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Abstract 

Sudden Death Syndrome (SDS) in soybean, (Glycine max ( L.) Merr.) caused by 

Fusarium virguliforme, is an increasing problem in commercial soybean production due to the 

yield loss associated with the disease. Screening for genetic resistance requires extensive visual 

evaluations. Canopy spectral reflectance may be an indirect tool for selection of SDS resistance 

as well as grain yield in large segregating populations. The objective of this study was to 

estimate SDS resistance and seed yield in large diverse soybean populations using canopy 

spectral reflectance. Spectral reflectance, disease index, maturity and yield were measured on 

two populations consisting of 160 nested association mapping recombinant inbred lines and 

checks; and 140 commercial cultivars with checks. Populations were grown in three 

environments in 2015 and 2016 with historic SDS disease pressure. Entry, environment, and 

entry by environment sources of variation were significant for disease index, yield, maturity and 

spectral reflectance. Changes in season average reflectance were correlated to disease index, 

yield and maturity. Estimation models of disease index, yield and maturity were created with 

season averages as well as individual day readings for both populations. Season average and 

individual day models accounted for 11% to 77% of the phenotypic variation in disease and 41% 

to 93% of yield variation when measurements were taken at the height of disease pressure. 

Models for disease index and yield models were able to predict significant portions of the 

phenotypic variation between entries at most environments. These results suggest that it may be 

possible to estimate resistance to SDS and grain yield in soybeans using spectral reflectance in 

breeding populations.  
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Chapter 1 - Review of Literature 

 Introduction 

Soybean (Glycine max (L.) Merr.) is the second largest field crop produced in the United 

States (US), behind corn. In 2016 approximately 34 million hectares of soybean were planted 

across the United States which was an increase from 2015 (USDA NASS). The United States 

average production was 3.5 tons per hectare-1 (t ha-1) bushels per acre for a total production of 

117 million metric tons of grain (USDA ERS). This production made the US the largest producer 

of soybean in the world and accounted for 33% of the world production (USDA FAS). The US is 

the largest exporter of soybean to the world, exporting about 50% of total production for a cash 

value of approximately $22.6 billion. The US along with Brazil and Argentina account for 

almost 90% of the world production and exports of soybean (USDA FAS). Soybean is primarily 

grown to produce oil and protein from the seed. Soybean is the second largest source of 

vegetable oil in the world behind palm oil. The byproduct of crushing for oil is soybean mean 

which is extremely high in protein and is used as a feed stock for animals.  

 By 2050, the world’s production will need to increase at least 100% over current levels to 

sustainably feed the world population (Godfray et al. 2010; Phalan et al., 2011; Ray et al., 2013). 

Currently, a 1.3% yield increase per year is being archived by breeders for soybean (Ray et al., 

2013). It is estimated that yield will need to increase as a rate of 2.4% per year to feed world 

population by 2050 (Ray et al., 2013). To increase the rate of gain in production we may need to 

focus on multiple approaches such as better management and better resistance to abiotic and 

biotic stresses that cause large scale yield loses (Phalan et al., 2011; Ray et al., 2013). The US, 

betweem2006 and 2009 approximately 10.8 million metric tons of soybean were lost per year to 

plant disease; this is approximately 13% loss of total production (Koenning and Wrather, 2010).  
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The largest yield loss due to disease was caused by soybean cyst nematode (SCN), which 

accounted for roughly 30% of yield loss to diseases in each of these years. SCN, seedling 

disease, Phytophthora root rot, soybean sudden death syndrome, and Sclerotina stem rot were the 

top five diseases that caused major yield loss to soybean production (Koenning and Wrather, 

2010). Soybean sudden death syndrome was the fourth leading cause of yield loss, accounting 

for about 6% of the total yield loss during these yields (Koenning and Wrather, 2010).  

 Soybean Sudden Death Syndrome 

 Soybean sudden death syndrome was first observed in 1971 in Arkansas, but was not 

officially named until 1983. Sudden death syndrome in North America is caused by the soil born 

fungi Fusarium virgulifrome (Aoki et al., 2003), formally known as Fusarium solani f. sp. 

Glycines (Roy et al., 1989; Roy et al., 1997) Since 1971, SDS has spread across much of the US 

soybean producing areas (Roy et al., 1997). SDS has been observed in South American and 

South African soybean production, but the causative agents ate Fusarium tucucmaniae and 

Fusarium brasiliens, respectively (Aoki et al., 2003; Tewoldemedhin et al., 2017). F. 

virgulifrome is distinguished from other fusarium that infects soybean roots by the blue spores 

that are produced in pure cultures (Roy et al., 1989; Roy et al., 1997; Aoiki et al., 2003). The 

pathogen is difficult to extract and culture from diseased plants due to it slow growth (Roy et al., 

1989; Roy et al., 1997; Aoiki et al., 2003). F. virgulifrome is considered asexual and a colonel 

species, which is another defining feature distinguishing it from the South American pathogens 

(Covert e al., 2007). F. virgulifrome survives as chlamydospores between infections. These 

chlamydospores allow the fungus to survive outside host, in the soil, plant material and in 

soybean nematode cysts. Once conditions are favorable for the disease, the spores germinate and 

infect soybean roots. Once infected, the disease progresses and F. virgulifrome to produces 



 

3 

 

macroconidia which can be spread through the soil by flowing water and tillage (Hartman et al., 

2015). 

 F. virgulifrome initially infects the roots of young soybean plants and then the fungal 

population increases as the growing season proceeds. The fungi can initially infect the lateral 

roots of the soybean plant before moving into the tap root (Ortiz-Ribbing and Eastburn, 2004). 

Infection causes significant loss of root length, surface area and volume (Ortiz-Ribbing and 

Eastburn, 2004). Root infections were shown to occur earlier on in the plans life cycle, with 

older plants were shown to have decrease root severity, potentially due to increased suberin 

production in older roots (Gongora-Conal and Leandro, 2011). Root damage has not been shown 

to correlate with foliar symptoms. This is due to different environment conditions being 

favorable for the development of symptoms in the roots versus leaves (Wrather et al. 1995; 

Scherm and Yang 1996; Kandel et al. 2016). Root rot symptoms have been correlated negatively 

with seed yield (Lou et al., 1999). F. virgulifrome does not colonize the soybean plant beyond 

the roots (Roy et al., 1997). Foliar symptoms are caused by the production of toxins in the roots 

that are the transported via the xylem to the leaves (Brar et al., 2011; Chang et al., 2015). One in 

the leaves, the toxins target cellular machinery to induce cell death which leads to leaf chlorosis 

and necrosis (Brar et al.; 2011; Chang et al., 2015). In the presence of light, the toxins produced 

by F. virguliforme degraded the rubisco enzymes which initiates a chain reaction leading to the 

creation of reactive oxygen species and the eventual shutdown of the photosynthetic pathway. 

These changes can lead to cell death and eventually leaf necrosis (Ji et al., 2006). 

 Foliar symptoms in soybean affected by SDS tend to occur later in the growing season, 

typically at the onset of flowering (R1) (Fehr et al., 1971, Roy et al., 1997). Initial symptoms 

appear as small, light green or yellow chlorotic spot on leaves, with some crinkling of young 
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leaves. (Roy et al., 1997; Westphal et al., 2008; Hartman et al., 2015). After the onset of 

symptoms chlorotic spots continue to enlarge and their severity increases. Eventually the 

chlorotic tissue can become necrotic and spread to all the leaf tissue, except that directly around 

the major veins. (Roy et al., 1997). Eventually, the necrosis can cause the premature loss of the 

leaves, with only the petioles remaining attached to the plant. The cortex of the lower root will 

have a tan or brown appearance in diseased plants. The pith in the stem of infected plants will be 

unaffected. (Roy et al., 1997; Westphal et al., 2008; Hartman et al., 2015). The diseased plant 

will lack vigorous roots, as stated above, and may have blue F. virgulforme spores on the root at 

the soil surface. Symptoms tend to start in the upper most leaves and move towards the lower 

leaves as the disease progresses. SDS causes the abortion of pods and flowers if the disease is 

severe during the flowering (Roy et al., 1997). Severely infected plants are easy to pull from the 

soil do to their decreased root structure. If the infection is severe enough, and the plant is 

susceptible, SDS can cause premature death of the plant (Roy et al., 1997; Westphal et al., 2008; 

Hartman et al., 2015) 

Foliar symptoms of SDS at the onset of disease are similar to several soybean diseases, 

making it as times hard to distinguish which pathogen is responsible for the disease (Westphal et 

al., 2008: Hartman et al., 2015). The attached petioles as well as brown cortical discoloration in 

the roots is the best way to identify F. virgulifrome as the causative agent of disease (Roy et al., 

1997; Westphal et al., 2008; Hartman et al., 2015). 

 Sudden death syndrome research is typically preformed in fields with a historic record of 

the disease being present. But, field level research is difficult with SDS due to the highly variable 

distribution of the fungi in the field. Roy et al., (1989) first isolated F.viruliforme form the roots 

of infected plants collected in infested fields. To try and make more consistent evaluations of 
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plant response, multiple methods of field and greenhouse inoculations have been attempted 

(Melgar and Roy., 1994; Goa et al., 2006). Melger and Roy (1994) used a greenhouse assay to 

screen for SDS resistance in soybean cultivars using F. viguliforme isolated from infected roots 

and soybean cyst nematode cysts. The fungi are cultured on sterile grain sorghum or popcorn, 

and placed in furrow with the soybean seed to artificial inoculate the soil with F. virguliforme (Li 

et al, 2000; de Farias Neto et al., 2006). This method provided an adequate method of inoculating 

non-infested soil with F. virgulifrome to evaluate genotypic response to the pathogen, with the 

effect lasting multiple years (de Faris Neto et al., 2006). Artificial inoculation of non-infested 

soil is achievable but requires additional effort and expense during planting, especially in large 

scale trials.  

  SDS Management 

 F. virgulforme is also highly variable in its ability to cause SDS due to environmental 

factors such as temperature and rainfall. This variability across environments poses a similar 

problem to research as the distribution of SDS in the field. High soil moisture has been shown to 

increase the severity and progress of SDS (Melger et al., 1994; Scherm and Yang, 1996; Roy et 

al., 1997; Leandro et al., 2013). Leandro et al. (2013) showed that years with SDS epidemics 

tended to happen in years with above average rain fall. Melgar, Roy and Abney (1994) showed 

that irrigation increased the severity of the foliar symptoms associated with SDS, especially if 

the soils were wet prior to flowering. Similar results were seen in a greenhouse experiment that 

showed an increase in disease symptoms with irrigation (Roy et al., 1989). Irrigation during the 

late vegetative and reproductive growth stages were shown to have a significant impact in the 

severity of SDS (de Farias Neto et al., 2006).  Low soil temperatures at planting were shown to 

have less effect on foliar symptoms for SDS, but did increase the severity of the root symptoms 
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(Schrem and Yang 1994). Tillage that reduced soil compaction and improved drainage has been 

shown to help reduce the severity of SDS symptoms (Vick et al., 2003). Shallow tillage, less 

10cmn, that only disturbed the upper soil surface was also shown to have an effect on decreasing 

the severity of SDS as compared to no till systems by increasing soil temperature (Wrather et al., 

1995). Later planting dates have been shown to decrease the effects of SDS, but delayed planting 

was also shown to decrease seed yield (Hershman et al., 1990; Wrather et al., 1995). Crop 

rotation has been shown to reduce the F. virguleforme populations, but the traditional corn and 

soybean rotation that is common practice was shown to have no effect on reducing the symptoms 

of SDS (Xing and Westphal, 2009). These studies provide important insight into the 

management of SDS both for farmers who are trying to avoid the disease and for researchers 

looking to better evaluate soybean genotypes for their resistance to SDS. 

 Yield Loss due to SDS 

 Yield loss in soybean is primarily caused by severe infection during the reproductive 

stages of grain fill (Rupe et al., 1989). Njiti et al. (1998) saw a significant reduction in the yield 

components of both resistance and susceptible soybean plant when infected by F. virgulifrome. 

This included a reduction of the number of flowers that were on the plant, which indicates that 

yield loss can occur before visible leaf symptoms appear (Njiti et al., 1998). Increased foliar 

severity has been shown to decrease seed size as well as total seed weight per plant (Njiti et al., 

1998; Lou et al., 1999). These reductions in yield components accounted for approximately 18% 

yield loss of individual plants (Njiti et al., 1998), which can translate into losses of 18 -29 kg/ha 

(Lou et al., 2000) on moderately resistant cultivars that have been infected. 
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  SDS and SCN Synergy 

 Soybean cyst nematode, Heterodera glycines, is the most prevalent and destructive 

pathogen to soybean in the US. A synergistic effect between SDS and SCN has been observed, 

with SCN population increasing the severity of the SDS foliar symptoms (Roy et al., 1989). F. 

virgulifrome has the ability to survive in SCN cysts for up to six months, which allows it to 

survive until the next growing season (Mclean and Lawrence, 1993). SDS is shown to reduce the 

population of cyst nematodes through increased root necrosis, but this decrease in population is 

not significant enough to prevent the cyst nematode from colonizing soybean roots in the future 

(Mclean and Lawrence 1993; Mclean and Lawrence 1995). SCN resistance has been shown to 

help reduce the symptoms of SDS in the field (Hershman et al., 1990; Njiti et al., 1996). This is 

possibly due to the relation of the resistance QTL, Rfs2, for SDS on Chromosome 18 (linkage 

group G) that is also located close to the Rhg1 gene that encodes for SCN resistance (Njiti et al., 

1996; Meksem et al., 1999; Pruhba et al., 1999; Wen et al., 2014).  

