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Abstract 

Escherichia coli O157, a food-borne human pathogen, causes hemorrhagic colitis 

and hemolytic uremic syndrome.  Cattle are a major reservoir and the organism resides in 

the hindgut and is shed in the feces.  Cattle feces are a major source of food and water 

contamination.  Houseflies feed on cattle manure and are a source of E. coli O157 

transmission.  We have observed that houseflies have an affinity for a steam-flaked corn 

product (SFC-36) made from tempered whole corn that is more ruminally digestible than 

the traditional SFC (SFC-18).  Therefore, we investigated whether SFC-36 diets 

contained and resulted in higher E. coli concentrations in the feces of cattle compared to 

SFC-18 diets.  Concentrations of E. coli were not different between the two SFC diet 

samples, but resulted in higher coliforms in diets containing the SFC-36 after exposure to 

the environment.  However, E. coli concentrations in feces from cattle fed the two diets 

were similar.  In fact, cattle fed the diet containing SFC-18 flakes actually shed higher 

concentrations of coliforms.  This led us to speculate that starch digestion may have an 

effect on the growth of E. coli O157 in the hindgut.  We determined whether fecal E. coli 

O157 was related to fecal starch concentration.  Steers (n=263) were sampled for E. coli 

O157 and fecal starch concentration determinations.  Steers positive for E. coli O157 

contained 21% more (P < 0.05) fecal starch than steers that were negative for E. coli 

O157.  We attempted to alter the concentration of starch escaping rumen fermentation by 

feeding diets based on SFC and dry-rolled corn (DRC) to 30 heifers prescreened for 

being culture positive for fecal E. coli O157.  Heifers were sampled for feces and by 

rectoanal mucosal swab (RAMS) weekly to monitor fecal pH and fecal starch 



concentration, and prevalence of E. coli O157.  Based on RAMS, prevalence of E. coli 

O157 tended to be higher (P = 0.08) for heifers fed SFC than DRC diet.  Fecal starch and 

pH were similar (P > 0.05) between positive- or negative-E. coli O157 heifers.  

Apparently, fecal E. coli O157 was not related to fecal pH or starch concentration in 

cattle.
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Literature review of Escherichia coli O157 
 

Escherichia coli (E. coli) a gram-negative and facultative anaerobic bacteria was 

first described by Dr. Theodor Escherich in 1885.  Many different strains of E. coli are 

commonly found inhabiting the mammalian digestive tract.  E. coli can account for as 

much as 1% of the colonic bacteria according to Diez-Gonzalez et al. (1998).  These 

microflora are beneficial to the mammal in that they synthesize vitamin K and B-complex 

vitamins.  Generic E. coli are harmless commensal organisms; however they can be toxic 

if they penetrate through the gut wall and into the portal blood system (Russell et al., 

2000a).  Once in the portal blood system, these bacteria can release an endotoxin (i.e. 

lipopolysaccharide complex) from their cell wall when they lyse, which can cause fever 

and even death (Nataro and Kaper, 1998).  Isolates of E. coli are serologically 

differentiated on the basis of three major surface antigens O (somatic), H (flagella), and 

K (capsule).  E. coli strains that cause diarrheal illness are categorized based on virulence 

properties, mechanisms of pathogencity, clinical syndromes, and distinct O:H serogroups.  

These categories include enteropathogenic E. coli strains (EPEC), enterotoxigenic E. coli 

strains (ETEC), enteroinvasive E. coli strains (EIEC), diffuse-adhering E. coli strains 

(DAEC),  enteroaggregatine E. coli (EAggEC), and enterohemorrhagic E. coli strain 

(EHEC) (Doyle et al. 1997; Nataro and Kaper, 1998).  The EHEC E. coli strains include 

O157:H7, O26:H11, O103, O104, O11, and O128.  E. coli O157:H7 is the primary 

EHEC strain associated with human illness in the U.S.  The majorities of E. coli O157 is 

motile and have the H7 flagella.  However approximately 10-20% of the E. coli O157 are 

non-motile and are commonly referred to as E. coli O157:NM. 

Research on E. coli O157:H7 started with the finding of Shigella dysenteriae as 

the causative agent of epidemic bacterial dysentery by Kioshi Shiga in 1898 (Park et al., 

2001).  Hemolytic uremic syndrome (HUS) was first described in 1955 as a triad of 

clinical features, including acute renal failure, thrombocytopenia, and microangiopathic 

hemolytic anemia (Park et al., 2001).  In 1972, Keusch et al. discovered that Shiga toxins 

can contribute to bloody diarrhea.  The first confirmed isolation of E. coli O157:H7 in the 
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United States was in 1975 from a California woman with bloody diarrhea (Doyle et al. 

1997).  Shortly thereafter, Konowalchuk et al. (1977) found that certain diarrheagenic E. 

coli strains produced a substance that was toxic (cytotoxin) to Vero (African green 

monkey kidney) tissue culture cells.  E. coli O157:H7 was first identified as pathogenic to 

humans in 1982, after it was associated with two outbreaks of hemorrahagic colitis (HC; 

i.e. bloody diarrhea; Karmali et al., 1983 and Riley et al., 1983).  Not all EHEC infections 

produce overt blood in stools, but E. coli O157:H7 infections do have a higher rate of 

bloody stools (Buchanan & Doyle 1997).  E. coli O157:H7 commonly produces shiga 

toxins (STXs), formally called Shiga-like toxins (SLTs) or verotoxins (VTs), all of which 

resemble the cholera toxin (Natro and Kaper, 1998).  These toxins are able to cross the 

intestinal wall much easier than the bacteria itself and can cause acute diarrhea even if the 

bacteria never cross the intestinal wall. (Natro and Kaper, 1998)  STXs play a key role in 

the pathogenesis of renal failure by inducing endothelial damage in the glomeruli and 

arterioles of the kidney (Park et al., 2001).  This localized damage is associated with 

higher expression of Gb3 receptors (receptor for STXs) on the renal endothelial cells as 

compared to other endothelial cells (Park et. al., 2001).  Interestingly, children have many 

more Gb3 receptors than adults and this can explain in part why children are more 

susceptible to renal failure than adults (Van Setten et al., 1997).  Two main classes of 

STXs are Stx1 and Stx2.  EHEC can express either one or both of them together.  Most 

commonly, the E. coli O157:H7 isolates from humans express both Stx1 and Stx2 or they 

will only express Stx2 (Rasmussen & Casey 2001).  The ability to produce the STXs is 

believed to have originated with a bacteriophage, presumably directly or indirectly from 

Shigella (Buchanan & Doyle 1997).   

Besides Stx1 and Stx2, there are other suspected virulence factors in E. coli 

O157:H7.  Virulence genes contain a variety of specific characteristics.  Intimin (eae), 

translocated intimin receptor (tir), lipopolysaccharide (LPS), and other virulence factors 

which are located on the so-called pathogenicity islands (Pais).  These Pais were found 

by researchers to be located on discrete segments of DNA on the chromosome (Knapp et 

al., 1986).  Intimin has been shown to mediate histopathological attaching and effacing 

(A/E) lesion in neonatal calves and in tissue culture cells (Dean-Nystrom et al., 1998).  

This finding is supported by other work with a gnotobiotic pig model, where E. coli 
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O157:H7 attached intimately to the intestinal epithelial cells located primarily in the large 

intestine and effaced the microvilli at the site of attachment (Tzipori et al., 1986).  The 

precise mode of action responsible for bacterial adhesion is unclear (Park et al., 2001).  

Tir is believed to bind with eae, which triggers additional host-signaling events and actin 

nucleation for the formation of the A/E lesion (Park et al., 2001).  The LPS complex that 

is common to Gram-negative bacteria is known as the ‘O’ or somatic antigen.  

Lipopolysaccharide is composed of two polysaccharides; A and O.  (Park et al., 2001).  

Bilge et al. (1996) suggested that the O polysaccharide may interfere with the adherence 

of E. coli O157:H7 to host epithelial cells.  They proposed that the O polysaccharide may 

physically prevent the adherence between the other virulence factors such as intimin and 

host epithelium cells (Bilge et al., 1996). 

Human implications 

E. coli O157:H7 and other non-O157 STEC can cause Hemmorrhagic Colitis 

(HC) or Hemolytic Uremic Syndrome (HUS) in humans.  Hemmorrhagic Colitis (i.e. 

bloody diarrhea) is the most common and less severe of the two.  Hemolytic Uremic 

Syndrome can potentially be fatal.  The young (<5 years old) and the elderly (>65 years 

old) are at greatest risk of HUS (Griffin and Tauxe, 1991).   Hemmorrhagic Colitis and 

HUS have been diagnosed with greater frequency in the last two decades.  One thought is 

that these diseases have always existed, but until recently, we had limited ability to link 

the symptoms to causative factors.  Another thought is that in modern societies we “dine 

out” more often and consume more processed foods (Buchanan & Doyle, 1997) and thus 

are more frequently exposed to sources of pathogens.  The preliminary symptoms of HUS 

are severe abdominal cramps, HC, nausea, vomiting, and low-grade fever.  Onset of these 

symptoms occurs 2 to 4 days after infection with a minimum infectious dose of 5 to 10 

cells of viable O157:H7 (www.medicinenet.com).  On average, these symptoms will 

persist for 5 to 10 days in mild conditions.  The more severe symptoms of HUS will 

begin about one week after the onset of gastro-intestinal symptoms.  Severe symptoms 

include paller, intravascular destruction of red blood cells (microangiopathic hemolytic 

anemia), depressed platelet counts (thrombocytopenia), lack of urine formation (oligo-

anurica), swelling (edema), and acute renal failure (Buchanan & Doyle, 1997).  Other 
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complications may include seizures, coma, stroke, colonic perforation, pancreatitis, and 

hypertension (Buchanan & Doyle, 1997).  One half of HUS patients require dialysis, and 

15% of the HUS cases led to early development of chronic kidney failure (Buchanan & 

Doyle, 1997).  Hemolytic Uremic Syndrome also can even be fatal with mortality rates 

ranging from 3 to 5% in humans (Buchanan & Doyle, 1997).  Due to its low infectious 

dose and the severity of the diseases it causes E. coli O157:H7 is a legitimate concern for 

the human population.   

