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INTRODUCTION 

Potential at a point P is defined as the work done in 

bringing a unit mass from infinity to the point p.* Con- 

sider a mass dm attracting a unit mass. By definition work 

is equal to the product of force and distance, and attrac- 

tion between masses is equal to the product of the masses 

divided by the distance squared. 

dm dx 

Fig. 1 

OD 

In Fig. 1 the work done in moving the unit mass a dis- 

tance dx is 

W = -dm(1) dx/x?. 

The negative sign is used because x decreases. Also the 

work done in moving the unit mass from infinity to P is 

W 1:7 d%2x [dm] dm 

x oo x 

Thus the potential V at a point P due to mass dm is 

dm is 

dm 
V = 

x 
(1) 

The potential at a point P due to a mass M surrounding 

V f dm (2) 

* Millikan and Miles, Electricity, Sound, and Light, p. 9. 
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integrated throughout the entire mass M. 

In order to find V a set of rectangular axes is chosen, 

and then the potential at any point is found by equation 

(2). The potential at any point in space must satisfy 

Laplace's equation.* In spherical coordinates the equation 

is 

rD r 
2 
(rV) + 1 De(sin9 DeV) + 

1 2 
v 

_ 
pos 0. (3) 

sing sin20 

It is seen that the potential at a point in space is inde- 

pendent of 0 for masses which are symmetrical about the x- 

axis. When this is true Laplace's equation reduces to 

rDr2 (rV) + 1 De(sinG DeV) = 0; (4) 
sin@ 

therefore, the potential at a point not on the x-axis must 

satisfy (4) with the boundary condition that 

V = I ..cir when @ = 0. 

To solve this equation assume V - rullo where P is a 

function of 9 alone and m is a positive integer. The val- 

ues for P are found to be Pm(cos9) which are the Legendre's 

Coefficients. Then 

V = 1mpm(cosQ) 

is a particular solution of (4), and 

* Byerly, Fourier's Series and Spherical Harmonics, p. 8. 
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V 

M=0 

imP 
m 
(cosG) 

is also a particular solution. It is also found that 

1 
V - 

im+1 
Pm(cosO) 

is a particular solution of (4), and 

co 
' 1 

V = 173,,,(cosA) 
xm+1 

111=0 

( 6) 

(6) 

is also a particular solution.* 

If the potential function at a point on the x-axis 

inside the mass M can be expressed in an infinite series 

of the form 

V = Aox° + Alx1 + A2x2 + (7) 

then the 

potential function for any point inside the mass M is found 

by replacing x by r, and multiplying each term by the cor- 

responding Legendre's Coefficient; therefore, 

V = A 
o 
r°P 

o (cosQ) + A 
1 
r1P 

1 
(cosg) + A 

2 
r2P 

2 (cosi?) + 

(8) 
This equation satisfies Laplace's equation and reduces to 

(7) when A = 0. 

Likewise, if the potential function at a point on the 

x-axis outside the mass M can be expressed in an infinite 

* Byerly, Fourierts Series and Spherical Harmonics, p. 17. 
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series of the form 

Ao A2 
A3 V = + Al - + + - + 

xo x1 x2 x3 (9) 

then by 

equation (6) the potential function for a point in space is 

V = Ao + Al Po(cose) + 
A2 A3 

P2(cosA) ---.(10) 

In Fourier's Series and Spherical Harmonics, Byerly 

finds the potential function at any point in space for 

rings, discs, spheres, and ellipsoids of revolution, but 

does not mention similar problems involving a parabola 

except in the historical summary.* 

The purpose of this investigation is: 

(1) To find the potential function for all points in space 

due to a solid generated by revolving the area bounded 

by the parabola y2 = 4a(a-x) and the y-axis about the 

x-axis; 

(2) To find the potential function for all points on the 

x-axis due to the surface generated by revolving the 

arc of the parabola, y2 = 4a(a-x) between x = 0 and 

x = a, about the x-axis; 

(3) To find the potential function on the x-axis due to the 

arc of the parabola, y2 = 4a(a-x), between x = 0 and 

x = a; 

* Byerly, Fourierfs Series and Spherical Harmonics, p. 272. 
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(4) To find the potential function on the z-axis due to the 

same arc; 

(5) To find the potential function at a point on the x-axis 

due to a thin sheet bounded by the parabola y2 = 4a(a-x) 

and the y-axis; 

(6) To find the solution of Laplace's equation in curvi- 

linear coordinates, using two orthogonal paraboloids of 

revolution, z2 72 , 4a(a-x) and z2 + y2 = 4b(b+x), 

and the plane y = cz. 

I. THE SOLID OF REVOLUTION 

The potential at a point on the x-axis due to a disc 

is found by (2). In Fig. 2, dm = K rd8dr. The potential 

Fig. 2 

at (d,0,0) due to the mass dm is 

V = 
K rdrdg 

Vr2+d2 

The potential at (d,0,0) due to the entire disc is 
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6'27 rr'a rdrci8 V= K 
J 

= 27K(Va2+d2 - d (11) 
s =o r=o Vr2+d2 

The constant K will be ommitted temporarily as it can be 

replaced whenever necessary. 

