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Abstract.     

A new series of fifteen 5-, 6-, and 8-appended 4-methylquinolines were synthesized and 

evaluated for their neural protective activities.  Selected compounds were further examined for 

their inhibition of glycogen synthase kinase-3 (GSK-3) and protein kinase C (PKC).  Two 
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most potent analogs, compounds 3 and 10, show nanomolar protective activities in amyloid -

induced MC65 cells and enzymatic inhibitory activities against GSK-3, but poor PKC 

inhibitory activities.  Using normal mouse model, the distribution of the most potent analog 3 in 

various tissues and possible toxic effects in the locomotors and inhibition of liver transaminases 

activities were carried out.  No apparent decline of locomotor activity and no inhibition of liver 

transaminases were found.  The compound appears to be safe for long-term use in Alzheimer’s 

disease mouse model.   

 

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is the most common 

form of dementia in the elderly.1  AD brains have three major lesions, (1) formation of 

aggregates and plaques of amyloid-β (Aβ) peptide, a 39-43 residue protein, outside of neurons; 

(2) formation of abnormal neurofibrillary tangles (NTFs) consists of hyperphosphorylated tau 

protein inside the neurons; and (3) dysfunction of neurons including cholinergic, noradrenergic, 

serotonergic and pyramidal neurons.2 Major strategies for experimental disease-modifying 

therapies include targeting multiple sites in Aβ metabolism (Aβ synthesis, aggregation, 

deposition and clearance), targeting tauopathy (modulation of tau phosphorylation and inhibition 

of tau aggregation), regulating cholesterol homeostasis, anti-excitotoxicity, anti-inflammation 

and modulating calcium homeostasis, among others.1-3 A number of compounds has shown 

efficacy in AD transgenic mouse models,4-12 but their efficacy in AD patients remains uncertain.  

Moreover, several drug candidates in clinical trials failed to show benefits.1-3 In our pursuit of 

finding neural protective compounds for AD, we use MC65 cells protection assay as our primary 

screen for bioactive compounds,13-15 and a class of quinolines containing various substituents 

(Figure 1) were found to have submicromolar activities.  MC65 cells assay generates few false 
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positive results and identifies leads that penetrate cells and ameliorate A oligomer-induced 

toxicity.13 Moreover, studies of the enzyme assay inhibition of glycogen synthase kinase-3 

(GSK-3) revealed several quinoline molecules inhibited the enzyme in nanomolar ranges.  

GSK-3 is abundant in neurons of the central nervous system and catalyzes the phosphorylation 

of tau proteins, which are overexpressed in AD brains.16 Hyperphosphorylation of tau proteins in 

brain from imbalanced activity of GSK-3 results in neurofibrillary tangles and leads to cell 

death.16-18 Moreover, the “dual pathway” hypothesis19 suggests that GSK-3 affects both 

hyperphosphorylation of tau and elevation of A via the enhancement of enzymatic processing 

of APP.  A dual effect of reduction of A toxicity and inhibition of GSK-3 may provide a 

greater beneficial effect than conventional GSK-3 inhibitors and anti-A molecules.20 Herein, 

we reported the syntheses of quinolines 2 - 16 (Figure 1) and evaluation of their bioactivities 

along with our previously reported quinoline 1.21 Several compounds possess dual effects of 

inhibition of A toxicity in MC65 cells and GSK-3 enzyme. 
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Figure 1. Synthesized and bioevaluated quinolines 1 - 16.
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From an initial screening of synthesized substituted quinoline compounds using MC65 

cells, we found that compound 1 possesses strong neuronal cell protective activity (vide infra).  