Potential vectors of E. coli 

Generic E. coli is ubiquitous and has been detected in dogs, birds, flies, sheep, 

humans, deer, cattle, ferrets, and other small mammals (Bach et al., 2002).  The large 

intestine of cattle is a major reservoir for Shiga toxin producing E. coli (STEC; 

Armstrong et al., 1996).  Little is known about the mode of transmission of E. coli among 

animals within a herd and between different herds of cattle.  Limited work has been done 

to identify potential transmission vectors such as food, water, insects, birds, flies, deer, 

and other small rodents.  Prevalence of E. coli O157:H7 appears to follow a seasonal 

pattern, with elevated levels in the summer and fall followed by a decline during the 

winter months.  It is conceivable that the seasonality of certain vectors may play a role in 

this seasonal variation in shedding patterns.   

The preponderance of research on potential vectors has isolated water as a likely 

means of transmission between cattle within a pen and between cattle sharing adjacent 

pens (Lejeune et al., 2001; LeJuene et al., 2004; Van Donkersgoed et al., 2001).  Cattle 

that are positive for E. coli O157 can contaminate water with their mouth or with fecal 

material.  LeJuene et al. (2004) isolated E. coli O157:H7 from 37 of 172 (21.5%) water 

troughs during the months of April and September.  Van Donkersgoed et al. (2001) 

observed similar results with a prevalence of 20% between the months of March and 

May.  Water supply into the water trough also is a possible source of E. coli O157 

infection (LeJeune et al., 2001 and Van Donkersgoed et al., 2001).  LeJeune et al. (2001) 

noted the feed bunk and the prevalence of generic E. coli in the trough.  Shorter distances 

between water trough and feed bunks led to higher prevalence of generic E. coli in the 

trough.  This may be due to a greater amount of unconsumed feed entering the water 
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trough, resulting in more nutrient rich substrate available for the proliferation E. coli 

O157:H7 already present in the water (Lejeune et al., 2001).  Climatic temperatures and 

the weekly precipitation also are thought to be factors affecting E. coli prevalence in the 

water trough (Donkersgoed et al., 2001).  Dry and warm conditions in the week prior to 

sampling yielded a higher prevalence of E. coli O157:H7 (Donkersgoed et al., 2001).  

According to Lejeune et al. (2001), both E. coli O157 and Salmonella were more likely to 

be found in the water troughs that were not cleaned as compared to troughs that were 

recently cleaned.  Lynn et al. (1998) proposed that O157:H7 can proliferate in the 

sediment and survive for up to 4 months.  Competition and predation by other 

microorganisms, such as protozoa, in the water trough may play an important role in the 

number of generic E. coli in the water trough (Lejeune et al., 2001).  All these findings 

suggest water is an important source of pathogen transmission between cattle and that 

routine cleaning of the water troughs may be a logical approach to reduce transfer of E. 

coli O157:H7 among cattle.   

Occasionally, E. coli O157 is found in the total mixed rations fed to cattle (Lynn 

et al., 1998).  Dodd et al. (2003) sampled feed from 54 Midwestern feedlots and found 

that 8 to 50% of bunks sampled were positive for E. coli O157.  Research by Van 

Donkersgoed et al. (2001) showed that the fresh total mixed ration contained 

undetectable levels of E. coli O157:H7 while the prevalence in the feed bunk was 1.7% 

over the entire feeding period.  However, during the next 48 days, the prevalence of E. 

coli O157:H7 in the feed bunk was 10% (Donkersgoed et al., 2001).  One possibility is 

that E. coli O157 can replicate in feeds under warm conditions on cattle farms (Lynn et 

al., 1998).  However, you can not rule out the possibility that the cattle themselves 

contaminated the feed.  Thus cattle feed may be a means of horizontal transmission 

between animals in a pen.  Therefore, Lynn et al. (1998) suggested that using propionic 

acid in cattle feeds may limit bacterial growth and hence reduce the exposure of 

pathogenic organisms to cattle.   

A common subtype of E. coli O157 was found in two separate feed yards located 

approximately 100 km apart from each other (Van Donkersgoed et al., 2001).  No 

connection between the two feed yards was ever made; leading Van Donkersgoed et al. 

(2001) to believe that birds may have been the common link between the two feed yards.  
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Birds of all types have tested positive for generic E. coli in the past, and 68% of the birds 

at the Emperor Valley Zoo tested positive for generic E. coli (Gopee et al., 2000).   

The common housefly also has been identified as being a potential vector 

(Kobayashi et al., 1999; Moriya et al., 1999).  The house fly is commonly found on 

animal farms and the fly larva commonly develops in animal feces.  The labellum, 

alimentary canal, and the crop of the fly harbored several hundred E. coli O157 for up to 

three days after being artificially infected, according to Kobayashi et al. (1999).  

Kobayashi et al. (1999) believes that the housefly can transmit E. coli O157 via their 

feces or by simply landing on and making contact with their labellum (mouth).  Alam & 

Zurek (2004) found that the average prevalence of E. coli O157:H7 in house flies 

collected at the feed bunk of a cattle farm was 2.9%.  Prevalence during the months of 

June and July were highest at 4.6 and 6.1%, respectively.  Alam & Zurek (2004) also 

showed that each fly during the months of June and October were harboring 3.0 × 101 to 

4.8 × 104 colony forming units of E. coli O157:H7.  The high concentration of E. coli 

O157:H7 in house flies makes them a suitable candidate for transmission of E. coli 

O157:H7 between animals.  Due to the fly’s attraction to human food and drinks, house 

flies can transmit the food borne pathogen directly to humans from animal farms.  

Another important consideration is that house flies can travel at long distances as long as 

10 to 20 miles and typically range from 0.5 to 2 miles (Broce, 1993). 

Small mammals such as skunks, raccoons, and rats have access to feed and water 

supply of feedlot cattle.  Work by Gopee et al. (2000) has already identified the 

mammalian families of these animals to be carriers of E. coli.  Currently, no work has 

been done to look at the possibility of these animals as a means of transmission for E. coli 

O157:H7 in current animal production systems.  New management practices may be 

implemented to reduce pathogen transmission between herd mates and between different 

herds once we have a better understanding of these and other potential vectors commonly 

found on animal production farms. 

Sources of human infection include consumption of contaminated fruits, 

vegetables, water, and processed meats, with ground beef being identified as one of the 

more common sources (Armstrong et al., 1996).  Bovine feces can serve as a prolonged 

contamination source, because E. coli O157:H7 can survive in feces for up to 70 days 
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under a wide range of environmental conditions (Wang et al., 1996).  Using manure as 

fertilizer can contaminate fruits and vegetables intended for human consumption 

(Rasmussen & Cassey 2001).  Drinking water and recreational water can be contaminated 

directly by cattle feces or indirectly via run-off water from farms contaminated with E. 

coli O157:H7 (Callaway et al., 2004).  Contamination of beef carcass can occur at the 

abattoir during the removal of the hide or due to inadvertent contact between the carcass 

and digestive contents.  Previous research has suggested that there is a high correlation 

between presence of O157:H7 on the hide and O157:H7 contamination of the carcass 

(Elder et al., 2000).  Commercial abattoirs have implemented Hazard Analysis and 

Critical Control Points (HACCP) programs in an effort to identify and control sources of 

food-borne pathogens.  The HACCP programs, though effective, may become 

overwhelmed when the pathogen load into the abattoir is excessive.  Post-harvest 

pathogen control strategies include general sanitizing approaches, such as organic acid 

spraying, hot water spray washing, and steam vacuuming of beef carcasses (Park et al., 

2001).  Reduction of E. coli O157:H7 from mechanically deboned chicken meat and 

ground hamburger with gamma radiation has proved to be effective (Bitzan, et al., 1993).  

Research has shown that irradiation is a viable alternative to chemicals and preservatives 

in reducing food borne pathogens; however, the U.S. population has not been convinced 

of the safety of irradiated meats (Buchanan, et al., 1998; Clavero et al., 1994). 

Prevalence and shedding patterns in cattle 

E. coli O157:H7 is principally isolated from the digestive tract and not from the 

major internal organs of cattle.  Necropsy studies by Cray & Moon (1995) showed no 

evidence of E. coli in the liver, spleen, or kidneys.  Grauke et al. (2002) and Buchko et al. 

(2000) further defined the main location of E. coli O157:H7 as the cecum and distal colon 

portion of the large intestine.  Recent research by Naylor et al. (2003) suggested that E. 

coli O157:H7 has an affinity for the lymphoid follicle-dense region located 3-5 cm 

proximally from the recto-anal junction.  Rice et al. (2003) and Greenquist et al. (2005) 

suggested that swabbing this recto-anal junction appears to be more sensitive than 

traditional fecal grab samples for determining prevalence of E. coli O157:H7.   
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Early experimental model studies in Canada and the U.S. indicated that only 0.3 

to 2.2% of cattle were positive for O157:H7 (Cray & Moon 1995).  New enumeration 

techniques, such as immunomagnetic bead separation, have revealed that 30% or more 

cattle may be positive for E. coli O157:H7 (Chapman et al., 1997, Mechie et al., 1997, 

Hutchinson et al., 2005).  More recent reports suggest O157:H7 prevalence may be even 

higher than previous estimates which reflect improvements in detection methods 

(Gansheroff and O’Brien, 2000).  Elder et al. (2000) and Oot et al. (2007) indicated that 

27 to 28% of tested feedlot cattle were shedding O157, and that 70 to 72% of the tested 

feedlots had at least one animal positive for O157.  Results just prior to slaughter showed 

43% of the cattle were shedding O157:H7 and 87% of the supplying feedlots had at least 

one infected animal (Elder et al., 2000).  The prevalence of E. coli O157:H7 does not 

appear to be isolated in one geographical region or another.   Findings by Hancock et al. 

(1997b) show that O157:H7 is widely distributed throughout the United States.  

Hutchinson et al. (2005) found similar prevalence levels and distributions of E. coli O157 

in the United Kingdom. 