The potential at the point (d,0,0) due to the volume 

generated by revolving the area in the first quadrant under 

the parabola y2 = 4a(a-x) about the x-axis is by equation 

(11) and Fig. 3 

a , 

V = 2 TT 
Jo 

Py2+(d-x)2 - (d- )] dx. (12) 

Upon integration 

V =TT [28.2- 2a2-d2+(2a+d)V4a2+d2 +4ad log 
2a+d -.V4a2+d2 

2a 

Since d is any point on the x-axis, let d = x, and intro- 

duce a new constant c which is equal to 2a, then 

2 
V =IT 

[ 

2.- -cx-x4(c+x062+x? +2cx log c+x-/a24.2:2 
2 c 

. (14) 

This value of V must be expanded into an infinite 

series. By the binomial theorem 
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(c+x)1102+x2 = (c+x)x [1-(c/x)2 

02 1 03 1.1 c4 1.1.3 c5 
= x2+cx+ 

2 2 x 2.4 x? 2.4.6 - x3 

In order to expand log(c+x-Vc2+x2), we differentiated and 

wrote it in the form 

[ 

1 1 c c2 -i 1 c2 -i 
- -+ -(1- --) - - - --) 
2 x x2 x2 x x2 

After expansion and integration 

1.1 
2cx log ( 0-x-Vc2-x2) = -c2 - 

e3 
2.2 x * 2.3 

1.1 c4 
7 

1.1.3 c5 

2.4.4 37 

1.1.3 c6 1.1.3.5 e7 

2.4.5 x4 2.4.6.6 x5 
+ ----kcx, 

where k is the constant of integration. The sum of these 

series is 

1.1 03 1.1 c4 

[ 

1.1 c5 V =Tr kcx-2cx log c 4 
2.2 x 2.3.4 x2 24'4°4 x3 1(15) 

In order to evaluate the constant of integration k, we divi- 

ded both members of (15) by nx and found the following lim- 

its: 

limit V limit [ kc-20 log c + 
1!..1 c3 4 

1.1 c4 

x--. rrx X--- 2.2 x2 2.3.4 x3 

The potential is always finite and approaches zero as x-.40o; 

therefore, the limit of the left member is zero. The limit 

of the right member is easily seen to be kc - 2c log c; 

therefore, 

kc - 20 log c = 0, 



or k = 2 log c. 

After substituting this value of k in (15), the potential 

function for points on the x-axis became 

2 c 1.1 C2 1.1 c3 1.1.3 c4 
=1TKc- [1.1 V 

2.2 x 2.3.4 x2 2.4.4 x3 2.4.5.6.x4 

1163 05 1.1.3.5 c6 (16) 
2.4.6.6 x5 2.4.6.7.8 x6 

when 

V 

x >c or x >2a. And finally from (9) and 

1 c c 2 

(10) 

+ ---- (17) 

P,(cosA) 1T 
Ke2 

2 

[1 

2 r 

. c3 
- 

1 1 

+ 21 os j 

.. c4 1 1 3 p,(cosA) - 
2.4.4 r3 6' 

P (cosi?) 
2.4.5.6 r4 3 

when r >2a and Gi< T/2. 

Potential Inside the Solid. The potential on the x- 

axis due to a disc (11) was 

used in a similar manner as in 

the preceding section. In 

Fig. 4 the solid is divided 

into two parts by the plane 

x = d. The total potential is 

the sum of the potentials at 

the point due to each part sep- 

arately; therefore, 

V = 2TTK 

Y 

y2+(d-x)2 (d-x)] dx * 

Fig. 4 

X 

8 
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+ fda Py2+(x-d)2 - (x-d)1 dx 

where y2 = 4a(a-x). 

integration we have 

+ 
V =1TK 

Upton 

2ad-2a2- d2+(2a+d)V4a2+d2 -4ad log 2a+d2 V4a2+d2 

Using the same notation as in equation (14), we have 

(.2 
V =ITK [cx- = -x2+(c+x) lic2+xP -2cx log c+x+Vc2+m2 (18) 

2 

The operation of expanding this function into a series 

was exactly the same as in the preceding section, except 

the method of evaluating the constant of integration k. 

The potential function before k was evaluated was 

V =1TK [c2/2+2cx-2ckx+2cx log c - 3/2 x2 + 1 x3 
2.2 c 

1*1 x4 11 x5 1'1,3 x6 
+ ]. (19) 

2.3.4 c2 2.4.4 c3 ". 2.4.5.6 c4 

To evaluate k we found the following limits: 

limit [V/TrK - 02/2] limit [2c-2ck+2c log c - 3/2 x + --] . 
x-00 x-.0 

(20) 

From (19) it is easily seen that V =TiK c2/2 when x = 0. 

Therefore, the left member of (20) is in the form of 0/0 

when x--'O. This is indeterminate so we differentiated the 

numerator and denominator with respect to x. dV/dx was 

taken from (18) and the left member of (20) became 

x-. o 1/,ff+x? 

