THE RELATIONSHIP OF DOUGH CHARACTERISTICS 'AT CONVENTIONAL AND ELEVATED TEMPERATURES 'TO THE QUALITY OF BREAD MADE BY CONVENTIONAL AND CONTINUOUS PROCESSES

by

MARTHA MEI-CHU YN WANG

B. S., Taiwan Provincial Chung Hsing University

Taiwan, 1962

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Food Science

Department of Grain Science and Industry

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1959

Approved by:

Major Professor

## TABLE OF CONTENTS

| INTRODUCTION                   |
|--------------------------------|
| REVIEW OF LITERATURE           |
| Physical Dough Testing         |
| Dry Milk Solids in Bread       |
| Continuous Breadmaking Process |
| MATERIALS AND METHODS          |
| Flour Data                     |
| Physical Dough Testing         |
| Baking Methods                 |
| Objective Scoring Methods      |
| Statistical Analyses           |
| RESULTS AND DISCUSSION         |
| Effect of Temperature          |
| Effect of Nonfat Dry Milk      |
| Effect of Baking Methods       |
| SUMMARY AND CONCLUSIONS        |
| APPENDIX                       |
| ACKNOWLEDGMENTS                |
| LITERATURE CITED               |

#### INTRODUCTION

The farinograph is used extensively to estimate the baking absorption and mixing requirements of flour. The instrument was developed during the 1930's well before the advent of continuous mixed bread doughs (12). Consequently the instrument in general use and the procedure for its use (3) corresponds to conventional bread mixing conditions. Temperature was standardized at  $30^{\circ}$ C. When the amount of water or absorption is adjusted to give a maximum consistency peak of 500 Brabender Units (B.U.), the resulting time to peak, or mixing time, values are of the same order of magnitude as bakery mixing times. However, the commercial development of the continuous breadmaking process in 1954 brought about many changes in the technology of breadmaking (6). To arbitrarily approximate continuous-mix conditions the farinograph would have to be operated at about  $40^{\circ}C.(60)$ .

The present investigation was conducted to study the effect of temperature on physical dough characteristics and to develop a new farinograph procedure and its interpretations to be used in continuous bread production.

### REVIEW OF LITERATURE

#### Physical Dough Testing

Studies on the relationship between temperature and dough properties have not been many. Skovholt and Bailey (65) noted that temperature differences caused plasticity variations in dough of 12 to 40 farinograph units per 1°C. depending upon the range of consistency. Further light was shed on the subject by Moore and Herman (50) who studied the effect of temperature and absorption on a variety of practical farinogram indices and reported that as the temperature increased, the arrival time decreased, and the stability increased. The consistency of the dough likewise exhibited a very substantial influence on the characteristics of the curve. The effect of variations in absorption and temperature on flour-water farinograms was studied by Bayfield and Stone (9). They observed that at constant absorption, consistency softened with increase in temperature. With consistency held constant, the absorption decreased as the temperature increased. Irvine et al. (37) indicated that at a constant absorption as the temperature of the mixing bowl increased, dough development time decreased, miximum consistency decreased and tolerance index increased. Hlynka (33) extensively studied the effect of temperature, mixer speed and absorption on the characteristics of the farinograph curve of an unbleached hard spring wheat flour. Increasing temperature, increasing mixer speed and reducing the absorption each shortened development time. Increased mixer speed, reduction in temperature and reduction in absorption each increased consistency. In a later paper, Conn and Kichline (15) conducted studies on temperature, mixer speed and salt effects on farinograph characteristics. These workers increased the temperature from 30°C. to 40°C. to correspond with the temperature of

a continuous-mix dough. They reported that increase in temperature reduced dough consistency and two peaks appeared in the curves made with both hard spring wheat and hard winter wheat flours.

It is generally believed that testing of doughs under continuous mixing fails to give a complete insight into the effects of such factors as fermentation and mechanical or chemical treatment on extensibility and related physical dough properties. A description of the extensigraph, an instrument designed to test extensibility and resistance to extension after various periods of rest was given by Munz and Brabender (52). They indicated that a study of the rate, direction, and magnitude of change in extensibility and resistance to extension after a time of rest would be a valuable aid in classifying flours for specific uses. The same authors (54) concluded that a combination of farinogram and extensigram data serves to classify soft wheat flours as to their adaptability for specific uses. These workers also demonstrated positive relationships between extensigram dimensions, protein content, and various farinogram measurements. Aitken et al.(1) confirmed Munz and Brabender's findings. The former found significant positive relationships between extensigram length, height, and protein content. Work by Merritt and Bailey (49) demonstrated that the extensibility and the curve area decreased with rest time and reworking. Resistance to extension was increased with the stronger flours; with the weak flours, resistance to extension was at a maximum after the second rest period. Extensive studies on the subject were also conducted by Johnson et al. (39). They indicated that extensibility, resistance to extension, and extensigram area were individually positively correlated with protein content, farinogram mixing time, valorimeter value, mixogram area, and height. Extensigram properties

were more highly correlated with protein content than with farinogram or mixogram properties. In studying the effect of mixing, salt, and consistency on extensigrams, Fisher, Aitken and Anderson (21) reported that increasing the consistency of dough made the extensigram higher and shorter ( decreased extensibility and increased resistance to extension). By contrast, increasing the salt concentration increased both extensibility and resistance to extension. In a recent paper, Brabender (12) stated that extensigraph measures structural parameters of a dough which the farinograph does not detect, namely, the ratio between dough extensibility and dough resistance. This ratio can be influenced by heat conditioning as well as maturing agent.

#### Dry Milk Solids in Bread

Dry milk solids are a desirable ingredient of bread since they supply valuable proteins, vitamins and minerals and frequently improve the appearance as well as the palatability and keeping quality of the bread. However, dry milk solids influence both the physical properties and baking performance of bread doughs. In studying the effect of temperature and of the inclusion of dry skim milk upon the properties of doughs, Skovholt and Bailey (65) found that inclusion of dry milk solids in wheat flour doughs increased the time required to reach the maximum plasticity as indicated by the farinograph. Moore and Herman (50) also found that dry milk solids when added to the flour and water mixture had a pronounced effect upon the arrival time and stability. In 1940, Ofelt and Larmour (56) studied the effect of milk on the bromate requirements of flour. These workers observed that the addition of dry milk solids created a tolerance to bromate which tended to prevent damage to loaf volume and to grain and texture when relatively large dosages were used. These findings were confirmed by West and Bayfield (84). The presence of 6% dry milk solids in doughs was found to reduce the possibility of damage from an excessive amount of bromate used in baking unbleached or bleached samples of flour. The same authors also indicated that the inclusion of dry milk solids increased the loaf volume and improved the crust and crumb color, grain, and texture. Swanson and Bayfield (73) used three mixing machines and mixing speeds from 50 to 200 r.p.m. to study the effect of mixing speed and dry milk solids on bread volume. These workers reported that at all speeds of the mixers, the relation between mixing time and dry milk solids was linear. At the slower speeds, optimum mixing time increased with

increasing amount of dry milk solids. The effect of baking on the nutritive value of proteins in rye bread with and without supplements of nonfat dry milk was studied by Stromnaes and Kennedy (72) in 1957. They found that supplements of milk solids increased the protein efficiency ratio 9% for the bread and 11% for the unbaked ingredients.

## Continuous Breadmaking Process

Ever since the first introduction of continuous dough mixing in 1954, its technology has been undergoing a progressive development. The advantages of the continuous-mix process are of considerable significance. First, it results in a greatly improved uniformity of the doughs and breads. Secondly, the continuous production of dough, coupled with continuous dividing, proofing and baking, greatly reduces labor and power requirements. The greater yield of dough and bread and the saving in space are additional advantages (58). A method for the successful production of white bread was reported by Baker (6) in 1954. He suggested the use of a liquid broth or ferment system to replace the conventional sponge of the sponge dough process.

The introduction of continuous-mix laboratory units in 1959 was an important factor in improving methods of continuous-mix production (57). With these scaled-down pilot models, complicated factorially designed experiments could be performed because of reduction of cost of ingredients and less time involved in operation. Reproducability of different laboratory scale continuous doughmaking units was studied by Titcomb <u>et al</u>.(79). They reported that reproducability within a given laboratory could be predicted; however, precision depended on the technique and particular type of unit involved. Johnson and Miller (40) performed various analyses on preferments. Tests to determine utilization of sugar, production of gas, production of acid, and amounts of protease retained in different preferments were performed. These workers found that a flour that produced good bread by the sponge method also produced good bread by the preferment process. A flour of fair baking quality by the sponge process made very poor bread by the preferment process.

Dry milk solids, when properly processed and used at appropriate levels, exerted a perceptible improving effect on such physical properties of the baked product as its volume, grain and texture, flavor, eating qualities and shelf life. However, the use of nonfat dry milk in the production of commercial white bread was being subjected to a reappraisal as a result of the introduction of continuous-mix processes. Initial practical experience with the operation of the continuous-mix process had indicated that the use of the usual levels of nonfat dry milk may yield bread of variable quality(76). Swanson and Sanderson (74) indicated that nonfat dry milk could not be used at the 4 to 6% level. A level of 1 to 2% had been found desirable in pHbuffering. The effects of individual milk proteins on continuous-mix bread were characterized by Baldwin et al.(7) in 1964. Casein had no effect other than dilution. The albumin and globulin fractions weakened and slackened the dough. This effect was somewhat overcome by high heat treatment. The heat treatment was thought to result in insolublization and protein-protein interaction, rendering the groups responsible for dough weakening ineffective. Work by Swortfiguer (76) has indicated that an oxidant ratio of 3 parts KB\_O3 to 1 part KIO2 produced the best results in high milk formulas. Calcium acid phosphate was used for lowering the pH of high milk brews.

The type of flour used in continuous-mix bread has been shown to be an important factor. Trum and Rose (80) reported that in calculating absorption an increase of 3% should be added to the farinogram value. They also reported on other farinogram measurements, including arrival time, departure time, and mixing tolerance. These workers found that flours with rapid arrival time produced the best results. Flours with long departure times were found to be undesirable in that throughputs had to be decreased due to the increased

mixing and power requirements. When dough properties were measured at 38 C. with a farinograph, certain dough characteristics such as medium mixing tolerance with a relatively short departure time were shown to be superior for use in the continuous breadmaking process. Schiller (62) extensively studied the subject of flour requirements for continuous breadmaking. He compared the time involved in various steps of the continuous breadmaking process with the time for similar steps for the sponge dough process and concluded that the fermentation and mixing times are shorter in the continuous doughmaking process than in the conventional process, therefore greater stresses are placed on the flour. A study of optimum developer speed as related to absorption, oxidation level, and starch damage was performed by Schiller and Gillis (61). It was found that as absorption increased, developer speed had to be increased; oxidation level was also directly related to cptimum developer speed. As starch damage was increased, optimum developer speed increased. Increasing starch damage also decreased tolerance and drastically affected quality of the bread.

The fats used for the production of continuous-mix bread are also important. In addition to the fats naturally present in flour, continuousmix bread formulations generally contain 2 to 5% additional fat. Baldwin, et al. (8) found that a hard fat fraction was necessary; however, it was found that its addition in an emulsified or hydrated state produced much better results than when it was melted for addition.

## MATERIALS AND METHODS

### Flour Data

Several commerical flours obtained from four milling companies were used. Each had been bleached and supplemented with enzymes for breadmaking. The types, sources of flour and the analyses, corrected to a 14% moisture basis, were as follows:

| Sample  | Flour Type                                        | Source                                 | Protein<br>(%) | Ash<br>(%) |
|---------|---------------------------------------------------|----------------------------------------|----------------|------------|
| 1       | Hard winter wheat                                 | Bay State Milling Co.                  |                | .41        |
| 2       | 50% Northern spring and<br>50% Hard winter wheats | The Pillsbury Co.                      | 11.9           | .41        |
| 3       | 75% Northern spring and 25% Hard winter wheats    | The Pillsbury Co.                      | 12.4           | .43        |
| 4       | Hard red winter wheat<br>(Kansas)                 | The Pillsbury Co.                      | 11.4           | •41        |
| 5       | Hard winter wheat                                 | Peavey Co.                             | 11.3           | .45        |
| 6       | Hard winter wheat<br>Hard spring wheat            | Peavey Co.                             | 12.1           | •45        |
| 7       | Hard red spring wheat                             | Peavey Co.                             | 14.8           | .55        |
| 8       | Spring and winter wheats                          | The Colorado Milling<br>& Elevator Co. | 12.0           | .44        |
| 9       | Hard winter wheat                                 | The Colorado Milling<br>& Elevator Co. | 11.8           | .44        |
| 10      | Spring wheat                                      | The Colorado Milling<br>& Elevator Co. | 12.3           | .39        |
| 11      | Hard red winter wheat<br>Hard red spring wheat    | The Colorado Milling<br>& Elevator Co. | 12.3           | •40        |
| 12      | Hard red winter and 25%<br>Hard red spring wheats | The Colorado Milling<br>& Elevator Co. | 12.2           | .40        |
| Control | Hard red winter wheat                             | Kansas State Univ.                     | 11.4           | .40        |

| Sample   | Flour Type                           | Source               | Protein<br>(%) | Ash<br>(%) |
|----------|--------------------------------------|----------------------|----------------|------------|
| Balancer | High gluten hard red<br>spring wheat | The Pillsbury<br>Co. | 16.9           | •49        |
| 7+C      | 50% sample 7 +<br>50% control        |                      | 14.0           | •47        |
| 7+B      | 50% sample 7 +<br>50% balancer       |                      | 16.7           | .52        |
| 12+C     | 50% sample 12 +<br>50% control       | •                    | 12.6           | .40        |
| 12+B     | 50% sample 12 +<br>50% balancer      |                      | 14.9           | • 46       |

#### Physical Dough Testing

#### I. Farinograph:

A farinograph, with a 300 gram stainless steel bowl was operated at 63 r.p.m. and at a temperature of  $30^{\circ}$ C. Approved method no. 54-21 of the American Association of Cereal Chemists (3) was used. For the temperature study, the temperature was adjusted to  $40^{\circ}$ C. by controlling the temperature of a circulating water bath. Three hundred grams of flour at 14% moisture basis were used when testing samples. For nonfat dry milk (NFDM) study, 3% NFDM based on flour as 100% was added. The values for the following interpretations of farinograph curves were recorded (45):

- Absorption: Obtained as the amount of water necessary or required to center the farinograph curve on the 500 B.U. line for a flour-water dough.
- Arrival Time: The time required for the top of the curve to reach the 500 B.U. line after the mixer has been started and water introduced.
- Peak Time: The time required for the curve to reach its full development or maximum consistency.
- Stability: The time that the curve remained on the 500 B.U. line and was measured from the arrival time to the departure time.