Typical shedding patterns are believed to have one period of elevated shedding 

interspersed with longer periods of no shedding (Hancock et al., 1997a; Hancock et al., 

1997c).  Studies by Magnussan et al. (2000) and Sanderson et al. (1999) both suggested 

an average shedding period of 30 days.  Actual shedding periods are quite variable and 

ranged from a few days to one year (Magnussan et al., 2000).  Cray & Moon (1995) 

indicated that shedding peaked about one week after inoculation and decreased 

continually for 48 to 189 days thereafter for calves (Cray & Moon 1995).  Adult cattle 

shed for a shorter length of time (i.e. 14 to 98 days after being inoculated) as compared to 

younger calves (Cray & Moon 1995).  Shedding appears to the transient and animals can 

be inoculated multiple times with the same strain (Cray & Moon 1995).  However, calves 

did shed more and for a longer period of time with the first inoculation as compared to 

the second inoculation (Cray & Moon 1995).  In this study, inoculated calves shed more 

E. coli O157:H7 (4.0 × 105 to 1.6 × 109 CFU/g of feces) than the adult cattle (1.2 × 105 to 

1.0 × 107 CFU/g of feces; Cray & Moon 1995).  Similar results were found by Dargatz et 

al. (1997) in that lighter cattle (less than 700 lbs) also were observed to have higher 

prevalence of E. coli O157:H7 than heavier cattle (Dargatz et al., 1997).  Naylor et al. 
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(2003) proposed that in any given population of E. coli O157:H7 positive animals, a 

subset of these animals will be shedding high numbers of E. coli O157:H7.  He coined 

these as “supershedders”, and identified them as potentially important sources of 

horizontal transmission between herd mates.   

A study by Donkersgoed et al. (2001) indicated that newly arrived cattle in a 

feedlot had higher prevalence of E. coli than cattle fed for more days.  Cattle in feedlot 

for less than 20 days were nearly 4 times more likely to yield a positive sample than the 

cattle that were fed longer (Dargatz et al., 1997).  LeJeune et al. (2004) found similar 

results with higher prevalence in the early feeding period and then declined below entry 

levels after 42 days on feed.  The reason for these findings is unclear.  Perhaps younger 

and lighter cattle may be more naïve and more susceptible to stress and bacterial 

infections.  Hancock et al. (1997b) suggested that dietary stress, related to transportation 

of new cattle, may result in replication of E. coli O157:H7 in the rumen fluid.  Another 

factor associated with E. coli prevalence is the epithelial cell proliferation in the lower 

G.I. tract (Magnuson et al., 2000).  Slower proliferation rates of the cecum and colon 

resulted in a longer shedding period (Magnuson et al., 2000).  However, growing diets of 

grain or forage did not have an effect on gastrointestinal tract proliferation or on the 

duration of E. coli O157:H7 shedding (Magnuson et al., 2000). 

Extreme acid resistance 

The gastric stomach is commonly viewed as “the first line of defense against food 

borne pathogens” (Waterman & Small 1998).  Gastric pH typically is around 2.0 in 

humans (Texter et al., 1968).  This acidic environment kills the vast majority of food 

borne pathogens, including E. coli O157:H7.  Typically, E. coli does not proliferate very 

well in environments where pH is less than 5.5.  Lin et al. (1996) has illustrated that E. 

coli can survive at a pH as low as 2.0 when acid resistant genes have been induced.  The 

E. coli that survives an acid shock equivalent to that of the gastric stomach is said to have 

“Extreme acid resistance”.  These extreme acid resistant E. coli are believed to be the 

reasons for the very low infectious dose in humans.  E. coli that are acid sensitive are 

more likely to be destroyed by this acid shock than the extreme acid resistant E. coli.  

Acid sensitive pathogens need to be in very high numbers in order to increase their 

10 



 

chances for surviving the acid shock, whereas the extreme acid resistant pathogens may 

be infectious in low numbers.  Previous studies suggested that pH was the driving force 

behind extreme acid resistance of E. coli O157:H7 (Goodson and Rowbury, 1989).  It has 

also been noted that the acid tolerance of O157:H7 is highly dependent on the growth 

phase of the pathogen (Gorden & Small 1993).  Studies by Diez-Gonzalez and Russell 

(1999) contradicted the idea that pH was the instigator of extreme acid resistance.  They 

theorized that intracellular pH per se does not appear to regulate the extreme acid 

resistance of O157:H7.  They speculated that undissociated acids, particularly acetate 

molecules, are more influential than the intracellular pH on inducing extreme acid 

resistance.  They concluded that undissociated acids are needed to induce the acid 

resistant genes.  E. coli cultures that were grown aerobically needed more volatile fatty 

acids (VFA) to induce extreme acid resistance than did the cultures grown anaerobically 

(Diez-Gonzalez & Russell 1999).  This study suggests that redox potential may initiate 

extreme acid resistance.  To further support their hypotheses, the addition of cysteine, a 

reducing agent, to the anaerobic cultures further increased the amount of volatile fatty 

acids needed to stimulate acid resistance (Diez-Gonzalez & Russell 1999).  It appeared 

that VFA could only induce extreme acid resistance of O157:H7 if they were added 

during the exponential growth stage according to Diez-Gonzalez and Russell (1999).   

Effect of diet on E. coli O157 

Manipulation of diets fed to finishing feedlot cattle has been proposed as a means 

for reducing shedding of E. coli O157, though results have been mixed (Tkalcic et al., 

2000, Berg et al., 2004, Van Baale et al., 2004).  In a recent published longitudinal study 

by Berg et al. (2004), the authors found that cattle fed corn-based diets shed fewer E. coli 

O157 than cattle fed barley-based finishing diets.  The researchers suggested that 

differences in the site of digestion may have impacted the differences in shedding.  The 

starch portion of the corn grain is not as ruminally digested as the starch in barley grain 

likely resulting in more starch flow to the hind gut (Orskov 1986) with the corn-based 

diet.  Increasing starch content in the lower gastrointestinal tract will result in a secondary 

fermentation in the large intestine.  As fermentation increases, so will the production of 

short chain volatile fatty acids (i.e. acetate, propionate, and butyrate), hence reducing pH 

11 



 

in the large intestine.  Russell et al. (2000) has speculated that lower a lower pH in the 

large intestine is a favorable environment for both survival and growth of E. coli O157.  

Buchko et al. (2000) contradict this hypothesis when they suggested lower fecal pH and 

the associated volatile fatty acids inhibited proliferation of E. coli O157 in the large 

intestine. Some studies have demonstrated an inhibitory effect of volatile fatty acids 

(particularly propionic acid) on E. coli O157 (Horii et al., 1998 and Shin et al., 2002).  

Results by Berg et al. (2004) are in agreement with this hypothesis.  In addition, a cattle 

study by Hovde et al. (1999) and a sheep experiment by Kudva et al. (1997) 

demonstrated similar results when comparing hay diets to cereal grain diets.  Compared 

to forage-based diets containing large amounts of cereal grains are more likely to provide 

readily available starch for secondary fermentation in the large intestine.  Again, shifting 

the site of digestion for a portion of the dietary starch will result in elevated levels of 

volatile fatty acids, potentially inhibiting E. coli O157.  In addition, recent work has 

demonstrated differences in survivability of E. coli O157 in the feces of cattle fed forage 

diets rather than cereal grain-based diets (Bach et al., 2005).  Researchers showed that E. 

coli O157 persisted longer in the feces from cattle fed barley when compared to the feces 

of cattle fed corn diets.  This may be in part due to the lower pH and perhaps higher dry 

matter content of corn fecal samples as compared to barley fecal samples (Bach & 

McAllister, 2003).  These findings are in stark contrast with research by Russell et al. 

(2000), who suggested that E. coli O157 growth was enhanced in the presence of volatile 

fatty acids and at a lower pH due to starch fermentation in the large intestine.  Diez-

Gonzalez et al. (1998) showed that generic and acid-resistant E. coli in the large intestine 

were significantly increased when cereal grains were increased in the diet, thereby 

increasing secondary fermentation in the hind gut.  This is in agreement with Berg et al. 

(2004), who observed a significant increase in fecal generic E. coli when corn-based diets 

were fed compared to barley-based diets.  Results from Berg et al. (2004) would suggest 

that volatile fatty acid production and colonic pH have different effects on generic E. coli 

and E. coli O157.  Berg et al. (2004) stated that generic E. coli in the hind-gut may not be 

considered a reasonable predictor of E. coli O157 in the hind-gut. 

E. coli O157 is a human pathogen commonly associated with animal production 

systems, especially cattle.  Contamination of beef carcasses during the slaughter process 
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is a common route of transmission to humans.  Post-harvest strategies during the 

slaughter process significantly reduce contamination of finished beef products.  However, 

these systems can become overwhelmed when the pathogen load entering the abattoir via 

contaminated cattle hides and digestive contents is increased.  Pre-harvest intervention 

strategies that reduce the incoming pathogen load into the abattoir will likely increase the 

effectiveness of post-harvest intervention strategies.  One such pre-harvest intervention 

strategy may be the manipulation of diets fed to finishing cattle.  A better understanding 

of effects of diet on site of digestion of starch and the subsequent effects on fermentation 

in the large intestine may be useful in identifying successful intervention strategies.  

Intervention strategies to 1) reduce fecal shedding of E. coli O157 and 2) decrease the 

likelihood that E. coli O157 will survive in the feces outside of the animal would be 

equally beneficial to the beef industry. 

Literature review of starch digestion in cattle. 
 

Commercial feedlot operations utilize a variety of different feed ingredients 

including several different cereal grains.  Corn, sorghum, wheat, barley, and oats are 

among the cereals commonly fed to feedlot cattle, with corn being the most widely used 

(Vasconcelos and Galyean, 2007).  A review by Huntington (1997) summarized starch 

contents of various grains used in research trials.  Wheat contained the highest starch 

content (77%) followed closely by corn and sorghum with 72%.  Barley and oats 

contained the least starch with 57 and 58%, respectively.  Rooney and Pflugfelder (1986) 

described several factors affecting ruminal digestion of starch including composition and 

physical form of the starch, protein-starch interactions, and physical form of the grain.   

Amylose and amylopectin are the two primary molecules in the endosperm layer 

of cereal grains.  Differences in the endosperm layers results in structural classifications 

such as vitreous, flinty, waxy, nonwaxy, and opaque.  These different attributes have 

been suggested as the basis for differences, indigestibility of grains (Huntington 1997).  

Genotypes which contain only amylopectin are classified as waxy and are generally 

associated with faster rates of digestion (Huntington 1997).  Surrounding the highly 

concentrated starch granules is the floury endosperm, which is a protein-rich matrix 
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embedded with starch granules called the peripheral and corneous endosperm 

(Huntington 1997).  This protein matrix in wheat and barley is easily penetrable and 

rapidly fermented in the rumen (McAllister et al., 1994).  In corn and sorghum, the 

peripheral endosperm is extremely resistant to attachment and hence penetration by 

ruminal bacteria and protozoa. leaving only the ruminal fungi to penetrate this layer 

(McAllister et al., 1994).  Grain processing which disrupts and breaks this peripheral 

endosperm allows for faster attachment and digestion of the floury endosperm by bacteria 

and protozoa.   

