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Abstract

The goal of this work is to provide instructors with detailed information about their classes

at each assignment during the term. The information is both on an individual level and at the

aggregate level. We used the large number of grades, which are available online these days, along

with data-mining techniques to build our models. This enabled us to profile each student so that

we might individualize our approach. From these profiles, we began to investigate what can be

done in order to get students to do better, or at least be less frustrated. Regardless, the interactions

with our undergraduates will improve as our knowledge about them increases.

We start with a categorization of Studio College Algebra students into groups, or clusters, at

some point in time during the semester. In our case, we used the grouping just after the first

exam, as described by Dr. Rachel Manspeaker in her PhD. dissertation. From this we built a

naive Bayesian model which extends these student clusters from one point in the semester, to a

classification at every assignment, attendance score, and exam in the course. A hidden Markov

model was then constructed with the transition probabilities being derived from the Bayesian

model. With this HMM, we were able to compute the most likely path that students take through

the various categories over the semester. We observed that a majority of students settle into a

group within the first two weeks of the term.
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Chapter 1

Introduction

The goal of this work is to provide instructors with detailed information on each of their students

at every assignment during the term. The information will be on an individual level and may

be aggregated to provide broader perspective. This will enable instructors to profile students so

that they may tailor assignments and instruction to each student. They may begin to break free

from the one-size-fits-all style of instruction without treading blindly into unfamiliar territory.

With this new knowledge, the effects of customized instruction can be observed in the models

described herein, and refined in order to better serve our students.

We start with a categorization of Studio College Algebrai students into groups, or clusters. In

our case, we will use the grouping just after the first exam as described by Dr. Rachel Manspeaker

in her PhD. dissertation, “Using Data Mining to Differentiate Instruction in College Algebra”.

Then we build a naive Bayesian model using the classifications and the course grades as a data

set. The Bayesian model extends Dr. Manspeaker’s classification from being at one point in the

semester to classifications after every assignment, attendance score, and exam in the course. Dr.

Manspeaker divided the class into five groups. This was, in effect, a snapshot of the class at the

time of the first exam. The model which we build divides the class into the exact same five groups,

iIn the United States, college algebra courses typically introduces functions, exponentials, logarithms, and basic
matrix operations.
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but does so at every time a student receives a grade during the term.

Next, a Hidden Markov Model (HMM) is constructed with the transition probabilities which

are derived from the Bayesian model and represent the chance of moving in time from one clas-

sification group to another. With this HMM, we are able to compute the most likely path that

students take through the various categories over the semester. In other words, we computed, for

each student, the path through the categories with the largest probability. Every student has been

assigned to a group at each point in the term, and together these assignments form the student’s

path between groups over the course of the semester. And this particular path is the most likely

path which the student could have taken during the course. The instances when these paths stayed

constant for a sufficiently long time turned into the object of study. We interpreted these long runs

in the path to be times when a student had settled into a particular group, and observed that a

majority of students settled into a group within the first two weeks of the term.

1.1 Motivation

Kansas State University, like many universities across the country, is focusing on student retention

in an effort to better serve its students and to increase its revenue. Consequently, new ways of in-

struction are being encouraged. Underlying many of these ideas is the philosophy of differentiated

instruction. The core mechanic is that in the same class, students are offered various methods of

learning the course content. By doing this, students are able to learn according to their preference,

rather than the traditional one-size-fits-all approach. Differentiated instruction can be strengthened

by demanding that each student should be limited to a small subset of choices in learning, rather

than being able to pick from the entire selection. But to do so requires a knowledge about every-

one in the class on an individual basis. Data mining is being used to better understand students

at this individual level. The data analysis informs us about which instruction methods should be

applied to which students. Essentially, we try to cater to the students in a way which is effective
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and results in the student staying enrolled.

Dr. Manspeaker’s work set the stage for differentiated instruction in our math courses by es-

tablishing a systematic way of placing students into groups. In her work, she used grades, up to

and including the first exam, to group students into clusters. She established that these groups

were characterized by behaviors and attitudes about math class. With this technique, we can now

classify each student just after the first exam. This tells us how each student is behaving around

the time of this exam, but does not indicate behavior at any other time in the semester. This leads

one to wonder about whether students changed their attitudes or behaviors.

A question of significant interest was whether a student’s attitudes and behaviors could be

predicted before the semester even began. This would be a great aid in the task of placing incoming

first-year students into the appropriate math course. For those new students that placed into either

version of College Algebra, we could recommend they take either the traditional or studio version,

provided we knew about their attitudes. In order to test whether student attitudes can be predicted

before the semester, Dr. Manspeaker added a survey to the mathematics placement exam, which

first-year students are required to take prior to the start of the academic year. However, from the

survey responses she was unable to predict the students’ groups.

There are a number of explanations for this difficulty in placing students before the start of

the term. But one particular interpretation stood out, namely that student attitudes and behaviors

change from summer to their first month of college. Personal experience and anecdotes about

students adjusting to college suggests that this interpretation is quite reasonable. It is also common

for instructors to observe students change their behavior over the term. However, the research

literature only covers behavioral changes across the typical four-year college experience. This is

the gap which the current work is trying to fill.
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1.2 Dr. Manspeaker’s Research

Dr. Rachel Manspeaker wanted to develop a way to classify students in Studio College Algebra.

Her focus was to identify early in the semester students who may need help. So she examined

student grades up to and including the first exam. This data set admitted clustering into five groups.

She then took prototypical students in each group and interviewed them, in order to identify what

distinguished each cluster from the others. These interviews showed that student attitudes about

math and behaviors within the class strongly placed them into specific clusters.

These groups became labeled as smart slackers (SS), over-achievers (OA), Intervention (I),

employees (E), and rote memorizers (RM). The smart slacker group is aptly named, for its mem-

bers are those who are intelligent and knowledgeable but lacking motivation; over-achievers are

the students who work hard and do well; intervention group members work very hard and do

well on assignments, but poorly on exams; employees treat college like a menial job by doing the

least amount of work possible while still being compliant; and the rote memorizers get through

math classes by mimicking the proper motions and resist any deeper meaning. It should be noted,

however, that the names “smart slacker” and “intervention” do not appear in Dr. Manspeaker’s

dissertation. The reason for the name change will be given in the subsequent chapter. With the

groups established for one semester, Dr. Manspeaker confirmed the result by performing the same

clustering algorithms as in previous terms and showed that the individual clusters exhibited the

same attitudes and behaviors as they had in previous semesters.

As mentioned earlier, Dr. Manspeaker tried to see if the behavioral group of a student could

be predicted prior to arriving on campus. She added an attitude survey to the math placement

exam, which is required of every incoming first-year student. She then ran her classification

algorithms to group those first-year students who took Studio College Algebra their first semester.

Unfortunately, the responses to the attitude survey did not significantly correlate to behavioral

groups. This led to the belief that students changed their attitudes and beliefs by the first month of
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class. This became the significant motivator for the present work.

1.3 Goals

This work builds a model of student behaviors and attitudes at each assignment, exam question,

and attendance score for each student in Studio College Algebra. Our objectives are to see how

quickly students settle into a group and whether we can identify behavioral patterns in individuals

solely from the student’s grades. The first goal, about how quickly students settle into a group,

extends Dr. Manspeaker’s work by enabling us to provide evidence in support of the claim that

students change their behaviors quickly upon entering college. We know that their attitudes before

entering their first year do not correlate well with their assigned group at the first exam. So if we

can demonstrate that a typical student forms consistent and predictable behaviors prior to this first

exam, then the proposition about student behaviors being formed early in their college career but

not prior to their college career gains support. Alternatively, our analysis had the potential to

demonstrate that (1) students enter higher education with consistent behaviors, (2) students do not

typically exhibit stable behavior through their College Algebra course, or (3) students begin to

exhibit stable behavior after the first exam. Either of these cases would have been interesting to

observe as it would have weakened the claim about behaviors forming early.

The second goal, identifying patterns of behaviors within students, would help to further our

work to improve instruction. This is where differentiated instruction would guide us to a particular

method of teaching for each undergraduate based upon that individual’s behavioral patterns. Such

an ability to prescribe instruction allows teachers to experiment with their techniques. Even within

the same semesters, similar students could be taught with various techniques. Their results could

be meaningfully compared, provided we trust that the students’ behavioral types are comparable.

This would be an important advance for educational research.
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1.4 Limitations

One of the important qualifiers regarding this work is that we have only produced models of stu-

dent behavior over time. We have not verified empirically the validity or accuracy of these models.

One way to validate these models is through student interviews. For example, in order to validate

that most students settle into a group after the second week of class, we can perform interviews

with a random selection of students as soon as the third week of class to see whether they have an

established pattern of behavior in the class. Then once the semester is over, the models presented

in this paper can be computed. In particular the most likely path each student took over the term

through Dr. Manspeaker’s groups can be calculated. These most likely paths can be compared to

the results of the interviews to see how accurately the models predicted student behaviors. If one

of the interviewed students exhibited stable behavior, and if the type of behavior demonstrated

matched the predicted behavior of the model, then this observation would be evidence in favor of

the model’s accuracy. And if a sufficiently large majority of those interviewed had their behaviors

correctly predicted by the model, then we could consider the models accurate, and say that there

is no longer a lack of empirical evidence for these models.

Next, we should note the clear focus on the Studio College Algebra course at Kansas State

University. We did not want to randomly sample college algebra students from various schools,

as we needed a common course structure over which we could build our models. Our models

vary with course, course schedule, and teaching style. These are further limitations for this work.

It is safe to assume that the course and course schedules did not alter the models significantly

because this particular course is always lead by the same instructor, Dr. Rekha Natarajan, who

directs the course in an almost identical manner from one semester to the next. However, the

differences due to the effects from the numerous teaching assistants was not taken into account,

and must therefore be noted among the limitations and weaknesses of this work. While this

flaw in the model tarnishes its accuracy, it does not prevent us from demonstrating its value and
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potential. Rather, these criticisms of model accuracy are the motivation for future research and

not the present work.

7



Chapter 2

Literature Survey

2.1 Dr. Rachel Manspeaker’s Dissertation

In order to track Studio College Algebra students, we need to have a means of labeling or catego-

rizing them. With this, we can now attempt to observe changes in a student’s category. We chose

to build off of the work our colleague, Dr. Rachel Manspeaker, who was a fellow PhD. student at

the time this work began.