5. Departure Time: The time that the top of the curve left the 500 B.U. line.

- 6. Mixing Tolerance Index (M.T.I.): Measured in B.U. from the height of the curve at its peak time to the height of the curve five minutes after the peak.
- Time-to-breakdown: The time from the start of the mixing to a decrease of 30 units from the peak point.

8. Valorimeter Value: A numerical value based on a logarithmic function of

the peak time in relation to the breakdown of the dough 12 minutes after peak time. The valorimeter value was determined by placing a logarithmic template over the farinograph curve and noting where the lines intersected. II. Extensigraph:

All doughs were mixed in the large farinograph bowl to a 500 unit consistency at  $30^{\circ}$ C. or  $40^{\circ}$ C. with or without 3% NFDM. Then the offical method no. 54-10 of the American Association of Cereal Chemists (2) was used. The values for the following extensigraph measurements were recorded:

 Resistance to Extension: Height of curve in Extensigraph Units at 50 mm. after the curve was started on Kymograph chart.

2. Extensibility: Total length of curve in mm.

- Energy: The area surrounded by the curve was measured by means of a planimeter and recorded in cm<sup>2</sup>.
- The Ratio Figure: Resulting from the relation that exists between the resistance to extension and the extensibility.

i.e. <u>Resistance to Extension</u> Extensibility

#### Baking Methods

Flours used in baking were samples 7, 12, control, balancer, 74C, 74B, 124C and 124B. Flours 7 and 12 were chosen for baking test because they present two different types of farinograph curves. Flour 7 had a short curve with short stability and a short peak whereas flour 12 gave a long curve.

A weak flour milled from a hard red winter wheat blend on the Kansas State University pilot mill was used as a control. Another flour milled from a high gluten hard red spring wheat blend, obtained from the Pillsbury Company, was used as a balancer. Flours 7 and 12 were blended individually with the control and with the balancer, each at one to one ratio on the blending system of the Kansas State University pilot mill. The resultant, 74C, 74B, 124C, and 124B were also used in the baking studies. Farinograph absorptions were 66.4, 63.9, 59.4, 67.0, 63.0, 63.2, 62.0 and 66.8 for flours 7, 12, control, balancer, 74C, 74B, 124C and 124B, respectively.

I. Sponge dough method:

A typical sponge-dough formulation was used (Table 1). The sponge was mixed with 70% of the total water for two minutes. The mixture was then placed into a fermentation pan and put into the fermentation cabinet at 86°F. and 86% humidity for four hours. After the fermentation period the sponge and dough with the remaining water were remixed in a Hobart A-200 mixer. Three mixing times, optimum, 1.5 min. under- and 2.5 min. over-optimum, were used. After twenty minutes in the fermentation cabinet each dough was divided and scaled at 510 grams. The two scaled dough pleces were rounded by hand and given a twenty minute rest period before being moulded on a moulder. The moulded doughs were panned and placed into the proof box for 55 minutes at

96% humidity and 105°F. The bread was baked at 425°F. for 25 minutes in a gas reel oven. The finished baked product was allowed to cool for several hours before the volume (seed displacement) and weight were recorded.

Three pieces of dough were made from each flour at optimum, 1.5 min. under- and 2.5 min. over-optimum mixing times. Each dough was divided into two loaves, so a total of 36 loaves were baked. One day following baking, eighteen loaves of bread were evaluated for total score, symmetry, break and shred, grain, crumb texture and penetrometer value. The duplicates of these loaves was placed in the freezer  $(-10^{\circ}F.)$  for storage.

#### II. Continuous-mix process:

An AMF laboratory continuous pilot dough making unit was used in this study. It was a completely integrated unit that consisted of component parts that made up a complete doughmaking system. The system consisted of two 30-gallon jacketed brew tanks with high- and low- speed agitators for mixing the ingredients. After the brew had fermented for 2 hours, it was pumped by a positive displacement pump into a holding tank. This holding tank and five other ingredient tanks were connected to separated variable speed pumps that allowed metering of the ingredients into the premixer. Flours were fed by two volumetric feeders on a track system above the incorporator which allowed changing flours without recalibration. The five ingredient tanks were used for other ingredients not included in the brew. These ingredients were oxidant solution, sugar, shortening, salt and malt. From the incorporator, the ingredients entered a positive displacement pump and were pumped to a variable speed developer head. The dough was given final development at this stage. The dough was then extruded and cut off by a semi-automatic cut-off device. Eight flours, four mixing speeds and an oxidation level of 65 p.p.m.

were used (Table 2). A typical formula for continuous-mix white bread was used (Table 3).

| Sponge       |               |          |  |  |
|--------------|---------------|----------|--|--|
| Ingredient   | %*            | Grams    |  |  |
| Flour        | 70.0          | 490.0    |  |  |
| Yeast food** | 0.5           | 3.5      |  |  |
| Malt         | 0.5           | 3.5      |  |  |
| Yeast        | 2.5           | 17.5     |  |  |
| Water***     | 70.0 of total | variable |  |  |
|              | Dough         |          |  |  |
|              | /             |          |  |  |
| Flour        | 30.0          | 210.0    |  |  |
| Sugar        | 6.0           | 42.0     |  |  |
| Salt         | 2.0           | 14.0     |  |  |
| Shortening   | 3.0           | 21.0     |  |  |
| Water***     | 30.0 of total | Variable |  |  |

| Table 1. Sponge Bread | Formula |
|-----------------------|---------|
|-----------------------|---------|

\* All ingredients based on flour 100% (700 grams).

\*\* Arkady.

\*\*\* The total amount of water used was according to farinograph absorptions.

| Sample   | Mixing Speed (r.p.m.) |     |     | Dough Temp. (F <sup>0</sup> ) |    |     |      |        |
|----------|-----------------------|-----|-----|-------------------------------|----|-----|------|--------|
|          | 1                     | 2.  | 3   | 4                             | 1  | 2   | 3    | °<br>4 |
| 7        | 195                   | 218 | 240 | 265                           | 95 | 98  | 100  | 102    |
| 12       | 170                   | 195 | 218 | 240                           | 97 | 100 | 102  | 103    |
| Control  | 120                   | 143 | 166 | 190                           | 87 | 94  | - 91 | 95     |
| Balancer | 195                   | 218 | 240 | 265                           | 96 | 98  | 99   | 101    |
| 7+C      | 170                   | 210 | 223 | 250                           | 94 | 95  | 101  | 104    |
| 7+B      | 170                   | 195 | 218 | 240                           | 97 | 99  | 101  | 102    |
| 12+C     | 175                   | 200 | 222 | 245                           | 92 | 95  | 96   | 98     |
| 12+B     | 170                   | 195 | 218 | / 240                         | 95 | 96  | 100  | 101    |
|          |                       |     |     |                               |    |     |      |        |

Table 2. Mixing Speeds and Dough Temperatures

of Continuous Doughmaking Process.

| Ingredients | % **     | Phase I*** | Phase II**** | Mixing Phase |
|-------------|----------|------------|--------------|--------------|
| Flour       | 100.0    |            |              | 100.0        |
| Water       | Table 4  |            |              |              |
| Sugar       | 7.0      | 1.0        |              | 6.0          |
| Yeast       | 3.5      | 3.5        |              |              |
| Shortening  |          |            |              | 3.5          |
| Salt        | 2.0      |            | 2.0          | •            |
| Yeast food* | 0.5      | 0.5        |              |              |
| Malt flour  | 0.15     | 0.15       |              |              |
| Inhibitor   | 0.15     |            | 0.15         |              |
| Oxidation   | 65p.p.m. |            | 65 p.p.m.    |              |

Table 3. Continuous-Mix White Bread Formula.

\* Arkady.

\*\* All ingredients based on flour 100%.

\*\*\* Initial ingredients of the liquid sponge.

\*\*\*\* Included ingredients added to the liquid sponge after 1 hour and 45 minutes fermentation.

| Samples  | Absorption(%) | Phase I (%) | Phase II(%) | Mixing Phase(%) |
|----------|---------------|-------------|-------------|-----------------|
| 7        | 69.4          | 47.0        | 4.0         | 18.4            |
| 12       | 66.9          | 47.0        | 4.0         | 15.9            |
| Control  | 62.4          | 47.0        | 4.0         | 11.4            |
| Balancer | 70.0          | 47.0        | 4.0         | 19.0            |
| 7+C      | 66.0          | 47.0        | 4.0         | 15.0            |
| 7+B      | 66.2          | 47.0        | 4.0         | 15.2            |
| 12+C     | 65.0          | 47.0        | 4.0         | 14.0            |
| 12+B     | 69.8          | 47.0        | 4.0         | 18.8            |
|          |               |             |             |                 |

Table 4. The Absorption Used in The Continuous-Mix Bread Formulae.

## Objective Scoring Methods

I. Bread scoring procedure:

A standard scoring system was designed that included six characteristics. The maximum score possible with this system was 100. A specific volume of 7.2 or greater was considered optimum and given the maximum score of 20 points. The scores for specific volume are shown in Table 5. The other characteristics scored included a maximum of 10 points each for symmetry, break and shed; and a maximum of 20 points each for grain, crumb texture and penetrometer values.

- A. Specific volume: The specific volume was obtained by dividing loaf volume in cc's by the loaf weight in grams.
- B. Internal loaf score: The internal loaf score was a combination of the individual score of grain, crumb texture and penetrometer value.
- C. Total loaf score: The total loaf score was a combination of the six other individual scores. The maximum total score was 100 points.

II. Penetrometer determinations:

The penetrometer value was carried out using a Precision Penetrometer to measure the compressability of bread after it had been bagged and stored 1,3, or 5 days at room temperature. The penetrometer was calibrated into one-tenth millimeter divisions. A thick slice of bread was placed beneath the steel, cone shaped disc. The disc and a connecting rod were lowered until the point of the disc came into contact with the product. The rod was then released allowing the disc to drop onto the product. The compressability was recorded in tenths of a millimeter from both sides of the slice in triplicate for each loaf of bread. The scores for penetrometer values are shown in Table 6 and Table 7.

Table 5. The Scores for Specific Volume of Bread

| Specific Volume (cc/gm.) | Loaf Score (pts.) |
|--------------------------|-------------------|
| 7.2 or greater           | 20                |
| 7.0                      | 18                |
| 6.8                      | 16                |
| 6.6                      | 14                |
| 6.4                      | 12                |
| 6.2                      | 10                |
| 6.0                      | 8                 |
| 5.8 /                    | 6                 |
| 5.6                      | 4                 |
| 5.4                      | 2                 |
| 5.2 or less              | 0                 |
|                          |                   |

| Penetrometer Value, 1 day<br>(o.1 millimeter) | Loaf Score<br>(pts.) |
|-----------------------------------------------|----------------------|
| 230 or greater                                | 20                   |
| 220                                           | 18                   |
| 210                                           | 16                   |
| 200                                           | 14                   |
| 190                                           | 12 .                 |
| 180                                           | 10                   |
| 170                                           | . 8                  |
| 160                                           | 6                    |
| 150                                           | 4                    |
| 140 /                                         | 2                    |
| 130 or less                                   | 0                    |
|                                               |                      |

Table 6. The Scores for Penetrometer Values of Continuous Bread

| Penetrometer Value, 1 day<br>(o.1 millimeter) | Loaf Score<br>(pts.) |  |
|-----------------------------------------------|----------------------|--|
| 130 or greater                                | 20                   |  |
| 125                                           | 18                   |  |
| 120                                           | 16                   |  |
| 115                                           | 14                   |  |
| 110                                           | 12 .                 |  |
| 105                                           | 10                   |  |
| 100                                           | 8                    |  |
| 90                                            | 6                    |  |
| 80                                            | 4                    |  |
| 70 ′                                          | 2                    |  |
| 60 or less                                    | . 0                  |  |
|                                               |                      |  |

Table 7. The Scores for Penetrometer Values of Sponge Bread

## Statistical Analyses

All characteristics of farinogram, extensigram and baking results were subjected to analysis of variance method. Simple linear correlations between stability, valorimeter value at both  $30^{\circ}$ C. and  $40^{\circ}$ C. and total loaf scores obtained from continuous-mix process were calculated. Multiple linear correlations between total loaf score of continuous-mix bread and stability and valorimeter value of farinogram at both  $30^{\circ}$ C. and  $40^{\circ}$ C. were established.

