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Abstract
This thesis presents two data science approaches for important environmental and

social problems: predicting harmful algal blooms (HABs) resulting from cyanobacteria and

identifying racial biases inherent in home mortgage systems.

In the first chapter, a machine learning model is developed to forecast HABs in Marion

Reservoir, Kansas. HABs are a threat to water resources as they emit toxic chemicals that

are harmful to agriculture and aquatic species. Early prediction of algae growth will help

manage and prevent further growth. Various models are utilized for the prediction, including

Random Forest, Support Vector Machine, Gaussian Bayes, Decision Tree, Long Short-Term

Memory models, and XGBoost. In addition, using feature analysis, several factors were

found that do not significantly affect the accuracy of predictions. Furthermore, the research

extends its scope by comparing the algal bloom trends observed in Owasco Lake, New York,

with those in Marion Reservoir. The findings of this research highlight the capacity of data

science methodologies to tackle environmental issues, hence offering insights into the topic

of proactive regulation of the water ecosystem.

The second chapter examines an extensive dataset of federal home mortgage data

in the United States. This dataset covers 13 years and includes a vast number of loans.

By utilizing machine learning methodologies, we reveal a significant correlation between

the qualities of borrowers and mortgage data, particularly concerning the borrower’s racial

background. The results of our study indicate an association between the personal attributes

of borrowers and loan data, suggesting that borrower race plays a significant role in the

observed racial discrepancies in mortgage lending. Although other historical and present

prejudices may be at play, this study offers quantitative evidence of racial biases across

the home mortgage system. By identifying and examining these biases, our study makes a



valuable contribution to enhancing comprehension of the social concerns about equality and

discrimination within the financial industry.

Together, these chapters emphasize the significance of employing data-driven research

methodologies to address complex environmental challenges and uncover disparities in so-

cial equity. This highlights the multidisciplinary capacity of data science in the pursuit of

achieving a more sustainable and equitable future.
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Introduction
In a contemporary period characterized by the increasing significance of data science

and machine learning in tackling intricate environmental and social issues, this thesis intro-

duces two noteworthy data-centric initiatives that seek to enhance our comprehension and

facilitate constructive transformation. The study has two discrete but interrelated sections,

each addressing a crucial matter.

The initial portion of this study is on the prediction of Harmful Algal Blooms (HABs),

a periodic ecological hazard capable of causing significant harm to water supplies, agricul-

ture, and wildlife. In light of the urgent requirement for early prediction and mitigation,

this study utilizes a range of machine learning algorithms including Random Forest (RF),

Support Vector Machine (SVM), Gaussian Bayes (GB), Decision Tree (DT), Long Short-

Term Memory (LSTM), and XGBoost, to anticipate the incidence of algal blooms. The

results of this study go beyond mere prediction and examine the various aspects that impact

the accuracy of predictions. Furthermore, this chapter expands its range by conducting a

comparative analysis of algal bloom patterns in various geographical regions, illuminating

the potential of data science approaches in the proactive management of water ecosystems.

In the second chapter, a detailed analysis is conducted on a comprehensive dataset

of federal home mortgage data in the United States. This analysis uncovers a significant

relationship between borrower characteristics and mortgage data. This chapter reveals a

notable correlation between borrowers’ race and differences in mortgage lending, indicating

an inherent bias inside the financial system. Using machine learning approaches highlights

the significance of individual characteristics in the observed racial disparities. This study

presents empirical data that supports the existence of racial differences within the house

mortgage system, contributing to the understanding of historical and contemporary lending

prejudices. The research addresses significant concerns of equality and discrimination by

1



examining these disparities.

Collectively, these chapters highlight the capabilities of data science in tackling envi-

ronmental issues and revealing inequalities in social justice. They emphasize the significance

of utilizing data-driven research approaches to promote a sustainable and fair future. As

society becomes more reliant on data, the aforementioned efforts serve as significant illus-

trations of the crucial influence that data science has on defining our comprehension of the

environment and society and instigating substantial transformations.
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Related Work
In the past few decades, the vast amounts of data combined with sophisticated com-

puting power have led to the emergence of data science, which has emerged as a cornerstone

for innovation, offering unprecedented insights across various domains. This field makes it

possible to make better decisions by revealing patterns and trends in large, complex datasets

that are frequently invisible to humans through the careful use of ML algorithms. The pre-

dictive modeling of HABs and the quantitative examination of racial prejudice in federal

home loan data are two different applications of the research conducted for this thesis that

highlight the revolutionary potential of data science. These case studies demonstrate the

methodological breakthroughs that enable such broad applications while also highlighting

the adaptability of data science in tackling issues ranging from environmental sustainability

to social equality2–7.

Alongside escalating ecological concerns, HABs have emerged as a significant threat

to aquatic ecosystems, characterized by their detrimental impacts on water quality, marine

life, and public health2. In the face of escalating environmental challenges, Marion Reser-

voir, Kansas, stands as a critical example of the pervasive threat of harmful algal blooms,

propelled by a confluence of eutrophication and climate change, underscoring an urgent need

for innovative predictive modeling and management strategies3.

Recent developments in HAB forecasting highlight a paradigm shift away from con-

ventional process-based models and toward innovative, data-driven strategies Lin et al.4.

Yu et al.5 further contribute to this body of work by focusing on the prediction of coastal

algal blooms using environmental factors through ML methods. Recognizing HABs as a

major type of marine disaster, their study proposes a method based on ML to predict the

occurrence of algal blooms by analyzing environmental parameters. Their work validates the

prediction performance on two real datasets from the United States and China, employing

3



ML algorithms to select models and feature subsets for accurate phytoplankton concentration

predictions. This research not only demonstrates the efficiency of ML methods in short-term

prediction but also reveals the crucial environmental factors contributing to the outbreak

of harmful algal blooms, thereby enriching our understanding and management strategies

against this ecological menace.

Ozgur et al.’s6 work explores the complicated dynamics of bank lending in an emerging

economy by using ML techniques to analyze the complex relationships between macroeco-

nomic indicators, bank-specific features, and external influences. This work is noteworthy

because it uses a variety of ML techniques to improve our understanding of lending behav-

iors while addressing the nonlinear and nonparametric interactions present in bank lending

operations. This work highlights the important role of ML in financial analysis and decision-

making by identifying important determinants of bank lending and highlighting the non-

linearities involved. Policymakers, bank management, and regulatory agencies may benefit

greatly from these insights.

Using data from New Jersey, Samuel et al.7 investigate the effect of racial differences

on mortgage lending practices. The authors conduct an in-depth investigation that, beyond

what can be explained by variations in creditworthiness, connects a sizable percentage of

the racial disparity in loan denial rates to discriminatory lending practices using a three-

step estimator. This paper is particularly significant for its robust approach to examining

how racial factors influence loan approvals, even when accounting for credit risk and other

variables. To maintain justice and equity, the lending industry is challenged by the findings,

which offer crucial information to regulators, bank management, and policymakers.

4



Chapter 1

Data Science Approaches for

Prediction of algal blooms in Marion

Reservoir

1.1 Summary

Harmful algal blooms (HABs) caused by cyanobacteria can have a detrimental impact

on water ecosystems, leading to the need for accurate prediction and prevention strategies.

If an algal bloom could be predicted, a local management strategy could be implemented

and applied to treat the bloom effectively to preserve the water’s quality. In this study, we

applied a data science approach to predicting cyanobacteria blooms in Marion Reservoir,

Kansas. We collected data and developed models using Random Forest, Support Vector

Machine, Gaussian Bayes, Decision Tree, Long Short-Term Memory, and XgBoost. Our re-

sults showed that algal bloom can be predicted before it grows and affects the water quality.

XgBoost and RF performed better than other models, indicating their effectiveness in pre-

dicting cyanobacteria blooms. Furthermore, we identified that parameters such as Specific

Conductivity, Phycocyanin value on the day of prediction, Storage, dam release, and Wa-

5



ter Temperature had no impact on the prediction, which helped us understand the features

that were affecting the HABs in the Marion reservoir. Additionally, a comparative analysis

is conducted by applying the ensemble models of RF, XgBoost, and LSTM that demon-

strated the highest performance on Marion Reservoir data to predict HABs in Owasco Lake,

New York. Our findings demonstrate the potential of data science approaches for predicting

HABs caused by cyanobacteria,which can significantly impact environmental management

and public health.

1.2 Introduction

Cyanobacteria are abundant in aquatic ecosystems, and certain species can produce

harmful toxins, leading to the formation of HABs that render water unfit for use. These

blooms not only contaminate drinking water for humans but also have detrimental effects on

animals, aquatic life, and their reproductive capabilities. In recreational areas, contact with

algal blooms and accidental consumption of toxins in water when boating and swimming pose

a threat to human health. In addition, the escalation of algal blooms releases toxic gases

that pose are dangerous to human health if inhaled8. Efficient management techniques are

essential to mitigate the impact of HABs, and one crucial aspect is the ability to predict

their recurrence. Preventive measures can be implemented by predicting these blooms in

advance, such as early spraying with small amounts of chemicals. Treating blooms at an

early stage is more manageable, more effective, efficient, and cost-effective than dealing with

them after they have escalated. This proactive approach significantly reduces the expenses

associated with cleaning lakes and prevents the contamination of water bodies. Ultimately,

it ensures the availability of fresh, non-toxic water for various purposes, including irrigation

and drinking, while allowing the areas open to visitors. Closure of the recreational regions

due to algal bloom can reduce revenue and increase drinking water treatment costs when

the toxin is present. Machine learning represents a powerful tool for predicting the levels of

Phycocyanin, a pigment indicative of cyanobacterial presence.

6



In this chapter, we applied a data science approach to predict cyanobacteria blooms

in Marion Reservoir, located in central Kansas within Marion County. The U.S. Army

Corps of Engineers constructed the reservoir as a multipurpose reservoir for flood control,

water supply, recreation, and wildlife habitat. Construction began in 1964, and closure was

completed in 1967. The entire flood control operation started in 1968. The reservoir has a

surface area of 6402 acres (26 sq. kilometer) and a depth of nine meters max; 3.4 m mean.

It is the 12th largest federal lake in Kansas by volume (80,659 acre-feet)9

The first noted bloom in the reservoir was in 2003, and there have been nearly an-

nual blooms since then9. Marion Reservoir has been closed when a harmful algal bloom is

documented at a hazardous level. Levels are based on high toxin levels and high cell counts.

