
This is the author’s final, peer-reviewed manuscript as accepted for publication.  The 
publisher-formatted version may be available through the publisher’s web site or your 
institution’s library.  

This item was retrieved from the K-State Research Exchange (K-REx), the institutional 
repository of Kansas State University.  K-REx is available at http://krex.ksu.edu 

A nonparametric-test-based structural similarity measure for 
digital images 
Haiyan Wang, Diego Maldonado, Sharad Silwal 
 
 

How to cite this manuscript 

 
If you make reference to this version of the manuscript, use the following information: 
 
Wang, H., Maldonado, D., & Silwal, S. (2011). A nonparametric-test-based structural 
similarity measure for digital images. Retrieved from http://krex.ksu.edu 
 
 

Published Version Information 

 
Citation: Wang, H., Maldonado, D., & Silwal, S. (2011). A nonparametric-test-based 
structural similarity measure for digital images. Computational Statistics & Data 
Analysis, 55(11), 2925-2936. 
 
 
Copyright: Copyright © 2011 Elsevier B.V. All rights reserved. 
 
 
Digital Object Identifier (DOI): doi:10.1016/j.csda.2011.04.021 
 
 
Publisher’s Link: http://www.sciencedirect.com/science/article/pii/S0167947311001502 
 
 
 



A Nonparametric-Test-Based Structural Similarity

Measure for Digital Images
Haiyan Wang1∗ and Diego Maldonado2† and Sharad Silwal2†

1Department of Statistics, Kansas State University, Manhattan, KS 66506

2Department of Mathematics, Kansas State University, Manhattan, KS 66506

Abstract:
In image processing, image similarity indices evaluate how much structural information

is maintained by a processed image in relation to a reference image. Commonly used mea-

sures, such as the mean squared error (MSE) and peak signal to noise ratio (PSNR), ignore

the spatial information (e.g. redundancy) contained in natural images, which can lead to an

inconsistent similarity evaluation from the human visual perception. Recently, a structural sim-

ilarity measure (SSIM), that quantifies image fidelity through estimation of local correlations

scaled by local brightness and contrast comparisons, was introduced by Wang et al. [2004].

This correlation-based SSIM outperforms MSE in the similarity assessment of natural images.

However, as correlation only measures linear dependence, distortions from multiple sources

or nonlinear image processing such as nonlinear filtering can cause SSIM to under or overes-

timate the true structural similarity. In this article, we propose a new similarity measure that

replaces the correlation and contrast comparisons of SSIM by a term obtained from a non-

parametric test that has superior power to capture general dependence, including linear and

nonlinear dependence in the conditional mean regression function as a special case. The new

similarity measure applied to images from noise contamination, filtering, and watermarking,

provides a more consistent image structural fidelity measure than commonly used measures.

AMS 2000 subject classifications: Primary 68U10, 97K80, 62H35; secondary 62G10.

Keywords and phrases: Image processing, nonparametric hypothesis testing, image structural

similarity, digital image watermarking.

1. Introduction

Image similarity indices measure the quality or similarity of an image Y in relation to a refer-

ence image X and they are of crucial importance in concrete applications. One such application

is the use of image similarity indices along with digital image processing. Filtering, compression,

transmission, or reproduction of a digital image may result in degradation of its visual quality. An

accurate similarity measure can help to decide the parameter settings (e.g. thresholding cut-offs) for

optimal results in image processing. Another application appears in the context of content-based

image searches or image retrievals. A key step in the design of an image retrieval system is the

∗Corresponding author e-mail: hwang@ksu.edu
†Research was partially supported by NSF under grant DMS 0901587.
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choice of an appropriate image similarity measure. Most traditional and commonly used methods

of image search are carried out by adding annotations such as captions, keywords, or descriptions

to the images so that retrieval can be performed by means of the annotation words. In order to avoid

time-consuming, laborious, and expensive image annotations, whose descriptions may even fail to

capture the essence of an image content, there is great interest in content-based image retrieval

(CBIR). CBIR aims at retrieving images based on their visual similarity to a user-supplied query

image, thus avoiding the use of textual descriptions. In early work on CBIR, similarity measures

based on global feature representations, such as color histograms and global shape descriptors, are

considered. One problem with all such approaches is the semantic gap (Smeulders et al. [2000])

between low-level content and higher-level concepts. The image domain is too broad and deep for

global features to reduce the semantic gap. A major shift has been witnessed in recent years from

global feature representations for images to local features and descriptors, such as spatial model

features and robust local shape characterizations. Computation of similarity can be performed with

feature vectors, region-based signatures, or summarized local features. However, many such meth-

ods lack the necessary detail to represent complex image semantics. See Datta et al. [2008] for a

review and in-depth discussions.

Most of the literature on image similarity measures is based on the error-sensitivity approach,

which summarizes the errors or distortions at each pixel location. Some work uses global or local

features of the image and defines dissimilarity based on distortions on the feature vectors. Working

with the distortions is consistent with the first stage of the human perception system that focuses

on the differences of the images. Mean squared error (MSE) is one of such measures popularly

utilized. MSE, which averages squared deviations of all elements of the distortion vector, is used

to summarize the dissimilarity between two images. It has the advantages of being easy to compute

and providing a convenient Hilbert space structure for mathematical models. Peak signal-to-noise

ratio (PSNR) is another popularly used measure of image processing quality. It is proportional to

the log10 ratio of the squared maximum pixel value of the image and MSE. Minkowski distances

use lp norm to summarize element-wise distortions. As many different distortion vectors can lead

to identical MSEs, several distorted images with identical MSE may have very different similar-

ities relative to the original image. PSNR and Minkowski distances share a similar drawback. In

addition, all these three measures completely ignore the spatial relationship among the pixels of

natural images and treat the distortion at each pixel location equally.