Bacteria that are loosely or tightly bound to the grain will contribute to three-

fourths of fiber, protein, and starch digestion in the rumen (McAllister et al., 1994).  

Kotarski et al. (1992) identified 15 strains of amylolytic bacteria and eight amylolitic 

enzymes in ruminal samples.  Not all amylolytic bacteria are equipped with the complete 

array of enzymes needed for starch digestion, so a mixture of bacterial species is needed 

for maximal digestion in the rumen.  Protozoa also are present in rumens of cattle fed 

high grain diets; though their numbers are far less than those of bacteria.  Protozoa are 

slow growing and can engulf large starch molecules and bacteria when feeding.  The 

process of engulfing large starch molecules modulates ruminal fermentation, as protozoa 

digest starch more slowly than bacteria (Mendoza et al., 1993).  With protozoa, the 

release of organic acids from metabolism of starch is extended over a longer period of 

time, thereby reducing the accumulation of organic acids and preventing sharp declines in 

ruminal pH (Nagaraja et al., 1992).  As mentioned earlier, the role of rumen fungi in 

starch digestion is less than that of bacteria and protozoa, but may be important in diets 

with whole grains due to its ability to attach and penetrate through the peripheral 

endosperm (McAllister et al., 1994).   

Ruminal digestion of starch can be greatly affected by grain processing.  Steam-

flaking and dry-rolling whole grains are the primary processing methods employed by 

commercial feedlots (Vasconcelos and Galyean, 2007).  Steam-flaking involves steaming 

of whole corn at atmospheric pressure for 20 to 60 minutes and then passing it through a 

roller mill.  Soaking or steeping the whole corn prior to flaking is also a common practice 

(Zinn et al., 2002).  The combination of soaking and steaming can increase the moisture 

content of the grain by 20 to 25%.  Degree of processing can be altered by changing the 
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gap between the two rolls (Zinn, 1990).  Whereas decreasing the roll gap will increase the 

degree of processing (Zinn et al., 2002).  Steam-flaking typically increases starch 

digestibility by 19% for sorghum and 13% for corn when compared to dry-rolling 

(Huntington, 1997).  In respect to ruminal starch digestion, corn and sorghum typically 

respond better to grain processing, such as steam-flaking, compared to barley and wheat 

(Owens et al., 1997).  These differences are attributed to the physical structure of the 

protein and starch-matrix (Rooney and Pflugfelder, 1986).  

A review paper by Huntington (1997) shows that ruminal digestion of starch was 

10% higher for finishing diets based on steam-flaked corn compared to dry-rolled corn.  

A lower ruminal pH and a lower ruminal acetate:propionate ratio have been reported 

(Zinn et al., 1995; Barajas and Zinn 1998; and Corona et al., 2006) for steers fed finishing 

diets based on SFC rather than DRC, which suggest a greater ruminal fermentation of 

starch.  As a result, more starch is available for digestion in the small and large intestine 

of cattle fed finishing diets based on dry-rolled corn.  Theurer (1986) estimated that large 

amounts (up to 600 g/kg) of starch can escape ruminal fermentation and be presented for 

digestion in the small intestine.  However, starch hydrolysis by pancreatic α-amylase in 

the ruminant animal is limited (Harmon and McLeod,  2001).  In addition, research by 

Walker and Harmon (1995) and Swanson et al. (2004) indicates that secretion of 

pancreatic α-amylase is decreased by in response to starch.  However, other research by 

Richards et al. (2003) observed that secretion of pancreatic α-amylase is increased if 

protein and starch is infused postruminally.  In any case, increasing the amount of starch 

entering the small intestine above that which can be digested and absorbed will result in a 

secondary fermentation in the large intestine (Siciliano-Jones and Murphy, 1989; Harmon 

and McLeod, 2001).  
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Abstract 
Hydrothermal processing (steam-flaking) of grains is a common method used to 

improve ruminal starch availability by increasing gelatinization of the starch.  Grains 

typically are conditioned with water, effectively adding 8% moisture to the grain, and 

then steamed for 20 to 40 min prior to rolling.  Increasing moisture levels of the grain 

above that which is obtained during the normal steaming process may be required for 

maximal starch gelatinization.  However, from a food safety perspective, increasing 

moisture levels of steam-flaked corn may provide ideal conditions for the proliferation of 

human pathogens such as E. coli O157.  The objectives of this study were to quantify 

differences in generic E. coli populations due to environmental contamination of SFC 

containing 18% or 36% moisture, and to quantify fecal shedding of E. coli by feedlot 

heifers fed these grains.  Steam-flaked corn samples exposed to environmental conditions 

for 21 h contained more (P < 0.05) coliforms and fastidious and non-fastidious 

microorganisms.  Increasing moisture content of the flaked corn resulted in elevated 

levels (P ≤ 0.09) of coliforms and total plate counts in steam-flaked corn samples 

exposed to the elements.  Coliforms and total plate counts in the total mixed rations were 

not different (P > 0.05) between fresh and samples exposed to the environment.  

However, increasing moisture content of the flaked corn resulted in elevated levels (P ≤ 

0.07) of coliforms and total plate counts in total mixed rations.  Fecal shedding of non-E. 

coli coliforms and total coliforms were greater (P ≤ 0.09) for heifers fed total mixed 

rations containing the low moisture steam-flaked corn.  Conditions within the steam-

flaked corn samples or contamination from environmental sources allowed for 

proliferation of coliforms and total plate counts.  However, no microbial growth was 

detected in the total mixed rations exposed to the same environmental conditions.  

Interestingly, fecal shedding of acid-resistant coliforms was higher in heifers fed total 

mixed rations containing the low moisture steam-flaked corn.  It is plausible that 

something other than microbial populations in the feed is responsible for these 

differences. 
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Introduction 
Cattle digestive tracts are believed to be important reservoirs for Escherichia coli 

(E. coli) O157, a human pathogen and causative agent of hemorrhagic colitis and 

hemolytic uremic syndrome.  Research suggests that shedding of E. coli O157 by cattle 

persists for an average of 30 d, but may vary from a few days to a year (Magnussan et al., 

2000).  Wang et al. (1996) observed that E. coli O157 can survive in feces for up to 70 d 

under a wide range of environmental conditions.  Houseflies (Musca domestica) 

commonly feed on bovine feces, and can themselves carry hundreds of E. coli O157 in 

their alimentary canals (Kobayashi et al., 1999).  Houseflies can serve as a vector for 

transmission of E. coli O157 between feces and cattle feed (Lynn et al., 1998). 

Hydrothermal processing (steam-flaking) of grains is a method commonly 

employed to improve ruminal starch availability through gelatinization (Theurer, 1986; 

Zinn 1987, 1990).  Grains typically are conditioned with water and then steamed for 20 to 

40 min prior to rolling, effectively adding 8% or more moisture to the grain.  Increasing 

moisture levels of the grain above that which normally is obtained during the 

conditioning process may be required for maximal starch gelatinization.   However, from 

a food safety perspective, increasing moisture levels of steam-flaked corn (SFC) may 

provide conditions that are ideally suited to proliferation of human pathogens, including 

E. coli O157.  The objectives of this study were to 1) quantify differences in generic E. 

coli populations within grains containing 18 or 36% moisture following a period of 

environmental exposure, and 2) determine fecal shedding of E. coli by feedlot heifers fed 

diets containing flaked grains with different moisture levels. 

Materials and methods 

Grain processing 

Whole-shelled corn was tempered daily by combining 454 kg of corn (90% DM) 

and 129 kg of water into a stationary 1.2 m3, water-tight paddle mixer.  Corn and water 

were mixed periodically and tempered overnight to allow ample time for moisture 

assimilation by the corn.  Following the conditioning process, the tempered corn (SFC-

36; 36% moisture after flaking) was transferred to a 2.7 m3 stainless steel steam chest and 
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steam conditioned at atmospheric pressure and temperature of ~100°C for 45 min.  Ten 

min prior to flaking the 46 × 61 cm Ferrel-Ross roller mill was started, and the corrugated 

rolls were preheated using steam.  Non-tempered corn (SFC-18; 18% moisture after 

flaking) was processed in a similar manner except that corn (90% DM) was added 

directly to the steam chest for conditioning.  Products were flaked to a common bulk 

density of 335 g/L and was checked periodically by sampling the flaked corn underneath 

the rolls using a Winchester cup (Seedburo Equipment, Chicago, IL).  Each corn type 

was processed and analyzed daily for susceptibility to hydrolysis by amyloglucosidase to 

estimate starch availability (Sindt et al. 2006). 

Sampling steam-flaked corn 

E. coli/coliform and aerobic bacterial counts of SFC-36 and SFC-18 were 

determined by taking a 250-g aliquot of each grain immediately underneath the rolls of 

the Ferrel-Ross flaker.  Samples were collected using sterile (i.e., autoclaved for 20 min; 

model 2021 gravity; AMSCO; Erie, PA ) 10 × 15 cm aluminum pans and contents 

subsequently were placed into a Nasco Whirl-pak plastic bag, and frozen.  A second 

sample (32 kg) was taken directly from the discharge of the 0.5 × 9 m drag conveyor.  

Samples were collected into 151-L plastic containers lined with a plastic trash bag and 

then sealed.  Once both SFC-36 and SFC-18 were flaked and collected, samples were 

then aseptically emptied out onto clean plastic bags which were spread out on the ground.  

Steam-flaked corn samples were left exposed to the environment for approximately 21 h.  

After 21 h of exposure, SFC samples were mixed by hand using sterile gloves for three 

min and a 250-g sub sample was taken and refrigerated for bacterial analysis.  Procedures 

were replicated on three consecutive days. 

Total mixed ration sampling 

Total mixed rations (TMR) were sampled directly from the discharge of the truck-

mounted mixer.  A 250-g sample was aseptically collected into a Nasco Whirl-pak bag 

and refrigerated.  In addition, a second 2 kg sample was collected from the discharge into 

a 10 cm deep × 30 cm wide × 46 cm long sterile aluminum pan.  TMR samples were 

covered with aluminum foil until both TMRs containing SFC-36 and SFC-18 were 

sampled.  Immediately following collections, aluminum pans were placed outside in 
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direct sunlight where they were exposed to flies and environmental conditions for 21 h.  

