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Abstract 

Three studies were conducted to assess effects of mineral supplementation on 

growing cattle performance, mineral status, and in vitro fermentation. Exp. 1 was a 3-part 

study that measured effects of Cu source and concentration on in vitro fermentation by mixed 

ruminal microbes. An initial in vitro experiment was performed to identify a Cu 

concentration (0, 100, 200, 300, 400, or 500 mg Cu/kg substrate DM) that would yield a 50% 

decrease in gas production. This concentration (100 mg Cu/kg substrate) was then used to 

evaluate varying Cu sources in the 3rd part of Exp.1. Titration of Cu (0, 10, 20, 30, 40, 50, 60, 

and 70 mg Cu/kg DM substrate) linearly decreased (P < 0.01) in vitro gas production, 

acetate, and propionate production. Inhibition of ruminal fermentation by Cu sources 

(CuSO4, CuCl2, CuCO3, CuO, and tribasic copper chloride) also was evaluated using an in 

vitro fermentation system. Sources were incorporated into cultures at 100 mg Cu/kg substrate 

DM, a concentration great enough to elicit an inhibitory response. Copper sulfate and CuCl2 

were more inhibitory to in vitro fermentation, as indicated by decreases in gas production, 

VFA, and IVDMD, and increases in pH (P < 0.01). In Exp. 2, heifers were fed 3 different 

free-choice minerals: salt (S), a dry mineral basemix with salt (M), and a cooked molasses 

block (B); M and utilized the identical basemix. Mineral source had no effect on DMI, G:F,  

or concentrations of plasma P and Zn (P > 0.10). Average daily gain was greatest for M (P = 

0.03), and not different between S and B (P = 0.98). Liver Cu concentrations were different 

among treatments (P < 0.01), with M having the greatest, B intermediate, and S having the 

least. Total dietary mineral intake also was different among treatments (P < 0.01), and was 

greatest for M, intermediate for B, and the least for S (P < 0.01). Experiment 3 × 4 factorial 

design and evaluated minerals added as different supplement types and trace mineral 



 

concentrations (0, 1, 5, or 10×) in an in vitro batch culture fermentation. Cooked molasses 

mineral blocks were compared to a dry mineral premix, and a dry mineral premix + molasses 

block added separately. In vitro fermentation was not different between the two molasses 

block treatments (P > 0.01); however, addition of molasses blocks increased fermentation to 

a greater extent than dry mineral alone (P < 0.01). Increasing trace mineral concentration 

decreased fermentation linearly (P < 0.01). In conclusion, excesses of trace elements can 

adversely affect fermentation by ruminal microbes. Mineral status in growing cattle was 

reflective of mineral intake; however, block supplements may be a method to control mineral 

intake to minimize overconsumption.  
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Chapter-1 Literature Review: Copper in Ruminant Nutrition 

 HISTORY OF COPPER 

The discovery of Cu dates back to ancient times, and its use was more mechanical 

than medicinal in early years. Copper was first reported as being required in the diet for basic 

function by Hart et al. (1928).  While seeking methods to alleviate anemia in rats, they 

discovered both dietary Cu and Fe were important for hemoglobin function and growth. 

Previously, knowledge of Cu in both plant and animal tissues existed, but no knowledge of 

its mode of action or function in either clinical medicine or nutrition existed.  The first 

reported copper deficiency was in cattle grazing native rangeland in Florida, otherwise 

known as “Salt Sick” (Neal et al., 1931). Cattle were characterized by decreases in intake, 

growth, reproduction performance, and had high mortality rates unless treated with Cu 

supplementation. Shortly after, similar symptoms were observed in sheep in the Netherlands 

(lecksucht or “licking disease”; Sjollema, 1933) and Western Australia (enzootic neonatal 

ataxia; Bennetts and Chapman, 1937); where Cu therapy alleviated disease symptoms. 

Interactions between Cu and other elements exist, and Mo is the most widely known 

antagonist. Teart, a disease caused by high Mo intake, was treated with CuSO4. Conversely, 

low Mo was reported to cause Cu toxicity (Suttle, 2010).  Copper, Mo, and S also interact 

with one another, and relative concentrations of each must be considered when determining 

supplementation requirements and toxicity (McDowell, 2003).  Copper has been reported to 

be required for enzyme function, Fe function, cardiovascular function, and other important 

metabolic activities. Because of this, Cu has been established as a required trace element, and 

should be supplemented in livestock.  
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 PHYSIOLOGICAL ROLE OF COPPER 

Enzyme Function 

Copper is present in multiple cuproenzymes, although the function of Cu in some of 

these enzymes is elusive, and enzyme activity is not always a function of Cu status. Uricase 

is a Cu-containing enzyme that catalyzes oxidation of uric acid, but deficiency of Cu has no 

impact on concentration or function of uricase. Dopamine-B-hydroxylase is a cuproenzyme 

that catalyzes oxidation of dopamine to norepinephrine (Sourkes, 1972; Prasad, 1978) and its 

response to Cu deficiency is ambiguous. There no evidence suggesting Cu deficiency 

decreases dopamine concentrations (Prohaska et al., 1990); however, there is an 

overwhelming amount of literature providing evidence suggesting dopamine activity is 

compromised during a Cu deficient state (Freidman and Kaufman, 1965). Brain and heart 

norepinephrine are reduced during Cu deficiency (Prasad, 1978), and injection of dopamine 

in Cu deficient rats has resulted in decreased conversion of dopamine to norepinephrine in 

comparison to Cu adequate rats (Sourkes, 1972). Copper-containing cytochrome c oxidase is 

present in mitochondria and is necessary for cellular energy (O’Dell, 1976). Hepatocyte 

mitochondria are abnormally large and misshapen in moderately Cu deficient rats, and this 

response is intensified with severe, acute, and chronic Cu deficiency. In extreme cases, 

morphological changes in mitochondria can squeeze out the endoplasmic reticulum and other 

organelles (Gallagher et al., 1973). Superoxide dismutase, responsible for catalyzing free 

radical oxygen conversion into water and O2, is Cu dependent as well. Although not linked to 

disorders in vertebrates, superoxide dismutase is present in the cytosol of strictly aerobic 

microorganisms. Its presence has been documented in the rumen in small amounts, although 

it is a predominantly anaerobic environment. Streptococcus bovis, a facultative ruminal 
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bacterium, contains superoxide dismutase (McCord et al., 1971). Superoxide dismutase 

activity has been detected in the cytosol of ruminal obligate anaerobes as well, but in low 

quantities (Fulghum and Worthington, 1984). This is especially important in maintaining 

anaerobiosis of the rumen by removal of toxic free radicals from oxygen reduction. Lastly, 

amine oxidases are a Cu-containing class of enzymes. These enzymes have been isolated 

from plasma, organs, and connective tissues. Amine oxidases are especially important in 

connective tissue metabolism, lysyl oxidase being the predominant one in cross-linking of 

collagen and for elastin integrity (Mertz, 1987; Prasad, 1978). Benzylamine oxidase, an 

enzyme active in various structural and visceral tissues of chicks, also has decreased activity 

during Cu deficiencies (O’Dell, 1976).  

Cardiovascular System  

Copper was first associated with cardiovascular disturbances in Western Australia 

with the onset of “Falling Disease”. This fatal disease, characterized by lesions in 

cardiovascular tissue, was commonly observed in dairy cattle after strenuous exercise and 

resulted in sudden death in up to 40% of the cows in some herds (Bennetts and Hall, 1939). 

Further studies by Bennetts et al. (1948) linked Cu deficiency as the main culprit in Falling 

Disease. Similar findings have been observed among a wide range of species including 

swine, rats, mice, and chickens, with multiple forms of anatomical degeneration reported 

(Klevay, 2000).  Chicks fed a Cu deficient diet presented with ruptured blood vessels in 78% 

of the treatment group, compared to no internal hemorrhaging observed in Cu sufficient 

chicks (O’Dell, 1961). Histological analyses of vasculature revealed disturbances in the 

cross-linking of elastin and collagen, with overall weakening of connective tissue  (O’Dell, 

1961). Starcher et al. (1964) observed that diets containing 25 mg/kg DM added Cu fed to Cu 
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deficient chicks increased elastin content of the aorta by 12%. Interestingly, Cu deficient 

chicks had three times the amount of aortic elastin lysine in comparison to control chicks. 

Lysyl oxidase removes lysine residues in amino acid chains of elastin (Harris, 1976), which 

explains the relationship between Cu and cardiac hemorrhaging. Superoxide dismutase 

concentrations are decreased in individuals with hypertension, angina pectoris, and 

tachycardia. Hypercholesterolemia has been observed in Cu deficient humans as well 

(Klevay, 2000; Mertz, 1987). It has been suggested that Cu deficiency, as well as energy and 

mitochondrial activity, may complement each other in the mode of action for Cu-induced 

cardiovascular disease.  

Immune Function 

The role of Cu in immune response has been established for quite some time, with 

early work using mice and rats as models to substantiate relationships between Cu and 

immunity. Copper deficiency decreases activity and populations of both innate and acquired 

immune cells, and is closely associated with reduced activity and production of 

metalloenzymes (McDowell, 2003). A review by Percival (1998) emphasized the need for Cu 

in multiple species due to manifestation of neutropenia in Cu deficient animals and people. 

Prohaska and Lukasewycz (1981) exposed Cu deficient mice to ovine erythrocytes to 

measure humoral immune response.  A diminished number of antibody-producing cells in 

splenocytes as well as a positive correlation between ceruloplasmin and antibody-producing 

cells were reported in Cu deficient mice in comparison to control counterparts. This same 

group observed a decrease in liver and thymus weight, an increase in spleen weight, and 

decreases in both cytochrome oxidase and superoxide dismutase in mice with diet induced 

Cu deficiency versus Cu sufficient mice (Prohaska, et al., 1983). These data provide 
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morphological and biochemical bases for Cu-induced immunodeficiency. Copper/zinc 

superoxide dismutase is an essential metalloenzyme in immune function, as demonstrated by 

its release in the presence of LPS, as well as its role in TNF-α release, macrophage 

activation, and ultimately the inflammatory response (Marikovasky et al., 2003). Cell-

mediated immune response also is impacted by Cu deficiency, exhibiting neutropenia and 

decreased lymphocyte activity. Interestingly, Cu deficient mice are characterized by 

increased B-cell numbers as well as impairment in lymphocyte activity (Lukasewycz et al., 

1985). Authors attributed increased B-cell number to two possible mechanisms: 1) atrophy of 

the thymus impairs regulation of B-cell production or, 2) feedback signaling failure from 

IgM (Lukasewycz et al., 1985). In vitro studies yield similar reductions in neutrophilic and 

lymphocytic activity of rats (Hopkins and Failla, 1995). A study summarizing immune 

function in Cu-deficient mice reported the following immunological responses: 1) decreased 

antibody production, 2) decreased response to LPS and other mitogen assays, 3) increased 

mortality rates when exposed to tumor cells, 4) decreased IgG concentration, 5) increased IL-

1, and 6) decreased IL-2 (Lukasewycz and Prohaska, 1990). Similar observations have been 

made in domestic animals; copper deficient Friesian steers had as much as a 25% reduction 

in the ability of neutrophils to kill phagocytized Candida albicans in comparison to Cu-

sufficient steers (Boyne and Arthur, 1981).  

 Immune response to Cu in cattle feeding studies is contradictory, and even more so 

when analyzing source and type of immune challenge. Mohammadi and Sakhaee (2015) 

observed serum samples randomly obtained from dairy cows, and found that 94.8% of the 

bovine leptospirosis positive samples were from cows deficient in Cu. Effects of both 

concentration and source of Cu on immune function have also been widely researched. 
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Dorton et al. (2003) used phytohemagglutinin to measure cell-mediated immune response 

and both porcine red blood cell antigen and ovalbumin antigen to measure humoral immune 

response at 2 concentrations (10 and 20 mg/kg Cu) and 2 sources of Cu (CuSO4 and a Cu-

AA complex, Availa-Cu, Zinpro Cooperation, Eden Prairie, MN) in Angus steers. There 

were no differences in cell-mediated immune response in control steers (no supplemental Cu) 

compared to steers supplemented with Cu. However, greater cell-mediated immune response 

was observed in cattle supplemented 20 versus 10 mg Cu/kg diet DM. Humoral response in 

this study was dependent on time point, type of challenge, Cu source, and Cu concentration. 

Response to ovalbumin was greater in Cu supplemented cattle only at hour 7; however, at 

hours 7 and 21 immune response was greater with 20 compared to 10 mg/kg Cu. Total Ig 

response to porcine red blood cells differed with Cu source, but IgG and IgM concentrations 

were dependent on source, time, and concentration. It is important to note that plasma Cu 

concentration was sufficient for cattle in all treatments, indicating no hypocuprosis. In 

another study, growing cattle displayed no marked cell-mediated immune response; however, 

humoral response, measured as antibody titers, was greater with Cu supplementation (Ward 

and Spears, 1999). In contrast to previous research, cattle supplemented with Cu had greater 

immune response under stress, whereas unstressed cattle had a lower response when 

supplemented (Ward and Spears, 1999).  As mentioned previously, Cu source also may 

impact immune response. Although no differences in source were observed with respect to 

therapeutic treatments, re-treatments, or morbidity, Salyer et al. (2004) noted the IgG titer 

differed in cattle challenged with ovalbumin based on Cu source. Cattle supplemented with 

CuSO4 had greater IgG titers in comparison to cattle supplemented with a polysaccharide 

mineral complex. In contrast to many of the above studies, Ahola et al. (2005) observed no 
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effects of Cu source or Cu supplementation on cell-mediated or humoral immune response; 

however, when analyzing Cu status, it was apparent that the basal diet supplied adequate Cu, 

perhaps explaining lack of a supplementation effect.  

 There is a clear and definitive relationship between Cu and immune function, but 

mechanisms that explain the relationship remain elusive. Based on past and current literature, 

extreme Cu deficiency is the most conclusive method to study immune response, and may be 

necessary in further research with livestock. Cattle that are marginal or sufficient in Cu status 

but differ in overall bodily Cu concentration often are not immunosuppressed. Evaluating 

effects of Cu on immune function may not be detectable unless subjects are extremely Cu 

deficient.  

 Iron Metabolism 

Copper is necessary for Fe absorption and transport, and is required for Fe to 

synthesize hemoglobin. Its role in hemoglobin synthesis and Fe absorption explain symptoms 

of anemia when Cu is deficient, and why Fe alone cannot alleviate these symptoms (Hart et 

al., 1928; Lee et al., 1968). Iron absorption is mediated by ceruloplasmin, also known as 

ferroxidase, a Cu-containing enzyme. There is evidence to suggest that ceruloplasmin is 

necessary for modification of Fe to the ferric form, facilitating transport by transferrin from 

the intestinal mucosa to blood (Prasad, 1978). Typically, administration of ceruloplasmin 

and/or high concentrations of Cu results in an almost instantaneous spike in blood Fe (Ragen 

et al., 1960; Lee et al., 1976).  

Wilson’s disease contradicts ceruloplasmin’s sole role in anemia. Although 

characterized by low concentrations of Cu and ceruloplasmin, anemia and low plasma Fe are 

not associated with Wilson’s disease (Lee et al., 1976). Lee et al. (1968) suggested another 
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mode of action might be associated with anemia in Cu deficiency. They observed 

accumulation of Fe in normoblasts during Cu deficiency, suggesting that Fe absorbed into 

blood was not incorporated into hemoglobin (Goodman and Dallman, 1969). Copper 

deficient rats (0.5 mg/kg dietary Cu) administered Fe intramuscularly had Fe present in 

storage vesicles of both erythroblast and reticulocytes; however, no Fe was detected in 

mitochondria. These results were consistent with work of Lee et al. (1968), who suggested 

two mechanisms: 1) the absence of ceruloplasmin, and 2) decreased cytochrome oxidase 

(Goodman and Dallman, 1969). Cytochrome oxidase is a catalyst for energy production 

necessary for Fe transport into mitochondria, the absence of which impairs heme production. 

A long-term study using Angus calves from birth to harvest reported that Cu deficiency 

induced lower Fe concentration in blood, higher tissue Fe, and lower ceruloplasmin. From a 

regulatory standpoint, hepatic hepcidin, a protein that regulates Fe metabolism, was 

decreased, and there was a tendency for decreased hepatic ferroportin with Cu deficiency 

(Hansen et al., 2010). Hepcidin is up regulated by Fe and binds to ferroportin, a critical Fe 

exporter necessary for intestinal Fe absorption, and decreases Fe metabolism (Gulec et al., 

2014). Therefore, Cu deficiency not only impacts Fe metabolism by inhibiting Fe 

modification for absorption, but also has inhibitory effects on Fe transport mechanisms.  

Hair and Wool  

Copper is known to play a role in pigmentation, texture, and structure of hair and 

wool in rabbits, rats, cattle, sheep, dogs, and guinea pigs (Mcdowell, 2003; Mertz, 1987; 

Suttle, 2010). Melanin formation is initially catalyzed by tyrosinase, a Cu-containing enzyme 

(Hearing, 1991). Tyrosinase catalyzes oxidation of tyrosine to DOPA and from DOPA to 

dopaquinone. These are the initial reactions in pheomelanin and eumelanin production; the 
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melanins responsible for the reddish and black pigments, respectively (Seo, 2007). Hansen et 

al. (2009) observed that growing Angus calves both Cu deficient and Cu deficient with 

supplemental Mn (7 mg Cu/kg) had reductions in pigmentation of hair in comparison to 

control calves. Dutch rabbits also presented with achromotrichia when fed a Cu deficient diet 

consisting of milk and supplemental Fe and Mn; with no achromotrichia in rabbits 

supplemented with 0.4 mg Cu/day (Smith and Ellis, 1947).  

