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Abstract 

An increased work of breathing during heavy whole body exercise can lead to respiratory 

muscle fatigue (RMF) and decreased leg blood flow.  Heavy exercise also increases inactive 

limb and cutaneous blood flow.  It is not known, however, how RMF affects inactive limb and 

cutaneous blood flow.  Therefore, we tested the hypothesis that RMF during heavy exercise 

would reduce: 1) inactive limb blood flow, 2) inactive limb vascular conductance, and 3) inactive 

limb cutaneous blood flow.  Twelve healthy men (23 ± 2 yrs) completed baseline pulmonary 

function tests followed by an incremental cycle test to VO2max.  Subjects then cycled at both 70% 

and 85%VO2max (randomized) for 20 minutes.  Subjects performed a second 85%VO2max test 

ingesting N-acetylcysteine (NAC) (1800mg), which has been reported to reduce RMF, 45 

minutes prior the test.  Maximum inspiratory pressures (PImax) were measured prior to and 

immediately following each exercise trial to determine RMF.  During exercise, brachial artery 

blood flow (BABF) was measured via Doppler ult                                         

                 -                                                                           

                                                                            
o
C).  Mean arterial 

pressure (MAP) was measured manually.  Significant RMF occurred with 85%VO2max (12.8 ± 

9.8%), but not with 70%VO2max (p>0.05).  BABF significantly increased from baseline to end 

exercise in both conditions and was significantly lower (~18%) following the 85%VO2max test.  

The amount of RMF at 85%VO2max was inversely related to the change in BABF (r= -0.66, 

p<0.05).  BA vascular conductance was significantly higher at end exercise at 70%VO2max 

compared to 85%VO2max (2.60 ± 0.73 vs. 2.00 ± 0.42 mLmin
-1

mmHg
-1

, resp.). The amount of 

RMF at 85%VO2max was inversely related to BA vascular conductance at end exercise (r= -0.80, 

p<0.05).  Cutaneous vascular conductance was not different (p>0.05) between trials.  With NAC, 



 

 

RMF was reduced and BABF was consequently significantly higher (~30%) compared to 

85%VO2max. These data suggest that RMF during heavy whole body exercise decreases inactive 

arm blood flow and vascular conductance, but not cutaneous blood flow. 
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I. Introduction 

The pulmonary system has been reported to limit exercise tolerance in some healthy 

subjects.  Specifically when the work of breathing is increased during heavy whole body exercise 

(>85%VO2max), locomotor blood flow is reduced, peripheral muscles fatigue, and respiratory 

muscle fatigue increases.  Respiratory muscle fatigue initiates an increased sympathetic outflow, 

reducing locomotor blood flow and vascular conductance, potentially increasing respiratory 

muscle blood flow.  The redistribution of blood flow from the locomotor muscles to the 

respiratory muscles may reduce exercise tolerance.   

During lower limb exercise (e.g. cycling), inactive brachial artery and cutaneous blood 

flow increase in proportion to exercise intensity approximately 2-4 fold during incremental and 

steady state exercise due to increased thermoregulatory requirements.  The increase in inactive 

brachial artery and cutaneous blood flow typically shows a biphasic response.  At the onset of 

cycling exercise, there is a reduction or no change in brachial artery blood flow for five minutes 

due to increased sympathetic vasoconstriction.  With continued steady state exercise, inactive 

brachial artery blood flow and vascular conductance increases partly due to increased vessel 

diameter via shear stress.  Cutaneous blood flow increases to approximately 50-60% of maximal 

due to reduced sympathetic vasoconstriction and increased active vasodilation.  It is currently 

unknown if respiratory muscle fatigue during heavy whole body exercise will reduce inactive 

limb and cutaneous blood flow. 
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II. Literature Review 

 Respiratory Muscles 

The respiratory muscles (RM) include sternomastoids, scalenes, trapezius, and external 

intercostals and the diaphragm, the primary RM.  In humans, the diaphragm is composed of 

mostly oxidative fibers, approximately 55% Type I and 21% Type IIa (53).  The diaphragmatic 

muscle fibers exhibit marked differences compared to other skeletal muscle, including greater 

oxidative capacity, capillary density, maximum blood flow, and resistance to fatigue (24).   

At rest, the diaphragm is the main contributor of ventilation during normal breathing 

(110).  During diaphragmatic contraction, this dome-shaped muscle pulls downward, which 

increases chest cavity volume and decreases intra-thoracic pressure resulting in increased lung 

volume.  During exhalation, the diaphragm relaxes and the chest wall returns to its resting 

position due to elastic recoil.  During exercise, the diaphragm is the main contributor of total 

ventilation, but the inspiratory and expiratory accessory muscles are also recruited.  The 

recruitment of these respiratory accessory muscles increases the mechanical work of breathing 

due to chest wall distortion (27, 32).  From rest through moderately heavy exercise, the 

respiratory muscles are fatigue resistant (77).  However during high intensity sustained whole 

body exercise, the diaphragm, inspiratory, and expiratory muscles have been reported to fatigue 

(77). 

 Respiratory Muscle Fatigue 

 Diaphragm Fatigue 

M          g                 “                                                       r 

developing force and/or velocity of a muscle, resulting from muscle activity under load which is 

                  ” (63).  Bilateral phrenic nerve stimulation (BPNS) is the preferred technique 
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used to assess diaphragmatic fatigue via transdiaphragmatic pressure (Pdi) from esophageal and 

gastric balloons before and following heavy exercise (5-8, 44, 57, 104-106).  With BPNS, 

Babcock et al. (1995) reported the greatest diaphragmatic fatigue (26% decrease in Pdi) when 

subjects exercised to exhaustion at 85-90%VO2max (5).  This degree of diaphragmatic fatigue at 

this exercise intensity is in agreement with subsequent studies of Babcock et al. (6-8) and others 

(104); however, some investigators (44, 57) have reported slightly less fatigue (17-21%).  When 

subjects exercised for only five minutes at 80-90% VO2max, diaphragmatic fatigue was 

considerably less (9-20%), likely due to the shorter duration of exercise (105, 106).  

Additionally, Mueller and sniff maneuvers have been used to determine Pdi and found a 

reduction in Pdi of 28% after maximal exercise (33).  Johnson et al. (1993) observed a positive 

relationship between exercise intensity (% VO2max) and diaphragmatic fatigue (44).  However, 

Perret et al. (2000) tested this relationship with RM fatigue and the reductions in RM fatigue 

were not related to intensity.  The discrepancy between the results of these two studies may be 

due to accessory inspiratory muscle fatigue due to inspiratory resistive breathing and measuring 

global RM fatigue by Perret et al. (2000) (68). 

      g               ,            g ’                                                 

production gradually decreases (44).  Despite the reduced diaphragmatic contribution, ventilation 

continues to rise during sustained heavy exercise due to the increased contribution of the external 

intercostals and accessory respiratory muscles to the ventilatory work.  The recruitment of these 

accessory muscles likely increases the mechanical work of breathing due to chest wall distortion 

(27, 32) and likely contributes to RM fatigue.  The contribution of work of breathing to RM 

fatigue was demonstrated by reducing the work of breathing via proportional assist ventilator 

(50% of control) during heavy exercise and finding that RM fatigue was not present (7).  



4 

 

Because of the recruitment and possible consequences (chest wall distortion) of accessory RM 

during exercise, an increased significance has been placed on the fatigability of the inspiratory 

(not solely the diaphragm) and expiratory muscles during heavy exercise.  

 Inspiratory and Expiratory Muscle Fatigue 

Maximum inspiratory and expiratory pressures measured at the mouth (PImax, PEmax) have 

been widely used to estimate the total strength of the inspiratory and expiratory muscles (i.e. 

diaphragm and the accessory muscles) (54).  With this method, the inspiratory muscles have 

been reported to fatigue approximately 10-18% (decrease in PImax) following heavy exercise (80-

85%VO2max) (23, 50, 54, 59, 66, 78, 108).  This level of fatigue is similar to that reported via 

BPNS (see above).  The expiratory muscles (99, 100) and specifically abdominal muscles fatigue 

~13-28% during heavy exercise (85-90%VO2max) (99, 100, 103).  Additionally, Loke et al. 

(1982) reported expiratory muscle fatigue (~27% reduction in PEmax) after running a marathon 

(54).  

 Therefore, the respiratory muscles and not solely the diaphragm can fatigue during heavy 

whole body exercise.  As stated earlier, the respiratory muscles are important to maintain total 

ventilation during heavy exercise intensities.  Due to the negative implications for exercise 

tolerance that may arise from respiratory muscle fatigue, previous research has been conducted 

to determine the contributing factors to respiratory muscle fatigue. 