All SFC and TMR samples were then taken to Kansas State University Food Safety 

Laboratory for bacterial enumeration.  Procedures were replicated on three consecutive 

days. 

E. coli and coliform enumeration procedures 

Upon arrival at the lab, individual samples were thoroughly mixed by shaking the 

bag vigorously for 30 s.  A 50 g sub sample was placed into a plastic bag containing 200 

mL of peptone diluent.  Samples were then homogenized by hand massaging the bag for 

2 min.  Homogenized mixtures were subsampled and serially diluted with 0.1 % peptone 

diluent, vortexed, and plated onto duplicate E. coli/coliform Petrifilm™ (3M; St. Paul, 

MN).  Petrifilm™ plates were incubated at 35°C for 24 h and enumerated for typical E. 

coli and total coliforms according to the AOAC method outlined in the E. coli/coliform 

Petriflim™ package insert.  E. coli numbers were expressed as log10 colony forming 

units/g of feed (CFU/g). 

Total aerobic plate counts 

Upon arrival at the lab, sample contents were thoroughly mixed by shaking the 

bag vigorously for 30 s.  A 50 g sub sample was placed into a sterile stomacher bag 

containing 200 mL 0.1 % peptone diluent.  Samples were then hand massaged for 1 min 

before serial dilutions were prepared using 0.1 % peptone diluent. The original, second, 

and fourth serial dilutions were spiral plated using a Whitley automatic spiral plater 

(model WA02CD, Don Whitley Scientific, West Yorkshire, UK) onto pre-poured tryptic 

soy agar (TSA) petri plates.  The petri plates were allowed to air dry before being 

inverted, and then were incubated at 35°C for 48-h.  After incubation, plates were 

enumerated using a spiral plate counter grid, and total plate count was calculated. 

Cattle diets and experimental design 

All experimental procedures involving the use of animals were in accordance with 

the rules and regulations set forth by Kansas State University Institutional Animal Care 

and Use Committee.  Ninety-six crossbred heifers (initial BW = 374 ± 6 kg) were 

stratified by BW to 12 pens (6 pens per treatments and 8 heifers per pen).  On d 1 heifers 
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were allocated to pens and treatments were assigned randomly to pens.  Pens were 

concrete surfaced and provided 9.2 m2 of surface area and 62 cm of linear bunk space per 

heifer.  A common water fountain was shared between adjacent pens.  Fountains were 

cleaned thoroughly prior to and throughout the duration of the study.  Pens were 

constructed of pipe fences, and therefore did not prevent contact between cattle in 

adjacent pens.  Heifers were fed once daily their respective diet consisting of 73% (DM 

basis) of either SFC-18 (18 % moisture) or SFC-36 (36 % moisture; Table 1).  Heifers 

were offered ad libitum access to both water and experimental diets for the duration of 

the study.  After 56 d on respective diets, cattle were removed from their pens and 

restrained in a hydraulic working chute and fecal sampled using rectal palpation.  Cattle 

that produced no fecal sample (< 15 g) at initial sampling were resampled after 5 to 10 

min.  Fecal samples from all animals within each pen were composited (equal volume) 

and thoroughly mixed by hand massage, sealed in Whirl-Pak bags (Nasco, Ft. Atkinson, 

WI), and cooled on ice before being transported to the Kansas State University Food 

Safety Laboratory. 

Acid resistance and enumeration 

Upon arrival at the lab, 10 g of feces were added to 20 mL of 0.1% peptone 

diluent (Difco Laboratories, Detroit, MI) and homogenized for 2 min in a stomacher lab 

blender 400 (Tekmar, Cincinnati, OH).  Two 1-mL aliquots of the homogenized solution 

were combined each with 10 mL of McIlvaine’s citrate buffer and adjusted to pH 2 or 7 

with 85% lactic acid or 1 M NaOH.  The pH 7 samples were vortexed immediately and 

pH was recorded.  Samples were serially diluted with 0.1 % peptone diluent, vortexed, 

and plated in duplicate onto E. coli/coliform Petrifilm™.  The pH 2 samples were “acid 

challenged” for 15-min at room temperature before being neutralized to pH 7 with 1 M 

NaOH.  Sample pH was then recorded, serially diluted in 0.1 % peptone diluent, and 

plated onto duplicate E. coli/coliform Petrifilm™ plates.  Petrifilm plates were incubated 

at 35°C for 24 h and enumerated for E. coli and total coliforms according to the AOAC 

method outlined in the E. coli/coliform Petriflim package insert.  E. coli and coliform 

numbers were expressed as log10 colony forming units/g of feces (CFU/g).   
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Statistical analysis 

E. coli coliforms, non-E. coli coliforms, total coliforms, and total plate counts of 

the SFC and TMR samples were log transformed and analyzed as a randomized 

complete-block design using the MIXED procedure of SAS (SAS Inst. Inc., Cary, NC).  

The model included effects of block and treatment.  Fecal coliforms were analyzed as a 

randomized complete-block design, with pen of heifers as the experimental unit.  For 

statistical analysis, a value of one half of the detection limit was entered for samples that 

yielded no detectable colony forming units.  Because feed and fecal samples were diluted 

differently, the detection limit varied with sample type. 

Results 
Tempering whole shelled corn prior to steam-flaking increased moisture content 

of both corn flakes (36% and 18% moisture for SFC-36 and SFC-18, respectively) and 

TMR (65% moisture and 77% moisture for TMR samples containing either SFC-36 and 

SFC-18, respectively; Table 1).  Coliform levels were near or below the detection limit 

(0.40 Log10 colony forming units/g) for SFC.  Generic E. coli, non-E. coli, and total 

coliform counts were not different (P > 0.05) for SFC-36 and SFC-18 (Table 2).  SFC-36 

did, however, have more (P < 0.05) fastidious and non-fastidious microorganisms when 

compared to the non-tempered SFC-18 flakes.  All SFC samples regardless of moisture 

content increased (P < 0.05) in microbial populations during the 21-h exposure period.  

SFC-36 samples exposed to environmental conditions were higher (P < 0.05) in total 

aerobic plate counts when compared to environmentally exposed SFC-18 samples. 

TMR samples contained more (P < 0.05; Table 3) generic E. coli, non-E. coli, 

and total coliforms than their respective SFC samples.  With the exception of generic E. 

coli, coliform levels were not different (P > 0.05) between TMR samples containing 

SFC-36 and SFC-18.  Unlike the SFC samples, environmental exposure did not increase 

(P > 0.05) microbial populations over the 21-h exposure period.  Non-E. coli coliforms, 

E. coli coliforms, and total plate counts were higher (P < 0.05) for environmentally 

exposed TMR samples containing SFC-36 compared to environmentally exposed TMR 

samples containing SFC-18. 
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Numbers of total coliforms and acid resistant E. coli shed by yearling heifers (n = 

96; 48 heifers per treatment) were not different (P > 0.05; Table 4) for cattle fed diets 

containing SFC-36 and SFC-18.  Acid resistant non-E. coli coliforms tended (P = 0.09) 

to be higher in fecal material collected from heifers fed SFC-18 based finishing diets.  

Similarly, acid resistant total coliforms were greater in number (P < 0.05) for fecal 

material derived from cattle fed SFC-18 based finishing diets. 

Discussion 
Hydrothermal processing (steam-flaking) of grains is a common method used by 

commercial feedlot producers.  Steam flaking increases gelatinization of starch and 

thereby improves ruminal and total tract starch digestion (Theurer, 1986; Zinn. 1987; 

Zinn 1990).  Temperatures generated in the steam chest are typically around 100°C 

(depending on elevation) and exposure times range from 20 to 40 min.  These 

combinations of temperature and time are sufficient to kill most bacteria.  However, we 

detected both coliforms and aerobes in our initial samples taken just after the steam-

flaking process.  The process used in our study to temper whole grain with water 

overnight likely increased overall microbial growth in the mixer.  Regardless of microbial 

load, it is unlikely that any of the microorganisms that were introduced to the steam chest 

prior to flaking actually survived the intense heating process.  Therefore, flaked corn 

samples taken just after the flaking process were most likely contaminated due to contact 

with conveying equipment and ambient air.  Total aerobic plate counts were higher for 

SFC-36 compared to the SFC-18.  The SFC-36 contained more moisture which likely 

fostered an environment for bacterial prolferation. 

Lynn et al. (1998) sampled fresh TMR from 16 farms.  Seventy-five percent of 

the samples contained generic E. coli, with an average concentration of 2.1 Log10 CFU/g.  

As with the study described by Lynn et al. (1998), samples in the present study were 

exposed to a variety of sources of contamination.  First, grains were exposed to surfaces 

of environment and storage areas, as well as ambient air.  Another opportunity for 

contamination occurred in the mixer and mixer discharge.  The coliform counts observed 

in this study (3.3 Log10 CFU/g) were similar to those reported by Lynn et al. (1998).  The 

increase in E. coli coliforms observed in the TMR containing SFC-36 may be due to 
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greater overall moisture content, thus creating an environment that was more ideally 

suited to bacterial growth.  However, one would expect that total plate counts and total 

coliforms would follow a similar trend in bacterial numbers. 

Bacterial levels of SFC, regardless of moisture content, increased over the 21-h 

exposure period.  The observed increase in bacterial contamination over time could have 

been due to the replication of native microbes in the samples, or due to surface 

contamination from other sources.  Houseflies have been identified as potential vectors of 

E. coli contamination (Kobayashi et al., 1999 and Moriya et al., 1999).  Houseflies 

transmit E. coli from bovine feces to other surfaces with which they make contact; 

including cattle feed (Kobayashi et al., 1999).  Alam and Zurek (2004) sampled 

houseflies at this research facility during the same timeline as the current study, and 

found that houseflies were harboring between 3.0 × 101 to 4.8 × 104 colony forming units 

of E. coli O157 per fly.  During the course of our study, houseflies were commonly found 

feeding on flaked corn and TMR samples.  Based solely on visual observations, 

houseflies appeared to have a preference for the SFC-36 flakes when compared to the 

SFC-18.  Sindt et al. (2006), when discussing the animal growth performance of the cattle 

used in this study, suggested that the SFC-36 flakes were over-processed because the 

added weight in water increased density, thus giving the appearance of an less rigorously 

processed grain when evaluated by conventional methods (i.e., bulk density).  The more 

extensive processing of SFC-36 increased degree of starch gelatinization compared to 

SFC-18 resulting in an attractive, maltose-like aroma, which may have attracted flies.  