The work done by Dr. Rachel Manspeaker in her PhD. dissertation5 is integral to this work, as

it provides us with a means of classifying students into categories. She clustered students of the

Studio College Algebra course by grades up to and including the first exam of the course. This data

was clustered using standard techniques — Singular Value Decomposition (SVD), AGglomerative

NESting (AGNES), and Partitioning About Medoids (PAM). The SVD analysis was used to reduce

the dimensions of the data, from over thirty scores for attendance, participation, assignments, and

the questions on the first exam, down to five orthogonal dimensions which were the largest in

the spectral decomposition of the data. From this reduced data set, she used AGNES to find an

appropriate number of clusters in the data, which was determined to be five. Then PAM was

used to obtain the stable clustering of the data into five subsets. Dr. Manspeaker followed this
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Prop. of class Avg. final grade Avg. ACT comp. Avg. ACT math
OA 33% 3.24 22.38 21.44
SS 13.7% 2.13 23.29 22.34
E 24.7% 2.62 22.6 21.4
RM 10.6% 1.24 21 20.6
I 17.6% 1.53 20.92 19.27

Table 2.1: Statistics for each cluster

quantitative analysis with blind interviews of prototypical students from each cluster to learn their

behaviors as students and attitudes towards the class and towards mathematics in general. The

following are the names given to the five clusters.

• Over-achievers (OA)

• Intervention (I)

• Employees (E)

• Rote Memorizers (RM)

• Smart Slackers (SS)

2.1.1 Profile of Over-achievers

These are the excellent students. They see mathematics as a useful subject, both in general and

in their own futures. However, they do not see how the class specifically applies to their lives.

This cluster has the best scores in all facets of the class. As for the first exam, such students only

struggle with the nonstandard problems, i.e., problems which were not found in previous exams

and not worked by the instructors in class, as well as the graphical questions.
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2.1.2 Profile of Smart Slackers

Smart slackers are intelligent and well prepared, but bored and frustrated with the course. Ide-

ally, such a person would be placed in a higher-level course such as trigonometry. On the first

exam, they do well on application problems and questions involving graphs, but do poorly on the

procedural and nonstandard parts. These students tend to have the second lowest scores in all

aspects of the course, except on the first exam, where their performance varies from moderate to

excellent. Eventually, they drop the course or end up performing poorly. In her dissertation, Dr.

Manspeaker called this group “under-achievers”, as she felt that her former name “smart slackers”

was disparaging. However, I prefer clear, descriptive labels and have no heart .

2.1.3 Profile of Employees

Employees view the class as a menial job for which they are “paid” with a passing grade. They

dislike math, and learn through memorization, not comprehension. On exams, this group does

well on procedural problems which do not require independent thought or creativity. These un-

dergraduates tend to have the second highest scores in the course for all things except attendance,

in which they place third. This is because their attendance starts off strong but eventually drops.

In general, if these students aren’t learning, they blame the teacher.

2.1.4 Profile of Rote Memorizers

Rote memorizers rely on memorizing rather than comprehension to pull them through the course.

They have negative views about math which progressively get worse after the course. They believe

that talent in mathematics is an inherited trait rather than one which is developed through work and

understanding. Students in this cluster had the lowest scores in all aspects of the course, with only

a few exceptions, which still put them near the bottom of the class. They typically stop working

after the first assignment and stop attending after the first class. These students strongly dislike
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the studio version of College Algebra, and would prefer to be in the traditional version. Advisers

have been advised to place those whom they presume to be rote memorizers in traditional College

Algebra, as the traditional course more closely fits the rote memorizer’s idea of how a math class

is supposed to run.

2.1.5 Profile of Intervention Group

This type of student is the one whose great efforts in learning go unrewarded. They have excellent

attendance, do well on written homework, and yet do poorly on online homework. On exams,

these students have the most trouble with nonstandard questions and applied problems. Despite

their poor test score, they demonstrated a better knowledge of the material in interviews. Quanti-

tatively, this group is very similar to the rote memorizers except that this cluster has good written

homework and attendance. Originally, Dr. Manspeaker called this group “Sisyphean strivers” in

her thesis. I am using the name employed within our research group, rather than that from Dr.

Manspeaker’s dissertation. When writing her work, she decided to change the group names in

order to avoid and prevent the use of the derogatory label “smart slackers”. And “Sisyphean

strivers” was chosen due to it having the same abbreviation as “smart slacker”, thus discouraging

its use for future researchers, and because these students seemed to be unable to succeed in col-

lege algebra despite how hard they tried. The name “intervention group” was used because Dr.

Manspeaker focused on trying to intervene and help this group overcome their poor test perfor-

mance. In short, “intervention group” is our name for Dr. Manspeaker’s “Sisyphean strivers”, and

our “smart slackers” is Dr. Manspeaker’s “under-achievers”.

2.2 Bayesian Inference

With a method of categorizing students, we can now develop a means of extending these categories

over the entire semester. This is accomplished by utilizing naive Bayesian models built from
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student grades and classifications. In this work, we used Dr. Manspeaker’s groups, but these

methods are independent of the method of categorization. Any other system of grouping students

can be likewise extrapolated over the entire course.

Using Dr. Manspeaker’s data along with the course records, we set out to build a model of how

students changed groups throughout the semester. The way we built the model was rather straight-

forward. In order to predict a student’s behavioral group given data about their assignments, we

needed to compute probabilities of the form P(in behavioral group c | score s on assignment a).

We could then compute P(in behavioral group c) once we had P(score s on assignment a). After

grades have been recorded, we can use the proportion of students who got a score of s on assign-

ment a to represent P(score on assignment a was s). Strictly speaking, these probabilities are not

the appropriate ones. What is in fact used in the actual computations are not of the form “score

on assignment 1 was 7 out of 10” but are instead “score on assignment 1 was in the 70th to 80th

percentile”. Rather than have the variable “score” be the numerical score, we chose to make it a

category. This helps reduce the noise from grading idiosyncrasies as well as performance varia-

tions — a student having a bad day which ends up affecting their score on an assignment or exam.

But the following description of how we created the model works whether we think of assignment

scores as being numerical or categorical quantities. For brevity and simplicity, we will just treat

them as discrete and categorical.

The trouble is that P(in behavioral group c | score on assignment a was s) is difficult to obtain

directly. For the sake of the reader, we will use the random variables S a to be the score on

assignment a and C to be the behavioral group of the student. But by using Bayes’ theorem, we

can get an estimate, provided we know P(S a | C) for each a and P(C). At this point, it is important

to introduce the difference between the training and testing data sets. With a few exceptions, the

2010 Fall (F10) semester was the source of the testing data, and the 2009 Fall (F09) semester was

the training data. In all other instances, we will note which semester is training and which is the

testing. The training data set is used to calculate the needed parameters P(S a | C) and P(C). The
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conditional probability of assignment scores given their classification in Dr. Manspeaker’s groups

is simply the proportion of students who got that score out of all the students from 2009 in that

classification. And it would be very easy to take the probability of being in a category as the

proportion of all F09 students in that category. It is important to note here that we are assuming

that a student’s behavioral group is constant throughout the term when computing the parameters

from the training data. The student’s group is the one assigned from Dr. Manspeaker’s work.

With the necessary parameters set, we can now apply our Bayesian inference to the testing data

to generate predictions about the behavioral groups of the testing data. It is worth noting that

while we knew the groups to which Dr. Manspeaker assigned the students of both the training and

testing data, we do not in practice need to know anything about the groups of the testing data. We

only need to know the assigned groups of the training data.

To compute predictions from the testing data, we need to allow for the groups to change from

assignment to assignment. We do so by estimating the group probabilities recursively.

P(1)(C0) B
1

# of groups

P(1)(Cm) B P(1)(Cm | S m)P(S m), for each m

P(1)(Cm+1 | S m+1) B
P(S m+1 | C = Cm+1)P(1)(Cm = Cm+1)∑
P(S m+1 | C = Cm+1)P(1)(Cm = Cm+1)

, for each m

There is a lot which is introduced in the above definition. First, we are using P(1) to represent

estimates. These estimates are computed using the definitions listed above. Whereas P denotes

actual values and are computed by simply counting the data. For example, P(S m) is found by

looking at assignment m, counting the number of students whose grade was S m, and dividing by

the number of students in the class. Notice that we are assuming that each student has an equal

chance of being in each class at the beginning of the term. This is a choice which we made. For

given the lack of information instructors have about any of the students at the beginning of the
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term, the uniform distribution is a reasonable choice for the initial distribution.

Next, the variables Cm represent the class of the student at the mth assignment. The expression

P(S m+1 | C = Cm+1) denotes the probability of a student, whose assigned behavioral group (C) is

Cm+1, receiving a grade of S m+1 on assignment m+1. It can be easy to confuse the different notions

of “group” here, and so we shall try to address the matter. With the expression C = Cm+1, we are

not trying to capture the subset of students whose assigned group, given by Dr. Manspeaker, is

equal to their Bayesian group at assignment m + 1. Instead, Cm+1 is simply a variable in the

expression C = Cm+1 whose value ranges over the five behavioral groups. So in the definition for

P(1)(Cm+1 | S m+1), the subexpression P(S m+1 | C = Cm+1) is interpreted as the probability that a

randomly selected student will get a grade equal to the value of S m+1 out of all the students whose

group, as assigned by Dr. Manspeaker, is Cm+1. The reason we chose to regard these values as

random variables, namely by the use capital letters, is that on the left-hand side of the definition,

their role is in fact that of a random variable. This overloaded notation is used here because it is

standard notation in statistics and because, after having written down some statistical ideas and

derivations, this ambiguous and overloaded notation seemed preferable to a more explicit and

exact notation. Finally, the sum
∑

P(S m+1 | C = Cm+1)P(1)(Cm = Cm+1) is taken over all possible

values for S m+1 and Cm+1.

2.3 Kullback-Leibler Divergence

With each student assigned a probability distribution over Dr. Manspeaker’s groups, we then

wanted to try to make sense of this new data. We had two data sets, 2009 Fall (F09) and 2010 Fall

(F10), which each can be labeled as the training or testing data set. Each of these four choices

would produce a model of behavior, that being a set of probability distributions over the behavioral

groups. We chose to focus on two models in particular. The first model, called the “forecasting

model”, used the F09 data as the training data and F10 as the testing. This model forecasts the
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groups in the F10 semester based upon parameters derived from the F09 data. Our hopes are that

in the future historical data will likewise be used to help predict current data, or in this case simply

more recent data. The other model, called the “F10 model”, used F10 as both the training and

the testing data sets. In this case, we are using F10 to predict itself. We wanted to compare the

forecasting and F10 models against each other, where we saw the F10 model as the “truer” model

and the forecasting model as the approximation.