## RESULTS AND DISCUSSION

For convenience in presentation, the experimental results have been divided into three major sections. The first section deals with the effect of temperature on dough properties, the second with the effect of nonfat dry milk (NEDM) in doughs, and the last with the effect of baking methods. I. Effect of Temperature:

A. Effect of temperature on farinograph characteristics:

1. Absorption:

Statistical analysis for absorption of farinograms (Table 8) showed that, at constant maximum dough consistency, a higher temperature of mixing gave a lower farinograph absorption, i.e., with consistency held constant, the absorption decreased as the temperature increased (Table 9). These results appear to corroborate the conclusions of Bayfield and Stone (9). It may be inferred that as the temperature of the dough increases the amount of "bound" water decreases and, therefore, the amount of absorption for a fixed consistency decreases (31,33). This interpretation helps to provide a reasonable explanation as to why the absorption of the dough decreases with increasing temperature.

2. Arrival time:

Arrival times measured from farinograms produced at  $40^{\circ}$ C. were shorter than those produced at  $30^{\circ}$ C. (Table 9). No differences were found due to flour types (Table 10).

3. Peak time:

There were significant differences due to flour types and mixing temperatures (Table 11). The same type of flour processed at  $30^{\circ}$ C. or  $40^{\circ}$ C. gave different peak times. The former temperature caused significantly longer peak times than the latter (Table 9).

4. Mixing tolerance index (MTI):

Significant differences resulted from the use of different mixing temperatures and flour types (Table 12). Farinograms produced at 40°C. showed very fast break-down after the dough had reached its full development time (high MII values ) (Table 9). Control, flours 4, 5 and 12+C had less tolerance to mixing than other flours (Table 13).

5. Stability:

It was found that high mixing temperature caused a great decrease in stability (Table 9). Differences were also found due to flour types (Table 14). Balancer, flours 10, 11, 12 and 12+B had longer stabilities while the control had the shortest (Table 13).

6. Valorimeter value:

Statistical analysis indicated that 40°C. mixing temperature caused a decrease in valorimeter values (Table 9). The analysis of variance of valorimeter value data is reported in Table 15.

7. Time-to-breakdown:

All farinograms produced at  $30^{\circ}$ C. gave higher time-to-breakdown values than those produced at  $40^{\circ}$ C. Results are shown in Table 16 and Table 9.

| Source of<br>Variance | Degree of<br>Freedom | Mean Squares | F          |
|-----------------------|----------------------|--------------|------------|
| Flours                | · 17                 | 14.5845      | 27.2047**  |
| Temperatures          | 1                    | 175.5000     | 327.3616** |
| NFDM                  | . 1                  | 21.5625      | 40.2207**  |
| F×T                   | 17                   | 0.1618       | 0.3017ns   |
| F x NFDM              | 17                   | 0.3566       | 0.6652ns   |
| T × NFDM              | 1                    | 0.6875       | 0.0000ns   |
| Error                 | 17                   | 0.5361       |            |
| Total                 | 71 ·                 |              |            |

Table 8. The Analysis of Variance of Absorption

\*\* Significant at 1% level.

ns Not significant at 5% level.

# Table 9. Effect of Mixing Temperature on Farinogram

| 30°C.   | 40°C.                                                        | LSD<br>0.05                                                                                                                                                                                  |
|---------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 63.9583 | 60.8527                                                      | 0.3641                                                                                                                                                                                       |
| 2.1528  | 1.2708                                                       | 0.2749                                                                                                                                                                                       |
| 7.5556  | 2.3611                                                       | 0.4503                                                                                                                                                                                       |
| 13.7222 | 3.9236                                                       | 0.8573                                                                                                                                                                                       |
| 30.9722 | 99.0277                                                      | 3.8117                                                                                                                                                                                       |
| 58.2500 | 24.3333                                                      | 1.9152                                                                                                                                                                                       |
| 15.3056 | 4.4375                                                       | 0.8345                                                                                                                                                                                       |
|         | 63.9583<br>2.1528<br>7.5556<br>13.7222<br>30.9722<br>58.2500 | 63.9583         60.8527           2.1528         1.2708           7.5556         2.3611           13.7222         3.9236           30.9722         99.0277           58.2500         24.3333 |

| Source of<br>Variance | Degree of<br>Freedom | Mean Squares | F         |  |
|-----------------------|----------------------|--------------|-----------|--|
| Flours                | 17                   | 0.9617       | 3.1467ns  |  |
| Temperatures          | . 1                  | 14.0009      | 45.8131** |  |
| NFDM                  | 1                    | 3.6675       | 12.0008** |  |
| F×T                   | 17                   | 0.5266       | 1.7231ns  |  |
| F x NFDM              | 17                   | 0.2595       | 0.8490ns  |  |
| T × NFDM              | 1                    | 2.2578       | 7.3878*   |  |
| Error                 | 17                   | 0.3056       |           |  |
| Total                 | 71                   |              |           |  |
|                       |                      |              |           |  |

Table 10. The Analysis of Variance of Arrival Time

ns Not significant at 5% level.

\*\* Significant at 1% level.

\* Significant at 5% level.

| Source of<br>Variance | Degree of<br>Freedom | Mean Squares | F          |  |
|-----------------------|----------------------|--------------|------------|--|
| Flours                | 17                   | 4.5221       | 5.5154**   |  |
| Temperatures          | ·<br>1               | 485.6804     | 592.3928** |  |
| NFDM                  | 1                    | 40.5000      | 49.3990**  |  |
| F×T                   | 17                   | 3.6475       | 4.4489**   |  |
| F x NFDM              | 17                   | 0.5515       | 0.6726ns   |  |
| T × NFDM              | 1 ,                  | 40.5000      | 49.3984**  |  |
| Error                 | 17                   | 0.8197       |            |  |
| Total                 | 71                   |              |            |  |
|                       |                      |              |            |  |

Table 11. The Analysis of Variance of Peak Time

ns Not significant at 5% level.

\*\* Significant at 1% level.

| Source of<br>Variance | Degree of<br>Freedom | Mean Squares | F            |  |
|-----------------------|----------------------|--------------|--------------|--|
| Flours                | 17                   | 481.6174     | 8.1989**     |  |
| Temperatures          | . 1                  | 83,368.0000  | 1,419.2244** |  |
| NFDM                  | 1                    | 2,112.5000   | 35.9624**    |  |
| F×T                   | 17                   | 151.1571     | 2.5731*      |  |
| F × N                 | 17                   | 54.4118      | 0.9263ns     |  |
| T×N.                  | 1                    | 88.8867      | 1.5132ns     |  |
| Error                 | 17                   | 58.7419      |              |  |
| Total                 | 71                   |              |              |  |
|                       |                      |              |              |  |

Table 12. The Analysis of Variance of Mixing Tolerance Index

- \* Significant at 5% level.
- \*\* Significant at 1% level.
- ns Not significant at 5% level.

| Tab | le | 13. | Effect | of | Flour | Types | on | Farinogram |
|-----|----|-----|--------|----|-------|-------|----|------------|
|-----|----|-----|--------|----|-------|-------|----|------------|

| Sample           | Absorption<br>(%) | Peak<br>(Min.) | Stability<br>(Min.) | Valorimeter<br>Value (B.U.) | Time-to-<br>breakdown<br>(min.) |
|------------------|-------------------|----------------|---------------------|-----------------------------|---------------------------------|
| 1                | 61.4000fgh        | 4.8125bcde     | 8.7500bcd           | 39.5000cde                  | 10.0625bcd                      |
| 2                | 62.9250d e        | 4.2500d e      | 7.7500bcde          | 38.5000cde                  | 8.6875de                        |
| 3                | 63.5500cd         | 4.6875cd e     | 8.3750bcd           | 41.5000bcde                 | 9.2500bcde                      |
| 4 '              | 60.3500h          | 4.8750bcde     | 7.3125cde           | 40.0000cde                  | 8.3125de                        |
| 5                | 61.6750fg         | 4.8750bcde     | 7.2500de            | 41.0000cde                  | 8.0000e                         |
| 6                | 61.7500efg        | 3.9375e        | 8.0000bcd           | 36.2500e                    | 9.1250bcde                      |
| 7                | 64.5000bc         | 4.8750bcde     | 8.4375bcd           | 43.5000bcd                  | 9.5625bcde                      |
| 8                | 61.1250gh         | 5.1250bcde     | 8.6875bcd           | 42.7500bcd                  | 9.9375bcde                      |
| 9                | 61.2750fgh        | 5.1250bcde     | 7.5625bcde          | 42.7500bcd                  | 8.8750cd e                      |
| 10               | 62.0250efg        | 5.5000bc       | 10.1250b            | 45.2500ab                   | 11.2500bc                       |
| 11               | 61.4250fgh        | 5.6250bc       | 10.1250b            | 45.0000abc                  | 10.8750bcd                      |
| 12               | 62.2750ef         | 5.7500bc       | 9.8750bc            | 44.7500abc                  | 11.2500bc                       |
| Control          | 58.8250i          | 2.2500f        | 5.2500e             | 23.7500f                    | 5.7500f                         |
| Balancer         | 66.1470a          | 7.5625a        | 18.0000a            | 49.7500a                    | 18.5000a                        |
| 7 <del>1</del> C | 62.2000efg        | 4.5625cde      | 8.8750bcd           | 40.5000cde                  | 9.0000bcde                      |
| 7+B              | 64.7750ab         | 5.1875bcd      | 8.1875bcd           | 43,7500bcd                  | 9.9375bcde                      |
| 12+C             | 61.2750fgh        | 4.1875de       | 6.8750de            | 37.5000e                    | 7.8125e                         |
| 12+B             | 65.8000a          | 6.0625b        | 9.3750bcd           | 47.2500b                    | 11.5000b                        |
| LSD<br>0.05      | 1.0924            | 1.3509         | 2.5719              | 5.7458                      | 2.5028                          |

Values designated by the same lower case letter are not significantly different at the 5% level as determined by Fisher's LSD.

| Source of Degree of<br>Variance Freedom |     | Mean Squares | F          |  |
|-----------------------------------------|-----|--------------|------------|--|
| Flours                                  | 17  | 26.9490      | 9.0691**   |  |
| Temperatures                            | · 1 | 1,728.2295   | 581.6001** |  |
| NFDM                                    | 1   | 64.6953      | 21.7719**  |  |
| F x T                                   | 17  | 20.0830      | 6.7585**   |  |
| F × NFDM                                | 17  | 4.0299       | 1.3562ns   |  |
| T × NFDM                                | 1   | 54.6885      | 18.4043**  |  |
| Error                                   | 17  | 2.9715       |            |  |
| Total                                   | 71  |              |            |  |

1

Table 14. The Analysis of Variance of Stability

ns Not significant at 5% level.

\*\* Significant at 1% level.

| Source of<br>Variance | Degree of<br>Freedom | Mean Squares | F            |
|-----------------------|----------------------|--------------|--------------|
| Flours                | 17                   | 123.4191     | 8.3218**     |
| Temperatures          | `1                   | 20,706.1250  | 1,396.1492** |
| NFDM                  | 1                    | 946.1250     | 63.7942**    |
| F×T                   | 17                   | 79.8309      | 5.3828**     |
| F × NFDM              | 17                   | 13.0074      | 0.8771ns     |
| T × NFDM              | 1                    | 946.1250     | 63.7942**    |
| Error                 | 17                   | 14.8309      |              |
| Total                 | 71                   |              |              |

Table 15. The Analysis of Variance of Valorimeter Value

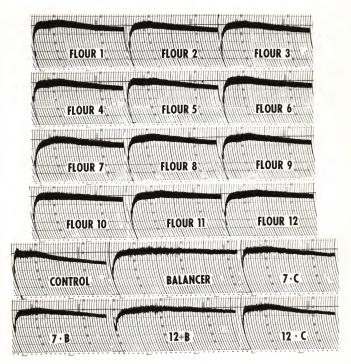
\*\* Significant at 1% level.

ns Not significant at 5% level.

| ource of Degree of Ariance Freedom |    | Mean Squares | F          |  |
|------------------------------------|----|--------------|------------|--|
| Flours                             | 17 | 26.6608      | 9.4717**   |  |
| Temperatures                       | .1 | 2,126.6625   | 755.3162** |  |
| NFDM                               | 1  | 102.1250     | 36.2815**  |  |
| F×T                                | 17 | 20.6755      | 7.3453**   |  |
| F × NFDM                           | 17 | 3.4586       | 1.2287ns   |  |
| T × NFDM                           | 1  | 76.5703      | 27.2028**  |  |
| Error                              | 17 | 2.8148       |            |  |
| Total                              | 71 |              |            |  |
|                                    |    |              |            |  |

Table 16. The Analysis of Variance of Time-to-breakdown

\*\* Significant at 1% level.

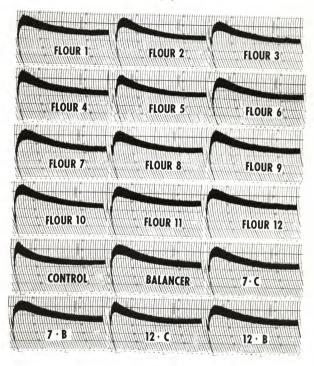

ns Not significant at 5% level.