Some recent literature considered region-based image dissimilarity measure to take into account

some of the spatial relationships between regions (cf. Wang et al. [2001]; Ko and Byun [2002]). An

image is first described by a set of segmented regions and then distances between matching regions

are combined into a measure. One of such approaches is the weighted distance (Wang et al. [2001])

that summarizes the difference between two images through a summation of the weighted distance

between two sets of feature vectors. Hausdorff distance (HD, Ko and Byun [2002]) is another
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region-based measure. The HD is defined as the maximum distance of a set to the nearest point in

the other set. That is, each image is first described by a set of vectors and the HD calculates the

maximum distance of one set to the closest vector in the other set. As the selection of feature vectors

or regions may not fully describe the entire image, other methods have been vigorously pursued by

researchers to account for spatial dependence of image pixels. The Kullback-Leibler (K-L) distance

has been recently studied in texture retrieval (Do and Vetterli [2002]; Mathiassen et al. [2002]).

The K-L distance measures the expected log-likelihood ratio between two distributions with the

expectation under one distribution. The unknown distributions need to be estimated to obtain the

K-L distance. The estimation is, however, either required to be restricted to a specific parametric

family or ignores the spatial dependence among the image data. Wang et al. [2004] proposed a

correlation-based structural similarity measure (SSIM) to account for spatial relationship. Among

these methods, the SSIM has been the subject of considerable attention in the recent literature

on image quality assessment (cf. Wu and Rao [2005]; Wang and Bovik [2006] and the references

therein). Extensive experiments have demonstrated consistently better performance of SSIM over

MSE (Sheikh et al. [2006]). However, as correlation only captures linear relationship, nonlinear

or multiple sources of distortions may significantly limit the performance of SSIM. For example,

median filtering is a nonlinear transformation of the original image. Our example in Section 2.1

shows that the SSIM may assign a high score to a median filtered image that has lost the majority

of the fine details but assigns a similar or lower score to an image slightly contaminated with

Gaussian noise that still contains all the fine details (see Figure 1).

In this article, we introduce a new image similarity measure based on hypothesis testing to assess

structural information change by evaluating the dependence of local blocks of the error signal on

the images being compared. To overcome the disadvantage of SSIM, a nonparametric test with no

distributional assumptions will be used to detect general relationship between the error signal and

the test images. The rest of the article is organized as follows. Section 2.1 reviews the strengths and

limitations of SSIM which has motivated this research. Section 3 describes the details of the new

similarity measure and its properties. Section 4 is devoted to some applications and performance

comparison with MSE and SSIM followed by a summary at the end. For clarity, all images in the

manuscript are given with small size to allow easy organization. The quality of the images can be

seen with the zoom in option in the pdf file.

2. SSIM: strengths and some limitations

The SSIM was introduced in Wang and Bovik [2002], and formally studied in Wang et al. [2004].

The principle underlying the basic SSIM is that the retention of signal structure should be an im-

portant ingredient since the human visual system (HVS) is highly adapted to extracting structural

information from visual scenes. Suppose that x and y are local image blocks taken from the same

location of two images that are being compared. The local SSIM index is the product of the simi-

larity measures of three elements of the image blocks: the similarity of the local block brightness
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values (luminance), the similarity of the local block contrasts, and the similarity of the local block

structures. Namely,

SSIM(x,y) =

(
2µxµy +C1

µ2
x +µ2

y +C1

)
·
(

2σxσy +C2

σ2
x +σ2

y +C2

)
·
(

σxy +C3

σxσy +C3

)
, (2.1)

where µx and µy are the local sample means of x and y, respectively, σx and σy are the local sample

standard deviations of x and y, and σxy is the sample covariance of x and y. C1, C2, and C3 are small

positive constants to avoid numerical instability. The final SSIM score is obtained as the average of

the local SSIM indices. For further details on SSIM and its variants, see Wang and Bovik [2006].

Hence, by neglecting the constants C1, C2, and C3, it follows that SSIM(X ,Y ) = 1 if and only

if X = Y . From the formula in (2.1), it can also be seen that the SSIM index measures the local

structural similarity between two images through the sample correlation. As correlation is invari-

ant under location or scale changes, comparison between the local means is considered to penalize

location (i.e. lunimance) shift, and similarly, comparison between the local sample standard de-

viations are used to penalize scale changes. It has been shown in Sheikh et al. [2006] through

experiments on a wide variety of images and distortion types that the SSIM index gives much

more consistent scores than MSE does relative to visual perception.

On the other hand, correlation is a measure of linear relationship. The estimated correlation

through samples can change dramatically if there are influential points or if the images have gone

through more than one source of distortion. As an example, we illustrate with the images (a) and (d)

in Figure 1. The image in Figure 1 (d) was generated by adding noise from a mixture distribution to

the original image in (a). The noise imitates two sources of distortion, one of which happens 40%

of the time and comes from a t-distribution with 3 degrees of freedom plus a shift of 30 in the mean;

the other source happens 60% of the time and is from exponential distribution with a mean of one.

A typical scatter plot between the observations in the same local block of size 11× 11 (default

used in SSIM) of images (a) and (d) is shown in the left panel of Figure 2 and the distribution

of the sample correlations is depicted with the histogram in the right panel of Figure 2. Without

distortion, the data from the same local block of two images are perfectly correlated. The double

sources of distortion have a dramatic effect on the sample correlation rendering an average sample

correlation of 0.407. This is because the squared sample correlation is the proportion of variations

explained by the straight line fit which is small in such cases.

The latest version of SSIM available online actually first applies a locally weighted smoothing

(Wang and Bovik [2006]) before estimating the local correlation. Such local smoothing unavoid-

ably makes SSIM lose its sensitivity to edge or boundary loss. Accordingly, SSIM tends to assign

overly optimistic similarity scores to blurred images. For example, SSIM gives a score of 0.7137

for image (d) relative to image (a) in Figure 1. Compared to the blurry image (c) in Figure 1,

image (d) clearly has more visual structural similarity to the original image, since image (c) has
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lost almost all of the fine details present in the original image (see panel (c) of Figure 3 for the

error signal). Unfortunately, correlation-based SSIM gives a smaller similarity score for image (d)

than for image (c) due to the limitation of using correlation to capture the relationship between

two variables. Instead, SSIM judges that images (b) and (c) in Figure 1 have similar structural

fidelity to the reference image (a). However, images (b) and (c) have very different visual similari-

ties to the original image. Notice that image (b) is simply the reference image with some Gaussian

noise. Such simple noise easily reduces the sample measures of correlations because it reduces the

percent of variations explained by the linear relationship.