The role Cu plays in the texture of hair and wool is through the process of 

keratinization. Copper deficiency decreases disulfide groups in wool, which are necessary for 

the conversion of prekeratin to keratin through keratin cross-linking. “Steely” wool is a 

condition where the wool is wiry and crimp of wool is diminished, symptomatically similar 

to Menkes’ kinky-hair syndrome in people. Copper deficient sheep express markedly 

improved texture, density, and elasticity of wool when treated with Cu, and poultry that are 

given Cu supplements show improvements in feather quality (Marston, 1952).  

 ABSORPTION OF COPPER 

Luminal Absorption 

The absorption of Cu primarily occurs via luminal enterocytes in the small intestine, although 

absorption can also occur in the stomach and large intestine (Cousins, 1985). In ruminant 

animals, modification by microbes can have an impact on intestinal absorption of Cu, where 

a majority of Cu absorption occurs (McDowell, 2003). There are multiple protein 

transporters that facilitate movement of Cu  the brush border membrane of enterocytes, the 

most important of which is Ctr1 (Cu transporter 1). In cell culture, Ctr1 plays a physiological 

role in Cu absorption, due to its high affinity for Cu. In vivo, Ctr1 knockout mice displayed a 

disruption in intestinal Cu absorption resulting in Cu deficiency, thus inferring the mediatory 
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role of Ctr1 in enterocyte Cu import (Nose et al., 2006). Copper transporter 1 regulation in 

the small intestine has been extensively studied, and Cu seems to play an integral role in its 

expression. Kuo et al. (2005) studied effects of Cu deficient and Cu adequate diets on 

presence of Ctr1 in multiple tissues of mice. Copper deficient mice displayed decreased Cu 

concentration in tissue and signs of anemia. Results of an immunohistochemical analysis 

revealed intestinal Ctr1 was markedly greater in Cu deficient mice compared to Cu adequate 

mice. More recently, work by Nose et al. (2010) reported that apical Ctr1 activity is increased 

under conditions of restricted Cu in mice in comparison to Cu adequate counterparts.  

Other trans membrane proteins have been suggested (Prohaska, 2008; Van Den 

Berghe and Klomp, 2009) in Cu uptake, including Ctr2 (Cu transporter 2) and DMT1 

(divalent metal transporter 1). Van Den Berghe et al. (2007) used lysosomes and endosomes 

in cell culture in an attempt to determine activity of Ctr2 with respect to Cu uptake. The 

authors observed that Ctr1 and Ctr2 reacted similarly to a reporter created to detect Cu 

sensitivity, and suggested Ctr2 may be a transporter important for intestinal absorption. 

Recently, Ctr2 has been linked to Cu uptake and regulation (Bertinato et al., 2008) as well as 

intracellular action (Van Den Berghe and Klomp, 2009). Divalent metal transporter 1, 

typically associated with Fe absorption and transport, also has been associated with Cu 

absorption along brush border membranes (Van Den Berghe and Klomp, 2009). In contrast, 

Knöpfel et al. (2005) suggested an ATP-associated transporter rather than DMT1 as an 

additional Cu transport mechanism. Copper transporter 2, DMT1, and ATP-driven transport 

are controversial, with research being variable, thus meriting further investigation. Factors 

affecting luminal Cu absorption include age, species, diet, amino acids, chemical form, and 

antagonistic substances such as ascorbic acid, phytates, S, Mo, Fe, Zn, and Ca. The Cu-
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thiomolybdate complex, resulting from increased Mo, limits absorption of Cu  the 

epithelium, resulting in increased fecal excretion of Cu in ponies (Cymbaluk et al., 1981). 

Sulfur has negative impacts on Cu bioavailability and absorption due to formation of copper 

sulfide (CuS), which is insoluble in the rumen and cannot be absorbed (Prasad, 1978; Suttle, 

2010). Similar to Mo, high S results in increased Cu excreted as unabsorbed Cu. Antagonism 

of Fe is also of interest in Cu absorption due to high soil Fe concentration in some regions. 

Excess Fe supplementation decreases Cu absorption, increases Cu depletion (Humphries et 

al., 1983; Suttle and Peter, 1985) and decreases Cu status (Gould and Kendall, 2011). 

Mechanisms for Fe antagonism include insoluble Fe-Cu complexes (Suttle and Peter, 1985; 

Gould and Kendall, 2011) and negative impacts on DMT1 activity, possibly by competition 

between Cu and Fe for transport (Arredondo and Núñez, 2005). Similarly both ascorbic acid 

and phytates result in limited absorption due to their ability to complex with Cu (Prasad, 

1978). Zinc and Ca both compete with Cu for binding sites along the brush border membrane 

of intestinal enterocytes (Cousins, 1985). Additionally, both protein and amino acids 

positively influence Cu absorption (Cousins, 1985).    

Intracellular Regulation 

Upon entry into intestinal enterocytes, intermediate modification, transport, as well as 

regulatory mechanisms occur. Copper ions are toxic, and therefore are bound to amino acids 

and peptides within the cell to alleviate toxic effects. There are two mechanisms for 

regulation of Cu export within cells: 1) metallothionein, and 2) ATP7A (copper-transporting 

ATPase 1). Metallothionein is present in both enterocytes and hepatocytes and is the oldest 

known mechanism for Cu and Zn regulation due to its nature as an inducible protein. 

Metallothionein is a 61 amino acid peptide mainly characterized by cysteine residues and is 
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found in both enterocytes and hepatocytes (Kägi and Kojima, 1987). Copper often binds to 

metallothionein, and when bound it cannot be exported from cells. Due to its inability to 

dissociate from metallothionein, Cu cannot bind to transporters. This regulatory mechanism 

prevents excessive Cu from plasma transport and storage in the liver (Cousins, 1985). 

Metallothionein bound Cu is excreted when enterocytes slough off into the intestine and 

cannot be reabsorbed (van den Berghe, 2009). The expression of metallothionein is increased 

by increasing Cu, and is down regulated when Cu concentrations are low (Andrews, 2000; 

Jacob et al., 1999).  Similar activity is observed in hepatocytes. Sheep are more sensitive to 

Cu than other ruminants, and this is explained by differences in response to Cu in sheep 

metallothionein. Metallothionein in sheep is not produced in sufficient amounts to 

compensate for excess dietary Cu in the same way that occurs other ruminant animals. Saylor 

et al. (1980) observed an increase in sheep hepatic metallothionein as dietary Cu increased 

from deficient to normal concentrations; however, increasing Cu supplementation above 

normal concentrations resulted in no change in Cu associated with metallothionein. Intestinal 

metallothionein did not follow a similar trend. Very little Cu was associated with sheep 

intestinal metallothionein, further indicating a limited capacity for Cu tolerance in sheep. 

Copper-transporting ATPase 1 is an intracellular transporter responsible for Cu 

transport to the trans-Golgi network, and relies on hydrolysis of ATP to be functional.  

Within the Golgi apparatus, Cu is used for biosynthesis of Cu-containing enzymes such as 

lysyl oxidase or cytochrome c oxidase (Prokaska, 2006). These processes are aided by a Cu 

chaperone ATOX1, and are necessary for Cu transport (Lutsenko et al., 2007). Copper-

transporting ATPase 1 is also located on the basolateral membrane and its main function is 

Cu export.  
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 Basal Membrane Export 

As discussed above, ATP7A plays a critical role in export of Cu from enterocytes. 

Currently, it is the only known transporter responsible for Cu export, and is necessary to 

maintain adequate Cu status. Menkes’ Disease is caused by a mutation in ATP7A expression, 

resulting in Cu deficiency in young children. Early work with Menkes’ Disease revealed that 

patients lacked Mc1, a gene necessary for copper-transporting ATPase (Vulpe et al., 1993). 

The expression of Mc1 was abnormal in 70% of individuals diagnosed with Menkes’ Disease 

(Kaler, 1998). There are no indications that Cu induces gene expression of ATP7A, but Cu 

does result in translocation of ATP7A from intracellular action to membrane-associated 

action. Petris et al. (1996) reported ATP7A (referred to as MNK in the literature) differed in 

its location within cells based on Cu concentration. Copper-transporting ATPase 1 was 

predominantly found near the Golgi apparatus, and was immediately re-located to the 

basolateral membrane under conditions of elevated Cu concentration. Once Cu concentration 

was restored to normal ranges, ATP7A was once again concentrated near the Golgi 

apparatus.  Similarly, in an in vivo- in vitro-coupled study, ATP7A was concentrated within 

intracellular regions in close proximity to the Golgi apparatus under normal Cu conditions. 

However, an increase in Cu in vivo and in vitro resulted in redistribution of ATP7A from 

intracellular regions to basolateral membranes of enterocytes (Nyasae et al., 2007). 

Therefore, ATP7A is a dual function transporter that differs in region and function based 

upon Cu concentration within both the intestine and enterocyte, and has functions in 

intracellular regulation and basal membrane export of Cu. 
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 COPPER METABOLISM 

 Transport 

After Cu is transported across the basolateral membranes of enterocytes it is 

deposited in blood and transported to the liver. Plasma Cu is bound in the blood in three 

fractions: albumin-bound, amino acid-bound, or bound to ceruloplasmin (Cp). Early work 

with Cu transport by Gubler et al. (1953) discovered there was a loosely bound fraction of 

plasma Cu that reacted directly with sodium diethyldithiocarbamate, while ceruloplasmin did 

not react with this compound. When administered orally and intravenously, Cu increased this 

same fraction directly, whereas ceruloplasmin remained relatively constant. This fraction was 

later defined as albumin bound Cu; which is affected by dietary influx of Cu and transports 

excreted Cu from enterocytes directly to the liver. Cartwright and Wintrobe (1964) reported 

concentrations of 7 μg/100 mL of albumin-bound Cu in comparison to 33 μg/100 mL 

ceruloplasmin. These results are consistent with literature; ceruloplasmin accounts for a 

majority of plasma Cu, approximately 95%, in ruminants (Suttle, 2010). Neumann and Sass-

Kortsak (1967) reported that Cu also binds to amino acids after being secreted by 

enterocytes. The addition of amino acids to albumin-free, centrifuged plasma resulted in an 

increase in bound Cu. This trend continued as amino acid concentrations increased. These 

results suggest a competition between albumin and amino acids to bind with Cu. In this same 

study, it was observed that histidine and glutamine bound with Cu to the greatest extent 

(Neumann and Sass-Kortsak, 1967) in comparison to other amino acids. Both of these minor 

fractions are responsible for transporting Cu to the liver to be stored in hepatocytes and 

bound, incorporated into ceruloplasmin, or used for synthesis of metalloenzymes.   
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 Ceruloplasmin is a transporter protein responsible for tissue specific transport, and as 

discussed previously, comprises the majority of Cu found in blood (McDowell, 2003). The 

first reported existence of ceruloplasmin and its properties was by Holmberg and Laurell 

(1948) in Sweden. Their early work established ceruloplasmin as the major Cu-containing 

protein in plasma, which was further emphasized by Cousins (1985). In addition to Cu 

transport, ceruloplasmin oxidizes Fe (II) for iron transport, and oxidizes amines. 

Ceruloplasmin also functions as a free radical scavenger and plays a regulatory role in 

immune function through the inflammatory response (Cousins, 1985). Similar to intestinal 

enterocytes, Cu is stored in the liver by incorporation into metallalothionein or other Cu 

pools within hepatocytes. To export Cu from the hepatocytes, Cu is incorporated into 

ceruloplasmin. Terada et al. (1995) used liver samples from rats and determined which 

cellular compartment contained the highest concentrations of Cu and ceruloplasmin. Their 

results indicated that the Golgi apparatus is the site of Cu incorporation into ceruloplasmin. 

Copper initially is transported by the chaperone ATOX1, which then delivers Cu to ATP7B 

(Copper-transporting ATPase 2; Prohaska, 2008). Copper-transporting ATPase 2 transports 

Cu to the Golgi apparatus where it can be incorporated into ceruloplasmin and secreted from 

the hepatocyte. Translocation of ATP7B to the apical membrane occurs within the 

hepatocyte, analogous to ATP7A in enterocytes for Cu efflux (Fontaine et al., 2007).  

Mutation affecting the function of ATP7B is the primary factor causing Wilson’s disease, 

which is characterized by toxic concentrations of Cu stored in the liver (Cox and Moore, 

2002). The relationship between Cu status and ceruloplasmin concentrations has been 

investigated by Owen (1965) using laboratory rats. Upon intravenous exposure to Cu, tissue 

Cu concentrations were quickly allocated from blood to the liver. This rapid accumulation of 
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Cu in tissues corresponded to Cu incorporated into ceruloplasmin, in comparison to non-

ceruloplasmin Cu. These observations suggest that ceruloplasmin is, in fact, responsible for 

tissue specific Cu transport. Further, serum Cu and ceruloplasmin were highly positively 

correlated in 790 healthy adult humans, which had a Cu/Cp ratio of 5.8. These same authors 

calculated that of the fractions of Cu in serum, less than 1.3 μmol/L is within the non-

ceruloplasmin Cu fraction (Arredondo et al., 2008). Although ceruloplasmin appears to be 

the most common transporter of Cu, there are tissue specific preferences for the form in 

which Cu is presented. For example, in a review by Linder et al. (1998), many reproductive 

associated tissues (i.e. placenta, fetus, fetal liver, and uterus) prefer Cu in an alternate form. 

Serum Cu and Cp had correlation coefficients of 0.83 and 0.92, in both cattle and sheep, 

respectively. This correlation was observed at both low and high Cu concentrations. Bovine 

plasma Cu was also correlated to Cp, with a correlation coefficient of 0.60. However, liver 

Cu and Cp activity were not highly correlated, which was unexpected since the liver is the 

site of Cp production (Blakely and Hamilton, 1984) 

 Storage 

The primary site of Cu storage is in the liver, whereas plasma Cu represents only a 

small fraction of total Cu within the body. Albumin- and amino acid-bound Cu is responsible 

for transport to the liver, and similar to enterocytes, transporter proteins regulate entry of Cu 

into hepatocytes. Copper is reduced and Ctr1 imports Cu into cells through apical 

membranes, whereas intracellular transporters such as COX17 and ATOX1 direct Cu to 

mitochondria or the Golgi apparatus, respectively (Roberts and Sarkar, 2008). Within 

hepatocytes Cu is stored in proteins, used to synthesize enzymes, or excreted via bile. Rats 

injected with Cu had rapid accumulation of liver Cu within metallothionein. Over time the 
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fraction of Cu associated with metallothionein was diminished as a result of incorporation 

into other enzymes of heavier molecular weight, implying a sequence of events in which 

metallothionein is the mediator of (Van den Hamar, 1975). Rapid accumulation of Cu into 

the liver also was observed by Owen (1965). Rats injected with radioactive Cu presented 

with a sharp increase in hepatic Cu within 30 min, with a maximum concentration observed 

from 2 to 4 h.  

Copper accumulation in the liver makes it the optimal tissue for determining Cu 

status. Mulryan and Mason (1992) compared various plasma parameters to liver Cu to 

determine the reliability of other forms of Cu status detection. Using liver samples, 14 of the 

98 cattle used in the study had > 20 mg/kg DM Cu, whereas of those same animals, only 5 

could be detected as deficient with respect to plasma Cu (0.5 mg/L). Claypool et al. (1975) 

used the relationship between liver Cu and plasma Cu in an attempt to develop a best fit 

curve, and despite the fact that plasma Cu was unsatisfactory in predicting liver Cu, it can 

still be used to distinguish critically deficient animals. Although a difficult measurement to 

obtain in the field, liver Cu would be ideal for identifying deficient animals; however, plasma 

Cu frequently is used as a quick method to detect extreme Cu deficiencies in commercial 

settings.    

 Excretion 

Copper is excreted predominantly through feces, and the source of fecal Cu is 

normally either unabsorbed Cu or absorbed Cu that has been excreted into bile (Mertz, 1987; 

McDowell, 2003). When normal human subjects were administered radioactive Cu via oral 

gavage, 72.4% of the Cu was found in the feces and only 0.1% was excreted in urine (Bush 

et al., 1955). In a study using human subjects, Cartwright and Wintrobe (1964) observed that 
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approximately 32% of Cu is absorbed, 26% is excreted in bile, 6% is unabsorbed and 

excreted directly into feces, and 1.2% of Cu is excreted in urine. Mahoney et al. (1955) used 

normal dogs, dogs with ligated and obstructed bile ducts, and dogs that had bile diverted into 

the urinary bladder to study route of Cu excretion. In this study, 7 to 10.8% of administered 

radioactive Cu was excreted in bile, 1.5% of fecal Cu was directly from Cu absorbed through 

the intestinal wall, and 0.6% was excreted in urine. In this same study, animals that had 

disruptions in the biliary system had increased excretion via the urinary tract (kidney) and 

through the intestinal wall. Similar results have been observed among multiple species, 

including pigs and poultry (Bowland et al., 1961; Beck, 1961). When cattle were fed a low 

Cu diet, they exhibited a decrease in rate of biliary Cu excretion in comparison to cattle fed a 

high Cu diet (0.13 mg 6h-1 and 0.19 mg 6h-1, respectively). In this same study, both Mo and S 

resulted in a greater biliary Cu excretion when fed in conjunction with a high Cu diet 

(Gooneratne et al., 1994). Similar results were observed in sheep that were supplemented 

with additional Mo and sulfate, resulting in increased fecal and urinary Cu loss (Smith et al., 

1968).  Increased Cu excretion may contribute to Cu deficiency symptoms seen in cattle that 

are fed high Mo or S diets. It is evident that Cu excretion is a function of dietary Cu 

concentration as well as concentrations of dietary antagonists, such as Mo, S, and Fe.  