 Seed Treatments for SDS 

 Prior to 2015, there were no commercially available seed treatments that could be used to 

control sudden death syndrome. In 2015, Bayer Crop Science released the ILevo® seed 

treatment to help control SCN and SDS. The active ingredient in ILevo® is Fluopyram. 

Fluopyram was shown to decrease the plant stand from 3-8% (Kendal et al., 2016ab). However, 

the seed treatment also was shown to decrease root rot severity, as well as reduce foliar 

symptoms due to F. virgulifrome (Kendal et al., 2016ab). Yield was also positively impacted 

using ILevo®, with an increase of 5-30% in yield over untreated seed (Kendal et al., 2016; Adee, 

2015). Seed treatment had the largest yield benefits when used with a susceptible variety but 
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were most effective at preventing disease when used with resistant genotypes (Adee, 2015; 

Adee, 2016). 

Genetic Resistance to SDS 

 SDS resistance is a quantitative, polygenic trait which makes it difficult to breed total 

resistance to the disease into new elite cultivars (Hnetkovsky et al., 1996; Njiti et al., 1996). Of 

the 18-30 quantitative trait loci (QTLs) reported to contribute to SDS resistance, it is thought that 

8- 10 of these must be present in the genome to provide adequate resistance (Lightfoot, 2015). 

This level of pyramiding QTLs is extremely effective in terms of durability, but extremely 

challenging for breeders to consistently integrate all resistance loci into a single line. Confirmed 

QTLs to SDS resistance are mapped and confirmed on linkage groups C2 (Chm. 6), D2 (Chm. 

17), G (Chm 18), J (Chm 16), and N (Chm 3) (Lightfoot, 2015). These associations were made 

using bi-parental mapping populations to track inheritance of resistance and susceptible genes. 

Wen et al., (2014) reporting on the first genome wide association mapping (GWAS) study for 

SDS resistance found seven previously discovered QTLs along with 13 new independent QTLs. 

Rfs2 and Rhg1 were identified on chromosome 18 (linkage group G) to consistently provide both 

resistances to SCN and SDS as previously stated (Meksen, 1999; Prabhu, 1999; Wen et al., 

2014). The use of GWAS allowed for the dissection of multiple genetic backgrounds instead of 

just two as in the case of bi parental mapping populations. This and previous studies could not 

determine if Rfs2 and Rhg1 are independent QTLs that are linked on chromosome 18, if they are 

controlled by a single pleiotropic gene, or they represent a copy number variation in the Rhg1 

loci (Luckew et al., 2013; Wen et al., 2014). The polygenic nature of SDS resistance makes it 

tough to determine the exact effects of genes, but new GWAS and mapping techniques will 
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allow breeders to better understand the genetic mechanisms contributing to resistance and allow 

breeders to create durable resistance. 

  High Throughput Phenotyping  

 In recent years the advancement in the field of genetics and genomics using next 

generation sequencing techniques have allowed for breeders to better understand the genetics of 

the plants that they are working with. These tools have given breeders new methods of selecting 

for desirable traits, as well as increase the number of lines that can be evaluated at a given time. 

New selection models, such as GWAS, allow breeders to predict how a line will preformed even 

before it is planted. A major challenge of using these systems is the large amount of phenotypic 

data that is needed to create accurate predictive models. This challenge has been called the 

phenotyping bottleneck (Furbank and Tester, 2011; White et al., 2012). This problem arises from 

the less robust growth in new techniques for assessing plants phenotypic qualities when 

compared to genotyping tools. These phenotypic evaluations still require visual or physical 

evaluation by breeders and scientists, and are usually labor intensive as well as subjective. To 

elevate this bottleneck, breeders have been looking to use high-throughput phenotyping through 

remote sensing.  These techniques include the use of spectral reflectance measurements for 

evaluating plant heath through non-destructive, in-season measurements (Cabrera-Bosquet et al., 

2012). 

 Spectral Reflectance 

 Spectral reflectance of leaves has been used by researchers to measure many different 

plant heath characteristics.  The techniques of remote measurements are based on the principals 

of light reflectance and absorbance in the leaf parts (Kumar and Silva, 1973). Visible light, 400-

700nm, is absorbed mainly in by the epidermis and palisade mesophyll due to the presence 
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chloroplast and plant pigments that use the light to drive photosynthesis (Woolley, 1971; Kumar 

and Silva, 1973).  Near infrared is reflected 700-1300 nm, is not widely absorbed by the plant to 

drive photosynthesis, for this reason when it hits the spongy mesophyll in the plant leave it is 

reflected out of the plant. (Woolley, 1971; Kumar and Silva, 1973). Chlorophyll a, chlorophyll b, 

and plant pigments absorb light to drive photosynthesis (Chappelle et al., 1992; Jensen 2007). 

The red edge is one on the most critical portions of the plant reflectance cure. This region is 

where plant pigments stop absorbing light and began to reflect it (Horler et al., 1983). With these 

measurements of the light that is reflected by the leaves plant heath, chlorophyll content, 

biomass, yield, abiotic stress, and disease can be estimated (Chappellle et al., 1992; Carter 1993, 

Penuelas et al., 1993; Filella and Penuelas, 1994; Penuelas et al., 1997) 

 Estimating Chlorophyll Content 

 Canopy chlorophyll content which is a key indicator of plant heath and photosynthetic 

ability has been estimated through the use of leaf spectral reflectance. Chlorophyll a, chlorophyll 

b, and carotenoids were best characterized in soybeans by reflectance observed at 675nm, 

650nm, and 500nm wavelengths respectively in soybean (Chappelle et al., 1992). Chlorophyll a 

was estimated by using the simple reflectance ration (675nm/ 700nm), to characterize total 

photosynthesis ability. (Chappelle et al., 1992). The reflectance ratio explained 93% of the 

phenotypic variation observed in chlorophyll a content. Leaf reflectance in the near infra-red and 

red edge of the reflectance spectrum has explained up to 95% of the variation in chlorophyll 

content in maize and soybean (Gitson et al., 2005). In wheat, chlorophyll content has been used 

to detect nitrogen in the plant canopy and to aid in decision making for fertilizer applications 

(Fitgerald et al., 2010). 
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 Reflectance Indexes 

Most applications using spectral reflectance measurements rely on ratios of reflectance 

values measured from different wavelengths. This was seen above in the use of the simple ration 

of red reflectance divided by reflectance of the red edge or NIR was to estimate chlorophyll 

content (Chappell et al., 1992). One of the most used reflectance measurements is the normalized 

difference vegetative index (NDVI) which was developed by (Deering, 1978; Tucker et al., 

1979) to estimate green biomass. They estimated biomass by using a relationship between the 

near infrared reflectance and the reflectance of Red light, NDVI= (NIR-Red)/(NIR +Red). 

  Reflectance for Grain Yield 

Marti et al. (2007) estimated wheat yield and biomass at the milk stage using NDVI. 

NDVI measurements accounted for 77% of the variation in biomass and 75% of the variation in 

yield. Barber et al. (2006) was able to use NDVI as a selection tool in a wheat breeding to select 

20-80% of the top 20% best performing varieties in a three-year study. Royo et al. (2003) found 

that reflectance measurements taken at the milk stage of wheat development were the most 

predictive for yield. Aparicio et al. (2000) used reflectance measurements to characterize yield of 

durum wheat in both irrigated and dryland plots. Measurements from dryland plots explained 

more of the phenotypic difference in yield as compared to irrigated treatments. Bandyopadhyay 

et al. (2014) used water stress indexes created from reflectance measurements to estimate the 

effects of water stress on wheat yields and were able explain up to 87% of the phenotypic 

variation in yield. 

Weber et al. (2012) used a partial least squares model to estimate corn yield from 

reflectance spectra but was only able to account for 40% of the phenotypic variation in yield, 

which would limit the effectiveness of the tool for selection due to the large portion of 
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unexplained variation. Sakamoto et al (2013) used reflectance data from satellites to estimate 

corn yields and accounted for approximately 75% of the yield variation at a regional level. 

Spectral reflectance has been used to estimate yield in other grain crops, such as in canola (Sulik 

and Long, 2016), as well as in salt and water stressed forage crops (Poss et al., 2006). NDVI 

reflectance was used to model total yield for the growing season for forage sorghum and 

accounting for 80% of the yield variation (Tagarakis et al., 20017). 

 Ma et al., (2001) were the first to use spectral reflectance measurements to quantify grain 

yield in soybean, using historical lines with known yield differences. An NDVI, created using 

813nm for the NIR reflectance and 613nm as the red reflectance, taken at the R5 growth 

explained from 45% to 80% of the phenotypic variation in yield, depending on environment and 

year (Ma et al., 2001). They suggested that measurements be taken at R5 were the most 

informative and reduced the effects of soil reflectance on the measurement. Christenson et al., 

(2016) found similar results when examining soybean for differences in spectral reflectance as a 

predictor of grain yield. Their models explained 44% of the variation in yield when derived from 

individual waveband measurements and 58% of the yield variation when the model was based on 

reflectance indexes. In this study, maturity groupings were also incorporated into the models.  

  Reflectance for Disease 

 Vigier et al. (2004) used canopy spectral reflectance to evaluate soybean symptoms from 

the fungal disease Sclerotinia stem rot. In this study, they observed spectral reflectance 

differences primarily in the blue and red regions of the visible spectrum, as well as in the NIR 

and Red edge regions. Reflectance of red wavebands between 675nm and 695nm accounted for 

87% of the differences in response to disease in the plants. 
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Nutter et al. (2002) used canopy spectral reflectance to estimate SCN populations in the 

soil, yield, oil and protein content of soybean. Using percent reflectance at 810nm, 48% of the 

initial SCN population in the soil variation was be explained. This same waveband explained 

90% of yield, 14% of oil and 49% of protein variation. Yield and oil content increased with an 

increase of percent reflectance at 810nm, whereas initial SCN population measurements and 

protein decreased with an increase in reflectance at 810nm. Protien is negatively correlated to 

yield and oil. This indicates that higher reflectance in the NIR is a positive indicator of plant 

health and lower stress on the plant from disease (Nutter et al., 2002). Nutter et al. (2002) in 

addition to ground measurements, used aerial and satellite measurements to estimate the traits, 

all three methods provide similar estimates. Yang et al. (2016) used satellite imagery to predict 

the occurrence of SDS in Iowa soybean field, with the use of NDVI measurements in June, this 

allowed for large scale estimation of disease area as well as to determine the risk SDS poses to a 

field. 

Fletcher et al. (2014) looked at the relationship between charcoal root rot and reflectance 

in soybean. The authors observed a negative correlation between reflectance in the visible, red 

edge and NIR with an increase in the pathogen colonization in the plant. In this experiment, 

strongest correlation between disease and reflectance were observed in the NIR (960-1200nm). 

This characterization of disease by spectral reflectance may aid in the development of spectral 

indices that can be used to predict a cultivar’s response to charcoal root rot early, in season 

before foliar systems are visible.  

Bajwa et al. (2017) used leaf reflectance to characterize the severity of disease caused by 

SDS and SCN individually and in combination. They observed an increase in reflectance of light 

in the visible portion of the spectrum and a greater absorption of light in the NIR when under 



 

14 

 

disease pressure. Plants that were inoculated with SDS had high red reflectance and decreased 

biomass. This reduced reflectance is due to a reduction in chlorophyll content in the leaves. 

Spectral reflectance measurements between 500-700nm tended to correlate best with disease 

symptoms. Models developed from the wavebands that could classify health plants from 

diseased plants 97% of the time, while diseased plants were identified 58% of the time. Lower 

accuracy in diseased plants came from the inability of the model to classify slightly diseased 

plants from heathy plants. Reflectance measurements tended to be less informative when taken 

closer to planting, making early disease estimates difficult. Diseased plants were not able to be 

separated into SCN and SDS classes. Similar results were seen in Aslan et al. (2014). 

Muhammed (2005) used hyperspectral reflectance to characterize fungal disease severity 

in wheat. He showed that disease severity affects absorption of light in the visible spectrum, 

especially in the blue and green regions. Disease also caused greater adsorption of NIR light 

above 750nm. Disease results in a decrease in the above ground green biomass and a reduction 

of the NIR light reflecting light back to the sensor. The model created from these measurements 

was able to estimate disease severity to 96% accuracy with corresponding field assessment. 

Franke and Menz (2007) used multi-spectral remote sensing to estimate powdery mildew 

infections in wheat plots. They found that spectral readings later in the season increased the 

accuracy of the predictive model when compared to ground truth data. Early models could 

classify plant as disease or heathy 57% of the time, whereas models from later measurements 

increased 89% correct classification between diseased and healthy plants (Franke and Menz, 

2007). The model also classified diseased plots more accurately than healthy plots (Franke and 

Menz, 2007). 
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Chapter 2 - Evaluating Genotypes for Soybean Sudden Death 

Resistance and Grain Yield using Spectral Reflectance 

 Introduction 

 Soybean (Glycine Max (L.) Merr.) is one of the most important crops in the world. It is 

the second most cultivated crop in the United States (US) occupying about 30% of the planted 

acres (USDA ERS). The US produced 107 million metric tons or 33% of the world production in 

2015 (USDA FRS). With predicted growth in the human population, production will need to 

increase at least 100% by the year 2050 to adequately feed the world (Ray et al., 2013). To 

accomplish this task there will need to be a major increase in the land area used for agriculture 

production, or an increase in the efficiency of current agronomic lands (Godfray et al., 2010; 

Phalan et al., 2011; Tschasrntke et al., 2013; Ray et al., 2013).  To contribute improvements in 

efficiency, breeders will have to roughly double the genetic gain that is currently achieved. For 

soybean, this would mean an increase from 1.3% increase in yield per year to 2.4% (Ray et al., 

2013). A yield increase can also be accomplished by decreasing the losses caused by disease. 