 Mechanisms for Respiratory Muscle Fatigue during Heavy Exercise 

Inspiratory muscle fatigue has been linked to respiratory muscle work, decreased 

respiratory muscle blood flow, hydrogen ion production, glycogen depletion, and the production 

of reactive oxygen species (18, 77, 79).  Although each of these factors contribute to inspiratory 

muscle fatigue, the most widely studied contributor is respiratory muscle work and the 
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subsequent redistribution of blood flow during heavy exercise (77).  The oxygen cost of 

breathing (and thus, inspiratory muscle work) at rest is approximately 2% of total VO2 (1, 73) 

and increases with ventilation during voluntary hyperpnea (14, 88).  Thus, an increase in oxygen 

cost of breathing is observed during moderate exercise in active individuals (3-5% total VO2) 

with a further increase at maximal exercise in highly-fit individuals (10-15% total VO2) (1, 37).  

When inspiratory muscle work was reduced (~50%) via a proportional assist ventilator, 

diaphragmatic fatigue was absent during heavy exercise (7).  When the exercise diaphragmatic 

work was mimicked at rest however, diaphragmatic fatigue did not occur, indicating that 

diaphragmatic work is not solely responsible for the fatigue (5).  For diaphragmatic fatigue to 

occur at rest, diaphragmatic work is required to increase more than two-fold compared to the 

diaphragmatic work incurred during heavy exercise (5).  A plausible explanation for the lower 

diaphragmatic work required to induce inspiratory muscle fatigue during heavy exercise is the 

competition of cardiac output by the respiratory muscles and the locomotor muscles (5, 77). 

 Respiratory Muscle Blood Flow 

During heavy exercise, the increased oxygen cost of breathing and work of breathing 

increases the respiratory muscle blood flow requirement (1, 37), which if not met may exacerbate 

RM fatigue (Vogiatzis et al. 2008).  While maximum diaphragmatic blood flow has not been 

directly measured in humans, radioactive microspheres and flow probes have been used to 

measure diaphragm blood flow changes in animal models.  Musch et al. (1983) and Manohar 

(1986) have demonstrated that during maximal exercise in dogs and ponies respectively, blood 

flow to the respiratory muscles increases to ~16-25% of total cardiac output to appropriately 

match oxygen consumption (58, 61).   Additionally during maximal exercise, Poole et al. (2000) 

demonstrated rat diaphragmatic blood flow increased approximately 260% from baseline (70).  
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The blood flow to the accessory muscles (intercostals, scalenes, and abdominal muscle) 

increased 6-10 fold.  Furthermore, vascular conductance increased in the diaphragm and the 

accessory muscles during maximal exercise (70). 

 In humans, blood flow to the respiratory muscles has not been directly measured, but 

cardiac output to the respiratory muscles has been estimated by using the direct Fick method.  

Using this technique, Harms et al. (1998) reported that respiratory muscles require ~14-16% of 

the total blood flow during maximal exercise (37).  Recently, respiratory muscle blood flow has 

been estimated using near infrared spectroscopy and indocyanine green dye (34).  This technique 

primarily estimates blood flow in the internal and external intercostals due to the accessibility of 

these respiratory muscles.  Using this technique, Vogiatzis et al. (2008) demonstrated intercostal 

blood flow increases fivefold to supply the necessary oxygen during heavy exercise (104).  

During heavy and maximal exercise, the inspiratory muscles compete with the locomotor 

muscles for Q (35) and the limited blood flow to the respiratory muscles may contribute to 

inspiratory muscle fatigue.  

 Reactive Oxygen Species 

During heavy exercise, there is an increase in reactive oxygen species (ROS) produced by 

the contracting muscles, which also have been implicated in muscle fatigue (18, 72).   

Additionally, inspiratory muscle contractions also release ROS during heavy exercise (72, 96).  

One specific alteration by ROS is the oxidation of thiol (52, 85), which has been strongly 

associated with fatigue (25).  N-acetylcysteine (NAC), a non-specific antioxidant and thiol 

donor, has been observed to attenuate diaphragmatic fatigue in situ in the rabbit (89) and during 

whole body exercise in humans (50) as well as attenuate whole body peripheral fatigue (16).  

The reduction of inspiratory muscle fatigue may negate the consequences of the inspiratory 
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muscle fatigue and may lead to increased exercise tolerance; however, this postulate has not yet 

been tested. 

 

 Implications of Respiratory Muscle Fatigue 

 Exercise Tolerance 

The influence of RM fatigue and increased work of breathing on exercise tolerance is 

dramatic.  Harms et al. increased the work of breathing (~128-157% of control) via inspiratory 

resistors and observed a decreased in time cycling at 90%VO2max to exhaustion by ~15% (36).  

To reduce the work of breathing, a proportional assist ventilator was used to unload the 

inspiratory muscles.  When the work of breathing was reduced (~37-45% of control) during 

cycling at 90%VO2max, time to exhaustion was increased ~14% (36).  Additionally, Romer et al. 

(2006) observed increased quadriceps fatigue when the work of breathing was increased ~180% 

of control via inspiratory resistors during cycling at 90%VO2peak, which led to a reduced time to 

exhaustion of ~39% (75).   

Prior induced expiratory muscle fatigue has been shown to reduce exercise tolerance 

(100, 102).  Specifically, Verges et al. induced expiratory muscle fatigue by having subjects 

perform expiratory resistive breathing until PEmax was < 50% control values prior to performance 

and observed a ~3% reduction in distance covered in a 12 minute run (102).  Similarly, Taylor et 

al. (2008) induced expiratory muscle fatigue by having subjects perform expiratory resistive 

breathing until task failure prior to exhaustive exercise and reported a ~33% reduction in time to 

exhaustion (100).  Also, when the inspiratory muscles were fatigued (via inspiratory resistive 

breathing) prior to exhaustive exercise, the time to exhaustion was reduced by ~23%, which is in 
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agreement with studies that increased the work of breathing (56).  Collectively, these studies 

demonstrate that RM fatigue can significantly reduce exercise tolerance. 

 Ventilation 

Ventilation may be constrained with RM fatigue because both the inspiratory and 

expiratory muscles contribute to total ventilation during exercise.  A reduced ventilatory 

response during heavy or maximal exercise may lead to arterial desaturation which has been 

reported to limit performance (36).  However, Babcock et al. (1995) observed that the arterial 

saturation was maintained despite the diaphragmatic fatigue demonstrating ventilation was not 

constrained (6). 

 Dyspnea 

RM fatigue may also increase the perception of breathing or dyspnea during heavy 

exercise and therefore may limit exercise tolerance.  Using resistive breathing, the increased 

recruitment of accessory respiratory muscles has been reported to increase dyspnea (26, 95, 97, 

109).  The increased dyspnea is most likely due to the increased cost of breathing of the 

expiratory muscles and to a lesser extent the inspiratory muscles (22) and the chest wall 

distortion resulting from the recruitment of accessory muscles (27, 32).  This increased oxygen 

cost of breathing and work of breathing could lead to an increased blood flow requirement, 

which may be further exacerbated with RM fatigue.  Interestingly, diaphragmatic fatigue did not 

increase dyspnea sensations (109) due to the inability of the fatiguing diaphragm to increase 

neural respiratory drive (55).   

 Redistribution of Blood Flow 

RM fatigue leads to cardiovascular adjustments at rest and during dynamic exercise.  

With diaphragmatic fatigue, the diaphragm increases discharge of the unmyelinated group IV 



9 

 

afferents (38).  In resting humans, inspiratory muscle fatigue (via task failure) leads to increased 

muscle sympathetic nerve activity (94) and consequently reduced blood flow and vascular 

conductance in the leg (86, 87).  In exercising dogs, Rodman et al. (2003) confirmed the reduced 

leg blood flow was due to increased sympathetic nerve activity by eliminating the response via 

an adrenergic receptor blockade (phentolamine and propranolol) (74).  During heavy exercise, 

Vogiatizis et al. (2008) determined greater diaphragmatic fatigue, while cycling in hypoxia 

compared to normoxia and hyperoxia due to the exercise induced arterial hypoxemia experienced 

in hypoxia (104).  Despite the greater diaphragmatic fatigue, intercostal blood flow was not 

further increased in the hypoxic condition.  This provides evidence that diaphragmatic fatigue 

does not increase intercostal blood flow during heavy exercise.  This is in agreement with 

findings by Musch et al. (1993) in the rat model who found no increases in intercostal blood flow 

but increased diaphragmatic blood flow with an increased work of breathing during exercise 

(61).   

Harms et al. (1997) investigated how changing the work of breathing (via a proportional 

assist ventilator) influences blood flow distribution to the legs and respiratory muscles during 

cycling exercise at VO2max (35).  When the work of breathing was increased 128.2 ± 25.2% of 

control, Q distribution to the legs was decreased by 1.3 ± 0.2 liters per minute during maximal 

exercise, but not at 50% and 75%VO2max (111).  Although these studies have reported a 

redistribution of blood flow with increased work of breathing, it is not known if RM fatigue will 

elicit a similar blood flow redistribution during exercise. 