+ Vc2+x2 -2cx (1+X/Vc2+262 ) - 

c+x+1/02+m2 

limit [c-2x..(c+x) x 
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- 2c log c*x*Afe4x2] 

or 20-2elog 2, and the limit of the right member is easily 

seen to 2c -2ck - 2c log c, and k = log 2c. After substi- 

tuting this value of k in (19) the potential function for 

a point on the x-axis inside the solid became 

_75x2. 1 x3 1. x4 
V = Trice 42(1-log 2) - 

2 2 2.2 7 21 .3.4 -el 

1.1 r5 
- 2.4.4 c5 

when x< a. Finally from (7) and (8) 

V = ITKc2 [iPo(cosQ) 4 2(1-log 2) r/e Pi(cos(?) 
(22) 

3 r2 1.1 r5 1.1 r4 
- - P2("sQ) + 75' 

2 c 
P3(c0c8) + 

2-3.4 c't 
p4(c084?) - 

where 0 < r < a, and 9 < 17/2. 

The series given in (16) is convergent for x>2a and 

the series in (21) is convergent for x<a. This leaves a 

region a< x< 2a for which the potential is not given by 

(16) and (21). 

Potential in the Zone, a< r< 2a. The value of V as 

given in (14) is 

V =7K [02/2 -ex-x2+ (c4x) 1VC24x2 +2cx log c4x-A/c2+x2 

This may be expanded as follows: 

c4x-Nc2+x? 2x log 
1-og ;;;;77127 
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= log 2x-log (c+x+VC2+x2) 

2x log (1+11c2+x? = log- ). 
c+x c+x 

(23) 

Nor log (1+ V 
re2, 

x ) may be expanded by the well known ex- 

pression log (1+x) = x - + 

c+x 
x? 2c x4 - - - - -, when x 1, 

giving 

log (1+ 
Ve2..x2) 1.02,:;a (02+2)3/2 

c+x c-x 2(c+x)2 3(o+x)3 

This is convergent for all positive values of x since 

1ic2+x2<c+x. 

tV =71-K 02/2 

-2cx 

-cx-x2+(c+x).VC2+2.2 

Finally, 

+2cx log 2x/(c+x) 

il (24) 
1ic2 +x2 c2+x2 (c2+x2) 3/2 [ 

c+x 2(c+x)2 + 3(c+x)3 

when x >0. 

According to the limits of convergence (24) should 

give the potential at any point on the positive x -axis; 

however, because of the method of derivation of (16) it 

will only be expected to be true for x>a. For a further 

test let x = a in (24) and (14), and compare results. When 

x = a in (14) it becomes 

V =Tiaa2(1.858492). 

When x = a in (24) the sum of the first 17 terms of the 

series is V = 7/A2(1.857004) and the sum of the first 18 

terms is V =7Ka2(1.859272). 

When x = 2a in (14) it becomes V =7-Ka2(1.035240). 
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When x = 2a in (24) the sum of the first 13 terms of the 

series is V = M2(1.032619), and the sum of the first 14 

terms is V =17Ka2(1.037083). We concluded that the series 

converges to the correct value in both cases. 

II. THE SURFACE OF REVOLUTION 

The potential at d due to the element of arc ds in 

Fig. 5 

Fig. 5 is 

V = K 
ds Jr 'V 72,d ( -x)2 

therefore, the potential at d due to the ring formed by 

rotating ds about the x -axis is 

7y ds V = K fa 
2 

Vy2+(d-x)2 

since all points on the ring are equidistant from (d,0). 

By substituting from equations y2 = 4a(a-x) and ds = 
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2 
15i 

2a-x dx 
, V became 

V - 4'VTAITK 
a V2a-x dx 

fol V4a(a-x)+(e-x)2. 

By substituting 2a-x = u2, the integral was reduced to 

V2a 
u2du V = 81rii-frif 

fra 1J(u2+c)2-4ac 

In order to integrate, we expanded the integrand into an 

infinite series, thus 

u2 u2 
1- 

4ac 

- 2 

(4a0111R1 u2 

V(u2+0)2-4ac u2+c 

u2 

(u2+c)2 

1.3.5..*(m-2) 

u2+c 2.46..(m-1) (u2+c)m m-3 

where m = 3,5,7,----. Then 

V-271 u2 
V = 8 1E7K 

Jca. u24,0 

1,3.5(m-2) u2 I du.(25) 

m-3 
2.4.6..(m-1) (u2+c)m 

We integrated the above series by the use of integral 

tables for m ra 3,5,7, and 9, and collected the like terms. 

Since (d,O) was any point on the x-axis, we replaced d by 

x making the potential function a function of x. 

In the following equations, let 

Q = tan-1 V2a tan-1 
Yd 

and 
Rn - V2a Vi 

(2a+d)n (a+d)n. 



r ii2du 4-- a - - Q 
J d (044) 

u 2d u - 4ad [1 
Q Ri - 1,117 

2 MI Ju2+03. 2 C8 d3 ' 8d ' 4 

1-2224a2d2/ 
la 
a u 2 du aza 24a2d2 [ 

TA 
1-3-5 1 1.3-6 R1 

(u2+d)5 2.4 2.4-6-8 ' 2-4.6-8 d3 

R2 

-1- 
5 R2 1 R3 1 R4] 