 RUMINAL FERMENTATION 

The roles that Cu plays in the rumen are numerous, and often are misunderstood and 

contradictory according to current literature. Not only do ruminants themselves require 

metals such as Cu, but Cu also is required by ruminal organisms. Copper can interact with 

Mo and S within the rumen, impact fermentation by influencing microbes, impact microbial 

enzyme formation, and can impact digestion. McNaught et al. (1950) observed decreased 
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protein synthesis from 12 to 0.9 mg N/100 g ruminal fluid when 10 mg/kg of Cu as CuSO4 

were added to in vitro cultures containing strained ruminal fluid. In the same in vitro study, 

25 mg/kg Cu completely inhibited growth of ruminal microbes.  To determine effects that Cu 

has on cellulose digestion in the rumen, Hubbert et al. (1958) conducted an in vitro 

fermentation study using ruminal microorganisms in a washed suspension that was collected 

from cannulated steers on a corncob ration. Hubbert et al. (1958) observed an added Cu 

concentration of 1.5 μg/mL resulted in a decrease in cellulose digestion, and 2.5 μg/mL 

added Cu inhibited cellulose digestion by 96.6%. Martinez and Church (1970) observed 

decreased cellulose digestion at 1 μg/mL, but observed no further effects when Cu 

concentration was increased to 30 μg/mL. Salsbury (1973) reported a reduction in methane 

production in a fermentation vessel inoculated with ruminal fluid at a concentration of 50 

mg/kg Cu. Forsberg (1978) conducted a study to test complete fermentative activity (using 

gas production as the response variable) and microbial response from varying concentrations 

of added Cu as CuCl2. Forsberg (1978) observed an LD50, based on fermentative activity, at 

21 μg/mL. A concentration of 10 μg/mL inhibited B. succinogens and B. amlophilus, 20 

μg/mL Cu inhibited R. albus and E. ruminantium, 30 μg/mL inhibited B. fibrosolvens, 100 

μg/mL inhibited S. ruminantium and M. elsdenii, and S. bovis was the most resistant to Cu 

and wasn’t inhibited until Cu concentration reach 250 μg/mL. 

In an attempt to defaunante the rumen, Essig et al. (1972) fed CuSO4 to cattle at 44 

mg/kg BW (approximately 17.2 mg Cu/kg BW). Although defaunantion was not successful, 

those treated with CuSO4 had reduced numbers of protozoa and decreased concentrations of 

acetate, propionate, butyrate, and total ruminal VFA. Solaiman et al. (2007) collected 

ruminal fluid using a stomach tube in goats on diets containing Cu added at 0, 100, or 200 
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mg/kg diet DM. In contrast to Essig et al. (1972), Solaiman et al. (2007) reported only a 

tendency for high concentrations of Cu to decrease ruminal protozoa numbers. They also 

reported no differences in total VFA or individual VFA proportions. The above studies 

represent non-physiological dietary concentrations of Cu in order to see a response in 

protozoa. More important are responses in fermentation under conditions of normal 

concentrations of supplemental Cu. Váradyová, et al. (2006) conducted a grazing study with 

sheep that were grazing pastures with soils contaminated by heavy metals, which were 

compared to sheep grazing uncontaminated pastures. Although the soil contained toxic 

concentrations of Cu, 232.9 mg Cu/kg soil DM, the forage contained 7.02 mg Cu/kg DM. 

Ruminal fluid was collected after 1 year of exposure during the slaughter of the sheep and 

incorporated into an in vitro fermentation model. In comparison to unexposed sheep, authors 

observed a decrease in gas production, methane production, IVDMD, total VFA, acetate, and 

butyrate in response to fermentation of ruminal fluid collected from sheep exposed to 

pastures contaminated with Cu. Ruminal fluid from contaminated pastures decreased 

propionate production in vitro. Engle and Spears (2000a) reported no response in pH, 

IVDMD, or total VFA production during a 12-h in vitro fermentation of ruminal fluid 

collected from Angus steers fed 0, 10, or 20 mg/kg supplemental Cu. Ruminal fluid from 

steers fed 0 mg/kg supplemental Cu had decreased soluble Cu in comparison to steers fed 10 

and 20 mg/kg supplemental Cu. In contrast, Vazquez-Armijo et al. (2011) reported greater 

96-h in vitro gas production, IVDMD, ME, and VFA in ruminal fluid from goats fed 21.7 mg 

Cu/kg diet DM compared to goats fed 10.3 mg Cu/kg diet DM. This discrepancy may be due 

to differences in fermentation duration or species differences. Arthington (2005) observed 

decreases in digestibilities of NDF and CP and a tendency for decreased ADF digestibility in 
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calves that were supplemented with a Cu bolus containing 12.5 g of CuO in comparison to 

calves without boluses. Both treatment groups were consuming ad libitum limpograss hay 

containing 8.65 mg/kg Cu. There was, however, no difference in total tract OM digestibility 

between the two groups. Arthington (2005) attributed decreases in digestibility to ruminal 

that may have impacted fiber degradation. In contrast, Zhang et al. (2011) observed a 

positive effect of Cu supplementation in cashmere goats. Addition of Cu to the diet improved 

digestion of both NDF and ADF. A study from the same group supplemented 0, 10, 20, or 30 

mg/kg Cu for 50 d, with a 10-d metabolism period. Copper did not influence CP, DM, or 

ADF digestibility, but NDF digestibility was decreased with 30 mg/kg Cu (Zhang et al., 

2009). Lopez-Guisa and Satter (1992) observed increased in situ DM disappearance of alfalfa 

hay, corn cobs, and corn stalks from rumens of Holstein cows given 12.22 mg Cu/kg diet 

DM versus those supplemented with 2.29 mg Cu/kg diet DM. 

It is evident from literature that Cu is required for microbial fermentation and 

digestibility; however, excessive concentrations can cause modification within the rumen that 

may adversely affect microbial populations, digestibility of nutrients, and products of 

fermentation.  

 COPPER REQUIREMENTS  

The Nutrient Requirements of Beef Cattle (National Academies of Sciences, Engineering, 

and Medicine, 2016) recommends 10 mg Cu/kg diet DM, provided that S and Mo 

concentrations do not exceed 0.25% and 2 mg/kg diet DM, respectively. The Nutrient 

Requirements of Dairy Cattle (NRC, 2001) recommends between 73 to 313 mg Cu/day, 

depending on stage of gestation. Based on average feed intake for the stage of life the cow or 

heifer is in, Cu requirement can vary from 12 to 15.7 mg Cu/kg diet DM (NRC, 2001). 
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Dietary Cu can be derived from forages and concentrates in the diet or from mineral 

supplements. Alfalfa hay contains about 7.82 ± 1.89 mg Cu/kg, whereas fresh alfalfa 

contains approximately 8.31 ±  2.26 mg Cu/kg (National Academies of Sciences, 

Engineering, and Medicine, 2016); fresh forages typically have greater Cu content than their 

dried equivalents. Legumes typically contain greater concentrations of Cu, whereas grasses 

such as brome grass hay contain, on average, 5.96 ± 7.04 mg Cu/kg (National Academies of 

Sciences, Engineering, and Medicine, 2016). Cereal grains are relatively low in Cu content 

and byproduct feeds have greater concentrations of Cu. Liver and blood commonly are used 

to establish Cu status in cattle. Normal liver Cu values are within the range of 100 to 400 

mg/kg tissue DM and tissue concentrations less than 20 to 75 mg/kg tissue DM are indicative 

of critical deficiencies (National Academies of Sciences, Engineering, and Medicine, 2016; 

Mertz, 1987; McDowell, 2003; Smart el al., 1992). Plasma Cu is a less invasive method to 

assess Cu status, with a normal range of 0.5 to 1.5 μg/mL (Mertz, 1987; McDowell, 2003) 

and with deficiencies at less than 0.6 μg/mL (National Academies of Sciences, Engineering, 

and Medicine, 2016; Smart el al., 1992).   

 Deficiency 

The first published report of Cu deficiency was by Hart et al. (1928). Copper 

deficiency can occur due to dietary deficiencies, genetic defects (i.e. Wilson’s disease), or 

excesses of dietary antagonists such as Mo and S.  Both compounds are more prominent in 

grazing scenarios. Increased S and Mo in ruminant diets result in formation of ruminal 

thiomolybdates and sulfides, which negatively impact absorption of Cu (Mason, 1981). 

Symptoms of Cu deficiency include anemia, ataxia, bone development disorders, 

cardiovascular disorders, diarrhea, decreased growth performance, and hair pigmentation 
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abnormalities (Suttle, 2010; National Academies of Sciences, Engineering, and Medicine, 

2016). Mills et al. (1976) reported Fresian calves fed a Cu deficient diet (0.8 mg/kg diet DM) 

for a prolonged period (257 to 259 d) exhibited swelling and abnormal gaits; postmortem 

conformation abnormalities in their skeletons; changes in hair pigmentation; diarrhea, which 

was resolved within 12 h of Cu administration (10 mg); weakening of cardiovascular tissue; a 

decrease in weight gain after 201 d of the experiment and a reduction in feed efficiency. 

Thornton (1972) investigated impact of Cu deficiency caused by Mo toxicity on growth 

performance, and reported increases of 15.9 to 29.9% in weight gain after injection of Cu. 

 Toxicity 

Unlike monogastric livestock, ruminants have a lower tolerance for dietary Cu. 

Excessive accumulation of Cu in the liver can occur before onset of symptoms. Of all 

ruminant species, sheep are most sensitive to Cu toxicity because of their reduced ability to 

excrete Cu via and inherent differences in metallothionein regulation. Copper toxicity is not 

commonly reported in beef or dairy cattle. Copper toxicity rarely occurs in humans and is 

otherwise known as Wilson’s disease (Cox and Moore, 2002). The maximum tolerable 

dietary concentration of Cu is established at 40 mg/kg diet DM for beef and dairy cattle 

(National Academies of Sciences, Engineering, and Medicine, 2016; NRC, 2001) and 15 

mg/kg diet DM in sheep (NRC, 2007). Symptoms of Cu toxicity include anorexia, 

hemoglobinuria, hemoglobinemia, icterus, necrosis, and death (McDowell, 2003; Mertz, 

1987). There are three stages of Cu poisoning: 1) Cu accumulation in the liver, 2) increased 

blood Cu and circulating blood enzymes, and 3) the hemolytic stage, which is the result of 

rapid release of Cu from the liver into circulation (Church, 1988). Bradley (1993) 

encountered a 14% mortality of Holstein cows from prolonged feeding of 37.6 and 22.6 mg 
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Cu/kg diet DM for lactating and dry cows, respectively. In contrast, Felsman et al. (1973) 

added Cu to diets of growing calves up to 600 and 900 mg/kg diet DM in two separate 98-d 

experiments. They observed an increase in ADG in calves fed 900 mg Cu/kg diet DM, but no 

difference was observed in calves fed 600 mg/kg added Cu when compared to 0 mg/kg added 

Cu. Copper toxicity can be prevented by high l concentrations of Zn supplementation and can 

be treated by administration of Mo or S (McDowell, 2003). 

 BIOAVAILABILITY 

The definition of bioavailability is “the degree and rate at which a substance is 

absorbed into a living system or is made available at the site of physiological activity” 

(Merriam-Webster, 2017). Copper supplements are broadly categorized as inorganic 

(sulfates, chlorides, oxides, etc.) or organic (chelates, proteinates, polysaccharide complexes, 

amino acid complexes, etc.; Association of American Feed Control Officials, 2015). Interest 

in the relative bioavailability of inorganic and organic trace mineral supplements has 

increased, but scientific literature is variable in terms of the advantages of organic sources 

compared to inorganic counterparts. Organic mineral products can be chelated or complexed 

with multiple amino acids, a single amino acid, or hydrolyzed proteins; and the mineral 

typically is either a metal ion or a soluble metal salt (Spears, 1991). Inorganic Cu sources 

differ in relative bioavailability, copper sulfate being the most available followed by copper 

chloride, cupric carbonate, cupric nitrate, and copper oxide (McDowell, 2003). 

Brown and Zeringue (1994) observed solubility and structural integrity of two Cu 

proteinates and two Cu amino acid chelates in vitro. They reported almost complete 

solubility of the organic products, whereas inorganic sources are limited in solubility; and Cu 

was mostly not bound to amino acids or ligands when analyzed with gel filtration 
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chromatography. Brown and Zeringue (1994) hypothesized that increased solubility and 

decreased chelation was indicative of increased bioavailability, and could potentially have 

positive impact on livestock performance. Contradictory to the work of Brown and Zeringue 

(1994), Ward and Spears (1993) observed no difference in in vitro solubility of Cu when 

comparing CuSO4 and a Cu-lysine chelated product. The results of Ward and Spears (1993) 

suggest similar interactions and ruminal bioavailability between CuSO4 and Cu- lysine.  

Multiple studies that have compared organic Cu and inorganic Cu sources in growing, 

finishing, and dairy cattle report no added benefit of organic Cu sources with respect to 

performance or Cu status (Mullis et al., 2003; Engle and Spears, 2000b). Yost et al. (2002) 

conducted a study in Holstein heifers comparing CuSO4 and a Cu-AA complex (Availa-Cu, 

Zinpro), and observed no differences in growing performance, liver Cu, or plasma Cu when 

heifers were supplemented 15 or 30 mg Cu/kg diet DM as CuSO4 or Availa-Cu. Similarly, 

Arthington et al. (2003) provided grazing heifers molasses-based block supplements 

containing either CuSO4 or Availa-Cu, and reported no differences in performance, liver Cu, 

or plasma Cu. In a second study by Arthington et al. (2003), steers were supplemented with 

either 10 mg Cu/kg diet DM as Availa-Cu or tri-basic Cu chloride (TBCC, Micronutrients 

Inc., Indianapolis, IN) incorporated into molasses-based blocks as in the previous study. The 

authors reported no difference between the organic and inorganic Cu products in 

performance, liver Cu, or plasma Cu concentrations.  

Advantages to feeding organic Cu sources also have been reported. Cattle grazing 

pastures with excess ammonium sulfate fertilization, causing a deficiency in Cu, tended to 

have greater liver Cu concentrations when supplementation of 123 mg/d Availa-Cu was 

compared to heifers supplemented equivalent amounts as CuSO4 (Arthington, et al., 2002). 
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Similarly, Hansen et al. (2008) fed Angus and Angus-Simmental cross steers excess dietary 

concentrations of Mo and S (6 mg Mo/kg diet and 0.15% S) for 28 d. During this feeding 

period they fed Cu as CuSO4 or Cu glycinate. The authors observed greater relative Cu 

bioavailability from Cu glycinate, as indicated by liver Cu, plasma Cu, and ceruloplasmin 

concentration. These studies suggest that organic Cu sources may be beneficial when excess 

Fe, Mo, or S are present in the diet. Rabiansky et al. (1999) compared effects of feeding Cu-

lysine or CuSO4 on Cu status in heifers, and though no differences were observed for Cu 

source, heifers that were defined as having a low Cu status responded to Cu lysine to a 

greater extent than those supplemented CuSO4. Dorton et al. (2003) observed increases in Cu 

status in both growing and finishing steers fed 20 mg Cu/kg diet as Availa Cu in comparison 

to 20 mg Cu/kg diet as CuSO4.  

Bioavailability of Cu from various sources is both ambiguous and contradictory in 

current literature. Organic Cu sources may be beneficial in some scenarios, but may not be 

beneficial in others. Further research is necessary to determine both in vivo and in vitro 

bioavailability of Cu sources. 

 COPPER SUPPLEMENTATION IN GROWNING AND FINISHING 

CATTLE 

Copper supplementation of both growing, receiving, and finishing cattle has yielded 

variable results, and has not been extensively studied. This may be due to the narrow range 

for deficiency and tolerable dietary concentrations established by the Nutrient Requirements 

of Beef Cattle (National Academies of Sciences, Engineering, and Medicine, 2016). Ward 

and Spears (1997) conducted a study to determine the effects of low Cu diets during the 

receiving, growing, and finishing phases of Angus steers. Calves were either injected with 90 
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mg of Cu (as Cu glycinate) or not injected. Calves that were injected were supplemented with 

7.5 mg Cu/kg diet DM and uninjected calved were not supplemented. Calves remained in the 

same treatment groups during the growing and finishing phase (0 or 5 mg Cu/kg and 0 or 5 

mg Mo/kg). Copper had no impact on ADG prior to weaning, or during the receiving and 

growing phases; however, Cu increased ADG during the finishing phase. Copper 

supplementation increased DMI during receiving and growing phases, but had no impact on 

finishing DMI. The responses in ADG and DMI resulted in improvements in efficiency 

during finishing. Copper also influenced multiple carcass characteristics; steers had less 

backfat and greater rib eye areas. Beck et al. (2002) observed that cattle supplemented with 

171 mg Cu/kg diet DM as Cu proteinate tended to exhibit greater ADG BW during the 

receiving period compared to those supplemented 21 mg Cu/kg diet DM. Similarly, 

Arthington et al. (2003) observed a tendency for increased ADG in heifers supplemented Cu 

through a molasses-based block supplement, regardless of Cu source. Felix et al. (2012) 

reported improvements in efficiency of growing cattle fed DDGs when supplemented Cu. 