 Inactive Muscle Blood Flow 

During whole body exercise, blood flow is distributed throughout the body to meet the 

increased oxygen requirement and heat production of the exercising skeletal muscles.  Exercising 
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limb blood flow increases with increased intensity primarily to perfuse active skeletal muscle 

(82).  Additionally, dynamic exercise greatly increases heat production as a byproduct of cellular 

metabolism.  This increased heat production increases the thermoregulatory demands during 

exercise and is met by increasing conduit and cutaneous blood flow to dissipate heat in the non-

exercising limb.  As a result, non-exercising limb blood flow increases with increased intensity 

(98).  During lower limb exercise (e.g. cycling), blood flow in the inactive brachial artery 

increases in both incremental (29, 90, 98) and steady state exercise (30, 31, 65, 67, 91).   

The increase in brachial artery blood flow during leg cycling demonstrates a biphasic 

response (10-12, 48, 67, 91, 101).  At the start of leg cycling, there is a reduction or no change in 

brachial artery blood flow for five minutes due to increased sympathetic vasoconstriction (10-12, 

48, 67, 91, 101).  During prolonged exercise (30-60 min) at an absolute workload of 120 watts, 

brachial artery blood flow increases approximately 2-4 fold (67, 91).  The increase brachial 

artery blood flow places a stress on the vessel wall known as shear stress.  Due to the increased 

shear stress, the brachial artery diameter increases and, therefore, blood flow increases to the 

inactive muscle (67).    

Increasing inactive limb blood flow during leg cycling has also been important for 

therapeutic interventions.  During leg cycling, inactive limb blood flow has been reported to 

increase to the inactive shoulder and neck muscles (3, 4).  Leg cycling is speculated to help 

relieve shoulder and neck muscles because of this increased blood flow.  Recently, Anderson et 

al. (2010) reported an increased oxygenation in the inactive shoulder and neck muscles during 

leg cycling (3), which further contributes to the therapeutic benefits. 
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 Cutaneous Blood Flow 

At the onset of exercise, cutaneous blood flow is reduced or not changed due to increased 

sympathetic vasoconstriction via adrenergic alpha 2 receptors.  Increased sympathetic adrenergic 

vasoconstriction reduced forearm (12) and cutaneous blood flow (47) by using a sympathetic 

inhibitor (bretylium tosylate) and observing increased forearm and cutaneous blood flow.  With 

continued exercise, core temperature raises to a threshold at which cutaneous vasoconstriction is 

withdrawn and active cutaneous vasodilation begins subsequently increasing cutaneous blood 

flow (48, 49).  However if a cutaneous vasoconstriction occurs (via cold stress) during steady 

state exercise, a reduction in brachial artery blood flow occurs (91).  This implies that cutaneous 

vasodilation plays a major role in the increase of brachial artery blood flow following the initial 

phase.  Cutaneous blood flow continues to increase up to approximately 50-60% of maximal 

cutaneous blood flow at which a plateau in blood flow occurs (13, 42, 47).  This plateau is due to 

cutaneous active vasodilator withdrawal rather than increased cutaneous vasoconstriction (48).  It 

was hypothesized the plateau in cutaneous blood flow occurs to maintain atrial filling pressure 

(81).  Therefore, this demonstrates the importance of inactive limb blood flow in meeting the 

thermoregulatory demands during dynamic exercise.  

 Summary 

During heavy exercise, several factors may influence overall blood flow responses, 

including respiratory muscle fatigue.  During dynamic exercise, respiratory muscle (inspiratory 

and expiratory) fatigue occurs in healthy individuals exercising at workloads of >85% VO2max.  

Respiratory muscle fatigue has been observed to initiate increased sympathetic vasoconstriction, 

reduced leg blood flow, and leg vascular conductance at rest and during exercise.  Factors which 

contribute to respiratory muscle fatigue include respiratory muscle work, respiratory muscle 
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blood flow, hydrogen ion production, glycogen depletion, and the production of reactive oxygen 

species.  The consequences of respiratory muscle fatigue include constrained ventilation, 

dyspnea, and redistribution of blood flow.  During lower limb exercise (e.g. cycling), inactive 

brachial artery and cutaneous blood flow increase during steady state exercise primarily due to 

thermoregulatory requirements.  To date, the influence of respiratory muscle fatigue on inactive 

muscle and cutaneous blood flow during cycling exercise has not been determined. 

 Statement of the Problem 

The purpose of this study is to investigate the influence of respiratory muscle fatigue on 

inactive limb and cutaneous blood flow during dynamic cycling exercise in healthy active 

college-aged men. 

 Hypotheses 

We hypothesized that, compared to exercise trials without respiratory muscle fatigue, respiratory 

muscle fatigue will lead to reduced inactive limb: 1) blood flow, 2) vascular conductance, and 3) 

cutaneous blood flow. 
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III. Methods 

Twelve active, healthy men were recruited as subjects.  Each subject provided their 

health history (via questionnaire) and informed consent prior to testing.  All subjects were free of 

heart and lung disease (self-report) and had normal pulmonary function as assessed by standard 

pulmonary function tests (PFT).  All experimental procedures were approved by the Institutional 

Review Board at Kansas State University, Manhattan, KS. 

 Experimental Design 

Subjects reported to the lab on four separate occasions. During session one, subjects 

                          q             , PFT’ ,                                         ion to 

determine maximal oxygen uptake (VO2max).  Session two and three were randomized and 

consisted of a submaximal cycle test at a workload to elicit 70%VO2max or 85%VO2max for 20 

minutes.  During session four, subjects ingested N-acetylcysteine (NAC) to reduce inspiratory 

muscle fatigue 45 minutes prior to a 85%VO2max cycle test for 20 minutes. 

 Measurements 

 Pulmonary Function Tests 

Pulmonary function tests were assessed according to American Thoracic Society 

guidelines (Miller et al. 2006).  Maximum flow volume loops, maximal inspiratory pressures 

(PImax) and maximal expiratory pressures (PEmax) were assessed prior to exercise testing 

(SensorMedics 229 Metabolic Cart, SensorMedicsCorp., Yorba Linda, CA).  These tests were 

performed after multiple practice sessions until valid, consistent measurements were obtained.  

PImax was measured at residual volume and PEmax was measured from total lung capacity.  All 
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measurements were performed in triplicate with the two values closest to each other used in 

analysis. 

 Maximal Aerobic Capacity (VO2max) 

An incremental exercise test on an electromagnetic cycle ergometer (800S, Sensor 

Medics Corp., Yorba Linda, CA) to exhaustion was performed to determine VO2max.  Baseline 

metabolic and ventilatory measurements were taken for three minutes.  Subjects were then 

instructed to remain seated throughout the test and maintain 60-70 revolutions per min (rpm).  

The workload increased 50 watts each two minutes.  Subjects exercised until volitional fatigue 

despite continual verbal encouragement.  The incremental exercise test ended when the subject 

could not maintain the pedal frequency >50 rpm for five consecutive revolutions.  Fifteen 

minutes after the completion of the incremental exercise test, a second exercise bout was 

performed at a constant workload (105%VO2max) to verify VO2max (71).  The workload for the 

verification was determined from the last workload of the maximal incremental test and subjects 

were instructed to maintain ~60 rpm until volitional fatigue (2-3 min). 

Metabolic and ventilatory data were continuously monitored breath-by-breath throughout 

exercise.  A pulse oximeter (Datex-Ohmeda, 3900P, Madison, WI) was used to estimate arterial 

oxygen saturation (SpO2).  This oximeter provided visual waveform of blood perfusion which 

helped ensure accurate measurements and was secured to the earlobe to minimize movement 

artifact.  Heart rate (HR) was collected continuously and was recorded at the end of each stage 

via Polar heart rate strap (T31-Uncoded). 

 Submaximal Exercise Tests 

Results from the VO2max exercise test were used to calculate a workload which would 

elicit 70% and 85%VO2max for each subject.  The first two submaximal exercise tests (separated 
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by 24-96 hours) were for 20 minutes and the workload was adjusted accordingly to maintain a 

constant metabolic rate (VO2).  During baseline and throughout exercise, the right arm was 

placed on a stand at the level of the heart.  The inactive arm was continuously monitored to 

ensure the arm remained relaxed.  Baseline metabolic measurements were taken for three 

minutes and subjects then warmed up on the cycle ergometer for three minutes with no resistance 

before the workload was increased.  Subjects remained seated and maintained 60-70 rpm 

throughout exercise.  During the last exercise test, subjects ingested N-acetylcysteine (NAC) 45 

minutes prior to the start of exercise (50) and then cycled at 85%VO2max for 20 minutes.  A 

dosage of 1800mg (3 x 600mg) of NAC was used based on the study by Kelley et al. (2009), 

who showed significant decreases (~14%) in inspiratory muscle fatigue during heavy exercise 

using this level of oral dosing (50).  PImax measurements were taken prior to and within three 

minutes following each submaximal exercise.  Additionally, a subset of six subjects cycled at a 

reduced intensity (50%VO2max) for 20 minutes on a separate day to verify increased inactive 

muscle blood flow at a lower exercise intensity than used with this study. 