Between 2006 and 2009, yield loss due to diseases ranged from 296 million bushels in 2007 to 

484 million bushels in 2009 (Koenning and Wrather, 2010). These losses equate to roughly 10 to 

15% of total production. The fourth most destructive soybean disease in the US during this time 

was soybean sudden death syndrome (SDS), which was responsible for the loss of 20-34 million 

bushels of yield between 2006 and 2009 (Koenning and Wrather, 2010). 

 Soybean Sudden Death Syndrome 

 Soybean sudden death (SDS) is the term for the foliar disease that is caused by the 

soybean fungal pathogen Fusarium virgulifrome (Roy et al., 1997; Aioki et al., 2003). SDS was 

first observed in Arkansas in 1971 and spread north into most soybean producing states (Roy et 
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al., 1997; Westphal et al, 2008; Hartman et al., 2015). The disease tends to cause the most losses 

in the central US soybean production area (Koenning and Wrather, 2010). SDS has been 

observed in both South America and South African soybean production areas, but the causative 

agent is Fusarium tucucmaniae and Fusarium brasiliens, respectively (Aoki et al., 2003; 

Tewoldemedhin et al., 2017). F. virguleforme is an asexual reproducing colonial soil borne fungi 

with low genetic diversity. Its asexual reproduction separates the North American pathogen from 

its South American relative (Covert et al., 2006). The fungus produces distinct blue colonies 

when pure cultures are obtained and purified in the lab (Roy et al., 1989; Roy et al., 1997; Aoiki 

et al., 2003).  The fungus survives in the soil in chlamydospores until favorable conditions are 

present for it to invade soybean roots and cause sudden death syndrome disease symptoms 

(Westphal et al. 2008; Hartman et al., 2015) 

 F. virgulefrome begins by invading the roots of the young soybean plants shortly after 

emergence. Upon initial infection, there are no visible aboveground symptoms. Root symptoms 

include a decrease in root surface area, length, and volume (Ortiz-Ribbing and Eastburn, 2004). 

Younger roots are more susceptible to infection than older roots. This is thought to be due to 

increased suberin production in older roots (Conal and Leandro, 2011). Root colonization has 

been negatively correlated to seed yield in soybean plants (Lou et al., 2000). Infected roots can 

be identified from other root diseases due to the brown or rust discoloration of the root cortex as 

well as the potential blue colony formation on the root at or just below the soil surface (Brar et 

al., 2011; Chang et al., 2015). F. virguleforme does not move out the soybean roots and cause 

foliar symptoms (Roy et al., 1997).  The aboveground foliar symptoms observed with SDS are 

the result of multiple toxins produced by the fungi in the roots that are transported to the leaves 

via the xylem (Brar et al., 2011; Chang et al., 2015). These toxins trigger programed cell death, 
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which normally is used to protect plants from pathogens (Brar et al., 2011). Toxins from SDS are 

dependent on light to cause necrosis in plant leaves. It is speculated that this is caused by the 

toxin producing reactive oxygen species that lead to the disruption of photosynthesis (Ji et al., 

2006).  

Once toxins are transported to the leaves, foliar symptoms begin to appear. Initial 

symptoms appear as small pale green or yellow spots of chlorosis. These spots increase in size 

and eventually turn necrotic as symptoms progress. The chlorosis can continue to increase in size 

until all the leaf tissue is necrotic, with the exception of the tissue close to major veins. At this 

point, if the disease continues to progress the leaves will prematurely drop from the plant leaving 

only the petiole attached to the stem. Initial foliar symptoms are similar to other biotic and 

abiotic stresses, such as Charcoal Root Rot and drought stress, which makes initial identification 

of SDS difficult. Diseased plants observed to have interveinal necrosis, leaf loss with attached 

petioles, and brown or rust colored cortex tissue in the roots are all positive indicators of SDS 

(Rupe et al., 1989; Roy et al., 1997; Hartman et al., 2015). Foliar symptoms are not always 

indicative of grain yield losses due to the relationship between disease symptoms and plant 

development (Njiti et al., 1998; Ortiz-Ribbing and Eastburn, 2004). 

 Disease management options are limited and only partially control disease losses. 

Planting date can affect the onset and severity of the disease, with earlier planting dates tending 

to lead to higher disease severity (Hershman et al., 1990; Wrather et al., 1995). Delayed planting 

does help reduce the risk of SDS, but delaying planting also reduces yield regardless of SDS 

(Kandel et al., 2016). Lower soil temperatures at planting also have been shown to increase the 

severity of the disease, as well as decrease plant heath in general (Schrem and Yang, 1996). 

Different field tillage practices have been shown to reduce the severity of SDS. Shallow, or strip-
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till practices, which tend to warm the soil temperatures, have been shown to decrease SDS 

severity (Wrather et al., 1995). Also, improving soil drainage has been shown to decrease disease 

severity (Vick et al., 2003). Soil compaction when reduced with tillage was not shown to 

decrease SDS, but did have a positive impact on seed yield (de Farias Neto et al., 2006). Soil 

moisture, from rainfall or irrigation, might be the single largest environmental driver of disease 

severity of SDS. Rainfall during planting as well as high soil moisture, from rainfall or irrigation, 

during the late reproductive (R4) phase of soybean growth greatly contributes to disease severity 

(de Faris Neto et al., 2006).  

In 2015, Bayer Crop Science released ILevo® seed treatment to help control soybean 

cyst nematode and SDS. Fluopyram, the active ingredient in ILevo®, decreases the plant stand 

from 3-8%, but was shown to decrease root rot severity, as well as reduce foliar symptoms 

(Kendal et al., 2016). Yield was also positively impacted with an increase of 5-30% in yield over 

untreated seed (Adee, 2015; Kendal et al., 2016). Yield benefits are greater when used with 

susceptible varieties, but when used with SDS resistant varieties disease symptoms are almost 

entirely eliminated (Adee, 2015; Adee, 2016). 

 Genetic Resistance to SDS 

SDS resistance is controlled by many genes (Hnetkovsky et al., 1996; Njiti et al., 1996). 

Lightfoot (2015) found eight quantitative trait loci (QTLs) on five chromosomes reported in 

literature. These QTLs were discovered in biparental mapping population studies. The first 

Genome Wide Association Mapping study (GWAS) for SDS resistance was performed by Wen 

et al. (2014) identified seven of the previously discovered QTLs along with 13 additional QTLs. 

Durable resistance is thought to require 8 - 10 QTLs in the genome to provide adequate 

resistance (Lightfoot, 2015.) The need for the large number of QTLs to provide resistance 
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increases the difficulty of integrating resistance into a cultivar, but if achieved, resistance should 

remain durable due to clonal nature of the pathogen and the large pyramid of QTLs used to 

provide resistance. The Rfs2 gene, located on linkage group G, chromosome 18, is the only 

cloned resistant quantitative trait locus (QTL) (Chang et al., 1996; Meksem et al., 1999; Prabhu 

et al., 1999; Wen et al., 2014). This QTL is possibly the same as, or closely linked to the Rhg1 

gene which provides resistance to SCN (Meksem et al., 1999; Prabhu er al., 1999; Wen et al., 

2014). It is unknown if resistance to SCN and SDS provided from this region of chromosome 18 

is controlled by two different genes, controlled by a single pleiotropic gene, or due to the copy 

number of a gene providing resistance to both pathogens. (Luckew et al., 2013: Wen et al., 

2014).  

 Phenotyping with Spectral Reflectance  

 In last 20 years there has been substantial increases made in the understanding of plant 

genetics and the ability to use new techniques to increase the genetic gain achieved through plant 

breeding (Furbank and Tester, 2011; White et al., 2012).  These new techniques and methods 

have led to the use of genomic selection, where the genetic makeup of the plant is used to predict 

the performance of new genotypes. While genomic selection has increased the genetic gain 

achieved by breeders, development of these genomic models require large amounts of 

phenotypic data (Furbank and Tester, 2011; White et al., 2012; Cabrera-Bosquet et al., 2012; 

Araus and Cairns, 2014). Collection of phenotypic data is still primarily obtained through visual 

or physical evaluations (Furbank and Tester, 2011; White et al., 2012). In the case of disease 

ratings, visual evaluations of symptoms are often used. These ratings tend to rely on observations 

by skilled personnel and can be inconsistent between raters and across environments. These 

phenotypic evaluations can be time consuming and expensive to collect, which can lead to a 
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bottleneck in the ability to phenotype new genetic material. To alleviate this bottleneck, breeders 

and researchers have begun to use remote sensing as a noninvasive way to screen germplasm 

(Cabrerra-Basquet et al., 2012).   

 Spectral reflectance is a remote sensing method that uses the reflectance of light from the 

plant to predict the health and performance of the plant (Printer et al., 2003). Remote sensing 

relies on the principal that different portions of the light spectrum are absorbed and reflected by 

different components of the leaf (Kummar and Silva, 1973). Chlorophyll primarily absorbs light 

in the visible portion of the spectrum to drive photosynthesis, with greater absorption in the blue-

(400-500nm) and red (600-700nm) portions of the spectrum, versus the green region (500-

600nm). Around the red edge (700- 750nm) region there is a sharp increase in the reflectance 

since it does not provide energy to drive photosynthesis (Horler et al., 1983). Light in the near 

infra-red (NIR) (above 750nm) region does not drive cellular function, but has been shown to be 

related to plant water content (Penuelas et al., 1993). Cellular structure in the plant leaf also 

affects the path of light as it travels through the palisade mesophyll cells where most 

photosynthesis occurs. When the light reaches the spongy mesophyll, the remaining 

photosynthetic active light is absorbed and the NIR is scattered and reflected due to the air the 

leaves (Kummar and Silva, 1973). Changes in plant heath effect the way that light travels 

through these cells and thus can be used as an indicator of disease or stress (Adams et al., 1999). 

 Reflectance in the visible parts of the spectrum tends to correlate to the chlorophyll 

concentration in the leaves (Gitelson and Merzlyak, 1996). Gitelson et al. (2005) used spectral 

reflectance to estimate 92% and 98% of the variation in chlorophyll content in the leaves of 

soybean and corn plants respectively. The authors showed that a model using reflectance in the 

NIR divided by reflectance of the red edge minus 1, (RNIR/Rred-edge)-1, provided the most accurate 
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estimation of chlorophyll in both corn and soybean. The effects of canopy architecture were 

shown to influence the estimation of chlorophyll due to greater absorption in the soybean leaves 

in the visible spectrum (400-700 nm), causing higher estimation of chlorophyll content than in 

corn (Gitelson et al., 2005). Daughtry et al. (2000) demonstrated that nitrogen was associated 

with leaf chlorophyll contents, and chlorophyll content could be estimated using spectral 

reflectance. The authors observed an interaction between reflectance and leaf area, and this 

interaction accounted for a large amount of the variation that was observed between chlorophyll 

content and spectral reflectance. Chappelle et al., (1992) characterized individual wavelengths to 

estimate the reflectance of plant pigments in soybean leaves. The authors identified reflectance at 

675nm, 650nm, and 500nm as absorption bands for chlorophyll a, b and carotenoids, 

respectively (Chappell et al., 1992). A relationship between chlorophyll a content in soybean 

leaves with the rate of photosynthesis was observed, with the ability to accurately estimate 93% 

of the variation in chlorophyll a content with a simple reflectance ratio (SR) of 675nm / 700nm 

(Chappell et al., 1992.) Gitelson and Merzlyak (1996) used green wavelength reflectance to 

replace the red wavelength reflectance to estimate chlorophyll content creating the Green 

normalized vegetative index (GNDVI) = (RNIR -Rgreen)/( RNIR+Rgreen) which they demonstrated 

was more sensitive to a wider range of chlorophyll content that the normal NDVI = (RNIR -Rred)/( 

RNIR+Rred). The Normalized Differences Vegetative Index (NDVI), which is calculated by the 

formula (NIR-Red)/(NIR+Red) as described by Deering et al. (1977) and Tucker (1978) to 

estimate above ground biomass. NDVI is one of the most commonly used indices to predict plant 

heath and yield in many agricultural crops (Ma et al., 2001; Prasad et al., 2006; Marti et al., 

2007). 
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  Chlorophyll content has been shown to be a secondary measurement for yield (Buttery 

and Buzzel, 1973; Shimada et al., 1995), thus allowing spectral reflectance to be used to estimate 

yield. It has been used in corn, wheat, soybean, milo, and canola (Ma et al., 2002; Royo et al., 

2003; Marti et al.,2007; Weber et al 2012; Christenson et al., 2016; Sulik and Long, 2016; 

Tagarakis et al., 2017). Weber et al. (2012) used canopy reflectance and partial lease square 

regression to estimate roughly 40% of the variation in grain yield in corn. This estimation 

technique would be useful as an early screening tool, but with so much phenotypic variation was 

left unexplained further evaluation of lines would need to be taken. Multiple studies have used 

spectral reflectance in the evaluation of wheat yield under both irrigated and dryland conditions. 

