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Abstract

The deterministic transport methods that drive much of nuclear reactor design are

invariably based on the multigroup method, in which fluxes and cross sections are treated as

constant within small intervals of the energy domain called groups. The discrete generalized

multigroup (DGM) method provides an alternative way to represent and solve the multigroup

neutron transport equation by dividing the group structure into a smaller number of coarse

groups and expanding the energy variable within each coarse group in an orthogonal basis.

However, the original form of the DGM equations leads to higher memory costs and a larger

computational burden than the equivalent multigroup formulation of a given problem. This

work presented herein aimed to improve the efficiency of the DGM method while preserving

its accuracy (1) by incorporating a basis from proper orthogonal decomposition (POD) that

yields highly-accurate, low-order representations of fine-group fluxes and (2) by introducing

specialized superhomogénéisation (SPH) factors to mitigate errors related to averaging (i.e.,

”homogenizing”) cross sections over space and energy.

By truncating the flux-moment expansions, computational savings are gained, but accuracy

is somewhat reduced. POD-driven bases were generated using spectral information extracted

from small, representative models, and, therefore, perform well under truncation, i.e., the

leading terms capture the majority of the variation in energy. This is in stark contrast to the

discrete Legendre polynomials, which incorporate no physics and, therefore, require complete

expansions in the basis to preserve the underlying, multigroup physics. A key observation

made is that the number of degrees of freedom per coarse group required to obtain a desired

accuracy is nearly independent of the total number of energy groups. For example, a POD

basis truncated to three degrees of freedom per coarse group resulted in approximately 0.1%

error in the fission density for all 1-D problems and group structures tested.



The second set of improvements explored the use of spatial homogenization and angular

approximation to reduce the memory requirements of DGM. These improvements are again

at the cost of some accuracy, but the impact is on the same order of magnitude as that

of the truncated basis. Approximating the angular dependence of the total cross section

using a linear Legendre expansion introduces approximately 0.5% error into the solution,

and homogenizing the cross section moments over coarse-mesh regions increases the error

by approximately 2%. These two approximations used in conjunction with a POD basis

truncated to three degrees of freedom per coarse group results in a total error of around 2%

in the fission densities.

The final improvement is the use of superhomogénéisation or SPH factors, which are

used to correct homogenized cross sections for use in larger, downstream problems. SPH

factors were used to correct spatial homogenization of the cross section moments to preserve

the reaction rates. Although traditional SPH factors performed better than the corrected

moments for specific problems, the DGM method with SPH factors produced cross section

moments with a smaller error for general problems. In other words, correcting the DGM

moments provided a way to create cross section moments that were more problem agnostic

as compared to the traditional method. In particular, the DGM-SPH cross section moments

achieved an error of around 1% in the pincell fission densities using just three degrees of

freedom per coarse group which was consistent over several different problems. This can be

compared to traditional SPH correction of spatial homogenization that resulted in as large as

10% error for a comparable number of energy degrees of freedom.
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and homogenizing the cross section moments over coarse-mesh regions increases the error

by approximately 2%. These two approximations used in conjunction with a POD basis
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used to correct homogenized cross sections for use in larger, downstream problems. SPH

factors were used to correct spatial homogenization of the cross section moments to preserve

the reaction rates. Although traditional SPH factors performed better than the corrected

moments for specific problems, the DGM method with SPH factors produced cross section

moments with a smaller error for general problems. In other words, correcting the DGM
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Chapter 1

Introduction

As designs for the cores of nuclear reactors become more complex, increasing fidelity is

needed for computational core models. Historically, reactor cores were designed with few

heterogeneities, and thus, small spatial models (e.g. pincells or assemblies) with reflective

boundary conditions provided sufficient accuracy for neutronic analysis. However, improving

the fidelity of a simulation is not as simple as merely increasing the number of unknowns

in the problem. Modern core designs incorporate new materials and geometries, which are

not well approximated by simple homogeneous models alone. This work explores ways to

improve the existing framework, which extends its use to new core designs.

In deterministic methods, the core model is based on the neutron transport equation,

which is a formidable relationship in up to seven phase-space variables (three spatial, two

angular, energy, and time). Creating a model with high fidelity in each variable quickly leads

to an intractably large system because the total number of unknowns scales with the product

of the number of unknowns for each phase-space variable. At the current level of computation,

it is impossible to model all variables directly with high fidelity. Even as computers improve,

it will be unreasonable to model such a problem even if the model can fit in the memory

space of the computer.