Metabolic and ventilatory data were continuously monitored breath-by-breath throughout 

exercise.  SpO2 was estimated with a pulse oximeter and heart rate was collected continuously 

during exercise and the averaged 20 second value was used in analysis.  Blood pressure (BP) was 

measured manually via stethoscope auscultation at the brachial artery.  Inactive muscle blood 

flow and blood pressure measurements were performed at baseline and every five minutes during 

exercise.  Vascular conductance was calculated as the ratio of brachial artery blood flow to mean 

arterial pressure and was determined at baseline and every five minutes during exercise.   To 

determine if inspiratory muscle fatigue influences cutaneous blood flow, cutaneous blood flow 

was measured at baseline and every five minutes during exercise. 
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 Inactive Arm Blood Flow 

Doppler ultrasound (DU) was used to measure the brachial artery blood velocity. The 

gate of the Doppler was set to full width of the brachial artery to ensure complete insonation. 

Measurements in the brachial artery were made 2-5 cm above the antecubital fossa.  Mean blood 

velocity (VMEAN; cm x sec-1) was defined as time averaged mean velocity over each complete 

cardiac cycle while, peak velocity (VPEAK; cm x sec-1) was defined as the time averaged peak 

velocity.  The blood velocity profile index was expressed as the VMEAN/VPEAK ratio (Lunt et 

al., 2000; Osada & Radegran, 2005, 2006).  All blood velocities were determined over the 

average of 5-6 consecutive cardiac cycles and corrected for the insonation angle.  Blood flow 

(BF) was calculated as the product of VMEAN and vessel cross sectional area (CSA).  Vessel 

diameters were measured at rest via two-dimensional sonography and used to calculate vessel 

                       SA=π 2;   2   

 Cutaneous Blood Flow 

Laser-Doppler Flowmetry (LDF) was used as an index of red blood flow cell (RBC) flux.  

LDF measures the Doppler shift of a laser as it reflects off red blood cells moving through the 

skin.  LDF is a non-invasive method of obtaining a continuous index of RBC flux and has been 

shown to be a reliable method of determining cutaneous blood flow without influence from 

blood flow in underlying muscle (83). 

Two local heating units were placed on the skin of the inactive right forearm.  An 

integrated laser-Doppler probe, (Probe 413; Perimed; Jarfalla, Sweden) each with seven emitting 

and receiving probes, was placed in the center of each local heating unit to estimate RBC flux in 

the inactive forearm.  After cycling, maximal blood flow was elicited by local heating via 

heating units to a skin temperature of 43ºC.  Cutaneous blood flow data was converted to 
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cutaneous vascular conductance (CVC), calculated as the ratio of cutaneous blood flow to mean 

arterial pressure (RBC flux/ mean arterial pressure).  Cutaneous vascular conductance data was 

expressed as a percentage of maximal vasodilation (%CVCmax) via local heating to 43ºC.  A 60 

second average was used for baseline and every five minutes for each site and then both sites 

were averaged. 

 Statistics 

SigmaSTAT statistical software (Jandel Scientific Software) was used for data analysis.  

Data is presented as mean ± standard deviation.  Differences were determined by a 2x2 (group x 

time) mixed factorial ANOVA.  A Tukey post hoc analysis was performed to determine where 

significant differences existed.  Differences between 85%VO2max trials (with NAC; without 

NAC) were determined via paired t-tests.  Statistical significance was set at p < 0.05 for all 

analyses. 
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IV. Results 

 Subject Characteristics 

Subject characteristics are shown in Table 1.  Subjects were physically active, but not 

competitively trained.  All subjects’ pulmonary function values were within normal predictive 

values (17).  All subjects achieved similar VO2max values (p > 0.05) from the incremental test and 

the constant load verification trial.  Arterial oxygen saturation (SpO2) was maintained within 3% 

of resting values in all subjects throughout all exercise sessions. 

Table 1 Subject Characteristics, Pulmonary Function, and VO2max Data 

 

mean ± SD % Predicted  

Age (yr) 22.9 ± 2.2 - 

Height (cm) 175.2 ± 5.8 - 

Weight (kg) 73.9 ± 9.7 - 

PEF (L/sec) 10.4 ± 1.5 109.4 ± 0.7 

FVC (L) 5.75 ± 0.71 112.1 ± 0.4 

FEV1 (L/sec) 4.67 ± 0.55 105.2 ± 0.4 

FEV1/FVC (%) 83.3 ± 9.3 97.8 ± 1.0 

FEF25-75 (L/sec) 4.79 ± 1.46 98.7 ± 0.3 

PImax (cmH20) 163.1 ± 31.8 119.9 ± 20.6 

PEmax (cmH20) 167.3 ± 23.4 68.6 ± 10.0 

VO2max Data         

     VO2 (L/min) 3.47 ± 0.37 - 

     VO2 (mL/kg/min) 47.4 ± 5.1 - 

     VE (L/min) 138.8 ± 31.6 - 

     VE/VO2 39.8 ± 6.2 - 

     VE/VCO2 35.0 ± 5.1 - 

     RER 1.13 ± 0.06 - 

     SpO2 (%) 98.0 ± 0.9 - 

     HR (bpm) 176.9 ± 7.8 - 

Table 1: Values are mean ± SD. PEF: peak expiratory flow; 

FVC: forced expiratory flow; FEV1: forced expiratory 

volume in 1 second; FEF25-75: forced expiratory flow during 

25-75% of vital capacity; PImax: maximal inspiratory 

pressure. PImax: maximum expiratory pressure. VO2: oxygen 

uptake; VE: ventilation; VE/VO2: ventilatory equivalent for 

oxygen; VE/VCO2: ventilatory equivalent for carbon 

dioxide. RER: respiratory exchange ratio; SpO2: arterial 

oxygen saturation; HR: heart rate 
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 Respiratory Muscle Fatigue 

The averaged measured VO2 over 20 minutes of exercise as a percent of VO2max in the 

70%VO2max test was 70.6 ± 5.5% and 86.0 ± 5.4% in the 85%VO2max test.  Percent mean 

decrease in PImax post-exercise for 70% and 85% VO2max is shown in Figure 1 and individual and 

mean absolute values are presented in Figure 2.  There were no differences (p > 0.05) in pre-

exercise PImax between the exercise tests.  PImax did not change (p > 0.05) following 20 minutes at 

70%VO2max, but was significantly lower (~13%) following 20 minutes at 85%VO2max compared 

to pre-exercise PImax in 11 of the 12 subjects (range 4-29%), indicating inspiratory muscle 

fatigue.  

 

 

Figure 1 Maximal Inspiratory Pressure versus 70% and 85% VO2max Test 
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Figure 1: Maximal inspiratory pressure (PImax) post-exercise for both 70% and 

85%VO2max tests expressed as a % of baseline values.  The 85%VO2max test showed significant 

decreases (~13%) in PImax post- exercise. 
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Figure 2 Mean and Individual Maximal Inspiratory Pressure Pre-and Post-Exercise 
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Figure 2A: Mean (filled circles) and individual (open circles) maximal inspiratory pressure (PImax) pre- and post-exercise 

at 70%VO2max.  PImax post-exercise was not different (p > 0.05) compared to the pre-exercise PImax.  Figure 2B: 

Mean (filled ciricles) and individual (open ciricles) P
Imax

 pre- and post-exercise at 85%VO
2max

.  P
Imax

 post-exercise 

was significantly lower (~13%) compared to the pre-exercise P
Imax

 in 11 of 12 subjects.
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Figure 2A: Mean (filled circles) and individual (open circles) maximal inspiratory pressure 

(PImax) pre- and post-exercise at 70%VO2max.  PImax post-exercise was not different (p > 0.05) 

compared to the pre-exercise PImax.  Figure 2B: Mean (filled circles) and individual (open circles) 

PImax pre- and post-exercise at 85%VO2max.  PImax post-exercise was significantly lower (~13%) 

following the 85%VO2max test compared to the pre-exercise PImax in 11 of 12 subjects. 
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There were no differences (p > 0.05) in pre-exercise PEmax between 70% and 85% VO2max 

tests.  PEmax did not change (p > 0.05) following 20 minutes at 70% VO2max but was significantly 

lower (~15%) following 20 minutes at 85% VO2max compared to pre-exercise PEmax in 11 of 12 

subjects (range 5-30%), indicating expiratory muscle fatigue.    