In addition to literature reporting positive impacts of Cu supplementation, some 

literature has shown no effects or even or negative responses to Cu supplementation in 

multiple phases of beef production. Genfelbach et al. (1994) fed a control diet (no added Cu), 

a diet high in Fe (600 mg/kg diet DM added Fe), a diet high in Mo (5 mg/kg diet DM added 

Mo), and a Cu sufficient diet (10 mg/kg diet DM added Cu) in order to observe impacts of 

Cu deficiency on first calf heifer and calf performance. No weight change differences were 

detected in heifers; however, calves in the high Mo group exhibited decreased ADG. There 

were no differences among cattle fed control, high Fe, or Cu diets, indicating Cu deficiency 

may not have caused the decrease in ADG. In addition, Yost et al. (2002) reported no effect 
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of feeding 15 or 30 mg/kg Cu as einorganic or organic sources on performance of Holstein 

heifers, although they did observe a linear effect of Cu on liver Cu concentration. Engle and 

Spears (2000b) fed a control diet absent of supplemental Cu in addition to 20 mg/kg added 

Cu as CuSO4, Cu citrate, Cu proteinate, or Cu chloride, as well as a diet containing 40 mg/kg 

added Cu as CuSO4. Copper, regardless of source and concentration, decreased ADG, DMI, 

and G:F. The authors speculated that Cu may have negatively impacted ruminal 

fermentation, but indicated that these results were unexpected and difficult to explain.  

 CONCLUSION 

Copper is an essential trace mineral in the diets of livestock for multiple enzyme 

cascades as well as for a healthy ruminal environment. The physiological and biochemical 

necessity of Cu corresponds to healthy bone development, growth, immune function, and 

tissue development in mammals. Excess Cu is not a major concern in dairy or beef cattle 

production, however toxicity is of major concern in sheep production due to their reduced 

tolerance for high concentrations of dietary Cu. Deficiencies in Cu are common in cattle 

production, especially in grazing ruminants due to dietary antagonists. Deficiencies can result 

in decreased animal performance, and in extreme conditions, death. When formulating diets 

for ruminants, precautions should be taken in order to formulate diets based on Fe, S, and Mo 

concentrations in concentrates or forages within the diet due to the negative impact on Cu 

binding in the rumen and intestinal absorption.   
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 ABSTRACT 

Three experiments were conducted to evaluate effects of varying concentrations and 

inorganic Cu sources on in vitro batch culture fermentation. Experiments used 90% corn and 

10% SBM (DM basis) as substrate and ruminal fluid was collected from ruminally fistulated 

Jersey steers fed a 50% concentrate 50% roughage diet. In Exp. 1, CuSO4 was included in 

cultures at concentrations of 0, 100, 200, 300, 400, or 500 mg Cu/kg substrate DM in order to 

determine a concentration that would decrease fermentation by 50%. This concentration was 

used in Exp.3 to evaluate relative impact of varying Cu sources on fermentation by ruminal 

microbes. Cultures were incubated for 24 h, gas production was measured every 15 min, and 

IVDMD, VFA, and pH were measured after 24 h. Increasing Cu concentration had a negative 

linear effect and a quadratic effect on gas production after 24 h (P < 0.01; 135.4, 117.7, 15.8, 

105.9, and 94.0 mL/g substrate, respectively).  Linear and quadratic effects also were 

observed for IVDMD (P < 0.01) and VFAs (P < 0.01); increasing Cu decreased IVDMD and 

VFA production. A linear effect of Cu was observed in pH (5.88 vs. 6.18 for 100 and 500, 

respectively). Experiment 2 used similar methodology, but with 0, 10, 20, 30, 40, 50, 60, or 

70 mg Cu/kg substrate DM incorporated into fermentation flasks. Linear and quadratic 

effects of Cu were observed for gas production (P < 0.01), although a negative response was 

observed at concentrations greater than 50 mg Cu/kg substrate DM. Copper linearly 

increased acetate and A:P, linearly decreased propionate (P < 0.01), and had a quadratic 

effect on propionate (P = 0.03). Copper tended to decrease IVDMD (Linear, P = 0.08), but 

had no impact on total VFA (P > 0.31) or pH (P > 0.28). Copper sources were evaluated; 

sources were CuSO45H2O (CuSO4), CuCl22H2O (CuCl2), CuO (CuO), CuCO3Cu(OH)2 

(CuCO3), and Cu2(OH)3Cl (TBCC; Intellibond C, Micronutrients, Indianapolis, IN), and 
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were incorporated at 100 mg Cu/kg substrate DM, a concentration great enough to elicit 

adverse effects on fermentation, as demonstrated in Exp. 1. Source had an effect on gas 

production (P < 0.01), total VFAs (P < 0.01), IVDMD (P < 0.01), and pH (P < 0.01). Copper 

sulfate and CuCl2 resulted in the greatest negative response in fermentation, and CuO 

resulted in the greatest fermentation. In conclusion, Cu can negatively impact fermentation 

by ruminal microbes, and inorganic sources of Cu impact ruminal microorganisms 

differently.  

 INTRODUCTION 

Copper is essential in multiple enzymatic pathways, maintaining structural integrity 

of both skeleton and connective tissues, and is necessary for proper growth and function in 

ruminants (McDowell, 2003). Within the rumen, Cu indirectly aids in removal of free radical 

oxygen by superoxide dismutase. Without this Cu-dependent enzyme, toxic free radicals 

would accumulate and cause damaging effects on the ruminal environment (Underwood, 

1981). Copper, specifically CuSO4, is known to have antimicrobial properties and could 

potentially impact ruminal fermentation and metabolism. Essig et al. (1972) observed 

diminished VFA production and protozoa numbers when steers were fed high concentrations 

of Cu in vivo.  In agreement, Slyter and Wolin (1967) reported a depression in both VFA and 

methane production at non-physiological concentrations of Cu in vitro as well as differences 

in Cu sensitivity based upon substrate source. In contrast, Engle and Spears (2000a) reported 

no effect of Cu on in vitro fermentation; however, Cu concentrations were within normal 

dietary concentrations. Copper also may impact the microbial population, as demonstrated by 

Forsberg (1978). Both concentration and source of Cu can influence the ruminal 

environment, as well, and ruminal modification can impact the amount and form that appears 
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in the lower GI tract for absorption. Literature regarding Cu sources is contradictory when 

comparing both inorganic and organic Cu sources. Brown and Zeringue (1994) reported 

increased ruminal solubility of organic versus inorganic Cu; however, Ward and Spears 

(1993) reported no difference between organic and inorganic Cu sources. There are many in 

vivo comparisons of organic and inorganic Cu sources on performance and Cu status (Engle 

and Spears, 2000b; Arthington et al., 2003; Dorton et al., 2003; Hansen et al., 2008), 

however there is limited information comparing inorganic Cu sources using in vitro 

fermentation systems. Therefore, our objective was to determine at what concentration Cu 

becomes detrimental to ruminal fermentation by ruminal, and to evaluate effects of 

concentration and sources of Cu with respect to fermentation by ruminal microbes.  

 MATERIALS AND METHODS 

 Experiment 1 

In Vitro Fermentation 

Experiment 1 was a randomized complete block design with 6 treatments and 3 runs 

of 6 replicates each, providing 18 observations for each treatment. Within a fermentation run, 

fermentation flasks were allocated to six blocks, and treatments were distributed randomly 

within blocks. Forty-two flasks were utilized in each run; 36 flasks assigned to treatments 

and 6 blanks. Treatments consisted of copper sulfate heptahydrate (CuSO4) added to provide 

0, 100, 200, 300, 400, or 500 mg added Cu/kg substrate DM. These concentrations were 

selected in an attempt to determine at what Cu concentration a 50% reduction in fermentative 

activity could be observed. Results of this experiment were used to create a model in which 

Cu sources could be evaluated using a similar in vitro system. Treatments were prepared by 

solubilizing CuSO4 into 25 mL of water to appropriate concentrations. Substrate consisted of 
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90% corn and 10% soybean meal (DM basis) ground through a 1 mm screen. Prior to 

ruminal fluid collection, 3 g (DM basis) of substrate were added to each of 36 fermentation 

flasks. No substrate was added to 6 flasks, which served as blanks (1 per replicate) and were 

used to correct for DM and VFA contributed by ruminal fluid inoculum. 

Ruminal fluid was collected from a fistulated Jersey steer approximately 7 h after 

feeding. Donor animal diet consisted of 50% concentrate and 50% roughage (dry rolled corn, 

corn silage, ground alfalfa, and supplement). Ruminal fluid was strained through 4 layers of 

grade 50 cheesecloth (11 × 9.5 cm) into a pre-warmed insulated container and immediately 

transported 2 km to the Kansas State University Pre-Harvest Food Safety Laboratory. Once 

at the laboratory, ruminal fluid was strained through an additional 8 layers of grade 50 

cheesecloth (11 × 9.5 cm) into a 2000-mL separatory funnel. The funnel was flushed for 2 

min with N2 gas, capped, and incubated at 39ºC for 30 to 40 minutes to allow stratification of 

ruminal fluid into 3 layers. The bottom layer, rich in protozoa and feed particles, was 

discarded and the intermediate layer was collected for use as inoculum for in vitro cultures. 

McDougall’s buffer (140 mL) was added to flasks, 10 mL of inoculum were added, 1 mL of 

the appropriate Cu treatment was added, initial pH was recorded using a bench top pH probe 

(Thermo Orion pH meter model 230 A, Thermo Fisher Scientific Inc., Waltham, MA), 

bottles were flushed with N2 gas, capped with AnkomRF1 (Ankom RF Gas Production 

System; Ankom Technology, Macedon, NY) modules, and placed into a 39ºC shaking 

incubator. Bottles incubated for 24 h at 39ºC while being continuously and gently shaken. 

Gas pressure readings were recorded as cumulative pressure by modules every 15-min during 

incubation. Final pH was taken at 24 h, immediately after removing the Ankom module from 

each flask.   
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Gas pressure was converted to gas production (mL) per g of substrate using the ideal 

gas law and Avogadro’s law. 

Ideal gas law: n = p (
V

R×T
)   

Avogadro’s law: Gas production (mL) = n × 25.6 × 1000  

Gas production (mL/g substrate) = Gas production / 3  

In these formulas, n is moles of gas produced, p is pressure (kPa), V is volume of headspace 

in the flask (L), R is the gas constant (8.314472 LkPaK-1
mol-1), T is temperature (K), 25.6 

is the volume 1 mole of gas occupies at 39ºC, and 3 is the g of substrate used. 

Volatile Fatty Acid Profiles 

Four mL of fluid contents from each flask were combined with 1 mL of 25% (w/v) 

m-phosphoric acid in an 18-mL vial. Vials were frozen at -20ºC for approximately 24 h. 

Vials were thawed, vortexed, and 2 mL were transferred to microcentrifuge tubes. Tubes 

centrifuged at 10,000 × g for 15 min. Supernatant was transferred into gas chromatography 

vials and subsequently analyzed on an Agilent 7890A Gas Chromatograph (Agilent 

Technologies, Santa Clara, CA). Supelco Volatile Standard Mix (46975-U, Supelco, Inc., 

Bellefonte, PA) was used as a standard to calibrate output. A Supelco Nukol column (15 m × 

530 μm × 0.5 μm) was used, with an injection temperature of 275ºC and a flame ionization 

detector temperature of 300ºC. Hydrogen was used as a carrier gas with a flow rate of 45 

mL/min. Concentration (mM) output was converted to total VFA production per g substrate.  

Total VFA production = ((0.161 / g substrate) × (VFA concentration × 1.25)) – Blank  

In the above equation, 0.161 is the volume of liquid (in L) of the system, 1.25 is the 

correction for dilution by m-phosphoric acid, and blank VFA concentration was subtracted to 

correct for VFAs contributed by inoculum within the respective block. 



 

 46 

In Vitro Dry Matter Disappearance 

For IVDMD analysis, contents of fermentation flasks were completely transferred to 

19.0 × 12.7-cm aluminum pans and subsequently dried for 48 h at 105ºC. Pans were weighed 

after they were dried.  

In vitro dry matter disappearance analysis was calculated using the following:   

final vessel content DM wt.-blank content DM wt.

initial substrate wt.
× 100 

Blanks were used to correct for DM from the ruminal fluid within the respective block. 

 Experiment 2 

Experiment 2 was a randomized complete block design with 8 treatments and 3 runs 

with 5 flasks of each treatment, allowing for 15 observations per treatment. Within a 

fermentation run, fermentation flasks were allocated to five blocks, and treatments were 

distributed randomly within blocks. Forty-five flasks were utilized in each run; 40 flasks 

assigned treatments and 5 blanks. Randomization methodology was as described for Exp. 1. 

Treatments consisted of copper sulfate heptahydrate (CuSO4) added at 0, 10, 20, 30, 40, 50, 

60, or 70 mg Cu/kg substrate DM. All procedures for ruminal fluid collection, in vitro 

fermentation, VFA analysis, pH measurements, and IVDMD were as described for Exp. 1. 

 Experiment 3 

Experiment 3 was a randomized complete block design with 5 treatments with 3 runs 

of 4 flasks of each treatment, providing 12 observations per treatment. Twenty-four flasks 

were utilized in each run; 20 flasks assigned treatments and 4 blanks. Treatments consisted of 

five different inorganic Cu sources: copper sulfate as CuSO45H2O (CuSO4), copper chloride 

as CuCl22H2O (CuCl2), copper oxide as CuO (CuO), copper carbonate as CuCO3Cu(OH)2 

(CuCO3), and tribasic copper chloride as Cu2(OH)3Cl (TBCC; Intellibond C, 
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Micronutrients, Indianapolis, IN). Sources were incorporated into culture bottles at 100 mg 

Cu/kg substrate DM. This value was established as a concentration sufficient to adversely 

affect fermentation response in Exp 1. Culture bottles were prepared by adding 13 g of 

substrate, as described for Exp.1, as well as the appropriate Cu source treatment; added as 

dry ingredients equaling 100 mg Cu/kg substrate. Ruminal fluid collection and McDougall’s 

buffer preparation was as described for Exp. 1. Ruminal fluid and McDougall’s buffer were 

added to each 1000 mL culture bottle in quantities of 50 mL and 600 mL, respectively. 

Bottles were purged of O2 with N2 gas, initial pH recorded, capped quickly with Ankom 

modules, and placed in a shaking incubator. Culture bottles were gently agitated and 

incubated at 39ºC for 24 h. Final pH was recorded, and IVDMD, VFA analyses, and gas 

production analyses were conducted as described for Exp. 1.  

Statistical Methodology 

Experiments 1 and 2 were analyzed with Statistical Analysis Software (SAS version 

9.4; SAS Inst., Inc. Cary, NC). Volatile fatty acid production, IVDMD, and pH were 

analyzed using the MIXED procedure with fermentation flask as the experimental unit, a 

random effect of replicate within run, and Cu concentration as a fixed effect. The PDIFF 

function was used to determine differences between means. Gas production over time was 

also analyzed using the MIXED procedure of SAS as a repeated measure, subject being the 

module within run, and fixed effects of Cu concentration, time, and Cu concentration × time. 

The SLICE option was used to detect treatment differences at predetermined intervals during 

the incubation period. Linear and quadratic contrasts were used to evaluate effects of Cu. 

Experiment 3 was analyzed using the MIXED procedure, with fermentation flask as the 

experimental unit, replicate within run as a random effect, and Cu source as a fixed effect. 
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The PDIFF function was used to evaluate differences between means, similar to Exp. 1 and 

2. Gas production was analyzed similar to experiments 1 and 2 with the SLICE option; the 

only difference being Cu source, time, and Cu source × time as fixed effects. Differences 

were defined as follows: α ≤ 0.10 as a tendency and α ≤ 0.05 as a significant effect between 

treatment means.     

 RESULTS AND DISCUSSION 

Experiment 1 

Gas production decreased linearly as Cu concentration increased (Figure 2.1, P < 

0.01). A quadratic effect of Cu (P < 0.01) was also observed. In comparison to 0 mg/kg Cu, a 

27%, 36%, 43%, 43%, and 49% reduction in total gas produced was observed for 100, 200, 

300, 400, and 500 mg added Cu/ kg substrate, respectively. Interestingly, at 18 h, all 

treatments were different; however by 24 h of incubation 300 and 400 mg Cu/kg substrate 

DM began converging. This may be due to the adaptation of microbes to Cu toxicity, or the 

ability of remaining microbes to replicate and establish a great enough population to increase 

fermentative activity. Based on visual analysis of the growth curve, it is likely that the lag 

time was affected by Cu, and the rate of gas produced may have increased over time for 400 

mg added Cu/ kg substrate, explaining the convergence of 300 and 400 mg added Cu/ kg 

substrate. Similarly, IVDMD decreased linearly with increasing added Cu (P < 0.01, Figure 

2.1). Total VFA, acetate, propionate, isobutyrate, butyrate, isovalerate, and valerate 

decreased linearly as Cu concentration increased (P < 0.01, Table 2.1). A quadratic effect of 

Cu was also observed (P < 0.01) for VFA production. The A:P ratio also increased linearly as 

added Cu in the fermentation flasks increased (P < 0.01). We observed a linear increase in 

pH with increasing Cu (P < 0.01); likely due to the decrease in VFA production. Slyter and 
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Wolin (1967) observed a decrease in VFA production in an in vitro continuous culture 

system when 100 mg/kg Cu (as CuSO4) was added in comparison to no added Cu. In further 

agreement with our results, Essig et al. (1972) fed 44 mg/kg BW (approximately 17.2 mg 

Cu/kg BW rations to steers and reported a decrease in acetate, propionate, butyrate, and total 

VFA as well as a decrease in protozoa numbers when ruminal fluid was collected from the 

same steers. Hubbert et al. (1958) reported a decrease in cellulose digestion when in vitro 

cultures that contained as little as 2.5 mg/kg Cu. In contrast to our results, Solaiman et al. 