4.6.8 d2 6.8:4 8 

1 0 3-5-7-9 R1 5-7-9- R2 .3.5 2663d3f11-2-it u:d11 - 143.5. 26a3d3 [ 3.5.7.8 
0.4.6 01,u+d)7'.. 2-4.6 2.4.6.8-10-12 T177 2.4-6-8-10-12 d5 4-6-8-10-22 d4 

- 7.9 R3 9 R4 3_ R5 1 R6 
6-8-10-12 

+ 
do 8.1a.12 d2 1012 d 12 .1 

1.3.5-7 22 4dtj"Fil u 
2 
du _ 1-3.5-7 28a4d4 3.5.7.9-;1-1_11 1 Q 3-5.7-9-11.13 RI 5-7-9.11-11_ R2 7.911-13 B.2. 9-11.13 R4 

2-4-6.8 la (11244)9 2.4-6-8 -4-6.8-10-12-14-16 7572 2-4-6-8-10-12-14-16 d7 4-6-8.10-12.14-13 7 6.8.10.12.14.16d5 8.10-12-14-16 d4 

Collecting all tike terns, 

"15; - - Ira -1- 22 a 
2 2.4 d 

+12 1-3-2 24 a2 
2.4 2.4-6 8 d2 

1-3.5 3.5-7.9 26 gL.3 
4. 

1.3.5.7 3-5.7-9-11-13 
2.4-6 2.4.6-8-10.12 d3 2-4.6-8 1-4.6.8.10.12.14-16 

I 1 22 1 a 1 : 3 13 5 24 a 2 1- 3.5 3. 5. 7- 9 a 3 1. 3- 5- 7 3 5- 7 9 11 13 28 a4 ...yr + 
.2 2.4 2.4 204-6.8 d 2'4'6 2'4-6-8'10'12 d' 2-4'6.8 144-6-8-10-11-14.16 7. 

c E 1.22 1 ad 1.:1 5 24 a2 1.3.,5 26 0 1.3-5-7 5-7-9-11-13 28 4 
R' -1. + 4. ---- 

2 ' 4 2-4 4-6-8 2.4-6 4.6.8-10.12 d ' 2-4.6.8 4-6-8-10-12-14-16 4,- 

R3 
1-3 1 24 a2d + 1-3-5 7.9 26 a3 1.3.5.7 7-9.11.13 28 a4 

[ + -a-aaa 1.4 6.8 2.4-6 6-8.1.12 2-4-6.8 6-8-10-12-14.16 d 4. "" 
R4[ 

R5 [ 

R6[ 

1:1 1 24 a2 d2 1'3-5 9 :26a3d 4'1°51 9'°11.13 28a4 + ' .1- 

''' 2.4 8 2.4-6 8.10-12. 
+ 
-2-4-6-8 8-10-12-14.16 

1-3-5 1 26 a3d2 4:1.3-5-7 11.13 28a4d + 
2-4.6.10.-12 2.4.6.810.12.14'16 

1'35 1 26 a343 4 1'3'5'7 13 28 a4d2 + 
2.4.,6 12 2'4-6'8 12-1.P16 

AM. ORD alio 

401. 

8 a4 
d4 

410.011.11.1011P 

11.13 R5 4 
10.11.14-16 

14 

13 R6 
11:.7 1-3-8 ]. 

18 12.14-16 d2 
4 

d- 14.16 d 

(37) 



The resulting series were written in the following general form: 

V 8a Tr fit' (2 -1) + 8 77. K 0 IfiTi [-1 

15 

1-3-5. - -Cm-2) 1-3-5--,(2m5) 2m-1 

] 

I 5 1 el2 1P1 
t + 

rm+n-, _aln+1 1.- )4 
m2-4-6- (m-1) 2-4-6-.. (2m-2) t) 2-4-6-- (m-1) (2n+2m+6)...(2m-4)(2m -2) 

] (28) 
m =3 

11411 
+ RP 

i.3.5... (m-2) (2n+1Wn+3)...(2m-7)(2m-5) 2m-1 am/2 I4 
2.4.6...(m-1) 2n(2n+2) (2m-4)12m-2) 

The first double summation'contains all the leading terms of the series not including the fiist which iT the coefficient of Q. The second double summation contains all 

the remaining terms in the doubly infinite series. 



III. POTENTIAL ON THE X -AXIS DUE TO THE ARC 

The equation in polar coordinates for the parabola 

72 = 4a(a-x) is r = a sec2 0/2. In Fig. 6 

and 

also, 

Fig. 6 

ds = a sec3 0/2 dA, 

12 = r2 + d2 - 2rd rose, 

1 = Aka sec2 0/2 + d)2 - 4ad ; 

therefore, the potential at (d,O) is 

V = K 
-7/2 

a sec3 9/2 d8_ 

Jr0 1/(a sec2 9/2 + d)2 -4ad 

Let sec A/2 = VEIVITt; then dO = dx/xlidX;; and also let 

a/d = k then 

2k 
V . Kjr 

dx 
k (x+1)11-k/x V1- 4k/(x+1)2 

By the binomial theorem 

(29) 

16 
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(1- k/X)-2 = 1 + 
> ' 1.3.5...(2m -1) (k/X)M 

1 

: 2.4.6(2m) 
M=1 

11:1 

and 
x+1 (x+1) 

1 {1_ 4k 1-2. 2 1 
+ 1-3.5(n-2) (4k) 

= 
x+1 2.4.6...(n-1) (x+1)n 

n= 

where m = 1,2,3,----, and n = 3,5,7, - - --. 