When at a hazardous level, the public is directed to avoid contact with the water by closing

all parks, boat ramps, and recreation areas near the water10;11.

Marion Reservoir is a vital water source for many communities and serves as a pop-

ular destination for recreational activities, making it imperative to monitor and prevent the

occurrence of HABs. We collected a large environmental and water quality variable dataset

from the reservoir. Water quality data is compiled from a stationary sensor, and the environ-

mental data is collected from the USACE website12. We developed predictive models using

ML and recurrent neural network algorithms. The study’s main objectives are to assess the

extent to which different machine learning algorithms predict cyanobacteria blooms and to

determine the essential parameters that influence their occurrence.

This research is significant because it addresses an important problem that has signif-

icant environmental and public health implications. Furthermore, it adds to the expanding

corpus of research on data science methods for HAB prediction, which has the potential to

improve our ability to monitor and manage freshwater bodies. The study’s findings will have

practical applications for water management agencies and policymakers seeking to mitigate

the impact of HABs.
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Abbrev.

Name

Full Name Type Description

Time1 DataTime DateTime Timestamp of the sample recording.

TAL-PC

RFU

Phycocyanin float64 Optical pigment measurement indicat-

ing cyanobacteria presence.

Chlorophyll

RFU

Chlorophyll float64 Optical pigment measurement from

green plants and algae.

ODO % sat Dissolved Oxy-

gen

float64 Optically measured dissolved oxygen

percentage in water.

SpCond

µS/cm

Specific Conduc-

tivity

float64 Conductivity measurement reflecting

water’s ion content.

Turbidity

FNU

Turbidity float64 Optical measurement of water cloudi-

ness in FNU.

Temp °C Water Tempera-

ture

float64 Thermistor-measured Water Tempera-

ture in °C.

PRECIP Precipitation float64 Precipitation in inches measured at the

gage.

Storage Reservoir Stor-

age

float64 Stored water in the reservoir, measured

in ac-ft.

INFLOW Drainage Basin

Inflow

float64 Inflow into the reservoir in cubic feet

per second.

RELEASE Gate Release float64 Water released by gates, measured in

cubic feet per second.

AIR-TEMP Air Temperature float64 Gage-measured air temperature in °C.

WIND-DIR Wind Direction float64 Gage-measured wind direction in de-

grees.
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WIND-

SPEED

Wind Speed float64 Wind Speed in mph measured at the

gage.

REL-HUMID Relative Humid-

ity

float64 Relative Humidity percentage mea-

sured at the gage.

SOLAR-RAD Solar Radiation float64 Solar Radiation in W/m2 measured at

the gage.

Table 1.1: Concise description of in-lake water quality and climate data at Marion reservoir

1.3 Data

The data was collected hourly using a multi-parameter water quality sensor13 located

in-lake in a buoy and from the US Army Corps of Engineers (USACE) weather station12

located on the reservoir dam. The data collection period spanned from May 12th, 2022, to

September 5th, 2023, resulting in a dataset comprising 7943 records and 15 features14. The

data was not collected in December, January, and February as the lake was frozen during

that time. The distribution of each parameter in the dataset is represented in Figure 1.6

and the trend of each parameter with time is represented in Figure 1.4.

The parameters such as Air Temperature, Chlorophyll, Phycocyanin, Turbidity, etc

were collected from Marion Lake and are described in Table 1.1. It is important to note that

the dataset contains missing values, as the sensors did not always capture specific parame-

ters because of situations like damage to the sensor caused by internal or external reasons

and the draining of batteries. A feature like light value was incorrectly noted because the

algal blooms or other biofilms covered the sensor and hindered the measurement of light

values accurately so it had to be excluded from the dataset used for training the model. All

15 columns in the dataset exhibit missing values in some records specifically, the columns

related to Chlorophyll, Dissolved Oxygen, Specific Conductivity, Water Temperature, and

Turbidity show 782 records with missing values. In contrast, the variables like Solar Ra-
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diation, Relative Humidity, and Air Temperature have eight missing records. The inflow,

release, and Precipitation variables exhibit 110, 87, and seven missing records, respectively.

The percentage of missing values for each column is shown in Figure 1.2

In total, 921 records have at least one missing value across the features. The cor-

relation matrix is depicted in Figure 1.3 to understand the interrelationships between the

features. This matrix provides insight into the degree of association between different vari-

ables in the dataset.

 

(a) Algae Bloom in Marion Reservoir, Kansas.

 

(b) Marion reservoir map.

Figure 1.1: Eerie algae bloom in Marion Reservoir, Kansas. a. The green appearance on the
lake’s surface indicates algae bloom. b. Marion reservoir map where the data is collected.

10



 

Figure 1.2: The percentage missing values of each column in the Marion reservoir dataset
were collected from the sensors. It is observed that about 10 % of data is missing for the
features Chlorophyll, Dissolved Oxygen, Specific Conductivity, Phycocyanin, Turbidity, and
Water Temperature. Approximately 1 % of the entire data is missing for features such as
Precipitation, Storage, Air Temperature, Wind Direction, Wind Speed, Relative Humidity,
and Solar Radiation.

1.4 Methodology

1.4.1 Data preprocessing

As discussed in the text referenced in section 1.3, The data for this study was collected

from two sensors: one for water quality and the other for the weather. The two datasets were

combined into one, and columns with special characters were removed to avoid errors during

data processing. During the initial days of sensor installation, there were minor portions of

negative values in the dataset, which were nearly zero. These values have been adjusted to

zero for clarity and accuracy. There were 921 rows of missing data, which was a significant

challenge.

There are various methods for handling missing data, such as deleting rows with
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Figure 1.3: The correlation matrix integrates in-lake water quality data and weather vari-
ables. Notably, strong correlations emerge between parameters: Phycocyanin and Chloro-
phyll, Turbidity and Water Temperature; Air Temperature and Solar Radiation; Storage
with Release, and Turbidity and negatively correlates with Chlorophyll and Specific Con-
ductivity; and Air Temperature and Water Temperature; Specific conductive strong negative
correlation with Phycocyanin; Relative Humidity negatively correlates with Solar Radiation.

missing values or imputing placeholder values such as the mean, median, or zero. However,

these methods are unsuitable for time series data, where the order of records is important,

and the missing values may not be random. In particular, continuous missing values can

cause problems for these methods, as they can disrupt the temporal trends in the data.

Craig D. N. et al.15 described several methods for dealing with missing data in the

time series. It is important to carefully consider the different approaches and select one

appropriate for the specific dataset. Time interpolation and iterative imputation were em-

ployed in this study to fill in the missing values. Based on Figure 1.7, it can be observed that

time interpolation was utilized to fill gaps in the data points in a linear manner. While this
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(a) Air Temperature (b) Chlorophyll

(c) Inflow (d) Dissolved Oxygen

(e) Precipitation (f) Relative Humidity

(g) Release (h) Relative Humidity

approach is simpler, it may not fully capture all the inherent patterns, particularly in cases

where the data displays non-linear attributes or is subject to external influences. In con-

trast, using iterative imputation, specifically employing the ‘IterativeImputer’ module from

the ‘sklearn’ library, exhibited a more reliable methodology. Instead of solely focusing on

the sequence over time, this method treats each feature with missing values as dependent on

other features. This process is performed repeatedly, addressing all the features in the data

until the imputation reaches a state of agreement. This approach has several advantages, as

it takes the overall structure of the dataset and the interrelationships among its components

13



(i) Solar Radiation (j) Specific Conductivity

(k) Storage (l) Phycocyanin

(m) Water Temperature (n) Turbidity

(o) Wind Direction (p) Wind Speed

Figure 1.4: The figure represents the trend in each feature over time.

into account, and a more dependable technique was used to fill in the missing data. Based on

Figure 1.7, it can be observed that the iterative imputation method exhibits a higher degree

of agreement with the original data patterns. This suggests that iterative imputation may

be considered a more suitable option than time interpolation in the given dataset. Iterative

imputation has been extensively studied and provides the benefit of doing multi-feature im-

putation by considering correlations and patterns within a dataset. The research by Buuren
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Figure 1.5: Feature importance for predicting Phycocyanin levels. Each feature’s contribu-
tion is evaluated by systematically removing them one by one and observing the impact on
the prediction accuracy.
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(a) Air Temperature

 

(b) Chlorophyll

 

(c) Inflow

 

(d) Precipitation

 

(e) Dissolved Oxygen (f) Phycocyanin

(g) Relative Humidity (h) Solar Radiation (i) Specific Conductivity

(j) Storage (k) Water Temperature (l) Wind Direction

(m) Wind Speed (n) Turbidity

Figure 1.6: Distribution of features of Marion reservoir data.
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S.V. et al.16 provides an introductory overview of this technology, elucidating its underlying

algorithmic principles and possible advantages.

The next step in the data preparation phase was to normalize the data. Normalization

is essential in machine learning to prevent features of varying sizes and magnitudes from

adversely affecting the model’s learning process. The min-max normalization approach was

used in this analysis. To ensure all the features in this study had an equal scale and to

prevent the dominance of characteristics with greater magnitudes, the feature values were

re-scaled between zero and one using the min-max normalization technique 1.1. This makes

it possible to compare characteristics fairly.

normalizedvalue = (value−minvalue)/(maxvalue−minvalue) (1.1)

1.4.2 Feature Selection

The feature selection step identifies the most important features for Phycocyanin

predictions to understand HABs better. The XgBoost and RF models’ built-in feature

importance functions were used in feature importance approaches. These techniques analyze

each feature’s influence on the prediction of the target variable and rank each one according

to its significance. Ensemble learning methods like RF and XgBoost models are known

for handling complicated connections and capturing feature interactions. For each variable,

these models offer a feature importance score that indicates the feature’s importance in the

prediction. These models provide a feature importance score for each variable that denotes

the significance of the feature in the prediction. Figure 1.8 shows the relative importance of

each feature in contributing to the prediction. The feature importance values were derived

from the RF model1, which quantifies the significance of each feature based on its impact

on the prediction accuracy.

We examined the partial effect of each feature on the prediction of the target variable.