Aparicio et al. (2000) used a simple ration SR = (RNIR/Rred), NDVI, and photochemical 

reflectance index (PRI) to estimate grain yield. SR accounted for 52% and NDVI 59% of the 

yield variation under dryland conditions. Royo et al. (2003) used multiple reflectance wavebands 

and indices, such as the 550nm, 680nm, water index (WI), as well as the NDVI and SR to predict 

grain yield in wheat. Reflectance at 680 nm explained 24% to 47% of yield phenotypic variation, 

while water index accounted for was and accounted for 17% to32 % of the variation in yield. The 

SR was more useful in predicting yield accounting for 19% to35% of the yield variation. Both 

NDVI and SR failed to predict grain yield accurately in environments with decreased biomass 

(Royo et al., 2003). In this experiment environment played a major factor in any of the indices 

predictive ability (Royo et al., 2003). Barber et al., (2006) used NDVI to select up to 80% of the 

20% highest yielding varieties in recombinant inbreed lines (RILs) under irrigation. This study, 

as in the case of Weber et al. (2012) showed that yield estimation maybe useful for estimation of 

yield early in testing. Reflective measurements taken at early grain fill and milk stage in wheat 
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where most informative at estimating yield than those taken closer to maturity (Aparicio et al., 

2000; Royo et al 2003; Barber et al., 2006; Marti et al., 2007)  

 Ma et al. (2000) first used spectral reflectance to characterize grain yield in soybean.  The 

authors identified the R5 growth stages as the most informative time to take measurements in 

soybean. NDVI measurements taken at R5 accounted for up to 80% of the variation in yield 

between the 42 varieties (Ma et al., 2000). In this experiment environment effected predictive 

ability, with lower yielding fields creating better fitting models (Ma et al., 2000). Christenson et 

al. (2016) used reflectance to account for 44% of the yield variability of observed cultivars 

waveband reflectance, and using a model containing multiple vegetative indices accounted for 

58% of the variation in yield among cultivars. In this experiment, maturity of the genotypes was 

estimated, and entries divided in to early, middle, and late maturing groups. When divided into 

maturity groups, the predictive ability of the models increased to account for 55%, and 48% of 

the variability in for the early and middle maturity groups respectively. Predictive ability 

declined, explaining only 18% of the variability in yield for the late maturing group (Christenson 

et al., 2016). The decrease in predictive ability of the late maturity group may be due to not 

continuing scans all the way through the growing season of late entries (Christenson et al., 2016) 

 Spectral reflectance has been used to identify diseases symptoms in crops. Muhammed 

(2005) used reflectance to estimate fungal disease severity of wheat accounting for 95% of the 

variation between disease estimates and observed ratings. Franke and Menz (2007) used 

reflectance to quantify powdery mildew in wheat. Measurements could identify 95% of infected 

plants and 78% of healthy plants that were measured. Spectral reflectance readings were more 

informative as disease symptoms increased. Vigier et al. (2004) used spectral reflectance to 

estimate Sclerotina stem rot in soybean. Using narrow band reflectance between 675-695 nm 
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explained 87 % of the phenotypic differences in disease. Nutter et al. (2002) used spectral 

reflectance to estimate the initial infection of soybean with SCN, yield, protein, and oil.  Using 

reflectance at 810nm they could account or 48% of initial SCN population in the soil, which was 

shown to negatively influence the yield. Bajwa et al. (2017) used spectral reflectance to 

characterize SDS and SCN severity in combination in soybean. The authors used models with 

individual wavelengths and spectral indices to estimate disease severity.  Reflectance models 

identify 94% of healthy plants, but were less successful at predicting diseased plants or 

distinguishing between SDS and SCN. This study as, with previous studies, found that later 

readings taken after the onset of disease symptoms were more informative at predicting disease. 

Fletch et al. (2014) examined charcoal root rot in soybean relationship with spectral reflectance. 

The authors found overall decrease in reflectance with increased disease pressure across all 

wavebands, with reflectance in the NIR most correlated to pathogen content in the plant (Fletch 

et al. 2014) 

 With the difficulties associated with developing new cultivars possessing high yield and 

resistance to SDS resistance, large populations and extensive phenotypic evaluation is required 

to identify new genotypes. Spectral reflectance has been shown to help quantify resistance in the 

field to disease, but these experiments tended to have a limited number of genotypes involved. 

The objective of this study was to determine if spectral reflectance measurements could be used 

to evaluate SDS resistance and yield in a breeding program.  
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 Material and Methods 

 This study was conducted at three environments across two years, during the 2015 and 

2016 growing seasons.  All three environments were chosen due to having historical SDS 

outbreaks.  In 2015, plots were located at the Kansas State University Research Farm at 

Manhattan, KS (39° 08’ 31” N, 96° 37’ 46” W, 315m of elevation) on a Eudora silt loam soil 

(Coarse-silty, mixed, superactive, mesic Fluventic Hapludolls). In 2016, plots were located near 

Rossville, KS (39° 07' 08" N, 95° 55' 29" W, 281m of elevation) on a Eudora silt loam soil 

(Coarse-silty, mixed, superactive, mesic Fluventic Hapludolls) and at Manhattan, KS (39°08’ 

34” N, 96°37’ 43” W,  315m of elevation) on Belvue silt loam soil (Coarse-silty, mixed, 

superactive, nonacid, mesic Typic Udifluvents).  

 Genotypes evaluated included 140 F5 derived RILs from a cross between LD00-3009 and 

IA 3023 from the SOY NAM population (Diers, 2012).  This NAM population was selected due 

to the resistance of LD00-3309 and the susceptibility of IA3023 to SDS.  With the addition of 

checks for yield and SDS resistance, the population evaluated totaled 160 genotypes. SDS 

resistant checks selected from maturity groups three, four, and five were LD06-7862, Ripley and 

LS09-1920, respectively. SDS susceptible checks from maturity groups three, four, and five and 

were Morgan, Spencer and V82-2191, respectively. V82- 2191 was only included in 2015 

experiments, due to it late maturity it was removed from the 2016 test to aid in harvest. A second 

population totaling 140 entries, consisting of commercial cultivars and the previously stated SDS 

checks were evaluated as part of the Kansas State University Variety Performance test (SVPT). 

SVPT entries differed between years; with 24 cultivars evaluated in both 2015 and 2016.  The 

experimental units were 2-row plots (3.4 m long with rows spaced 76 cm apart).  The 

experimental design was a randomized complete block with four replications of the NAM 
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population and three replications for the SVPT population. In 2015, plots were planted on May 

13 at Manhattan. In 2016, plots were planted on May 12 at Rossville and on May 18 at 

Manhattan. Weed pressure at all environments was controlled with herbicide and hand weeding 

to prevent weed pressure from being a limited factor. Irrigation was applied throughout the 

growing season at all environments to maintain adequate soil moisture and to help increase the 

severity of SDS. 

 Maturity, height, lodging and seed yield were collected on all plots both years. Maturity 

was recorded as the date after August 31st when 95% of the pods on the plants had reached 

mature color.  Height was recorded from the base of the plant to the top of the main stem in cm.  

Lodging was scored on a scale from one to five with one indicating all plants were erect and five 

indicating all plants were prostrate. Plots were harvested with a two-row plot combine cutting 

both rows of the plot.  Grain yield was a function of the total seed weight of the plot and adjusted 

to uniform moisture.  SDS ratings were taken at the R6 growth stage of the plants (Fehr, 1973). 

Disease severity (Ds) and incidence (Di) ratings were taken on all the plots. Incidence ratings 

were scored from 0-100 % on 5% increments based the infected area of the plot. Disease severity 

was scored on a 0-9 scale, with 0 = no visual symptoms, 1 = 10 % chlorosis or 5 % necrosis, 2 = 

20 % chlorosis or 10 % necrosis, 3 = 40 % chlorosis or 20 % necrosis, 4 =60 % chlorosis or 40 

% necrosis, 5 = greater than 60 % chlorosis or 40 %necrosis, 6 = up to 1/3 premature defoliation, 

7 = less than 2/3 premature defoliation, 8 = greater than 2/3 premature defoliation, and 9 = 

premature plant death. A disease index (Dx) was calculated using the formula:  Di*Ds/9 =Dx. 

 Canopy spectral reflectance measurements were collected with two Ocean Optics USB 

2000 spectroradiometers (Ocean Optics, Dunedin Florida) controlled by the CDAP-2 (CALMIT 

University of Lincoln Nebraska, Lincoln, NE) for data acquisition, integration and processing. 
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The use of two passive spectroradiometers allowed for the calculations of average reflectance for 

comparisons between days. This is accomplished by using one sensor to collect down-welling 

light coming from the sky, and the second up-welling sensor to collect light being reflected from 

the leaf surface. Spectral reflectance was collected from the soybean canopy from 350-1027nm 

in electromagnetic spectrum, with a field of view of 25° and collection interval of 0.37nm. Data 

in the ultra violet (350 to 400 nm) portion was removed due to atmospheric interference. A 

spectrolan panel (Labssphere, Sutton, N.H.) was used as a white reference to calibrate the 

spectroradiometer at the start of each collection session. Sensors were mounted on an adjustable 

monopod and were held so that the sensors were vertical to the plots.  Sensors were held 

approximately a half a meter above the plot to produce a 25-cm field of view. The first and last 

meter of the plot were excluded from the measurement to reduce end-row effect. Ten scans were 

taken and automatically averaged by the CDAP-2 software to produce a single measurement for 

each plot. Spectral data was collected on near cloud free days within two and half hours of solar 

noon, 10:00 to 15:00 hours.  Reflectance readings were taken weekly from R2-R6 in at all 

environments. Six, five and four collection dates were taken in 2015 at Manhattan, in 2016 at 

Manhattan and 2016 at Rossville, respectively.   

 Reflectance data were averaged to create 10 nm waveband regions, between 400 to 1027 

nm, to reduce the size of the data set, limit the collinearity of near spectral bands and reduce the 

variation associated with individual waveband measurements (Curran et al., 2001; DeJong et al., 

2003; Lin et al., 2012; Christenson et al., 2014). Individual wavelength measurements that were 

averaged tended to be highly correlated, so this step is thought to cause minimal loss of 

information (Christenson et al., 2014). 
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 SAS 9.4 (SAS Institute, 2016) was used to analyze all spectral and phenotypic data.  

PROC MIXED was used for analysis of variance for yield, disease incidence, disease severity, 

disease index and maturity, using block as the random effect. Least square means were 

calculated by PROC MIXED. PROC GLM procedure was used for ANOVA of the spectral 

wavebands to check for significant differences between entries for reflectance at individual 

wavebands. PROC CORR was used to characterize the relationship between yield, maturity, 

disease index and individual wavebands.  PROC REG using the stepwise procedure was used to 

create estimation models for disease index, yield, maturity using the waveband reflectance 

measurements. 
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 Results and Discussion 

 Agronomic Data 

 NAM  

Nested Association Mapping (NAM) population entries differed significantly (p<.0001) 

for average yield over all three environments (Table 2.1). A significant (p< .0001) entry by 

environment interaction was observed for yield (Table 2.1). Entry mean yields ranged from 1.65 t 

ha-1 to 4.4 t ha-1 at Manhattan in 2015, .89 t ha-1 to 4.3 t ha-1 at Manhattan in 2016, and 1.0 t ha-1 to 

3.7 t ha-1 at Rossville in 2016 (Table 2.2). Mean yields were significantly different between 

Rossville in 2016 (2.5 t ha-1) and both years in Manhattan (3.0 t ha-1 and 2.8 t ha-1 in 2015 and 

2016, respectively) (Table 2.2).  

NAM population entries differed in maturity and a significant entry by environment 

interaction was observed for maturity (Table 2.1). Maturities at Manhattan and Rossville in 2016 

averaged a few days earlier than maturities at Manhattan in 2015 (Table 2.2). Entry means for 

maturity at Manhattan in 2015 ranged from 14 to 33 days, at Manhattan in 2016ranged 14 to 36 

days and at Rossville 2016 ranged from 15 to 25 days after August 31 (Table 2.2). In 2016 at 

Manhattan, all lines were mature by Sep. 28 except for LS09-1920 which matured on Oct. 6. In 

2016 at Rossville, LS09-1920 was not harvested due to not being mature at that time the rest of 

the plots were harvested.  

 Although the range in disease incidence (Di) among entries at each environment was 

slightly larger at Manhattan in 2015, averaged across all entries, Di was higher at the 2016 

environments (32.6% and 37.4%) than at Manhattan in 2015 (24.3%) (Tables 2.1 and 2.2). Di was 

significantly different (p<.0001) between entries at all environments (Table 2.1). Entry means for 
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disease incidence ranged from 0-90% at Manhattan in 2015, 2-80% at Manhattan in 2016 and 2-

85% in Rossville at 2016 (Table 2.2).  

Disease severity (Ds) differed among all three environments with the highest severity 

observed at Rossville in 2016 (3.4) and the lowest severity observed at Manhattan in 2015 (1.9) 

(Table 2.2). The interaction between entry and environment was also observed to be significant 

(p<.0001) for Ds (Table 2.1). Entry means for disease severity scores ranged from 0-6 in 

Manhattan in 2015, from 1-8 at Manhattan in 2016, and from 0-7 at Rossville in 2016 (Table 2.2).  

Mean Dx score of 8.5 in 2015 at Manhattan was significantly lower than the Dx scores at 

both environments in 2016 (Tables 2.1 and 2.2). A significant (P<.0001) entry by environment 

interaction was observed for Dx (Table2.1). Entry means for disease index ranged from 0 to 57 at 

Manhattan in 2015, 0 to 67 at Manhattan in 2016, and 1 to 69 at Rossville in 2016 (Table 2.2 and 

Fig. 2.1). NAM RILs tended to be normally distributed for Dx at Manhattan and Rossville in 2016 

(Fig. 2.1bc), but the 2015 Manhattan distribution was not normally distributed, probably due to 

the lower disease pressure at that environment (Fig.2.1a). 

 Disease index will be used in this study as the primary disease assessment tool since it 

accounts for both the severity as well as the amount of disease present in the plot. This gives Dx 

a more accurate prediction of disease pressure than either Di or Ds measurements. 

 SVPT 

 SVPT entries had significant (p<.0001) entry differences for mean seed yield (Table 2.3). 

