     | 0.2                  | 5206     | 2995     | 2770      | 4.20E+10 | 0.253         |
| 0.75    | 0.25                 | 5208     | 2996     | 2767      | 4.20E+10 | 0.253         |
| 0.7     | 0.3                  | 5211     | 2997     | 2765      | 4.19E+10 | 0.253         |
| 0.65    | 0.35                 | 5213     | 2999     | 2762      | 4.19E+10 | 0.253         |
| 0.6     | 0.4                  | 5215     | 3000     | 2759      | 4.19E+10 | 0.253         |
| 0.55    | 0.45                 | 5217     | 3002     | 2757      | 4.19E+10 | 0.253         |
| 0.5     | 0.5                  | 5220     | 3003     | 2754      | 4.19E+10 | 0.253         |
| 0.45    | 0.55                 | 5222     | 3004     | 2752      | 4.19E+10 | 0.253         |
| 0.4     | 0.6                  | 5225     | 3006     | 2749      | 4.19E+10 | 0.253         |
| 0.35    | 0.65                 | 5227     | 3007     | 2746      | 4.19E+10 | 0.253         |
| 0.31    | 0.69                 | 5229     | 3008     | 2744      | 4.19E+10 | 0.253         |
| 0.25    | 0.75                 | 5232     | 3010     | 2741      | 4.19E+10 | 0.253         |
| 0.2     | 0.8                  | 5234     | 3011     | 2739      | 4.19E+10 | 0.253         |

Modeled P-wave velocity, S-wave velocity, density, bulk modulus, and Poisson's Ratio for various levels of CO<sub>2</sub> saturations for sample 14-4 at 12 percent porosity.