After the two series were multiplied together (29) 

became 
oo 2k 

became( 

::1 4. \' 

1'3.5..'(n -2) dx V = K 
/ . 32:34.6... (n-1) 

('2k 

(x+1)n 
n=3 

135(2m-1) 
J 
r 2k dx 

2.4.6(2m) k xm(x+1) 

134,5...(2m-1) 1.3.5...(n -2) 211_1 omim=1 

2.4.6...(2m) 2.4.6...(n-1) 

dx 

xm(x+1)n 
(30) 

The first two terms were easily integrated, and the last 

two were taken from the integral tables. We substituted 

the value a/d back in place of k, and substituted x for d, 

because d is any point on the x-axis. Letting Rn = 

(2a+x\ n (a+x) n 
2a ) a ) 

the complete function is 

V = Kf log 2a+x 
a+x 

1.3.5(n-2) 1 
n-1 

[( 
( 

2x n-1 2x 
2.4.6...(n-1) n-1 x a+x) 2a+x) 

17 



oo m-2 
+ (m-1):(-1)2-1 fa\ m 

2.4.6(2m) (m-s-1):81(m-s-1) kx1 
m=1 s=o 

4 

(_1)m+1 log 2a +2x 
2a4x 

n+ 
13.5.(2m-1) 13.5...(n -2 

a 

2m-1 
) 2n-1 --2--- 

24.6(2m) 2.4.6..(n -1) 

s=0 

(m+n -2):( -1)3 -1 Rm-s-1 11 (31) 
(m4n -s -2)1.13:(m-s -1) 

when lib-s-1 / 0, and when m,s-1 = 0 the quantity in the last 

square bracket becomes 

(m+n-2): 1)m-1 2a+2x I 

[(m-1)1(n-1): 2a+x 

where x >a. 

IV. POTENTIAL ON THE Z-AXIS DUE TO THE ARC 

In Fig. 7 the element of arc ds in rectangular coordi- 

nates was found to be 

ds =1/2a-x dx. 
a-x 

It is easily seen that 

the distance 1 is given 

by 1 = lid2+1:2+y2 ; 

therefore, the potential 

at (0,0,d) is Fig. 7 

18 



V = K 

Where y2 = 4a(a-x) 

V = K 

fa 1J(2a-x)/(a-x) 

`j° ld2 x24.72 

Joa li=x 1/d24(2a-x)2 

By making the substitution a -x = u2, (32) became 

V - 11+u2/a 
du. 

d J 0 111+(u2+a)2/d2 

By the binomial theorem 

1/2a-x 

(1 +u2/a)i = 144112/a + 

( a 2 -1 
d2 

m=2 

n-2 
-1) -2- 1.1.3(n-3) 1 un 

2.4.6(n) a7-177 

(32) 

(33) 

..1)m/2 1.3.5.*(m-1) 1 (u2 +a)m 
2.4.6...(m) dm 

where m = 2,4,6,----, and n = 4,6,8,----. 

came 

V - 

After we multiplied the two series together (33) be- 

2KZ 
d 

[foira" du 

111g 
n-2 

+ 1 r u2du + (-1)-7- 1'13(n-3) 1 la 
undu 

2a aro 2.4.6(n) az-12f0 

m=2 

n=4 

(_1)m/2 1.3.6...(m-lj 1 rqd. (u2+a)mdu 
2.4.6...(m) dm Jo 

)m/2 1.3.5...(m .1) 1 11111 

2.4.6...(m) 2adm 4 u2(u2+a)m du 

(34) 

19 
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_1) 
m-1 1.1.3.5(n-3) 1.3.5(m-1) 1 

2.4.6 (n) 2-4.6(m) an/2dm 

fo Iun(u2+a)m du . 

We expanded the integrands of the last three terms by the 

binomial theorem, and integrated term by term. 

du = 

u2du = al-a7/3 

VE 

undu = [111.1+116 - a 4 
n+1 0 n +1 

foArr,5* 
. u a 2m-2s s 

(u2+a)m du = du 
0 s=o (m-s): s! 

hrl 

Jo 

m! u2m-2s-1 as 

s= 
(2m1-2s-1 

m 
o 

1 

Sr4 0 (m-s): sl (2m-23+1) 

u2(u2+a)m du = 

un(u2+a)m du = 

ml am+.3/2 

s=o 
(2m-2s+3) 

m+n+1 

s=o s! (2m+n-2s+1) 
( 3 5 ) 

When we multiplied each of these terms by the corres- 

ponding coefficient given in (34), we obtained 



2KVa- 

d 

m=2 

n=4 

-2 
(_1)n 7- 11.35**0(n-3) a 

2.4.6 (n) n+1 

m/2 13.5...(m-1) 

2.4.6...(m) 

_1)m/2 1354..*(m-1) 

2.4.6(m) 

-1)m-1 11.34,6(n-3) 135(m-1) am4 
2.4.6.8...(n) 2.4.6...(m) dm 

am+i 

dm m -s s! (2m2s+1) 3=0 

aM44 "N ml 

2dm (111,..$)! s! (2m-2s+3) 9 

9=0 

m! 