Environment and the environment by entry sources of variation were significant for seed yield as 

well (Table 2.3). Average seed yield for SVPT entries at Manhattan 2015 was 3.5 t ha-1 and 

ranged for .79 t ha-1 to 4.8 t ha-1 (Table 2.4). In 2016 at Manhattan, SVPT entries had a mean 

yield of 3.4 t ha-1, with a range of yield from .33 t ha-1 to 4.6 t ha-1. Mean yield for all entries at 
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Rossville in 2016 was 3.1 t ha-1 and entry means ranged from 1.2 t ha-1 to 5.5 t ha-1. Mean yields 

of entries were significantly different all three environments (Table 2.3). Entries in the SVPT 

population tended to have higher yields than the NAM RILs, because the SVPT population was 

comprised of mostly cultivars used in commercial seed production. 

 Maturity was significantly different (p<.0001) between entry for SVPT entries (Table 

2.3). Maturity was significantly different (p<.0001) between environment, and significant 

(p<,0001) entry by environment interaction was observed for maturity (Table 2.3). Maturity for 

entries was significantly different at all environments (Table 2.3). Maturity of all entries ranged 

from 19 to 46 days after August 31st at Manhattan 2015 (Table 2.4). SVPT entries at 2016 

Manhattan and Rossville had maturity that ranged from 18-56 day and 17-53 days after August 

31 at respectively (Table 2.4). The maturity range was greater in the SVPT population than in the 

NAM population due to the inclusion of many maturity group five entries, whereas the NAM 

population was comprised of mainly maturity group 3 and early maturity group 4 genotypes.  

 Disease index scores significantly differed (p<.0001) between entry and environment for 

the SVPT entries (Table 2.3). Entry by environment interaction was significant (p<.0001) for 

disease index scores (Table 2.3). Entries in the SVPT had significantly different Dx scores 

between all three environments (Table 2.4). SVPT entries at Manhattan 2015 mean disease index 

score ranged from 0-76. In 2016 at Manhattan and Rossville all SVPT entries had ranges in 

disease index scores from 0-92 and 0-83 respectively (Table 2.4).  

 SVPT c entries had significant differences between disease incidence and severity for 

both entry and environment (Table 2.3). Significant interactions were observed between entry by 

environment for both Di and Ds (Table 2.3). SVPT disease incidences were significantly 

different between at between years but not environments in 2016 (Table 2.4). Mean disease 
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severities were different between all environments for SVPT entries (Table 2.4). Mean disease 

incidence ranged from 2 to 85% for all SVPT entries at Manhattan 2015, and between 0-100% 

for all SVPT entries in 2016 at both Manhattan and Rossville (Table 2.4). Mean disease severity 

scores for SPVT entries ranged from 1-8 in 2015 at Manhattan (Table 2.4). In 2016 at both 

Manhattan and Rossville all SVPT line mean Ds scores ranged from 0-8 (Table 2.4). 

 The entry by environment source of variation for yield, maturity, Di, Ds and Dx was 

significant for the NAM and SVPT populations (Tables 2.1 and 2.3). The entry by environment 

interaction tended to account for a smaller portion of the phenotypic variance than the entry main 

effect. Regardless, in this study, both the grand entry means for the agronomic traits across all 

environments, and the individual environment entry means will be used to examine the 

relationships between the spectral reflectance measurements and Dx and seed yield.  

 Spectral Reflectance Readings 

 NAM 

For each genotype, a single seasonal average reflectance value was calculated for each 

waveband region using the reflectance values from the significant days in which differences 

were detected among genotypes for any waveband region (p <= 0.1). Reflectance data from 905-

1025nm was removed due to poor data quality across all scans. For the NAM population at 

Manhattan in 2015, three dates (August 11, August 30 and September 14) were used to calculate 

the season average (Fig. 2.2a). In 2016 at Manhattan, four dates (August 3, August 10, 

September 1, and September 6) were used to calculate the season average (Fig. 2.2b). In 2016 at 

Rossville three days (August 4, August 8, and September 2) were used to calculate the season 

average reflectance (Fig. 2.2c).  
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At Manhattan 2015, the August 11 and 31 reflectance readings were significantly 

different among entries in both the blue (400-500nm) and green (500-600nm) regions (Fig. 2.2a). 

August 11 reflectance readings were significant different among entries in the red (600-700 nm) 

and red edge (705-730nm) regions. August 31 reflectance readings in the NIR (>730 nm) 

differed significantly among entries. September 14 waveband reflectance only differed 

significantly among entries in portions of the red (600-700nm) and NIR (>730nm) regions. At 

Manhattan 2016, entries differed in reflectance on August 3 and 10 in the green (500-600nm) 

and red (600-700 nm) regions (Fig. 2.2b). On August 10, entry differences were observed in the 

NIR (>730nm) region. On September 1 and 6 significant entry differences in the visible (400-

700nm) as well the NIR (>703nm) were detected. September 6 had significant entry differences 

for reflectance in the red edge (700-730nm) region. In 2016 at Rossville, August 3 and 8, and 

September 2 had significant different in reflectance among entries in most portions the visible 

spectrum (400-700nm) (Fig.2.2c). On August 8 and September 1 reflectance readings were 

significantly different among entries in most portions of the red edge (700-730nm) and NIR 

(>.700nm). Readings collected in the middle of August during the R4-R5 growth stages, tended 

to not to detect differences among entries even though visible disease symptoms were present. 

This may have occurred because of environmental factors, but literature indicated that 

measurements at this time should be informative. 

 SVPT 

 SVPT individual day spectral readings were examined for significant differences between 

entries for waveband reflectance. Significance levels in reflectance among entries was set a P<.1.  

At Manhattan 2015, four dates (August 7, 11 and 20, and September 14) had entries with 

significant differences in waveband reflectance (Fig 2.3a). Five dates at 2016 Manhattan (August 
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3, 10, and 16, and September 1 and 12) had waveband reflectance values that significantly 

differed between entries (Fig. 2.3b). Entry differences in waveband reflectance were observed on 

only two dates at Rossville 2016 (August 4 and September 9) (Fig. 2.3c). At both Manhattan 

2015 and 2016, reflectance tended to be significantly different between entries in both the visible 

spectrum (400-700nm) and NIR (>730nm) regions (Fig. 2.3ab). September 9 at Rossville 2016 

reflectance differed between entries in portion of the blue (500-600nm), red (600-700nm) and 

most NIR (>735nm) (Fig. 2.3c). Spectral readings from August 4 at Rossville were only 

significantly different between entries at a small number of wavebands and thus were discarded. 

 Dx and Reflectance Correlations 

 NAM Season Average  

 Pearson’s correlations were calculated between Dx and season average reflectance 

readings for each waveband region to identify waveband regions associated with Dx. 

Correlations ranged from -.26 to .35 at Manhattan 2015, -.18 to .26 at Manhattan 2016, and -.39 

to .19 at Rossville 2016 between Dx and wavelength (Fig. 2.4abc). Dx scores tended to increase 

as waveband reflectance increased in the visible spectrum (400-700nm) in both years at 

Manhattan, and as Dx scores increased, waveband reflectance tended to decrease in the NIR 

(>700nm) at all environments (Fig. 2.4abc). The inversion of the spectral reflectance correlations 

with dx from positive to negative tended to be centered around 705nm, which corresponds to the 

red edge region where plants start to reflect non-photosynthetically active light (Horler et al., 

1983; Penuelas et al., 1993).  

 Correlations in the blue spectral region (400-500nm) varied between years at Manhattan. 

At Manhattan 2015 only two wavebands 485nm and 495 correlated with dx, where as in 2016 

the entire region was significant (Fig. 2.4ab). No significant correlations were observed at 
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Rossville between blue waveband reflectance and Dx (Fig. 2.4c). Correlations in the green (500-

600nm) spectral region tended to be significant towards the transition from blue to green and 

green to red at Manhattan both years (Fig. 2.4ab). Green waveband reflectance and Dx were not 

correlated at Rossville (Fig. 2.4c). At all three environments, the red waveband reflectance (600-

700 nm) was positively correlated to Dx (FIG. 2.4abc). All environments, NIR (>700 nm) 

reflectance measurements were negatively correlated to Dx (Fig. 2.4abc). Reflectance at 675nm 

has been reported to be informative at quantifying chlorophyll a absorption, and estimating 

photosynthesis with minimal effects from other plant pigments (Chappelle et al., 1992). 

Reflectance at 775 nm had the highest correlation to Dx in both years at Manhattan, while at 

Rossville 755nm reflectance was most correlated to Dx (Fig. 2.4abc). At both Manhattan 

environments, the correlations went from positive to negative at 715nm, while at Rossville the 

transition occurred at 705 nm (Fig. 2.4abc). This transition at the red edge is an important factor 

in predicting plant health and shifts towards the shorter wavelengths as plants undergo stress. 

This shift is accompanied by an increase in absorption of light in the NIR due to low water and 

nitrogen (Filella and Penuelas, 1994). The shift of the red edge observed at Rossville to lower 

wavelengths could have been due to increased disease pressure experienced at that environment. 

Decreased photosynthetic activity was observed in plants infected with SDS (Bajwa et al., 2015). 

This supports the positive correlations that were observed between reflectance and Dx in the 

visible region (400-700nm). Readings in the NIR (905nm-1023) were on average not significant 

and as previously discussed were removed from analysis for poor data quality. 

 2016 Rossville tended to have unusual green (500-600nm) reflectance patterns relative to 

disease pressure, compared with the other environments. This difference in reflectance observed 
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at Rossville maybe due to the greater disease pressure damaging the leaf pigments causing 

increased absorption of the green wavebands.  

 NAM Individual Days 

Individual day reflectance correlations with Dx tended to follow the trends seen in the 

season averaged readings, except for the August 8, 2016 Rossville reading. At Manhattan in 

2015 August 31 was the most informative of day based on correlations as compared to other 

scans. 605nm was the most informative band at R=.41 in the visible range and 775nm (r=-.18). 

For Manhattan 2016 September 1 was the correlated day with Dx at 675nm was the most 

significant (r=.3) in the visible spectrum and 765nm (r=-.17) in the NIR. At Rossville 2016, 

August 8 was the most significant day for visible reflectance with highest correlation in the 

visible wavelength at 575nm (r= .25) and 705nm was most significant (r=.3) in the NIR (Fig. 

2.6). September 2nd was extremely informative in the NIR (r=.38) at 755nm and in the visible 

region at 675nm (r=.2). The reflectance became negatively correlated to Dx at 715nm the same 

as in the season averages for both 2015 and 2016 in Manhattan. On September 2 at Rossville the 

trend was the same in season average, but August 8 negative correlation didn’t happen until 

735nm (Fig. 2.5a). These individual days that were selected the spectral reading taken nearest to 

the visual disease evaluation, this insured that disease pressure was the greatest for evaluation. 

August 8 was included in the individual day due to September 2 data only having significant 

correlation to disease in the portions of the red (600-700nm) and NIR (>730nm) region 

(Fig2.5b).  

Correlation between disease index and waveband reflectance tended to be similar 

between season average reflectance and individual day reflectance for the NAM population. 

Reflectance measurements that were taken during the height of disease pressure tended to have 
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the highest correlation to disease index, except for Sept 8 at Rossville 2016. This increased 

disease pressure has greater foliar symptoms which leads greater differences between entries 

reflectance, similar results were seen in estimation of powdery mildew in wheat and charcoal rot 

root and SDS in soybeans (Franke and Menz, 2007; Fletch et al.,2014; Bajwa et al., 2017). 

Increased reflectance in the visible waveband region is in line with Bajwa et al. (2017) which 

also showed that reflectance in the visible region increased with SDS disease pressure. 

Reflectance in the NIR region was shown to decrease with an increase in disease pressures 

(Bajwa et al., 2017; Fletch et al.; 2014). 675nm tended to be the most correlated, this is like 

Vigier et al. (2014) where reflectance between 675-695nm was used to estimate sclerotia stem 

rot in soybeans. As previously shifts in the red edge were observes in reflectance of the NAM 

population towards lower wavelengths due to increased disease pressure.  

 SVPT Season Average 

SVPT season average waveband reflectance and Dx correlations for Manhattan 2016 

were the only measurements that followed the general trends observed in the NAM population, 

with positive correlation in the visible wavelengths (400-700nm) and then becoming negatively 

correlated in the NIR region (>700nm) (Fig.2.6abc). In 2015 at Manhattan, no significant 

correlations between Dx and waveband reflectance were observed for the season average 

measurements (Fig 2.6a). At Rossville 2016 negative correlations between Dx and waveband 

reflectance in the blue (400-500 nm) and green (500-600 nm) regions as well as the 

NIR(>700nm) (Fig. 2.6c).  

 Reflectance Curve Change Due to Disease 

 Spectral reflectance tended to differ between genotypes that were highly resistant and 

susceptible to SDS.  Resistant genotypes tended to have lower reflectance values in the visible 
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spectrum as compared to highly susceptible lines. SDS resistant checks (LD06-7862, Ripley, and 

LS09-1920)  and susceptible checks (Morgan, Spencer) were averaged to create spectral 

reflectance measurements to observe differences among resistant and susceptible genotypes due 

disease symptoms (Fig. 2.7abc).  In the NIR, resistant genotypes had greater reflectance 

compared with susceptible genotypes. Genotypes responded similarly across environments in 

their reflectance patterns. Higher reflectance in the visible spectrum suggests that the plant 

pigments were damaged in the leaves because of foliar disease symptoms. These results are 

consistent other findings on light absorption in relation to plant heath and productivity, such as 

the study reported by Penuelas et al. (1993) where damage from salinity and ozone increased 

reflectance in the visible spectrum and decreased reflectance in the infrared. 