To compare these two models, we turned to information theory. The Kullback-Leibler diver-

gence fit our needs. It is used when trying to examine a stream of characters whose frequency

is governed by the random variable X, but another random variable Y is being used to encode

this stream. The divergence measures the expected number of extra bits the Y encoding will need

in order to correctly represent the original stream. In such a scenario, X is commonly referred

to as the true, observed, and/or exact distribution, and Y as the theory, model, or approximation

of X. For us, X ranged over the distributions from the F10 model, and Y ranged over the F10

model distributions. The Kullback-Leibler divergence of X and Y , denoted DKL(X‖Y), satisfies

DKL(X‖Y) := −
∫

Ω
log dY

dX dX for general probability measures with Y being absolutely continuous

with respect to X. Hence the formula for discrete distributions is DKL(P‖Q) = −
∑

x P(x) log Q(x)
P(x) .

In our case, we used the KL divergence, the abbreviation which we will be using, to compare

two sets of prediction models about student groups. Both models had probability distributions

for each student at each assignment over the F10 semester. This allowed us to compare the corre-

sponding distributions from the two models with the KL divergence, and then aggregate the results

to get an idea of how well the forecast model predicted the F10 model

After the forecasting model did not compare favorably with the F10 model, we used hill-

climbing, which is a standard artificial intelligence technique, to find locally optimal forecasting

models. We will provide more detail in the next chapter. But the basic idea is that we searched

through the forecasting models built from subsets of the assignments in order to find the models

which were best predictors of the corresponding F10 model.

15



2.4 Hidden Markov Models

In another attempt to find a way to cluster the models by student, we turned to another method

of inference. Hidden Markov models, or HMMs, deal with systems with “hidden variables” and

“observable variables”. With a proper sample, hidden Markov models predict the hidden (or dif-

ficult to observe) variables given values for the observed variables in the sample data. Take two

finite sequences of random variables, a sequence of observable variables (Yt)T
t=1 and a sequence

of unobserved or hidden variables (S t)T
t=1, which are also referred to as states. We assume that

the states satisfy the Markov condition that S t+1 only depends upon S t for each t, and that each

observation Yt only depends upon the current state S t. Said more rigorously, each state is condi-

tionally independent of any previous observations and any previous state, given the last state —

P (S t+1 | Y?, S t−r, S t) = P(S t+1 | S t) for any choice of t, r, ? > 0; and each observation is condi-

tionally independent of any previous observations and any previous state given the current state

— P(Yt, S t+r1 ,Yt+r2 | S t) = P(Yt | S t)P(S t+r1 ,Yt+r2 | S t) for all t, r1, and r2 (and r1 and r2 may be

negative). The only other restriction is that the conditional distributions for Yt | S t and S t+1 | S t

are independent of t. We will use A(s, s′) to denote P(S t+1 = s′ | S t = s) and b(s, y) to denote

P(Yt = y | S t = s) for any t. Any HMM can be described completely by the parameters A, b, and

ν, where ν(s) = P(S 1 = s).

In our context, the observables, Y?, are the assignments and the hidden variables, S ? are

the classifications. So then A(s, s′) is the probability of going from behavioral group s on one

assignment to the group s′ on the next assignment, b(s, y) is the probability of a student in group s

on some assignment getting a score of y on that same assignment, and finally, ν(s) is the probability

of a student being in behavior group s at the beginning of the course. It is clear that a student’s

classification over the semester is not likely Markov, as S t+1 would depend upon S t for many

values of t. And observations may depend on past classifications. In fact, none of the stated

requirements about the distributions hold. So this can at best be seen as a weak model for our
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case. Still, if anything can be gleaned from the analysis, we have a clear starting point when

examining more complicated Bayesian networks.

Finally, to represent a contiguous subsequence, we will use the notation ys...t to mean the

sequence ys, ys+1, . . . , yt−1, yt, and for convenience will just assume that s ≤ t. With these conven-

tions established, we will now go on to describe the relevant algorithm for this work, the Viterbi

algorithm which calculates the most likely state sequence taken, given a sequence of observations.

We shall give the discrete version of this algorithm, as it is most applicable. However, it can be

given in continuous form. This is done in the text by Fraser2. For the remainder of the sections,

we shall work with some fixed HMM and will therefore take the parameters (A, b, ν) as known.

2.4.1 Viterbi Algorithm

The Viterbi algorithm finds the state sequence ŝ1...T which maximizes P(S 1...T ,Y1...T ), where the

sequence of observations y1...T has been given. In our context, this means that the Viterbi algorithm

will return, for each student, a sequence of behavioral states which is the most likely behavioral

sequence to have occurred given their scores on all the homework. This result differs from those

of Bayesian inference because the Viterbi algorithm returns one behavioral group for each student

at each assignment rather than returning a probability distribution over the behavioral groups. Our

analysis could now associate a sequence, or string, of behavioral groups to each student, which is

simpler than a sequence of probability distributions.

One technical note is that the probabilities are incredibly small, it is actually advantageous to

work with logarithms to avoid floating-point arithmetic errors like underflows.
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δ(s, t) := max
s1...t−1

log P(y1...t, s1...t−1, S t = s)

ω(s, s′, t) := max
s1...t−1

log P(y1...t+1, s1...t−1, S t = s, S t+1 = s′)

ψ(s′, t) := argmax
s
ω(s, s′, t)

Both δ and ω take the maximum over sequences of states, and ψ returns the state s which

maximizes ω(s, s′, t), where s′ and t are given. If s1...t−1 is the sequence of states which maximizes

the probability of δ(s, t), for some state s and time t, then s1...t−1, s is the most likely sequence of

all the sequences of length t which end in s, given y1...t, a sequence of observations. A similar

statement can be made for ω(s, s′, t), namely that the sequence which achieves the maximum

probability will be the most likely sequence of all those that have length t + 1 and end with s, s′.

An astute reader may guess that the Viterbi algorithm will construct the most likely sequence

starting with the last element and ending with the first. This is indeed the case. But we still need

to derive a few equations from the above definitions in order to fully understand the algorithm.

The following derivation justifies the correctness of the final equation, that will be employed

in the algorithm. This computation utilizes the independence assumptions of HMMs, takes loga-
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rithms of both sides, and finally takes the maximum over s1...t−1.

P(y1...t+1, s1...t+1) = P(y1...t, s1...t)P(yt+1, st+1 | y1...t, s1...t)

= P(y1...t, s1...t)P(yt+1, st+1 | yt, st)

= P(y1...t, s1...t)P(st+1 | st)P(yt | st)

log P(y1...t+1, s1...t+1) = log P(y1...t, s1...t) + log A(st, st+1) + log b(st, yt)

ω(st, st+1, t) = δ(st, t) + log A(st, st+1) + log b(st, yt)

Recall that the matrices A and b are parameters of the hidden Markov model, with A(st, st+1) being

the transition probability of moving from the state st to st+1 and b(st, yt) being the observation

probability of witnessing yt while being in state st. The next equation follows from the definitions

of δ, ω, and ψ, and is used to calculate values for δ by iteration.

δ(st+1, t + 1) = ω(ψ(st+1, t), st+1, t)

This algorithm itself has two phases. In the first stage, the algorithm constructs values for

ψ, ω, and δ. The algorithm builds these values iteratively over increasing values of t. Further,

we only need to know ω for the current value of t, and δ for the current and previous values of

t. So we store ω(·, ·, t) as a two-dimensional array for the current value of t, and store δ in two

one-dimensional arrays δold(·) and δnew(·) for the previous and current values of t, respectively. But

there is no optimization for ψ, and so it is stored as a two-dimensional array ψ(·, ·). The second

stage of the algorithm determines the most likely end-state using δ, then steps backwards over

values of t to get the remaining states from ψ.
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Algorithm 1 Viterbi Algorithm
for all s ∈ S do
δnew ← log P(Y1 = y1, S 1 = s)

end for
for t = 2→ T − 1 do
δold ← δnew

for all snew ∈ S do
for all sold ∈ S do
ω(sold, snew)← δ(sold, t) + log A(sold, snew) + log b(snew, yt+1)

end for
ψ(snew, t + 1)← arg maxsold ω(sold, snew)
δnew(snew)← ω(ψ(snew, t + 1), snew)

end for
end for
ŝT ← arg maxs δnew(s)
for t = T − 1→ 1 do

ŝt ← ψ(ŝt+1, t + 1)
end for
return (δnew(ŝT ), ŝ·)

2.5 Importance of a Student’s Early College Experience

Our findings with HMMs suggest that students settle into their behavioral groups very early in

the semester. There is a great deal of research about the importance of a student’s first year,

or even first semester, of college. However, there does not seem to be much work involving

student behavior over any shorter time intervals. There is a fair bit in the literature about how

syllabi affect student attitudes. In addition, the author found one article talking about attitudes and

activities done in the first week of class. So the literature does offer some support for one of the

major findings of this work, that students’ attitudes and behaviors change in the beginning of the

semester. But this work is unique in the literature because we predict that student behaviors settle

by the second week of class.

Another reason why the literature about affecting student behavior at the beginning of the term

is important to this work is that we found student attitudes and behaviors begin to stabilize after

the second week of class. As there is little instructor interaction with the students in the first two
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weeks, any means of changing student behavior for the better is important. Further, it is likely that

the ways in which we might alter their attitudes is through subtle means, such as body language,

tone of language and voice, and gestures. Reviewing the literature helps to reveal some of the

subtle means of influence, and allows us to see how effective each technique may be.

2.5.1 Tone of the Syllabus

The articles about course syllabi investigated the connections between the language and content

of the syllabus and the students’ attitudes towards the instructor and the course. In one study by

Harnish and Bridges3, the authors sought to find a connection between the tone of language used

in the syllabus and the students’ attitudes regarding the instructor and course difficulty. Students

were told that they were evaluating a candidate for an adjunct position in the department, but due

to “scheduling difficulties” the candidate was unable to present the lecture. To grade the phony

candidate, students were given a syllabus, ostensibly written by the instructor, and a questionnaire.

The syllabus was either the friendly or unfriendly version, and the two versions were distributed

randomly. A basic skeleton syllabus was used, so that the two versions did not differ in content or

layout. Below are some examples of how the versions differed. Testing 172 students, the authors

found that there was a statistically significant effect of increasing instructors’ approachability and

their perceived motivation when the syllabus was warmer in tone. Also, the students who received

the friendly syllabus preceived the course to be less difficult than those who received the unfriendly

version.
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Unfriendly Friendly

Office

Hours

If you need to contact me outside

of office hours, you may email me,

call my office, or contact the de-

partment and leave a message.

I welcome you to contact me out-

side of class and office hours. You

may email me, call my office, or

contact the department and leave

me a message.

Class

Partici-

pation

Come prepared to actively partici-

pate in this course. This is the best

way to engage yourself in learning

the material (and it makes the lec-

tures more interesting... ).