(2007) observed no effect of feeding goats 100 or 200 mg/kg Cu on VFAs, pH, or protozoa 

in ruminal fluid collected from these animals. This was, however, not an in vitro system, 

therefore differences in methodology as well as the ruminal environment may explain the 

contradiction with the current study.  

 Experiment 2 

Two replicates were removed from IVDMD statistical analyses, one from 20 mg/kg 

and one from 30 mg/kg, due to technicalities unrelated to treatment. There were no quadratic 

effects of Cu observed  (P > 0.20). A linear decrease was observed for gas production and 

acetate, propionate, isobutyrate, isovalerate, and valerate production (P < 0.01, Figure 2.2, 

Table 2.2) with increasing Cu concentration. After 24 h of fermentation, an adverse effect on 

gas production is observed at Cu concentrations greater than 40 mg Cu/kg substrate DM (P < 

0.05). No linear effect of Cu was observed for pH (P = 0.27), total VFA (P = 0.62), or 

butyrate production (P = 0.56). A tendency for a linear decrease for IVDMD with increasing 

Cu concentration was observed (P = 0.08). Negative effects on microbial activity can be 

observed at concentrations exceeding 40 mg Cu/kg substrate DM, as demonstrated by gas 

production. According to the Nutrient Requirements of Beef Cattle, cattle can tolerate 
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upwards of 40 mg/kg Cu in their diet (National Academies of Sciences, Engineering, and 

Medicine, 2016). Our results are in agreement with this benchmark, as noted by the linear 

decrease in gas production at 50 mg/kg Cu. Forsberg (1978) reported a 50% inhibition of in 

vitro fermentation using gas production as the dependent variable, at 21 μg Cu/mL (as 

CuCl2). In contrast, Vázquez-Armijo et al. (2011) noted an increase in both the rate and 

accumulation of gas produced when 21.7 mg/kg Cu was added compared to the control in 

which no Cu was added. Both studies are in contrast to our results, where no difference was 

observed in gas production when 10, 20, 30, or 40 mg/kg Cu was added. Differences in donor 

animal diets, as well methodology could explain these differences. Hubbert et al. (1958) and 

Martinez and Church (1970) both reported a depression in cellulolytic activity of ruminal 

microorganisms at 1 and 1.5 mg/kg Cu, respectively. Additionally, McNaught et al. (1950) 

reported an in vitro inhibition of protein synthesis at 10 mg/kg Cu.  

 Experiment 3 

Results for Exp. 3 are presented in Table 2.3 and Figure 2.3. Gas production was 

greatest for CuCO3, CuO, and TBCC at 6 h (P < 0.01) in comparison to CuSO4 and CuCl2, 

which were not different (P = 0.83). By 12 h of incubation CuO exhibited greater cumulative 

gas production than IBCC, CuSO4, and CuCl2 (P < 0.05), whereas CuCO3 and TBCC were 

not different (P = 0.53). After 24 h of incubation, gas production was decreased by 2.9%, 

4.1%, 40.9%, and 43.3% for CuCO3, TBCC, CuSO4, and CuCl2, respectively, compared to 

CuO. The concentration of Cu (100 mg/kg) was great enough to result in a reduction in 

microbial activity; therefore decreased gas production indicates greater impact on ruminal 

microorganisms. In vitro dry matter disappearance, VFA production, and pH was not 

different between CuSO4 and CuCl2 (P > 0.10). Volatile fatty acid production was not 
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different between CuO, CuCO3, and TBCC (P > 0.10), however, CuO decreased pH and 

increased IVDMD compared to CuCO3 and TBCC (P < 0.02). An increase in pH, and a 

decrease in IVDMD and VFA production was detected for CuSO4 and CuCl2, compared to 

CuO, CuCO3, and TBCC.  

Based on gas production, IVDMD, and pH results, it would appear that CuO impacts 

ruminal microorganisms to a lesser extent, followed by CuCO3 and TBCC.  Copper sulfate 

and CuCl2 impacted fermentation by ruminal microbes to the greatest extent. Solubility of 

trace minerals may play an important role in the ability of minerals to impact ruminal 

microflora or to bypass the rumen without forming complexes with other elements in the 

rumen; which commonly render the mineral unavailable.  Multiple ruminant and monogastric 

studies have reported a decrease in Cu availability when it is in the form of Cu oxide 

(Lassiter and Bell, 1960; Bunch et al., 1961; Ledoux, et al., 1991; Kegley and Spears, 1994). 

In agreement with the current study, Ledoux et al. (1991) reported Cu carbonate as having a 

relative bioavailability of 54.3%, 38.6% less than Cu sulfate. Copper sulfate is almost 

completely dissociated and is nearly 100% soluble in the rumen, making it more ruminally 

bioavailable than other inorganic sources such as oxide, TBCC, acetate, and carbonate 

(McDowell, 2003; Ledoux et al., 1991; Kegley and Spears, 1994). Sulfate trace minerals are 

bound with ionic bonds and weak ionic chemical bonds subject them to complex and bind 

with antagonists, such as Mo, S, and Fe; although relative bioavailability is increased in the 

absence of dietary antagonists. The chemical properties of sulfate minerals would explain the 

decrease in gas production as well as VFA production, IVDMD, and increase in pH in the 

current study. However, studies in which no differences were detected between CuSO4 and 

TBCC (Spears et al., 2004), or CuSO4, cupric carbonate, and CuO in swine (Buescher et al., 
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1961). This may be indicative of differences in Cu metabolism between monogastric and 

ruminant animals. It is important to note that concentration of antagonists in the diet appears 

to play a role in the bioavailability of each individual Cu source.  Tribasic Cu chloride is 

considered an inorganic Cu source, however unlike the sulfate forms, TBCC contains 

covalent bonds between Cu ions and hydroxyl and chloride groups. It has been suggested that 

the chemical bonds result in a decrease in solubility in monogastrics, which may translate to 

a decrease in ruminal solubility (Cromwell et al., 1998). This may explain the increase in gas 

production of TBCC when compared to copper sulfate and copper chloride. Kim et al. (2016) 

studied the effects of copper sulfate and TBCC on tissue concentrations in laying hens, and 

reported no difference in relative bioavailability. Similarly, in a diet void of antagonists such 

as Mo and S, Spears et al. (2004) reported no difference in bioavailability in growing cattle. 

There was an increase in Cu bioavailability, however, in cattle consuming diets high in Mo 

and S when TBCC was fed, compared to copper sulfate. In conclusion, ruminal 

microorganisms are affected by both copper source and concentration. Furthermore, Cu 

sources interact differently with ruminal microbes and could impact microbial fermentation 

and post-ruminal bioavailability.  
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Table 2.1 Experiment 1. Effects of high concentrations of supplemental Cu on in vitro fermentation characteristics after 24-h 

of fermentation 

 Concentration1, mg Cu/kg substrate  P-value 

Item  0 100 200 300 400 500 SEM Linear Quadratic 

IVDMD, % 46.70a 38.02b 34.05c 28.39d 25.30d 20.77e 1.571 < 0.01 0.03 

Final pH 5.88a 6.04b 6.00b 6.05b 6.06b 6.18c 0.034 < 0.01 0.95 

VFA, mMoles/g substrate        

  Total VFA 6.20a 4.68b 3.58c 1.72d,e 1.36e 1.09e,f 0.146 < 0.01 < 0.01 

  Acetate 2.58a 1.84b 1.58c 0.98d,e 0.89e 0.79e,f 0.078 < 0.01 < 0.01 

  Propionate 2.89a 2.37b 1.73c 0.64d 0.39e 0.25e 0.063 < 0.01 < 0.01 

  Isobutyrate 0.03a 0.00b 0.00b 0.00b 0.00b 0.00b 0.002 < 0.01 < 0.01 

  Butyrate 0.56a 0.37b 0.26b 0.13d 0.10d 0.07d 0.030 < 0.01 < 0.01 

  Isovalerate 0.04a 0.00b 0.00b 0.00b 0.00b 0.00b 0.003 < 0.01 < 0.01 

  Valerate 0.09a 0.10a 0.04b 0.00c 0.00c 0.00c 0.007 < 0.01 < 0.01 

  A:P 0.89a 0.78a 0.92a 1.61b 2.43b 3.82d 0.194 < 0.01 < 0.01 
1Cultures contained 0, 100, 200, 300, 400, or 500 mg/kg Cu in the form of CuSO4.  
a-f Within row, means without a common superscript letter are different (P < 0.05). 
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Table 2.2 Experiment 2. Effects of increasing supplemental Cu on in vitro batch culture fermentation by mixed ruminal 

microbes after 24-h of fermentation   

 Concentration1, mg Cu/kg substrate DM  P-value 

Item  0 10 20 30 40 50 60 70 SEM Linear Quadratic 

IVDMD, % 52.50 52.23 51.33 50.17 51.06 53.40 50.10 49.68 2.479 0.08 0.83 

Final pH 5.98 5.92 5.96 5.99 5.97 5.97 5.90 5.94 0.058 0.27 0.23 

VFA, mM/g substrate          

  Total VFA 6.68 6.93 6.91 6.56 6.52 6.87 6.81 6.97 0.218 0.62 0.31 

  Acetate 3.15a,b,c 3.30a 3.25a,b 3.02a,c 2.92c 2.95c 3.00b,c 2.97b,c 0.117 < 0.01 0.55 

  Propionate 2.55a 2.57a 2.62a 2.56a 2.59a 2.90b 2.87b 3.05b 0.090 < 0.01 0.03 

  Isobutyrate 0.04a 0.04a 0.04a,b 0.03a,b,c 0.03a,b,c 0.03b,c 0.02c 0.02c 0.005 < 0.01 0.56 

  Butyrate 0.76 0.82 0.81 0.77 0.79 0.81 0.77 0.76 0.059 0.56 0.26 

  Isovalerate 0.09a 0.11a 0.10a 0.09a,b 0.09a,b 0.09a,b 0.08b 0.07b 0.008 < 0.01 0.23 

  Valerate 0.09a 0.09a 0.10a 0.09a 0.09a 0.09a 0.08b 0.09a,b 0.005 0.04 0.29 

  A:P 1.29 1.32 1.29 1.23 1.18 1.11 1.13 1.07 0.034 < 0.01 0.56 
1Cultures contained 0, 10, 20, 30, 40, 50, 60, or 70 mg/kg Cu in the form of CuSO4.  
a-cWithin row, means without a common superscript letter are different (P < 0.05). 



 

 58 

Table 2.3 Experiment 3. Effect of Cu source in vitro batch culture fermentation by 

mixed ruminal microbes after 24-h of fermentation   

 Copper source1   

Item  CuSO4 CuCl2 CuO CuCO3 TBCC SEM P-value 

IVDMD, % 24.42a 23.54a 35.23b 33.61c 33.39c 0.545 < 0.01 

Final pH 6.39a 6.42a 6.28b 6.33c 6.34c 0.017 < 0.01 

VFA, mMoles/g substrate      

  Total VFA 3.17a 3.38a 5.19b 4.77b 4.79b 0.232 < 0.01 

  Acetate 1.32a 1.41a 2.13b 1.99b 1.99b 0.100 < 0.01 

  Propionate 1.56a 1.64a 2.27b 2.03b 2.05b 0.142 0.05 

  Butyrate 0.17a 0.20a 0.60b 0.58b 0.57b 0.081 < 0.01 

  Isovalerate 0.00a 0.00a 0.028b 0.027b 0.028b 0.008 < 0.01 

  Valerate 0.05 0.06 0.07 0.06 0.06 0.008 0.45 

A:P 0.90 0.91 0.96 1.01 0.99 0.065 0.34 

1 Copper sources were added at 100 mg Cu/kg substrate DM as either copper sulfate as 

CuSO45H2O (CuSO4), copper chloride as CuCl22H2O (CuCl2), copper oxide (CuO), 

copper carbonate as CuCO3Cu(OH)2 (CuCO3), and tribasic copper chloride as 

Cu2(OH)3Cl (TBCC; Intellibond C, Micronutrients, Indianapolis, IN). 
a-c Within row, means without a common superscript letter are different (P < 0.05). 
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Figure 2.1 Experiment 1. Gas production (mL/g substrate) by mixed ruminal microbes 

in an in vitro batch culture fermentation system over a period of 24 h. Cultures 

contained 0 ( ), 100 ( ), 200 ( ), 300  ( ), 400, or 500 ( ) mg Cu/kg substrate DM in 

the form of CuSO4. Fermentation flasks contained 10 mL ruminal fluid, 140 mL of 

McDougall’s buffer, and 3 g of substrate. There was a copper × time interaction (P < 

0.01), and both linear and quadratic effects of copper (P < 0.01). 
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Figure 2.2 Experiment 2. Gas production (mL/g substrate) by mixed ruminal microbes 

in an in vitro batch culture fermentation system over a period of 24 h. Cultures 

contained 0 ( ), 10 ( ), 20 ( ), 30 ( ), 40 ( ), 50 ( ), 60 ( ), or 70 (  ) mg Cu/kg 

substrate DM in the form of CuSO4. Fermentation flasks contained 10 mL ruminal 

fluid, 140 mL of McDougall’s buffer, and 3 g of substrate. There was a copper × time 

interaction (P < 0.01), and both linear and quadratic effects of copper (P < 0.01). 
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Figure 2.3 Experiment 3. Gas production (mL/g substrate) by mixed ruminal microbes 

in an in vitro batch culture fermentation system over a period of 24 h. Cultures 

contained 100 mg/kg Cu substrate as either copper sulfate as CuSO45H2O (CuSO4, ), 

copper chloride as CuCl22H2O (CuCl2, ), copper oxide as CuO (CuO, ), copper 

carbonate as CuCO3Cu(OH)2 (CuCO3, ), and tribasic copper chloride as 

Cu2(OH)3Cl (TBCC; , Intellibond C, Micronutrients, Indianapolis, IN). There was a 

source × time interaction (P < 0.01) and effects of source (P < 0.01) and time (P < 0.01)
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 ABSTRACT  

Feed manufacturing processes, particularly those involving extremes of heat or pH, can 

alter bioavailability of nutrients.  Similarly, form of supplements (pellets, loose minerals, 

liquids, or blocks) can influence supplement consumption patterns, which may, in turn, 

impact nutrient utilization.  This study was conducted to evaluate changes in tissue 

concentrations of Cu, P, and Zn in forage-fed heifers in response to supplementation with 

plain salt (S), a free-choice mineral supplement (M), or a low-moisture process block 

supplement (B).  Heifers (n=360, 253.9 ± 6.7 kg) were weighed, blocked by initial BW, 

and randomly allocated to treatments consisting of ad libitum access to salt (S); loose 

mineral (M); or low-moisture molasses block plus salt (B). The M and B treatments were 

manufactured using the identical mineral mixture, adding salt as a diluent to make M, or 

by incorporating the mineral mixture into a hot, pliable evaporated molasses/oil mixture 

to make B.  Heifers were housed in 24 dirt-surfaced pens (15 animals/pen, 8 

pens/treatment) and fed a basal diet consisting (DM basis) of 70% ground brome hay and 

30% corn silage for 100 d. Blood and liver biopsy samples were collected on d 0 and 70 

from 4 randomly selected heifers/pen to determine changes in concentrations of Cu in 

liver and Zn and P in plasma.  No treatment differences were detected for DMI or G:F (P 

> 0.1), but ADG was greater for M than for S or B (P = 0.03). No differences were 

detected for changes in plasma P or Zn (P > 0.10). Liver Cu concentrations were different 

among treatments (P < 0.05), where M had the greatest liver Cu, B was intermediate, S 

had the least liver Cu (114, 428, and 266 mg/kg tissue DM for S, M, and B, respectively). 

The percent of heifers identified as having sufficient tissue Cu (i.e., > 87.5 mg/kg tissue 

DM) was less for S than for M and B (59.4, 100, and 100%, respectively; P < 0.05). In 
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conclusion, tissue mineral content was proportionate to mineral intake, but differences in 

mineral availability between loose mineral and block supplements were not evident. 

Key words: copper, forage, phosphorus, mineral status, zinc  

 INTRODUCTION  

Trace mineral supplementation in forage-fed cattle takes many forms, but 

frequently is offered as free-choice supplements, including molasses-based blocks.  

Bioavailability of trace elements in ruminants can be modified during ruminal 

fermentation, potentially impacting post-ruminal absorption and storage of these elements 

(McDowell, 2003). Bioavailability of trace minerals is lower in ruminants in comparison 

to non-ruminants due to the ruminal environment (Spears, 2003), and this difference is 

most pronounced for forage-fed cattle (Kabija and Smith, 1988). Phosphorus is stored 

primarily in bone, but free forms are found in blood and other tissues. Phosphorus is the 

most common mineral found to be deficient in forage-fed cattle (McDowell, 2003). 

Copper also is deficient under many circumstances, and is an essential cofactor for 

enzymes such as lysil oxidase, cytochrome C oxidase, and ceruloplasmin.  Copper 

accumulates in liver tissue when fed in excess, and liver concentrations frequently are 

used to assess Cu status of cattle.  Zinc is a component or activator of many enzyme 

systems and is important in immune function (Hambidge et al., 1986). Little is known of 

the comparative bioavailability of these mineral elements when offered to cattle as 

components of different types of supplements. Additionally, consumption patterns and 

cattle behavior are influenced by delivery method, which could alter mineral status. 