 Reflectance and Yield Correlations 

 NAM Season Average 

Correlations between yield and season average reflectance readings for each waveband 

were used to characterize which wavebands were related to yield. Correlations between 

reflectance and yield ranged from -.40 to .32 at Manhattan 2015, from -.64 to .48 at Manhattan 

2016, and from -.46 and .67 at Rossville 2016 (Fig. 2.8abc). Reflectance in the visible range 

(400-695nm) tended to be negatively correlated to yield, whereas reflectance in the NIR (705-

1023nm) tended to be positively correlated with yield. As with correlations with Dx, reflectance 

at the 675nm waveband was the most correlated with yield at Manhattan and Rossville in 2016, 

and was significant at Manhattan 2015. Reflectance at the 675nm waveband has been used to 

estimate yield (Chappell et al., 1992). Yield was negatively correlated to Dx at all environments 

(Table 2.6). The change in correlations from negative to positive between yield and reflectance 

occurs at longer wavelengths (725nm and 715nm for yield, as compared to 715nm and 705nm 
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for Dx in both years in Manhattan and Rossville, respectively). Yield is positively associated 

with shifts in red edge absorption of longer wavelength light. (Fillea and Penuelas, 1994; 

Penuelas et al., 1997). 

 NAM Individual Days 

 Correlations between seed yield and reflectance tended to follow the trends that were 

seen in the season average correlations, except for the August 8 reading at Rossville (Fig. 2.9). 

On this date only, readings in the visible region were significantly correlated to disease. This 

may be due to the scan being taken early in the season before the onset of severe disease 

symptoms and at the height of active growth. 

 SVPT Season Average 

The SVPT correlations between yield and reflectance wavebands only appeared to 

resemble that of the NAM population at Manhattan in 2016 (Fig. 2.10b). At both Manhattan 

2015 and Rossville 2016 reflectance in some portions of the visible spectrum were positively 

correlated with yield (Fig.2.10ac). All environments were positively correlated to increased 

reflectance and increased yield in the NIR (>700 nm). Christenson et al. (2014) reported negative 

correlations between yield and reflectance in the visible spectrum, as well as increased 

reflectance in the NIR leading to higher yield. Individual dates had similar correlations to yield 

as season average.  

 Correlations with Maturity, Dx and Yield  

Entry means for disease index and maturity were significant correlated at 

Manhattan2015(r =.36, p<.0001), but were not correlated in either other environment in 2016 

(Table 2.6). Yields were significantly correlated to maturity at all three environments for the 

NAM population, but only at Rossville for the SVPT population. This is confirmed in 



 

48 

 

Christenson et al. (2014 and 2015) where yield was significantly correlated to yield. SVPT yields 

for Rossville were significantly correlated to maturity (Table 2.6). Yield was negatively 

correlates at all environments with disease index in both the NAM and SVPT populations (Table 

2.5) For the NAM population maturity was significantly correlated to individual waveband 

reflectance at all environments (Fig. 2.11abc). Reflectance in the visible wavebands were 

negatively correlated to maturity in Manhattan in Rossville in 2016 for the NAM population 

(Fig. 2.11bc). Manhattan in 2015 had no correlation between maturity and reflectance in the blue 

(400- 500 nm) or green (500-600 nm) regions, but portions were significant in the red (600-

700nm) region (Fig. 2.11a) for the NAM population. At all environments, the NAM population 

had significant positive correlations between maturity and reflectance in the NIR (>700nm) 

region (Fig. 2.11abc). Maturity trends for NAM individual day measurements were like that of 

the NAM season average, except for the August 8 were only readings from 405-435nm were 

correlated to maturity (Fig. 2.12). SVPT had similar significant correlations between maturity 

and waveband reflectance as the NAM population season average and NAM significant days 

(Fig. 2.13abc). 

 Regression Equations for Dx Prediction 

 NAM Season Average  

 Season average reflectance was used to create regression equations that best explained 

the phenotypic variation in Dx among the entire NAM population. Stepwise selection allowed 

variable to enter the equation at significance of p<.1 and variables allowed to stay in the equation 

at significance level of p<.05. Manhattan 2015 produced an equation using two wavebands 

(535nm and 585nm) which explained 52% of the variation in Dx (Tables 2.6 and 2.7) (Fig. 2.14). 

In 2016 at Manhattan, three reflectance variables (505nm, 675nm, and 755nm) were used to 
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create the regression equation which explained only 16% of the phenotypic variance in Dx 

(Tables 2.7 and 2.8). Rossville in 2016 produced a regression equation with four wavebands 

which explained 28% of the Dx phenotypic variation (Tabled 2.6 and 2.8).  

 A single predictive grand means model was created from the average of the three season 

averages to predict disease index (Table 2.6 and 2.11). This model 28% of the phenotypic 

variation in the grand means variation in Dx. When used to predict the performance of entries at 

all three environments using season averaged data 20% of the phenotypic variation in Dx was 

explained at Manhattan 2015 and Rossville (Figure 2.22), and in Manhattan 2016 the grand 

means model only explained 6% of the variation in Dx of the NAM population. 

 NAM Individual Days 

To determine if season averages or individual day measurements were more informative 

at predicting SDS, individual day spectral measurements taken closest to R6 were evaluated in a 

similar manner as season averages to produce Dx estimations. Individual day regression 

equations from Aug 31, 2015 and Sept. 1, 2016 at Manhattan, and September 2, 2016 at 

Rossville, explained 55%, 11% and 24% of the phenotypic variation of Dx respectively (Tables 

2.6, 2.7, 2.8). While the models based on the individual days were not identical to the season 

average models, they were similar and explained about the same amount of the phenotypic 

variation in Dx. These findings suggest that scans taken at the height of disease pressure might 

be sufficient for disease prediction, but might pose a challenge due to the potential maturity 

effects, and weather conditions.  

 SVPT Season Average 

Season averaged data from Manhattan in 2015 was not able to explain any of the 

phenotypic variation in Dx (Table 2.6). SVPT scans for Manhattan 2015 were typically collected 
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later in the day which may lead environment factors affecting their predictive ability. Season 

averaged reflectance from Manhattan and Rossville in 2016 explained 42% and 31% of the 

phenotypic variation in Dx, respectively, using five wavebands at Manhattan and three 

wavebands at Rossville (Tables 2.6 and 2.10).  

 Disease index estimation was possible using spectral reflectance, but Dx models tended 

to underestimate disease index across all environments for season averages and individual days 

(Fig. 2.14, 2.15, 2.16, 2.19). The prediction models tended to estimate less of the phenotypic 

variation in disease compared to studies such as Bajwa et al. (2017). This may be due to the 

increased number of lines in each of the population as compared to the limited number used in 

that study.  

 Regression Equations for Yield Prediction 

 NAM Season Average 

Regression equations created using NAM season reflectance averages using stepwise 

selection, estimated 41% and 66% of the yield variation among entries in Manhattan in 2015 and 

2016 respectively. Six waveband regions were used for Manhattan 2015 and five wavebands for 

Manhattan in 2016 (Tables 2.6 and 2.7).  The equation for Rossville in 2016 accounted for 78% 

of the yield variation, using six waveband regions (Tables 2.6 and 2.8) (Fig. 2.17). While 

maturity was significantly correlated to yield when added as a covariate it did not increase the 

model’s predictive accuracy when estimating yield.  

The grand means NAM model for yield explained 71% of the phenotypic variation in the 

grands means yield (Table 2.6).  When applied to individual environment season average 

reflectance values, 25%, 60% and 62% of the phenotypic variation in yield was explained at 

Manhattan 2015, Manhattan 2016 and Rossville 2016 (Fig. 2.23), respectively. 
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 NAM Individual Days 

 Individual day readings for the NAM population were used to create yield estimation 

models. August 31, 2015 and September 2, 2016 readings at Manhattan, predicted 40% and 54% 

of the phenotypic variation in yield between entries, using 5 and 3 wavebands respectively 

(Tables 2.7 and 2.8). The September 2 readings at Rossville created models that accounted 77% 

of phenotypic yield variation using 6 wavebands (Tables 2.6 and 2.8). 

 SVPT Season Average 

 Spectral reflectance models using four to eight wavebands in the SVPT population 

explained 79% and 43% of the phenotypic variation in yield at Manhattan and Rossville, 

respectively (Tables 2.6 and 2.10). Season averaged reflectance data from Manhattan in 2015 

was not able to explain any of the phenotypic variation in Dx and less than 5% of yield 

phenotypic variation (Tables 2.6 and 2.10). 

 Yield models tended to slightly overestimate yield but predictions explained more of the 

phenotypic variation in yield than for disease index (Fig. 2.17 and 2.18). These models tended to 

explain similar amounts of phenotypic variation in yield as waveband estimates in studies such 

as Christenson et al. (2016) and Ma et al. (2002).  Ma et al. (2002) stated that yield estimation by 

spectral reflectance was best suited for use early in the breeding cycle due to not explaining 

enough phenotypic variation in yield. The variation in estimates seen here would support the 

recommendation that these estimations should be used as an early selection tool, to evaluate 

large, segregating populations. Individual days tended to estimate yield similarly to season 

averages. These results are similar to Ma et al., (2002) and Christenson et al. (2016), which 

indicates that measurements could be taken during R5 to R6 to predicted yield, thus limiting the 

number of scans needed to be taken per year. 
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 Maturity Estimation Models 

 The sometimes-strong correlations of maturity with seed yield and Dx makes it necessary 

to examine the impact of these relationships on the effectiveness of reflectance data to predict Dx 

and yield. To initiate this evaluation, season averaged reflectance was used to develop models to 

predict maturity. The NAM population models accounted for 46%, 56%, and 64% of the 

phenotypic variation in maturity at Manhattan in 2015 and 2016, as well as Rossville, 

respectively (Tables 2.6, 2.7, 2.8). Individual day models accounted for 46% on August 31, 2015 

and 57% on September 1, 2016 at Manhattan of the phenotypic differences in maturity (Tables 

2.6 and 2.7). September 2, 2016 at Rossville accounted for 62% of the phenotypic difference in 

maturity (Tables 2.6 and 2.8). SVPT reflectance data from Manhattan in 2015 failed to create a 

predictive model (Table 2.6). Season reflectance averages at Manhattan and Rossville in 2016 

accounted for 78% and 74% of the phenotypic variation in maturity, respectively (Tables 2.6 and 

2.10). When maturity was added as an additional covariate to wavebands, it increased the 

predictive accuracy of the model for Rossville in 2016, increasing the explained variation in 

phenotypic Dx from 28% to 42% (Fig. 2.15) (Tables 2.6 and 2.8). Maturity maybe affecting the 

accuracy of the season average model in Rossville when predicting Dx. 

 DX and Yield Estimation based on Maturity Groups 

 To examine the influence of maturity on the DX and yield models, the NAM population 

at each environment was divided into early, middle and late maturity groups. Each of these 

maturity groups were then used to create new stepwise predictive models for Dx and yield. Early 

maturity group estimation models for Dx explained 37%, 8% and 44% of the phenotypic 

variation at Manhattan 2015 and 2016, as well as Rossville, respectively (Table 2.7 and 2.10). 

These same models explained 31%, 39% and 72% of phenotypic variance in yield at respective 



 

53 

 

environments (Tables 2.6 and 2.9). Early models explained 16% and 24% of the phenotypic 

variation in maturity at Manhattan in 2015 and 2016 respectively (Tables 2.6 and 2.9). Model for 

the middle maturity group explained 55%, 35%, 42% of Dx variation for 2015 and 2016 

Manhattan and Rossville in 2016 (Tables 2.6 and 2.9). These models accounted for 41%, 60%, 

and 75% of the yield phenotypic differences between both environments at Manhattan and 

Rossville (Tables 2.6 and 2.9). 25% and 24% of the variation in maturity was explained at 

Manhattan and Rossville in 2016 by the middle maturity group (Tables 2.6 and 2.9). Late 

maturity group predicted 54% and 77% of the phenotypic variation in Dx at 2015 Manhattan and 

2016 Rossville (Tables 2.6 and 2.9). These same models predicted 49% and 92% of the yield 

phenotypic variation respectively (Tables 2.6 and 2.9). No late maturity group models could 

predict the maturity (Tables 2.6 and 2.9).  

 Models did not have the same number of entries between environments due to each 

environment being treated separately. The small number of entries in the 2016 Manhattan late 

maturity group could account for the low predictive quality. The same low number of entries in 

Rossville in the late maturity group may have led to over estimation of Dx and yield due to the 

late maturity group containing a majority of the check lines as compared to the early and middle 

groups. Due to maturity group models estimating similar amounts of phenotypic variance of Dx 

and yield as compared to season average models, these models support the conclusion that while 

reflectance is related to maturity, season average models are estimating Dx and yield without 

major influence of maturity in the prediction. Christenson et al. (2016) showed a greater increase 

in predictive ability between models separated by maturity than was seen here.  
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 Check Models 

 For use as a breeding tool, model prediction must be streamlined to predict phenotypic 

response.  For this reason, a simplified model building process was chosen in which the parents, 

yield checks, and SDS checks were used to create stepwise predictive models to aid in selection 

of resistance to SDS and yield. The model created by using the reflectance reading from the 

parents and checks was then used to predict Dx and yield for the RILs in the NAM population.   