(m-s): al (2m+n-2s+1) 
.(36) 

Finally, when we substituted z for d, we obatined the 

following complete function: 

f 

V = K-91 (.7- 
z 3 

n-2 
1.3.5...(n-3) 1 ) 

4.6.8...(n) n+1 

fa \m'a 

z I 
) 

m/2 1.3.5...(m,3) \ m. 

m=2 s o 
// (m-s)!s:(2m-2s+1) 

1)m/2 1.3.5..(m-1) 
' m. 

2.4.6(m) .(m-s)! s! (2m-28+3) 
8=0 ra=2 

-1 (_um 1.3.5...(12721 

4.6.8...(n) 2.4.6...(m) 

9=0 331,401. s: (2m+n-28+1) 
(37) 

21 
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V. POTENTIAL AT POINTS ON THE X-AXIS DUE TO THE AREA 

In Fig. 8 the element of mass dm is equal to dx dy, 

X 

Fig. 8 

and the distance 1 = Vy2+(d-x)2; therefore, the potential 

at d is 

a (1114a(a-x) 
V = K fo dx dy 

Vy2+(d-x)2 

The constant K will be omitted temporarily as it can be re- 

placed whenever necessary. 

V = troa [log (y2+1/72+(d_x)2) 
1 

J 0 4a(a -x) 
dx 

log [N4a(a-4 + V4a(a-x)+(d-x)2] dx - foa log(d-x)dx 

a 
= log [1+ 1/4a(a-x) 1 

o V4a(a-x)+(d-x)2 J 

ra 
a -jlhog 4a(a-x)+(d-x)2 dx - Jr log(d-x) dx. (38) 



we integrated the last term by parts and obtained 

f 0 
a 

log(d-x) dx = a+d log cl".1.1. -a log(d-a). (39) 

We also integrated the second term by parts and obtained 

fo 
a 

log 114a(a-x)*(d-x)2 2+d 
log(4a2+d2) -d log(d-a) 

a 

2 

- a - ad log I 
d2+ad-2a2+2aWtT1 I 

(40) 
d2+ad-2a2-2a lga 

We expanded the first term into the following infinite ser- 

ies: 

10 
a 

log [1+ 11 4a(a-x) 

4a(a-x)+(d-x)2 
dx j(01 

a 
4a(a-x) 

4a(a-x)4(d-x)2 

1 

2 

1 

4 

4a(a-x) 1 

1 

5 

4a(a-x) 
(41) 

dx. 

4a(a-x)+(d-x)2 

4a(a-x) 

13/2 

4a(a- x) +(d -x)2 

4a(a-x) ]2.4. 

[4a(a-x)+(d-x)2 

]5/2__ 

[4a(a-x).0(d_x)2 

Each term of the integrand of (41) is in the form of 

(-1)11+1 1 4a(a-x) 1n/2 

n [4a(a-x)+(d-x)2.1 

where n = 

If n takes on all the odd values, each term is positive 

and may be written as 

flo 

0 0 a 
, 1 (2a*)n (a-x)n/2 

n (d-x)n 
1 + 

4a(a -x) -n /2 
(d-x)2 

n=1 

(42) 

23 



24 

After expanding, the expression 

4a(a-x) -11/2 
1 * 

(d-x)2 

and performing the multiplication, we have for n = 1,3,5,7, 

and 9 the following series which may be combined: 



2VEVh-x [3. * 4 

(d, 

a x 

4sla-e 

(d-02 

4e(a-x) 

(d-x)2 

+ 4a(a-x)] 

(d-x)2 

1,211".4 
d-xY ( 

-3/2 

-5/2 

-7/2 

.9/2 

Combining the above aeries, we obtained: 

Therefore (42) became 

In order to integrate terms 

d-x 

(2a1)3(a-x)3/2 1'3 (2ai)5(a-x)5/2 
2(d-x)5 2*4 (d-x)5 

laallaazilLi 1'3 (2ai)5(a-x)5/2 

1Lx..L.L12117.2.222. 
4.6 (d-x)7 

35 S2ai)7(a-x)7/2 
3(d -x)3 2.3 (d-x)5 2. 

4-1214a-.121:11.11ar211.1 
d-x 6£d. -x)3 

2VE a 11.- 2.1(a'x)3/2 2 
0 d-x 6 (dx)3 5 

(2a LI E(a-x) 5/2 

5 (d-x)5 

3 (2ai)5(a-x)512 
40 (d-x)5 

5/2 

d-.x) 

3-4 (d-x)7 

1 5 2a ) 7(a-x) 7/2 + 
2.5 (a-x)7 

1 1 ai)7(a-x)7/1 
.. 