The goal of this chapter is to outline the current and historical processes for modeling

a reactor core. We begin by presenting the continuous-energy, neutron transport equation
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in Section 1.1. As will be discussed in Section 1.2, solving the continuous energy equation

directly is currently infeasible. We must make approximations for each of the phase-space

variables in order to reduce the complexity, and we continue this chapter by first considering

approximations for the energy variable.

Typically, continuous energy regions are divided into several energy bins, and the most

straightforward method for this is the multigroup approximation introduced in Section 1.2.

A generalization to the multigroup method, on which the bulk of this manuscript builds, is

discussed in Section 1.3. The chapter continues with a brief discussion of methods related to

the traditional multigroup method in Section 1.4.

In Section 1.5, we discuss a way to reduce the spatial complexity of the problem using

factors designed to preserve reaction rates during homogenization. This chapter then concludes

with the primary objective of the present work as well as the organization of remainder of

this manuscript in Section 1.6.

1.1 Continuous Energy Neutron Transport

The continuous-energy, eigenvalue form of the steady-state neutron transport equation is

Ω · ∇ψ(r, E,Ω) + Σt(r, E)ψ(r, E,Ω)

=

∫
4π

∫ ∞
0

Σs(r, E ← E ′,Ω ·Ω′)ψ(r, E ′,Ω′)dE ′dΩ′

+
χ(r, E)

4πkeff

∫ ∞
0

νΣf (r, E
′)φ(r, E ′)dE ′ ,

(1.1)

where

φ(r, E) =

∫
4π

ψ(r, E,Ω)dΩ , (1.2)

and r is the spatial coordinate, Ω is the direction of travel, and E is the neutron energy.

Further, ψ(r, E,Ω) is the angular flux, and the Σ terms represent the various cross sections.

As written, this equation is a function of six phase-space variables (three spatial, two angular,

and one energy).
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As an example, let us attempt to solve Eq. (1.1) for a reactor core directly. To begin,

we divide each spatial variable into 1 cm regions, which is on the order of the diameter of a

pincell. This leads to on the order of 200 spatial cells in each of the three spatial variables

assuming an active region of 8m3. Assume that the angular dependence is represented by

an expansion in spherical harmonics. If an expansion of degree 3 is used, 16 moments are

produced for each spatial cell, which leads to 1.28×108 phase-space cells before accounting for

energy dependence. Using double precision and assuming only one unknown per phase-space

cell means that each energy point requires approximately 250 MB of memory.

Figure 1.1: Total cross sections of H-1 and U-238

The energy dependence is heavily dependent on the materials in the problem. As an

example, Fig. 1.1 shows the total microscopic cross section as a function of energy for both

hydrogen-1 and uranium-238, both of which are common elements in nuclear reactor cores.

While the energy dependence of hydrogen is rather simple, the resonances (sharp changes in

the cross section over a small energy range) of uranium are difficult to capture accurately.

As no simple functional dependence exists for the energy dependence, it is common to divide

the energy space into a number of points between which the cross sections may be linearly

interpolated at high accuracy. For hydrogen, this requires relatively few points as compared

to uranium.

Accounting for the energy dependence fully requires on the order of 1×105 energy unknowns
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leading to a requirement of over 23 TB of memory space for a relatively small problem. This

number excludes any accounting of thermal hydraulic feedback or burnup of the fuel using

a time-dependent model. Further, note that a pincell has a diameter of approximately 1

cm; thus, even more spatial cells are required to account for spatial self-shielding effects

accurately. Direct solution of the continuous form of the transport equation is impossible

at our current computational level, and thus, we seek ways to approximate its solution by

combining the solution of several small, but similar problems to the core model.

1.2 Approximate Continuous Energy Dependence

We first look for a way to reduce the complexity of the energy dependence. Traditionally, this

is done by dividing the energy space into several discrete energy bins. Consider the function

Pg(E) =


1 if Eg < E ≤ Eg−1

0 otherwise

, (1.3)

where Eg and Eg−1 are selected as the lower and upper bounds, respectively, on an energy

bin, and g represents the bin number. These functions are depicted in Fig. 1.2.

1.0

EN EN−1
. . . . . . . . .

E1 E0

N N-1 . . . . . . 2 1

Figure 1.2: Membership functions used for the multigroup method. The number above each
rectangle is the group number.