 Manhattan 2015 check reflectance data created a model with two variables 795nm and 

875nm wavebands which explained 68% of the variation in Dx (Tables 2.6 and 2.7) The same 

data created a yield model using 535nm and 585nm wavebands to predict 56% of the yield 

variation (Tables 2.6 and 2.7).  2016 Manhattan data predicted 54% of the phenotypic variation 

in Dx using the 475nm waveband, and 80% of the yield variation with three wavebands (Tables 

2.6 and 2.7) Rossville 2016 accounted for 73% of the Dx phenotypic variation using 735nm 

wavebands, and 93% of the phenotypic variation in yield using 775nm and 875nm (Tables 2.6 

and 2.8) (Fig. 2.18 and 2.19). The models respectively identified 46%, 58% and 72% of the 

phenotypic variation in maturity (Tables 2.6, 2.7, 2.8). 

 The simplified check regression equations were then used to identify SDS resistance and 

yield in the NAM RILs from each environment. The check model identified 16 to 61% of the 

phenotypic variation in yield of the NAM RILs. The check models for Dx only accounted for 5% 

10% of the phenotypic variation seen in NAM RILs. In Manhattan in 2015 19 of the 28 of the 

top preforming NAM RILs for yield (20%) were identified when the top 50% of NAM RILs with 

the highest predicted yields were selected, 17 of the top 28 SDS resistant NAM RILs were 

identified when selecting the top 50% of predicted NAM RILS of SDS resistance. Nineteen of 

the top 28 NAM RILs for yield and 20 of the 28 most resistant SDS NAM RILs were selected 
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for with the top 50% of best predicted NAM RILs for yield and disease resistance in Manhattan 

2016.  2016 in Rossville the 25 of the top 28 NAM RILS for yield and 21 of the 28 most SDS 

resistant NAM RILS were selected when the top 50% of predicted values for yield and Dx 

selected. For yield all the 20% of entries were always identified if the selection criteria were 

increased to the 75% best predicted yielding of NAM RILs. 

 Individual environment check equations were used to predict dx and yield at two other 

environments. The Manhattan 2015 check equation accounted for 61% and 5% of the phenotypic 

variation in yield and Disease index when applied to the Manhattan 2016 reflectance data. 

Manhattan 2015 predicted 56% and 3% of the variation in yield and Dx at Rossville 2016.  The 

Manhattan 2016 data explained 22% and 53% of the variation in yield at Manhattan 2015 and 

Rossville in 2016.  This model explained less than 5% of the phenotypic variation of Dx at both 

Manhattan 2015 and Rossville 2016.  Check models created from Rossville 2016 accounted for 

38% and 20% of the phenotypic variation in yield at Manhattan in 2015 and 2016 respectively. 

10 % of the phenotypic variation in Dx was explained at Manhattan 2015 and 1% at Manhattan 

2016 when predicted using the Roseville 2016 check model.  

 A single universal check model was created from the season average checks from all 

three environments (Table 2.6 and 2.11). This model was created by stepwise selection to make a 

universal selection models. 16%, 64% and 54% of the phenotypic variation in yield of the NAM 

RILs at Manhattan 2015 and 2016 and Rossville when predicted from the grand means check 

model (Figure 2.24). The universal check model predicted 25%, 8%, 9% of the phenotypic 

variation in disease index in NAM reals at Manhattan 2015, Manhattan 2016, and Rossville 

respectively (Figure 2.25).  
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 Yield models tended to account for greater portions of the phenotypic variation in yield 

across all environments when compared with Disease index prediction models. Disease index 

models should only be used at the environment were data was collected due to low prediction 

accuracy at multiple environments. NAM Check models predicted similar to the models in 

Christenson et al. (2016) where selection of the top 50% of predicted entries identified a majority 

of actual top yielding entries. Christenson et al. (2016) also found that increasing the model to 

select the top 75% of predicated yield selected all the top preforming lines. This would indicate 

that spectral reflectance maybe useful as an early selection tool for breeders to evaluate large 

population, similar to what Ma et al. (2003) suggested.  
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 Conclusions 

 Large genetic differences occurred in the populations used in this study; these two 

populations are representative of the genetic diversity that would be found in a breeding 

program. The NAM population was similar to early testing of segregating populations, whereas 

the SVPT would be similar to final yield testing of new lines. At all three environments, disease 

pressure was significant and useful in evaluating resistance to SDS in these populations. 

 Spectral reflectance measurement changed with the increases of diseases pressure. These 

changes were similar to those reported in the previous literature that showed the increased 

disease pressure decreases plant photosynthesis.  Disease increased reflectance in the visible 

region of the spectrum while decreasing reflectance the NIR. A shift in the red edge was 

observed between Rossville and Manhattan which corresponds with an increase in disease 

pressure at Rossville. Yield reflectance trends were also observed that were similar to reported 

literature. 

 Spectral reflectance was able to characterize up to 73%, 78%, and 64% of phenotypic 

variation in disease index, yield and maturity.  These estimations could be used by breeders to 

increase the efficiency of breeding cycle. Interactions between maturity and disease index and 

yield, affected the predictive ability of the models. Separating entries into maturity groups 

reduced the effect of maturity while still predicting disease index and yield phenotypic variation. 

Individual day measurements taken near SDS evaluation were shown to have similar predictive 

abilities as season average models.  This would potentially allow breeders to take reflectance 

measurements at the height of disease pressure to then predict disease performance.  

 To further simplify the predictive ability of the models, the reflectance of the checks and 

grand means can be used to create predictive models of disease index and yield.  When the 
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models were applied to the individual environment’s NAM RILs, the predictive ability of disease 

index models was less informative than that of yield models for both grand means and check 

models. The variability in of the models would limit the model’s usefulness too early in the 

breeding process for initial evaluation of yield and SDS resistance. For reliable estimation of 

disease resistance to SDS, models should be created from data from a single environment. This 

variability and need to work with in a single environment limits the ability to of the model for 

use in large-scale disease resistance breeding. Current methods of evaluations will still need to 

be performed as a final step in developing new lines.  

 Further research will need to be done to increase the predictive ability and decrease the 

variability of individual scans, which is a major limiting factor. Another major limitation to 

predictive measurements by spectral reflectance is the ability to take measurements on large 

scale breeding populations, new technologies and automation may elevate these limitations. With 

optimization of methods spectral reflectance measurement may be a new tool for soybean 

breeders for SDS resistance. 
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 Tables and Figures 

  

Table 2.1. Analysis of variance F-values for disease index, disease incidence, disease severity, yield, and maturity for a nested 

association mapping population. 

Source df   Disease Index Disease Incidence Disease Severity Yield Maturity 

Entry 159  83.9***‡ 51.24*** 49.19*** 123.07** 111.1*** 

Environment 2  9.7**† 9.02** 21.17** 12.64** 18.55** 

Entry x Environment 318   8.31*** 10.16*** 6.08*** 14.57*** 58.09*** 

†*** indicates significance at <.001 

 

 

Table 2.2. Least square means and ranges for disease index, disease incidence, disease severity, yield and maturity for a nested 

association mapping population. 

Environment  Disease Index Disease Incidence Disease Severity Yield Maturity 

  (Score) (%) (Score) (t/ha-1) (Days after Aug. 31) 

2015 Manhattan Mean 8.5a† 24.3a 1.9a 3.03a 23a 

 Range 0 - 57 0-90 0-6 1.65 - 4.4 14-33 
       

2016 Manhattan Mean 12.1b 32.6b 2.8b 2.8a 20b 

 Range 0-67 2-80 1-8 1.0-3.7 14-36 
       

2016 Rossville Mean 15.4b 37.4b 3.4c 2.5b 20b 

 Range 1-69 2-85 0-7 3.0-2.8 15-25 

†Number followed by different by the same letter were significantly different at P< .05. 
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Table 2.3. Soybean variety performance test entries analysis of variance F-values for disease index, disease incidence, disease 

severity, yield and maturity in three environments. 

Source df Disease Index Disease Incidence Disease Severity Yield Maturity 

Entry 215 16.5***† 10.7*** 7.3*** 11.1*** 32.4*** 
Environment 2 47.1*** 6.8*** 95.1*** 46.3*** 103.9*** 

Entry by Environment 199 3.0*** 2.0*** 1.9*** 3.3*** 16.9*** 

†*** indicates significance at <.001 

 

 

 

 

Table 2.4. Soybean Variety Performance Test Entry leat square means and ranges for disease index, disease incidence, disease 

severity, yield and maturity. 

Environment   Disease Index Disease Incidence Disease Severity Yield Maturity 

  (Score) (%) (Score) (t/ha-1) (Days after Aug. 31) 
2015 Manhattan Mean 9.2a† 29.5a 2.1a 3.5a 30a 

 Range 0-76 2-85 1-8 .79-4.8 19-46 

 
      

2016 Manhattan Mean  14.4b 32.0b 2.9b 3.4a 34b 

 Range 0-92 0-100 0-8 .33-4.6 18-56 

 
      

2016 Rossville Mean  16.5c 33.9b 3.4c 3.1b 33c 

  Range 0-83 0-100 0-8 1.2-5.5 17-53 
†Number followed by different by the same letter were significantly different at P< .0 
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Table 2.5. Pearson’s correlations (r) between entry means for disease index, yield and 

maturity at all three environments for both the nested association mapping population and 

soybean variety performance test population. 

Environment  n   Yield Maturity 

2015 NAM† Manhattan  159 Maturity .26***  
   Disease Index -.65*** -.36*** 

2016 NAM Manhattan  160 Maturity .57***  
   Disease Index -.61*** -.10 

2016 NAM Rossville  160 Maturity .40***  
   Disease Index -.62*** 0.06 

2015 SVPT‡ Manhattan  145 Maturity 0.05  

   Disease Index -.72*** 0.11 

2016 SVPT Manhattan  140 Maturity 0.01  
   Disease Index -0.80*** 0.01 

2016 SVPT Rossville 140 Maturity .32***  
   Disease Index -.63*** 0.01 

† Nested association mapping population (NAM) 

‡ Soybean variety performance test (SVPT) 

*** indicates significance at p < .0001 
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Table 2.6. Coefficient of determination (R2) values for stepwise regression models for 

disease index, yield and maturity based on season averages in the total population, early 

maturity group, middle maturity group, and late maturity group, checks, and season 

average model including maturity for the nested association mapping population. 

Coefficient of determination (R2) values for stepwise regression models for the disease 

index, yield and maturity based on season averages and common entry models for soybean 

variety performance test population. 

        Model   
Environment  Waveband Models   Disease Index  Yield Maturity 

    n   R²   

2015 NAM‡ Manhattan  Season Average (SA) 160 .52*** .41*** .46*** 
 Early 43 .37*** .31** .16** 
 Middle  64 .55*** .41*** NS 
 Late  52 .54*** .49*** NS 
 August 31st 160 .55*** .40*** .46*** 
 Check  19 .68** .56** .22* 

  SA with Maturity  160 .52*** .41***   

2016 NAM Manhattan  Season Average (SA) 160 .16*** .66*** .56*** 
 Early 62 .08* .39*** .24** 
 Middle  78 .35*** .60** .25*** 
 Late  20 NS NS NS 
 September 1st 160 .11*** .54** .57*** 
 Check  20 .55*** .80*** .58** 
  SA with Maturity  160 .18*** .58***   

2016 NAM Rossville Season Average (SA) 160 .28*** .78*** .64*** 
 Early 54 .44*** .72*** NS 
 Middle  87 .42** .75*** .24*** 
 Late  19 .77*** .92*** NS 
 September 2nd 160 .24*** .77*** .62*** 
 Check  19 .73*** .93*** .72*** 
  SA with Maturity  160 .42*** .81***   

NAM Grand Means  All Lines 160 .29*** .71*** .63*** 
 Checks 20 .69*** .83** .72*** 

2015 SVPT⁺ Manhattan  Season Average  145 NS .05** .03* 

2016 SVPT Manhattan  Season Average  145 .42** .79*** .78*** 

2016 SVPT Rossville  Season Average  145 .31*** .43*** .74*** 

* indicates significant at the .05 probability level 

** indicates significant at the .001 probability level 

*** indicates significant at the .0001 probability level 

 † NS indicates not significant at the .05 probability level 

‡ NAM nested association mapping populations 

⁺ SVPT indicates soybean variety performance test 
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Table 2.7. Wavebands selected by stepwise regression models to predict disease index, yield, and maturity based on reflectance 

values using season averages, individual days, and checks entries only for both 2015 and 2016 in Manhattan. 

† NAM indicates nested association mapping population 

 

 

 

2015 NAM† 
Manhattan 

Season Average (SA) 31-Aug Check SA with Maturity 
 

Disease Index 
Model Wavebands 

535nm, 585nm 415nm, 535nm, 595nm 
795nm, 
875nm 

545nm, 565nm 
 

Yield 
Model Waveband 

405nm, 455nm, 525nm, 
585nm 

405nm, 495nm, 525nm, 585nm, 
595 nm 

505nm, 
745nm 

405nm, 45nm, 525nm, 
585 nm 

 

Maturity 
Model Waveband 

645nm, 675nm, 685nm, 695 
nm, 785nm, 805nm 

415nm, 445nm, 565nm, 605nm 805nm  
 

2016 NAM 
Manhattan 

Season Average (SA) 1-Sep Check SA with Maturity 
 

Disease Index 
Model Waveband 

505nm, 675nm, 755nm 675nm,685nm 475nm 
mat, 505nm, 675nm, 

755nm 

 

Yield Model 
Waveband 

505nm, 685nm, 755nm, 775 
nm, 805nm 

665nm, 735nm, 755nm 
505nm, 
765nm 

505nm, 685nm, 755nm, 
775nm, 805nm 

 

Maturity Model 
Waveband 

635nm, 675nm, 695 nm, 
765nm 

495nm, 555nm, 595nm, 635nm, 
645nm, 805 nm, 875 nm 

505nm, 
625nm 
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Table 2.8. Wavebands selected by stepwise regression models to predict disease index, yield, and maturity using season 

average, individual days, and checks for 2016 in Rossville. 