(a) Original image (b) With Gaussian noise (c) Blurry image (d) With mixture noise
SSIM=0.8129 SSIM=0.8194 SSIM= 0.7137

PSSIM=0.9754 PSSIM=0.1936 PSSIM=0.9641

FIG 1. Original image and three versions of distorted images
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FIG 2. Noise from mixture distribution dramatically affects the sample correlation.

3. The proposed p-value-based structural similarity measure (PSSIM)

In order to overcome the correlation-related limitations in the SSIM, we first examine how the

human visual system (HVS) processes the information from an image and comes up with a similar-

ity measure. The error-sensitivity principle is commonly used to evaluate the quality of an image

compared to a reference image. The idea behind this principle is the decomposition of a distorted

image into the sum of the reference image and an error signal. The loss of perceptual quality is
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directly related to the visibility of the error signal. As commented in Wang et al. [2004], the error-

sensitivity approach simulates the functional properties of early stages of the HVS characterized by

both psychophysical and physiological experiments. The point on how poorly MSE performs as a

visual similarity measure has been conclusively made by Wang et al. [2004] and Wang and Bovik

[2009], where a number of distorted images with the same MSE with respect to a reference im-

age yield inconsistent and even incompatible visual renderings. SSIM is then shown to outperform

MSE as an image quality measure. However, as argued above, SSIM is best suited to capture only

linear or near linear dependence of the two image signals due to the intrinsic limitations of the

correlation as a dependency measure. To address this drawback, we believe it is necessary to take

into account nonlinear dependence of the two images being compared both because the distorted

image can come from a nonlinear distortion mechanism and because the HVS is a complex and

highly nonlinear system as is vigorously argued in Wang et al. [2004].

The goal of this article is to introduce a new similarity measure that effectively assesses image

structural similarity of two images by capturing general dependence between local blocks of two

images. We start with the error signal defined by the distortion of the image compared to the

reference image. Denote by X = (Xi j)m×n and Y = (Yi j)m×n the pixel matrices of the original and

the distorted images, respectively. The distortion is quantified as Z = (Xi j −Yi j)m×n. The structural

loss of the distorted image is reflected by how much structural similarity the error signal contains

compared to the reference image. In Figure 3, the structural loss of the blurry image relative to the

reference image happens almost everywhere except for some background in uniform shade.

(a) Original image (b) Blurry image (c) Error signal

FIG 3. The HVS perceives the difference of two images by quantifying the error signal

We say that an image Y has structural loss compared to image X if the error signal X−Y

contains structural information of X. Two images X and Y have identical structure if and only if X

has no structural loss compared to Y and Y has no structural loss compared to X. With a pre-defined

block size, the structural similarity of the images Y and X, denoted by S(X,Y), can be defined as

the proportion of local blocks where the error signal X−Y does not contain structural information

from either image X or Y. Note that the definition of structural loss is not symmetric, but the

structural similarity is symmetric. The error signal in panel (c) contains structural information of

both the original image in panel (a) and the blurry one in panel (b) for most of the local blocks.
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This provides evidence that the two images have structural difference in those blocks.

As the HVS examines local blocks of both the reference and the distorted images to assess

their similarity, we model the dependence of each local block of the distortion on their reference

counterparts. Specifically, for images of size m× n with m ≥ 2,n ≥ 64, we consider local blocks

of size a×b, where a is some small value, such as 2, and b is of reasonable size, such as b = 26.

The relatively large b is to ensure that the local structures of the images are identifiable. The

similarity of the two images being compared not only depends on percentages of local blocks from

the distortion that resemble the original image profile, but also depends on the luminance similarity

at each pixel location. Therefore, we proceed in two steps:

1. For each local block, evaluate if the distortion Z is independent of the corresponding block

of the reference image X. As the distortion could come from any source, such as Gaussian

noise, Poisson pulse, median filtering, wavelet filtering (in some cases, the distorted image

might even be the result of the reference image going through multiple filters), an effective

procedure that works well for most cases would require a distribution-free assumption on

the error signal. If the distortion is independent of the original images, then the distortion is

simply some additive noise. Otherwise, the distortion contains some structural loss from the

reference image.

2. The magnitude of distortion relative to the original image at each pixel location affects visual

perception of the similarity in the sense that it affects human perception of local luminance.

Therefore, we include comparison of the local luminance in the construction of our new

image similarity measure.

For step 1, instead of correlation, we employ a newly-developed test by Wang et al. [2010] for

detecting general dependence between two variables. Specifically, we apply the test statistic of

Wang et al. [2010] on the local blocks of the error signal and the reference image. Let XB (with

elements XB
i j) and ZB (with elements ZB

i j) be the local blocks of the reference image and the error

signal being considered. The null hypothesis states that the conditional distribution of ZB
i j given XB

i j

is independent of the marginal distribution of XB
i j . structural deviation from the reference image

will be collected in the error signal. Consequently, the tests on some of the local blocks would

reject the null hypothesis of independence between the error signal and the reference image. If X

and Y are structurally different images, then Z = X−Y depends on both X and Y, and we expect

the test to detect significant dependence. The proportion of non-rejections on all local blocks gives

a measure of structural fidelity for the testing image relative to the reference image. To describe

the test statistic, we first define some notations. Let floor(x) be the largest integer not greater

than x. Define F̂X ,i(x) = b−1 ∑b
j=1 I(XB

i j ≤ x), where I represents the indicator function. Let Cic

be the set of column indices for XB such that the corresponding XB values in the i-th row are

among the k-nearest neighbors of (and centered at) XB
∆ , where ∆ := floor(c/b),c−floor(c/b)∗b,



Wang, Maldonado, and Silwal 2011/PSSIM 8

for c = 1, . . . ,ab, where k is a small integer because the inference of the test was developed for a

finite number of nearest neighbors. Typical values of k = 3, 5, 7, or 9, can be used. We recommend

to use k = 7 to allow for sufficiently many nearest neighbors to capture spatial dependence and still

preserve the local nature. A larger value of k may be used if a larger value of b is preferred.