Hence, its analogs, quinolines 2 – 16 possessing different heterocycle- or arene-appended 

methylamino moiety at C8, different C5 aryloxy moieties, no C5 aryloxy group, and C6 

hydroxyl function, were synthesized.  A reductive amination reaction was used to assemble 
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compounds 2 – 7 via the coupling of amine 1721 and aldehydes 18 – 23 with sodium 

cyanoborohydride in methanol in good to moderate yields (Scheme 1).  Aldehydes 18 – 22 were 

obtained from commercial sources while 23 was prepared as reported.22 Compounds 2 – 7 

contain different heterocycle- or arene-appended methylamino functions at C8, which depart 

from that of compound 1. 
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Scheme 1. Synthesis of Compounds 2 - 7 via reductive amination reactions.
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The C8 appended 3-aminopropylamine function of compound 1 was also modified by 

introducing a 3-amino-3-oxopropylamine moiety at C8, i.e., compound 8, or varied by a 2-

furanylamide group, compound 9.  Compound 8 was readily synthesized from a Michael 

addition reaction of amine 17 with acrylamide in acetonitrile in a sealed tube at 120oC in a 57% 
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yield, and amide 9 was prepared in a 75% yield from the acylation reaction of amine 17 with 2-

furancarbonyl chloride (24) (Scheme 2).  Among the tested quinolines using MC65 cell assays, 

compounds 1 and 3 appear to be the most active quinolines (vide infra), hence the C6-hydroxyl 

analog of 3 and molecules possessing different substituents at C5, i.e., compounds 10 - 16, were 

examined. The C6-methyl ether group of 17 was removed with boron tribromide in 

dichloromethane, and the resulting quinoline 25 condensed with aldehyde 19 to give hydroxyl 

analog 10 in a 52% yield. 

 

Scheme 2. Synthesis of Quinolines 8 - 10.
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C5-Aryloxy analogs of 1 such as compounds 11 and 13 were obtained from a sequence of 

reactions starting from bromide 26 (Scheme 3).21 Hence, nucleophilic aromatic substitution 

reactions of bromide 26 with potassium 3-fluorophenoxide (27) and potassium phenoxide (28) 

separately in DMF gave aryl ether 29 and 30 in 65 and 80% yield, respectively (Scheme 3).  
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Removal of the acetyl protecting group of 29 and 30 with HCl in ethanol followed by ring 

closing reactions with 3-buten-2-one and arsenic acid in phosphoric acid provided quinolines 31 

and 32 in 35 and 45% yield, respectively.  Reduction of the nitro function of 31 and 32 separately 

with iron in acetic acid followed by alkylation of the resulting 8-aminoquinolines 33 and 34 with 

3-iodopropylphthalimide,21 and deprotection with hydrazine afforded 11 and 13, respectively.  

Condensation of amines 33 and 34 separately with 4-hydroxybenzaldehyde and sodium 

cyanoborohyride furnished amines 12 and 14, respectively. 

Scheme 3. Synthesis of Quinolines 11 - 14.
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Quinolines without C5 aryloxy function, 1523 and 16, were similarly synthesized from the 

ring closing reaction of 4-amino-3-nitroanisole with 3-buten-2-one followed by the reduction 

with iron in acetic acid to give amine 3524 in an 85% overall yield (Scheme 4).  Alkylation of 

amine 35 with 3-iodopropylphthalimide followed by the treatment of hydrazine gave C5-H 
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analog 15, and reductive amination of amine 35 with aldehyde 19 and sodium cyanoborohydride 

afforded derivative 16. 

Scheme 4. Synthesis of Quinolines 15 and 16.
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MC65 cell line was used as a screen to search for neural protective compounds against 

cell death induced by oligomeric A peptides.13-15 On day three, the induction of SC gene (in 

the absence of tetracycline) in MC65 cells leads to the production of the C99 fragment of 

amyloid precursor protein and subsequently to A peptides from the proteolysis by -secretase, 

resulting in cell death.  Compounds that protect cell from death likely possess anti-A property.  

An addition of tetracycline, an antioxidant, to the media of MC65 cells suppresses the production 

of C99 fragment and cells survive.  Consequently, toxicity of the compound to MC65 cells is 

determined.  Table 1 tabulates the EC50 (median effective concentration) and TC50 (median toxic 

concentration) values of quinoline compounds, 1 – 16.  From our initial screen of compounds 1 – 

9 having various functionalities at C8 of the quinoline, compounds 1 and 3 showed the greatest 

activities with EC50 values of 0.15 and 0.12 M, respectively.  Results suggest that the presence 

of a 3-aminopropylamine or p-hydroxyphenylmethylamine function leads to higher bioactivity.  
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Modifications at C5 and C6 were therefore carried out by keeping appended C8 with either 3-

aminopropylamine or p-hydroxyphenylmethylamine, such as compounds 10 - 16.  Among these 

seven derivatives, C6-hydroxy derivative 10 and C5-phenoxy 13 are the most active analogs with 

EC50 values of 0.30 and 0.42 M, respectively, while other analogs having EC50 values range 

from 0.53 to 17.6 M.  The results indicate that compound 3 is a suitable candidate for 

mechanistic investigation. 