The partial effect17 refers to the influence of a specific feature while the rest of the features

17



 

(a) Chlororphyll

 

(b) Phycocyanin

 

(c) Specific Conductivity

 

(d) Dissolved Oxygen

 

(e) Water Temperature

 

(f) Turbidity

Figure 1.7: Comparison of Missing Value Imputation Methods: Time Interpolation vs. Iter-
ative Imputation. The left side of the graph showcases values filled using time interpolation,
depicted in red, while the right side illustrates those filled via iterative imputation in green.
This figure specifically focuses on features with a significant percentage of missing values.
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remain unchanged. By analyzing the partial effects, we better understood how individual

features contribute to the overall prediction and their relative importance.

The permutation importance procedure was utilized to determine a variable’s effect

on the model. This method involves arbitrarily shuffling the values of a single feature while

leaving the values of the other features unchanged. The resulting decrease in model per-

formance is then measured to determine the significance of this feature. The permutation

importance values were computed using the permutation importance function of the scikit-

learn library. This method comprehensively measures feature importance by considering

feature interactions and dependencies.

By analyzing the partial effects and outcomes of permutation importance, we can

identify the essential characteristics that have a significant impact on the prediction of the

target variable. This information facilitates feature selection and model interpretation, al-

lowing us to prioritize the most influential features and enhance the model’s overall predictive

performance. The partial effect of each feature on the target variable using RF, when a pre-

diction is made three days ahead, is represented in Figure 1.14. TAL-PC after three days

while holding all other features constant. Notably, the partial dependence plot for inflow

demonstrates a positive, non-linear correlation, signifying that as inflow increases, we can

expect a rise in TAL-PC, although at a decreasing rate. Conversely, the plot for Precipita-

tion reveals a negative, linear connection, indicating that increasing Precipitation leads to

a decrease in TAL-PC. The plot shows a positive, non-linear relationship regarding Rela-

tive Humidity, implying that higher humidity levels contribute to an increase in TAL-PC,

albeit with diminishing returns. The Wind Direction plot portrays a complex, non-linear

relationship that varies depending on other feature values. We observe a positive, non-linear

correlation for Wind Speed, and similarly, the Storage plot displays a positive, non-linear

connection. These partial dependence plots collectively emphasize the importance of all fea-

tures in predicting TAL-PC after three days. However, these relationships are intricate and

non-linear.
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Figure 1.8: The figure illustrates the feature importance of the dataset for predicting Phy-
cocyanin using the RF model1.

1.4.3 Method

This project used different predefined machine learning, neural networks, and ensem-

ble models. These models utilize a set of 15 features from the dataset as mentioned in Table

1.1, with the Phycocyanin level after a specified duration serving as the dependent variable.

The parameters were tuned to identify the best model for the data.

As a part of this process, we first started with the RF model, the most commonly used

model for predicting algal blooms. We employed a RF algorithm1 for analysis. RF is an en-

semble technique which combines the prediction outputs of various decision trees to produce

precise predictions. RF is a popular machine learning technique for both classification and

regression tasks, valued for its flexibility and strength. As an ensemble learning approach,

RF creates a ”forest” consisting of multiple decision trees. Each tree is developed from a

randomly chosen subset from the training dataset and a random set of attributes. These

individual trees are typically known a “base” or “weak” learners. The collective decision
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from all these trees results in a more robust and accurate prediction. These decision trees

are built using a technique known as bootstrap aggregating, often known as bagging. Each

tree is trained in bagging using a unique, replacement-selected random subset of the training

data. To provide even more randomness and avoid over-fitting, only a random subset of

features is taken into account at each branch in the tree.

Each DT in the RF individually predicts something during the prediction phase. The

final result is determined through a majority vote (in classification) or by averaging the

outcomes from the individual trees (in regression). Using an ensemble technique increases

the model’s overall accuracy and robustness while the variance decreases. In addition to its

ability to manage large datasets with high dimensionality, handle missing values and outliers,

and offer estimates of feature relevance, RF has several benefits. Furthermore, it is resistant

to over-fitting and typically only needs a small amount of hyper-parameter adjustment. The

following parameter settings has been used nestimators = 400, minsamples split = 5, minsamples leaf

= 1, maxfeatures = ’sqrt’, maxdepth = 100, and bootstrap = True. These values were selected

based on prior studies, empirical experiments, and tuning procedures to optimize the RF

model’s performance. The results of this model are described in Table 1.3 and Figure 1.9.

We used the XgBoost supervised learning algorithm for our experiment. XgBoost18

framework was used for gradient boosting because of its remarkable performance in handling

complicated and non-linear data relationships. Extreme Gradient Boosting (XgBoost) is

a powerful and well-known machine learning method that excels in resolving a variety of

problems, particularly in the area of structured data analysis. It is well known for its ability

to produce highly accurate predictions and handle large datasets faster.

The foundation of XgBoost’s architecture is the gradient boosting principle, which

combines several weak learners (Decision Trees) to create a powerful prediction model. It

uses a gradient-boosting framework to build decision trees sequentially and repeatedly, each

time optimizing a given objective function. The approach uses gradient descent optimization

to reduce the loss function, enabling the model to improve its predictions with each iteration

by learning from previous failures18.
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To avoid over-fitting and promote generalization, XgBoost employs a regularized

boosting method. In order to manage the model’s complexity and promote simplicity, reg-

ularization terms are introduced to the objective function. This decreases the possibility of

the training data getting over-fitted. The model prediction of the Phycocyanin using Xg-

Boost is represented in Table 1.2, and the results of XgBoost predicted at different times are

represented in Figure 1.11

Ensemble models are used as the major modeling approach because of their ability

to combine the predictions of numerous individual models, resulting in better accuracy and

reductions in errors. In this study, we implemented two ensemble models and compared their

performance, and the best performance is used in further study.

In one of the ensemble models, we used the XgBoost, Randomforest, and Long short-

term memory models. XgBoost has been widely utilized, and the next model used in this

ensemble is RF. RF1 itself is a form of ensemble learning that involves constructing a large

number of decision trees during training, after which the approach outputs either the class

or an average forecast of the individual trees. A random subset of the training data is used

to train each DT that makes up the RF. The features used to train the trees are also chosen

randomly. The presence of this randomness contributes to a reduction in over-fitting and an

improvement in generalization. RF is not only able to handle high-dimensional datasets, but

it is also resistant to outliers and noisy data. It is well-known for its capacity to comprehend

intricate linkages and non-linear trends present in the data.

We made use of the RandomForestRegressor class that is included in the scikit-learn

library. The training data was used to train the RF model, given independent parameters,

and the target feature, which in this case was the presence of Phycocyanin in the water. The

model was configured with a maximum depth of 20 and a total of 100 estimators.

The Keras library with a TensorFlow backend was utilized to implement the LSTM

model. The proposed model architecture comprises three LSTM layers, each having 50 units.

Subsequently, dropout layers with a dropout rate of 0.2 are employed. A univariate output

22



layer was appended in the form of a dense layer. Using the scaled training data, the LSTM

model underwent 50 epochs of training with a batch size of 32. The results of predicting

Phycocyanin using LSTM are represented in Table 1.4.

The ensemble model was constructed by averaging the RF, XgBoost, and LSTM

predictions. To evaluate their efficacy, we generated predictions using the test data the

results are represented in the Figure 1.10. We calculated Pearson’s correlation coefficient

and the MSE between the observed and predicted values represented in the Table 1.5. This

ensemble model yielded the most favorable results in our analysis.

An ensemble model was made using a combination of several algorithms: RF, SVM,

K Neighbors Regressor, and Gaussian Process Regressor, all of which were sourced from

the Scikit Learn library. The ensemble’s predictions were generated by averaging the out-

comes of all these individual models. The corresponding results can be found in Table 1.6.

Subsequently, a modification was introduced to the ensemble technique. For each record’s

prediction, we considered the predictions of 2*n surrounding records: n records preceding

and n records following the target record. The final prediction for the record was then de-

termined by calculating the mean of these 2*n predictions. Unfortunately, this augmented

ensemble approach did not yield improved performance, and the results are documented in

Table 1.7.

Prediction Time Correlation Coefficient RMSE

1 Hour 0.9745 0.2541
10 Hours 0.8832 0.5717
1 Day 0.9151 0.4985
7 Days 0.9469 0.3582
14 Days 0.8989 0.5241
30 Days 0.9107 0.4797
60 Days 0.9731 0.2307

Table 1.2: The table above illustrates the performance of the XgBoost model for predicting
the different amounts of Phycocyanin ahead of time. The correlation coefficient and the
RMSE are the values between observed and predicted values.
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(a) One hour

 

(b) 10 Hours

 

(c) One day

 

(d) Seven days

 

(e) 14 days

 

(f) 30 days

 

(g) 60 days

Figure 1.9: The prediction of Phycocyanin ahead of different time spans using RF is illus-
trated in the above subplots.

1.4.4 Cross-Validation

Cross-validation using the k-fold method is used in the study to validate the per-

formance of different methods used for forecasting Phycocyanin. A dataset is split into k

subsets, or folds, for testing purposes, with the remaining k-1 folds being used for training

in k-fold cross-validation21. The results of cross-validation for Marion reservoir data using

10-fold cross-validation are averaged and are specified in Figure 1.15 which is calculated for

the RF, XgBoost, and LSTM model.
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(a) One hour

 

(b) 10 Hours

 

(c) One day

 

(d) Seven days

 

(e) 14 days

 

(f) 30 days

 

(g) 60 days

Figure 1.10: Predictions of Phycocyanin at various future intervals using an ensemble of RF,
XgBoost, and Long Short-Term Memory model.

Over 30 days, the Mean Squared Error (MSE) is calculated to be 0.1497, with a

standard deviation of 0.0736, which is relatively high. This observation suggests that the

model’s predictions exhibit less variability, with a corresponding moderate average error.

Over 60 days, the MSE exhibited a lower value of 0.0753, with a reduced standard deviation

of 0.0274. These findings indicate a rise in prediction accuracy. For one hour, the MSE is

calculated to be 0.1702, with a standard deviation of 0.0836. Notably, these values indicate

a bigger magnitude compared to the prior findings. This suggests that short-term forecasts

may exhibit slightly lower levels of accuracy and a slightly greater level of variability. For 10
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Prediction Time Correlation Coefficient RMSE

1 Hour 0.97 0.2
10 Hours 0.84 0.6
1 Day 0.87 0.5
7 Days 0.92 0.4
14 Days 0.86 0.6
30 Days 0.90 0.5
60 Days 0.96 0.2

Table 1.3: The table above illustrates the performance of the RF model for predicting
different time periods ahead of time. The correlation coefficient and RMSE values represent
the accuracy between observed and predicted values.