 Inactive Arm Blood Flow 

Mean brachial artery (BA) blood flow measured at baseline and every five minutes for 

the 70% and 85%VO2max tests are displayed in Figure 3.  Mean and individual BA blood flow 

values at end exercise for both tests are displayed in Figure 4.  There were no differences (p > 

0.05) in BA blood flow at baseline between the tests.  Both 70% and 85% VO2max led to an 

increase (p < 0.05) in BA blood flow at minute 20 compared to baseline (> 3 times resting 

values).  In a subset (n= 6), BA blood flow increased ~twofold over resting values at 50% 

VO2max (data not shown).  There was no differences (p > 0.05) in BA blood flow between the 

exercise intensities and 5, 10 or 15 minutes of exercise  At minute 20, BA blood flow was 

significantly higher (~22%) in the 70%VO2max test compared to the 85% VO2max test (241.8 ± 

65.9 vs. 197.9 ± 42.9 mL/min, respectively).     

Mean arterial pressure (MAP), BA diameter, and BA vascular conductance measured at 

baseline and every five minutes for both tests are presented in Table 2. During exercise, MAP 

was lower (p < 0.05) at 5, 10, and 20 minutes during the 70%VO2max test compared to the 

85%VO2max test.  BA diameter was not different (p> 0.05) at baseline or during exercise between 

the 70% and 85%VO2max tests.  BA diameter was significantly increased at 20 minutes compared 

to baseline in the 70%VO2max test and was significantly increased at minute 15 and 20 compared 

to baseline in the 85%VO2max test.  At baseline and minute 5, 10, and 15 of exercise, BA vascular 

conductance was not different (p > 0.05) between the 70% and 85% VO2max tests, but was 
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significantly higher in the 70%VO2max test compared to the 85%VO2max test (2.60 ± 0.73 vs. 2.02 

± 0.45 mLmin
-1

mmHg
-1

, respectively) at 20 minutes of exercise.    

 

Figure 3 Mean Brachial Artery Blood Flow versus Time 

*

Figure 3: Mean brachial artery (BA) blood flow at baseline and during exercise at 70%VO
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Figure 3: Mean brachial artery (BA) blood flow at baseline and during exercise at 70%VO2max 

and 85%VO2max.  BA blood flow was significantly higher for 70% VO2max compared to 

85%VO2max at 20min. 
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Figure 4 Mean and Individual Brachial Artery Blood Flow Values at End Exercise for 

70%VO2max and 85%VO2max Tests 
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Figure 4: Mean (filled circles) and individual (open circles) brachial artery (BA) blood flow at 20 min for 70%VO
2max

 

and 85%VO
2max 

. At 20 min, BA blood flow was lower (p < 0.05) for 85%VO
2max

 compared to 70%VO
2max

in 9 of 12 subjects

 

Figure 4: Mean (filled circles) and individual (open circles) brachial artery (BA) blood flow at 20 

min for 70% and 85%VO2max. At 20 min, BA blood flow was lower (p < 0.05) for 85%VO2max 

compared to 70%VO2max in 9 of 12 subjects 
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Table 2 Cardiovascular Measurements at Baseline and during 70%VO2max and 85%VO2max 

Tests 

 

MAP (mmHg) 70%VO2max 85%VO2max 

 

 

Baseline 78.8 ± 9.0 77.7 ± 11.6 

 

 

5min 96.0 ± 11.1† 102.8 ±   8.9*†   

 

10min 96.1 ± 11.1† 102.9 ±   8.4*†   

 

15min 96.0 ± 10.2† 100.2 ± 9.7†   

 

20min 94.1 ± 10.9† 99.3 ±   9.6*†   

 

                

 

Brachial Artery Diameter (mm)   

 

          

 

Baseline 4.3 ± 0.3 4.3 ± 0.4   

 

5min 4.3 ± 0.4 4.2 ± 0.5 

 

 

10min 4.4 ± 0.4 4.3 ± 0.5   

 

15min 4.4 ± 0.4 4.4 ±  0.5† 

 

 

20min 4.4 ±  0.4† 4.4 ±  0.5† 

 

 

                

 

Vascular Conductance (mLmin
-1

mmHg
-1

)         

 

  

 

 

Baseline 1.02 ± 0.31 1.08 ± 0.69 

 

 

5min 0.65 ± 0.36 0.49 ±   0.22†   

 

10min 1.32 ± 0.70 1.02 ±   0.37 

 

 

15min 2.18 ±  0.67† 2.02 ±   0.77† 

 

 

20min 2.60 ±  0.73† 2.02 ± 0.45*†   

 

Values are mean ± SD. 

 

 

MAP= mean arterial pressure 

 

 

* Significantly different from the 70% VO2max trial (p < 0.05) 

 

 

† Significantly different from baseline (p < 0.05) 
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 Relationship between Respiratory Muscle Fatigue and Inactive Arm Blood 

Flow 

Figure 5 shows the relationship between the percent change from baseline for BA blood 

flow at end exercise and the percent change in PImax following exercise at 85%VO2max.  Percent 

change from baseline of BA blood flow end exercise was negatively correlated with the percent 

change in PImax following exercise (r = -0.66; p < 0.05), suggesting those subjects with the 

greatest inspiratory muscle fatigue had the highest BA blood flow at end exercise.  Figure 6 

shows the relationship between BA vascular conductance at end exercise for the 85%VO2max test 

and the percent change in PImax following exercise. BA vascular conductance was negatively 

correlated with the percent change in PImax following exercise (r = -0.80; p < 0.05), indicating 

those with the greatest inspiratory muscle fatigue had the highest BA vascular conductance at 

end exercise.  There was no relationship (p > 0.05) between the percent change from baseline for 

BA blood flow or BA vascular conductance at end exercise and the percent change in PEmax 

following 85%VO2max exercise.   
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Figure 5 Relationship between Inspiratory Muscle Fatigue and Brachial Artery Blood Flow 

at End Exercise 
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Figure 5: Relationship between percent change from baseline in brachial artery (BA) flow at end exercise and 
change in PImax during the 85%VO

2max
 trial.  Subjects with the most inspiratory muscle fatigue had the highest

BA blood flow

r = -0.66
p < 0.05

 

Figure 5: Relationship between percent change from baseline in brachial artery (BA) blood flow 

at end exercise and change in PImax during the 85%VO2max test.  Subjects with the most 

inspiratory muscle fatigue had the highest BA blood flow. 
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Figure 6 Relationship between Inspiratory Muscle Fatigue and Brachial Artery 

Conductance at End Exercise 
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Figure 6: Relationship between brachial artery (BA) conductance at 20 min and change in PImax duirng 
the 85%VO

2max
 trial.  There was a negative correlation (r = -0.80; p < 0.05) suggesting those with the most inspiratory muscle fatigue had the highest BA conductance.

r = -0.80
p < 0.05

 

Figure 6: Relationship between brachial artery (BA) conductance at 20 min and change in PImax 

during the 85%VO2max test.  There was a negative correlation (r = -0.80; p < 0.05), suggesting 

those with the most inspiratory muscle fatigue had the highest BA conductance. 

 

 Inactive Arm Blood Flow with Removed Inspiratory                                

Muscle Fatigue from NAC 

The averaged VO2 over 20 minutes was 83.7 ± 6.1% for the 85%VO2max with N-

acetylcysteine (85%VO2maxNAC) test and was not significantly different from the 85%VO2max 

trial without NAC.  There were no differences (p > 0.05) in pre-exercise PImax between the 85% 

and 85%VO2max NAC tests.  PImax did not change (p > 0.05) following 20 minutes of exercise at 

85%VO2max in the 85%VO2max NAC test (Pre: 150.5 ± 30.1 cmH20; Post: 144.8 ± 31.8 cmH20), 
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indicating no inspiratory muscle fatigue confirming the results by Kelly et al. (2009).  Figure 7 

shows the individual and mean percent decrease in PImax post-exercise for 85% and 85% 

VO2maxNAC.  The percent decrease in PImax post-exercise was significantly reduced in the 

85%VO2maxNAC test compared to the 85%VO2max test. 

Pre-exercise PEmax was not different (p > 0.05) between 85% and 85%VO2max NAC tests.  

PEmax was significantly lower (~ 10%) following 20 minutes of exercise in the 85%VO2max NAC 

test compared to pre-exercise PEmax, indicating expiratory muscle fatigue.  The percent decrease 

in PEmax post-exercise was similar (p > 0.05) between tests with and without NAC. 