The test statistic is the difference of two quadratic forms multiplied by a standardizing rate
√

ab(Mab −Wab) =
√

abTB +op(1), (3.1)

whereMab = ka−1(ab−1)−1∑a
i=1∑a

i1=1∑b
j1=1

[
k−1∑b

j=1Zi jI
(

b|F̂X ,i(XB
i1 j1)−F̂X ,i(XB

i j)| ≤ k−1
2

)
−(abk)−1 ∑a

i2=1 ∑b
j2=1 ∑b

j=1 Zi jI
(

b|F̂X ,i(XB
i2 j2)− F̂X ,i(XB

i j)| ≤ k−1
2

)]2
,

Wab = {a2b(k−1)}−1 ∑a
i=1 ∑a

i1=1 ∑b
j1=1 ∑b

j=1

[
Zi jI

(
b|F̂X ,i(XB

i1 j1)−F̂X ,i(XB
i j)|≤ k−1

2

)
−k−1 ∑b

j2=1 Zi j2I
(

b|F̂X ,i(XB
i1 j1)−F̂X ,i(XB

i j2)|≤ k−1
2

)]2
,

TB =
a

∑
i=1

b

∑
j �= j′

(Zi j −E(Zi j|XB))(Zi j′ −E(Zi j′ |XB))Ki j j′

a2(k−1)b
and Ki j j′ =

ab

∑
c=1

I( j ∈Cic)I( j′ ∈Cic). (3.2)

The left hand side of (3.1) is easy to compute with the pixel data from the images while the right

hand side of (3.1) has a clear interpretation that can be seen from (3.2). In fact, TB is closely re-

lated to the expected conditional local correlation between every pair of pixels in the error signal

with correlation induced by their dependence on the reference image XB. The Ki j j′ in (3.2) serves

as a weight function which connects the error signal locally with the empirical distribution func-

tion of XB
i j . We do not use TB because it can not be calculated unless a nonlinear estimation of

E(Zi j′ |XB) is available and such estimation typically contains bias in addition to further smooth-

ness assumptions. On the other hand,
√

ab(MN −WN) can be directly obtained from the image

data. With Theorem 1 in Wang et al. [2010], it can be seen that this statistic has an asymptotically

normal distribution if the marginal cumulative distribution function of Xi j is differentiable and b is

large. The asymptotic mean is zero if the error signal does not contain information of the reference

image and the asymptotic variance can be estimated consistently with the γ̂2
ab below after denoting

by j∗ the rank of XB
i j within the ith row of the local block:

γ̂2
ab =

a

∑
i=1

b

∑
j∗< j′∗

{
4 σ̂2

i (X
B
i( j∗))σ̂

2
i (X

B
i( j′∗)

)

ba3(k−1)2

[
V̂ 2

i j j′+V̂i j j′−2I( j′∗− j∗≤(k−1)/2)
]}

I( j′∗− j∗ ≤ k−1),

where

σ̂2
i (X

B
i j)=

1
k−1

⎧⎨⎩ b

∑
l=1

Z2
ilI

[
|F̂X ,i(XB

il)−F̂X ,i(XB
i j)|≤

k−1
2b

]
−1

k

(
b

∑
l=1

ZilI

[
|F̂X ,i(XB

il)−F̂X ,i(XB
i j)|≤

k−1
2b

])2
⎫⎬⎭ ,

V̂i j j′ =∑a
i1,i1 �=i

(
d̂i1i(XB

i( j∗)) +1
)

[k−( j′∗− j∗)]I( j′∗− j∗≤k−1), and d̂i1i(XB
i j)=k−1∑b

j4=1I
(
|F̂X ,i(XB

i j)

−F̂X ,i(XB
i1 j4)| ≤ (k−1)/(2b)

)
.
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If XB = Y B, we set the p-value to be 1.

This test has certain advantages over not only correlation-based approaches including Pearson,

Spearman or Kendall’s correlations, but also over likelihood-based methods such as linear mod-

els, generalized additive models that combine likelihood approach with local smoothing (Wood

[2008]), rank-based method for linear models (Terpstra and Mckean [2005]), and copula-based

tests of independence (Genest and Rémillard [2004]). We summarize them below and refer to

Wang et al. [2010] for details.

• The test is conservative under the null hypothesis of independence but is highly powerful un-

der the alternatives to capture general dependency including nonlinear relationship between

ZB
i j and XB

i j .

• The response variable (i.e., the error signal in this article) can be continuous or discrete.

This allows flexibility and valid inference for all sorts of distortions on the image, including

random noise contamination and loss or gain of edge details.

• The variations of the error signal can be different for different rows or columns. Such het-

eroscedastic variations would typically make the classical regression methods fail due to the

violation of the constant variance assumption.

• The whole procedure is distribution-free and resistent to outliers. This is necessary as the

distorted image may come from the original image through any kind of filter and a few

outliers in the error signal should not lead to serious structural difference in the two images.

• The test is able to detect the dependency of not only the local mean of the error signal on

the reference image, but also how the variations of the error signal change with the reference

image since both types of changes are under the alternative that the error signal is not inde-

pendent of the reference image. Particularly, since the variation dependence is already taken

into account in the test statistic, it is no longer necessary to include the local contrast of the

two images as a component in the construction of the proposed similarity index.

These advantages make this test a better candidate to capture the structural change contained in

the error signal. For each local block B, apply the above test on ZB versus XB and record the p-

value, pX ,B. This will be used later to assess the structural loss for Y compared to X. For structural

similarity, apply the above test also on ZB versus Y B and record the p-value, pY,B. The p-value to

be considered for calculating structural similarity is pB = max{pX ,B, pY,B}.