# EXPLANATION OF PLATE I

Farinograms produced at 30°C.

# FARINOGRAM

30°C




# EXPLANATION OF PLATE II

Farinograms produced at 40°C.

# FARINOGRAM

40°C



- B. Effect of temperature on extensigraph characteristics:
- 1. Resistance to Extension:

Statistical analysis indicated that doughs produced at 40°C. had higher resistance to extension than doughs produced at 30°C. (Table 17). Extensigrams of the same piece of dough taken after a 135-minute rest period gave the highest value (Table 18). The analysis of variance of resistance to extension is shown in Table 19.

2. Extensibility:

There were significant differences due to mixing temperatures, rest periods and flour types (Table 20). High mixing temperature caused increase in extensibility (Table 17). Extensigrams taken after a 45minute rest period gave the highest values (Table 18). Balancer, flours 7 and 7+B had high extensibilities while the control, 12+C and 12 had low ones (Table 21).

3. Energy:

It was found that high mixing temperature increased energy significantly (Table 17). Extensigrams taken after a 90-minute rest period had the highest over-all energy values (Table 18), however no significant difference in energy was found between doughs after 90- and 135-minute rest periods when doughs were mixed at 40°C. The analysis of variance of energy is shown in Table 22.

4. Ratio figure:

Statistical analysis showed that differences were due to flour types, rest periods and mixing temperatures (Table 23). High mixing temperature caused a decrease in ratio figure (Table 17). A rest period of 135 minutes gave the highest figure (Table 18). Extensigrams taken from flour 7 indicated only slight increase in ratio figure after each rest period. On the other hand, the control gave a large increase after each rest period, especially at  $40^{\circ}$ C.

| Temperature | Resistance to<br>Extension (B.U.) | Extensibility (mm.) | Energy (cm <sup>2</sup> ) | Ratio  |
|-------------|-----------------------------------|---------------------|---------------------------|--------|
| 30°C.       | 450.1852                          | 169.8380            | 135.4119                  | 2.8076 |
| 40°C.       | 483.6111                          | 189.7269            | 181.2739 .                | 2.6609 |
| LSD<br>0.05 | 18.6646                           | 2.4781              | 2.0433                    | 0.0763 |

Table 17. Effect of Mixing Temperature on Extensigrams

Table 18. Effect of Rest Period on Extensigrams

| Rest Perio<br>(min.) | d Resistance to<br>Extension (B.U. | Extensibility<br>) (mm.) | Energy<br>(cm <sup>2</sup> ) | Ratio  |
|----------------------|------------------------------------|--------------------------|------------------------------|--------|
| 45                   | 363.4028                           | 198.3611                 | 146.3761                     | 1.8614 |
| 90                   | 501.2500                           | 174.7917                 | 165.9399                     | 2.9275 |
| 135                  | 536.0417                           | 166.1944                 | 162.7128                     | 3.4139 |
| LSD<br>0.0           | 5 22.8594                          | 3.0350                   | 2.5025                       | 0.0934 |

| Source of<br>Variance | Degree of<br>Freedom | Mean Squares | F          |  |
|-----------------------|----------------------|--------------|------------|--|
| Flours                | 17                   | 62,970.1525  | 13.7942**  |  |
| Rest Periods          | 2                    | 600,198.0324 | 131.4786** |  |
| F×R                   | 34                   | 5,971.5618   | 1.3081ns   |  |
| Temperatures          | 1                    | 60,333.7963  | 13.2167**  |  |
| F×T                   | 17                   | 4,503.6492   | 0.9866ns   |  |
| R×T                   | 2                    | 57,872.3380  | 12.6774**  |  |
| F×R×T                 | 34                   | 3,914.9850   | 0.8576ns   |  |
| NFDM                  | 1                    | 39,744.9074  | 8.7065**   |  |
| F×N                   | 17                   | 6,116.7211   | 1.3399ns   |  |
| R × N                 | 2                    | 8,886.9213   | 1.9468ns   |  |
| F×R×N                 | 34                   | 3,714.6174   | 0.8137ns   |  |
| T × N                 | 1                    | 10,556.0185  | 2.3124ns   |  |
| F×T×N                 | 17                   | 9,846.9499   | 2.1571*    |  |
| R×T×N                 | 2                    | 9,993.1713   | 2.1891ns   |  |
| Error                 | 34                   | 4,564.9850   |            |  |
| Total                 | 215                  |              |            |  |

Table 19. The Analysis of Variance of Resistance to Extension

ns Not significant at 5% level.

\*\* Significant at 1% level.

Significant at 5% level.

| Source of<br>Variance | Degree of<br>Freedom | Mean Squares | F          |
|-----------------------|----------------------|--------------|------------|
| Flours                | 17                   | 2,217.0896   | 27.5523**  |
| Rest Periods          | 2                    | 19,969.5046  | 248.1662** |
| F×R                   | 34                   | 91.0328      | 1.1313ns   |
| Temperatures          | 1                    | 21,360.6667  | 265.4545** |
| F×T                   | 17                   | 704.2353     | .8.7517**  |
| R x T                 | 2                    | 5,458.4306   | 67.8333**  |
| F×R×T                 | 34                   | 44.2308      | 0.5497ns   |
| NFDM                  | 1                    | 872.0185     | 10.8368**  |
| F × N                 | 17                   | 128.5970     | 1.5981ns   |
| R × N                 | 2                    | / 18.0046    | 0.2238ns   |
| F×R×N                 | 34                   | 78.1014      | 0.9706ns   |
| T × N                 | 1                    | 0.1157       | 0.0014ns   |
| F×T×N                 | 17                   | 210.9589     | 2.6216**   |
| R×T×N                 | 2                    | 75.8935      | 0.9423ns   |
| Error                 | 34                   | 80.4683      |            |
| Total                 | 215                  |              | •          |

Table 20. The Analysis of Variance of Extensibility

ns Not significant at 5% level.

\*\* Significant at 1% level.

42

| Sample       | Resistance to Extension(B.U.) | Extensibility<br>(mm.) | Energy<br>(cm <sup>2</sup> ) | Ratio    |
|--------------|-------------------------------|------------------------|------------------------------|----------|
| 1            | 398.7500ghi                   | 178.8750cd             | 135.0892h                    | 2.2867hi |
| 2            | 376.6667i                     | 187.4167bc             | 134.3433h                    | 2.0675i  |
| 3            | 392.5000hi                    | 185.0833c              | 142.1150g                    | 2.1667hi |
| 4            | 431.2500fgh                   | 186.2083bc             | 149.9058f                    | 2.1875hi |
| 5            | 445.4167efgh                  | 177.4167de             | 145.4258fg                   | 2.5725fg |
| 6            | 400.8333ghi                   | 183.9583cd             | 139.8808gh                   | 2.2442hi |
| 7            | 353.7500i                     | 209.0833a              | 156.2250de                   | 1.7217j  |
| 8            | 426.2500fghi                  | 176.9167de             | 139.5275gh                   | 2.4917fg |
| 9            | 450.0000ef                    | 173.4167e              | 144.1133fg                   | 2.7250ef |
| 10           | 461.6667def                   | 176.5833de             | 150.3775ef                   | 2.7333ef |
| 11           | 446.2500efg                   | 184.7500c              | 162.9617d                    | 2.3708gh |
| 12           | 494.5833cde                   | 172.1667e              | 154.1933e                    | 3.0325cd |
| Control      | 517.9167bcd                   | 150.2083f              | 142.6417g                    | 4.1600a  |
| Balancer     | 566.2500ab                    | 194.2917b              | 222.4567a                    | 3.0283cd |
| 7+C          | 558.3333ab                    | 175.2500e              | 183.2433c                    | 3.2767bc |
| 7 <b>+</b> B | 549.1667ab                    | 194.2083b              | 212.3200b                    | 2.9250de |
| 12+C         | 590.4167a                     | 154.0417f              | 153.3408e                    | 4.0167a  |
| 12+B         | 544.1667abc                   | 176.2083de             | 182.0117c                    | 3.2100b  |
| LSD<br>0.05  | 55.9938                       | 7.4342                 | 6.1299                       | 0.2289   |
|              |                               |                        |                              |          |

Table 21. Effect of Flour Types on Extensigrams

Values designated by the same lower case letter are not significantly different at the 5% level as determined by Fisher's LSD.

| Source of<br>Variance | Degree of<br>Freedom | Mean Squares | F            |
|-----------------------|----------------------|--------------|--------------|
| Flours                | 17                   | 7,833.7563   | 143.1853**   |
| Rest Periods          | .2                   | 7,920.4927   | 144.7708**   |
| F×R                   | 34                   | 100.6473     | 1.8396**     |
| Temperatures          | 1                    | 113,579.1692 | 2,076.0005** |
| F×T                   | 17                   | 662.6857     | 12.1126**    |
| R × T                 | 2                    | 2,677.1048   | 48.9321**    |
| F×R×T                 | 34                   | 87.7968      | 1.6048ns     |
| NFDM                  | 1                    | 1,643.5805   | 30.0414**    |
| F×N                   | 17                   | 385.2743     | 7.0420**     |
| R × N                 | 2                    | , 1,067.1059 | 19.6691**    |
| F×R×N                 | 34                   | 121.9500     | 2.2290**     |
| T × N                 | 1                    | 4,649.0017   | 84.9745**    |
| F×T×N                 | 17                   | 553.2900     | 10.1130**    |
| R×T×N                 | 2                    | 274.8310     | 5.0236**     |
| Error                 | 34                   | 54.7106      |              |
| Total                 | 215                  |              |              |
|                       |                      |              |              |

Table 22. The Analysis of Variance of Energy

ns Not significant at 5% level.

\*\* Significant at 1% level.

44

| Source of<br>Variance | Degree of<br>Freedom | Mean Squares | F          |
|-----------------------|----------------------|--------------|------------|
| Flours                | 17                   | 5.0530       | 66.2557**  |
| Rest Periods          | 2                    | 45.4011      | 595.3092** |
| F×R                   | 34                   | 0.4787       | 6.2766**   |
| Temperatures          | 1                    | 1.1616       | 15.2312**  |
| F×T                   | 17                   | 0.8531       | 11.1864**  |
| R×T                   | 2                    | 5.7588       | 75.5103**  |
| F×R×T                 | 34                   | 0.1386       | 1.8177*    |
| NFDM                  | 1                    | 3.8774       | 50.8417**  |
| F × N                 | 17                   | 0.2932       | 3.8447**   |
| R × N                 | 2                    | 0.5514       | 7.2297**   |
| F×R×N                 | 34                   | 0.1195       | 1.5668ns   |
| T×N                   | 1                    | 0.5460       | 7.1595**   |
| F x T x N             | 17                   | 0.5079       | 6.6603**   |
| R×T×N                 | 2                    | 0.0988       | 1.2948ns   |
| Error                 | 34                   | 0.9763       |            |
| Total                 | 215                  |              |            |
|                       |                      |              |            |

Table 23. The Analysis of Variance of Ratio

ns Not significant at 5% level.

\*\* Significant at 1% level.

II. Effect of nonfat dry milk:

A. Effect of nonfat dry milk on farinograms:

The analysis of variance are shown in Tables 8, 11, 12 and 14 through 16. It was found that 3% nonfat dry milk in doughs caused increases in absorption, arrival time, peak, stability, time-to-breakdown and valorimeter value (Table 24). The dough containing 3% nonfat dry milk also had significantly more mixing tolerance (low mixing tolerance index) than did the product which did not contain nonfat dry milk. However, these increases were not significant when doughs were produced at 40°C. B. Effect of nonfat dry milk on extensiorams:

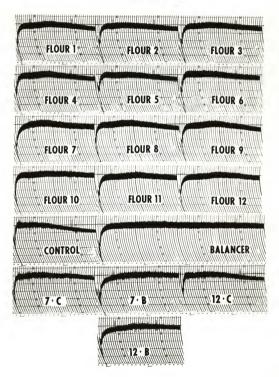
The addition of 3% nonfat dry milk to doughs resulted in increases in resistance to extension and ratio figure, but led to significant decreases in energy and extensibility (Table 25). The analyses of variance are shown in Tables 19, 20, 22 and 23.

| Characteristics        | Without NFDM | With 3% NFDM | LSD<br>0.05 |
|------------------------|--------------|--------------|-------------|
| Absorption             | 61.8833      | 62.9277      | 0.3641      |
| Arrival time           | 1.4861       | 1.9375       | 0.2749      |
| Peak                   | 4.2083       | 5.7083       | 0.4503      |
| Stability              | 7.8750       | 9.7708       | 0.8573      |
| Mixing tolerance index | 70.4167      | 59.5833      | 3.8117      |
| Valorimeter value      | 37.6667      | 44.9167      | 1.9153      |
| Time-to-breakdown      | 8.6808       | 11.0625      | 0.8345      |
|                        |              |              |             |

Table 24. Effect of NFDM on Farinograms

| Treatment    | Resistance to<br>Extension(B.U.) | Extensibility<br>(mm.) | Energy<br>(cm <sup>2</sup> ) | Ratio  |
|--------------|----------------------------------|------------------------|------------------------------|--------|
| Without NFDM | 453.3333                         | 181.7917               | 161.1014                     | 2.6003 |
| With 3% NFDM | 480.4630                         | 177.7732               | 155.5844                     | 2.8682 |
| LSD<br>0.05  | 18.6646                          | 2.4781                 | 2.0433                       | 0.0763 |

Table 25. Effect of NFDM on Extensigrams


.