Consequently, our objective was to compare differences in free-choice intake and tissue 

concentrations of Cu, P, and Zn in forage-fed cattle supplemented with different types of 
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supplements (salt, free-choice mineral mixture, or a mineralized molasses block 

supplement).  

 MATERIALS AND METHODS:  

 Animals and Sampling 

 Procedures were approved by the Kansas State University Institutional Animal 

Care and Use Committee and were conducted at the Kansas State University Beef Cattle 

Research Center in Manhattan, Kansas.  

 Experimental Design 

 Three hundred sixty crossbred heifers (initial BW = 253.9 ± 6.7 kg) were used in 

a randomized complete block design with 3 treatments. Heifers were weighed and 

randomly assigned to experimental pens based on initial BW. Treatments (Table 1) 

consisted of free choice plain salt (S), a free-choice dry mineral supplement containing 

salt (M), or a low-moisture process molasses block supplement with separate access to 

salt (B). Cattle in all treatments were fed the same forage-based diet for 86 days, and then 

switched to a common total mixed ration for the final 16 days of the study (Table 2) in an 

attempt to equalize gastrointestinal tract fill among treatments. Heifers were housed in 24 

dirt-surfaced pens (15 animals/pen, 8 pens/treatment) and fed the basal diet once daily ad 

libitum. 

 Animal Processing, Handling, and Housing 

 Prior to the start of the study heifers were given ad libitum access to ground 

brome hay and water.  Heifers were processed 24 to 48 h after arrival at the research 

center. Initial processing procedure included identification with uniquely numbered 

eartags, vaccination with Bovishield Gold 5 (Zoetis, Parsippany, NJ) and Ultrabac 
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7/Somubac (Zoetis), administration of a prophylactic subcutaneous dose of tilmicosin 

(Micotil, Elanco Animal Health, Greenfield, IN), implanting with Component TE-IH 

with Tylan (Elanco Animal Health), and treatment for internal and external parasites 

using Dectomax Pour-On (Zoetis). Before study initiation, heifers were weighed and 

initial body weights were recorded. These weights were used for initial blocking and 

heifers were then sorted into experimental pens. Dirt-surfaced drylot pens provided 

approximately 22 m2 of pen surface area/animal. Pens were equipped with automatic 

waterers (shared between two adjacent pens) and fence-line concrete feed bunks.  Initial 

blood samples were drawn via jugular venipuncture from 4 heifers randomly selected 

from each pen prior to the start of the study (32/treatment), for analysis of plasma Zn and 

plasma P. Blood was collected into two 6-mL trace element grade EDTA Vacutainer 

tubes (Becton, Dickinson and Company, Franklin Lakes, NJ) and immediately placed on 

ice. Blood was centrifuged within 15 min of sampling at 2,550 × g for 10 min. Plasma 

was transferred into plastic tubes, transported to the Kansas State University Ruminant 

Nutrition Laboratory, and stored at -20°C until further analysis. Liver biopsies were 

performed on the same subset of cattle using the method described by Engle and Spears 

(2000).  Liver biopsies were transferred into storage tubes, placed on ice, and transferred 

to the Kansas State University Ruminant Nutrition Laboratory where they were stored at 

-20°C until subsequent analysis of Cu concentration. Liver Cu was analyzed using 

inductively coupled plasma mass spectroscopy (Utah State Veterinary Diagnostic Lab, 

Logan, Utah). The same blood and liver collection procedures were repeated on d 70 of 

the study to establish final mineral concentrations for the same animals.  
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 Diet Preparation 

Heifers were fed a basal diet consisting of 30% corn silage and 70% ground 

brome hay on a DM basis for the first 86 d. Cattle were then switched to a common total 

mixed ration for the last 16 d on study to equalize gastrointestinal tract fill among 

treatment groups on BW (Table 2). Diets were mixed once daily in a truck-mounted feed 

mixer and fed at approximately 1300 h. Intakes were monitored daily, with adjustments 

being made as needed to ensure ad libitum intake by adjusting feed calls using a 

computerized feed management system (Micro Beef Technologies; Amarillo, TX). To 

determine DMI during each 28-d period, excess feed was removed from bunks and dried 

on a weekly basis or as needed to quantify refused feed.  Samples were dried for 48 h in a 

forced-air oven at 55°C to determine DM content. Salt was provided ad libitum to heifers 

in S and B pens using plastic feeders secured within automotive tires to minimize spillage 

losses. The dry mineral mixture was offered in the same manner.  Blocks were packaged 

in plastic feeders and offered ad libitum in conjunction with ad libitum access to loose 

salt.  Mineral was offered free-choice. Mineral, salt, and block feeders were checked 

daily, filled or replaced as needed, and consumption was recorded. Weekly consumption 

of supplement and individual minerals was determined by weighing unconsumed 

product, drying a subsample, and subtracting this amount from the total amount offered. 

Analysis of the basal diet was conducted by collecting weekly feed samples, compositing 

samples, and analyzed for DM, CP, Ca, NDF, P, Cu, and Zn (SDK Laboratories, 

Hutchinson, KS). Supplement was analyzed for P, Cu, and Zn (SDK Laboratories). 

Dietary intake of individual minerals included both the basal diet and supplement 

combined.  
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 Analytical Procedures 

 Zinc concentration of plasma was analyzed using atomic absorption spectrometry 

(Perkin Elmer Atomic Absorption Spectrometer 3110, PerkinElmer Waltham, MA). 

Plasma samples for Zn analysis were diluted with 1 mL plasma to 3 mL deionized water 

before spectrometric analysis, and absorbance was determined at 214 nm. Plasma P 

samples initially were diluted and proteins precipitated out with 0.25 mL of sample and 1 

mL of trichloroacetic acid. Samples were analyzed in duplicate with spectrophotometry 

(Genesys 20, Spectronics Corporation Westbury, NY) using methodology previously 

described by Fiske and Subbarow (1925) at 660 nm. Liver biopsy samples were analyzed 

for Cu concentration (DM basis) using inductively coupled plasma mass spectrometry 

(Utah Veterinary Diagnostic Laboratory, Logan, UT).  

 Statistical Methodology 

 Statistical analyses were performed using the Statistical Analysis System (SAS 

version 9.4; SAS Inst, Inc. Cary, NC) with the experimental unit being pen and random 

effect of block. Growth performance (DMI, gain:feed, and ADG) was analyzed with the 

MIXED procedure of SAS, using treatment as the fixed effect. Supplement intake and 

intakes of Cu, P, and Zn were analyzed using the MIXED procedure of SAS as repeated 

measures, with fixed effects of treatment, week, and treatment × week. The random effect 

was block. Coefficient of variation for supplement intake was calculated using the 

standard deviation and LSMeans and was analyzed using the MIXED procedure. Fixed 

effects of treatment and a repeated measure of week were used. Concentrations of plasma 

P, plasma Zn, and liver Cu were analyzed as repeated measures with the MIXED 

procedure. Fixed effects were treatment, day, and treatment × day and block was used as 
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the random effect. Percentages of animals classified as having deficient, marginal, or 

sufficient liver Cu, and plasma P and Zn were analyzed using the GLIMIX procedure of 

SAS. Fixed effects included treatment, day, and treatment × day and random effect was 

block.  A tendency for a difference among means was defined as α ≤ 0.10 and differences 

of α ≤ 0.05 were considered significant.        

 RESULTS AND DISCUSSION 

 Three heifers were removed from the study due to either death or chronic toe 

abscesses unrelated to treatment.  

 Cattle Performance 

Cattle performance is summarized in Table 3. There were no treatment 

differences for DMI or gain:feed (P > 0.10); however, cattle fed M exhibited greater 

ADG (P < 0.05) compared to cattle fed S or B. Additionally, M had a greater final 

bodyweight compared to S (P < 0.01); however, B was similar to M and S (P > 0.09) 

Increased ADG can be attributed to a numerical increase in DMI. Performance is limited 

by protein and energy supply, and is a function of forage intake, forage quality, and 

additional supplementation (Holloway et al., 1991; Poppi and McLennan, 1995). The 

basal diet that was fed for the initial 86 d was designed to emulate moderate quality 

pasture, with relatively low concentrations of Cu, P, and Zn; however the brome hay had 

a lower CP than typical, resulting in a diet containing 8% CP. Diets were analyzed using 

the Beef Cattle Nutrient Requirements Model of the basal diet (BCNRM; National 

Academies of Sciences, Engineering, and Medicine, 2016). The empirical level model 

was used and inputs included, Angus-type heifers, 9 months in age, with an initial body 

weight of 253.9 kg and a final body weight of 309.3 kg. Environmental factors included 
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minimum and maximum temperatures of 23°C and 35°C, a wind speed of 1.609 km/h, 

and hide coat and hide factors of 1. Model inputs were corrected using observed 

performance data, forage intake, supplement intake, and analyzed chemical compositions 

of feed ingredients and supplements. According to the BCNRM, S was deficient in Ca, P, 

S, Co, Cu, I, Fe, Se, and Zn, had an MP allowable gain of 0.318 kg/d, ME allowable gain 

of 0.554 kg/d, and had 98 g/d of MP available for growth; however, required MP for 

growth was 171 g/d, 43% more than what was supplied. Dietary protein provided 414 and 

161 g/d of RDP and RUP, respectively. Although S was deficient in most minerals, the 

1st limiting nutrient in the diet was most likely protein; however, heifers exceeded the 

MP allowable gain by 0.23 kg/d and was similar to the ME allowable gain. Both B and M 

were sufficient in most minerals, the exceptions being S, Ca, and P. Dry mineral and B 

had ME allowable gains of 0.573 and 0.561 kg/d, respectively, and MP allowable gains 

of 0.334 and 0.323 kg/d, respectively. Dietary protein provided 416 g/d of RDP and 161 

g/d of RUP in M. Conversely, M provided greater dietary protein (423 g/d of RDP and 

163 g/d of RUP). Average daily gain was limited by both protein and energy in S, M, and 

B; however, protein was likely 1st limiting. In contrast to treatment diets, the TMR fed to 

equalize gut fill in the final 14 was sufficient in minerals and had MP and ME allowable 

gains of 1.03 and 1.23 kg/d, respectively. Average daily gain during the initial 86 d was 

0.44 kg/d for all treatments; however, ADG increased to 1.17, 1.42, and 1.21 kd/d for S, 

M, and B, respectively. Increased ADG was likely due to increased protein and energy 

supply of the diet. In agreement, decreased ADG has been reported in cattle not 

supplemented with an additional protein or concentrate source when grazing poor quality 

pastures low in CP when compared to supplemented cattle (Moore et al., 1999). 
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Titgemeyer et al. (2004) evaluated effects of increasing dietary CP with either cooked 

molasses blocks or alfalfa hay on performance of heifers fed low quality prairie hay 

(5.2% CP). They observed increased ADG in heifers supplemented alfalfa hay (16.6% 

CP) and cooked molasses blocks (27.5% CP) compared to heifers consuming ad libitum 

prairie hay alone. In agreement, Köster et al. (1996) reported an improvement in 

digestibility of low quality prairie hay when degradable intake protein was increased. 

Despite treatment differences in ADG, protein and energy likely limited growth to a 

greater extent than mineral consumption.  

 Supplement Intake 

There was a treatment × week interaction (P < 0.01) and an effect of week (P < 

0.01) detected for supplement intake (Figures 3.1, 3.2, and 3.3). Free choice salt intake 

was monitored for S as well as B; M had salt mixed into the supplement. Salt intake did 

not differ between S and B (P = 0.23; 95.4 and 100.6 ganimal-1
d-1, respectively); 

however salt intake was decreased in M compared to S and B (P < 0.01; 27.8 ganimal-

1
d-1). Cattle require 0.08% dietary Na (National Academies of Sciences, Engineering, 

and Medicine, 2016), and 0.20% NaCl (NRC, 1984). Salt intake was greater than our 

expected intake of 15 to 28 ganimal-1
d-1. Grazing cattle can consume 14 to 16 g/d of 

salt in order to maintain adequate Na status (McDowell, 2003); however, cattle can 

tolerate up to 1 g salt/kg bodyweight without observing adverse effects on feed intake 

(NRC, 2005). Stocking density has been reported to impact intake behavior (Stricklin and 

Kautz-Scanavy, 1984) and limited pen space may have driven supplement intakes. 

Heifers in this study were allowed 22 m2 per animal; however, in a grazing scenario 

yearling cattle have more than 8000 m2 per animal. In addition to stocking density, salt 
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hunger may have driven supplement intakes. Cattle have a taste for salt and crave it 

especially when deficient. Characteristics of this craving are licking of salty objects as 

well as pica (McDowell, 2003; NRC, 2005). Salt craving has been reported among a wide 

range of ruminant species (Singh et al., 2000; Villalba et al., 2008; Caecero et al., 2009). 

Supplement intake differed week by week within the study period and was dependent on 

treatment. Block intake was greatest during week 1 (P < 0.01, Figure 3.3) and proceeded 

to plateau through the remainder of the study. Novelty of the supplement in pens may 

explain greater intakes. Supplement intake during week 8 was depressed among all 

treatments, and is likely due to high temperatures during this particular week in August. 

Week to week variability in supplement intake was compared using supplement intake 

CV (Figure 3.4). Within a treatment, weekly intake CV was calculated.  Coefficient of 

variation for supplement intake was 28% for S, 41% for M, and 30% for B. Intake 

variability was greatest for M (P < 0.04), whereas S alone and M were similar (P = 0.78). 

Bailey and Welling (2007) reported a greater attraction to molasses block supplements 

when compared to dry mineral supplements in cows among various terrains. Maintaining 

consistent supplement intake is important in order to provide adequate minerals to cattle, 

as well as for determining supplementation protocols. A review by Bowman and Sowell 

(1997) of ruminants in various conditions indicated that variation in supplement 

consumption was greatest for block or liquid supplements, with a CV of 71%, in contrast 

to 38% for dry supplement; however, our results would suggest an increase in variability 

for dry mineral supplements. Differences in housing environments may have impacted 

CV as well. Stricklin and Kautz-Scanavy (1984) reported greater intakes and increased 

activity when stocking density was increased. Variation in intake may have been due the 
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number of heifers that visited supplement feeders in a given day. Bailey and Welling 

(2007) observed an increased percentage of cows that visited molasses block supplements 

compared to dry mineral supplements in moderate terrain in Montana (74% vs. 56%, 

respectively).  We suspect that delivery method, supplement type (salt-based or molasses 

based), and stocking density may have influenced supplement consumption.   

There was a treatment × week interaction for Cu intake (P < 0.01), Zn intake (P < 

0.01) and P intake (P < 0.01) and an effect of week for all Cu, Zn, and P intakes (P < 

0.01). Nutrient intakes differed among all treatments and nutrients (P < 0.01). Copper 

consumption was less for cattle fed S (i.e. salt) (P < 0.05; Figure 3.5) compared to cattle 

fed M (P < 0.05), and cattle fed B were intermediate (P < 0.05). Consumption of Zn 

(Figure 3.6) and P (Figure 3.7) followed a similar trend with differences seen among all 

treatments (P < 0.01). Bailey and Welling (2007) noted higher intakes of Cu, P, and Zn in 

a commercial dry mineral mix when compared to a low-moisture molasses mineral block.  

 Plasma Phosphorus 

No treatment differences were observed for plasma P (P > 0.1; Figure 3.8), 

however plasma P was decreased by d 70 compared to d 0 (P = 0.01). Treatment means 

for S, M, and B were 6.95, 7.41, and 7.25 mg/dL, respectively. These values are within 

the normal range of 6 to 8 mg/dL for young animals, and well above a critical deficiency 

of 4.5 mg/dL (McDowell, 2003). Deficient, marginal, and sufficient status was defined as 

plasma P concentrations of < 4.5 mg/dL; ≥ 4.5 and < 6 mg/dL; and ≥ 6 mg/dL, 

respectively. No heifers were classified as deficient in P, and there were no treatment 

differences or effect of day for marginal or sufficient P status (P > 0.3). Kirk and Davis 

(1970) observed average plasma P concentrations of 5.2 mg/dL in Florida range cattle, 
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with only 17% of the cattle below 4.0 mg/dL. Geisert et al. (2010) observed an average 

plasma P of 7.07 mg/dL for finishing cattle with intakes of 14.1 to 29.6 g/d of P, which 

was lower than our observed P intakes.  Within the body, 80 to 85% of P is stored within 

bone, minimizing blood P, while excess P is excreted via feces and urine (McDowell, 

2003). Plasma P is therefore not optimal as a method for determining P status. Data from 

our study suggest that sampled heifers were sufficient in P, and any excess may have 

been deposited in bone or excreted, making treatment differences difficult to detect.  

 Plasma Zinc 

Plasma Zn was not different among treatments (P > 0.1; Figure 3.9) despite 

differences in Zn intake. Mean plasma Zn values were within the normal range, 0.6 to 1.2 

mg/mL (NRC, 2001 and McDowell, 2003). An effect of day was observed in plasma Zn 

(P < 0.01). Plasma Zn was greater on d 70 compared to d 0 (P < 0.01). Zinc status was 

characterized as deficient, marginal, or sufficient based on plasma Zn concentrations of < 

0.6 mg/L; ≥ 0.6 and < 0.8 mg/L; and ≥ 0.8 mg/L, respectively. The proportion of animals 

classified as sufficient in Zn was not different among treatments (P > 0.5, Figure 3.10). 