7 (d-x)7 

5 . (2a1)7(a-x)7/2 

112 (d-x)7 

- 
(a-x)7/2 ILY222 
(d-0 9 

7- 221" -L (d -x)9 

;35'"7 (24i)9(a-x)9/2 
2*4.*6*8 (d -x)9 

Is3'5*7 (2a)9(n.-09/2 

2-3.4.6 (d -.x)9 

5 (tai) a:-x,)9/2 

2.4.5 (d.-x)9 

7 )9(a-x)9/2 

2.7 (d-x)9 

1 2ei)9(a-x)9/2 - 
9 (d-x) 

11. 01.0.111 

35 ( ii)9(a-x)9/2 

1152 (d-x) 9 

of the for Clig:W(d-x)] n, the following substitutions mere made: a-x = t2, dx = dt, d-x 

we substituted d.a for k2 and then the first 4 terms of (44) became 

2.1fd a Y117'7 dx- 41iii fa . f , dt = 4a - 4W757---at tan-1 /1/a/( d-a) 
f o d-x 

. o t +lc" 

4a 3/2 a (a-x) 3/2 dx = - 8a312 r f3_ t 4 - at = +2 ,--a3 -2 .12 5 a2 - a 3/2 tan-1 Va./ (4 -a) 
3 o (a.-x)- 3 d (4 (t-+ICI 3 3 d2 3 d. 3 d lial:i. 

12a 5/2 a (a-x) 5/2 dx 24a 5/2 
5 0 (do-x)° 

= 
5 

te 

Jo (04.k2)5 

- 40&74/? //a (a...x)7/2 d.§1.aZEI ra t8 
(e #k2)7 7 (d-x)7 - 7 Jo 

The series in (43) are convergent for d )2a; 

.I2 1 a4 +1 a3 7 3 *3 a3 
5 a4 2 a3 2 a2 8 7 16 d(d-a) 

20 a7 #2 e.6.4. 5 a5 +5 al 54 9,4_ 
d6 3 a5 12a4 24 d3 93 d2(dHa) 

therefore, (44) and (45) are convergent for d, 

5/ 
tan 

.."i(d.a) 1 4 
ya 

/ o a 

16 (d-s)30 

5 

64 d(d -.a)2 

am ...row 

AIM .1 

via --S 

(43) 

(44) 

, where k2 = d-a After integration. 

5 7/2 -I - a ten val(d.a) 
64 d-a)5/2 

(45) 

25 



When we combined the right hrsna -,el,bers of (45) 

92 7 a3 7 2.4_ 31 n5 n6 - 
24 x2 24 x3 6) x4 3 x5 21 xe 

4a + 

18a3x-50 5114 
+ 
98e(x-a) 64x(x-s) 

Vn (tnn-1 1/0/(x-n) ) [-4- 512 
10 ( 

ard PuLPtituted xfor d, the equation was reduced to: 

+ 
34(c-aP 

- 
Wert we considered the second nd fourth terms of (41). Te integrated the cand.tPrm by -the use of integral Let X = 4a(a -x.) + (d 

and the 

a 
-2a fo 

second term beco-:an 

(a-x)dx = 2a1 xdx 212 
a ? 2 1 a 

? 
AI= a log 44+ log 2.a -r3 d+2 a *s faa 

X 0 X 4n +d 2yga 2a2+4d0-ad-2aNia. 

We also integrated the fourth tern, 

- 4a2fa dx %2 
-4n4 

ra 

O X 2 

7s $ nr, It the terns of 

74-Fm2x-1x2 
% 

2.x(x-a)2 2(x-n)2 

7a4 2,134.2a?x, 

z(4a2.3t2) 4R-2 rxp 

(39), 

1111MIM 

+ 11. log (4.4.1t4) -x log x + 

by thf,, 

8. 

87.5 
fP 

717 

integral tables and it become 

,r2dx J5.4 

d(d-p.)2 

(4)), (47), ?rd (4d) could be co- -Mined. 

n log (*pa) 

Therefore V as IC [(48) + (49)] 

- =105 + 7 

?AFT( 

4+2a3444,._x- 

8(Qx)1/.. 

79.3 

2(d-n)2 

we again 

512(3, Ng 2a3 7a4+2a3d 
2(d...a)2 2(d -a)2 d(4a2+d2) 412+e 4a 2 +d2 8(ad 

substituted x for d and the sum of the four equ7,tions beta 

2 
,. x .log 

2a -axi-2a-147-Ttx 



When we combined the right hand members of (45) and substituted x for d, the equation was re4uced to 
92 7 a3 7 .2.4. 11 a5 2 a6 20 7 

4a. , + AN *IMMO + 41geo 

I. X 24 x2 24 x3 GO x4 3x5 21 x, 

18a3x-5a4 5a4 
9Sx'(x-a) 64x(x-a)2 

4. ...... 

+1,/ax-a2 (tan-lits/(x-a) ) -4- -a + 5a2 
- 

c-a 16(c-a) 

Next we considered the 

end the second term becomes 

-2a fa (a-x)dx _ 2a er 
X 

5 
64 c-a 

second and fourth terms 

a 
z1Lt 2a2I SLE- a log 

0 X 0 

a 

am ems mellym 

of (41). We integrated the ecand_tprm_ 1y the use of integral t2Ibles. Let X = 4a 

4a +d 
2 2 2a +d -ad+2aNn 

21/Ea 
log 

2a2+d4-ad-2010. 
We also integrated the fourth term by the ace of integral tables and it became 

a a a 2 
4a2 js-x)2dx -4a4 8a3 492f 25-1.-Lx 

994 7a3 
10a X 2 0 X4 4 X 0 x2 2d(d-e.)2 2(d-s)2 2(d -a)` 
we saw that the terms of (39), (40), (47), 