Prediction Time Correlation Coefficient RMSE

1 Hour 0.9608 0.2605
10 Hours 0.8229 0.6418
1 Day 0.8204 0.6476
7 Days 0.8409 0.5493
14 Days 0.8003 0.6751
30 Days 0.8975 0.4857
60 Days 0.9602 0.2522

Table 1.4: The table above illustrates the performance of the LSTM model for predicting the
different amounts of Phycocyanin ahead of time. The correlation coefficient and the RMSE
are the values between observed and predicted values.

Prediction Time Correlation Coefficient RMSE

1 Hour 0.9738 0.23581
10 Hours 0.8804 0.65783
1 Day 0.9120 0.5088
7 Days 0.9445 0.43670
14 Days 0.9004 0.5219
30 Days 0.9030 0.5018
60 Days 0.9718 0.2375

Table 1.5: The table above illustrates the performance of the ensemble model created using
RF, XgBoost, and LSTM for predicting the different amounts of Phycocyanin ahead of time.
The correlation coefficient and the RMSE are the values between observed and predicted
values.

hours, the MSE is calculated to be 0.1935, accompanied by the largest standard deviation

of 0.1130. This observation implies that long-term projections exhibit a notable degree of
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(a) One hour

 

(b) 10 Hours

 

(c) One day

 

(d) Seven days

 

(e) Fourteen days

 

(f) 30 days

 

(g) 60 days

Figure 1.11: The prediction of Phycocyanin ahead of different time spans using XgBoost is
illustrated in the above subplots.

uncertainty and unpredictability.

The correlation coefficients observed during cross-validation in the presented findings

indicate the model’s capacity to accurately depict the association between predicted and

real Phycocyanin levels across various periods. The model exhibits a high and significant

correlation across several time frames, with coefficients of 0.9407 for 30 days, 0.9640 for 60

days, 0.9424 for one hour, and 0.9323 for 10 hours. These findings suggest that the model

27



Prediction Time Correlation Coefficient RMSE

1 Hour 0.96 0.30278
10 Hours 0.85 0.59982
1 Day 0.86 0.59389
7 Days 0.89 0.47080
14 Days 0.85 0.61580
30 Days 0.87 0.6184
60 Days 0.94 0.1451

Table 1.6: The table above illustrates the performance of the ensemble model created using
RF1, SVM, K Neighbors Regressor, and Gaussian Process Regressor for the prediction of the
different amounts of Phycocyanin ahead of time. The correlation coefficient and the RMSE
are the values between observed and predicted values.

Prediction Time Correlation Coefficient RMSE

1 Hour 0.26564 0.66564
10 Hours 0.279407 0.59744
1 Day 0.2672 0.56851
7 Days 0.238041 0.47875
14 Days 0.2285692 0.42733
30 Days 0.23952 0.36157
60 Days 0.189146 0.25356

Table 1.7: The table above illustrates the performance of the ensemble model created using
RF1, SVM, K Neighbors, and Gaussian Process Regressor for the prediction of the different
amounts of Phycocyanin ahead of time by using the mean of n records above and below the
predicting record (for the result above n = 5). The correlation coefficient and the RMSE are
the values between observed and predicted values.

is successful at comprehending and forecasting ecological trends throughout these time in-

tervals. In addition, the correlation coefficients for various time frames 30 days: 0.0234, 60

days: 0.0115, one hour: 0.0238, and 10 hours: 0.0313 exhibit low standard deviations. This

indicates that the model consistently maintains robust correlations and can generate de-

pendable predictions across diverse time intervals. Longer time frames demonstrate slightly

higher correlations and consistent performance, while even the shortest time frame of one

hour consistently exhibits strong correlations with minimal variability. This highlights the

model’s effectiveness in capturing both short-term fluctuations and long-term trends.
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Figure 1.12: Figure that represents the architecture of XgBoost19.

1.5 Impact of dataset size on Phycocyanin prediction

The prediction of Phycocyanin concentration exhibited significant variability with

the increase in the number of records, as illustrated in Figure 1.16. This section explores

the influence of dataset size on prediction accuracy and performance, shedding light on the

intricate relationships between various data parameters and Phycocyanin concentration.

Our findings indicate a noteworthy trend: as the dataset size expanded from 1,000

records to 7,943 records, the overall predictive performance improved consistently. This

observation underscores the importance of data volume in enabling the model to comprehend

the complex interdependencies within the dataset and enhance its predictive capabilities.

An interesting insight emerged when we examined the performance at various dataset

sizes. Initially, as we transitioned from 1,000 to 2,000 records, there was a sharp increase in

performance. This can be attributed to the model grasping the fundamental relationships

within the data. However, as the dataset continued to grow, the performance gains began to

reduce, likely because the model started grappling with more intricate and nuanced data re-

lationships. Remarkably, it was only around the 8,000-record mark that the model appeared
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Figure 1.13: The figure represents the architecture of RF20.

to fully comprehend the dataset’s complexities, resulting in optimal predictive performance.

It is essential to note that the dataset size required for accurate Phycocyanin predic-

tion may vary depending on the specific lake, its environmental conditions, and geographical

factors. Therefore, the recommended dataset size of approximately 8,000 records serves as

a valuable guideline but may necessitate adjustment based on the unique characteristics of

the study area.

This analysis highlights dataset size’s critical role in improving Phycocyanin predic-

tions’ accuracy. Understanding this relationship is fundamental to achieving precise predic-

tions and contributes significantly to our knowledge of lake conditions and their impact on

Phycocyanin concentrations.
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Figure 1.16: The effect of the dataset size on the performance of the ensemble model (RF,
XGB, LSTM) prediction of Phycocyanin for a prediction duration of seven days

1.6 Comparison of Marion and Owasco Lake data

In this analysis, we collected data from Lake Owasco and compared it with Marion

Reservoir, which has similar bloom occurrences. Owasco Lake, a picturesque body of water in

the Finger Lakes region of New York State, is situated at approximately 42.8272° N latitude

and 76.4897° W longitude22. These coordinates place the lake within the heart of the Finger

Lakes, a region renowned for its natural beauty and pristine freshwater resources. Unlike

Marion Lake, Owasco Lake is a glacier-formed lake. Owasco Lake’s unique geographical

location plays a significant role in its environmental characteristics and ecosystem dynamics.

The lake is seven miles long with a width of one mile, average and maximum depths of 95ft

and 177ft, respectively, and a volume of 212 billion gallons23. The bird’s-eye view of the

Owasco Finger Lake is represented in Figure 1.17a.

Table 1.8 compares the correlation coefficients between Marion Lake and Owasco

Lake for various forecast periods. The linear relationship between two variables’ strength
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and direction is measured by the correlation coefficient. Within this particular context, it

signifies the level of effectiveness exhibited by the prediction models in accurately collecting

the instances of bloom occurrences in both lakes. The percentage of missing values in Owasco

Lake is specified in Figure 1.18. Compared to Marion, the percentage of missing records is

less in Owasco Lake data.

When considering a forecast length of 10 hours, it is shown that Owasco Lake has a

significantly high correlation value of 0.9968, but Marion Lake demonstrates a correlation

coefficient of 0.8804. This implies that the model’s forecasts for Owasco Lake exhibit a high

correlation with the observed events compared to Marion Lake. When the forecast length

is increased to one day, Owasco Lake has a strong correlation value of 0.9964, indicating a

high level of correlation. Similarly, Marion Lake also demonstrates an improved correlation

coefficient of 0.9120. In the case of extended periods, specifically 14 days, one week, one

month, and two months, it is noteworthy that Owasco Lake exhibits consistently strong

correlation coefficients, ranging from 0.9954 to 0.9982. Conversely, Marion Lake displays a

range of correlation coefficients between 0.9004 and 0.97188.

The analysis of the correlation coefficients between Marion Lake and Owasco Lake

suggests that Owasco Lake constantly performs better than Marion Lake in terms of the

prediction models’ capacity to capture bloom occurrences accurately.This is partly because

Marion Lake exhibits a wider range of cyanobacteria concentration values than Owasco Lake.

Table 1.9 presents a comparative analysis of the Root Mean Square Error (RMSE)

values for Marion Lake and Owasco Lake over various forecast periods. By calculating the

average amount of the prediction errors, the RMSE gives important information about how

accurate the models are.

In the context of a 10-hour forecast time, it is seen that Owasco Lake has a very low

RMSE value of 0.0323, but Marion Lake displays a substantially larger RMSE value of 0.3860.

This finding suggests that the predictive models for Owasco Lake exhibit a higher degree of

accuracy and a lower margin of error in comparison to those for Marion Lake. When the
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forecast length is extended to one day, Owasco Lake’s RMSE is consistently low at 0.0338.

Similarly, Marion Lake’s RMSE also shows improvement, reaching 0.4948. Owasco Lake

exhibits consistently low RMSE values throughout extended periods, such as 14 days, one

week, one month, and two months, with values ranging from 0.0232 to 0.0338. In contrast,

Marion Lake’s RMSE values fluctuate between 0.0232 and 0.5219.

The comparative analysis of RMSE values for Marion Lake and Owasco Lake, as

shown in Table 1.9, indicates that Owasco Lake consistently reports lower RMSE values.

The notable discrepancy in RMSE between the lakes can be attributed to Marion Lake’s

wider range of phycocyanin concentrations, which introduces larger prediction errors, thereby

increasing its RMSE compared to the more stable data from Owasco Lake. Thus, the

predictive models for Owasco Lake demonstrate remarkable precision with minimal errors,

highlighting the reliability of Owasco Lake data for forecasting algal bloom occurrences.

We identified the top five critical features influencing the water ecosystem by averaging the

feature importance values from both XGBoost and RF methodologies. As outlined in Table

1.10, it becomes evident that while blooms might appear similar across different ecosystems,

the underlying factors driving these phenomena can differ substantially.

The analysis conducted reveals our efforts to compare these two lakes just to solidify

that similar models could be applied to contrasting lake ecosystems, although the factors

influencing the bloom might vary.
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(a) Owasco lake map24.