I hope you actively participate in

this course. I say this because I

found it is the best way to engage

you in learning the material (and it

makes the lectures more fun)...

2.5.2 Offers of Help in Syllabus

With evidence that the tone of the syllabus affects students’ attitudes, Perrine, Lisle, and Tucker6

wrote an article suggesting that when an instructor includes an offer of help in the syllabus, it

may affect students’ beliefs. In particular, they showed that the students will be more willing

to seek help from the instructor when an offer of help is included in the syllabus. In a similar

experimental design as the previous paper, 104 students were given a brief description of a course

along with a statement from the instructor’s syllabus. The two varieties of statements follow.

The results showed that there was a significant effect on students’ responses to a survey about

how willing they were to seek help from the instructor. Concerning a number of problems (e.g.,

trouble understanding textbook, low grade on first exam, and hard to hear instructor’s lectures),

the students who saw the supportive syllabus felt more willing to seek help.
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Supportive The course is enjoyable, but demanding. There is a large amount of

material and it can be overwhelming at times. If you find yourself

doing poorly in the course, please come talk to me. Any time during

the semester that you have problems in this course, I want to know

about it. Together we can try to pinpoint the problem and get you off

to a better start.

Neutral The course is enjoyable, but demanding. There is a large amount

of material and it can be overwhelming at times. Please do not let

yourself fall behind. It is very important that you keep up with the

readings.

2.5.3 Syllabus Detail

The last article about syllabi, authored by Saville, Zinn, Brown, and Marchuk8, focused on the

level of detail in the syllabus and students’ perceptions of the effectiveness of the teacher. Half of

the 97 student participants were given a brief syllabus while the other half were given a more de-

tailed version. The brief version was two pages long while the long version was six whole pages.

Both versions contained the course objectives, information about the textbook, basic description

of the assignments, grading scale, brief statement of course policies, and a schedule listing assign-

ment due-dates. But the detailed version expounded upon items whenever possible. In one area,

the detailed version went beyond saying that there were six exams by stating the type of prob-

lems which would appear on them, e.g., multiple-choice, essay, etc. Also the detailed document

had a course schedule that included due-dates as well as which chapter would be covered each

class and which ones would be covered in each exam. The researchers tested whether the amount

of information in the syllabus would affect beliefs such as how personable, creative, encourag-

ing, enthusiastic, knowledgeable, prepared, and fair the instructor was. In addition, the students’
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comprehension of the syllabus was queried. The findings were that comprehension did not signif-

icantly differ between versions and had little correlation to the aforementioned beliefs. Further,

these beliefs were more likely to be stronger with the students who received the more descriptive

syllabus.

These papers about syllabi affecting student beliefs do reinforce the idea that a syllabus is the

first introduction students have for the course. It is our first tool, as instructors, to sell the course

to the class, and to start them off with a good first impression.

2.5.4 Icebreakers

This last paper which we will discuss deals with icebreakers and introduction games. Although

such shenanigans may seem more appropriate for a humanities class, they are included because

author’s criterion for teaching techniques is “by any means necessary.” So if such activities can

affect student attitudes, and ultimately result in improved student learning, then these practices are

worth consideration at least, if not worthy of being put into practice.

Hermann, Foster, and Hardin4 looked at how icebreakers might affect students’ feelings of

support and satisfaction in the course. Before the start of a large, introductory, lecture class of

377 students, the instructors were divided into two groups: one which was only told to conduct

a typical first day and another which was additionally told to do a reciprocal interview (this term

is described below), where the students would ask questions of the teacher and then the teacher

would ask questions of the students. This icebreaker involves the class dividing into small groups,

in which they elect a representative and choose questions for the representative to ask the in-

structor. After the student representatives ask the instructor questions, the instructor asks the

representatives questions. Finally, the groups again choose another student to ask the instructor

a second round of questions. This process of back and forth interviews is what is meant by the

phrase “reciprocal interview”. At the end of the semester, students were asked to fill out a survey

about how supportive and how clear the instructor was. In the sections which performed the re-
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ciprocal interviews, the students reported perceiving the instructor to have been more supportive

and clearer. The authors do admit, however, that the findings may have occurred only with the

instructors for that term. And so this result may have had less to do with the icebreaker activities

and more to do with the particular instructors who used icebreakers.

2.5.5 Summary of the Literature

All these studies indicate that student attitudes can be influenced by instructor choices as early

as the first day of class. This is encouraging for us and our finding that attitudes and behaviors

can start stabilizing for most students within the first few weeks of class. Also, these articles give

us ideas as to how we can affect attitudes early in the semester. But recall that Dr. Manspeaker

originally clustered her groups based upon behaviors up to and including exam 1. Granted the

above articles do not mention anything about student behaviors, but if attitudes can change so

early in the semester, it seems plausible that students’ behaviors can also change early.
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Chapter 3

Data-Mining Narrative

3.1 Data Collection

We collected data on the Math 100 Studio College Algebra course. This course was chosen primar-

ily because it has one of the largest enrollments in the department. Assignment data were already

being collected through the university course management system. More importantly, the Studio

College Algebra course remains nearly identical from one term to the next. With a single coor-

dinator (currently Dr. Rekha Natarajan), assignments are similar between semesters, the schedule

remains almost unaltered, and exam questions are equivalent but for handful of exceptions. We

wanted to compensate for the rare times when exam questions were not congruent in order for the

comparison of the two classes to be more accurate. These exceptions may be due to a reordering of

the questions or to the addition or removal of a question. In case of reordering, adjustments were

made so that like questions are aligned in the data sets. Otherwise, the questions with no analogue

were just dropped from the data sets. Finally, we also included Dr. Rachel Manspeaker’s groups,

for which she additionally used student interviews to learn about her classification groups5.

We used data from Fall 2009 (“F09”) and Fall 2010 (“F10”) terms. We chose to use two Fall

terms rather than consecutive Fall and Spring terms, as the Fall and Spring consist of different
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I OA E SS RM Total
Fall 2009 36 (15.3%) 98 (41.7%) 80 (34.0%) 15 (6.4%) 6 (2.6%) 235
Fall 2010 62 (23.0%) 122 (45.2%) 15 (5.6%) 61 (22.6%) 10 (3.7%) 270

Table 3.1: Size of Dr. Manspeaker’s groups

types of students. In the Fall term, the class is made up mainly of freshmen. The Spring term

however consists primarily of older students, many of whom are retaking the course. Even Dr.

Manspeaker noted this difference in her analysis. She found that the behavioral groups were the

same for Fall and Spring terms. However, the proportion of students in the groups differed between

Fall and Spring terms. Still these proportions stayed roughly similar, with only a few large shifts,

between one Fall term and the next Fall term or between consecutive Spring terms (Table 3.1).

Although, in this case, there is a substantial difference in the proportion of employees and smart

slackers. This discrepancy remains unexplained, but is assumed to be atypical. But for this work,

this difference is unimportant, for our goal is to be able to detect such shifts in the data.

As our goal for this work is identifying trends in models of student groups, we wanted to have

data sets which were as homogeneous as was reasonable. So we focused our attention upon the

comparing Fall terms with each other. While we could have also compared two Spring terms,

our intuition was that first-year students would exhibit the greatest change in behavior as they

are adapting from secondary school and life with their parents to college life, where parents are

absent. Older students undoubtedly continue to change their behaviors, but we suspected that

these adjustments are relatively small compared to those in their younger counterparts.

With these two data sets, we built two models. The first was the experimental model and

was trained on F09 data to predict F10 groups. The other model, called the observed model, was

trained on F10 data and predicted F10 groups.
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3.2 Bayesian Learning

Initially, we were classifying students based on a conceptual exam, the Pre-calculus Conceptual

Analysis or PCA, developed at Arizona State University1. Our plan was to use one Bayesian

network for each of the two classifications, Dr. Manspeaker’s behavioral and the PCA’s conceptual

classification. The conceptual classification was based upon the change in the PCA score at the

beginning and end of the term. Unfortunately, there was generally little change in these scores.

So we had difficulty classifying students based upon such small fluctuations. Because of these

minimal changes, we moved away from Bayesian networks and instead focused more on general,

repeated Bayesian inference. Our fear was that a full Bayesian network would over-fit this data

and the weak PCA classification. So instead, we opted to use a simpler Bayesian inference model

which would only look to the previous assignment when predicting the next, whereas, a Bayesian

network would start by considering all past assignments and keeping just enough memory to be

a good predictor. With Dr. Manspeaker’s classifications however, we had no such trouble, as the

classifications were already done. Further, her behavioral groups had clear prototypes which were

simpler to distinguish from one another.

With Bayesian networks discarded for simple Bayesian inference, we ran the algorithms which

generated probability distributions for each student at each assignment. These distributions as-

signed a probability to each group, which we interpreted as the probability of that particular stu-

dent being in that particular classification group at the time of some fixed assignment. Such a

distribution is graphed in figure 3.1. In this example, each set of vertically stacked bars represents

one probability distribution at one point in the term. The height of the bars is the probability the

student is in the group, which is designated by the color of the bar, at a particular point in the

course. Notice from the header on the figure, that this particular student was classified by Dr.

Manspeaker as an over-achiever. Despite an initial prominence of the intervention group, this stu-

dent is quite clearly an over-achiever according to the distributions. A more astute observer will
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notice that in the initial set of stacked bars all are of equal height. This is because we need to

choose an initial distribution for every student, and we choose to use the uniform distribution.

These Bayesian models gave us a model of the students over time. In order to test the validity

of this model, we wanted to get some predictions from the model which might then be confirmed

or falsified with further study. In particular, we were interested in predictions about when and how

an individual student might change classification. We may, for example, then test such claims by

interviewing the student around such pivotal times to try to detect any transition between groups.

Figure 3.1: Individual’s Behavioral Profile

One of the first decisions, aside from what

tools to use in order to analyze the data, is

how to identify when a student changes from

one group to the next in the Bayesian inference

analysis. Initially, we settled upon the idea that

for the PCA classification, a student would “be

in” one of the three groups at a fixed time if the

associated probability was at least 50%. This

required the introduction of a “no group” clas-

sification for the times when a student did not

reach this threshold for any of the three groups.

For Dr. Manspeaker’s behavioral analysis, we

simply choose to say that a student was in the group which was the mode of the distribution.

The difference of requiring a majority for the PCA rather than taking the plurality as with Dr.

Manspeaker’s groups was motivated by the fact that there was little change between the post-

test and pre-test scores on the PCA exam. So, to reflect such uncertainty in the PCA data, we

demanded more of the statement “student X is in group Y on assignment Z”.