Total plate counts were higher in SFC-36 versus SFC-18 after environmental exposure.  

This difference could be explained by differences in growth conditions in the SFC 

samples in addition to increased contamination from outside sources such as houseflies.  

Lynn et al. (1998) suggested that wet grain mixtures and some silage-based mixtures 

supported a higher growth of E. coli O157 (Lynn et al., 1998).   

The TMR containing SFC-36 also was more likely to contain greater numbers of 

bacteria than TMR containing SFC-18 flakes after 21 h of exposure.  Again, these 

differences were likely due to differences in moisture content and attractiveness of SFC-

36 by flies.  Exposing TMR samples to environmental conditions for 21 h did not result 
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in increased levels of bacteria.  Lynn et al. (1998) found similar results when they 

compared microbial counts of fresh feed to the same feed after 24 h in feed trough. 

Feed delivered to the heifers in our study was adjusted daily so that only trace 

amounts of unconsumed feed was remaining in the bunk prior to the next days feeding.  

However, small portions of feed would remain in the bunk for periods of time similar to 

the exposure time used in Experiment 1.  Results from Experiment 1 shows that heifers 

fed TMR samples containing the SFC-36 consumed more coliforms and fastidious and 

non-fastidious microorganisms.  One might speculate that ingestion of large numbers of a 

particular microorganism would lead to fecal shedding of the respective microorganism, 

but this was not the case for E. coli, non-E. coli, or total coliforms.  Our results suggest 

that moisture levels due to tempering corn prior to flaking did not increase fecal 

shedding.  Interestingly, heifers fed the TMR containing SFC-18 actually shed more acid 

resistant non-E. coli and total coliforms than heifers fed TMR containing SFC-36.  This 

difference in acid-resistance is possibly an indication of different populations of E. coli.  

It appears from our data that the microbial populations in the TMR consumed by the 

heifers was not responsible for the differences in fecal shedding.  A plausible explanation 

for this apparent difference in E. coli populations may be due to the diet and its 

digestibility.   

Manipulation of diets fed to finishing feedlot cattle has been proposed as a means 

for reducing fecal shedding of E. coli O157 (Hovde et al., 1999, Berg et al., 2004, Van 

Baale et al., 2004).  In a recent published longitudinal study by Berg et al. (2004), the 

authors found that cattle fed corn-based diets shed more E. coli coliforms than cattle fed 

barley-based finishing diets.  The researchers suggested that differences in the site of 

digestion may have impacted differences in shedding.  The starch portion of the corn 

grain is not digested as extensively as that of barley, thus resulting in more starch flow to 

the hind gut (Orskov 1986).  Increasing starch content in the lower gastrointestinal tract 

will result in a secondary fermentation in the large intestine.  As intestinal fermentation 

increases so will the production of short chain volatile fatty acids (i.e. acetate, propionate, 

and butyrate), reducing pH in the large intestine.  Russell et al. (2000) speculated that a 

lower pH in the large intestine is favorable for growth and survival of E. coli O157.  

Similarly, Diez-Gonzalez et al. (1998) observed that E. coli coliforms and acid-resistant 
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E. coli in the large intestine were significantly increased when cereal grains were added 

to the diet, thereby increasing secondary fermentation in the hind gut.  On a dry matter 

basis, SFC-36 corn flakes may have been processed to a lighter flake density than the 

SFC-18 corn flakes.  Sindt et al. (2006) when summarizing the growth performance of 

heifers used in this study speculated that over processing of SFC-36 may have resulted in 

the observed reductions in feed intake.  Decreasing flake density of corn also increases 

ruminal digestion of starch and thereby decreasing starch flowing to the large intestine 

(Swingle et al., 1999; Plascencia and Zinn, 1996).  Results from Berg et al. (2004) and 

Buchko et al. (2000) demonstrated that lower fecal pH and the associated volatile fatty 

acids inhibited proliferation of E. coli O157 in the large intestine.  Conflicting results 

from Berg et al. (2004) would suggest that volatile fatty acid production and colonic pH 

have different effects on generic E. coli and E. coli O157 in the bovine large intestine.  

Berg et al. (2004) stated that generic E. coli in the hind-gut may not be considered a 

reasonable predictor of E. coli O157 in the hind-gut. 

The significant increase in bacterial counts of the steam-flaked corn samples after 

21 h exposure period may be due to contamination by houseflies.  However, other factors 

such as airborne bacteria and proliferation of native bacteria in the steam-flaked corn can 

not be ruled out.  Likewise the increased bacterial numbers in the total mixed rations 

containing the SFC-36 after the 21 h exposure period cannot be attributed to the 

houseflies.  Whether this difference is due to optimal moisture levels for bacterial growth 

or truly a difference in affinity for houseflies is not well understood.  Regardless, feeding 

cattle diets with higher levels of coliforms and total plate counts did not increase fecal 

shedding of these organisms.  Fecal shedding of acid resistant coliforms was increased 

for heifers receiving the TMR containing non-tempered low moisture SFC-18 corn 

flakes.  Differences in site and extent of digestion between the two flaked corns may have 

resulted in differences observed for acid resistant fecal coliforms.  However, we must be 

hesitant to suggest that differences in starch entering the large intestine would be have 

similar results on E. coli O157 based on this study.  Further research quantifying actual 

fecal starch and E. coli O157 in the large intestine would shed light on this relevant 

question. 
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Table 1. Composition of experimental diets containing either 18% moisture or 36% 

moisture steam-flaked corn. 
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Table 2.  Bacterial counts in steam-flaked corn samples before (initial) and after 

(final) environmental exposure. 
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Table 3.  Bacterial counts in total mixed ration before (initial) and after (final) 

environmental exposure. 
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Table 4.  Fecal coliform levels of heifers within a pen receiving total mixed ration 

containing either low moisture steam-flaked corn (SFC-18; 18% moisture) or high 

moisture steam-flaked corn (SFC-36; 36% moisture). 

 
 

 

 

41 



 

 

CHAPTER 3 - Influence of processed grains on fecal pH, 

starch concentration, and shedding of Escherichia coli 

O157 in feedlot cattle. 

 

 

B. E. Depenbusch, T. G. Nagaraja, J. M. Sargeant, J. S. Drouillard, 

E. R. Loe, and M. E. Corrigan 

 

 

42 



 

Abstract 
Manipulation of cattle diets has been proposed as a possible pre-harvest control 

measure for Escherichia coli O157.  Altering hindgut fermentation through diet changes 

may be a means to reduce fecal shedding of E. coli O157.  In Exp. 1, the objective was to 

determine whether fecal shedding of E. coli O157 was related to fecal starch 

concentration.  Starting on d 20, and every week thereafter until d 61, steers in 54 pens (6 

to 7 steers per pen) were sampled (n = 122) using feces and by rectoanal mucosal swabs 

(RAMS) for E. coli O157 and fecal starch concentration determinations.  Escherichia coli 

O157 prevalence was 3.3% in fecal samples, 4.1% as measured by RAMS, and 4.9% by 

fecal or RAMS samples.  Steers positive for E. coli O157 contained 21% more (P < 0.05) 

fecal starch than steers that were negative for E. coli O157.  In Exp. 2, we attempted to 

alter the concentration of starch escaping rumen fermentation by feeding finishing diets 

based on steam-flaked corn (SFC) and dry-rolled corn (DRC) to 30 heifers prescreened 

for being culture positive for fecal E. coli O157.  Starting on d 13, heifers were sampled 

(feces and RAMS) weekly to monitor fecal pH and fecal starch concentration, and 

prevalence of E. coli O157.  Prevalence of E. coli O157 remained above 30% for the first 

13 d and then declined (P < 0.05) over weeks.  Based on RAMS prevalence of E. coli 

O157 tended to be higher (P = 0.08) for heifers fed SFC than DRC diet.  After d 20, 

heifers fed DRC had higher (P < 0.05) fecal starch and lower (P < 0.05) fecal pH than 

heifers fed SFC.  Fecal pH was negatively correlated (r = -0.34; P < 0.05; n = 143) with 

fecal starch concentration.  Fecal starch concentration and pH were not different (P > 

0.05) for heifers positive or negative for E. coli O157.  Our data suggest that fecal 

shedding of E. coli O157 was not related to fecal pH or starch concentration in cattle fed 

grain-based diets. 
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Introduction 
The serotype O157:H7 one of nearly 250 Shiga toxin producing Escherichia (E. 

coli) coli implicated worldwide (Johnson et al. 2006) is considered the most pathogenic 

serotype in North America, Japan, and the United Kingdom (Bielaszewska and Karch, 

2000).  Cattle digestive tracts, particularly the hind gut (Grauke et al., 2003; Naylor et al., 

2003; Van Baale et al., 2004), are believed to be the primary reservoir for E. coli 

O157:H7, a human food-borne pathogen that causes hemorrhagic colitis and hemolytic 

uremic syndrome.  Manipulation of diets fed to feedlot cattle has been proposed as a 

means for reducing fecal shedding of E. coli O157:H7, but results have been inconsistent 

(Buchko et al., 2000, Berg et al., 2004, Van Baale et al., 2004).  Berg et al. (2004) found 

that cattle fed corn-based diets shed more generic E. coli than did cattle fed barley-based 

finishing diets.  Berg et al. (2004) suggested that differences in the site of digestion 

(rumen vs hind gut) may have impacted fecal shedding of E. coli O157.  In the rumen, the 

starch fraction of corn grain is not digested as extensively as starch from barley, thus 

resulting in higher starch concentrations entering the hind gut (Orskov 1986; Huntington, 

1997).  Increasing starch concentration in the lower gastrointestinal tract will result in a 

secondary fermentation and increased production of VFA, hence reduced pH in the large 

intestine.  The more extensively cereal grains are processed, the more starch is digested in 

the rumen and the less that enters the lower digestive tract (Huntington, 1997).  Buchko 

et al. (2000) and Berg et al. (2004) suggested that low pH and the associated VFA 

inhibited proliferation of E. coli O157 in the large intestine.  Therefore, it was of interest 

to determine the relationship between hindgut fermentation to fecal prevalence of E. coli 

O157.  Our objective was to evaluate fecal starch concentration and pH in relation to 

shedding of E. coli O157 in feedlot cattle. 