Multiplication of Eq. (1.1) by the functions in Eq. (1.3) and integrating over energy from
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Eg to Eg−1 yields

Ω · ∇
∫ Eg−1

Eg

Pg(E)ψ(r, E,Ω)dE +

∫ Eg−1

Eg

Pg(E)Σt(r, E)ψ(r, E,Ω)dE

=

∫ Eg−1

Eg

Pg(E)

∫
4π

∫ ∞
0

Σs(r, E ← E ′,Ω ·Ω′)ψ(r, E ′,Ω′)dE ′dΩ′dE

+

∫ Eg−1

Eg

Pg(E)
χ(r, E)

4πkeff

∫ ∞
0

νΣf (r, E
′)φ(r, E ′)dE ′dE .

(1.4)

We now define

ψg(r,Ω) =

∫ Eg−1

Eg
Pg(E)ψ(r, E,Ω)dE∫ Eg−1

Eg
Pg(E)dE

, (1.5)

and correspondingly

φg(r) =

∫
4π

ψg(r,Ω)dΩ . (1.6)

Now, the reaction rate for a general cross section is defined as

R(r, E,Ω) = Σ(r, E,Ω)ψ(r, E,Ω) , (1.7)

which is averaged over an energy range as

∫ Eg−1

Eg
Pg(E)R(r, E,Ω)dE∫ Eg−1

Eg
Pg(E)dE

=

∫ Eg−1

Eg
Pg(E)Σ(r, E,Ω)ψ(r, E,Ω)dE∫ Eg−1

Eg
Pg(E)dE

, (1.8)

where we define

Rg(r,Ω) =

∫ Eg−1

Eg
Pg(E)R(r, E,Ω)dE∫ Eg−1

Eg
Pg(E)dE

= Σg(r,Ω)ψg(r,Ω) , (1.9)

leading to the definition for an averaged cross section as

Σg(r,Ω) =

∫ Eg−1

Eg
Pg(E)Σ(r, E,Ω)ψ(r, E,Ω)dE∫ Eg−1

Eg
Pg(E)ψ(r, E,Ω)dE

. (1.10)

Following this pattern, each of the cross sections from Eq. (1.4) may be averaged over the
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energy group by dividing the equation by the denominator of Eq. (1.5) resulting in

Ω · ∇ψg(r,Ω) + Σt,g(r)ψg(r,Ω)

=

∫
4π

Ng∑
g′=1

Σs,g←g′(r,Ω ·Ω′)ψg′(r,Ω′)dΩ′

+
χg(r)

4πkeff

Ng∑
g′=1

νΣf,g′(r)φg′(r) ,

(1.11)

where the integrals over energy have become sums over all groups, and Ng is the number

of energy groups. Equation (1.11) is the multigroup form of the transport equation, where

reaction rates have been preserved over each of the energy groups. The astute observer

would notice that preserving the reaction rates required the solution to Eq. (1.1), which was

previously deemed impossible to obtain. As such, the flux used to homogenize the cross

section is approximated by solving small problems, which are related to the full-core solution

we desire.

Traditionally, this leads to a multi-step process1. The transition from Eq. (1.1) to

Eq. (1.11) commonly uses an analytical flux spectrum obtained from modeling each material

with continuous energy in simple geometry, e.g., infinite media or pincell. Resonance effects

are typically approximated assuming that either the resonance is narrow (i.e., a scattering

neutron is likely to avoid the resonance), wide (i.e., a scattering neutron is likely to scatter

into the resonance), or somewhere in between2;3. While a full discussion of this treatment

is outside the scope of the present discussion, a continuous-energy flux spectrum is the

result, which is used to average each material over the energy groups. As an alternative,

continuous-energy Monte Carlo methods may be used to find a flux spectrum for the infinite

medium or spatially small problem (e.g., a pincell subject to reflective conditions). At this

stage, the continuous energy range is typically divided into an ultrafine-group structure

(1×105 groups or more) based on regions of equal lethargy.

Several codes have been created to process the continuous-energy cross sections to a

multigroup structure including (but not limited to) AMPX4 and NJOY5. Additionally,
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modern treatments based on Monte Carlo methods (e.g., SERPENT6) are also available

to produce multigroup cross sections. Resolving the energy dependence at this stage still

requires too many degrees of freedom for use in full-core models, thus we must further collapse

the group structures.