We recommend that the horizontal shift between consecutive blocks be no greater than f loor(b/2)
to identify local differences in structure. The vertical shift can take any integer value that is no

greater than a. The default horizontal and vertical shifts are set to be 32 and 2 respectively for

a = 2, b = 64. As the tests proceed with local blocks moving across the entire error signal with

corresponding blocks of reference and test images, the collection of p-values {pB,B = 1, . . . ,N}
is produced, where N is the total number of local blocks. Each pB reports the sample evidence of
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testing whether the corresponding block of the error signal does not contain information about the

reference image or the test image. The proportion of pX ,Bs greater than a commonly used signif-

icance level α reveals the proportion of local blocks where the test image contains no structural

loss compared to the reference image. Similarly, the proportion of pBs greater than α estimates the

proportion of the local blocks where the two images have similar structure.

The default α level we recommend to use is α = 0.01. Under the null hypothesis of independence

between the error signal and the reference image, the proportion of false rejections is expected to

be no greater than 1%. Correspondingly, the proportion of non-rejections is expected to be at least

99% when the error signal does not contain any structural information of the reference image. Dif-

ferent from the regular hypothesis testing case where the interest is in finding sample evidence to

reject H0, here we are more interested in the proportion of non-rejections. Consequently, the mul-

tiple comparison-adjustment procedure routinely used to control the number of false discoveries,

such as Bonferroni correction or false discovery rate control, is not necessary in our current setting.

This is because a non-rejection result from a test using α = 0.01 needs to pass a higher threshold

than that using the same level with a Bonferroni correction. In the latter case, the threshold is

0.01/N, which gives a less stringent rule to declare that the test image has no structural change

compared to the reference image.

For step 2, the two images at each pixel location may look identical except for some shift in their

brightness or shade. However, this luminance shift is invariant to the test described in the previous

step because the test statistic is invariant under location shifts, as easily seen from (3.2). Therefore,

we need to consider the local luminance change separately. SSIM penalizes the similarity measure

through the first term in (2.1) using locally estimated means of the two images. As local smoothing

induces bias for any finite sample, we use the raw pixel data from each image directly and calculate

the average of all the luminance comparisons Li j to quantify the overall luminance change, where

Li j = 2Xi jYi j+C
X2

i j+Y 2
i j+C

for all 1 ≤ i ≤ m,1 ≤ j ≤ n, and C is a small positive constant to avoid numerical

instability. We take C = 0.001.

The proposed new similarity measure is the product of the two components described in this

section, i.e., the proportion of non-rejections and the average luminance comparison:

PSSIM =
#{pB : pB > α}

N
(mn)−1

m

∑
i=1

n

∑
j=1

Li j.

SSIM also considers the comparison of local standard deviations as a component because corre-

lation is invariant to both location and scale changes. However, the local standard deviation com-

parison is not necessary for the new similarity measure because the test already takes into account

such comparison.

4. Applications and performance evaluation

In this section we give some examples of applications of the PSSIM along with comparisons

with MSE and SSIM. The SSIM MATLAB code was downloaded from
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http://www.ece.uwaterloo.ca/ z70wang/research/ssim/ssim.m and the PSSIM was implemented in

R 2.8.1.

4.1. Performance comparisons with commonly used measures on images contaminated with

luminance shift and random noises

Here we consider nine 512× 512 reference images and their distortions to compare our new

similarity measure with commonly used measures. These nine images are standard test data in the

image processing literature. They are labeled as Ai1 for i = 1, . . . ,9. A batch of ten distorted images

were generated for each test image, labeled as Ai j, for j = 2, . . . ,11. The first five distortions are

at low noise level and remaining five are at increased noise level.

1. Low noise level

D1 Luminance shift by 11 for images on scale [0,255]. The constant value 11 was added

to each entry of Ai1 to produce Ai2, for i = 1, . . . ,9. Since the images have pixel values

in the grayscale range of [0,255], values greater than 255 are truncated to 255. Ai2

bears almost identical structure as Ai1 but is slightly brighter than Ai1 unless there are

too many truncated pixels for which we have, in effect, luminance shift of less than 11.

D2 Corruption with additive Gaussian noise. After scaling the image to range [0,1], the

added noise has mean 0 and variance 0.0018. Common noises in digital camera images

such as ‘reset noise’, ‘Johnson noise’, and ‘white noise’ are closely related to Gaussian

noise.

D3 Corruption with salt and pepper noise with density 0.006. That is, 0.3 % of the pixels

per image were randomly selected to have minimum values and another 0.3 % were

selected to have maximum values (i.e., turning entries to 255 or 0 for [0,255] scaled

images ). Since all test images in this section are of size 512×512, the salt and pepper

noise affects approximately 0.006× 5122 = 1572 pixels. This noise occurs in digital

camera images due to errors in signal transmission or memory locations.

D4 Corruption with Poisson noise. If the true pixel in the original image is less than 50,

the corresponding pixel in the noisy version is randomly generated from Poisson distri-

bution with mean equal to the true pixel value. When the true pixel value is 50 or more,

then its corresponding noisy pixel comes from a Gaussian distribution with both mean

and variance equal to the true pixel. This noise is most common in X-rays, MRIs and

CT-scans due to the Poisson law of photon-counting in low-light situations in radiog-

raphy .

D5 Corruption with multiplicative speckle noise. For each i = 1,2, . . . ,9, the element of

Ai6 is obtained by corresponding element of Ai1 multiplied by (1 + ε) where Ai1 is

scaled to have range [0,1] and ε is uniformly distributed random noise with mean 0 and

variance 0.007. This noise is commonly found in active radar, synthetic aperture radar
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or ultrasound images and occurs due to the roughness of the surface being of the order

of the wavelength that causes interference in the returned waves.

2. Increased noise level

D6 Corruption with Gaussian noise with mean 0 and variance 0.01 for images on [0,1]
scale.

D7 Corruption with Gaussian noise with mean 0 and variance 0.068 for images on [0,1]
scale.

D8 Corruption with salt and pepper noise with density 0.011.

D9 Corruption with speckle noise as in [D5] but the ε has variance 0.012.

D10 Corruption with speckle noise. The ε has variance 0.12.