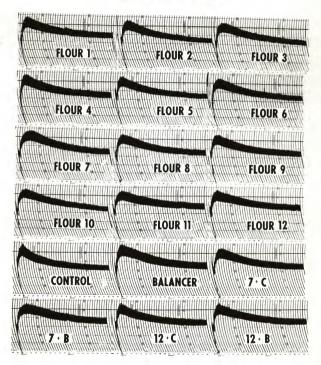
#### EXPLANATION OF PLATE III

Farinograms produced from doughs containing 3% nonfat dry milk at  $30^{\circ}$ C.

# FARINOGRAM

# 30°C WITH 3% NFDM




#### EXPLANATION OF PLATE IV

Farinograms produced from doughs containing 3% nonfat dry milk at 40°C.



# FARINOGRAM

# 40°C WITH 3% NFDM



#### III. Effect of baking methods

A. Continuous doughmaking process:

1. Specific volume:

The statistical analysis for specific volume of bread indicated no significant difference due to mixing speeds (Table 26). However, significant difference was found due to flour types. The control and flours 12, 7+C and 12+C produced breads with significantly better specific volumes than did the other flours. Results are shown in Table 27.

2. Internal loaf score:

Statistical analysis of the internal loaf score indicated no difference due to flour types or mixing speeds (Table 28).

3. Total loaf score:

The analysis for total loaf score showed no significant differences due to mixing speeds (Table 29). However, significant difference was found due to flour types. Loaves produced from 7, 7+B and the balancer gave lower scores while loaves produced from the control gave the highest one (Table 27).

4. Penetrometer value:

There were significant differences due to flour types, mixing speeds and days of storage (Table 30). Breads made with mixing at the lowest r.p.m. gave superior penetrometer values (Table 31). Loaves baked from 124B, the control, 74C, 74B and 124C gave significantly higher values than loaves baked from other flours (Table 27). Penetrometer readings taken after the third day of storage indicated that different rates of staling had occurred in breads made from different types of flours. After six days of storage, the product maintaining the greatest compressability was found to be the bread made from 12+B.

| Source of<br>Variance | Degree of<br>Freedom | Mean Squares | F .       |
|-----------------------|----------------------|--------------|-----------|
| Flours                | 7                    | 0.9756       | 15.6530** |
| Mixing speeds         | 3                    | 0.0037       | 0.0601ns  |
| Error                 | 21                   | 0.0623       |           |
| Total                 | 31                   |              |           |

Table 26. The Analysis of Variance of Specific Volume of Continuous Bread

\*\* Significant at 1% level.

ns Not significant at 5% level.,

| Sample       | Specific Vol.<br>(cc/gm.) | Total Loaf<br>Score (pts.) | Penetrometer<br>Value(0.1 mm.) |  |
|--------------|---------------------------|----------------------------|--------------------------------|--|
| 7            | 5.6250a                   | 31.0000a                   | 111.7500a                      |  |
| 12           | 6.9500b                   | 62.5000b                   | 133.5833b                      |  |
| Control      | 7.1000b                   | 62.7500b                   | 147.0000cd                     |  |
| Balancer     | 6.0750e                   | 53.0000b                   | 137.5000bc                     |  |
| 7+C          | 6.7250c                   | 57.5000b                   | 144.7500cd                     |  |
| 7 <b>+</b> B | 6.2000e                   | 49.0000c                   | 140.4167bcd                    |  |
| 12+C         | 6.5750cd                  | 56.2500b                   | 139.2500bcd                    |  |
| 12+B         | 6.2000e                   | 56.0000b                   | 150.1667d                      |  |
| LSD<br>0.05  | 0.3672                    | / 13.5419                  | 11.4185                        |  |

| Table 27 | 7. Effe | ect of | Flour | Types | oņ | Continuous- |
|----------|---------|--------|-------|-------|----|-------------|
|          | mix     | Bread  |       |       |    |             |

Values designated by the same lower case letter are not significantly different at the 5% level as determined by Fisher's LSD.

| Source of<br>Variance | Degree of<br>Freedom | Mean Squares | F          |
|-----------------------|----------------------|--------------|------------|
| Flours                | 7                    | 116.8571     | 2.3173ns 🐄 |
| Mixing speeds         | 3                    | 99.0000      | 1.9632ns   |
| Error                 | 21                   | 50.4286      |            |
| Total                 | 31                   |              |            |
|                       |                      |              |            |

Table 28. The Analysis of Variance of Internal Loaf Score of Continuous Bread

ns Not significant at 5% level.

Table 29. The Analysis of Variance of Total Loaf Score of Continuous Bread

| Source of<br>Variance | Degree of<br>Freedom | /<br>Mean Squares | F        |
|-----------------------|----------------------|-------------------|----------|
| Flours                | 7                    | 413.2141          | 4.8743** |
| Mixing speeds         | 3                    | 120.4167          | 1.4204ns |
| Error                 | 21                   | 84.7738           |          |
| Total                 | 31                   |                   |          |

\*\* Significant at 1% level.

ns Not significant at 5% level.

| ,698.5266 | 8.8069** * |
|-----------|------------|
| ,650.6665 | 8.5688**   |
| ,665.0000 | 278.2542** |
| 605.9045  | 3.1416**   |
| 347.1665  | 1.8001ns   |
| 616.0044  | 3.1940**   |
| 192.8631  |            |
|           |            |
|           | 616.0044   |

| Table 30. | The Analysis of | of Variance of | Penetrometer |
|-----------|-----------------|----------------|--------------|
|           | Value of Cont:  | inuous Bread   |              |

\*\* Significant at 1% level.

ns Not significant at 5% level.

56

| Speeds*     | Total Loaf<br>Score(pts.) | Internal Loaf<br>Score(pts.) | Specific Vol.<br>(cc/gm.) | Penetrometer<br>Value (0.1mm.) |
|-------------|---------------------------|------------------------------|---------------------------|--------------------------------|
| 1           | 55.6250.                  | 35.7500                      | 6.4375                    | 150.1250                       |
| 2           | 51.3750                   | 31.7500                      | 6.4375                    | 134.6250                       |
| з           | 49.2500                   | 29.0000                      | 6.4000                    | 131.3333                       |
| 4           | 57.7500                   | 36.5000                      | 6.4500                    | . 136.1250                     |
| LSD<br>0.05 | 9.5756                    | 7.3854                       | 0.2596                    | 8.0741                         |

# Table 31. Effect of Mixing Speeds on Continuous Bread Characteristics

Actual number of r.p.m. are shown in Table 2.

# EXPLANATION OF PLATE V

Loaves produced by continuous-mix process.




PLATE V

- B. Sponge dough method:
- 1. Specific volume:

There were significant differences due to flour types and mixing times (Table 32). All breads made under optimum and over-optimum mixing times gave higher scores for all flour types (Table 33). Products of 7, 7+B, 12+B, balancer and 12 gave higher specific volumes than did the other flours. The control gave the lowest score (Table 34).

2. Internal loaf score:

Significant differences were found due to flour types and mixing times (Table 35). Loaves produced at optimum and over-optimum mixing times gave superior scores (Table 33). Products of the control flour gave the lowest score while products of 7+B, 7, 12, 12+B and balancer gave higher ones (Table 34).

3. Total loaf score:

The analysis of variance of total loaf scores is shown in Table 36. Significant differences were found due to both flour types and mixing times. Doughs produced at optimum and over-optimum mixing times gave relatively high total loaf scores (Table 33). Under-mixed doughs resulted in poor loaves of bread (on total loaf scores and individual scores). The ranking of total loaf score was 7+B, 12+B, 7, balancer, 12, 12+C, 7+C and control.

Penetrometer value:

Statistical analysis indicated significant differences due to both mixing times and flour types (Table 37). Doughs processed at optimum and over-optimum mixing times produced breads with superior compressability (Table 33). Loaves baked from 7+B and 7 gave better penetrometer values than did the products of other flours. The control gave the lowest value (Table 34). After three days storage, loaves baked from 74B showed less evidence of staling than loaves produced from other flours.

| Source of<br>Variance | Degree of<br>Freedom | Mean Squares | F         |
|-----------------------|----------------------|--------------|-----------|
| Flours                | 7                    | 0.6666       | 15.0972** |
| Mixing times          | 2                    | 0.5712       | 12.9360** |
| Error                 | 14                   | 0.0442       |           |
| Total                 | 23                   |              |           |
|                       |                      |              |           |

1

Table 32. The Analysis of Variance of Specific Volume of Sponge Bread

\*\* Significant at 1% level.

Table 33. Effect of Mixing Times on Sponge Bread

| Mixing Time                             | Specific<br>Volume | Total Loaf<br>Score | Internal Loaf<br>Score | Penetrometer<br>Value |
|-----------------------------------------|--------------------|---------------------|------------------------|-----------------------|
| 1호 min. under                           | 5.8125a            | 55.2500a            | 30.0000a               | 74.6875a              |
| Optimum                                 | 6.20000b           | 66.50000b           | 36.7500b               | 86.7500b              |
| 2 <sup>1</sup> / <sub>2</sub> min. over | 6.3250b            | 69.5000b            | 39.5000b               | 89.5000b              |
| LSD<br>0.05                             | 0.2248             | 8.1777              | 5.3168                 | 5.2775                |
|                                         |                    |                     |                        |                       |

Values designated by the same lower case letter are not significantly different at the 5% level as determined by Fisher's LSD.

| Flours      | Specific Vol.<br>(cc/gm.) | Total Loaf<br>Score(pts.) | Internal Loaf<br>Score (pts.) | Penetrometer<br>Value(0.1 mm.) |
|-------------|---------------------------|---------------------------|-------------------------------|--------------------------------|
| 7           | 6.4667a                   | 72.6667a                  | 41.3333a                      | 93.5000ab                      |
| 12          | 6.1000a                   | 68.0000ab                 | 40.6667a                      | 83.0000cd                      |
| Control     | 5.0333c                   | 34.0000c                  | 18.6667c                      | 62.1667e                       |
| Balancer    | 6.3333a                   | 71.0000a                  | 38.0000a                      | 87.6667bc                      |
| 7+C         | 6.0333b                   | 56.0000b                  | 30.0000b                      | 76.6667d                       |
| 7+B         | 6.4667a                   | 78.6667a                  | 43.3333a                      | 101.1667a                      |
| 124C        | 6.0667b                   | 56.3333b                  | 30.6667                       | 77.6667d                       |
| 12+B        | 6.4000a                   | 73.3333a                  | 40.6667a                      | 87.3333bc                      |
| LSD<br>0.05 | 0.3672                    | 13.3541                   | 8.6823                        | 8.6182                         |

Table 34. Effect of Flour Types on Sponge Bread

Values designated by the same lower case letter are not significantly different at the 5% level as determined by Fisher's LSD.

| Source of<br>Variance | Degree of<br>Freedom | Mean Squares | F        |
|-----------------------|----------------------|--------------|----------|
| Flours                | 7                    | 210.8326     | 8.5389** |
| Mixing times          | 2.                   | 191.1680     | 7.7425*  |
| Error                 | 14                   | 24.6908      |          |
| Total                 | 23                   |              |          |
|                       |                      |              |          |
|                       |                      |              |          |

Table 35. The Analysis of Variance of Internal Loaf Score of Sponge Bread

\* Significant at 5% level.

\*\* Significant at 1% level.

Table 36. The Analysis of Variance of Total Loaf Score of Sponge Bread

| Source of<br>Variance | Degree of Mean Squares<br>Freedom |          | F         |  |
|-----------------------|-----------------------------------|----------|-----------|--|
| Flours                | 7                                 | 627.6785 | 10.7459** |  |
| Mixing times          | 2                                 | 451.5000 | 7.7297**  |  |
| Error                 | 14                                | 58.4108  |           |  |
| Total                 | 23                                |          |           |  |
|                       |                                   |          |           |  |

\*\* Significant at 1% level.

| Source of<br>Variance | Degree of Freedom | Mean Squares | F          |  |
|-----------------------|-------------------|--------------|------------|--|
| Flours                | 7                 | 840.0691     | 17.3468**  |  |
| Mixing times          | 2                 | 993.2813     | 20.5105**  |  |
| Day                   | 1                 | 24,979.6250  | 515.8093** |  |
| F × M                 | 14                | 172.4598     | 3.5612*    |  |
| M×D                   | 2                 | 78.8438      | 1.6281ns   |  |
| F×D                   | 7 ,               | 134.8873     | 2.7853*    |  |
| Error                 | 14                | 48.4280      |            |  |
| Total                 | 47                |              |            |  |

Table 37. The Analysis of Variance of Penetrometer Value of Sponge Bread

- \* Significant at 5% level.
- \*\* Significant at 1% level.
- ns Not significant at 5% level.

# EXPLANATION OF PLATE VI

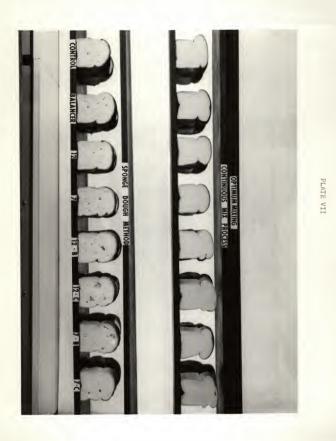

Loaves produced by sponge dough method.