 

(b) Owasco Lake algal bloom in the year 201825.

Figure 1.17: Owasco Finger Lake, New York.

1.7 Conclusion

This chapter primarily used data science approaches to predict cyanobacteria blooms

in Marion Reservoir. HABs are a major threat to the watery ecosystem because they make

the water unsafe for people, animals, and aquatic life to use. It is important to be able to

predict the future algal bloom to handle HABs well and lessen their effects.
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Prediction Duration Marion Lake Owasco Lake

10 Hours 0.8804 0.9968
1 Day 0.9120 0.9964
1 Week 0.9004 0.9982
14 Days 0.9030 0.9975
30 Days 0.9078 0.9974
60 Days 0.97188 0.9954

Table 1.8: Comparison of predicted value correlation coefficients between Marion and Owasco
Lake using RF, XGBoost, and LSTM ensemble model.

Prediction Duration Marion Lake Owasco Lake

10 Hours 0.3860 0.0323
1 Day 0.4948 0.0338
14 Days 0.5219 0.0232
1 Week 0.3846 0.0278
30 Days 0.5071 0.0257
60 Days 0.3233 0.0288

Table 1.9: Comparison of predicted value RMSE between Marion and Owasco Lake using
RF, XgBoost, and LSTM ensemble model.

Owasco Lake Marion Lake

Specific Conductivity Phycocyanin
Inflow Release
Turbidity Storage
Chlorophyll Water Temperature
Storage Specific Conductivity

Table 1.10: Top five important features based on feature importance of ensemble of RF and
XgBoost for a prediction duration of three days.

Machine learning and recurrent neural network methods were used to make predictions

based on a large set of collected water quality and environmental factors. The main goal

was to see how well different machine learning systems could predict cyanobacteria blooms

and figure out what external factors were most likely to cause them.

This study explores an important problem that affects the environment and general

health. By applying data science approaches to predict HABs, the study contributes to the

growing body of literature on freshwater management. Water management organizations
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and lawmakers can use the findings to lessen the effects of HABs and ensure the safety of

water supplies and water recreational areas.

The data used in this study was obtained from Marion Reservoir, an important water

source for many places and a popular place for outdoor recreation. The data set consists

of hourly readings from two devices. One sensor measured the state of the lake water,

and the weather data was collected from the USACE webpage11. The dataset contained

missing values, which were handled using appropriate methods for time series data. Min-

max normalization was used to normalize the data so that features could be compared fairly

and bigger features did not dominate the remaining features.

Techniques like XgBoost and RF models were used to determine the most important

features for predicting cyanobacteria blooms, which gave us insight into how blooms occur.

These models ranked the features by how important they were to the prediction and gave

useful information about their relative importance and how they interacted with each other.

Ensemble models like XgBoost, RF, and LSTM were used to improve the accuracy of

predictions. The ensemble model put together what these models said would happen. This

made the data more accurate and reliable. With test data, Pearson’s correlation coefficient

and the MSE between actual and projected values were used to evaluate the ensemble models.

The model’s accuracy at predicting cyanobacteria blooms was checked by looking at how

well it worked.

The impact of the size of the data on prediction is analyzed as part of this study.

It is observed that the more data there is, the better it is for a machine learning model to

understand the trends in data. The Marion reservoir data is compared with Owasco Lake,

New York data. The comparative study provided insights into how similar methods can be

applied to contrasting water bodies, and the parameters that significantly influence the algal

bloom were not always the same.

Overall, this study shows how data science methods could be used to predict and

control HABs. By knowing the most important natural factors and using machine learning
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methods, water management bodies can make smart decisions to protect water supplies and

public health. Future studies can be based on these results and explore other ways to predict

and stop HABs.

In conclusion, this study contributes to the fields of data science and environmental

management by shedding light on the capabilities of predicting cyanobacteria blooms and

giving useful ways to lessen their effects.
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Figure 1.14: Partial dependency plot for all the features used in predicting Phycocyanin
three days ahead using RF.

38



 

(a) One Hour

 

(b) Ten Hours

 

(c) One Day

 

(d) Seven Days

 

(e) Fourteen Days

 

(f) Thirty Days

 

(g) Sixty Days

Figure 1.15: Cross-validation results of the ensemble model combining RF, XGBoost, and
LSTM. The bar chart displays the average values of MSE, Pearson Correlation, and RMSE,
with error bars representing one standard deviation.
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Figure 1.18: Figure represents the percentage missing values of each column in the dataset
collected from Owasco Lake. The parameter Relative Humidity has the highest percentage
of missing values with approximately 10%. Features like Specific Conductivity, Water Tem-
perature, Dissolved Oxygen, Turbidity, Phycocyanin, and Chlorophyll concentration have
approximately 5% of data that is missing.
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Chapter 2

Quantitative analysis of racial bias in

home mortgage loans

2.1 Summary

A home mortgage is one of the most common forms of financial loans and a primary

source for household financing. Here we use 13 years of federal home mortgage data collected

in the United States, which includes ∼ 7 · 106 loans. By applying machine learning, we

show that the race and ethnicity of the borrower can be identified by using the mortgage

information, indicating a link between the borrower and the loan information that is not

directly related to the borrower’s race. The analysis also shows that the information that

correlates with the borrower’s race is the borrower’s gender. While reasons can include

complex current and historical sets of biases, the results provide quantitative confirmation

of racial biases embedded in home mortgage systems.
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2.2 Introduction

A home mortgage is a critical and common financial tool that has substantial economic

and social implications26–28. It is also a non-static field that changes consistently over time

and responds to the economic and social ecosystem29. Naturally, the decision of a lender

about a mortgage depends on a set of financial indicators related to the person and the

property being purchased. Taking all information into account, the underwriter decides

whether to approve or deny a mortgage application26;30.

While the process of approving a loan is driven by economic factors, it might also

include indicators that may directly or indirectly lead to racial bias31–33. For instance,

racial biases played an essential role in approving high-cost, high-risk loans to black and

Latino borrowers compared to white borrowers in the United States34. These activities also

used community information to identify specific potential borrowers and earn their trust.

Racial inequality is also reflected by higher rates of predatory lending, targeting specifically

borrowers from underrepresented minorities35. Racial discrimination in mortgage approval

has also been linked to differences in credit scores36 and a higher chance of being denied

a mortgage loan37. More recent studies have shown a decline in racial discrimination in

mortgages38. Mortgage discrimination can also vary by geographical location39.

In this context, it is crucial to understand the dynamics of the housing market and the

factors that contribute to the availability and affordability of housing loans. By analyzing

data from FHLB databases, decision-makers and industry stakeholders can get insight into

housing market trends and make well-informed decisions about housing financing practices

and policies.

The purpose of this study is to apply quantitative analysis to identify and profile

patterns of racial discrimination in mortgages. Since a loan mortgage is a high-dimensional

space, this study also uses machine learning to perform a comprehensive analysis of mortgage

data using the data from the Federal Home Loan Bank.
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2.3 Data

The Federal Home Loan Bank (FHLB) is a US government-sponsored institution that

was established in 1932 to provide funding for member banks and thrifts to make housing

loans available to consumers. FHL Banks operate in a cooperative structure and provide

low-cost funding to their members, which can then be used to make loans for the purchase,

construction, or renovation of homes. Housing loans and mortgages are a critical part of

the FHLB system. These loans provide individuals and families with the means to purchase

homes and build wealth through home ownership. Typically, mortgages are long-term loans

that the borrower repays in regular installments over a predetermined time period.

FHL banks play a significant role in the housing market by providing liquidity to their

members, enabling them to provide mortgage loans to consumers. Through their lending

activities, FHL banks help to promote home ownership and affordable housing, particularly

for low and moderate-income households. However, housing loans and mortgages are not

without risks. Mortgage borrowers who are not able to make their payments may default,

leading to foreclosure and the loss of the property. Default rates can also have an impact on

the financial stability of FHL banks and the broader housing market.

The FHLB data set covers the period from 2009 to 2021, i.e., 13 years of mortgage

data, and contains 89 features. It provides a rich source of data for analyzing trends in

the housing market. Table 2.1 shows the columns in the dataset. The dataset contains

information about a very large number of ∼ 7 · 106 loans.

Figure 2.1a displays the sum of mortgage balance at the origination of loan assignment

in each year. The average amount of loans assigned in each state is shown in Figure 2.1b. As

the figure shows, the states of California and New Jersey have the highest average amount

of loans assigned, and Illinois has the least. The sum of the number of loans assigned in

each year is described in Figure 2.1c. The number of loans assigned to each race per year is

represented in Figure 2.1d.
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(a) Total mortgage balance at origination in
each year.

(b) The distribution of loans across states
state.
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Figure 2.1: Mortgage information

Feature Data

Type

Description

Year int64 Year Loan Was Reported

AssignedID int64 Unique Record ID (not actual loan number)

FHLBankID object Name of Federal Home Loan Bank District

Program float64 AMA Program

FIPSStateCode int64 Two Digit FIPS State Code

FIPSCountyCode int64 Three Digit FIPS County Code

MSA int64 Core Based Statistical Area Code

FeatureID float64 Geographic Names Information System (GNIS) Feature ID

Tract float64 The property’s Census Tract of Block Numbering Area (BNA)
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MinPer float64 The percentage of the property’s census

TraMedY int64 Tract population that is a minority.

LocMedY int64 The property’s median income for the area based on the most recent

decennial census

TractRat float64 Tract Income Ratio

Income int64 Total Monthly Income Amount

CurAreY int64 The current median income for a family of four for the area as

established by HUD

IncRat float64 Borrower Income Ratio

UPB int64 The Amount of unpaid principal balance in whole dollars when

acquired by the FHLBank.

LTV int64 The loan-to-value ratio of the mortgage at time of origination

MortDate int64 The loan-to-value ratio of the mortgage at time of origination

AcquDate int64 Year the mortgage was acquired.