We now introduce the discrete form of the collapse from Eq. (1.1) to Eq. (1.11), i.e., we

introduce the function

PG(g) =


1 if g ∈ G

0 otherwise

, (1.12)

where G is a coarse group comprised of a number of fine groups g. We further define the

coarse-group reaction rate as

RG(r,Ω) = ΣG(r,Ω)ψG(r,Ω) =

∑
g∈G

PG(g)Rg(r,Ω)∑
g∈G

PG(E)
=

∑
g∈G

PG(g)Σg(r,Ω)ψg(r,Ω)∑
g∈G

PG(E)
, (1.13)

where

ψG(r,Ω) =

∑
g∈G

PG(g)ψg(r,Ω)∑
g∈G

PG(E)
, (1.14)

and

ΣG(r,Ω) =

∑
g∈G

PG(g)Σg(r,Ω)ψg(r,Ω)∑
g∈G

PG(g)ψg(r,Ω)
. (1.15)

This process suffers from the same problem as before, i.e., the reaction rates are only preserved

if the flux spectrum is already known for the full-core problem. A common solution method

is to perform a series of computations using the neutron transport equation with increasing

fidelity in space and angle while decreasing fidelity in energy. Using the ultrafine-group

structure, a small pincell problem subject to reflective conditions is typically solved. This

calculation leads to a flux spectrum used to collapse to a structure with between several

tens and thousands of energy groups henceforth called the fine-group structure. Over the

years, several fine-group structures have been defined for various uses. The structures used

in this work are discussed in Chapter 3. The energy group structures are decided based on
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the application, e.g., uranium-oxide fuel requires a different energy detail than mixed-oxide

fuels7.

The next step in the process is commonly called the lattice physics calculation, wherein

typically an assembly of fuel pins is modeled with the fine-group structure subject to reflective

conditions. In this calculation, spatial and angular effects are captured as the neutron flux

and reaction rates are computed. A review of these lattice methods and various production

implementations of them was published by Hébert 8 . It is common at this stage to employ

methods such as the collision probability method9 or the method of characteristics10 to solve

for the angular flux. With a new flux, the fine-group cross sections are further collapsed to

a coarse-group structure which typically contains fewer than ten energy groups. The cross

sections are averaged (i.e., homogenized) over energy and space to preserve the reaction rate

for the entire assembly. At this stage, typically spatial homogenization methods such as

superhomogénéisation (SPH)11 factors are employed to better preserve reaction rates over

the assembly. These spatial homogenization methods are discussed later in Section 1.5. At

this point, multigroup cross sections for each assembly have been computed, which are ready

for full 3-D core simulations.

Though the multigroup approximation is commonly used, it is not perfect. At each stage

of cross section processing, a loss of fidelity occurs directly resulting from smoothing the

spectrum by reducing the number of energy groups. As previously mentioned, the full-core

flux would be needed at the beginning of the process to correctly preserve the reaction

rates. The infinite medium calculations fail to perfectly capture self-shielding or resonance

interference effects7. Lattice physics calculations often approximate or ignore the junction

between different assemblies, which can lead to large errors for heterogeneous cores. This work

will not correct all of these sources of error but does seek to lessen the impact of coarsening

the group structure.
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1.3 Generalize the Multigroup Approximation

The functions presented in Eqs. (1.3) and (1.12) are traditionally used to provide one degree

of freedom per coarse group, i.e., the flux is assumed to be flat over the coarse group, and

may thus be represented by a single value. The multigroup method may be generalized by

expanding Eqs. (1.3) and (1.12) using complete basis sets over each coarse group instead of

single vectors. When the fine groups are collapsed to a coarse-group structure, information is

lost, but using a complete basis would provide a way to retain the group information. This

idea forms the foundation for the generalized multigroup (GM) method (when collapsing

from continuous energy) and the discrete generalized multigroup (DGM) method (when

further collapsing fine-group structures). The bulk of the present work extends the discrete

generalized multigroup method, and thus, the presentation will focus on collapsing a fine-group

structure into coarse-group moments.

The process of collapsing the continuous-energy space with a complete basis was first

presented in 2007, where Forget and Rahnema 12 introduced a method to extract a fine-group

solution from a coarse-group calculation. This method was the beginning of the generalized

multigroup (GM) method, upon which the present work builds. The work of Forget and

Rahnema 12 relied on collapsing the energy dependence of the transport equation into moments

using a set of orthogonal polynomials, specifically the Legendre polynomials. This leads to a

series of moment-based equations and, when solved, corresponding flux moments. The flux

moments could then be recombined using the orthogonal basis to reproduce the fine-group

solution.