 

Table 1. EC50 and TC50 values of Compounds 1 – 16 from MC65 cell protection assays.25 Values 

are expressed in mean ± standard deviation. 

Compound EC50 (M)  TC50 (M)  Compound EC50 (M)  TC50 (M) 

1 0.15 ± 0.02 2.10 ± 0.03 9 3.47 ± 0.32 >50 

2 2.39 ± 0.06 20.32 ± 1.22 10 0.30 ± 0.01 3.31 ± 0.30 

3 0.12 ± 0.01 1.38 ± 0.08 11 0.60 ± 0.02 7.28 ± 0.26 

4 0.48 ± 0.03 2.91 ± 0.15 12 0.70 ± 0.08 2.60 ± 0.20 

5 0.46 ± 0.11 >50  13 0.42 ± 0.01 8.16 ± 0.01 

6 0.39 ± 0.02 14.50 ± 1.68 14 0.53 ± 0.01  4.01 ± 0.38 

7 0.19 ± 0.02 >50 15 17.62 ± 0.37 >50 

8 0.50 ± 0.02 >50 16 2.62 ± 0.15 20.54 ± 0.21 

 

Hyperphosphorylation of tau proteins by GSK-3 leads to the formation of 

neurofibrillary tangles,16-20 hence inhibition of GSK-3 by selected quinoline compounds was 

conducted in search of possible mechanism of action.  Protein kinase C (PKC) mediates the 

function of other proteins in signal-transduction pathways of different cell types through the 

phosphorylation of hydroxyl functions of serine and threonine residues of these proteins.26 In 

particular, phosphorylation of potent activators of transcription would increase oncogene 

expressions resulting in the promotion of cancer progression.27 Therefore, the inhibition of PKC 
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was also carried out. Table 2 summarizes results of the inhibition of GSK3 and PKC and the 

selectivity index (SI) by selected quinolines using the respective GSK-3β kinase assay and 

PepTag® non-radioactive PKC assay kits (both obtained from Promega Co.).  Interestingly, the 

gap junction enhancer compound 121 inhibited PKC with half maximum inhibitory concentration 

(IC50) value of 35 nM but does not inhibit GSK-3 up to 1 mM.  A similar finding is observed 

with quinoline 7 except with much higher IC50 value of 400 M against PKC.  Quinolines 3 and 

10 on the other hand show excellent selectivity for GSK-3.  The IC50 values of 3 and 10 against 

GSK-3 are 35 nM and 158 nM, respectively, while the values against PKC are 240 and 750 M, 

respectively. The SI values of these two compounds are 6,857 and 4,747, respectively, suggesting 

kinase specificity. Under similar assay conditions, staurosporine26,28 show potent but non-

discriminating inhibitions with IC50 values against GSK-3 and PKC of 38 and 33 nM. 

 

Table 2.  Enzyme inhibitory activities of GSK-3 and PKC by selected quinoline compounds 

and selectivity index (SI) values.25 Values are expressed in mean ± standard deviation. 