PLATE VI

#### EXPLANATION OF PLATE VII

Loaves produced by continuous-mix process and sponge dough method under optimum mixing conditions.



Summary of farinograph data represented by stability and valorimeter values obtained at 30°C. and 40°C. and the total loaf score of continuousmix bread are shown in table 38. Work by Johnson <u>et al.</u>(38) suggested that the valorimeter value gives an indication of strength of flour. Stability, in general, gives some indication of the tolerance to mixing a flour will have (45). Since the mixing tolerance index and departure time are directly and indirectly related to the stability of a farinogram, what is generally found for a stability is true for those values. Therefore, simple linear correlations between stability, valorimeter value at both 30°C. and 40°C. and total loaf scores obtained from continuous-mix process were calculated.

The simple correlation coefficients between total loaf score of continuous-mix bread and stabilities at  $30^{\circ}$ C. and  $40^{\circ}$ C. and that and valorimeter values obtained at  $30^{\circ}$ C. and  $40^{\circ}$ C. are shown in Table 39. All the correlation coefficients were found to be nonsignificant. However, the multiple correlation coefficient between total loaf score and stability and valorimeter value obtained at  $40^{\circ}$ C. was apparently higher than that obtained at  $30^{\circ}$ C. The portion of the total loaf score accounted for by stability and valorimeter value obtained at  $30^{\circ}$ C. and  $40^{\circ}$ C. were indicated by  $R^2$  and LS.23 respectively (Table 39). It was shown that approximately 3% of total loaf score was accounted for by stability and valorimeter value obtained at  $30^{\circ}$ C. and approximately half of total loaf score was accounted for by stability and valorimeter value obtained at  $40^{\circ}$ C.

69

| Sample        | Stabi<br>30°C. | 40°C. | Valorimete<br>30°C. | r Value<br>40°C. | Total Loaf<br>Score |
|---------------|----------------|-------|---------------------|------------------|---------------------|
| 7             | 7.75           | 4.50  | 49.00               | 28.00            | 31.00               |
| 12            | 14.25          | 5.00  | 61.00               | 22.00            | 62.50               |
| Control       | 6.25           | 2.75  | 14.00               | 16.00            | 62.75               |
| Balancer      | 25.00          | 4.50  | 64.00               | 27.00            | 53.00               |
| 7+C           | 10.75          | 4.25  | 48.00               | 26.00            | 57.50               |
| 7+B           | 8.00           | 4.50  | 46.00               | 30.00            | 49.00               |
| 124C          | 9.25           | 3.25  | 52.00               | 20.00            | 56.25               |
| 1 <b>2+</b> B | 16.25          | 3.75  | 65.00               | 26.00            | 56.00               |

Table 38. Stability and Valorimeter Value of Farinograph and Total Loaf Score of Continuous Bread

Table 39. Linear Correlation Coefficients Between Variables, Total Loaf Score (LS), Farinograph Stabilities at 30°C. (1) and 40°C. (2), and Farinograph Valorimeter Values at 30°C. (3) and 40°C. (4), Derived from Eight Flour Samples

| Variables Correlated | Correlation<br>Coefficient | Coefficient of<br>Determination |
|----------------------|----------------------------|---------------------------------|
| LS;1                 | r = 0.1641ns<br>LS;1       |                                 |
| LS;3                 | r = -0.1426ns<br>LS:3      |                                 |
| LS;13                | R = 0.1686ns<br>LS:13      | $R^2 = 0.0284$<br>LS;13         |
| LS;2                 | r = -0.3393ns<br>LS;2      | 20,10                           |
| LS;4                 | r = -0.6289ns<br>LS;4      |                                 |
| LS;24                | R = 0.6453ns<br>LS;24      | $R^2 = 0.4172$<br>LS;24         |

ns Not significant at 5% level.

#### SUMMARY AND CONCLUSIONS

The purpose of this investigation was to study the effect of temperature on physical dough characteristics and to develop a new farinograph procedure and its interpretations to be used in continuous-mix bread production.

The farinograph was operated at 30°C. and 40°C. to correspond with conventional and continuous-mix conditions respectively. It was found that, at constant consistency (500 B. U.), the absorption, arrival time, peak, stability, departure time and time-to-breakdown were lower at 40°C. than at 30°C. Flours which had satisfactory farinograms at 30°C. were proved to be unsatisfactory when they were run at 40°C.

Extensigrams taken from doughs produced at  $30^{\circ}$ C. and  $40^{\circ}$ C. were also obtained. It was found that extensibility, resistance to extension and energy increased, but ratio decreased when doughs were mixed at  $40^{\circ}$ C.

The addition of 3% nonfat dry milk to doughs caused increases in absorption, peak, stability, tolerance of mixing, resistance to extension and ratio. However, these increases were not significant when doughs were produced at  $40^{\circ}$ C. Nonfat dry milk also reduced the extensibility and energy of doughs.

On the baking studies, sponge dough method and continuous-mix process were used. Eight different types of flour, 3 mixing times (sponge methos), and 4 mixing speeds (continuous-mix process) were used. For the sponge dough method, 7+B, 12+B and 7 produced breads with higher total loaf scores than did the product of 7+C and control. Optimum and overoptimum mixing produced superior loaves while under-mixing process resulted in producing poor loaves. For continuous-mix process, statistical analyses of total loaf score, specific volume and internal loaf score indicated no

difference due to mixing speeds. Breads produced from 7, 7+B and balancer gave significantly lower total loaf scores than the product of other flours did. Loaves produced from control gave the highest score.

Penetrometer values taken from bread made at the lowest mixing speed gave the highest values. After one or three days of storage, loaves baked from 12+B, control, 7+C and 7+B gave significantly higher penetrometer " readings than bread made from flour 7. After six days of storage, the product maintaining the greatest compressability was found to be the bread made from 12+B.

Simple linear correlations between stability, valorimeter value obtained at both  $30^{\circ}C$ . and  $40^{\circ}C$ . and total loaf scores of continuous-mix bread were calculated. Correlation analyses showed that approximately 3% of total loaf score was accounted for by stability and valorimeter value obtained at  $30^{\circ}C$ . and approximately half of total loaf score of continuous-mix bread was accounted for by stability and valorimeter value obtained at  $40^{\circ}C$ . Further investigation on the farinograph characteristics at  $40^{\circ}C$ ., such as the effect of mixer speeds on farinograms, might contribute to the development of the new procedure for evaluating flours to be used in continuous doughmaking process.

# APPENDIX

Farinogram Data

1. Absorption (%)

| Sample   | · 30°   | C.       | 40°0    | <b>.</b> |  |
|----------|---------|----------|---------|----------|--|
|          | No NFDM | +3% NFDM | No NFDM | +3% NFDM |  |
| 1        | 62.1    | 64.1     | 59.4    | 60.0     |  |
| 2        | 63.9    | 64.9     | 61.0    | 61.9     |  |
| 3        | 64.8    | 65.7     | 61.8    | 61.9     |  |
| 4        | 61.6    | 62.3     | 58.4    | 59.1     |  |
| 5        | 62.5    | 63.2     | 60.5    | 60.5     |  |
| 6        | 62.5    | 63.4     | 60.1    | 61.0     |  |
| 7        | 66.4    | 66.6     | 62.4    | 62.6     |  |
| 8        | 62.2    | 63.0     | 59.5    | 59.8     |  |
| 9        | 62.4    | 63.1     | 59.3    | 60.3     |  |
| 10 .     | 63.0    | 64.3     | 60.2    | 60.6     |  |
| 11       | 62.7    | 63.7     | 59.3    | 60.0     |  |
| 12       | 63.9    | 64.7     | 60.0    | 60.5     |  |
| Control  | 59.4    | 60.8     | 57.1    | 58.0     |  |
| Balancer | 67.0    | 68.8     | 64.2    | 64.4     |  |
| 7+C      | 63.0    | 64.2     | 59.6    | 62.0     |  |
| 7+B      | 63.2    | 68.6     | 63.2    | 64.1     |  |
| 12+C     | 62.0    | 63.3     | 59.6    | 60.2     |  |
| 12+B     | 66.8    | 68.4     | 62.8    | 65.2     |  |

2. Arrival Time (min.)

| Sample   | 30      | °C.      | 40°C.   |          |
|----------|---------|----------|---------|----------|
|          | No NFDM | +3% NFDM | No NFDM | +3% NFDM |
| 1        | 1.25    | 2.25     | 1.00    | 1.25     |
| 2        | 1.75    | 2.25     | 1.25    | 1.25     |
| 3        | 2.00    | 2.50     | 1.50    | 1.25     |
| 4        | 1.75    | 2.25     | 1.00    | 1.00     |
| 5        | 1.25    | 1.75     | 1.00    | - 1.00   |
| 6        | 1.75    | 1.75     | 1.25    | 1.25     |
| 7        | 3.25    | 3.00     | 1.75    | 1.50     |
| 8        | 2.00    | 1.75     | 1.25    | 1.75     |
| 9        | 2.25    | 2.25     | 1.00    | 1.25     |
| 10       | 1.75    | 1.75     | 1.25    | 1.50     |
| 11       | 2.00    | 3.50     | 1.25    | 1.50     |
| 12       | 2.25    | 3.50     | 1.25    | 1.25     |
| Control  | 0.75    | 1.00     | 0.75    | 1.00     |
| Balancer | 2.00    | 3.50     | 1.25    | 1.25     |
| 7+C      | 0.75    | 1.50     | 1.25    | 1.50     |
| 7+B      | 2.00    | 5.00     | 1.25    | 1.50     |
| 12+C     | 0.75    | 1.00     | 1.00    | 0.25     |
| 12+B     | 2.00    | 5.50 .   | 1.75    | 1.50     |

3. Peak Time (min.)

| Sample   | . 30    | °c.      | 40°C.   |          |
|----------|---------|----------|---------|----------|
|          | No NFDM | +3% NFDM | No NFDM | +3% NFDM |
| 1        | 6.00    | 9.25     | 2.00    | 2.00 **  |
| 2        | 5.25    | 7.50     | 2.50    | 2.00     |
| 3        | 6.00    | 7.75     | 2.50    | 2.50     |
| 4        | 6.25    | 9.00     | 2.25    | 2.00     |
| 5        | 6.25    | 9.00     | 2.00    | 2.25     |
| 6        | 5.25    | 6.50     | 2.00.   | 2.00     |
| 7        | 5.25    | 8.00     | 2.75    | 3.50     |
| 8        | 5.75    | 9.75     | 2.50    | 2.50     |
| 9        | 7.00    | 9.00     | 2.00    | 2.50     |
| 10       | 6.25    | 10.00    | 3.00    | 2.75     |
| 11       | 7.25    | 10.25    | 2.50    | 2.50     |
| 12       | 7.75    | 10.75    | 2.25    | 2.25     |
| Control  | 1.25    | 4.50     | 1.50    | 1.75     |
| Balancer | 8.50    | 17.00    | 2.75    | 2.00     |
| 7+C      | 5.50    | 7.50     | 2.50    | 2.75     |
| 7+B      | 5.25    | 9.50     | 3.00    | 3.00     |
| 12+C     | 5.75    | 7.00     | 2.00    | 2.00     |
| 12+B     | 8.50    | 11.00    | 2.50    | 2.25     |
|          |         |          |         |          |

4. Stability (min.)

| Sample   | 30      | 30°C.    |         |          |
|----------|---------|----------|---------|----------|
|          | No NFDM | +3% NFDM | No NFDM | +3% NFDM |
| 1        | 13.25   | 13.25    | 4.25    | 4.25     |
| 2        | 10.25.  | 12.75    | 4.00    | 4.00     |
| 3        | 11.25   | 15.25    | 3.25    | 3.75     |
| 4        | 9.75    | 13.25    | 3.25    | 3.00     |
| 5        | 9.75    | 12.75    | 3.00    | . 3.50   |
| 6        | 10.25   | 16.25    | 2.50    | 3.00     |
| 7        | 7.75    | 16.50    | 4.25    | 5.25     |
| 8        | 12.00   | 15.25    | 3.75    | 3.75     |
| 9        | 9.75    | 13.75    | 3.50    | 3.25     |
| 10       | 13.75   | 18.25    | 4.25    | 4.25     |
| 11       | 16.50   | 14.00    | 5.50    | 4.50     |
| 12       | 14.50   | 14.75    | 5.00    | 5.25     |
| Control  | 6.25    | 9.50     | 2.75    | 2.50     |
| Balancer | 25.00   | 37.50    | 4.50    | 5.00     |
| 7+C      | 10.75   | 16.50    | 4.25    | 4.00     |
| 7+B '    | 8.00    | 15.00    | 4.25    | 5.50     |
| 12+C     | 9.25    | 11.75    | 3.25    | 3.25     |
| 12+B     | 16.25   | 13.50    | 3.75    | 4.00     |

| Sample            |         | 30°C.    | 40°C.   |          |
|-------------------|---------|----------|---------|----------|
|                   | No NFDM | +3% NFDM | No NFDM | +3% NFDM |
| 1                 | 35      | 35       | 95      | 95       |
| 2                 | 45      | 20       | 115     | 100      |
| 3                 | 30      | 25       | 105     | 90       |
| 4                 | 45      | 45       | 135     | 105      |
| 5                 | 45      | 40       | 120     | 110      |
| 6                 | 40      | 25       | 100     | 80       |
| 7                 | 40      | 40       | 90      | 100      |
| 8                 | 30      | 35       | 105     | 85       |
| 9                 | 45      | 30       | 110     | 95       |
| 10                | 30      | 20 /     | 120     | 85       |
| 11                | 25      | 30       | 90      | 65       |
| 12                | 25      | 20       | 85      | 75       |
| Control           | 40      | 30       | 150     | 130      |
| Balancer          | 20      | 15       | 95      | 90       |
| 7+C               | 40      | 20       | 100     | 90       |
| 7 <b>+</b> B      | 30      | 10       | 90      | 70       |
| 12 <del>1</del> C | 45      | 30       | 115     | 110      |
| 12 <del>1</del> 8 | 25      | 10       | 80      | 90       |
|                   |         |          |         |          |