Purpose int64 Purpose of Loan: 1 = Purchase, 2 = No-Cash Out Refinancing, 3

= Second Mortgage, 4 = New Construction, 5 = Rehabilitation or

Home Improvement, 6 = Cash-out Refinancing, 7 = Other

Coop float64 Cooperative Unit Mortgage 1 = yes; 2 = no

Product int64 Purpose of Loan: 1 = Purchase, 2 = No-Cash Out Refinancing, 3

= Second Mortgage, 4 = New Construction, 5 = Rehabilitation or

Home Improvement, 6 = Cash-out Refinancing, 7 = Other

FedGaur int64 Type of mortgage, and whether the mortgage is guaranteed: 0 =

conventional, 1 = FHA, 2 = VA, 3 = USDA Rural Housing-FSA

Guaranteed, 4 = HECMs, 5 Title1-FHA

Term int64 Term of the Mortgage in Months

45



AmorTerm int64 For Amortizing Mortgages, the term of amortization in months; 998

if non-amortizing loan

SellType int64 Type of institution from which the FHLBank acquired the mort-

gage 01 = Insured depository institution, 02 = Housing Associate,

03=Insurance Company, 04 = non-federally Federally Insured CU;

05 = Non-Depository CDFI. 06 = Other FHLBank, 09 = Other

FHFBID float64 Acquiring Lender Institution Federal Housing Finance Agency

Membership ID

Seller object Acquiring Lender Name

SellCity object Acquiring Lender City

SellSt object Acquiring Lender State

NumBor int64 Number of Borrowers

First int64 Numeric codes indicate whether the borrower is a first-time home-

buyer. 0 = no, 1 = yes.

CICA float64 Code indicate whether the mortgage is on a project funded under

an AHP, CIP, or other CICA program.

BoRace int64 Numerical code indicates the borrower’s race. 1 = American Indian

or Alaska Native; 2 = Asian; 3 = Black or African American, 4 =

Native Hawaiian or other Pacific Islander; 5 = white; 6 = informa-

tion not provided by the borrower; 7 = not applicable (the first or

primary borrower is an institution, corporation, or partnership).
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CoRace int64 Numeric codes indicate the race of the co-borrower. 1 = American

Indian or Alaska Native; 2 = Asian; 3=Black or African American;

4=Native Hawaiian or other Pacific Islander; 5 = White. 6 = infor-

mation not provided by the borrower; 7 = not applicable (the first

or primary borrower is an institution, corporation, or partnership);

8 = no co-borrower.

BoGender int64 A numerical code indicating the sex of the first or primary bor-

rower. 1 = male, 2 = female, 3 = information not provided by the

borrower, 4 = not applicable (the first or primary borrower is an

institution, corporation, or partnership), and 6 = borrower selected

both male and female.

CoGender int64 A numerical code indicating the sex of the co-borrower: 1 = male,

2 = female, and 3 = information not provided by the borrower. 4

= no co-borrower; 5 = not applicable (first or primary borrower is

an institution, corporation, or partnership); 6 = borrower selected

both male and female.

LienStatus int64 Lien Priority Type

BoAge int64 Age in years of the borrower at the time application submitted

CoAge int64 Borrower2 Age at the time of Application

Occup int64 Numerical code indicate whether the property is owner-occupied,

a second home, or a rental investment property. 1 = Principal

Residence, 2 = Second Home, 3 = Investment Property

NumUnits int64 Total number of units in the property

Bed1 float64 Unit1–Number of Bedrooms 98 = no non-owner-occupied dwelling

units
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Bed2 float64 Unit2–Number of Bedrooms 98 = no non-owner-occupied dwelling

units

Bed3 float64 Unit3–Number of Bedrooms 98 = no non-owner-occupied dwelling

units

Bed4 float64 Unit4–Number of Bedrooms 98 = no non-owner-occupied dwelling

units

Bed5 float64 Unit5–Number of Bedrooms 98 = no non-owner-occupied dwelling

units

Bath1 float64 Unit1–Number of Bathrooms 98 = no non-owner-occupied dwelling

units

Bath2 float64 Unit2–Number of Bathrooms 98 = no non-owner-occupied dwelling

units

Bath3 float64 Unit3–Number of Bathrooms 98 = no non-owner-occupied dwelling

units

Bath4 float64 Unit4–Number of Bathrooms 98 = no non-owner-occupied dwelling

units

Bath5 float64 Unit5–Number of Bathrooms 98 = no non-owner-occupied dwelling

units

Aff1 float64 Unit1–Affordable category meets the housing goals implemented by

HERA Section 1205 1 = yes; 2 = no

Aff2 float64 Unit2–Affordable Category meets the housing goals implemented

by HERA Section 1205 1 = yes; 2 = no

Aff3 float64 Unit3–Affordable Category meets the housing goals implemented

by HERA Section 1205 1 = yes; 2 = no

Aff4 float64 Unit4–Affordable Category meets the housing goals implemented

by HERA Section 1205 1 = yes; 2 = no
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Rent1 float64 Unit1–Amount of Rent (whole dollars) 99999 = Not Applicable

Rent2 float64 Unit2–Amount of Rent (whole dollars) 99999 = Not Applicable

Rent3 float64 Unit3–Amount of Rent (whole dollars) 99999 = Not Applicable

Rent4 float64 Unit4–Amount of Rent (whole dollars) 99999 = Not Applicable

RentUt1 float64 Unit1–Affordable Rental Unit 1–Utilities Included 1 = yes; 2 = no

RentUt2 float64 Unit2–Affordable Rental Unit 2–Utilities Included 1 = yes; 2 = no

RentUt3 float64 Unit3–Affordable Rental Unit 3–Utilities Included 1 = yes; 2 = no

RentUt4 float64 Unit4–Affordable Rental Unit 4–Utilities Included 1 = yes; 2 = no

Geog object Geographic Division and Region

RateSpread float64 Rate Spread

HOEPA int64 Home Ownership and Equity Protection Act (HOEPA) Status: 1

= yes, 2 = no

Lien float64 Lien Status1 = First Lien, 2 = Subordinate Lien, 3 = Not Appli-

cable, 4 = No Lien, 5 = Not secured by a lien

MMIF int64 Code indicate if the mortgage is insured by the Mutual Mortgage

Insurance Fund (MMIF).

GEOID int64 FIPS code, which is a unique identifier for the Census Tract

APPR float64 Appraisal: 1 = Original Appraisal, 2 = Updated Appraisal, 3 = No

Appraisal, 4 = Not Disclosed

Table 2.1: Features, Data Type, and Description of features in the dataset.

One of the main goals of this study is to identify patterns that correlate with the

race of the borrower. In the dataset, each borrower is assigned one of seven races. Table 2.2

shows the races used in the dataset.
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Race Number Description
1 American Indian or Alaska Native
2 Asian
3 Black or African American
4 Native Hawaiian or other Pacific Islander
5 White
6 Information not provided by Borrower
7 Not Applicable

Table 2.2: The different borrower races used in the dataset.

2.4 Methods

This study is focused on quantitative analysis of federal home loan data to reveal

trends and patterns in a multivariate fashion. For the purpose of classification, the common

XGBoost classifier18 is used. XGBoost is a widely used supervised machine learning that

has shown good performance in the environment of high-dimensional datasets18. It uses a

gradient-boosted tree classification algorithm. Gradient boosting, a type of supervised learn-

ing that combines the predictions of several tree-based classifiers to make a more accurate

prediction of a target variable. When using the XGBoost classifier, 70% of the data was

used for training, and the other 30% of the loans were used for testing.

The standard metrics of classification accuracy, precision, recall, and F1 are used to

evaluate the classifier’s performance. The informative features are identified by applying the

Chi-square feature selection and analyzed further by applying the Student t-test.

2.5 Results

If the race of the borrower is not linked to the mortgage decision directly or indirectly,

it is expected that the mortgage information cannot predict the race, as the information for

all races is distributed regardless of race. Table 2.3 shows the classification accuracy of the

race of the borrower based on the loan information.

As the table shows, the classification accuracy of the XGBoost classifier is far higher
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Accuracy 0.951
Precision 0.947
Recall 0.951
F1 score 0.946

Table 2.3: Precision, recall, accuracy, and F1 score for the classification of borrower race
using the XGBoost classification algorithm.

Accuracy 0.888
Precision 0.789
Recall 0.888
F1 score 0.836

Table 2.4: Precision, recall, accuracy, and F1 score when predicting the race of the borrower
using a “dummy” ZeroR classifier.

than the mere chance accuracy of ∼14%. Table 2.4 shows the same analysis, but when using

a “dummy” ZeroR classifier instead of the XGBoost classifier. As the differences between the

tables show, the race can be identified from the data, and the lower accuracy when using a

ZeroR classifier shows that the ability to predict the race is not driven merely by the uneven

distribution of borrower race in the dataset, but by the ability of the classifier to identify

the race of the borrower from the loan data.

The dataset also includes the ethnicity of each borrower, which can be either “Hispanic

or Latino” or “not Hispanic or Latino.” That information can correlate with the race and

increase the ability to predict the race correctly. To avoid using that information, the analysis

was also done after removing the “ethnicity” field.

Another piece of information that can directly help identify the race and is unrelated

to the loan itself is the co-borrower race. For instance, if the borrower has a co-borrower,

it is possible that the race of the co-borrower can provide certain information about the

Accuracy 0.754
Precision 0.756
Recall 0.754
F1 score 0.752

Table 2.5: Precision, recall, accuracy, and F1 score for the classification of borrower race
after removing the borrower’s ethnicity column from the data set.
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Accuracy 0.922
Precision 0.910
Recall 0.922
F1 score 0.904

Table 2.6: Precision, recall, accuracy, and F1 score for the classification of borrower race
after removing the co-borrower race and borrower ethnicity from the data.

borrower. When removing the ethnicity and the co-borrower race, the prediction accuracy

of the race of the borrower is shown in Table 2.6.

Figure 2.3 shows the confusion matrix after applying the classification. As Table 2.6

and Figure 2.3 show, even when removing all race and ethnicity information of the borrower,

a machine learning system can identify the race of the borrower with accuracy higher than

mere chance or from a “dummy” classifier that merely uses the statistical distribution of

the races in the dataset. This shows in a quantitative manner that the loan information is

sensitive to the borrower’s race. That is, the loan information of a borrower from a certain

race has different patterns than that of a borrower of a different race.

The fact that the race of the borrower can be predicted from loan information indicates

a certain racial bias in mortgages. That bias is not necessarily direct and can be indirect

by correlating other variables with race rather than with the mortgage decision directly. A

separate analysis for each year was performed to test if that bias changes over time. Figure

2.12a shows the change in the accuracy of predicting the borrower’s race from the loan

data using XgBoost. The race identification accuracy was determined using the XGBoost

classifier as done above, and without using ethnicity or co-borrower race information.