2016 NAM† 
Rossville 

Season Average (SA) 2-Sep Check SA with Maturity 

Disease Index 
Model Wavebands 

765nm, 805nm, 865nm, 
885nm 

755nm, 895nm 735nm mat, 715nm, 765nm, 865nm 

Yield Model 
Wavebands 

575nm, 675nm, 685nm, 
705nm, 745nm, 755nm 

585nm, 675nm, 685nm, 
705nm, 815nm, 845nm 

775nm, 
875nm 

mat,525nm, 575nm, 675nm, 
685nm, 715nm, 825nm, 885nm 

Maturity Model 
Wavebands 

655nm, 665nm, 675nm, 
705nm, 805nm 

615nm, 645nm, 
 835nm 

515nm, 
585nm 

 

† NAM indicates nested association mapping population 
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Table 2.9. Wavebands selected by stepwise regression models to predict disease index, yield, and maturity using nested 

association mapping population divided into early, middle, and late maturity groups for 3 environments. 

2015 NAM† Manhattan  Early Middle  Late  

Disease Index Model Wavebands 605nm, 745nm 405nm, 485nm, 525nm, 595 nm, 695nm 535nm, 595nm 

Yield Model Wavebands 605nm, 745nm 405nm, 605nm, 765nm, 795nm 545nm, 585nm 

Maturity Model Wavebands 665nm NS‡ NS 

2016 NAM Manhattan  Early Middle  Late  

Disease Index Model Wavebands 675nm, 685nm 485nm, 745nm NS 

Yield Model Wavebands 745nm 495nm, 885nm NS 

Maturity Model Wavebands 665nm, 675m 505nm, 695nm NS 

2016 NAM Rossville Early Middle  Late  

Disease Index Model Wavebands  485nm,565nm 675nm, 805nm, 875nm 805m, 885nm 

Yield Model Wavebands 605nm,675nm, 685nm, 695nm 735nm, 775nm, 805nm, 895nm 675nm, 755nm 

Maturity Model Wavebands NS 665nm, 695nm, 805nm  NS 
† NAM indicates nested association mapping population 

‡ NS indicates that no significant wavebands entered the model at p<.05 
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Table 2.10. Wavebands selected by stepwise regression models to predict disease index, yield, and maturity soybean variety 

performance test population season average at 3 environments. 

2015 SVPT† Manhattan Season Average (SA) 

Disease Index Model Wavebands NS‡ 
Yield Model Wavebands 785nm 

Maturity Model Wavebands 675nm 

2016 SVPT Manhattan Season Average (SA) 

Disease Index Model Wavebands 765nm, 795nm, 825nm, 855nm, 895nm 

Yield Model Wavebands 595nm, 625nm, 665nm, 675nm, 685nm, 705nm, 825nm, 845nm 
Maturity Model Wavebands 485nm, 495nm, 525nm, 595nm, 635nm, 695nm, 705nm, 825nm 

2016 SVPT Rossville Season Average (SA) 

Disease Index Model Wavebands 405nm, 765nm, 805nm 
Yield Model Wavebands 555nm, 745nm, 755nm, 895nm 

Maturity Model Wavebands 555nm, 805nm, 815nm, 835nm, 855nm 
† SVPT indicates soybean variety performance test population 

‡ NS indicates that no significant wavebands entered the model at p<.05 

 

 

Table 2.11. Wavebands selected by stepwise regression models to predict disease index, yield, and maturity using nested 

association mapping population grand means. 

 NAM† Grand Means Disease Index Yield  Maturity 

All Entries Model Waveband  775nm, 885nm 505nm, 775nm, 795nm, 895nm 625nm, 675nm, 695nm, 825nm 

Check Model Waveband 675nm, 685nm 505nm, 665nm, 805nm 445nm, 715nm, 895nm 
† NAM indicates nested association mapping population 

‡ NS indicates that no significant wavebands entered the model at p<.05 
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Figure 2.1 a. Distribution of season average disease index scores for recombinant inbred 

lines in a nested association mapping population grown in Manhattan in 2015. 

 

 

 

 

 

Figure 2.1 b. Distribution of season average disease index scores for recombinant inbred 

lines in a nested association mapping population grown in Manhattan in 2016. 
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Figure 2.1 c. Distribution of season average disease index scores for recombinant inbred 

lines in a nested association mapping population grown in Rossville in 2016. 

 

 

 

Figure 2.2 a. P-values for entry main effect for individual waveband reflectance 

measurements of individual day readings for a nested association mapping population 

grown at Manhattan in 2015. 
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Figure 2.2 b. P-values for entry main effect for individual waveband reflectance 

measurements of individual day readings for a nested association mapping population 

grown at Manhattan in 2016. 

 

 

 

 

 

Figure 2.2 c. P-values for entry main effect for individual waveband reflectance 

measurements of individual day readings for a nested association mapping population 

grown at Rossville in 2016. 
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Figure 2.3 a. P-values for entry main effect for individual waveband reflectance 

measurements of individual day readings for the Soybean Variety Performance Test 

Population grown at Manhattan in 2015. 

 

 

 

 

 

Figure 2.3 b. P-values for entry main effect for individual waveband reflectance 

measurements of individual day readings for the Soybean Variety Performance Test 

Population grown at Manhattan in 2016. 
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Figure 2.3 c. P-values for entry main effect for individual waveband reflectance 

measurements of individual day readings for the Soybean Variety Performance Test 

Population grown at Rossville in 2016. 

 

 

 

 

Figure 2.4 a. Pearson’s correlation ( r) between disease index and season average waveband 

refelctance for a nested association mapping population grown at Manhattan in 2015. 

Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation at α= 

.01 is equal to r ≤ -.20 and r ≥.20. 
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Figure 2.4 b. Pearson’s correlation ( r) between disease index and season average 

waveband refelctance for a nested association mapping population grown at Manhattan in 

2016. Significant correlation at α= .05 is equal  to r ≤ -.15 and r ≥.15. Significant correlation 

at α= .01 is equal to r ≤ -.20 and r ≥.20. 

 

 

 

 

Figure 2.4 c. Pearson’s correlation ( r) between disease index and season average waveband 

refelctance for a nested association mapping population grown at Rossiville in 2016. 

Significant correlation at α= .05 is equal  to r ≤ -.15 and r ≥.15. Significant correlation at α= 

.01 is equal to r ≤ -.20 and r ≥.20. 
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Figure 2.5 a. Pearson’s correlation ( r) between disease index and August 8 waveband 

refelctance for a nested association mapping population grown at Rossville in 2016. 

Significant correlation at α= .05 is equal  to r ≤ -.15 and r ≥.15. Significant correlation at α= 

.01 is equal to r ≤ -.20 and r ≥.20. 

 

 

 

 

Figure 2.5 b. Pearson’s correlation ( r) between disease index and September 2  wavband 

reflectance for a nested association mapping population grown at Rossville in 2016. 

Significant correlation at α= .05 is equal  to r ≤ -.15 and r ≥.15. Significant correlation at α= 

.01 is equal to r ≤ -.20 and r ≥.20 
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Figure 2.6 a. Pearson’s correlation ( r) between disease index and season average waveband 

refelctance of the soybean variety preformance test population grown at Manhattan in 

 

 

 

 

 

Figure 2.6 b. Pearson’s correlation ( r) between disease index and season average 

waveband refelctance of the soybean variety preformance test population grown at 

Manhattan in 2016. Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. 

Significant correlation at α= .01 is equal to r ≤ -.20 and r ≥.20 
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Figure 2.6 c Pearson’s correlation ( r) between disease index and September 9 waveband 

refelctance of the soybean variety preformance test population grown at Rossville in 2016. 

Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation at α= 

.01 is equal to r ≤ -.20 and r ≥.20. 

 

 

 

 

Figure 2.7 a. Average spectral reflectance curves of SDS susceptible lines and SDS resistant 

lines at Manhattan 2015. 
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Figure 2.7 b. Average spectral reflectance curves of SDS susceptible lines and SDS resistant 

line at Manhattan 2016. 

 

 

 

 

Figure 2.7 c. Average spectral reflectance curves of SDS susceptible lines and SDS resistant 

lines at Rossville in 2016. 
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Figure 2.8 a. Pearson’s correlation ( r) between yield and season average waveband 

refelctance for the nested association mapping population grown at Manhattan in 2015. 

Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation at α= 

.01 is equal to r ≤ -.20 and r ≥.20. 

 

 

 

 

Figure 2.8 b. Pearson’s correlation ( r) between yield and season average waveband 

refelctance for the nested association mapping population grown at Manhattan in 2016. 

Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation at α= 

.01 is equal to r ≤ -.20 and r ≥.20. 
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Figure 2.8 c. Pearson’s correlation ( r) between yield and season average waveband 

refelctance for the nested association mapping population grown at Rossville in 2016. 

Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation at α= 

.01 is equal to r ≤ -.20 and r ≥.20. 

 

 

 

 

Figure 2.9 a. Pearson’s correlation ( r) between yield and August 8 waveband refelctance 

for a nested association mapping population grown at Rossville in 2016. Significant 

correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation at α= .01 is equal 

to r ≤ -.20 and r ≥.20. 
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Figure 2.10 a. Pearson’s correlation ( r) between yield and season average waveband 

reflectance for the soybean variety preformance test population grown at Manhattan in 

2015. Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation 

at α= .01 is equal to r ≤ -.20 and r ≥.20. 

 

 

 

 

Figure 2.10 b. Pearson’s correlation ( r) between yield and season average waveband 

reflectance for the soybean variety preformance test population grown at Manhattan in 

2016. Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation 

at α= .01 is equal to r ≤ -.20 and r ≥.20. 
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Figure 2.10 c. Pearson’s correlation ( r) between disease index and September 9 waveband 

reflectance for the soybean variety preformance test population grown at Rossville in 2016. 

Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation at α= 

.01 is equal to r ≤ -.20 and r ≥.20. 

 

 

 

 

Figure 2.11 a. Pearson’s correlation ( r) between maturity and season average waveband 

reflectance for the nested association mapping population grown at Manhattan in 2015. 

Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation at α= 

.01 is equal to r ≤ -.20 and r ≥.20. 
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Figure 2.11 b. Pearson’s correlation ( r) between maturity and season average waveband 

reflectance of the Nested association mapping population grown at Manhattan in 2016. 

Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation at α= 

.01 is equal to r ≤ -.20 and r ≥.20. 

 

 

 

 

Figure 2.11 c. Pearson’s correlation ( r) between maturity and season average waveband 

reflectance for the nested association mapping population grown at Rossville in 2016. 

Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation at α= 

.01 is equal to r ≤ -.20 and r ≥.20. 
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Figure 2.12 a. Pearson’s correlation ( r) between maturity and August 8 waveband 

reflectance for the nested association mapping population grown at Rossville in 2016. 

Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation at α= 

.01 is equal to r ≤ -.20 and r ≥.20. 

 

 

 

 

Figure 2.13 a. Pearson’s correlation ( r) between yield and season average waveband 

reflectance for the soybean variety preformance test population grown at Manhattan in 

2015. Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation 

at α= .01 is equal to r ≤ -.20 and r ≥.20. 
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Figure 2.13 b. Pearson’s correlation ( r) between yield and season average waveband 

reflectance for the soybean variety preformance test population grown at Manhattan in 

2016. Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation 

at α= .01 is equal to r ≤ -.20 and r ≥.20. 

 

 

 

 

Figure 2.13 c. Pearson’s correlation ( r) between disease index and September 9 waveband 

refelctance for the soybean variety preformance test population grown at Rossville in 2016. 

Significant correlation at α= .05 is equal to r ≤ -.15 and r ≥.15. Significant correlation at α= 

.01 is equal to r ≤ -.20 and r ≥.20. 
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Figure 2.14 a. Relationship between observed disease index score and predicted disease 

index score based on stepwise regression model using season average reflectance values for 

the NAM population at Manhattan in 2015. 

 

 

  
Figure 2.15 a. Relationship between observed disease index score and predicted disease 

index score based on stepwise regression model using season average reflectance values and 

maturity as a covariate for the NAM population at Rossville in 2016. 
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Figure 2.16 a. Relationship between observed disease index score and predicted disease 

index score based on stepwise regression model for September 2 reflectance values for the 

NAM population at Rossville 2016. 

 

 
Figure 2.17 a. Relationship between observed yield and predicted yield based on a stepwise 

regression model using season average reflectance values for the NAM population at 

Rossville 2016. 
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Figure 2.18 a. Relationship between observed yield and predicted yield based on a stepwise 

regression model for the check reflectance value for the NAM population at Rossville 2016. 

 

 
Figure 2.19 a. Relationship between observed disease index score and predicted disease 

index score for the check reflectance model for the NAM population at Rossville 2016. 
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Figure 2.20 a. Relationship between observed disease index score and predicted disease 

index score for the NAM RILs based on the NAN Check model population at Manhattan 

2015. 

 

 
Figure 2.21 a. Relationship between observed yield and predicted yield for the NAM RILs 

based on the NAM Check model population at Rossville 2016. 
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Figure 2.22 a. Relationship between observed disease index and predicted disease index for 

the NAM population at Rossville in 2016 based on the NAM Grand means model.  

 

 

 

Figure 2.23 a. Relationship between observed yield and predicted yield for the NAM 

population at Rossville in 2016 based on the NAM Grand means model. 
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Figure 2.24 a. Relationship between observed yield and predicted yield for the NAM 

population at Manhattan in 2016 based on the NAM Grand means check model. 

 

 

 

 

Figure 2.25 a. Relationship between observed disease index and predicted disease index for 

the NAM population at Rossville in 2016 based on the NAM Grand Means check model.  
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