All the noises were generated using the built-in MATLAB function “imnoise”. Since the same

parameters for the same distortion were used for every test image to create their noisy versions, we

only show A11 and its distorted versions in Figure 4. The original images Ai1, i = 2, . . .9 can be

seen in Figure 5.

Original Image [D1] [D2] [D3] [D4] [D5]

[D6] [D7] [D8] [D9] [D10]
FIG 4. Sample original image and the ten distorted images

For each random noise version, PSSIM performs consistently across all images with the same

type of random noise. SSIM, on the other hand, may assign very different similarity scores for

different images contaminated with the same level of random noise. Moreover, as the variance of

the Gaussian noise changes from 0.0018 in [D2] to 0.01 in [D6] and to 0.068 in [D7], on average,

PSSIM decreases from 0.9739 to 0.9281, and then to 0.7755, while SSIM changes dramatically

from 0.8822 to 0.6362 and then to 0.3222 for the three noise levels. For the Gaussian noise with

variance 0.068 (i.e. [D7]), all SSIM scores are less than 0.39 except for image A21. These scores

appear lower than necessary by visually examining the distorted versus the original images. In

general, both PSSIM and SSIM have reduced scores with the increased noise level, but SSIM

underestimates the structural similarities in such cases.
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TABLE 1
structural similarity of the distorted versions to their original images

reference Distortion 1 Distortion 2 Distortion 3 Distortion 4 Distortion 5
image PSSIM SSIM PSSIM SSIM PSSIM SSIM PSSIM SSIM PSSIM SSIM
A11 0.9921 0.9931 0.9796 0.8980 0.9960 0.9153 0.9852 0.9023 0.9828 0.9124
A21 0.8961 0.9926 0.9763 0.9473 0.9961 0.9528 0.9860 0.9510 0.9871 0.9544
A31 0.9861 0.9930 0.9736 0.9048 0.9962 0.9209 0.9890 0.9007 0.9826 0.9062
A41 0.9332 0.9893 0.9754 0.8129 0.9960 0.8604 0.9836 0.8534 0.9834 0.8825
A51 0.9902 0.9923 0.9775 0.8858 0.9963 0.9177 0.9846 0.8717 0.9815 0.8568
A61 0.9915 0.9928 0.9784 0.8933 0.9960 0.9176 0.9874 0.8966 0.9840 0.9040
A71 0.9874 0.9905 0.9744 0.8578 0.9960 0.8881 0.9852 0.8626 0.9856 0.8751
A81 0.9614 0.9765 0.9418 0.8614 0.9959 0.8978 0.9807 0.8793 0.9825 0.8925
A91 0.9914 0.9924 0.9821 0.8936 0.9960 0.9170 0.9862 0.9022 0.9823 0.9114

reference Distortion 6 Distortion 7 Distortion 8 Distortion 9 Distortion 10
image PSSIM SSIM PSSIM SSIM PSSIM SSIM PSSIM SSIM PSSIM SSIM
A11 0.9407 0.6682 0.7778 0.3143 0.9928 0.8605 0.9829 0.8675 0.9212 0.5365
A21 0.9294 0.7896 0.7723 0.4467 0.9927 0.9179 0.9803 0.9279 0.9156 0.6592
A31 0.9367 0.6843 0.7997 0.3437 0.9928 0.8717 0.9815 0.8574 0.9224 0.5125
A41 0.9200 0.4382 0.7463 0.1826 0.9925 0.6362 0.9777 0.7890 0.9151 0.3756
A51 0.9275 0.6760 0.7777 0.3882 0.9927 0.8483 0.9807 0.8089 0.9193 0.5614
A61 0.9383 0.6768 0.7860 0.3470 0.9926 0.8640 0.9807 0.8576 0.9176 0.5401
A71 0.9181 0.6003 0.7570 0.2963 0.9927 0.8144 0.9818 0.8167 0.9229 0.4983
A81 0.8800 0.6073 0.7246 0.2996 0.9925 0.8207 0.9789 0.8396 0.9229 0.5290
A91 0.9343 0.6191 0.7780 0.3165 0.9929 0.7730 0.9818 0.8458 0.9238 0.4995

TABLE 2
Similarity of A11 to the other reference images

A11 vs A21 A31 A41 A51 A61 A71 A81 A91
PSSIM 0.0687 0.0894 0.1234 0.1102 0.1150 0.0630 0.0886 0.0779
SSIM 0.0982 0.1666 0.2132 0.1519 0.1449 0.1908 0.1606 0.1541
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To see whether the low scores assigned by SSIM are reasonable or not, particularly, a score as

low as 0.1826 for A41 compared to its Gaussian noise contaminated version (Distortion 7), we also

calculated the SSIM and PSSIM based similarities between different natural images and reported

them in Table 2. SSIM assigned the score 0.2132 for A11 versus A41. That is, the original image

A11 (Goldhill) in Figure 4 and the original image A41 (lady with black hair) in Figure 1 have more

SSIM similarity than A11 versus its Gaussian contaminated image [D7]. Therefore, the assignment

of similarity scores by SSIM becomes inconsistent due to the limitation of estimated correlation as

a measure of dependence in the presence of noise. We remark that PSSIM assigned lower scores

than SSIM for all pairs of different images (see Table 2).

4.2. Performance comparisons on filtered images

Image filtering is a process to modify, enhance, warp, or mutilate an image. Noise removal

and edge sharpening are two examples of image filtering. Noise removal can be done via image

smoothing with commonly used methods such as Fourier transform, wavelet transform, median

filtering, Gaussian smoothing, kernel smoothing, etc. Noise removal is basically equivalent to a

low-pass filtering that has a typical problem of blurring fine details or edges. Image sharpening

aims at enhancing the line structures or other details in an image. The line structures and edges can

be obtained, for example, by applying a difference operator equivalent to a high pass filter on the

image.