Literature is ambiguous with respect to varying concentrations of Zn supplementation 

and the response in plasma Zn. Malcolm-Callis et al. (2000), Spears and Kegley (2002), 

and Nunnery et al. (2007), observed no differences in plasma or serum Zn at different 

intakes or with different sources of Zn. In contrast to our results, however, Van Bibber-

Krueger (2016) observed a concentration-dependent response in plasma Zn when zinc 

sulfate was added to total mixed rations at different concentrations for finishing heifers. 

This inconsistency may be due to the lack of a storage mechanism for Zn in the body 
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(McDowell, 2003), or differences in diets. Due to these characteristics, much of the Zn 

supplemented is excreted in the feces.    

 Copper Status 

 Final concentrations of Cu in the liver were different among all treatments (P < 

0.01, Figure 3.11). Concentrations of Cu in livers from heifers were lowest for S in 

comparison to M and B (P < 0.01). Concentration of Cu in livers from heifers 

supplemented M were greater than liver Cu concentration from heifers supplemented S or 

B (P < 0.01). McDowell (2003) established normal liver Cu concentrations varied from 

100 to 400 mg/kg DM. Deficient, marginal, and sufficient status was defined as liver Cu 

concentrations of < 35 mg/kg DM, between 35 and 87.5 mg/kg DM, and > 87.5 mg/kg 

DM, respectively (Smart et al., 1992). The percentage of heifers classified as sufficient in 

Cu status was decreased to 59.4% (P < 0.01; Figure 3.12) for heifers supplemented S 

compared to M and B, whereas 100% of the heifers consuming M and B were sufficient 

in Cu status (P = 0.45). This response is likely reflective of Cu intake among treatments, 

S having less Cu intake and M having the greatest intake. Liver Cu concentrations 

suggest that Cu accumulated in tissue as intake increased, which is similar to 

observations of Engle and Spears (2000). Dorton et al. (2003) observed an increase in 

liver Cu at 20 mg/kg added Cu in comparison to 10 mg/kg added Cu, and saw an effect of 

Cu among all time periods in growing and finishing steers.   

 In summary, tissue mineral status was dependent on mineral intake, as exhibited 

by liver Cu concentrations. A majority of the heifers within this study were sufficient in 

both Zn and P, as plasma concentrations of both minerals were within the normal range; 



 

 76 

however, differences in mineral bioavailability were not evident between the dry mineral 

supplement and the low-moisture molasses block supplement.   
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Table 3.1 Nutrient composition of supplement provided to heifers on a forage-based 

diet for 86 d 

Nutrient  Dry mineral  Block 

Salt, % 23.0 - 

Calcium, % 10.5 6.0 

Phosphorus, % 7.8 3.6 

Potassium, % 0.2 2.5 

Magnesium, % 3.6 3.0 

Cobalt, mg/kg 21.3 10.0 

Copper, mg/kg 2330 1407 

Iodine, mg/kg 87.7 42.0 

Manganese, mg/kg 7161 3400 

Selenium, mg/kg 27.5 13.2 

Zinc, mg/kg 8235 3829 

Vitamin A, IU/kg 550304 264000 

Vitamin D, IU/kg 55030 26400 

Vitamin E, IU/kg 550 264 
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Table 3.2 Composition of basal diets for heifers fed a forage-based diet for 86 d 

(basal diet) and a total mixed ration fed in an attempt to equalize gut fill (post-

treatment diet) for an additional 16 d 

Item  Basal diet  Post-treatment diet 

Ingredient, % DM   

   Steam-flaked corn - 17.9 

   Wet corn gluten feed - 30.0 

   Ground brome hay 70.0 20.0 

   Corn silage 30.0 30.0 

   Vitamin/mineral premix1 - 0.47 

   Limestone - 1.41 

   Salt - 0.25 

Nutrient composition2   

    CP, % 8.00 14.01 

    Ca, % 0.29 0.70 

    P, % 0.20 0.49 

    NDF, % 57.9 35.5 

    Cu, mg/kg 9.1 10.0 

    Zn, mg/kg 16.9 30.0 

    NEm
3, Mcal/kg 1.19 1.81 

    NEg
3, Mcal/kg 0.63 1.18 

1Premix formulated to provide added levels of the following nutrients: 0.15 

mg/kg Co, 10 mg/kg Cu, 0.50 mg/kg I, 20 mg/kg Mn, 0.10 mg/kg Se, 30 

mg/kg Zn, 30 g/ton monensin, 2,200 IU/kg vitamin A, and 22 IU/kg vitamin E. 
2Analysis of the basal diet was conducted by collecting weekly feed samples, 

and compositing samples for analysis (SDK Laboratories, Hutchinson, KS) 
3Calculated using the Beef Cattle Nutrient Requirements Model (National 

Academies of Sciences, Engineering, and Medicine, 2016) 
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Table 3.3 Growing performance of heifers fed salt, dry mineral, or block 

supplements for 86 d and a total mixed ration for an additional 14 d1 

Item Salt Dry mineral Block SEM P-value 

Body weight, kg 307b 312a 309a,b 1.3 0.02 

Average daily gain, kg 0.55b 0.58a 0.55b 0.01 0.03 

Dry matter intake2, kg/d 6.94 7.06 6.92 0.20 0.54 

Gain:feed 0.0792 0.0820 0.0790 0.0018 0.11 
1Heifers were fed a forage-based basal diet as well as supplements for 86 d and 

switched to a TMR for 14 d in an attempt to equalize gut fill. 
2Dry matter intake includes only the basal diet and TMR for 100 d and does not include 

supplement intake. 
a,b Within row, means without a common superscript letter are different (P < 0.05). 
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Table 3.4 Total dietary intake of minerals for heifers fed a basal diet and salt, dry 

mineral, or block supplements for 86 d 

Item Salt Dry mineral Block SEM P-value 

Copper, mg/d 60.5c 350.1a 284.0b 9.85 < 0.01 

Phosphorus, g/d 13.2c 23.1a 18.8b 1.42 < 0.01 

Zinc, mg/d 111.7c 1134.8a 720.5b 34.22 < 0.01 
a,b,c Within row, means without a common superscript letter are different (P < 0.05). 
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Figure 3.1 Supplement intake of heifers fed salt for 86 d. Supplements were weighed weekly and intakes are expressed as daily 

consumption per animal. Intakes were recorded on an as-fed basis and converted to DM basis by analyzing weekly DM 

content of the supplement. a-d Bars without a common superscript letter are different (P < 0.05). There was a treatment × week 

interaction, treatment effect, and a week effect (P < 0.01). 
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Figure 3.2 Supplement intake of heifers fed dry mineral for 86 d. Supplements were weighed weekly and intakes are expressed 

as daily consumption per animal. Intakes were recorded on an as-fed basis and converted to DM basis by analyzing weekly 

DM content of the supplement. a,b Bars without a common superscript letter are different (P < 0.05).There was a treatment × 

week interaction, treatment effect, and a week effect (P < 0.01). 
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Figure 3.3 Supplement intake of heifers fed a block supplement for 86 d. Supplements were weighed weekly and intakes are 

expressed as daily consumption per animal. Intakes were recorded on an as-fed basis and converted to DM basis by analyzing 

weekly DM content of the supplement. a-f Bars without a common superscript letter are different (P < 0.05). There was a 

treatment × week interaction, treatment effect, and a week effect (P < 0.01).  
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Figure 3.4 Coefficients of variation for supplement intake by heifers fed salt , dry mineral , or a low-moisture block 

supplement  for 86 d. Supplements were offered free-choice.  Salt was offered ad libitum to block and salt treatments and was 

23% of the dry mineral mix. Forage intakes were recorded daily and averaged by week, and supplement intakes were 

measured weekly. Effect of treatment (P = 0.04).
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Figure 3.5 Dietary intakes of Cu by heifers fed salt , dry mineral , or a low-moisture block supplement  for 86 d. 

Supplements were offered free-choice.  Salt was offered ad libitum to block and salt treatments and was 23% of the dry 

mineral mix. Forage intakes were recorded daily and averaged by week, and supplement intakes were measured weekly. a,b,c  

Within week, bars without a common superscript letter are different (P < 0.05). There was an effect of treatment, week, and a 

treatment × week interaction (P < 0.01).
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Figure 3.6 Dietary intakes of Zn by heifers fed salt , dry mineral , or a low-moisture block supplement  for 86 d. 

Supplements were offered free-choice.  Salt was offered ad libitum to block and salt treatments and was 23% of the dry 

mineral mix. Forage intakes were recorded daily and averaged by week, and supplement intakes were measured weekly. a,b,c  

Within week, bars without a common superscript letter are different (P < 0.05). There was an effect of treatment, week, and a 

treatment × week interaction (P < 0.01).  
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Figure 3.7 Dietary intakes of P by heifers fed salt , dry mineral , or a low-moisture block supplement  for 86 d. 

Supplements were offered free-choice.  Salt was offered ad libitum to block and salt treatments and was 23% of the dry 

mineral mix. Forage intakes were recorded daily and averaged by week, and supplement intakes were measured weekly. a,b,c  

Within week, bars without a common superscript letter are different (P < 0.05). There was a treatment × week interaction (P < 

0.01) as well as effects of treatment and week (P < 0.01). 
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Figure 3.8 Concentration of plasma P in heifers fed salt , dry mineral , or a low-

moisture block supplement  for 86 d. Plasma samples were obtained from 32 heifers 

within each treatment and analyzed using a colorimetric assay. No treatment × day 

interaction was detected (P = 0.23). There was no effect of treatment (P = 0.32). Plasma 

P was greater at d 0 compared to d 70 (P < 0.01).   
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Figure 3.9 Concentration of plasma Zn in heifers fed salt , dry mineral , or a low-

moisture block supplement  for 86 d. Plasma samples were obtained from 32 heifers 

within each treatment, diluted, and analyzed for Zn concentration using atomic 

absorption spectrometry. No treatment × day interaction was detected (P = 0.23). There 

was no effect of treatment (P = 0.32). Day 70 had a greater plasma Zn concentration 

compared to plasma Zn on d 0 (P < 0.01).   
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Figure 3.10 Heifers classified as sufficient with respect to plasma Zn status when fed 

salt, dry mineral, or a low-moisture block supplement for 86 d. Plasma samples were 

obtained from 32 heifers within each treatment. Supplements were offered free-choice.  

Salt was offered ad libitum to the block and salt treatments and was 23% of the dry 

mineral mix. Sufficient defined as plasma Zn concentrations of ≥ 0.8 mg/L. Heifers 

classified as sufficient in Zn were not different (P = 0.57).   
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Figure 3.11 Liver Cu concentration of heifers fed salt , dry mineral , or a low-

moisture block supplement  for 86 d. Supplements were offered free-choice. Salt was 

offered ad libitum to the block and salt treatments and was 23% of the dry mineral mix. 

Liver biopsies were sampled from 32 heifers per treatment. Samples were analyzed 

using ICP for Cu concentration. Treatment × day, P < 0.01, treatment effect, P < 0.01, 

effect of day, P < 0.01. a,b,c Bars without a common superscript letter are different (P < 

0.05).   
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Figure 3.12 Heifers classified as sufficient with respect to liver Cu status fed salt, dry 

mineral, or a low-moisture block supplement. Supplements were offered free-choice. 

Salt was offered ad libitum to the block and salt treatments and was 23% of the dry 

mineral mix. Liver biopsies were sampled from 32 heifers per treatment. Sufficient 

defined as liver Cu concentrations ≥ 87.5 mg Cu/kg tissue dry matter. Treatment effect, 

P < 0.01. a,b Bars without a common superscript letter are different (P < 0.05).
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 ABSTRACT 

Manufacturing processes involved in the production of mineral supplements could 

impact chemical structure of trace elements as well as influence interactions between trace 

elements and organic ingredients in supplements, possibly influencing bioavailability. This 

study was conducted in order to assess availability of cooked molasses block supplements 

made with varying mineral concentrations using a batch culture in vitro system. This study 

was a 3 x 4 factorial design with source and concentration of mineral being the factors. 

Mineral source included: 1) a dry mineral premix consisting of copper sulfate heptahydrate, 

zinc sulfate monohydrate, manganese sulfate monohydrate, and limestone as a carrier 2) a 

dry mineral premix and a dehydrated mixture of molasses and fat added separately into 

fermentation flasks and 3) a mineralized block, which was manufactured by heating the 

molasses block and incorporating the dry mineral premix into the mixture while it was still 

hot. Concentrations were 0×, 1×, 5×, and 10×; where 1× was defined as 10 mg Cu/kg, 30 mg 

Zn/kg, and 40 mg Mn/kg. Impact of supplement type and mineral concentration was 

analyzed using gas production, IVDMD, pH, and VFA production in a batch culture in vitro 

system after 48 h of incubation. There was no source × concentration effect for gas 

production (P = 0.99).  Gas production decreased with increasing trace mineral concentration 

(P < 0.01), and both sources containing molasses blocks resulted in greater gas production 

than dry mineral alone (P < 0.01); however, the molasses block containing sources were not 

different at any point during the incubation period (P = 0.39). In vitro dry matter 

disappearance decreased with increasing trace mineral concentration (P < 0.01), and source 

tended to affect IVDMD (P = 0.09). There were effects of concentration on all major VFAs 

(P < 0.01), as concentration increased, VFA production decreased. Treatments containing 
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molasses blocks had greater total VFA, propionate, butyrate, and valerate production when 

compared with the negative control (P < 0.05); however, there was no effect of source on 

acetate production (P = 0.29).  In conclusion, the manufacturing process involved in cooked 

molasses blocks does not affect mineral availability, and increasing trace mineral 

concentrations adversely affects fermentation by ruminal microbes.  

 INTRODUCTION 

 Manufacturing processes for mineral supplements may impact nutrient bioavailability in 

livestock. Low-moisture molasses blocks are manufactured by heating a molasses and fat 

based mixture to high temperatures, cooking the mixture, using a vacuum to remove the 

water in the molasses, then allowing the mixture to cool slightly, after which a trace mineral 

premix and other components are added before packaging. Unlike vitamins, minerals cannot 

be destroyed by heat. However, high-heat processes may impact mineral form or minerals 

may react with other nutrients in products, potentially influencing bioavailability. In human 

nutrition, cooking and heating food has been reported to decrease relative bioavailability and 

has been extensively studied in Fe nutrition (Hallberg, 1981; Kapandis and Lee, 1996). Some 

heat processes result in Maillard reaction products, which may bind with trace elements, 

especially Zn (Johnson, 1991; Reddy and Love, 1999). Conversely, cooking methods have 

been reported to increase bioavailability of trace minerals, by decreasing anti-nutritional 

factors and increases in solubility (Hurrell et al, 1989; Kapandas and Lee, 1995). Both 

increasing select dietary trace mineral concentrations fed to ruminants, and increased trace 

mineral concentrations incorporated into in vitro cultures has negatively impacted 

fermentation (McNaught et al., 1950; Essig et al., 1972; Forsberg, 1978; Katulski and 

Drouillard, unpublished data). Therefore, our objective was to use an in vitro system to 
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determine relative bioavailability as well as any interactions with source and concentration 

using supplemental trace minerals (Cu, Zn, and Mn) incorporated into molasses-based block 

supplements at increasing concentrations of Cu, Mn, and Zn as a trace mineral premix. 

 MATERIALS AND METHODS 

 Study Design 

 The study was conducted as a randomized complete block design, using a 3 × 4 factorial 

design with 4 runs of 2 replications each, providing 8 observations per treatment. 

Fermentation flasks were distributed into two blocks, with donor animal being the block. 

Treatments were then randomly assigned within block. Twenty-six flasks were utilized in 

each run; 24 flasks assigned treatments and 5 blanks.  

 In Vitro Fermentation 

 Treatments for the study consisted of 3 mineral sources and 4 concentrations, for a 

total of 12 treatment combinations. Mineral source included: 1) a dry mineral premix 

consisting of copper sulfate heptahydrate, zinc sulfate monohydrate, manganese sulfate 

monohydrate, and limestone as a carrier (Table 4.1); 2) a dry mineral premix and a 

dehydrated mixture of molasses and fat added separately into fermentation flasks and, 3) a 

mineralized block. Mineralized blocks were made by combining 90 g of a dehydrated 

mixture of molasses and fat that was heated until fluid in consistency (approximately 95°C), 

and 10 g of a dry mineral premix were added, homogenized, and frozen. Frozen blocks were 

ground to a powder-like consistency. Molasses blocks were manufactured using an identical 

trace mineral premix used in the dry mineral alone treatment. Trace mineral premix 

concentrations were: 1) 0 mg Cu/kg, 0 mg Mn/kg, and 0 mg Zn/kg (0×); 2) 10 mg Cu/kg, 40 

mg Mn/kg, and 30 mg Zn/kg (1×); 3) 50 mg Cu/kg, 200 mg Mn/kg, and 150 mg Zn/kg (5×); 
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and 4) 100 mg Cu/kg, 400 mg Mn/kg, and 300 mg Zn/kg (10×). Prior to ruminal fluid 

collection, 25 g (10 g alfalfa + 15 g prairie hay) of substrate were added to 24 fermentation 

flasks. Two blank bottles (1 per replicate) received no substrate for baseline measurements of 

VFA profiles and substrate contributions of ruminal fluid for IVDMD.  Treatment was 

applied after substrate was added by adding either 1 g of the appropriate mineralized block 

(0×, 1×, 5×, or 10×), 0.1 g of mineral (0×, 1×, 5×, or 10×), or 0.9 g molasses block + 0.1 g 

mineral at appropriate mineral concentration (0×, 1×, 5×, or 10×). 