The zeroth-moment equation was equivalent to the standard multigroup approximation

discussed in Section 1.2, whereas the higher terms corrected the zeroth equation to fine-group

accuracy. Essentially, the method provided a way to use a non-flat flux for coarse-group

regions. In particular, Forget and Rahnema 12 applied the method to the discrete ordinates

method, which is a simple way to treat the angular dependence of the transport equation.

While the GM and DGM methods could be applied to other solution methods (e.g. method of

characteristics), much of the development of the method has used discrete ordinates. Unless
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otherwise specified, all developments presented in this section used the discrete ordinates

method to solve the transport equation.

Rahnema et al. 13 expanded on the work of Forget and Rahnema 12 by generalizing the

method to an arbitrary, continuous basis set. By ensuring that all basis functions other

than the zeroth integrate to zero, the higher-order equations are decoupled from each other.

The decoupling means that the higher-order equations are nearly trivial to solve, as they

depend only upon the solution to the zeroth-order equation. As the zeroth-order equation is

equivalent to the standard multigroup collapse, the problem is solved using approximately the

same work as is typical for a coarse-group computation. Thus, this expansion suggests that a

fine-group solution may be recovered from a solution with coarse-group work. However, since

the method relies on the continuous, Legendre polynomials, the reconstructed fine-group

solution could have negative flux values. A continuous basis requires an infinite number of

moments for exact preservation; thus, the method required truncation after a number of

moments. Truncated Legendre polynomials lead to oscillations near the group boundaries,

which could be large enough for negative fluxes particularly in energy-groups with a low flux.

Zhu and Forget 14 further improved the method in 2010 by using the discrete Legendre

polynomials and renamed the method to the discrete generalized multigroup (DGM) method.

This change eliminated the oscillations and was a more natural fit for the discrete nature of

the multigroup approximation. The discrete Legendre polynomials retained the property of

decoupling the higher-order moment equations from all but the zeroth equation. Zhu and

Forget 14 also introduced flux updates to the method which were used to improve the accuracy

of the reconstructed flux spectrum. The flux updates were essentially a single application of

the fine-group transport operator, which was used to improve the stability of the method as

well as correct any negative flux values. It was suggested to use the resulting fine-group DGM

solution as the input to a traditional, fine-group, multigroup solution. In other words, they

suggested that the DGM equations could be used as an acceleration method for traditional

deterministic methods, which was confirmed in later work by the same authors15. While the

method did save some computation time, larger storage requirements were needed to hold

the additional cross sections and angular flux as compared to other acceleration methods.
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Also in 2010, Forget and Zhu 16 applied the DGM method to the diffusion equation. In that

work, the derived equation was applied to problems using different energy-group structures

in neighboring cells. In simulations with relatively low energy dependence, a coarser-group

structure may be used as compared to regions with high energy dependence. The work

demonstrated that the DGM method could use neighboring regions with different group

structures, which could provide significant computational savings by selecting coarser-group

structures in regions with low energy dependence.

Zhu and Forget 17 further improved the DGM method by adding the idea of recondensation

in 2011. Shortly thereafter, Douglass and Rahnema 18 added recondensation to their general-

ized energy condensation theory, which is closely related to the DGM method but instead

uses a continuous basis. The DGM method assumes an initial flux spectrum, which typically

comes from fine-group lattice calculations, for the initial collapse of the cross sections. The

output of the method is an improved estimate of the fine-group flux spectrum. The updated

spectrum thus could be used as the initial spectrum to another iteration of the DGM method.

This iterative process was called recondensation and lead to improved reaction rates by better

incorporating model heterogeneities into the cross sections. Due to iteration, the solution is

dependent on the initial flux estimate only for convergence speed. It was shown that two or

three iterations on the coarse-group solution were sufficient for significant improvement.

Using this approach, Zhu and Forget 17 suggested that assembly level calculations are

unnecessary within the DGM framework with recondensation. However, their method required

the use of fine-group flux updates to prevent possible negative fluxes, which could cause the

recondensation procedure to diverge. A flux update was essentially one transport iteration

(sweep) using the fine-group solution, which was performed between each iteration of the

DGM method with recondensation.