We generated three blurry versions of each test image to investigate the PSSIM performance on

filtered images. The three levels of blurring have SSIM scores in the following ranges: High (0.88-

0.92), Medium (0.81-0.85) and Low (0.73-0.77). For i = 1,2, . . . ,9, the 3 noisy versions of Ai1 are

labeled as Hi, Mi and Li, respectively. We used the MATLAB function “spfilt” from the DIPUM

package available with the book by Gonzalez et al. [2009] to generate these blurred images. In

order to adjust to the desired range of SSIM values, we considered several types of filters (median,

arithmetic mean ‘amean’, geometric mean ‘gmean’, contraharmonic mean ‘chmean’) and window

sizes (2× 2 to 66× 66) for different images. Note that the arithmetic mean is a linear filter and

all the other filters considered here are nonlinear filters where each filtered pixel Yi j is a nonlinear

function of the original pixel Xi j and its neighbors. Correspondingly, the difference between the

reference image and the filtered image is a nonlinear transformation of the reference image except

for the arithmetic mean filter. For example, the geometric mean filter is defined as

Yi j = ∏
(i1, j1)∈Wi j

X1/(st)
i1 j1

and Error = Xi j − ∏
(i1, j1)∈Wi j

X1/(st)
i1 j1

,

where Wi j is the local window of size s× t at position (i, j). This filter is better at preserving edge

features than the arithmetic mean filter if the same window size is used. Increasing the window size

results in more loss of edge details. See Gonzalez and Woods [2002] for further details on spatial

filters and in-depth explanations.
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The structural similarity values from PSSIM and SSIM are reported in Table 3. Due to differ-

ent filters and parameters used, we also present all the original images and their blurred versions

in Figure 5. Although PSSIM and SSIM have different numerical ranges, the relative orders of

the values are identical among different filtered images, except for one case (A21). However, we

believe that some of the SSIM scores assigned to the blurred images are higher than natural. To

substantiate this point, we include the D6 Gaussian-noise contaminated images in Figure 5 to serve

as a reference in the objective, human-eye based, evaluation of the PSSIM and SSIM scores. From

the values in Table 3 we see that, as opposed to PSSIM, SSIM may assign unfair scores to im-

ages from different categories. Compared to PSSIM, SSIM is less alert to the loss of edge details

for all median and arithmetic mean filtered images. This might not be obvious for images with

rich texture (e.g., A11 and A51). However, such loss becomes apparent in images such as L4 and

L7. Compared to its original image A41, the eyes, nose, mouth profile, as well as eyebrows, are all

missing in L4. On the other hand, these characteristics are clearly shown in the D6 Gaussian-noise-

contaminated version. Similarly, the Lena image L7 lost important fine details such as the mouth,

the expression in the eyes, and the lines of the decorative fixture on the hat. Relatively, the D6

Gaussian-noise-contaminated version contains a lot more of such details. In both examples, SSIM

assigned scores of greater than 0.73 for L4 and L7, but less than 0.61 for the D6 Gaussian noise

contaminated version of the images. PSSIM assigned reasonably greater scores for the Gaussian

noise contaminated images than their corresponding highly blurred versions L4 and L7.

Additionally, the geometric mean with window size 2×2 filtered image H2 preserves more edge

features than a median filter with window size 4×4 (see Gonzalez and Woods [2002]). But SSIM

assigns structural similarity of about 0.91 for them. The proposed PSSIM assigns 0.9613 for H2

relative to its reference image. This set of comparisons clearly illustrate the limitations of using

a linear measure (correlation) to quantify nonlinear relationships. The proposed PSSIM has more

power to provide an objective evaluation of the structural similarity in such cases.

4.3. Differentiating between original and watermarked images

Digital watermarking is a recent technology for image copyright protection. Spatial-domain and

frequency-domain watermarking techniques have been considered by various authors. The Discrete

Wavelet Transform (DWT) and the Discrete Cosine Transform (DCT) are two of the frequency-

domain transforms in digital image watermarking. DWT has been frequently used due to its spatial

localization and multi-resolution characteristics. Let λ denote the wavelet decomposition level and

let LHλ and HLλ denote the middle-frequency sub-bands and HHλ denote the high-frequency sub-

band at level λ, respectively. A DWT algorithm embeds the watermark in the middle-frequency

LHλ and HLλ or high-frequency HHλ sub-bands so that acceptable performance of imperceptibility

and robustness can be achieved (Hsieh et al. [2001]; Reddy and Chatterji [2005]; Wang and Lin

[2004]).

Some authors have considered combined DWT and DCT watermarking (Nikolaidis and Pitas
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TABLE 3
The structural similarity of blurry images relative to the reference images assessed by MSE, SSIM, and the proposed
PSSIM. The blurry images were obtained through spatial filtering with the spfilt command in the MATLAB DIPUM

package. The type and size of each spatial filtering are given in the table. The columns labeled as D6, corresponding
to Distortion 6 in Table 1, are listed for reference.

Reference image A11 A21
Blurred H1 M1 L1 D6 H2 M2 L2 D6

filter type median median chmean gmean gmean gmean
Size (4,4) (7,7) (8,8) (2,2) (5,5) (6,6)

measures MSE 81.70 115.07 202.37 185.06 115.07 202.38
SSIM .9120 .8246 .7358 .6682 .9195 .8246 .7358 .7896
PSSIM .8779 .7451 .5956 .9407 .9613 .8256 .8060 .9294

Reference image A31 A41
blurred H3 M3 L3 D6 H4 M4 L4 D6

filter type median median median median median median
size (4,4) (6,6) (8,8) (14,14) (32,32) (66,66)

measures MSE 81.70 115.07 202.38 48.34 157.24 438.11
SSIM .8955 .8246 .7358 .6843 .9034 .8194 .7380 .4382
PSSIM .8337 .7648 .6948 .9367 .4067 .1936 .1042 .9200

Reference image A51 A61
blurred H5 M5 L5 D6 H6 M6 L6 D6

filter type amean amean gmean median median median
size (5,5) (7,7) (9,9) (3,3) (5,5) (10,10)

measures MSE 163.92 259.94 389.74 189.52 307.42 352.69
SSIM .9123 .8372 .7583 .6760 .9178 .8111 .7311 .6768
PSSIM .8779 .6144 .5327 .9275 .6898 .6411 .5895 .9383