Mean BA blood flow measured at baseline and every 5 minutes for the 85% and 

85%VO2maxNAC tests are presented in Figure 8.  Mean and individual BA blood flow values at 

minute 20 for both tests are displayed in Figure 9.  BA blood flow at baseline was similar (p > 

0.05) between tests.  Without inspiratory muscle fatigue at 85%VO2max, BA blood flow was 

significantly higher at 10 minutes (No inspiratory muscle fatigue: 154.8 ± 106.7 vs. inspiratory 

muscle fatigue: 103.9 ± 36.1 mL/min) and 20 minutes (No inspiratory muscle fatigue 261.2 ± 

111.2 vs. inspiratory muscle fatigue 197.9 ± 42.9 mL/min), but was similar (p > 0.05) to 

70%VO2max blood flow.  At end exercise, 8 of the 12 subjects increased BA blood flow (range 4-

178%) in the VO2maxNAC test compared to the 85%VO2max test.  
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Figure 7 Inspiratory Muscle Fatigue at 85% versus 85%VO2maxNAC Tests 
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Figure 8: Mean (filled circles) and individual (open circles) maximum inspiratory pressure reported as percent of 
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Figure 7: Mean (filled circles) and individual (open circles) maximum inspiratory pressure 

reported as percent of rest (% of baseline) for the 85%VO2max and 85%VO2max NAC post-

exercise.  PImax was significantly decreased following the 85%VO2max test, but not for the 

85%VO2maxNAC test in all subjects. 
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Figure 8 Mean Brachial Artery Blood Flow versus Time 
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Figure 9:  Mean brachial artery (BA) blood flow at baseline and during exercise at 85%VO
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Figure 8:  Mean brachial artery (BA) blood flow at baseline and during exercise at 85%VO2max, 

and 85%VO2maxNAC.  BA blood flow at 10 and 20 min was higher (p < 0.05) for 

85%VO2maxNAC compared to 85%VO2max.   
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Figure 9 Mean and Individual Brachial Artery Blood Flow at End Exercise for 85% 

VO2max and 85%VO2maxNAC Tests 
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Figure 10: Mean (filled ciricles) and individual (open ciricles)brachial artery (BA) blood flow at 20 min at 
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Figure 9: Mean (filled circles) and individual (open circles) brachial artery (BA) blood flow at 

end exercise at 85%VO2max and 85%VO2maxNAC at end exercise.  BA blood flow was higher (p 

< 0.05) for 85%VO2maxNAC compared to 85%VO2max in 8 of 12 subjects. 

 

 

MAP, BA diameter, and BA vascular conductance measured at baseline and every five 

minutes for both tests are presented in Table 3. At baseline, MAP was significantly higher in the 

85%VO2maxNAC compared to the 85%VO2max test, but during exercise was not different (p > 

0.05).  At baseline, the BA diameter was not different (p > 0.05) between tests, but during 

exercise was higher (p < 0.05) in the 85%VO2maxNAC test compared to the 85%VO2max test.  BA 

vascular conductance was significantly higher with the reduction of inspiratory muscle fatigue 

compared to the 85%VO2max at 10min (No inspiratory muscle fatigue: 1.57 ± 1.11 vs. inspiratory 
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muscle fatigue: 1.02 ± 0.37 mLmin
-1

mmHg
-1

) and 20min (No inspiratory muscle fatigue: 2.73 ± 

1.18 vs. inspiratory muscle fatigue: 2.02 ± 0.45 mLmin
-1

mmHg
-1

). 

 

Table 3 Cardiovascular Measurements at Baseline and during 85%VO2max and 

85%VO2maxNAC Tests 

 

MAP (mmHg) 85%VO2max 85%VO2max NAC   

 

Baseline 77.7 ± 11.6 82.2 ± 9.0*   

 

5min 102.8 ± 8.9† 103.3 ± 8.8†   

 

10min 102.9 ± 8.4† 101.9 ± 9.0†   

 

15min 100.2 ± 9.7† 100.8 ± 9.5†   

 

20min 99.3 ± 9.6† 96.9 ± 9.4†   

 

          

 

    

 

Brachial Artery Diameter (mm)       

 

  

 

  

 

Baseline 4.3 ± 0.4 4.4 ±   0.5   

  5min 4.2 ± 0.5 4.4 ± 0.5*   

  10min 4.3 ± 0.5 4.5 ± 0.5*   

 

15min 4.4 ± 0.5† 4.5 ±   0.5*† 

 

 

20min 4.4 ± 0.5† 4.5 ±   0.5*† 

 

 

              

 

 

Vascular Conductance (mLmin
-1

mmHg
-1

)         

  

  

 

Baseline 1.08 ± 0.69 1.16 ± 0.55   

 

5min 0.49 ± 0.22† 0.67 ± 0.36 

 

 

10min 1.02 ± 0.37 1.57 ± 1.11* 

 

 

15min 2.02 ± 0.77† 1.99 ± 1.19† 

 

 

20min 2.02 ± 0.45† 2.73 ± 1.18*† 

 

 

Values are mean ± SD. 

 

 

MAP= mean arterial pressure 

 

 

* Significantly different from the 85% VO2max trial (p < 0.05) 

 

 

† Significantly different from baseline (p < 0.05) 
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 Cutaneous Vascular Conductance 

Cutaneous vascular conductance (%CVCmax) was not different (p > 0.05) at rest or 

between exercise intensities throughout exercise for the 70% and 85% VO2max tests.  Figure 10 

shows the increase in cutaneous vascular conductance for 70%VO2max and 85%VO2max.  

Cutaneous vascular conductance increased ~5 fold from rest in both conditions.  Cutaneous 

vascular conductance at end exercise was negatively correlated with the percent change in PImax 

at 85%VO2max (r= -0.61; p < 0.05), suggesting that those subjects with the greatest inspiratory 

muscle fatigue had the highest cutaneous vascular conductance at end exercise.  In the 85% 

VO2max test, cutaneous vascular conductance at end exercise was not related (p > 0.05) with the 

percent change in PEmax or BA blood flow.  However, Figure 11 shows cutaneous vascular 

conductance at end exercise in the 85%VO2max test was positively related with BA vascular 

conductance at end exercise (r = 0.65; p < 0.05), suggesting those with the highest BA vascular 

conductance had the highest cutaneous vascular conductance.  Cutaneous vascular conductance 

was not different (p > 0.05) at baseline or during exercise between the 85%VO2max or 

85%VO2maxNAC.   
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Figure 10 Cutaneous Vascular Conductance versus Time 
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Figure 11: Mean skin blood flow (%CVCmax) at baseline and during exercise at 85%VO
2max

and 85%VO
2max

 NAC.  There was no difference (p > 0.05) at baseline or during exercise.

 

 

Figure 10: Mean cutaneous vascular conductance (%CVCmax) at baseline and during exercise at 

70%VO2max and 85%VO2max.  There was no difference (p > 0.05) at baseline or during exercise. 
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Figure 11 Relationship between Cutaneous Vascular Conductance and Brachial Artery 

Vascular Conductance at End Exercise 
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Figure 7:  Relationship between skin blood flow (%CVCmax) and brachial artery (BA) conductance at end exercise

during the 85%VO2max test.  There was a postive correlation (r=0.65, p < 0.05) suggesting those with the highest

BA conductance had the highest skin blood flow at end exercise.

 

 

Figure 11:  Relationship between cutaneous vascular conductance (%CVCmax) and brachial 

artery (BA) vascular conductance at end exercise during the 85%VO2max test.  There was a 

positive correlation (r=0.65, p < 0.05) suggesting those with the highest BA conductance had the 

highest cutaneous vascular conductance at end exercise. 
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V. Discussion 

 Major Findings 

The purpose of this study was to determine the influence of respiratory muscle fatigue on 

inactive limb blood flow during heavy exercise.  Our major original findings support our 

hypothesis that respiratory muscle fatigue led to a reduced inactive limb blood flow and vascular 

conductance.  However, against our hypothesis, cutaneous vascular conductance did not change 

with respiratory muscle fatigue during heavy exercise.  These results combined with previous 

reports suggest that increased respiratory muscle work and respiratory muscle fatigue during 

heavy whole body exercise leads to a redistribution of blood flow from both active and inactive 

skeletal muscles to the respiratory muscles that does not impair thermoregulation. 

 Respiratory Muscle Fatigue 

Inspiratory and expiratory muscle fatigue following heavy exercise is well documented 

(Romer et al. 2008).  Specifically, decreases in respiratory muscle strength indicating fatigue 

have been reported with shuttle runs (10.5%) (59), 6-minute all-out rowing effort (11%) (108), 

incremental exercise to exhaustion (17%) (66), marathon running (16.5-18%) (54, 78), and heavy 

exercise to exhaustion (17%) (23).  The amount of inspiratory muscle fatigue in the present study 

(~ 13%) is in accordance with these previous studies.  Decreases in expiratory muscle strength 

have been reported with marathon running (27%) (54) and 20 minutes of running at 85% HRmax 

(6%) (15).  The expiratory muscle fatigue in the present study (15%) also aligns with these 

previous studies.   