With this mapping of students into classifications, we were then able to say when a student

switched groups. Recall that one of our tasks was to identify when any individual student would
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change groups. So the group assignments were run through various clustering algorithms. The

hope was that there may be distinct types of students based upon how they moved through Dr.

Manspeaker’s or the PCA’s classifications, a sort of meta-classification — a clustering of how

students moved through the original clusters. Unfortunately, we could not find much, as the data

did not admit obvious groupings.

We did find something interesting with the Bayesian group assignments for Dr. Manspeaker’s

groups. We checked these assignments against Dr. Manspeaker’s original assignment. The results

of these comparisons can be found in table 3.2, 3.3, 3.4, and 3.5. As there are Bayesian group

mappings for every assignment in the course, we had to narrow our focus and narrowed it to the

three exams and the final exam. In each of the four tables, the Bayesian group mappings are

represented in the columns and Dr. Manspeaker’s groups are in the rows. So the entries of these

tables give the numbers of students (in the Fall 2010 course) whom Dr. Manspeaker assigned to

group x and whom the Bayesian data assigned to group y. With this, we have a means of validating

the Bayesian inference approach. Though these tables will not validate our models as correct, they

remove the doubt that the Bayesian group assignments are unrelated to Dr. Manspeaker’s.

One of the first thing to notice in these four tables is that the entries of the main diagonals are

often, but not always, dominant in their respective row and column. These diagonal entries repre-

sents how many students were placed into the same groups by Dr. Manspeaker and the Bayesian

model, and in some sense, how many students were “correctly” placed by the Bayesian model.

In particular, we see that over-achievers are the easiest for the model to identify, followed by the

intervention students. Whereas employees, smart slackers, and rote memorizers are difficult to

detect. With the over-achievers, notice that in all four tables the diagonal entres, which represent

those students correctly placed as over-achievers, are the maximum entry in both their row and

column. The placement into the intervention group is successful in a similar way with all but the

first table. As for the employees and rote memorizers, notice that Dr. Manspeaker only identified

fifteen and ten students as respective members of these groups. So it is not surprising that the
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Assigned\Bayes I OA E SS RM Total
I 12 6 17 8 19 62

OA 2 88 5 22 5 122
E 0 7 4 3 1 15

SS 8 19 11 16 7 61
RM 9 0 0 1 0 10

Total 31 120 37 50 32 270

Table 3.2: Dr. Manspeaker’s vs. Bayesian groups at exam 1

Assigned\Bayes I OA E SS RM Total
I 22 16 13 6 5 62

OA 13 66 25 11 7 122
E 7 5 3 0 0 15

SS 19 22 10 7 3 61
RM 8 0 2 0 0 10

Total 69 109 53 24 15 270

Table 3.3: Dr. Manspeaker’s groups vs. Bayesian groups at exam 2

model is having trouble placing students into these groups, as it does not have a good sample of

such students. This leaves us with the smart slackers group. We will talk more about predicting

this group with the Bayesian model in the next chapter. All we shall say for now is that the smart

slacker group is unique among the behavioral groups because it is the only group which inherently

has two very different ways of behaving: its typical member is, depending upon the time in the

term, quite competent and, at other times, is a poor student. This may be a problem for the models

presented in this study, and may potentially be a problem for even Dr. Manspeaker’s model.

We looked carefully at table 3.2. While the other three tables are interesting, there are two

fundamental problems with comparing Dr. Manspeaker’s group assignments with the Bayesian

group assignments. The first is that all three comparisons are between group assignments at dif-

ferent times in the semester. Dr. Manspeaker classified students just after the first exam, and these

particular Bayesian classifications model the students at a later exam. So it is reasonable that the

off diagonal cells in the later three tables will be larger than the corresponding cells in the first
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Assigned\Bayes I OA E SS RM Total
I 27 12 15 3 5 62

OA 16 55 23 5 23 122
E 5 2 3 2 3 15

SS 9 14 22 6 10 61
RM 5 0 3 1 1 10

Total 62 83 66 17 42 270

Table 3.4: Dr. Manspeaker’s groups vs. Bayesian groups at exam 3

Assigned\Bayes I OA E SS RM Total
I 19 22 14 3 4 62

OA 24 62 30 4 2 122
E 6 5 1 0 3 15

SS 13 25 15 2 6 61
RM 7 1 1 0 1 10

Total 69 115 61 9 16 270

Table 3.5: Dr. Manspeaker’s groups vs. Bayesian groups at final exam

table. The second reason the first table deserves more scrutiny than the others is that we expect

student behavior to change over time. Not only will group assignments at the first exam become

less relevant as the term progresses, but the students themselves will change. Hence, the efficacy

of comparing any two group assignments quite dependent upon the difference in time between

them.

There are four large off-diagonal entries in the first table. Two of these entries are the assigned

over-achiever and predicted smart slacker (22) and the converse, assigned smart slacker and pre-

dicted over-achiever (19). Recall that the smart slackers do poorly in most aspects of the course

with the exception of the first exam, where they perform anywhere between moderate and excel-

lent. With both groups doing reasonably well on the first exam, this helps to explain a bit of the

confusion between the two groups up to this point in the class. It may also be the case that by

the first exam, some of the students who started the term as over-achievers start to become smart

slackers as the term progresses. With good anecdotal evidence for this transformation, we have
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another possible source of confusion between over-achievers and smart slackers. The other two

entries are those where the students who were assigned to the intervention group and predicted

to be an employee (17) and those who were also assigned to the intervention group and predicted

to be rote memorizers (19). Recall from Dr. Manspeaker’s work that intervention students have

similar grades as rote memorizers with the exception of attendance and written homework. As

for mistaking employees for intervention students, it is important to remember that employees

typically have the second highest grades in all categories except attendance. And in attendance,

employees do well at the beginning of the term but eventually stop attending. So both employees

have good attendance early in the term, do well on written homework, are both strong on pro-

cedural exam questions, and are weak on all other types of exam questions. It is therefore not

surprising that these two groups, employee and intervention, are confused early in the class.

3.3 Walking through Model Space

So the Bayesian groups failed to cluster. But the Bayesian inference and group mapping was done

with all of the assignments in the course. We could instead take a subset of the assignments, and

run the inference algorithm using only the data from this subset of grades. We thought that it

might be possible that some assignments were interfering with group predictions and clustering.

For some assignments might be too easy or too hard, and thus mislead the inference algorithm. So

some subset of course work might be better at predicting a student’s group than others.

We cannot examine each model built of a subset of data as there are 2165 ≈ 4.67680 × 1049

models in total. So we decided to use hill-climbing, which is a standard exploration technique in

artificial intelligence. Hill-climbing provides us with a technique of searching for a local extreme

in the space of all models. Below is an outline of the hill-climbing algorithm.

1. Select a random set of assignments and generate the corresponding model.

2. With this as the current model, compute all neighboring models — models with either one
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more or one less assignment than the current.

3. Compare the current model with all of its neighbors. If some of the neighbors are better,

take the best one as the current one and repeat at step 2. Otherwise, we have found a local

optimum.

We hoped that such a technique would winnow the assignment set down to the essential ones.

As to the question about how one model is better than another, we employed the Kullback-

Leibler divergence (KL divergence) from information theory. When comparing the fitness of a

subset of assignments in their ability to predict student groups, we would build two models to

predict the groups of F10 data, one which is trained on F09 data and another trained on F10 data.

The F09/F10 model was our “test” while the F10/F10 was the “control”. By comparing the test

model against the control, we aimed to learn how good the particular subset of assignments, upon

which the models were built, was at predicting groups. This fitness would be determined by the

KL divergence. The two models gave us two probability distributions for each assignment and

each student from F10. Each corresponding distribution was compared via the KL divergence,

and the median divergence across all the students and assignments was used as the metric for

comparison.

Initially, models were compared using the mean of all the KL divergences. However, after

numerous tests, the locally optimal models obtained from the walks typically used only one as-

signment and never more than ten assignments. Then the median was chosen as it would not be

affected by a few poorly predictive distributions. It is standard when performing hill-climbing,

to perform multiple “climbs” which start at random locations. The reason is that hill-climbing

only returns a local optimum. And returning multiple local optima may provide insight into which

assignments are more predictive by examining which assignments occur more frequently. Two

sets of walks were performed. The first set allowed models to draw from all the assignments in

the class, but the second set removed the questions from the first exam. We performed this sec-

34



ond walk after observing the prominence of the first exam and final exam questions in the locally

optimal models. This was done to test whether the many occurences of questions from the first

exam was due to some intrinsic importance. We discuss the results and implications more in the

following chapter. For now, we shall merely acknowledge the two sets of walks. Each set of walks

had ten walks which started randomly at a model built from 30 assignments, five walks started at

random models of 60 assignments, four walks at random models of 90 assignments, and one walk

at a random model of all the assignments. Additionally, with the extra assignments, we ran three

walks in the first set at random models of 120 assignments. With the first exam removes, there

weren’t enough assignments to perform walks starting at models of 120 assignments. So in total,

43 walks were performed over the two sets — the first set comprised 23 walks, and the second set

accounted for 20 walks.

Below is a table summarizing the results of the hill-climbing through the various Bayesian

models. The tallies are divided up in two ways: by assignment category and by approximate time

during the semester, in other words between which two subsequent exams the assignment occurs.

The assignment categories have been abbreviated in order to fit the table into the margins. The cat-

egories are, in order, attendance (Attend), extra credit (EC), homework (HW), online homework

(OHW) [which is itself subdivided], lecture (Lect), studio (Studio), and exam questions (Exam

Qs). The online homework data used here is written as two numbers separted by a forward slash

“/”. Of these two, the first number represent the number of occurrences of the scores of these

assignments during the particular time. And the second number represents the number of occu-

rances for, what is known in our research group as, the inverse time to ninety of the assignments.

With our in-house online homework system, the students are not limited in the number of times

they may submit the homework for grading. All of the submissions from a given student, which

is submitted prior to the deadline, are graded but only the best grade is recorded while the others

are ignored. The phrase “inverse time to ninety” refers to the reciprocal of the number of attempts

it took the student to achieve a grade of at least 90%. A student who does not reach this mark on
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Attend EC HW OHW Lect Studio Exam Qs Total
? ≤ Exam 1 86 21 5 28/11 13 3 72 239
Exam 1 < ? ≤ Exam 2 43 0 14 43/27 8 8 70 214
Exam 2 < ? ≤ Exam 3 49 0 5 31/14 34 6 32 171
Exam 3 < ? 39 23 14 30/12 36 11 102 268
Total 217 44 40 132/64 91 28 276 892

Table 3.6: Walks

Attend EC HW OHW Lect Studio Exam Qs Total
? < Exam 1 70 18 6 17/11 8 5 - 135
Exam 1 < ? ≤ Exam 2 36 0 9 32/18 16 0 64 175
Exam 2 < ? ≤ Exam 3 45 0 5 15/10 27 8 28 138
Exam 3 < ? 32 20 11 21/14 25 10 88 221
Total 183 38 31 85/53 76 23 180 669

Table 3.7: Walks with exam 1 dropped

an assignment is assigned a zero for their inverse time to ninety. This metric acts a velocity, how

quickly does the student “move” through the assignment. The data are contained in Table 3.6.