Reference image A71 A81
blurred H7 M7 L7 D6 H8 M8 L8 D6

filter type median median median amean amean amean
size (6,6) (11,11) (18,18) (7,7) (11,11) (16,16)

measures MSE 85.10 131.10 242.13 117.80 215.49 347.32
SSIM .9136 .8388 .7486 .6003 .9132 .8309 .7345 .6073
PSSIM .7253 .5414 .3554 .9181 .6097 .4156 .2655 .8800

Reference image A91
blurred H9, M9 L9 D6

filter type median gmean gmean
size (4,4) (6,6) (9,9)

measures MSE 99.33 166.60 234.68
SSIM .9166 .8344 .7316 .6191
PSSIM .8919 .6900 .5406 .9343

[2003]; Al-Haj [2007]) with the hope that the combined transforms could compensate for the draw-

backs of each other. In the DWT-DCT watermarking algorithm by Al-Haj [2007], watermarking

is done by altering the wavelet coefficients of the 2nd level (λ = 2) DWT sub-bands HL2 or HH2,

followed by the application of the DCT transform on the selected sub-bands. The watermarked im-

age is produced by an application of inverse DCT and inverse DWT transform on the DWT-DCT

transformed image including the modified sub-bands.

A 512× 512 ‘Lena’ image was used in Al-Haj [2007] as the original cover host image, and a

256× 256 grey-scale image of the expression ‘copyright’ was embedded in the host image with

DWT only and combined DWT-DCT algorithms on HL2 or HH2 sub-bands to produce water-

marked images (see top panel of Figure 6). In Al-Haj [2007], the combined DWT-DCT water-
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marked image has higher peak signal to noise ratio (PSNR) than the DWT watermarked image.

As pointed out by Wang and Bovik [2009], PSNR = 10log10 L2/MSE , where L is the dynamic

range of allowable image pixel intensities. The PSNR is useful if images having different dynamic

ranges are being compared, otherwise it contains no more information than the mean squared

error MSE. Therefore, the drawbacks of MSE as a measure of image structural difference also

apply to PSNR. We refer to Wang and Bovik [2009]; Wang et al. [2004] for a detailed illustration

of such drawbacks. Since DWT-DCT and DWT are two different image processing methods that

would possibly modify different locations of an image, PSNR may not give an objective evaluation

of the structural fidelity due to the drawback mentioned in the introduction. Here we evaluate the

structural similarity of the aforementioned DWT only and DWT-DCT watermarked images relative

to the original host image. The error signals are presented in the second row of Figure 6. They

contain both the watermarking information and any structural difference between the watermarked

image and the original host image caused by transformation and inverse transformation of DWT

and DCT.

Watermarking with combined DWT and DCT may produce smoother images than DWT only.

However, as shown in the error signals, the double transformation by combined DWT and DCT

also leads to more significant structural difference seen in the (maybe enhanced) edge and line

details compared to the image produced with DWT only. Correspondingly, the proposed PSSIM

identifies such structural difference and reports that the watermarked images through DWT-DCT

have less than 60% of the pixels maintain identical structure as the original host image. On the

other hand, SSIM gives a very opposite evaluation yielding that DWT-DCT watermarked images

have more structural fidelity to the original image than the DWT watermarked images. This is

clearly not supported by the amount of visual structural information contained in the error signals

resembling the host image. We remark that the previous comment applies to structural gain or loss

for the processed images instead of visual quality. Should smoother images with enhanced edge

details be preferred by a user, the DWT-DCT watermarked image could be the better choice.

Summary

In this work, we proposed a new digital image structural similarity measure based on nonpara-

metric hypothesis testing of independence between the error signal and the two images being com-

pared. The new similarity measure quantifies the structural fidelity of an image to its reference

image through the percentage of local windows where the error signal does not contain infor-

mation about either image scaled by the average of the luminance comparisons. Whether the error

signal contains information from the images being compared or not was determined through a non-

parametric test. This test is powerful enough to efficiently capture general dependence including

nonlinear relationships. We compared the performance of the newly proposed similarity measure

PSSIM with commonly used measures with images from three types of image processing tech-

niques: noise contamination, filtering, and watermarking. As a structural similarity measure, the
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proposed PSSIM offers an improved performance over SSIM and MSE. Regarding PSSIM’s limi-

tations, we mention that the major potential application domain of PSSIM would be the evaluation

of image denoising methods. In the context of CBIR, PSSIM as presented is well-suited only when

the target images are registered (i.e., they are overlayed in the same coordinate system) which ex-

cludes the case of image transformations such as dilations and rotations. In order for PSSIM to

handle images involving those transformations, a pre-processing step of registering images would

be necessary. Such a pre-processing step is beyond the scope of this work.
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H1 error(H1) M1 error(M1) L1 error(L1) A11 D6’s

H2 error(H2) M2 error(M2) L2 error(L2) A21

H3 error(H3) M3 error(M3) L3 error(L3) A31

H4 error(H4) M3 error(M4) L4 error(L4) A41

H5 error(H5) M5 error(M5) L5 error(L5) A51

H6 error(H6) M6 error(M6) L6 error(L6) A61

H7 error(H7) M7 error(M7) L7 error(L7) A71

H8 error(H8) M8 error(M8) L8 error(L8) A81

H9 error(H9) M9 error(M9) L9 error(L9) A91

FIG 5. Blurred images with error signals, their original image, and Distortion 6 as an additional reference



Wang, Maldonado, and Silwal 2011/PSSIM 21

Host Image DWT-DCT (HL2) DWT-DCT (HH2) DWT (HL2) DWT(HH2)

Embedded SSIM=0.9362 SSIM=0.9413 SSIM=0.7781 SSIM=0.8033
watermark PSSIM=0.5632 PSSIM=0.5400 PSSIM=0.9556 PSSIM= 0.9638

FIG 6. ‘Lena’ host image and four versions of watermarked images with grey image of the word ‘Copyright’. The second row shows
the added watermark and error signals of the watermarked images compared to the host image.
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