Materials and methods 

Experiment 1 

Care and handling of animals used in this study were conducted under the 

approval of the Kansas State University Institutional Animal Care and Use Committee 

protocol number 2315.  Three hundred sixty-eight crossbred-yearling steers (BW = 334 ± 
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17 kg) were obtained from a common source, and offered ad libitum access to chopped 

alfalfa hay and fresh water upon arrival.  Steers were allowed ad libitum access to four 

step-up diets leading to the final finishing diet that contained 78% dry-rolled corn and 8% 

alfalfa hay (Table 1).  Steers were housed in 54 concrete-surfaced pens (6 to 7 steers per 

pen) and each pen (36 m2) included an overhead shade (18 m2) covering half of the pen 

and feed bunk.  Each pen contained an automatic water fountain and 3.2-m of a fence-

line feed bunk.  Neither total feed samples nor individual feed ingredients were analyzed 

for E. coli O157. 

Samples and sampling schedule 

Starting on d 20, and every week thereafter until d 61 (August through 

September), steers from 18 out of the 54 pens were individually restrained in a hydraulic 

working chute and sampled for E. coli O157.  For our sampling scheme, we sampled the 

first 18 pens in the first week, second 18 pens in the second week, and third 18 pens in 

the third week and back to the first 18 pens in the fourth week and so on until the sixth 

week.  To determine the prevalence of E. coli O157 in steers, rectoanal mucosal swab 

(RAMS) samples (Rice et al., 2003; Greenquist et al., 2005) and fecal grab samples via 

rectal palpation were obtained from all animals within the sampled pen.  The RAMS 

samples were obtained according to the procedure described by Rice et al. (2003), by 

using a sterile foam-tipped applicator (VWR International, Buffalo Grove, Ill, Catalog 

#10812-022) inserted approximately 2 to 5 cm into the anus of each steer, and the 

epithelium surface was sampled using a rapid in-and-out motion.  The RAMS samples 

were then placed into culture tubes containing 3 mL of Gram Negative (GN) broth 

(Becton Dickinson, Franklin Lakes, N. J.) with cefixime (0.05 mg/liter; Catalog #740.01, 

Invitrogen Corporation; Carlsbad, CA), cefsulodin (10 mg/liter; Catalog #C8145; Sigma-

Aldrich; St. Louis, MO), and vancomycin (8mg/liter; V2002; Sigma-Aldrich) (GN-CCV; 

Van Baale et al., 2005).  Immediately following the RAMS sampling, a fecal grab sample 

was acquired via rectal palpation.  Cattle not producing an adequate fecal sample (> 5 g) 

were sorted off and re-run through the restraining chute about 10 min after the original 

sampling time.  Fecal samples were sealed in Whirl-Pak® bags (14 × 20 cm, Nasco, Ft. 

Atkinson, WI), and both fecal samples and RAMS tubes were kept on ice and transported 
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to the Pre-harvest Food Safety Laboratory in the College of Veterinary Medicine at 

Kansas State University for E. coli O157 isolation.  

Isolation of E. coli O157 

Whirl-Pak® bags containing the fecal samples were kneaded by hand for 20 to 30 

s, and approximately 1 g sub-sample was placed into a culture tube containing 9 mL of 

GN-CCV broth by using a sterile transfer stick.  Culture tubes containing both RAMS 

and fecal samples were vortexed for 1 min, incubated at 37°C for 6 h, subjected to 

immunomagnetic separation (IMS; Dynal, Inc. New Hyde Park, NY), and spread plated 

onto sorbitol MacConkey agar containing cefixime (50 ng/mL) and potassium tellurite 

(2.5 µg/mL; Sigma-Aldich) (CT-SMAC).  Plates were then incubated overnight (16 to 18 

h), and up to six sorbitol-negative colonies were streaked onto blood agar plates (Remel, 

Lenexa, KS) and incubated for 12 to 18 h at 37°C.  Growth on blood agar plates was 

tested for indole production, for O157 antigen by latex agglutination (Oxoid Limited, 

Basingstoke, Hampshire, England) and species was confirmed by API 20E identification 

test (Biomerieux, Inc., Hazelwood, Mo; Van Baale et al., 2004). 

Fecal starch analysis 

After bacteriological sampling, the balance of the fecal material was frozen for 

subsequent determination of fecal starch concentration.  Fecal samples from steers 

positive for E. coli O157 by either sampling method (fecal or RAMS; n = 41) and 239 

randomly selected samples from E. coli O157-negative steers were analyzed for starch 

concentration.  Before analysis, samples were thawed, dried in a 55°C forced-air 

convection oven, and then ground through a 1-mm diameter screen by using a Thomas-

Wiley laboratory mill (Model 4 Thomas Scientific™, Swedesboro, NJ).  Dry matter of 

each sample was determined by drying sample for 16 h at 105°C.  Starch concentration in 

feces was determined according to procedures described by Herrera-Saldana and Huber 

(1989). 

Statistical Analysis 

Fecal starch concentrations were analyzed using the Proc Mixed procedure of 

SAS (SAS Version 9.1; Cary, NC).  The model statement included the effect of presence 
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or absence of E. coli O157 for each of the sampling techniques.  Individual animal 

numbers were used as a random effect. 

Experiment 2 

Pre-trial phase  

Care and handling of cattle used in this study were conducted under the approval 

of the Kansas State University Institutional Animal Care and Use Committee protocol 

number 2315.  Ninety-two crossbred yearling heifers (BW = 400 ± 5 kg) were started on 

a common receiving diet and transitioned (step up diets 1 to 6) to a finishing diet (step up 

diet 6; Table 2) containing predominantly dry-rolled corn (DRC).  Dry-rolled corn was 

processed to a mean geometric particle size of 4,072 µm (n = 23; Baker and Herrman, 

2002) by using a single stack roller mill.  Heifers were offered ad libitum amounts of 

water and feed, and were fed once daily at 0800.  Neither total feed samples nor 

individual feed ingredients were analyzed for E. coli O157.  After 14 d on the DRC diet, 

heifers were restrained in a hydraulic working chute, and a RAMS and fecal sample were 

obtained from each heifer as described in Exp. 1.  On the day before sampling, heifer 

diets were switched from step 4 to step 5 (Table 2).  Heifers that failed to yield adequate 

amounts of feces (> 5 g) were separated and re-sampled approximately 10 min after the 

original sampling time.  Fecal samples sealed in Whirl-Pak® bags (Nasco), and RAMS 

tubes were kept cool on ice, and transported to the Pre-Harvest Food Safety Laboratory 

for E. coli O157 isolation by using procedures described for Exp. 1. 

Trial phase 

Of the 92 heifers, 30 (33%) were identified as being positive for E. coli O157 

based on the initial sampling of feces or RAMS.  The heifers (n = 30) positive for E. coli 

O157 were used in a randomized complete-block design experiment to compare the 

impact of grain processing methods on E. coli O157 prevalence (Fox et al., 2007).  One 

week after sampling, heifers were stratified by weight and randomly assigned, within 

strata, to a finishing diet based on either steam-flaked corn (SFC; n = 15) or DRC (n = 

15).  Heifers assigned to the DRC diet remained on the same diet throughout the duration 

of the experiment.  Heifers assigned to the SFC diet were transitioned over a 10-d period 
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from the DRC diet to the SFC diet by using three transition diets in which SFC gradually 

replaced DRC as the grain source (75:25, 50:50, 25:75, DRC:SFC, respectively).  Diets 

were formulated to contain 14% CP, 0.7% Ca, 0.35% P, 0.7% K, 30 mg/kg monensin, 

and 9 mg/kg tylosin (Elanco Animal Health, Greenfield, IN).  The SFC was processed to 

a flake density of 360 g/L and had a mean geometric particle size of 5,724 µm (n = 159; 

Baker and Herrman, 2002).  Cattle were housed in individual pens (1.5 m x 7 m) with a 

fence-line feed bunk (1.5 m).  Half of the pen and the feed bunk were covered by an 

overhead roof.  Dividers between pens consisted of steel pipe, and thus did not prevent 

contact between animals in adjacent pens.  In addition, water fountains were located such 

that each fountain served two adjacent pens.  Fecal material buildup was removed from 

the concrete-pen surfaces via scraping every 2 to 4 d.  Cattle were fed once daily at 0800, 

and were offered ad libitum amounts of their respective diets.  Neither total feed samples 

nor individual feed ingredients were analyzed for E. coli O157. 

The RAMS and fecal samples were obtained from each heifer on d 20 and weekly 

thereafter for 4 weeks as described in Exp. 1.  A 10 × 140 mm non-sterile wooden stick 

(Catalog #14 410, Fisher Scientific, Pittsburgh, PA) was used to add approximately 1 g of 

feces to test tubes containing 15 mL of deionized water, and vortexed (Vortex-Genie® 2, 

Vortexer Scientific Industries, Bohemia, NY).  Fecal pH was then determined with a 

calibrated pH meter (Thermo Orion model 230Aplus, Orion Research Inc., Beverly MA).  

Cattle not producing an adequate volume of fecal material after the first and second time 

through the restraining chute were monitored in their respective pens until a visually 

fresh fecal pat could be collected for pH and starch analysis.  The balance of the fecal 

material after bacteriological sampling was frozen for starch analysis as described in Exp. 

1. 

Statistical analysis 

Escherichia coli O157 prevalence (positive or negative), fecal pH, and fecal 

starch concentration data were analyzed using the repeated measures analysis of the Proc 

Mixed procedure of SAS (SAS Version 9.1; Cary, NC).  The model statement included 

the effects grain processing method (dry rolling vs steam-flaking) and sampling day.  

Weight block served as the random variable. 
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Results and discussion 

Experiment 1 

Prevalence data for E. coli O157 are shown in Figure 1.  Prevalence of E. coli 

O157 was 4.1% (36 of 872) as measured from RAMS samples and 3.3% (29 of 872) from 

fecal samples.  Escherichia coli O157 was detected in 44 of 872 (5.0%) steers by either 

sampling technique or only 11 of 872 (1.3%) steers tested positive by both sampling 

techniques (Figure 1).  Naylor et al. (2003) suggested that E. coli O157 specifically 

colonizes the lymphoid, follicle-dense mucosal epithelium at the terminal rectum.  Rice et 

al. (2003) and Greenquist et al. (2005) concluded that sampling the terminal rectum, 

approximately 2 to 5 cm proximal to the rectoanal junction, was more sensitive than a 

fecal culture. 