We noticed that the questions of the first and final exam featured prominently in the hill-

climbing results. This observation led to our next inquiry. The question we investigated was

whether the first exam was intrinsically important itself or whether its significance derived from

the fact that it impacted students first and overshadowed the effects of the other exams. If the

first exam merely overshadowed the importance of the other exams, then one would expect the

second exam to rise in importance with the first one removed. Or the third exam would be more

significant if the second exam has little importance. So the hill-climbing was repeated but with all

of the first exam data. The results are in Table 3.7.

While interesting, these results did not answer our questions about identifying changes in

student behavior. The results of the walks through model space will be discussed in the next

chapter. For now we will stick to the narrative of our data-mining journey.
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3.4 A Hidden Markov Model in the Data

Around this point in time, we realized that we could return to the idea of using Bayesian networks,

namely hidden Markov models (HMM). An astute reader may recall that our reason for choosing

Bayesian inference over more general Bayesian networks was the worry that the networks would

over-fit the data. Like our inference method, HMMs only depend upon the previous state and the

current observation. So there wasn’t a great deal of concern about over-fitting with a HMM. Also,

we had decided to abandon the PCA data, which was the data with marginal variance and the

significant possibility of being over-fit.

The idea is that Dr. Manspeaker’s behavioral groups served as the hidden states, and the grades

as the observable states. As for the parameters of the HMM, we could compute the state transition

probability simply by using the distributions from Bayes inference, the probability of observing

a particular grade given the student’s group can be derived from the Bayes data and the grades

for the semester, and finally the initial state distribution can be taken to be uniform or computed

from training data. As we did with the Bayes models, we can build the HMM parameters with one

training data set, in order to get a model of a testing data set. For example, we can build a HMM

model with the 2009 data and use that for predictions of the 2010 data.

For us, the natural analysis was the most likely path through Dr. Manspeaker’s groups for each

student. Having done this, we immediately tried clustering the paths again. But as before, the

group assignments didn’t admit an obvious clustering. After a bit of thought, we came to the idea

of focusing on the times when a student belongs to the same predicted group over a number of

assignments. We called these sequences of a constant group membership a “run” for the student.

For example, suppose that some student has been assigned to the Employee group by the Bayesian

model for each of the sixteen questions on the second exam; then we would say that this student

is in a run of the Employee group which starts at the first question of the second exam and has a

length of 16. At first, we wanted to focus on each student’s longest run, and then later analyzed all
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Dr. Manspeaker \ Run I OA E SS RM Total
I 10 44 8 0 0 62
OA 5 110 7 0 0 122
E 3 8 4 0 0 15
SS 4 50 7 0 0 61
RM 5 4 1 0 0 10
Total 27 216 27 0 0 270

Table 3.8: Dr. Manspeaker’s Fall 2010 group versus the group of longest run

runs for each student which were at least 10 long. The minimum length of a run was chosen to be

ten because during the semester, ten assignments covers about a week and a half with, of course,

the exception of the exams which are more than ten questions. This time frame is roughly a little

more time than it takes for a student to have turned in a written assignment, and have it returned

graded. The hope was that students might be prompted to a change upon seeing their work graded.

Table 3.8 shows the number from students of Fall 2010 in each of Dr. Manspeaker’s groups

versus the group of their longest run. Here the longest run is obtained from the model trained

on 2009 data and tested on 2010. We can see the difficulty the model has with students which

Dr. Manspeaker identified as smart slackers or rote memorizers. As there were only fifteen smart

slackers and six rote memorizers out of 235 students in 2009, it is understandable how the HMM

is struggling to correctly place these groups. The model also had trouble with employee students.

This is reasonable, as they were the hardest for Dr. Manspeaker to classify as well. The model did

well in placing the over-achievers. But for some unknown reason, the runs also had trouble with

the smart slackers.

What was particularly interesting was how quickly people started their longest run. Table 3.9

shows the number of students who had started their longest run by the end of each exam and in

which group the run was. Notice that by the first exam, about 63.0% of the students had already

started their longest run. In fact, if we examine further, we can see that 164 students (≈ 60.7%)

have started their largest run by the second week of class. This warranted further study. For we
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# of Students I OA E SS RM Total
Exam 1 18 140 19 0 0 177
Exam 2 25 173 23 0 0 221
Exam 3 27 215 27 0 0 269
Final 27 216 27 0 0 270

Table 3.9: Number of students who have started their longest run prior to the corresponding exam

now have an hypothesis as to how soon students start to settle into a pattern of behavior.

The drawback of the Viterbi analysis, however, is that we cannot determine student groups

in real time. The way the algorithm works, the selection of the most likely path varies greatly

as new data are added. So the paths obtained mid-semester would change drastically as data are

added. We would need to wait until the end of the semester before we could run the algorithm to

get the most likely path, and then analyze the runs of that path. But if these models of behavior

have decent accuracy, then we have made significant progress. For while real-time data would be

preferable, merely having the information is an improvement over our present situation.

We will conclude this chapter with the last bit of data analysis done for this project. We

examined all the runs of a student which are at least 10 assignments long. By ignoring everything

else, we seemed to be throwing out the “noise” of fluctuating behavior and focusing on the strong,

consistent “signals”. We could then look at how many students were in a run at any given time.

This is shown in figure 3.2.
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Figure 3.2: Long Runs
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Chapter 4

Interpretation

Despite the sophistication of the analysis and models, we have yet to provide any empirical support

for them. However, all of this work can still be useful, especially in the coming years. What we

have is a basis on which we may formulate further claims for further investigation. This is the

purpose of the current chapter: to pose hypotheses from the models, muse upon their possible

implications, and suggest ways of testing such claims. We shall focus first upon the results from

the walks through the space of naive Bayesian models and then focus upon the findings from the

analysis of runs in the Viterbi paths.

4.1 Bayesian Walks

Recall that at the end of these walks, we have a collection of subsets of assignments which did a

locally optimal job of predicting the Fall 2010 model from the Fall 2009 data. We will refer to an

assignment one of these subsets as an assignment instance. Obviously, any particular assignment

may have multiple instances within the collection. The amount of instances an assignment has in

this collection is what we wish to examine. In Table 3.6, we see that exam questions are the most

prominent measures, which account for 276 of the 892 instances (≈ 30.9%). Next most frequent
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is attendance in recitation and studio, which appeared 217 times (≈ 24.3%). Together, these two

assignment categories comprise over half of all instances found in the locally optimal models.

And within these categories we find more interesting patterns. One of the most striking is

that questions from the third exam only occurred 32 times (≈ 11.6% of the 276 exam question

instances). This is less than half of the next smallest subcategory, that being the second exam

with 70 instances. To provide a bit of context, exam two covers quadratics and transformations

of functions; while exam three deals with the fundamental theorem of algebra. The first exam

reviews basic algebraic techniques, and the final exam is cumulative and includes exponentials and

logarithms. Within attendance scores, the most prominent subcategories are those which happen

prior to the first exam, having 86 of the 217 appearances (≈ 39.6%). The attendance between the

second and third exams is the next most frequent, appearing 49 times. The Fall semester starts

after mid-August, with the first exam around mid-September, second exam before mid-October,

and third exam within the first two weeks of November.

In short, attendance and exams were most prominent in the Bayesian walks, and such data

occur more frequently earlier rather than later in the term. These findings support our belief that

students settle into behavioral groups early in the semester. We will now explore implications

and explanations for these observations. First, we explore how these analyses relate back to Dr.

Manspeaker’s groups. Then we reflect on how attendance and exams are unique evaluations of

students and why they may be better at predicting behavior. Finally, we focus upon how to improve

student behavior using this information.

4.1.1 Reinforcing Dr. Manspeaker’s Groups

One of the first interpretations we came to was that the results of the Bayesian walks were evidence

which supported Dr. Manspeaker’s thesis. The data suggest that attendance and exams were the

more accurate predictors of membership in her conceptual groups from one term to the next. And

our findings are consistent with hers. Recall that she found that over-achievers and intervention
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Attendance
Good Drops off Poor

Exam
Scores

Good Over-achievers — —
Adequate — Employees Smart Slackers

Poor Intervention — Rote Memorizers

Table 4.1: Qualifying Dr. Manspeaker’s Groups by Attendance and Exam Scores

group members had good attendance, while the smart slackers and rote memorizers quickly stop

attending. As for the employees, they start the semester with good attendance, but this good

behavior eventually disappears. Whereas with exams, Dr. Manspeaker saw that smart slackers do

well only on the first one, employees do alright overall, and the rote memorizers and intervention

group tend to do the worst. Of course, the over-achievers excel on the exams. So one could infer

just from her results that exams and attendance would be good variables to differentiate the various

groups, as is illustrated in Table 4.1.

One of the problems with this analysis is that we are confirming Dr. Manspeaker’s’ results

by using her results. At least on the surface, this criticism weakens when one realizes that the

techniques employed in the two approaches are rather distinct. However, there may yet be some

undiscovered connection between the two methods used which would validate this accusation of a

circular analysis. Still, the observations present in this work give us new predictions to investigate.

One item to investigate is comparisons between individual sections of the course. The data

used for this work did not include the section to which each student belonged. It would be inter-

esting to see whether individual instructors had enough of an effect to impact the data, and whether

one can determine the instructor based solely upon grade-book data. If it is possible to identify

instructors by their students’ grades, then it seems likely, based on previous attempts to judge in-

structors by teaching ability, that the data would only be able to do so in a few cases. This would

reflect current wisdom, that it is difficult to quantify instructor ability for all but the most extreme

cases. But even if we were unable to correlate grades with instructors, then this lack of correlation

43



would indicate that other changes may be more profitable in increasing student understanding.

Another research idea is to use the analysis techniques presented here to explore the differences

between students in Fall and those in Spring terms. We have some data from Dr. Manspeaker’s

work. She found that while the behavioral groups are the same, their relative sizes vary between

Fall and Spring. It would be very interesting to see whether students’ behavioral patterns change

as well. If this is the case, then a typical Spring semester employee would be different from a

typical Fall semester employee. So not only would the proportions of the behavioral groups be

different between semesters, but the groups themselves would be comprised of students whose

conduct varied over the terms as well.