To profile the ability to predict the race of the borrower based on the loan information,

each pair of races was tested as a two-way classification problem to test how well a classifier

can identify between the two races. That is, the dataset is divided into smaller datasets that

contain just two races. Table 2.7 contains the classification results. From the results, it is

evident that the race of American Indian or Alaska Native is the most predictable one. The

next most predictable races are Asians, Blacks, and African Americans.
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Race American
Indian or
Alaska
Native

Asian Black or
African
American

Native
Hawaiian or
other Pacific
Islander

White

American Indian
or Alaska Native

1 0.83 0.80 0.75 0.81

Asian 0.83 1 0.77 0.70 0.79
Black or African
American

0.80 0.77 1 0.70 0.79

Native Hawaiian
or other Pacific
Islander

0.75 0.70 0.70 1 0.64

White 0.81 0.79 0.79 0.64 1

Table 2.7: Accuracy metrics for the predictability of borrower’s race between two distinct
races.

2.5.1 Feature selection

As described above, a machine learning classifier is able to identify the race of the

borrower from the mortgage information alone, which shows evidence of racial bias in mort-

gages. We used XGBoost embedded feature selection to figure out which features were most

important for identifying the race in order to make a profile of the signs that were linked to

this possible bias. Figure 2.2 displays the features that have the strongest predictive infor-

mation for the prediction of the borrower’s race. Table 2.8 shows the mean value of each

feature and for each race.

In the next step, the column BoEth which is the borrower’s ethnicity has been removed

from the dataset and predicted as the borrower’s race. The importance of each column in

the dataset for making predictions used by the xgboost model is illustrated in Figure 2.9

The results of the model are specified in Table 2.5. The classification output for this data

is 75.4% accurate, which is much better than happening by chance. The accuracy of the

dummy classifier is 0.3346. The results of the dummy classifier are mentioned in Table

2.4. The confusion matrix and similarity matrices are represented in the figures 2.5 and 2.6

respectively.

In the next step, the second important feature 2.10 co-borrower race is removed from
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the dataset, and predictions are made.

 

Figure 2.2: Feature importance for the prediction of the borrower’s race as determined by
XGBoost.

Borrower’s

Race

American

Indian or

Alaska

Native

Asian Black or

African

American

Native

Hawaiian

or other

Pacific

Islander

White

Year 2015 2016 2016.811 2015 2015

Core Based

Statistical

Area Code

47492.260 31314.700 30960.800 45268.950 40805.180
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Census Tract

Identifier

3948.610 2264.340 2280.930 3347.480 3188.070

Census Tract

Minority Ra-

tio Percent

24.950 33.080 39.260 33.200 12.280

Census Tract

Median Fam-

ily Income

Amount

65104.110 97845.920 78782.250 75348.640 75096.090

Local Area

Median In-

come Amount

62312.710 75337.830 72921.960 65114.250 63864.730

HUD Me-

dian Income

Amount

68144.880 80585.340 78202.310 70883.090 69643.950

Unpaid princi-

pal balance

169037.620 314914.350 226968.130 249500.650 193836.550

Loan-to-value

ratio

26.160 23.650 31.200 16.900 23.530

Loan Purpose

Type

1.870 1.800 2.010 1.910 2.050

Mortgage

Type

0.580 0.050 0.370 0.470 0.150

Borrower

First-time

Homebuyer

1.260 1.280 1.160 1.440 1.331
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Borrower’s

Gender

1.416 1.270 1.416 1.276 1.258

Co-borrower’s

Gender

2.794 2.929 3.175 2.718 2.679

Interest rate 1.117 1.142 1.410 0.824 1.086

Amount 169208.258 315350.082 227278.459 249764.725 193976.470

Co-Borrower’s

Credit Score

6.269 6.764 7.082 6.132 6.153

PMI Coverage

Percent

1.151 1.356 2.685 0.645 1.228

Employment

Borrower

Self-Employed

1.390 1.395 1.257 1.560 1.366

Property

Type

0.684 2.190 1.950 1.116 0.776

Margin Rate

Percent

71443.020 71398.882 64453.290 79979.801 71239.879

Borrower’s

Credit Score

3.818 4.472 3.875 4.176 4.440

Table 2.8: Mean value of each feature of the FHLB dataset.

XGBoost Classifier

Table 2.10 presents a ranked list of the top ten features utilized by the XGBoost

classifier model for making predictions.

In descending order of importance, the first feature is BoEth, which represents the
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Figure 2.3: Confusion matrix for the prediction of the race based on the loan information.
The labels in the figure represent the race of the borrower, which is specified in Table 2.2.

borrower’s ethnicity. The second feature is CoRace, indicating the co-borrower’s race. The

third feature is Borrower’s Gender, reflecting the borrower’s gender. The fourth feature is

the Co-borrower’s Gender, denoting the co-borrower’s gender.

The fifth feature is the Year, referring to the loan’s year. The sixth feature is the

Loan-to-value ratio, or the loan-to-value ratio, which measures the mortgage amount relative

to the property value. The seventh feature is NumBor, representing the number of borrowers.

The eighth feature is Mortgage Type, indicating if the loan is federally guaranteed.
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Figure 2.4: Similarity Matrix for classification of Borrower Race. The labels in the figure
represent the race of the borrower, which is specified in Table 2.2

.

The ninth feature is the Census Tract Minority Ratio percentage, standing for the minority

percentage in the area. The tenth feature is Interest rate, referring to the interest rate of

the loan. These features have been identified as the most significant factors influencing the

performance of the XGBoost classifier model when predicting the borrower race.

Chi-square-based k-best feature selection

Table 2.10 also shows the ranked list of the top ten features ascertained by the k-best

feature selection method utilizing chi-square.
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Figure 2.5: Confusion Matrix for classification of borrower race using top ten best features
2.2.

The attributes are listed in decreasing order of significance, include Census Tract

Minority Ratio Percent, denoting the minority percentage in the area; Loan-to-value ratio,

or the loan-to-value ratio, a measure of the mortgage amount in relation to the property

value; and First, signifying if the borrower is a first-time home buyer. Borrower’s Gender,

representing the borrower’s gender; CoAge, indicating the co-borrowers age; and Interest

rate, pertaining to the loan’s interest rate, are also on the list.

Other features include Employment Borrower Self Employed, identifying if the bor-
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Figure 2.6: Similarity Matrix for classification of borrower race using top ten best features
2.2.

rower is self-employed; PropertyType, reflecting the property type; Margin Rate Percent,

referring to the adjustable rate mortgage margin; and BoEth, alluding to the borrower’s

ethnicity. The k-best feature selection method employing chi-square has determined these

features as the most impactful factors.

Looking at the best top ten features, we observed that BoEth, CoRace, Borrower’s

Gender, and CoAge are part of the top ten best features that influence the prediction of

BoRace. In Table 2.9, we can see that when predicting BoRace using just the best top ten

features, the XGBoost classifier outperforms the dummy classifier.
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Task 1: BoRace Prediction
XGBoost Dummy Classifier

Accuracy 0.918 0.888
Precision 0.901 0.789
Recall 0.918 0.888
F1 score 0.895 0.836

Table 2.9: The above table shows the model accuracy of predicting BoRace using the top
ten features.

Feature Importance (Top ten)
XGBoost K-Best (Chi-Square)
Borrower Gender Census Tract Minority Ratio Percent
Margin Rate Percent Loan-to-value ratio
Loan-to-value ratio Loan Purpose Type
Year First-time homebuyer
Interest rate Borrower Gender
Census Tract Minority Ratio Percent Co-Borrower Age
First-time homebuyer Interest rate
Property Type Employment Borrower Self Employed
Co-Borrower Age Property Type
Loan Purpose Type Margin Rate Percent

Table 2.10: Top ten features influencing the prediction of BoRace.

2.5.2 Clustering

We employed clustering techniques to find patterns and groups comparable together

based on their BoRace attribute. For this investigation, we used the KMeans and Kprototype

clustering algorithms. To start with, we first normalized the data and performed clustering

tasks with BoRace as the target variable, in a sequential manner.

We conducted experiments with different numbers of clusters and used the elbow

method to determine the optimal number of clusters for the data. To perform the elbow

method, we first applied a clustering algorithm to our dataset and calculated the within-

cluster sum of squares (WCSS) for each number of clusters. We then plotted the WCSS

values against the number of clusters and observed the resulting curve.

From Figure 2.9, we can observe that the curve initially decreased rapidly as we

increased the number of clusters, indicating that adding more clusters led to a significant
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reduction in WCSS. However, at a certain point, n=7, the curve began to flatten out, sug-

gesting that adding additional clusters would not lead to a significant reduction in WCSS.

An optimal number of clusters is important because it provides a good balance between

capturing the underlying patterns in the data and avoiding over-fitting or under-fitting.

For the experiment, we started with three clusters and then increased the number of

clusters to seven to see if there was any improvement in the quality of the clusters formed.

Figure 2.7a shows the clusters formed using the Kprototype algorithm when taking BoRace

as the target variable with the number of clusters as three, whereas Figure 2.7b shows the

clusters formed with the number of clusters as seven.

(a) The figure represents the distribution of
seven different races in three different clusters
using the Kprototype algorithm. The borrower
race description is mentioned in the Table

(b) The figure represents the distribution of
seven different races in seven different clus-
ters using the Kprototype algorithm. The bor-
rower’s race description is mentioned in Table
2.2

Figure 2.7: Clustering with 3 and seven clusters on borrower’s race.

2.5.3 T-test

In order to calculate the two races’ statistically significant differences, we used a T-

test. It allows the determination of the level of support for a valid distinction between the

compared variables. Based on race, the data set was split into two groups. Firstly, we

grouped all the loans assigned to Black or African. The American race is in one group, and
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all the other races are in another group. The interest rates between these two groups were

compared using a two-sample independent T-test.

The statistical value of the T-test was 20.470. This figure suggests that the interest

rates between the two categories are significantly different. In addition, the test’s p-value,

which was 4.181e-93, was very close to zero. The p-value indicates the likelihood that such

severe results were just a coincidence. Given the extremely low p-value in this instance, it is

clear that there is a significant difference in interest rates between black or African Americans

and all other racial groups in the dataset, and the null hypothesis must be rejected.