5 Mixing Tolerance Index (B.U.)

| Sample     | 30°C.   |          | 40°C.   |          |
|------------|---------|----------|---------|----------|
|            | No NFDM | +3% NFDM | No NFDM | +3% NFDM |
| 1          | 14.25   | 15.50    | 5.50    | 5.75     |
| 2          | 12.00   | 15.00    | 5.25    | 5.25     |
| 3          | 13.25   | 17.75    | 4.75    | 5.00     |
| 4          | 11.50   | 15.50    | 4.75    | 5.00     |
| 5          | 11.00   | 14.50    | 4.00    | - 4.50   |
| 6          | 12.00   | 18.00    | 4.50    | 5.00     |
| 7          | 10.75   | 19.50    | 6.00    | 6.75     |
| 8          | 14.00   | 17.00    | 5.00    | 5.50     |
| 9          | 12.00   | 16.00    | 5.50    | 5.50     |
| 10         | 15.50   | 20,00    | 5.75    | 5.75     |
| 11.        | 18.50   | 17.50    | 6.75    | 6.00     |
| 12         | 16.50   | 18.25    | 6.25    | 6.50     |
| Control    | 7.00    | 10.50    | 3.50    | 3.50     |
| Balancer . | 27.00   | 41.00    | 5.75    | 6.25     |
| 7+C        | 11.50   | 18.00    | 5.00    | 5.50     |
| 7+B        | 10.00   | 20.00    | 6.50    | 7.00     |
| 12+C       | 10.00   | 12.75    | 4.00    | 4.50     |
| 12+B       | 18.25   | 19.00    | 5.50    | 5.50     |

6. Departure Time (min.)

| Sample   | 30°C.   |          | 40°C.   |          |
|----------|---------|----------|---------|----------|
|          | No NFDM | +3% NFDM | No NFDM | +3% NFDM |
| 1        | 50      | 68       | 20      | 20       |
| 2        | 46      | 60       | 26      | 22       |
| з ,      | 52      | 60       | 28      | 26       |
| 4        | 52      | 66       | 22      | 20       |
| 5        | 53      | 66       | 22      | 23       |
| 6        | 48      | 54       | 22      | 21       |
| 7        | 49      | 62       | 28      | 35       |
| 8        | 50      | 69       | 26      | 26       |
| 9        | 57      | 66       | 22      | 26       |
| 10       | 53      | 70 /     | 30      | 28       |
| 11       | 58      | 71       | 25      | 26       |
| 12       | 61      | 72       | 22      | 24       |
| Control  | 14      | 46       | 16      | 19       |
| Balancer | 64      | 88       | 27      | 20       |
| 7+C      | 48      | 60       | 26      | 28       |
| 7+B      | 46      | 69       | 30      | 30       |
| 12+C     | 52      | 58       | 20      | 20       |
| 12+B     | 65      | 74       | 26      | 24       |

7. Valorimeter Value (B.U.)

| Sample           | 30 <sup>0</sup> C. |          | 40°C.   |          |
|------------------|--------------------|----------|---------|----------|
|                  | No NFDM            | +3% NFDM | No NFDM | +3% NFDM |
| 1                | 15.00              | 15.75    | 4.75    | 4.75     |
| 2                | 11.50 -            | 14.00    | 4.75    | 4.50     |
| 3                | 12.00              | 16.75    | 4.00    | 4.50     |
| 4                | 11.00              | 14.25    | 4.00    | 4.00     |
| 5                | 10.50              | 14.00    | 3.50    | 4.00     |
| 6                | - 12.00            | 16.00    | 4.00    | 4.50     |
| 7                | 10.50              | 17.00    | 5.00    | 5.75     |
| 8                | 13.50              | 17.00    | 4.50    | 4.75     |
| 9                | 12.00              | 15.50    | 4.00    | 4.00     |
| 10               | 15.50              | 19.50    | 5.00    | 5.00     |
| 11               | 16.50              | 17.00    | 5.00    | 5.00     |
| 12               | 15.50              | 19.00    | 5.00    | 5.50     |
| Control          | 7.00               | 10.50    | 2.50    | 3.00     |
| Balancer         | 24.50              | 40.00    | 4.50    | 5.00     |
| 7+C              | 10.50              | 17.00    | 4.00    | 4.50     |
| 7 <del>+</del> B | 10.00              | 19.00    | 5.00    | 5.75     |
| 12+C             | 9.50               | 13.00    | 3.00    | 3.75     |
| 12+B             | 18.50              | 18.50    | 4.50    | 4.50     |

8. Time-to-Breakdown (min.)

Baking Results of Continuous-Mix Process

Sample Mixing Speed \* 1. 2 3 4 7 49.0 33.0 20.0 22.0 12 59.0 59.0 57.0 75.0 Control 63.0 53.0 64.0 71.0 Balancer 61.0 47.0 49.0 55.0 44.0 7+C 71.0 59.0 56.0 7+B 56.0 39.0 35.0 66.0 51.0 12+C 58.0 59.0 57.0 12+B 62.0 51.0 53.0 58.0

1. Total Loaf Score (pts.)

| 2. | Specific | Volume | (cc/ | gm.) |  |
|----|----------|--------|------|------|--|
|----|----------|--------|------|------|--|

| Sample        |     | Mixing Speed * |     |     |  |
|---------------|-----|----------------|-----|-----|--|
|               | 1   | 2              | 3   | 4   |  |
| 7             | 6.0 | 5.5            | 5.2 | 5.8 |  |
| 12            | 7.1 | 6.9            | 6.8 | 7.0 |  |
| Control       | 7.0 | 7.0            | 7.3 | 7.1 |  |
| Balancer      | 5.9 | 6.1            | 6.2 | 6.1 |  |
| 7+C .         | 6.9 | 7.1            | 6.7 | 6.2 |  |
| 7+B           | 6.3 | 6.3            | 6.0 | 6.2 |  |
| 12+C          | 6.3 | 6.5            | 6.6 | 6.9 |  |
| 12 <b>+</b> B | 6.0 | 6.1            | 6.4 | 6.3 |  |
|               |     | 1.             |     |     |  |

# 3. Grain (pts.)

| Sample   | · ·  | Mixing | g Speed * |      |  |
|----------|------|--------|-----------|------|--|
|          | 1    | 2      | 3         | 4    |  |
| 7        | 8.0  | 6.0    | 6.0       | 6.0  |  |
| 12       | 8.0  | 10.0   | 12.0      | 14.0 |  |
| Control  | 10.0 | 8.0    | 10.0      | 14.0 |  |
| Balancer | 12.0 | 10.0   | 12.0      | 14.0 |  |
| 7+C      | 4.0  | 10.0   | 10.0      | 10.0 |  |
| 7+B      | 10.0 | 8.0    | 8.0       | 14.0 |  |
| 12+C     | 8.0  | 12.0   | 10.0      | 12.0 |  |
| 12+B     | 12.0 | 10.0   | 10.0      | 10.0 |  |
|          |      | ,      |           |      |  |

## 4. Crumb Texture (pts.)

| Sample   |      | Mixing S | Speed * |      |
|----------|------|----------|---------|------|
|          | 1    | 2        | 3       | 4    |
| 7        | 10.0 | 10.0     | 6.0     | 6.0  |
| 12       | 10.0 | 12.0     | 14.0    | 16.0 |
| Control  | 12.0 | 8.0      | 10.0    | 16.0 |
| Balancer | 18.0 | 12.0     | 6.0     | 10.0 |
| 74C      | 6.0  | 12.0     | 12.0    | 12.0 |
| 7+B      | 12.0 | 10.0     | 8.Ó     | 16.0 |
| 12+C     | 8.0  | 12.0     | 10.0    | 10.0 |
| 12+B     | 14.0 | 12.0     | 12.0    | 12.0 |
|          |      |          |         |      |

| Mixing<br>Speed * | Day | 7   | 12  | Control | Balancer   | 7+C | 7+B | 124C | 12+B  |   |
|-------------------|-----|-----|-----|---------|------------|-----|-----|------|-------|---|
| 1                 | 1   | 191 | 188 | 203     | 205        | 179 | 194 | 214  | 226   | 5 |
|                   | 3   | 131 | 124 | 148     | 122        | 146 | 169 | 139  | 135   |   |
|                   | 5   | 105 | 104 | 102     | 98         | 113 | 107 | 120  | 140   |   |
| 2                 | 1   | 166 | 180 | 216     | 182        | 216 | 135 | 175  | . 198 |   |
|                   | 3   | 107 | 92  | 172     | 122        | 172 | 143 | 121  | 73    |   |
|                   | 5   | 62  | 84  | 112     | 108        | 112 | 91  | 85   | 107   |   |
| 3                 | 1   | 129 | 155 | 193     | 151        | 178 | 147 | 193  | 192   |   |
|                   | 3   | 91  | 130 | 139     | 142        | 112 | 151 | 116  | 149   |   |
|                   | 5   | 67  | 92  | 102     | <u>103</u> | 96  | 98  | 110  | 116   |   |
| 4                 | 1   | 121 | 201 | 180     | 168        | 181 | 195 | 166  | 234   |   |
|                   | 3   | 93  | 136 | 116     | 133        | 133 | 137 | 122  | 102   |   |
| •                 | 5   | 78  | 117 | 81      | 116        | 99  | 118 | 110  | 130   |   |

5. Penetrometer Value (0.1 millimeter)

#### ACKNOWLEDGMENTS

The author wishes to acknowledge with gratitude to Dr. R. J. Robinson, for his helpful assistance and counsel in conducting this investigation; Dr. W. C. Hurley, International Milling Company, Inc., New Hope, Minnesota, for his advice and initiation of the project; Dr. M. M. MacMasters, for her guidance in preparing the manuscript for this study.

Appreciation is expressed to Mr. R. V. Schanefelt, for his assistance with continuous doughmaking process; and to Dr. W. J. Hoover, head of the Department of Grain Science and Industry for the provision of research facilities; and to other members of the staff of the Department of Grain Science and Industry for their help during this investigation.

She would also like to thank professor G. D. Miller and Dr. J. D. Mitchell, members of the advisory committee, for reviewing the manuscript.

### LITERATURE CITED

- Aitken, T. R., Fisher, M. H., and Anderson, J. A. Effect of protein content and grade on farinograms, extensigrams and alveograms. Cereal Chem. 21:465-488 (1944).
- American Association of Cereal Chemists. Cereal laboratory methods, (54-10)(7th ed.) The Association: St. Paul, Minn. (1962).
- American Association of Cereal Chemists. Cereal laboratory methods. (54-21)(7th ed.) The Association: St. Pual. Minn. (1962).
- Baker, J. C.; and Mize, M. D. Effect of temperature on dough properties II. Cereal Chem. 16:682-695 (1939).
- Baker, J. C., Parker, H. K., and Mize, M. D. The distribution of water in dough. Cereal Chem. 23:30-38 (1946).
- Baker, J. C. Continuous processing of bread. Baker's Digest 28:32-33 (1954).
- Baldwin, R. R., Johansen, R. G., Keogh, W., Titcomb, S. T., and Cotton, R. H. Milk solids in continuous mix. Cereal Sci. Today 9:284-291 (1964).
- Baldwin, R. R., Titcomb, S. T., Johansen, R. G., Deogh, W. J., and Doedding, D. Fat systems for continuous mix bread. Cereal Sci. Today 10:452-437 (1965).
- Bayfield, E. G., and Stone, C. D. Effects of absorption and temperature upon flour-water farinograms. Cereal Chem. 37:233-240 (1960).
- Bechtel, W. G., Hammer, G. E., and Ponte jr. J. G. Effect of calcium stearyl-2 lactylatein bread made with nonfat milk solids of varying baking quality. Cereal Chem. 33:206-212 (1956).

- Bernardin, J. E., Mecham, D. K., and Pence, J. W. Proteolytic action of wheat flour on nonfat dry milk proteins. Cereal Chem. 42:97-106 (1965).
- Brabender, C. W. 'Physical dough testing. Cereal Sci. Today 10:291-304 (1965).
- Bushuk, W. A farinograph technique for studying gluten. Cereal<sup>®</sup> Chem. 40:430-435 (1963).
- 14. Bushuk, W., Kilborn, R. H., and Irvine, G. N. Studies on continuous type bread using a laboratory mixer. Baker's Digest 39:76-78 (June, 1965).
- 15. Conn, J. F., and Kichline, T. P. Temperature, mixer speed and salt effects on farinograph characteristics. Presented at the American Association of Cereal Chemists annual meeting. Washington, D. C. March 31-April 4, 1968.
- Cotton, R. H. Dairy products in bread. Cereal Sci. Today 8:12-14 (1963).
- 17. Dempster, C. J., Hlynka, I., and Winkler, C. A. Quantitative extensigraph studies of relaxation of internal stresses in non-fermenting bromated and unbromated doughs. Cereal Chem. 29:39-53 (1952).
- Dempster, C. J., and Hlynka, I. Some effects of the mixing process on the physical properties of dough. Cereal Chem. 35:483-488 (1958).
- Doguchi, M., and Hlynka, I. Some rheological properties of crude gluten mixed in the farinograph. Cereal Chem. 44:561-575 (1967).
- 20. Doty, J. M., and McCurrie, R. N. The use of nonfat dry milk in baking with special reference to continuous dough mixing. Baker's Digest 38(1):62-67 (1964).