4.1.2 Stable Measures

Another proposition is that attendance and exams are more “stable” measures. While assignments

like written homework can vary between terms and textbooks, attendance and exams are rela-

tively constant in the Studio College Algebra course. This idea about the stability of attendance

and exams quickly runs into trouble with online homework and studios, as these two are also very

consistent across semesters. But what separates these two from attendance and exams is the pos-

sibility of collaborating on studios and of repeating the online homework as often as the student

likes. This makes studios and online homeworks more formative assessments of the student’s abil-

ity, rather than summative assessments. However, it is not unheard of for students to “collaborate”

on exams. But we feel that it is safe to ignore this, as cheating, which is actively discouraged

and monitored, is likely to be minimal in comparison to collaboration on homework assignments,

which is encouraged.

As improving exam scores is almost the focus of the class, we feel it may be easier and more

interesting to try to increase attendance in recitations and studios. It would be interesting to ob-

serve whether the group of over-achievers would grow with increased attendance. Furthermore, it

is unclear how a change in attendance would change the frequency with which attendance mea-
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sures occurred in the walks. The frequency of attendance measures is linked with the amount

of information, on the behavioral groups, attendance carries. Information from attendance might

increase if the over-achievers and intervention students came to class more and all other students

kept the same pattern of attendance. This would mean that the disparity between good attendance

and bad widened, which would allow attendance scores to discriminate more effectively between

the groups. And if better attendance caused a positive change in student behavior, then informa-

tion from attendance would increase even more. However, this idea of increasing attendance to

better determine behavioral groups has diminishing returns. For if every student were to have per-

fect attendance, then attendance measures would yield no information. We should keep in mind

though that this work to detect behavioral groups is to serve the higher purpose of improving in-

struction and student understanding. So we should not let the desire to more effectively determine

a student’s behavioral group prevent us from trying to improve attendance or any other positive

behaviors.

4.1.3 Extending Research to Other Courses

With the suggestion that attendance may improve behavior, it is worthwhile to consider how to

get numbers from this metric to increase. In comparing math with other departments (outside

the science, math, and engineering disciplines), we find that these disciplines see attendance as

much more essential than we do in math. For example, in English courses, attendance is integral

to understanding. Students discuss works of literature and interpretations of them. Hearing other

people’s opinions is not something that can be done alone. Whereas in math, material is presented

to the class, and in turn the students can ask questions of the instructor. If a student fully un-

derstands the lesson and has no questions, many instructors would assent, perhaps grudgingly, to

the claim that the student does not need to attend that lecture. This just illustrates the simple fact

that, in other fields, student engagement is more critical to success in class. While the educational

literature is full of examples of people reinventing the mathematics classroom to be more interac-
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tive, we instead wish to focus on how our research, including Dr. Manspeaker’s, might be used to

further elucidate the differences between various courses.

First, it would be very interesting to see these data-mining techniques applied to courses in

other departments. Perhaps the most useful courses to examine are those which have the largest

enrollment. Dr. Manspeaker’s study would need to be replicated first, revealing what behavioral

groups exist in such a class. Though behavior may not be a proper way to distinguish various

clusters of students. If we compare these results to an introductory English class, the prominence

of attendance as an indicator of a student’s group would be most interesting.

And of course, tracking students throughout numerous classes would undoubtedly provide a

greater wealth of information. This is a rather ambitious goal as it requires cooperation across

campus and significant institutional support. Still, the idea of being able to track students through-

out their careers is indeed promising. It would be interesting to see how the student clusters across

departments compared. It is unlikely that one set of groups would describe every course. But there

surely would be similarities within departments and even between departments. And if we track

students throughout their time at Kansas State University, the data might lead to clusters which

explain a given student’s behavior in each class for every semester.

An easier task would be to compare the Studio College Algebra course with the traditional

College Algebra. The studio class has a weekly schedule only one large lecture but two small

sessions — recitation and studio, whereas the traditional has two large lectures and one small

recitation each week. This may even show differences in the importance of attendance in predict-

ing groups. We speculate that the groups will be the same, though their proportions will differ.

And further, attendance will likely carry more information since the traditional sections are more

passive in their teaching style than those of the studio sections.
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4.2 Long Runs

Recall that long runs were long stretches of time in which the Viterbi path assigns a student to the

same behavioral group. We examined each student’s longest run in a behavioral group, and found

that a majority of the students started their longest run no later than the second week of class. We

then examined long runs, which we took to be runs that lasted over at least ten assignments. The

minimum length of ten was chosen because that length lasted a little over a week. The hope is that

this is a small enough amount of time for a student to start exhibiting change in behavior.

4.2.1 Early Behavioral Patterns

The main revelation from the long runs analysis is how quickly people started their longest run,

with a majority having started by the second week. This seems to inspire hope that there may

yet be a way to quickly identify a student’s behavioral group. While the analyses presented here

do not offer a means of such speedy associations, the work does suggest starting to look for these

behaviors early. It is unreasonable to expect that one could determine every student’s group shortly

after the second week. But being able to pin down some students who can be identified early is a

start and clearly improves our teaching.

The difficulty of course is designing tests and experiments to tease out student behavior so

soon in the term. Classroom practices like taking attendance, learning names of the students,

and the behaviors of the instructors are among the few which are significant and rather simple to

implement this early in the course. The importance of learning names and taking attendance is in

how they affect student perceptions. Establishing a habit of taking roll, and doing so noticeably,

indicates to students that any absence will be noticed by the instructor. It is more costly for students

to miss a class where the teacher observes they are gone, than to miss a class where the teacher

is unaware. If the instructor knows the student’s name, then this effect is multiplied. Further the

suggestion is that the professor sees attending class as important rather than merely recommended
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or even optional. As for the teachers’ behaviors, the literature survey samples some of the work

done on studying the effects of actions — such as having a positive tone in the syllabus3 and

encouraging students to ask for help outside of class6 — taken at the beginning of the course.

4.2.2 Fluctuations in Stability of Behavior

Figure 4.1: OA Runs

The other interesting observation comes from

examining the over-achiever runs. The one

with the biggest change in the number of peo-

ple in a run occurs in Figure 4.1, just before the

fifth homework. In a two week period between

the sixth and eighth week of class, the number

of students in over-achiever runs changes from

around 175 to fewer than 100. Granted, there

is a steep incline at the beginning and a steep

decline at the end. The incline is simply due to

the fact that there isn’t enough information to

classify many undergraduates at the start of the

course. The decline at the end is the other significant change, which we will discuss in a moment.

The drop in over-achiever runs between the sixth and eighth week is rather interesting. The

fifth homework covers inverse functions and composing functions; the sixth deals with translating

graphs of functions; and the seventh tests knowledge of solving equations containing absolute

values or radicals. One of the first interpretations is that this material is unfamiliar to the students,

whereas the previous material on linear and quadratic functions is likely to be familiar to some of

the students. So around this time in the semester, those students who were better prepared than

the others no longer have the advantage of having seen the material. However, many students do

not understand slopes and intercepts of lines, and are not able to interpret these concepts in a real-
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world context. Evidence for this can be found in the early studios which deal with linear models.

In particular, one studio has the students construct a linear model using data from the previous

baseball season. They build a model of games won by each team from the difference between

the number of runs the team scores against others and the number of runs the team allows against

itself across the entire season. The meaning of the slope and of the y-intercept from the model,

games won = m(runs scored − runs allowed) + b, is opaque to the undergraduates. Students are

unable to identify that the y-intercept for the model is roughly half the games in a season, and why

this is reasonable. Nor are students able to understand that the slope is how many more games a

team would win if the team scored one more run in the season. Students are often unable to go

beyond the rote phrases, such as “slope is rise over run”.

Around the time linear models are discussed, the students may also be exploring the aspects

of college life outside the classroom. At this time in the semester, the world outside the class-

room may yield some insights, as it is becoming even more significant. Students are becoming

acquainted with the local bars, or reacquainted in some cases. First-year students have likely

stumbled upon the idea that their parents are no longer nagging them about doing homework or

getting to class on time. And those returning may be falling back into bad habits. Whatever the

case, the easy-going attitude which accompanies a new term has gone. And concerns about life

outside of class or just concerns about other courses cannot be ignored as influences on student

behavior.

Still, the author believes that this is a good point in the course to start experimenting with

teaching methodology. The events that happen outside College Algebra must be taken as more

noise in our data. With large samples, we can safely ignore these variations to focus on whether or

not a new presentation of quadratic graphs works better. The goal is to diminish the dramatic drop

in the number of over-achiever runs. However the constraint is that our changes cannot radically

affect the schedule or assignments of the course. For the data analysis techniques presented here

assume that the training data and the testing data came from comparable semesters. Any drastic
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changes to the course should be done incrementally, and major changes should be introduced one

at a time. This will help to ensure a more reliable analysis of the data. Still, there are many

experiments left to try and many more things to learn.

As for the final drop in number of over-achiever runs, it is harder to find new research questions

here. One way to lose runs in Viterbi paths is for the transition probabilities to become more

diffuse. In our case, it is more difficult for a student to remain an over-achiever from one final

exam question to the next, than it would be for the same student to stay an over-achiever from

homework 10 to the next assignment. Repeat this reasoning for each question on the final, and

it becomes easy to see how we are losing runs. This might mean that our final exam is too

difficult. An overly difficult assignment diminishes our ability to differentiate a student into one

of Dr. Manspeaker’s groups, and so makes transitions out of the over-achiever category more

likely. It should be noted that the author is not suggesting that term exams should be easier for

whatever reason, but is merely trying to suggest an interpretation of the analysis. There is also the

possibility that the final has less power to distinguish students because the exam isn’t challenging

to the class. But this can be quickly discarded because it contradicts the plentiful ancedotes and

personal experiences of instructors. Possibly if the semester could be exteneded so that there

were homework and attendence points to be earned after the final, then the number of runs in

over-achievers would not drop as much.