A T-test on the ’Amount’ variable (mortgage balance at origination) between the same

two groups was also done in addition to the earlier findings on interest rates. With a T-

statistic of 22.884 and a p-value of 7.384e-116, the analysis showed a statistically significant

gap, showing a significant difference in loan amounts between blacks and all other racial

groups. These findings demonstrate the existence of systemic imbalances and underline the

necessity of addressing and redressing them in the lending practices of the housing sector.

Continuing the previous findings, an additional analysis was conducted on the Asian racial

group. Group one consisted of all the loan records borrowed by Asians, while Group 2

included individuals of all other races.

With a p-value of 0.0002 and a T-statistic of 3.674, the interest rate comparison T-

test result showed a statistically significant difference. This implies that there is a significant

difference in interest rates between Asians and all other racial groups.

The T-test also showed a significant discrepancy in loan amounts, with a t-statistic of

135.006 and a p-value of 0.0. This indicates that Asians receive loans at significantly higher

rates than all other racial groupings.

These additional results prove discrepancies in lending procedures, especially for Asian

borrowers. It underlines how critical it is to address these disparities and implement policies

that give people of all races fairness and equal opportunity in the housing sector.

As we continue our examination of various racial groups, we now turn our attention

63



to the American Indian or Alaska Native class. All the loans borrowed by American Indians

or Alaska Natives are grouped in Group One, whereas people of all other races are in Group

Two.

The T-test resulted in a statistic of 0.696 and a p-value of 0.487 for the interest rate

comparison. These findings suggest that the interest rates for the American Indian or Alaska

Native group and the other racial groups are not significantly different.

However, the T-test showed a significant discrepancy when looking at loan amounts.

The American Indian or Alaska Native group received significantly more loans than all other

racial groups, according to the T-statistic of -17.808 and the accompanying p-value of 6.352e-

71.

These findings highlight the fact that American Indian or Alaska Native populations

experience considerable inequalities in loan amounts but not in interest rates. It highlights

the importance of resolving these disparities and putting policies in place to support fair

lending practices and equality in the housing sector for people from this racial background.

2.5.4 Unbalanced dataset

The federal home loan dataset as represented in Figure 2.11 is unbalanced. The whites

are 88.90% of the dataset and loans assigned to American Indians or Alaska Natives are just

0.58% of the loans assigned to all the races. So, the dataset is under-sampled, which is

implemented by taking the same number of records from the class with the lowest samples:

American Indians or Alaska Natives. These samples are randomly chosen from the dataset.

After this process, there are 7287 records. In the next step, a student T-test is performed

on this data. Firstly, all the records of race black or African American are made into one

group and whites into another group. The student T-test value for this is statistic = 2.876,

p-value = 0.004. This indicates that not only are more loans assigned to whites, but there

are also significant differences in the interest rates assigned to these groups. In the next

step, all the races except whites are in one group and whites are in another group, and a
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(a) 2009 (b) 2010

(c) 2011 (d) 2012

(e) 2013 (f) 2014

Figure 2.8: Year-wise Clustering with K = 3 (Part one).
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(g) 2015 (h) 2016

(i) 2017 (j) 2018

(k) 2019 (l) 2020

Figure 2.8: Year-wise Clustering with K = 3 (Part Two).
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(m) 2021

Figure 2.8: Year-wise Clustering with K = 3 (Part Three).

Accuracy 0.6913
Precision 0.6986
Recall 0.6913
F1 score 0.6905

Table 2.11: Precision, recall, accuracy, and F1 score for the classification of borrower race
using the XGBoost classification algorithm using the balanced dataset.

T-test is performed on these groups: statistic = -4.541, the p-value is 5.677e-06 for the rate

of interest, and the statistic value is -11.50, the p-value is 2.305e-30 for the amount of loan

assigned to each group. These findings suggest substantial disparities in both the interest

rates and loan amounts allocated among racial groups, with whites generally receiving more

favorable terms than other races.

In the next step, the prediction of the borrower race is made using the balanced

dataset 2.11. Which is more than five times better than what happens by chance2.12. As

borrower race, borrower ethnicity, and co-borrower ethnicity may have a direct influence on

the borrower race, these columns are removed from the data, and a prediction of borrower

race is made 2.13
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Figure 2.9: Determining the optimal number of Clusters using the elbow method.

Accuracy 0.1385
Precision 0.0191
Recall 0.1385
F1 score 0.0337

Table 2.12: Precision, recall, accuracy, and F1 score when predicting the borrower’s race
using a “dummy” ZeroR classifier using the balanced dataset.

Accuracy 0.5189
Precision 0.5366
Recall 0.5189
F1 score 0.5201

Table 2.13: Precision, recall, accuracy, and F1 score for the classification of borrower race
after removing the co-borrower race and borrower ethnicity from the balanced data.
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(a) 3D PCA visualization of Federal Home
Loan data showing distinct clusters based on
borrower’s gender

(b) 2D PCA visualization of Federal Home
Loan data showing distinct clusters based on
borrower’s gender

Figure 2.10: Principle Component Analysis based on borrower’s race.

2.6 Conclusion

In conclusion, the study’s findings prove that the Federal Home Loan Project contains

biases, particularly when determining a borrower’s race. It is evident that the data utilized

in the research has inherent biases that influence the predictions, given the excellent accuracy

rate, 90%, of the borrower’s race.

The ability to correctly predict a borrower’s race suggests that some patterns or factors

correlate highly with particular racial groups. This raises serious questions regarding fairness

and justice in the loan process since it implies that people of different racial backgrounds

can experience unequal treatment or opportunity.

Furthermore, the T-test results showed that there were significant disparities in loan

amounts between blacks and other racial groups, Asians and other racial groups, and Ameri-

can Indian or Alaska Native people and other racial groups. These results reveal racial biases

in lending since various racial groups regularly receive different loan amounts.

These T-test results prove the claim that the Federal Home Loan Project has biases
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Figure 2.11: This graph represents the demographics of BoRace over 13 years and Table 2.2
gives more details of all races present in the data.
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Figure 2.12: The prediction accuracy of borrower race over the years for sampled data

influencing judgments about granting loans based on a borrower’s race. Such biases have

significant ramifications for the loan sector and society at large. It highlights the urgent

requirement for all-encompassing measures to address and eliminate these prejudices in order

to guarantee a just and impartial lending system.

As machine learning algorithms are increasingly used in decision-making, it is crucial

to thoroughly examine the data and models to identify any potential biases. Policymakers,

regulators, and business stakeholders must work together in the future to develop effective

initiatives that support equity, openness, and equitable access to economic opportunities.

We may work towards a more equal and inclusive society where loan decisions are based

on objective and fair criteria rather than maintaining systemic disadvantages by recognizing

and correcting the biases found in this study.
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Year Accuracy Precision F1-Score Recall
2009 0.5277 0.5305 0.5258 0.5277
2010 0.2361 0.2231 0.2261 0.2361
2011 0.3918 0.3918 0.4035 0.3918
2012 0.4520 0.4520 0.4463 0.452
2013 0.4343 0.4771 0.4491 0.4343
2014 0.4054 0.3974 0.3966 0.4054
2015 0.4471 0.5081 0.4646 0.4471
2016 0.5040 0.5158 0.5008 0.5040
2017 0.5121 0.5136 0.5254 0.5121
2018 0.4715 0.4936 0.4756 0.4715
2019 0.4878 0.5040 0.4942 0.4878
2020 0.3739 0.4016 0.3818 0.3739
2021 0.4634 0.4643 0.4574 0.4634

Table 2.14: The results of the XgBoost classifier on under-sampled data.

Year Accuracy Precision F1-Score Recall
2009 0.1319 0.0174 0.0307 0.1319
2010 0.09722 0.0094 0.0972 0.09722
2011 0.1351 0.0182 0.0321 0.1351
2012 0.1301 0.0169 0.0299 0.1301
2013 0.1010 0.01020 0.0185 0.1010
2014 0.1351 0.0182 0.0321 0.1351
2015 0.1463 0.0214 0.0373 0.1463
2016 0.1413 0.0199 0.0349 0.1413
2017 0.1269 0.0161 0.0285 0.1269
2018 0.1473 0.0217 0.0378 0.1473
2019 0.12871 0.0165 0.0293 0.12871
2020 0.11764 0.0138 0.0247 0.11764
2021 0.1063 0.0113 0.0204 0.1063

Table 2.15: The year-wise classification accuracy of the borrower race over the years ZeroR
for under-sampled data.
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Year Accuracy Precision F1-Score Recall
2009 0.9305 0.8659 0.8970 0.9305
2010 0.9230 0.8519 0.8860 0.9230
2011 0.9215 0.8491 0.8838 0.9215
2012 0.9263 0.8581 0.8909 0.9263
2013 0.9219 0.8499 0.8844 0.9219
2014 0.8965 0.8038 0.8476 0.8965
2015 0.8840 0.7816 0.8297 0.8840
2016 0.8689 0.8080 0.7550 0.8689
2017 0.8516 0.7252 0.7834 0.8516
2018 0.8325 0.6931 0.7565 0.8325
2019 0.8531 0.7277 0.7854 0.8531
2020 0.9055 0.8200 0.8606 0.9055
2021 0.8856 0.7844 0.8319 0.8856

Table 2.16: Year-wise ZeroR results for the entire data.

Year Accuracy Precision F1-Score Recall
2009 0.9458 0.9318 0.9301 0.9458
2010 0.9408 0.9252 0.9246 0.9408
2011 0.9367 0.9205 0.9180 0.9367
2012 0.9455 0.9354 0.9317 0.9455
2013 0.9433 0.9330 0.9292 0.9433
2014 0.9307 0.9131 0.9140 0.9307
2015 0.9258 0.9162 0.9086 0.9258
2016 0.9179 0.9053 0.9030 0.9179
2017 0.9028 0.8879 0.8818 0.9028
2018 0.8853 0.8695 0.8617 0.8853
2019 0.8991 0.8848 0.8718 0.8991
2020 0.9320 0.9203 0.9125 0.9320
2021 0.9182 0.9060 0.8965 0.9182

Table 2.17: Year-wise classification results of Borrower Race XgBoost.
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