Fecal DM and starch concentrations are summarized in Table 3.  Fecal starch 

averaged 23% across all steers ranging from a minimum of 1.2% up to a maximum of 

59.6%, with a standard deviation of 11% or greater.  Zinn et al. (2007) compiled fecal 

starch concentration data from 32 metabolism studies and found a mean value of 5.9% 

with a wide range (0 to 44%) in fecal starch.  Fecal DM was not correlated (P > 0.05) 

with E. coli O157 prevalence.  Barajas and Zinn (1998) reported similar values for fecal 

starch concentrations in yearling heifers fed DRC-based diets (25% and 19% fecal starch 

when fed diets containing either 11.3% or 15.0% CP, respectively).  Steers positive for E. 

coli O157 as determined by prevalence in fecal samples had a higher (P < 0.05) fecal 

starch concentration than did steers negative for E. coli O157.  Likewise, fecal starch was 

higher (P < 0.05) for steers that tested positive by either method.  But, fecal starch 

concentration was not different when prevalence was determined by RAMS method (P 

>0.05). 

Experiment 2 

Pre-trial Phase.  Prevalence of E. coli O157 was 16.3% (15 of 92) using RAMS 

samples and 23.9% (22 of 92) for fecal samples.  Presence of E. coli O157 was detected 

by either in 30 of 92 (32.6%) steers, whereas only 7 of 92 (7.6%) steers tested positive by 

both sampling techniques.  Interestingly, fecal samples were more sensitive than RAMS 

samples in detecting E. coli O157, which is in contrast to other published studies (Rice et 
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al., 2003; Greenquist et al., 2004).  However, Rice et al. (2003) observed that fecal 

samples were more sensitive than RAMS samples for the first 2 weeks after experimental 

exposure to E. coli O157.  Greenquist et al. (2004) suggested that recently exposed cattle 

could have less colonization of the rectoanal junction thereby leading to lower sensitivity 

of the RAMS method.  Prevalence data from our study suggest that fewer animals were 

colonized compared the number of animals which were shedding E. coli O157. 

Trial Phase.  Prevalence data for SFC and DRC over the 50-d sampling period are 

summarized in Figure 2.  During the 50-d sampling period, RAMS method was more 

sensitive than the fecal samples for 6 out of the 7 sampling periods (data not shown).  

Prevalence of E. coli O157 in heifers as measured by fecal samples (P = 0.66, data not 

shown), RAMS (P = 0.08, data not shown), or either method (P = 0.10, Figure 2) 

remained greater than 30% for the first 14 d, and then declined (P < 0.05) over time.  No 

treatment × day interactions (P > 0.05) were observed, regardless of the sampling 

method. 

Fox et al. (2007) found that E. coli O157 prevalence for heifers fed finishing diets 

based on steam-flaked grains were higher than that observed in heifers fed dry-rolled 

grains, and that it remained above 30% for the first 30 d, which are in agreement with our 

data.  In addition to dietary treatments, normal shedding patterns of E. coli O157 could 

have affected our prevalence data over time.  Fecal shedding period can be quite variable 

and may range from a few d to one year (Magnussan et al. 2000).  Sanderson et al. (1999) 

and Magnussan et al. (2000) have suggested an average shedding period of 30 d.  Cray 

and Moon (1995) indicated that fecal shedding peaked about one week after inoculation 

of calves and decreased continually for 48-189 d thereafter.  The use of the prescreening 

model to select positive animals for E. coli O157 does not take into account temporal 

shedding pattern of an animal.  Therefore, some animals may be at the end and others at 

the start of their shedding patterns.  However, in order to detect significant differences 

when analyzing binomial data such as, absence or presence of E. coli O157, a high 

prevalence of E. coli O157 is needed.  The prescreening model will likely yield 

prevalence levels near 50% making this model useful in testing pre-harvest intervention 

strategies such as grain processing (Fox et al., 2007).  Naylor et al. (2003) proposed that 

in any given population of E. coli O157 positive animals, a subset of these animals will 
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be shedding high numbers of E. coli O157 called “supershedders”, thereby enhancing 

horizontal transmission between herd mates sharing the common water fountain was 

possible. 

Type and level of cereal grain fed, as well as degree of grain processing, can 

affect the site and extent of starch digestion (Huntington, 1997).  Ruminal starch 

fermentation is greater for finishing diets based on SFC when compared to DRC 

(Huntington, 1997; Barajas and Zinn, 1998).  A lower ruminal pH and a lower ruminal 

acetate:propionate ratio have been reported (Zinn et al., 1995; Barajas and Zinn 1998; 

and Corona et al., 2006) for steers fed finishing diets based on SFC rather than DRC, 

which suggest a greater ruminal fermentation of starch.  Fecal starch concentration was 

similar (P > 0.05) for SFC and DRC on d 0.  After d 20, heifers fed DRC had higher (P < 

0.05) fecal starch and lower (P < 0.05) fecal pH than did heifers fed SFC (Figure 3).  The 

correlation between fecal starch and pH was -0.34 (P < 0.05, n = 143; Figure 4) and was 

lower than that previously described (Russell et al., 1980; Ledoux et al., 1985; Barajas 

and Zinn, 1998; Xiong et al., 1991).  Possibly, a better predictor of fecal pH may be the 

measurement of starch concentration exiting the small intestine rather than the large 

intestine.  Regardless of the correlation, feeding DRC increased starch entering the lower 

gastrointestinal tract and, thereby, increased starch in the feces, compared with feeding 

SFC.  Figure 5 illustrates fecal starch concentration and fecal pH over time for E. coli 

O157-positive and -negative samples.  Regardless of the sampling method used, fecal 

starch and pH were not different (P > 0.05) for E. coli O157 positive and negative 

samples. 

Theurer (1986) estimated that large amounts (up to 600 g/kg) of starch can escape 

ruminal fermentation and be presented for digestion in the small intestine.  Increasing the 

amount of starch entering the small intestine above that which can be digested and 

absorbed will result in a secondary fermentation in the large intestine (Siciliano-Jones 

and Murphy, 1989; Harmon and McLeod, 2001).  As hindgut fermentation increases, so 

will the production of VFA, hence reducing pH in the large intestine.  Van Kessel et al. 

(2002) demonstrated a reduction in cecal and fecal pH with abomasal infusion of starch 

and glucose.  Russell et al. (2000) speculated that a lower pH (< 5.5) in the large intestine 

is a more favorable environment for both survival and growth of acid-resistant E. coli.  
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However, Buchko et al. (2000) suggested that a lower fecal pH (< 6.3) and the associated 

VFA inhibited proliferation of E. coli O157:H7 in the large intestine.  Other studies have 

demonstrated an inhibitory effect of VFA, in particular propionic acid, on E. coli 

O157:H7 (Rasmussen et al. 1993; Horii et al., 1998).  Results from Berg et al. (2004) 

showed that fecal pH and prevalence of E. coli O157 were lower for cattle fed corn 

compared to cattle fed barley based diets.  Corn is less digestible in the rumen than barley 

(Huntington, 1997); thereby presenting more undigested starch to the large intestine 

which would favor increased hindgut fermentation (Orskov, 1986;Duncan et al., 1991; 

Berg et al., 2004).  Studies with cattle (Hovde et al. 1999) and sheep (Kudva et al., 1997) 

found that a hay-based diet resulted in greater colonization of E. coli O157:H7 compared 

to a grain–based diet.  Berg et al. (2004) suggested that their results agreed with those of 

Hovde et al. (1999) and Kudva et al. (1997) in that the forage fed animals, which had the 

highest colonization of E. coli O157:H7, would likely have a higher colonic pH.  In 

addition, Bach et al. (2005) showed that E. coli O157:H7 persisted longer in the feces 

from cattle fed barley than in the feces of cattle fed corn diets.  The authors speculated 

that this may be partly due to the lower fecal pH from cattle fed corn, compared with 

those fed barley.  In our study (Figure 2), we observed a lower prevalence (P ≤ 0.10) of 

E. coli O157 for cattle fed DRC compared SFC.  A review by Huntington (1997) showed 

that starch from SFC is 11% more ruminally digested than the starch from DRC.  

Therefore, cattle fed DRC based diets would have more starch presented to the large 

intestine for increased fermentation and VFA production.  Our results seem to be in 

agreement with Berg et al. (2004), Buchko et al. (2000), and Horii et al., (1998). 

Van Kessel et al. (2002) abomasally infused either 778 g/d of starch hydrolysate 

or 888 g/d of glucose and found lower (P < 0.01) fecal pH, compared with that of steers 

abomassally infused with water.  Total aerobic bacterial concentrations in the feces were 

also higher (P < 0.01) with starch hydrolysate and glucose infusions, but total coliforms, 

E. coli, and acid-resistant E. coli concentrations were not different (P > 0.05) with 

carbohydrate infusions.  They concluded that the amount of starch entering the large 

intestine affects cecal fermentation and microbial populations, but did not affect acid-

resistant E. coli.  Results from this study suggest that fecal shedding of E. coli O157 is 

not correlated to fecal starch concentration or fecal pH. 
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Table 5. Dry-rolled corn based finishing diet fed to yearling steers in Exp. 1. 
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Table 6. Ingredient composition and formulated nutrient values of diets fed to yearling heifers during pre-trial phase of Exp. 

2. 

 



 

Figure 1. Prevalence of Escherichia coli O157 by rectoanal mucosal swab (RAMS) 

and fecal samples in yearling steers (Exp. 1). 
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Table 7. Fecal DM and starch concentrations (% of DM) in yearling steers sampled for Escherichia coli O157 by rectoanal 

mucosal swab (RAMS) and fecal samples (Exp. 1). 

 
abMeans within a column without common superscripts are different (P < 0.05). 



 

Figure 2. Prevalence of Escherichia coli O157 in yearling heifers fed finishing diets 

based on steam-flaked corn (□) or dry-rolled corn (■) over a 7-week period (Exp. 2)  
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Figure 3. Effect of steam-flaked (□) or dry-rolled corn (■) on fecal starch 

concentrations (A) and fecal pH (B; Exp. 2). 
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Figure 4. Relationship of fecal pH and fecal starch concentration (Exp. 2). 
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Figure 5. Fecal starch concentration (A) and fecal pH (B) of yearling heifers positive 

(■) and negative (□) for Escherichia coli O157 (Exp. 2). 
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