- Fisher, M. H., Aitken, T. R., and Anderson, J. A. Effect of mixing, salt and consistency on extensigrams. Cereal Chem. 26:81-97 (1949).
- 22. Frey, C. N., Freilich, J., and Ekstedt, H. Correlation of experimental and commercial baking tests when using sponge doughs II. Cereal Chem. 14:639-660 (1937).
- Freilich, J., and Redfern, S. Some effects of cabinet fermentation on sponge temperatures and dough and bread characteristics. Cereal Chem. 23:186-198 (1946).
- Grogg, B., and Melms, D. A method for analyzing extensigrams of dough. Cereal Chem. 33:310-314 (1965).
- Grogg, B., and Melms, D. Modification of the extensigraph for the study of externally applied stress in wheat dough. Cereal Chem. 35: 189-195 (1958).
- Grogg, B., and Caldwell, E. F. Gelatinization of starchy materials in the farinograph. Cereal Chem. 35:196-200 (1958).
- 27. Guy, E. J., Vettel, H. E., and Pallansch, M. J. Effect of the salts of the lyotropic series on farinograph characteristics of milk-flour dough. Cereal Sci. Today 12:200-203 (1967).
- Gracza, R. The rate of energy consumption in mixing air classified flour fractions into doughs. Cereal Sci. Today 9:274-282 (1964).
- Henika, R. G. Cysteine, whey and oxidant reaction in continuous mix. Cereal Sci. Today 10(8):420-424 (1965).
- Hlynka, T. Structural relaxation in dough. Baker's Digest 29:27-30 (1955).
- Hlynka, I. Dough mobility and absorption. Cereal Chem. 36:378-385 (1959).

- Hlynka, I. Intercomparison of farinograph absorption obtained with defferent instruments and bowls. Cereal Chem. 37:67-70 (1960).
- 33. Hlynka, I. Influence of temperature, speed of mixing and salt on some rheological properties of dough in the farinograph. Gereal Chem. 39: 286-303 (1962).
- 34. Hoffman, C., Schweitzer, T. R. Spotts, E. K., and Dalby, G. Evaluation of the baking properties of roller process nonfat dry milk solids by a farinograph procedure. Cereal Chem. 25:385-390 (1948).
- 35. Hyldon, R. Farinograph studies on evaluating vital wheat gluten. Cereal Sci. Today 9:4-6 (1964).
- 36. Ikezol, K., and Tipples, K. H. Farinograph studies on the effect of various oxidizing agents in the sponge-and-dough system. Cereal Sci. Today 42:330 (Sept. 1968).
- Irvine, G. N., Bradly, J. W., and Martin, G. C. A farinograph technique for macoroni dough. Cereal Chem. 38:153-164 (1961).
- 38. Johnson, J. A., Shellenberger, J. A., and Swanson, C. O. Farinograms and mixograms as a means of evaluating flours for specific uses. Cereal Chem. 23:387-399 (1946).
- Johnson, J. A., Shellenberger, J. A., and Swanson, C. O. Extensigraph studies of commercial flours and their relation to certain other physical dough tests. Cereal Chem. 23:400-409 (1946)
- Johnson, J. A., and Miller, B. S. Preferments. Baker's Digest 31: . 29-35 (June, 1957).
- Kennedy, B. M., Fletcher, L. R., and Sabiston, A. R. Studies on the incorporation of nonfat milk solids in whole wheat bread. Cereal Chem. 32:452-462 (1955).

- 42. Larsen, R. A., Jenness, R., and Geddes, W. F. Effect of heat treatment of separated milk on the physical and baking properties of doughs enriched with dry milk solid. Cereal Chem. 26:189-200 (1949).
- 43. Larson, B. L., Jenness, R., Geddes, W. F., and Coulter, S. T. An evaluation of the methods used for determining the baking quality of nonfat dry milk solids. Cereal Chem. 28:351-370 (1951).
- 44. Lipka, D. H. Dried milk products in prepared mixes. Cereal Sci. Today 8:10-12 (1963).
- 45. Locken, L., Loska, S., and Shuey, W. The farinograph handbook. American Association of Cereal Chemists. The Association. St. Paul, Minn. 1960.
- 46. Louw, J. B., and Krynauw, G. N. The relationship between farinograph mobility and absorption. Cereal Chem. 38:1-7 (1961).
- Mauseth, R. E., Nees, J. L., Chamberlain, L. M., and Johnston, W. R. Oxidizing and reducing effects in the continuous dough process. Cereal Sci. Today 12:390-393 (1967).
- Mecham, D. K., and Knapp, C. A note changes in sulfhydryl content during mixing of doughs containing nonfat dry milk. Cereal Chem. 41: 56-62 (1964).
- Merritt, P. P., and Bailey, C. H. Preliminary studies with the extensigraph. Cereal Chem. 22:371-391 (1945).
- Moore, C. L., and Herman, R. S. The effect of certain ingredients and variations in manipulations on the farinograph curve. Cereal Chem. 19: 568-587 (1942).
- Muller, H. G., Hlynka, I., and Kuzina, F. D. Effect of some organic solvents on extensigraph characteristics of dough. Cereal Chem. 42:303-

314 (1965).

- 52. Munz, E., and Brabender, C. W. Prediction of baking value from measurements of plasticity and extensibility of dough I. Influence of mixing and molding treatments upon physical dough properties of typical American wheat varieties. Cereal Chem. 17:78-100 (1940).
- 53. Munz, E., and Brabender, C. W. Extensigrams as a basis of predicting baking quality and reaction to oxidizing agent. Cereal Chem. 17:313-332 (1940).
- 54. Munz, E., and Brabender, C. W. American wheat types and varieties as distinguished by farinograms and extensigrams. Cereal Chem. 18:316-337 (1941).
- Near, C., and Sullivan, B. The use of the farinograph as an accurated measure of absorption. Cereal Chem. 12:527-531 (1935).
- Ofelt, C. W., and Larmour, R. K. , The effect of milk on the bromate requirements of flour. Cereal Chem. 17:1-18 (1940).
- Parker, H. K. Continuous mixing and baking. Cereal Sci. Today 10: 272-276 (June, 1965).
- 58. Pelshenke, P. F. Continuous mixing. Baker's Digest 28:24-26 (1954).
- 59. Redfern, S., Brachfeld, B. A., and Maselli, J. A. Laboratory studies of processing temperatures in continuous breadmaking. Cereal Sci. Today 9:190-191 (1964).
- Redfern, S., Gross, H., Bell, R. L., and Fischer, F. Effect of brew fermentation time and made up on continuous process bread flavor. Cereal Sci. Today 12:321-326 (1968).
- Schiller, G. W., and Gillis, J. A. Laboratory studies of flour for continuous mix bread production. Cereal Sci. Today 9:256-263 (1964).

- Schiller, G. W. Flour requirement for continuous breadmaking. Baker's Digest 41:44-46 (April, 1967).
- Shuey, W. C. Effect of malt supplement on farinograms. Cereal Sci. Today 3:280-281 (1958).
- 64. Shuey, W. C. The farinograph mixing bowl. Cereal Sci. Today 5:106-107 (1960).
- 65. Skowholt, O., and Bailey, C. H. The effect of temperature and of the inclusion of dry skim milk upon the properties of doughs as measured with the farinograph. Cereal Chem. 9:523-530 (1932).
- 66. Skovholt, O., and Bailey, C. H. The effect of milk solids on fermentation reactions. Cereal Chem. 14:108-120 (1935).
- Smith, D.E., and Andrews, J. S. Effect of oxidizing agents upon dough extensigrams. Cereal Chem. 29:1-17 (1952).
- Stamberg, O. E., and Bailey, C. H., Relationship of mixing speed to dough development. Cereal Chem. 15:739-748 (1938).
- 69. Stamberg, O. E., and Merritt, P. P. Quantity of dough in relation to the use of the farinograph. Cereal Chem. 18:627-632 (1941).
- 70. Stamberg, O. E., and Bailey, C. H. The effect of heat treatment of milk in relation to baking quality as shown by polarograph and farinofraph studies. Cereal Chem. 17:507-517 (1942).
- 71. St. John, J. L., and Bailey, C. H. The effect of dry skimmilk upon the water absorption of doughs and the plasticity of flour suspensions. Cereal Chem. 6:140-150 (1929).
- 72. Stromnaes, A. S., and Kennedy, B. M. Effect of baking on the nutritive value of proteins in rye bread with and without supplements of nonfat dry milk and lysine. Cereal Chem. 34:198-200 (1957).

- Swanson, E. C., and Bayfield, E. G. The effect of mixing speed and dry milk solids on bread volume. Cereal Chem. 22:214-224 (1945).
- 74. Swanson, A. M., Sanderson, W. B., and Grindrod, J. The effects of heat treatments given to skimmilk and skimmilk concentrate before drying. Cereal Sci. Today 9:292-298 (1964).
- 75. Swanson, A. M., and Sanderson, W. B. Milk proteins responsible for deleterious effects in continuous mix bread. Cereal Sci. Today 12: 363-368 (1967).
- Swortfiguer, M. J. Nonfat dry milk in the continuous-mix process. Baker's Digest 36:39-46 (1962).
- 77. Tanaka, K., Farukawa, K., and Matsumoto, H. The effect of acid and salt on the farinogram and extensigram of dough. Cereal Chem. 44: 675-680 (1967).
- 78. Trum, G. W., and Snyder, E. G. The relation of flour properties and their influence on fermentation and handling of continuous mixed dough. Baker's Digest 37:81 (June, 1963).
- 79. Titcomb, S. T., Gatty, R., Allgaver, A. J., Keogh, W. J., and Cotton, R. H. Precision of breadmaking with laboratory continuous mixing units and the planning of experiments. Cereal Sci. Today 9:264-267 (1964).
- Trum, G. W., and Rose, L. C. Practical Dough rheology in continuous dough processing. Cereal Sci. Today 9:156-160 (1964).
- Trum, G. W. The AMF pilot plant in continuous bread experimentation. Cereal Sci. Today 9:248-254 (1964).
- Trum, G. M. The influence of high flour brews on CM bread. Bakez's Digest 39:46-48 (Feb. 1965).

83. Vidal, F. D., and Traubel, I. Higher levels of nonfat dry milk in

continuous dough processing. Baker's Digest 39:56-60 (Feb. 1965).
84. West, G. A., and Bayfield, E. G. Effectiveness of dry milk solids in preventing overbromation of some bleached hard winter wheat flours. Cereal Chem. 19:481-492 (1942).

THE RELATIONSHIP OF DOUGH CHARACTERISTICS AT CONVENTIONAL AND ELEVATED TEMPERATURES TO THE QUALITY OF BREAD MADE BY CONVENTIONAL AND CONTINUOUS PROCESSES

by

### MARTHA MEI-CHU YN WANG

B. S., Taiwan Provincial Chung Hsing University Taiwan, 1962

AN ABSTRACT OF MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Food Science

Department of Grain Science and Industry

KANSAS STATE UNIVERSITY

Manhattan, Kansas

This investigation dealt with the effect of temperature on physical dough characteristics, and development of a new farinograph procedure and its interpretations to be used in continuous-mix bread production. The farinograph was operated at  $30^{\circ}$ C. ( $86^{\circ}$ F.) and  $40^{\circ}$ C. ( $104^{\circ}$ F.) to correspond with conventional and continuous-mix conditions respectively. Extensigraph and baking methods of sponge dough method and continuous-mix process were also used.

Characteristics including absorption, arrival time, peak, stability, mixing tolerance index, time-to-breakdown, valorimeter value, extensibility, resistance to extension, energy, ratio, specific volume, internal loaf score, total loaf score and penetrometer value were statistically analyzed.

At  $40^{\circ}$ C. values of farinograph characteristics decreased and the farinograph curve was shortened as if for a weak flour.

Extensigrams showed that extensibility, resistance to extension and energy increased, but ratio figure decreased as the temperature increased to  $40^{\circ}$ C.

The addition of 3% nonfat dry milk into doughs caused increases in absorption, peak, stability, tolerance of mixing, resistance to extension and ratio. However, these increases were not significant when doughs were mixed at  $40^{\circ}$ C. Nonfat dry milk also reduced the extensibility and energy of doughs.

On the baking studies, differences were found to be due to baking methods. The same type of flour produced loaves with varied qualities when loaves were processed by different baking methods. For the sponge dough method, optimum and over-optimum mixing produced superior loaves. Under-mixing process resulted in producing poor loaves. For the continuous-mix process, statistical analyses of total loaf score, specific volume and internal loaf score indicated no difference due to mixing speeds.

Correlation analyses showed that approximately 3% of total loaf score was accounted for by stability and valorimeter value obtained at  $30^{\circ}$ C. and approximately half of total loaf score was accounted for by stability and valorimeter value obtained at  $40^{\circ}$ C.