Ruminal fluid was collected from two Jersey steers with ruminal cannulas fed a diet 

that was 14.1% steam-flaked corn, 25% corn gluten feed, 30% ground brome hay, 30% 

ground alfalfa hay, and 0.9% supplement. Ruminal fluid was filtered through 4 layers of 

grade 50 cheesecloth (11 × 9.5 cm) as it was transferred to a pre-warmed insulated container.  

Inoculum was transported immediately to the Kansas State University Pre-Harvest Food 

Safety Laboratory, approximately 2 km. Upon arrival to the laboratory, ruminal fluid was 

strained through an additional 8 layers of grade 50 cheesecloth (11 × 9.5 cm) into large 

separatory funnels. Funnels were gassed with N2 for 2 min and incubated at 39ºC for 30 to 40 

minutes, allowing for stratification into layers consisting of a top mat layer, a bottom layer 

consisting of hydrated feed particles and protozoa, and an intermediate fluid layer. The 

bottom sediment fraction was discarded and the clarified liquid layer was collected for use as 

inoculant. 

McDougall’s buffer (700 mL) and ruminal inoculum (50 mL) were added to the 

1000-mL fermentation vessels, initial pH was recorded with a Thermo Orion pH meter 

(model 230 A, Thermo Fisher Scientific Inc., Waltham, MA), vessels were gassed briefly 

with N2 gas, capped with a AnkomRF1 (Ankom RF Gas Production System; Ankom 
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Technology, Macedon, NY) module and placed into a 39ºC shaking incubator (New 

Brunswick Scientific Inc., New Brunswick, NJ).  Fermentation bottles were gently agitated 

for 48 h. Gas pressure within each vessel was recorded hourly using Ankom computer 

software. After 48 h of incubation, final pH was recorded.  

Using the ideal gas law, gas pressure was converted to moles of gas (n), and 

subsequently converted to volume of gas produced (mL) using Avogadro’s law (Ankom 

Technology, 2014).  

Ideal gas law: n = p (
V

R×T
)    

Avogadro’s law: Gas production (mL) = n × 25.6 × 1000 

In the ideal gas law, p is pressure (kPa), V is the volume of headspace in the fermentation 

vessels (L), R is the gas constant (8.314472 LkPaK-1
mol-1), and T is temperature (K). In 

Avogadro’s law, 25.6 is the volume that one mole of gas occupies at 39ºC. Gas production 

per g of substrate was calculated by:  

 Gas production per g substrate = Gas production / 25 

Where 25 is the g of substrate incorporated into the fermentation vessel.  

Volatile Fatty Acid Analyses 

After final pH was recorded, 4 mL of fluid contents from each vessel were added to a 

vial containing 1 mL of 25% (w/v) m-phosphoric acid and frozen. After being frozen for 

approximately 24 h, vials were thawed, mixed thoroughly, transferred into microcentrifuge 

tubes, centrifuged at 10,000 × g for 15 min, and 2 mL of supernatant were transferred into 12 

× 75 gas chromatography vials. Volatile fatty acid analysis was conducted using an Agilent 

7890A Gas Chromatograph (Agilent Technologies, Santa Clara, CA) equipped with a 

Supelco Nukol column (15 m × 530 μm × 0.5 μm, Supelco, Inc., Bellefonte, PA) and flame 
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ionization detector. Hydrogen was used as a carrier gas (40 mL/min) and inlet and detector 

temperatures of 275 and 300ºC, respectively. A standard was used (Supelco Volatile 

Standard Mix (46975-U) to calibrate peaks for individual volatile fatty acids. Production of 

VFA was calculated using the following formula: 

Total VFA production = ((0.7 / 25) × (VFA concentration × 1.25)) – Blank  

In this formula, 0.7 is the volume of liquid in the system, 25 is the g of substrate used, VFA 

concentration is the output from the gas chromatograph, 1.25 corrects for the dilution by m-

phosphoric acid, and total VFA production from the blank is subtracted from each respective 

flask within replicates.  

 In Vitro Dry Matter Disappearance 

After pH and sampling for VFA analysis, the remaining contents in each of the 

fermentation vessels was transferred into pre-weighed 19.0 × 12.7-cm aluminum pans and 

placed in a forced air oven and dried at 105ºC until dry (approximately 72 h). Pans were 

removed from the oven and weighed. The following formula was used to calculate IVDMD 

and subtracted DM from each blank within respective replicate: 

final vessel content DM wt.-blank content DM wt.

initial substrate wt.+ mineral wt.
× 100 

 Statistical Methodology 

Statistical analyses were evaluated using the MIXED procedure of Statistical 

Analysis System (SAS version 9.4; SAS Inst, Inc. Cary, NC). The experimental unit was 

fermentation flask and the random effect was replicate within run. In vitro dry matter 

disappearance, VFA production, and pH had fixed effects of mineral source, concentration, 

and source × concentration. The PDIFF function was used to determine differences between 

means. Gas production was a repeated measures analysis, using module within run as the 
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subject and fixed effects of mineral source, concentration, time, and all interactions. The 

SLICE option, slicing by time, was used to determine at which time differences between 

treatments could be detected. A tendency for a difference among means was defined as α ≤ 

0.10 and differences of α ≤ 0.05 were considered significant. 

 RESULTS AND DISCUSSION 

Fermentation characteristics are presented in Table 4.2. There was no interaction 

between source and concentration for IVDMD, therefore only main effects will be 

discussed. In vitro dry matter disappearance was affected by mineral concentration (P < 

0.01) and there was a tendency for source of mineral to affect IVDMD (P = 0.09). As 

mineral concentration increased, IVDMD decreased linearly (P < 0.01) by 3.2, 10.8, and 

26.1% for 1×, 5×, and 10× respectively, when compared to no added mineral. This is likely 

due to adverse effects of trace minerals on microbial fermentation. The mineralized block 

tended to have a greater IVDMD than both dry mineral and block added separately and dry 

mineral alone (P > 0.10).  

Initial pH was not different (P > 0.38); however, there was both a source (P < 0.01) 

and concentration (P < 0.01) effect on final pH recorded at 48 h. Concentration had a linear 

effect on final pH (P < 0.01); as mineral concentration increased in the fermentation vessels, 

pH increased. This is due to a decrease in organic acid production, as observed in the linear 

decrease (P < 0.01) in total VFA as concentration increased. Volatile fatty acid production 

was reduced by 38% from 0× to 10×. Dry mineral premix had a greater final pH compared 

to other mineral forms (P < 0.03). This may be due to dry minerals and block added 

separately and mineralized blocks having greater total VFAs than dry mineral (P < 0.01). 

An interaction between source and concentration was detected for propionate and valerate 
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production (P < 0.05). Similar to total VFA production, a concentration effect was observed 

for individual VFA production (P < 0.01) and A:P (P < 0.01). An increase in mineral 

concentration resulted in a linear decrease in individual VFA production and an increase in 

A:P (P < 0.01). Additionally, there was a quadratic effect of concentration for total VFA 

production, acetate, propionate, butyrate, isovalerate, and valerate (P < 0.05). In general, the 

quadratic effect was expressed as a plateau in VFA production between 0× and 1× or 5× and 

10×, depending on the organic acid. The quadratic effect for total VFA and propionate 

production is apparent in a plateau in production between 0× and 1× before a depression is 

observed. However, acetate production was not different between 5× and 10× (P = 0.23), 

causing a quadratic effect for acetate. Butyrate production was not different among 0×, 1×, 

or 5× (P > 0.61); however at 10× a depression is observed (P < 0.01). In addition to total 

VFA production, there was an effect of source for propionate (P < 0.01), isobutyrate (P = 

0.04), butyrate (P = 0.02), and valerate (P < 0.01) production. Propionate, butyrate, and 

valerate were not different between dry mineral and block added separately and mineralized 

blocks (P > 0.3); however, dry mineral reduced propionate, butyrate, and valerate 

production by 11.4, 14.6, and 23.4%, respectively. Isobutyrate production was decreased by 

mineralized blocks (P = 0.02) and tended to decrease by dry mineral and block (P = 0.07), 

when compared to dry mineral alone.  

Gas production is presented in Figure 4.1. No three-way interactions were detected (P 

= 1.0). There were source × time (P < 0.01) and concentration × time interactions (P < 

0.01). The interaction indicate that the response in gas production for both source and 

concentration was dependent upon incubation time; it is likely that the rate of gas production 

changed over time as well as differences in lag times in microbial growth. There was no 
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interaction between source and concentration for gas production (P = 0.99), therefore only 

main effects will be discussed. There was an effect of source, concentration, and time (P < 

0.01). Gas production increased over time, resulting in 48 h of incubation having the 

greatest amount of gas produced. Gas production decreased as concentration increased (P < 

0.01). Treatment 0× had the greatest gas production after 48 h of incubation, and 10 × had 

the least amount of gas produced. Both treatments containing molasses blocks had greater 

total gas produced when compared to dry mineral alone (P < 0.01).  

There is limited information on the effects of manufacturing processes in block 

mineral supplements on mineral bioavailability and fermentation by ruminal 

microorganisms, and none have been published with respect to ruminal fermentation or 

impacts on ruminal microorganisms. Based on our results, the manufacturing process of 

cooked molasses block supplements does not appear to affect in vitro fermentation of trace 

minerals by ruminal microorganisms. The addition of molasses, regardless of source, 

increased gas production and many organic acids. Sugar cane molasses is 29% sucrose, 12% 

glucose, and 13% fructose (Damon and Pettitt, 1980) and may cause increased fermentation 

by ruminal microbes in treatments containing molasses. Molasses is characterized as being 

rapidly fermentable, and is commonly used as an additional energy source in cattle receiving 

low quality forage diets; in addition to being a common method of delivery for mineral 

supplements. Sugar cane molasses blocks reduced ruminal pH, and although sugar cane 

molasses blocks did not increase total VFA, both beet molasses and concentrated separator 

by-product blocks increased ruminal VFA (Greenwood et al., 2000). Similarly, Shellito et 

al. (2006) reported an increase in total VFA concentrations in cattle supplemented with a 

desugared molasses byproduct. Ferraro et al. (2009) reported a greater in vitro rate of gas 
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production for molasses compared to alfalfa, likely due to the presence of rapidly 

fermentable carbohydrates such as sucrose. Literature in human nutrition is available in 

regards to cooking methods and mineral bioavailability; however, it is difficult to directly 

relate these data to ruminants and ruminal fermentation. A majority of work in food 

processing and mineral availability is on Fe, although some studies have been published 

using  Zn. Methods involving heat have been reported to reduce (Hemalatha et al., 2007) or 

have no effect (Johnson, 1991) on Zn bioavailability in humans. Johnson (1991) also 

reported no difference in bioavailability of Cu in foods under extreme heat. There is no 

published data on the effects of heat treatment on Cu, Zn, or Mn bioavailability in ruminants 

or impacts on ruminal microorgansims. Our results would suggest there is no impact of 

extreme heat on the minerals in question. The effect of trace mineral concentration on 

ruminal fermentation and microorganisms is variable and depends on individual minerals. In 

agreement with our results, increasing Cu concentration has been reported to negatively 

impact fermentation both in vitro and in vivo (Hubbert et al., 1958; Slyter and Wolin, 1967; 

Essig et al., 1972). Literature regarding effects of Mn supplementation on fermentation by 

ruminal microorganisms is sparse, although it has been reported that the ruminal 

environment can tolerate concentrations around 100 mg Mn/kg DM without negative 

impacts (Martinez and Church, 1970; Hilal et al., 2016). Arelovich et al. (2000) reported an 

increase in IVDMD as Mn concentration increased. Zinc has been reported to increase 

protein synthesis and urea utilization when added at concentrations up to 250 mg Zn/kg DM 

(Arelovich et al., 2000). In the same study; however, a linear decrease in IVDMD was 

reported with increasing Zn concentration (Arelovich et al., 2000). Similarly Eryavuz et al. 

(2009) reported an inhibition of in vitro cellulolytic activity at concentrations ranging from 
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50 to 150 mg/kg Zn, and Martinez and Church (1970) reported concentrations as low as 20 

mg Zn/kg inhibit cellulolytic activity. However, the negative effect of Zn on cellulolytic 

activity has been reported to diminish after extended periods of fermentation (Eryavuz et al., 

2009). In conclusion, there appears to be no differences in in vitro fermentation by ruminal 

microbes due to the manufacturing process of cooked molasses block supplements. The 

addition of molasses increases microbial activity regardless of molasses block processing. In 

addition, increasing trace minerals adversely affects fermentation by mixed ruminal 

microorganisms. 
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Table 4.1 Composition of mineral premixes 

  Concentration1 

Item 0× 1× 5× 10× 

CuSO45H2O, g 0.0000 0.0982 0.4912 0.9823 

MnSO4H2O, g 0.0000 0.3076 1.5382 3.0765 

ZnSO4H2O, g 0.0000 0.2059 1.0293 2.0586 

Limestone, g 10.0000 9.3883 6.9413 3.8826 
1Formulated to have 0 mg Cu/kg, 0 mg Zn/kg, and 0 mg Mn/kg (0×); 10 mg Cu/kg, 30 mg 

Zn/kg, and 40 mg Mn/kg (1×); 50 mg Cu/kg, 200 mg Mn/kg, and 150 mg Zn/kg (5×); and 

100 mg Cu/kg, 400 mg Mn/kg, and 300 mg Zn/kg (10×) added minerals. Mineral premix 

was added separately in dry mineral treatment and dry mineral + molasses block treatment 

(0.1 g/fermentation flask), and was incorporated into a block (10 g/block) in the 

mineralized block treatment 
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Table 4.2 Effects of mineral source and concentrations1 on characteristics of in vitro batch cultures of mixed ruminal microbes 

fed forage-based2 substrate.  

 Dry mineral  Dry mineral + molasses block  Mineralized block  P-value 

Item  0× 1× 5× 10×  0× 1× 5× 10×  0× 1× 5× 10× SEM Source Concentration S × C 

IVDMD, % 27.40 26.50 23.95 19.24  28.29 26.21 25.23 21.29  27.84 28.13 25.29 21.16 0.015 0.09 < 0.01 0.77 

Final pH 6.38 6.36 6.52 6.60  6.29 6.32 6.45 6.61  6.26 6.28 6.43 6.60 0.035 < 0.01 < 0.01 0.58 

VFA, mmoles/g substrate                 

  Total VFA 2.26 1.96 1.74 1.45  2.46 2.39 1.85 1.39  2.37 2.28 1.82 1.54 0.099 < 0.01 < 0.01 0.08 

  Acetate 1.13 0.97 0.98 0.90  1.20 1.14 0.94 0.88  1.14 1.11 0.93 0.94 0.058 0.29 < 0.01 0.13 

  Propionate 0.87 0.75 0.57 0.43  0.97 0.95 0.64 0.37  0.95 0.90 0.62 0.48 0.042 < 0.01 < 0.01 0.04 

 Isobutyrate 0.01 0.01 0.01 0.01  0.01 0.01 0.01 0.01  0.01 0.01 0.01 0.01 0.002 0.04 < 0.01 0.92 

  Butyrate 0.17 0.16 0.14 0.08  0.19 0.19 0.19 0.10  0.18 0.18 0.19 0.09 0.020 0.02 < 0.01 0.90 

  Isovalerate 0.02 0.02 0.01 0.01  0.02 0.02 0.01 0.01  0.02 0.02 0.01 0.01 0.002 0.69 < 0.01 0.95 

  Valerate 0.06 0.05 0.03 0.01  0.06 0.07 0.06 0.02  0.06 0.06 0.06 0.01 0.005 < 0.01 < 0.01 0.03 

A:P 1.31 1.29 1.79 2.16  1.23 1.20 1.51 2.61  1.20 1.22 1.57 1.99 0.144 0.21 < 0.01 0.08 

1Factor 1, concentration, was formulated to have 0 mg Cu/kg, 0 mg Zn/kg, and 0 mg Mn/kg (0×); 10 mg Cu/kg, 30 mg Zn/kg, and 40 mg Mn/kg (1×); 50 mg Cu/kg, 200 mg 

Mn/kg, and 150 mg Zn/kg (5×); and 100 mg Cu/kg, 400 mg Mn/kg, and 300 mg Zn/kg (10×) added minerals. Mineral premix was added separately in dry mineral treatment and 

dry mineral + molasses block treatments, and was incorporated into blocks of differing concentration in the mineralized block treatment.  
2Substrate used was 15 g of ground prairie hay and 10 g of ground alfalfa. 
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Figure 4.1 In vitro gas production (mL/g substrate DM) of mixed ruminal microbes in a 

forage-based (15 g and 10 g of ground prairie alfalfa hay, respectively) in vitro batch 

culture fermentation system over 48 h. Two factors were analyzed, source and 

concentration. Sources were: dry mineral ( ) dry mineral and molasses blocks added 

separately ( ), and a mineralized molasses block ( ). Concentrations were: 0 mg 

Cu/kg, 0 mg Zn/kg, and 0 mg Mn/kg (0×); 10 mg Cu/kg, 30 mg Zn/kg, and 40 mg Mn/kg 

(1×); 50 mg Cu/kg, 200 mg Mn/kg, and 150 mg Zn/kg (5×); and 100 mg Cu/kg, 400 mg 

Mn/kg, and 300 mg Zn/kg added mineral (10×). There was no source × concentration × 

time (P = 1.0). There was a source × time (P < 0.01), concentration × time (P < 0.01), 

and an effect of source (P < 0.01), concentration (P < 0.01), and time (P < 0.01 
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