Variable degrees of respiratory muscle fatigue are often experienced for a given exercise 

intensity (6, 23).  With high intensity exercise (85% VO2max), our subjects also demonstrated a 

wide range of respiratory muscle fatigue.  This variable amount of respiratory muscle fatigue 



37 

 

may be due to differences between subjects in diaphragmatic duty cycle (9), respiratory muscle 

length/ velocity shortening (21), and/or respiratory muscle VO2 (60). 

 Redistribution of Blood Flow from Inactive Muscle 

Increased blood flow to inactive muscle during moderate exercise is well established (10-

12, 48, 67, 91, 101), which was consistent with what we observed.  During prolonged (30-60 

minutes) cycling exercise at 60-69%VO2max, inactive limb blood flow has been reported to 

increase 2-4 fold (65, 67, 91) and tends to increase with increased intensity (98).  Our data 

confirms that the increase in inactive arm blood flow is intensity dependent as we demonstrated 

~2 fold increase in inactive arm blood flow over baseline with a small subset of our subjects 

exercising at 50%VO2max, and ~3 fold increase at 85%VO2max. 

During incremental and steady state exercise, inactive blood flow increases partly due to 

increased vessel diameter (67, 98).  Tanaka et al. calculated shear stress of the brachial artery 

during incremental cycling exercise and reported an exercise intensity dependent increase in 

shear stress (98).Recently, Padilla et al. compared a forearm heating protocol, known to increase 

shear stress, and steady state cycling exercise (120 watts) and demonstrated that shear stress was 

primarily responsible for the dilation of the inactive brachial artery during exercise due to the 

increase in mean arterial pressure (67).  The results of the present study are in agreement with 

these previous studies showing an increased conduit diameter during cycling exercise likely due 

to shear stress.     

Our findings that the increased blood flow to the inactive arm was reduced with 

respiratory muscle fatigue is consistent with previous studies that have also reported reductions 

in inactive muscle blood flow with respiratory muscle fatigue in animal and human models (74, 

87).  However, these previous studies have all been performed under resting conditions.  
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Specifically, lactic acid was injected into the diaphragm (via phrenic artery) and internal 

abdominal expiratory muscles (via deep circumflex iliac artery) in resting awake dogs (74).  

Lactic acid has a similar action as diaphragmatic fatigue on stimulating phrenic IV afferent nerve 

activity (41).  The injection of lactic acid in resting awake dogs led to a reduction in resting hind 

limb blood flow (74).  Similar effects have been shown in humans.  Sheel et al. (2001) 

demonstrated that inspiratory muscle task failure induced by resistive breathing at rest led to 

increased leg vascular resistance and reduced leg blood flow by ~30% (87).  Our results now 

extend these findings to heavy exercise. 

During heavy exercise, approximately 80-85% of cardiac output is distributed to the 

locomotor muscles (51, 69).  Secher et al. (1977) was the first to demonstrate that the addition of 

arm exercise to cycling heavy exercise actually reduced blood flow and vascular conductance to 

the legs, indicating   “           ”                   g                       (84).  Harms et al. 

(1997) extended these findings by increasing the work of breathing (~128% of control) via 

inspiratory resistors and measured the locomotor blood flow during maximal intensity exercise.  

With the increased work of breathing, locomotor blood decreased by ~1.3 liters per minute 

(~7%) and locomotor vascular resistance was increased.  Conversely when the work of breathing 

was reduced during maximal exercise via proportional assist ventilator, locomotor blood flow 

increased ~0.8 liters per minute (~4%) and locomotor vascular resistance was reduced (35).  This 

supports the premise that high respiratory muscle work during heavy exercise leads to 

redistribution of blood flow from active muscle to the respiratory muscles.  The present study is 

in agreement with these previous studies and extends them to the inactive limb during heavy 

exercise.  Specifically when respiratory muscle fatigue occurred during heavy exercise, inactive 

limb blood flow was reduced presumably due to vasoconstriction of the brachial artery.  Also, 
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we were able to confirm our results by reducing respiratory muscle fatigue via N-acetylcysteine 

(NAC).  NAC was effective in reducing respiratory muscle fatigue, which is in agreement with 

Kelly et al. (50), and consequently inactive limb blood flow and vascular conductance was not 

attenuated.  Therefore, we are confident that respiratory muscle fatigue leads to reduced vascular 

conductance and blood flow to inactive muscle. 

Why was inactive muscle blood flow reduced with respiratory muscle fatigue?  Increased 

respiratory muscle work and respiratory muscle fatigue lead to increased sympathetic outflow 

eliciting vasoconstriction of both resting and exercising active muscle vasculature (87, 94).  In 

resting humans, inspiratory and expiratory muscles were fatigued by breathing against an 

inspiratory and expiratory resistor (until task failure) (20, 94).  Both inspiratory and expiratory 

muscle fatigue were reported to increase muscle sympathetic nerve activity (MSNA) in the 

resting limb leading to vasoconstriction of the femoral artery.  Recently, Katayma et al. (2012) 

fatigued the inspiratory muscles via resistive breathing during submaximal (40%VO2max) cycling 

exercise and measured MSNA in the inactive arm (45).  With inspiratory muscle fatigue, MSNA 

was increased leading to inactive muscle vasoconstriction during submaximal cycling exercise.  

Although we did not measure sympathetic nerve activity, it is likely that the redistribution of 

blood flow to the respiratory muscles was due to sympathetically mediated vasoconstriction in 

the inactive arm muscle. 

Unexpectedly, the relationship between respiratory muscle fatigue and brachial artery 

blood flow suggested that subjects who experienced the most respiratory muscle fatigue were not 

able to redistribute inactive blood flow to the respiratory muscles as well as subjects with the 

least amount of respiratory muscle fatigue.  One possible explanation for this finding is subjects 

with the highest end exercise inactive blood flow simply did not respond to the increased 
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inactive arm limb sympathetic outflow, thereby the less respiratory muscle blood flow possibly 

exacerbated the respiratory muscle fatigue.  This premise is supported by the increase in 

diaphragmatic fatigue reported when intercostal blood flow is not increased in hypoxia compared 

to normoxia during heavy exercise (106).  Another possible explanation is that other factors (e.g. 

respiratory compensation point, critical power) may be contributing to this variability.  Subjects 

with a lower critical power or respiratory compensation point, which are speculatively similar 

(19), might have an increased ventilatory response, consequently increased respiratory muscle 

work and respiratory muscle fatigue compared to subjects with a higher critical power or 

respiratory compensation point.  Future studies are needed to substantiate these ideas and to help 

explain how the degree of respiratory muscle fatigue contributes to blood flow distribution in 

inactive muscle. 

 Respiratory Muscle Fatigue and Cutaneous Vascular Conductance 

Why did the apparent sympathetic outflow elicited by the respiratory muscle fatigue not 

lead to a vasoconstriction of the cutaneous circulation as hypothesized?  During steady state 

exercise, active cutaneous vasodilation is responsible for the increases and plateau in cutaneous 

blood flow (47).  This was demonstrated by Kellogg et al. (1993) using bretylium tosylate, a 

vasoconstrictor blockade (47).  These investigators observed the increase and plateau in 

cutaneous blood flow during exercise was not different, suggesting that active cutaneous 

vasodilation is responsible for this increase and plateau of cutaneous blood flow (47).  As 

previously stated, respiratory muscle fatigue initiates an increase in sympathetic outflow leading 

to vasoconstriction; however, this sympathetic outflow appears to not elicit vasoconstriction of 

the cutaneous circulation during steady state exercise.   
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Non-thermoregulatory reflexes, such as cardiopulmonary and perhaps arterial 

baroreflexes, can also play a role in regulating the plateau in cutaneous blood flow during 

exercise (92).  This is demonstrated by the absence of a cutaneous blood flow plateau during heat 

stress (42), suggesting that the competition for cardiac output between active muscle beds and 

cutaneous circulation during exercise may limit the magnitude of the cutaneous blood flow 

plateau.  Additionally, the plateau in cutaneous blood flow was present during hypohydration 

(62) and absent with saline infusion (64) during exercise indicating central filling pressure plays 

a role in regulating the cutaneous blood flow plateau during exercise.  However, MAP was 

maintained when respiratory muscle fatigue occurred in our study, so it is unlikely the 

cardiopulmonary baroreceptors influenced the plateau in cutaneous vascular conductance.   