These claims of the final exam “spoiling” runs of over-achievers are difficult to verify. There

aren’t going to be students to interview after the term ends. It may be possible to interview some

after they return from the break. But the lag introduces whole classes of new complications be-

cause the students will be in completely different emotional and mental states. One interpretation

which might be testable is that homeworks after the exams “pull up” the number of runs. At first,

this seems to violate the Markov property of these paths through a HMM, having a state depend

upon any other state but the preceding state. But these paths are derived from the Viterbi algo-

rithm, whose results vary greatly as the computation progresses through the model. The algorithm
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builds up arrays of which is the most likely state transitioned into from each state at each time,

and then starts to walk backwards from the most likely state at the end of the model given the

final observation. If an extra time period is appended to the model, the new Viterbi path for this

longer model will be completely different from the old path, provided the walk backwards in the

new path moved to a different state than the old path ended on.
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Chapter 5

Conclusion

Broadly, our intentions were to find how quickly we could identify to which behavioral group an

arbitrary Studio College Algebra student belongs and to see if we could determine how that stu-

dent’s behavioral classification changed throughout the semester. We started by analyzing grades

with a naive Bayesian approach. This analysis didn’t bring us closer to achieving our two goals,

but it did provide us with insight into which grades are predictive of Dr. Manspeaker’s groups

from one semester to the next. We obtained this by gauging how well various models predict

the Fall 2010 group assignments, when build from Fall 2009 data. The quality of the prediction

was determined by comparing them to the model forecasts when built from Fall 2010 data. The

models varied in which assignments they included and excluded. As the number of models was

too large, we used standard hill-climbing to find locally optimal models. These results showed

that attendance and exam scores were found most often in the locally optimal models.

More importantly, we used the Bayesian models to generate transition probabilities for naive

hidden Markov models. And the HMMs did provide us with clues to how our two goals might

be achieved. The Viterbi algorithm produced, for each student, the most likely path through the

behavioral states over the term. From these Viterbi paths, we focused on the times when a student

was consistently in one group over a long period of time — what we called a “run” in that particular
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group. We found that a majority of students started their longest run by the second week of class.

And then by broadening our focus from longest run to long runs, we seem to have produced a data

set which is much more amenable to analyzing changes between groups.

5.1 Identifying Behavior Fluctuation

Unfortunately, when we focused on long runs in Viterbi paths, i.e., a run whose length was at least

ten, these filtered data did not cluster. So we were unable to easily pull out new groups of students

based upon their filtered Viterbi paths. But if we aggregated the number of students in a run by

the group in which the run occurred as in Figure 3.2, then we saw interesting changes over the

semester. We have already examined the fluctuations in the over-achiever group in section 4.2.2.

As for the rote memorizers and smart slackers, their numbers are too small to draw any reasonable

conclusions from. But the intervention and employee groups are large enough for us make some

educated guesses from.

Figure 5.1: I Runs

The intervention group has two major

peaks. The first one occurs about one week be-

fore the first exam and the size rises to slightly

less than 60 students, and falls off right af-

ter the same exam to under 30. The second

peak happens at one of the the second exam

questions, and the group size falls from over

70 students to under 30 by the third exam.

The first peak of intervention runs may be due

to confusing this behavioral group with over-

achievers. The reader may recall that both

groups do well on homeworks and attendance,
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but become distinguishable on exams, with over-achievers doing well on exams and intervention

members doing poorly. So it is reasonable to see the initial intervention peak fall just before or

at the beginning of an exam. The second peak occurs at one of the second exam questions and

levels off by the third exam. One interpretation of this is that students who performed poorly on

the second are incorrectly classified in the intervention group. Then after the exam, those who

do not do well on the homework would be weeded out of the intervention group. Of course, an

alternative interpretation is that student behaviors are indeed changing, and this change is reflected

in the data.

Figure 5.2: E Runs

The employee group has three crests. The

first occurs at the end of the first exam and

comprises 45 students. The number then falls

slightly over the next week before it reaches

the second crescendo about one week before

the second exam. This falls slowly over the

questions of the second exam and then crashes

to zero students afterwards. Then the number

of employees climbs quickly upward to reach

its final maximum of roughly 40 students dur-

ing the third exam. The initial rise in numbers

of employees takes about one week to com-

mence. It seems reasonable that it should take some time to identify employees, as it may take

awhile to distinguish their persistent apathy from a troubled start of a semester. But the fall in

employee numbers towards the end of the semester admits a more interesting interpretation. It

may be possible that many employees start to work hard at the end of the term, in the hopes of

improving their grades. To test this claim, we may try to interview employees around this time.

However, Dr. Manspeaker found that employees, in addition to having poor class attendance, also
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have poor attendance to interviews which they agreed to do. So this claim may be one of the more

difficult ones to verify.

5.2 Further Research

In chapter 4, we talked about some ways that this research can be extended. The focus of this

section is to emphasize, what we feel to be the more important suggestions and to discuss more

direct extensions to this work. The first few suggestions are rather obvious: run the Bayesian

and HMM analysis on the Spring semester data and do these analyses, as well as the behavioral

group analysis, on the traditional College Algebra course. Dr. Manspeaker found that her groups

from the Fall semester of Studio College Algebra also carried over into the Spring term as well.

But there are important differences in these two populations of students: the Fall term has many

more first-year students and, in general, more students taking College Algebra for the first time;

whereas the Spring term has a larger number of students who are retaking College Algebra, and

a smaller number of first-year students. Whether the long run analysis shows that Spring is a

clearly different population from Fall or the two are almost interchangeable, either result would

be fascinating.

As for the traditional College Algebra course, this will take more time, as Dr. Manspeaker’s

analysis needs to be repeated in full. It may be sufficient to skip the interviews and assume that the

behavioral groups for traditional are the same as they are for studio. As this was the most time-

consuming part of her work, its omission would speed up the process by years. In the traditional

class, we would expect to see more rote memorizers, as Dr. Manspeaker has informed the advisers

of her work and indicated that these types of undergraduates should be in traditional rather than

Studio College Algebra. So we can expect to get more information about the fluctuation of stu-

dents into and out of this group. The traditional course, with its different population distribution

and altered focused, is likely to display new patterns of change in student behavior. By comparing
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the results of these two courses, we may be able to uncover a bit of how students’ behaviors differ

in these two classes.

One of the ways which we could directly continue this research is to pay close attention to the

beginning of the term. First, we might focus on student attendance early in the semester. We have

seen that attendance is likely to be a good predictor of the Bayesian groups, and that attendance

is an easy metric to watch during the critical first few weeks, before a majority of students start to

settle into a long run. It seems that gathering the early attendance is a worthwhile endeavor. As

this data is simple to gather and monitor, a lack of findings from the data would not be so costly.

And it is possible that we might find a way to predict some of the students’ early behaviors. Being

able to identify students this early would be of great benefit towards trying to retain students and

help them be more successful in College Algebra.

A more time-intensive task would be to interview students soon after the first few weeks of

class. This is an attempt to answer the question of how soon do students form their beliefs and be-

haviors about math. While trying to answer the question herself, Dr. Manspeaker added questions

to the university math placement exam which inquired about these attitudes. However, she found

that she could not associate the students’ answers to these questions with her groups. We came to

believe that students do not have their behaviors set prior to arriving at college, but do have pat-

terns of acting by the first exam. The work presented here using HMMs suggests that beliefs and

behaviors stabilize within the first two weeks for a majority of students. By interviewing students

early in the semester, we may confirm whether or not this prediction is correct.

Finally, it may be possible that further exploration of the data and the parameters of the analysis

will turn up interesting results. For example, each problem from all the exams appears as an

“assignment”, or a measure in the language of HMMs. The totals for the exams are also measures.

This means that a week’s worth of assignments consists of a little fewer measures than the three

regular exams, and the final exam is at least two if not three week’s worth of measures. It could be

that this configuration overestimates the importance of exams by allotting them too many measures
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in the HMM analysis. Additionally, we could adjust the minimum length of the runs in the Viterbi

paths. As mentioned earlier, we chose ten measures because it was roughly one week’s worth of

assignments. However, it may be that longer runs might do a better job of filtering out the group

“signals” from the “noise” of moving between groups. In our testing, we could not find a different

minimum length which would produce runs which would cluster more easily. And so we decided

to stick with our initial choice of ten measures as a minimum length for a long run.
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Appendix A

Sample R Session

rachParamsF09 <− p r e p a r e B a y e s P a r a m s ( m100f09 [ ” gp ” ] , da t aF09 )
rachParamsF10 <− p r e p a r e B a y e s P a r a m s ( m100f10 [ ” gp ” ] , da t aF10 )
rachBayesF09 <− bayes ( rachParamsF09 , da t aF09 )
r achBayes <− bayes ( rachParamsF09 , da t aF10 )
rachBayesF10 <− bayes ( rachParamsF10 , da t aF10 )
rachGrpsF09 <− apply ( rachBayesF09 , c ( 1 , 2 ) ,

f u n c t i o n ( x ) { max . c o l ( matrix ( x , nrow =1) ) } )
r a c h G r p s <− apply ( rachBayes , c ( 1 , 2 ) ,

f u n c t i o n ( x ) { max . c o l ( matrix ( x , nrow =1) ) } )
rachGrpsF10 <− apply ( rachBayesF10 , c ( 1 , 2 ) ,

f u n c t i o n ( x ) { max . c o l ( matrix ( x , nrow =1) ) } )
p i1F09 <− prop . t a b l e ( t a b l e ( m100f09 [ ” gp ” ] ) )
p i1F10 <− prop . t a b l e ( t a b l e ( m100f10 [ ” gp ” ] ) )
rachHmmF09 <− prepareHMMParams ( rachParamsF09 , da t aF09 )
rachHmmF10 <− prepareHMMParams ( rachParamsF10 , da t aF10 )
r a c h V i t F 0 9 <− v i t e r b i A l g o ( dataF09 , pi1F09 ,

rachHmmF09 [ [ 1 ] ] , rachHmmF09 [ [ 2 ] ] )
r a c h V i t <− v i t e r b i A l g o ( dataF10 , pi1F09 ,

rachHmmF09 [ [ 1 ] ] , rachHmmF09 [ [ 2 ] ] )
r a c h V i t F 1 0 <− v i t e r b i A l g o ( dataF10 , pi1F10 ,

rachHmmF10 [ [ 1 ] ] , rachHmmF10 [ [ 2 ] ] )
rachLRF09 <− f i l t e r R u n s ( r a c h V i t F 0 9 [ [ 2 ] ] , 10)
rachLR <− f i l t e r R u n s ( r a c h V i t [ [ 2 ] ] , 10)
rachLRF10 <− f i l t e r R u n s ( r a c h V i t F 1 0 [ [ 2 ] ] , 10)
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Appendix B

Graphs

B.1 2009 Fall

B.1.1 Bayesian Model

60



61



B.1.2 Viterbi Paths in Hidden Markov Model
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B.1.3 Long Runs in Viterbi Paths
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B.2 2009 Fall Predicting 2010 Fall

B.2.1 Bayesian Model
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B.2.2 Viterbi Paths in Hidden Markov Model
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B.2.3 Long Runs in Viterbi Paths
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B.3 2010 Fall

B.3.1 Bayesian Model
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B.3.2 Viterbi Paths in Hidden Markov Model
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B.3.3 Long Runs in Viterbi Paths
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