Compounds IC50 value,  

GSK-3 

IC50 value,  

PKC 

SI  

(PKC IC50/GSK3 IC50) 

1 > 1 mM 35 ± 8 nM < 3.5 x 10-5 

3 35 ± 6.36 nM 240 ± 21.2 M 6,857 

7 > 1 mM 400 ± 13.7 M < 0.4 

10 158 ± 19.1 nM 750 ± 9.3 M 4,747 

Staurosporine 38 ± 7 nM 33 ± 5 nM 0.87 
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Compound 3 possesses strong neuronal cell protection and inhibitory activity against 

GSK-3, therefore, to examine whether 3 is suitable for future in vivo efficacy study, the 

distribution of 3 in various tissues and possible toxic effects in the locomotors and inhibition of 

liver enzymes activities in mice were carried out.  The amounts of 3 in various tissues were 

quantified by following a reported procedure,29 and results are summarized in Table 3 from an 

oral gavage administration each day of 5 mg/Kg body weight of CD1 mice of 3 (two untreated 

and four treated mice were used) for 75 days.  The amounts of 3 in various organs and plasma 

remained in low concentrations after 75 days and appeared to accumulate in brain and pancreases 

in greater amounts than other tissues and plasma.  

 
Table 3. Distribution of compound 3 in various tissues and plasma from an oral route 

administration of 3 into CD1 mice with 5 mg/Kg body weight daily for 75 days (n = 4). Values 

are expressed in mean ± standard deviation, and ND is not detectable. 

Tissues Brain Pancreases Liver Kidney Lung Plasma 

Concentration 
of 3 (M) 

24.4 ± 6.4 26.5 ± 6.6 7.1 ± 0.6 16.1 ± 2.1 ND 4.5 ± 0.3 

 

After 75 days of treatment, behavioral activity was monitored using Versamax 

(AccuScan Instruments Inc., Columbus, OH, USA), where readings were taken before and after 

administration of 3. The Versamax chamber is ventilated and equipped with infrared sensors 

along the side wall.  Prior to the reading, each mouse was left in the chamber for 15 minutes for 

acclimatization.  Administration of 3 for 75 days did not showed any effect on the overall 

locomotors activity of mice in terms of clockwise or counter-clockwise activity, total covered 

distance, rest time, vertical activity, and horizontal activity when compared with control mice 
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(Figure 2).  Results suggest that chronic administration of 3 did not have any behavioral side 

effects in mice.  

 

 

Figure 2. Effect of chronic administration of compound 3 on the locomotors activity of mice. 

Control and compound 3 (5mg/Kg daily by oral gavage for 75 days) treated mice were 

acclimatized for 15 min inside Versamax chamber followed by monitoring their movements. (A) 

Clockwise revolution, (B) total distance covered, (C) rest time, (D) vertical activity, and (E) 

horizontal activity. 

 

Possible liver toxicity was examined by measuring enzymatic activities of liver 

transaminases, aspartate aminotransferase (AST) and alanine transaminase (ALT), biomarkers of 

toxicity.  Mice were sacrificed on day 75 after daily oral administration of 3.  Blood was 

collected from heart by using syringe containing heparin to prevent clotting. Plasma was 

separated immediately to prevent hemolysis by centrifugation at 10,000 x g for 5 minutes.  The 

enzymatic activities of AST and ALT were determined using a commercially available kit 
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(Pointe Scientific, Inc, Canton, MI, USA), according to manufacturer’s instructions.  To evaluate 

the toxicity of 3 upon chronic administration, ALT and AST enzyme activities were evaluated in 

the plasma of control and treated mice, and results are depicted in Figure 3.  No significant 

difference in the activities of ALT and AST was observed between control and treated mice 

suggesting that 3 is relatively safe for long-term use. 

 

 

Figure 3: Effect of compound 3 on the biochemical markers of toxicity.  After 75 days of daily 

administration of 3 (5 mg/kg) by oral gavage, mice were sacrificed and plasma was separated 

from the blood of control and treated mice and evaluated for ALT and AST enzymatic activities.   

 

In summary, a number of neural protective quinoline molecules were synthesized and 

evaluated in cells and enzyme assays.  Compound 3 and its C6-hydroxyl analog 10 were the 

most potent molecules and they inhibit GSK-3 selectively in nanomolar concentrations.  

Compound 3 distributed mainly to the brain and pancreases in mice after administration of 5 

mg/Kg daily by oral route over 75 days and showed no apparent toxicity through the 

examination of locomotors activity and liver transaminases.  Hence, the molecule appears to be 

safe for long-term study in AD mouse model.  The synthetic procedure leading to this class of 
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neural protective compound is general and further structural optimization is possible for future 

drug discovery and development. 
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