Interestingly, the reduced inactive limb blood flow with respiratory muscle fatigue did 

not lead to reduced cutaneous vascular conductance.  A similar finding was previously reported 

during 30-60 minutes of leg cycling where approximately 75-80% of brachial artery blood flow 

was directed to the cutaneous circulation (43, 65) and presumably a reduction in brachial artery 

blood flow would reduce cutaneous circulation.  In the present study, it is likely that much of the 

increased inactive muscle blood flow during exercise was distributed to the cutaneous 

circulation.  Therefore, the reduced inactive limb blood flow with respiratory muscle fatigue did 

not limit the cutaneous vascular conductance response.  However in the present study, we also 

show subjects with the highest inactive arm vascular conductance had the highest inactive arm 

cutaneous vascular conductance.  This relationship is supported by Simmons et al. (2011) who 

applied local cooling to the forearm cutaneous circulation during steady state cycling exercise 

and measured the brachial artery blood flow and cutaneous blood flow response.  These 

investigators observed a reduction in brachial artery vascular conductance due to the 
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vasoconstriction of the cutaneous circulation (91).  In the present study, we propose that the 

subjects with the decreased cutaneous vascular conductance was due to a reduction in inactive 

limb vascular conductance.  Therefore, the inactive muscle blood flow was redistributed to the 

cutaneous circulation and the reduction in inactive limb blood flow was not severe enough to 

elicit a decreased cutaneous vascular conductance response.  

 Implications of Respiratory Muscle Fatigue on Inactive Limb Blood Flow 

Respiratory muscle fatigue may limit exercise performance by redistributing both active 

and inactive blood flow during dynamic exercise.  The respiratory muscles require 14-16% of the 

total cardiac output during high intensity exercise (35).  High intensity exercise leads to 

respiratory muscle fatigue which initiates a respiratory muscle metaboreflex leading to increased 

sympathetic outflow and consequently reduced locomotor blood flow (35).  This premise is 

supported by the increase in time to exhaustion at 90%VO2max when the work of breathing was 

reduced ~50% due to decreased respiratory muscle blood flow and consequently increased 

locomotor blood flow (36).  Conversely, when the work of breathing was increased via 

inspiratory resistors, time to exhaustion was decreased, most likely due to increased respiratory 

muscle blood flow and reduced locomotor blood flow.  The reduction of blood flow to the 

locomotor muscles has been implicated in increasing locomotor muscle fatigue due to reduced 

oxygen transport (2) impairing exercise performance.   

The primary role of increased inactive limb blood flow during dynamic exercise is 

believed to be for thermoregulation via dissipation of heat (80).  During exercise, the 

thermoregulatory demands are met by increasing conduit and cutaneous blood flow and as a 

result inactive limb blood flow increases with exercise intensity (98).  The findings of this study 

demonstrate that respiratory muscle fatigue reduces inactive limb blood flow but cutaneous 



43 

 

circulation was not reduced.  However if there was a further increased sympathetic 

vasoconstriction, the further reduced inactive limb blood flow may lead to reduction in cutaneous 

blood flow.  Recently, Kayatymo et al. (2013) demonstrated inspiratory muscle fatigue led to an 

increased MSNA in the inactive limb during leg cycling in hypoxic conditions and therefore 

increased work of breathing compared to normoxic conditions (46).  Therefore, it is likely that 

respiratory muscle fatigue in populations with a higher work of breathing (e.g. aging, COPD, 

CHF) will be associated with a reduced cutaneous blood flow response during exercise due to the 

reduced inactive limb blood flow.  The reduction in inactive cutaneous circulation would lead to 

a reduction in heat dissipation and increased internal temperature consequently influencing 

exercise performance.  Furthermore, González-Alonso et al. (1999) measured cycling         

                            g     g                                                          

      º ,           g                                                        g     g      

                  ºC (28).  These findings suggest that thermoregulation may be compromised 

with respiratory muscle fatigue and therefore may further reduce exercise tolerance.   

The increased inactive limb blood flow during whole body exercise has also been used 

for therapeutic interventions.  Anderson et al. (2008, 2010) have reported increased blood flow 

during exercise to inactive shoulders and neck muscles (3, 4).  The authors speculate that this 

may be beneficial in relieving chronic pain to these areas.  Anderson et al. (2010) reported that 

submaximal leg cycling also increased oxygenation in the inactive shoulders and neck, which 

further contributed to the therapeutic benefits (3).  Our data suggests that if an individual 

exercised at high intensity (>85%VO2max) or has a condition that would lead to respiratory 

muscle fatigue, a reduction in inactive muscle blood flow and thus reduced oxygenation would 

occur which would negatively influence this therapeutic intervention.   
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 Limitations 

Two potential limitations may have influenced our results.  Previously, the gold standard 

for assessing diaphragmatic fatigue is bilateral phrenic nerve stimulation (BPNS) (44), while 

gastric pressures have been used to assess abdominal fatigue (99).  In the present study, changes 

in maximal mouth pressures were used to measure respiratory muscle fatigue.  Maximal mouth 

pressures have been demonstrated to show similar results as BPNS and gastric pressures and 

have been used in previous studies (23, 39, 40, 76, 93, 108).  Maximal mouth pressures 

maneuvers are effort-dependent and, therefore, subjects were highly encouraged to perform the 

maneuver with maximal effort.  Also, we performed pre- and post- exercise maximal mouth 

pressures tests in triplicate and lung volume measurements were made for each trial to help 

ensure consistency.  The number of trials of maximal mouth pressures was limited to ≤ 3 with a 

warm-up session because this has been shown to reduce subject variability (107) and not lead to 

respiratory muscle fatigue.  Additionally, each subject practiced maximal mouth pressures during 

a session before the exercise trials to help reduce variability. 

Secondly, there is a possibility the inactive arm muscle periodically contracted during 

cycling exercise.  Previously, electromyography (EMG) has been used to assure the" inactivity" 

of the inactive limb during incremental cycling exercise (98).  Although a EMG was not used in 

the present study, the inactive limb was continuously monitored to ensure that it was not 

contracting throughout each exercise test and every effort was made to ensure the arm remained 

in a rested state. 

 Future Directions 

Future research is worthwhile to expand our understanding of the influence of respiratory 

muscle fatigue on blood flow distribution during dynamic exercise.  First, it would be interesting 
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to determine the influence of respiratory muscle fatigue on both active and inactive muscle blood 

flow concurrently during dynamic exercise.  Does respiratory muscle fatigue lead to similar or 

different reductions in both inactive and active muscle blood flow? If so, under what conditions 

or subject populations?  Why did some subjects not respond to the sympathetic outflow elicited 

by the respiratory muscle fatigue and not redistribute inactive limb blood flow?  Specifically, 

how do factors such as critical power and the respiratory compensation point contribute to 

respiratory muscle fatigue?  If respiratory muscle fatigue is alleviated, via NAC, does this 

eliminate the blood flow redistribution of both inactive and active muscle blood flow?  If so, can 

NAC assist in improving exercise tolerance?  Furthermore, it would be interesting to determine 

the influence of temperature on both inactive and cutaneous blood flow during exercise.  

Specifically, does high external temperature lead to increased inactive blood flow and cutaneous 

blood flow despite the influence of respiratory muscle fatigue?  Conversely, does a low external 

temperature lead to a reduced inactive muscle and cutaneous blood flow possibly reducing 

respiratory muscle fatigue?  Finally, subject selection is important in future work because the 

present study only involved healthy college-aged men subjects.  Would women, older 

individuals, or diseased populations (i.e. COPD, CHF) have similar reductions in inactive blood 

flow?  When the work of breathing is increased as in a diseased populations (COPD, CHF), does 

exercise in a hypoxic environment lead to greater reductions in both inactive and active muscle 

blood flow?  The results from the present study certainly open the possibility of many additional 

questions to be addressed. 
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 Summary 

Respiratory muscle fatigue may limit exercise performance via several different 

mechanisms.  Much research of our understanding on the effects of respiratory muscle fatigue on 

blood flow distribution and vascular conductance have come from studies performed at rest.  We 

have shown for the first time that respiratory muscle fatigue during whole body heavy exercise 

also reduces inactive limb blood flow and vascular conductance.  The present study in 

combination with previous studies supports the premise that respiratory muscle fatigue during 

heavy exercise leads to redistribution of both active and inactive vascular beds towards the 

respiratory muscles.  These findings have important implications to both the healthy and clinical 

populations for exercise tolerance.  The present study is also the first to demonstrate that 

respiratory muscle fatigue did not affect cutaneous blood flow during whole body heavy 

exercise, which suggests that thermoregulation is not affected by respiratory muscle fatigue.  

Future research is warranted to determine specific mechanisms and conditions to help explain 

and extend these findings.   
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