2(x,a)a 
_2a3+2a2x 

n n * 

+ x log (4S2+x2) -x log + a log (x 

Therefore V = x [(48) + (49)] . 

a-x) (d-x 2 .7.- 4a2 +d2-(4a+2d)x+x2 

26 

(46) 

(47) 

-c12 7,4 2a3 2a2d 7a4+2a3d+ed2 2a24d2-ad+2aNa.(48) 
2(d-a)2 d(482+d2) 4a2+d2 492442 8(ad)3/2 2a2442-ad-2aViTia 

and (48) could be combined, re again substituted x for d and the sum 

4 7a4.1.2aLt2x2 
2,161 8(ax)3A 

2 ax4-211cii 
2a 

of the four equations became 

(49) 



VI. LAPLACE'S EQUATION IN CURVILINEAR COORDINATES 

In the xy-plane it is known that the orthogonal tra- 

jectory of the parabola y2 = 4a(a-x) is the parabola y2 = 

4b(b+x). When these two parabolas are revolved about the 

x-axis, two surfaces are formed. The two surfaces are per- 

pendicular at all points of intersection. Any plane con- 

taining the x-axis, y = cz, is seen to be perpendicular 

to both surfaces at all points of intersection; therefore, 

the three surfaces are mutually perpendicular for all posi- 

tive values of a and b and all values of c. The parameters 

a, b, and c will now be regarded as a set of coordinates 

for a point of intersection of the three surfaces. 

When we solved the equations of the three surfaces 

simultaneously, we obtained 

x = a-b, 

y 
2c1/1113 

Are-2747i. P 

and 21/i17) 

1/c2-1 

Let 1/hi. = (Dax)2 (Day)2 + (Daz)2, 

and 

1/4 (Dbx)2 (Dby)2 (Dbz)2, 

1/1.1 (pcx)2 (Dcy)2 (Dez)2 

(50. 

(51) 

27 
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Then Laplace's equation in this curvilinear system is* 

n f hi n nft( h3 n ITN 

'a`h2h3 "'D'h3h1 DbV) * Dchih2 vevi " (52) 

When we substituted (50) in (51), we found 

1/hi = (a+b)/a, 

1/4 = (a+b)/b, (53) 

and 1/4 = 4ab/(c2+1)2. 

When we substituted (53) in (52) Laplace's equation became 

[ 2a Y1 a 2b a (c2+1)(a+b) aV 
- 0.(54) 

as c2+1 3b L c2+1 ab ac 2ab ac 

For cases where the attracting mass is symmetrical about 

the x-axis, av/60 is zero; therefore, (54) reduced to 

a2V ay ()2v av 
a --- 4 b (53) 

aa2 6a ab2 ab 

In order t,7) solve (55) we assumed that V = AB where 
A = f(a) and B = 0(b). After substituting this value of V 

in (55), the equation became 

1 d2A dA) -1(h,21 dB) 
X'w(1717 * da' B '-dbX dbl. 

(56) 

Since A is a function of a alone and B is a function of b 

alone, we used the total derivative in (56). The left mem- 

ber of (56) is a function of a alone and the right member is 

a function of b alone; therefore, in order to be equivalent 

they must both be equal to a constant K. This led to the 

* Byerly, Fourier 's Series and Spherical Harmonics, p. 239. 
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two equations; 

d2 
a 

A 
+ 

dA 
-AK = 0, 

da2 da 
(57) 

and d2B dB b + +BK = O. (58) 
db2 db 

When we substituted a new variable x = 21CRi in (57) it be- 

came 

x2 d2V dV 2 ^ 
+ x- +x v 

" 
u = 

dx2 dx 
(59) 

which is Bessells equation when n = O. The solution is, 

therefore, 

A = Jo(x) = J0(211=a). 

Also, when we substituted y = 2103 in (58) it became 

2 d2V 4. IT 2V = 0 
Y dy2 4 dy 

+ 
Y 

which is identical to (59) and the solution is 

B = Jo(y) = .10(2111-0.5). (62) 

Finally, from the original assumption that V = A11, the 

solution of (55) became 

V = .10(21f YTO J0(211K5). 

(60) 

(61) 

CONCLUSION 

(63) 

(1) The potential at any point in space not in the zone 

a <r<2a due to the solid of revolution can be calcul- 

ated by the use of equations (17) and (22). Equation 
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(24) gives the potential for points on the x-axis for 

x >a, but since it is not in the form of either (7) or 

(9) Legendre's coefficients cannot be used to make the 

function include the other points of the zone. 

(2) The potential at points on the x-axis where x >a due 

to the surface of revolution can be calculated by us- 

ing (28). 

(3) The potential at points on the x-axis where x >a due 

to the arc can be calculated by using (31). 

(4) The potential at any point on the z-axis due to the arc 

can be calculated by using (37). 

(5) The potential at points on the x-axis where x> 2a due 

to the area can be calculated by using (49). 

(6) Assuming the mass is symmetrical about the x-axis a 

solution of Laplace's equation in the given set of 

curvilinear coordinates was the product of two parti- 

cular vessel's functions. 
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