Furthermore, Zhu and Forget 17 showed that the DGM method is most accurate relative

to the fine-group solution when implemented with the flat-flux approximation, e.g., using

step difference (SD). Since the zeroth-order equation of DGM is claimed to be identical to the

standard multigroup collapse from fine-group to coarse-group structures, the reaction rates

should be identical. It was shown mathematically that a systemic bias exists in DGM if SD
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is not used. In other words, the reaction rates for the zeroth DGM and standard multigroup

are not equal. The work did not attempt to quantify the bias.

In 2012, Douglass and Rahnema 19 updated their generalized energy condensation theory

to account for the angular dependence of the total cross section. This was accomplished by

splitting the total cross section into an average term (dependent on the scalar flux) and a

perturbation (dependent on the angular flux). However, this feature was already present in

the DGM method as presented by Zhu and Forget 14 several years earlier.

In 2012, Gibson and Forget 20 applied the DGM method to the infinite medium problem

with a group structure of more than 10,000 energy groups to avoid self-shielding methodologies.

The authors suggested that DGM would substantially reduce the computational cost for solving

an ultrafine-group problem as compared to traditional methods once spatial dependence

was included. Their method required the fine-group flux updates to ensure the stability of

the method. Furthermore, the coarse-group structure was also found to impact the rate of

convergence.

Gibson and Forget 21 then explored the stability of the DGM method, and sought to

eliminate the computationally expensive fine-group flux updates. The authors introduced

the idea of Krasnoselskii iteration, which improved the stability at the cost of additional

computational expense. Essentially, a relaxation term was introduced to the DGM reconden-

sation iteration, which leads to slower convergence for the flux and corresponding eigenvalue.

Gibson and Forget 21 further showed that the ratio of cross sections within a coarse group

can lead directly to instabilities, which Krasnoselskii iteration could correct. However, the

best relaxation coefficient cannot be known a priori, selection of which balances stability and

computational time.

In 2013, Gibson and Forget 22 expanded on previous efforts to further explore the stability

of the DGM method. From their work, varying the group structure was found to greatly

impact the stability of the recondensation iteration scheme. A proper group structure was

shown to favorably impact stability, and thus, allowed for larger values for the relaxation

coefficient in Krasnoselskii iteration. They suggested a set of criteria for selecting a coarse-

group structure based on the fine-group total cross sections. Specifically, a proper group
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structure limits the ratio of largest to smallest cross sections within a coarse group to about

2.0, as well as the number of fine groups allowed within a coarse group to about 60. Further,

the ratio requirement was removed for coarse groups containing only small cross sections

(i.e., less than 1.5 cm−1). Additionally, Gibson and Forget 22 implemented a method where

different relaxation values were assigned for each coarse group, which allowed the groups to

converge independently. A troublesome group, i.e. in the resonance region, could be assigned

a small value for the relaxation coefficient, which reduced stability concerns from that coarse

group.

At about the same time, Everson and Forget 23 explored the spatial dependence of the

DGM method. Specifically, the authors were seeking a formulation of the DGM equations

that provided an exact recreation of the fine-group solution without being limited to the flat

flux approximation as discussed previously17. In that work, the DGM method was tested

with a basis created using the discrete cosign transforms of type II (DCT). Additionally,

the method was derived specifically for implementation in methods of characteristics, which

uses 1-D step characteristics for a spatial approximation. Finally, a method of redefining the

cross sections moments for memory and computational savings was presented, which will be

discussed in more detail in Section 2.3.

One of the more recent efforts related to DGM returned to continuous polynomials.

Everson and Forget 24 introduced the source equivalence acceleration method (SEAM), which

combined the lessons learned from previous work23 with the subgroup decomposition method

introduced previously by Douglass and Rahnema 25 . The subgroup decomposition method is

essentially a simplification of the DGM formulation, which uses continuous basis functions

to perform cross section collapses on only the incoming energy group side of the scattering

and fission cross sections. The method of characteristics code OpenMOC was the platform

for testing SEAM, where it was compared against CMFD and found to outperform CMFD

for some complex problems. SEAM was formulated to remove the dependence of DGM on

the flat flux approximation, and thus provides full consistency between coarse-group and

fine-group problems for higher-order spatial approximations.

Recently, Gamarino et al. 26 presented an implementation of a recondensation method
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as applied to core-level simulation. The work explored the ability to generate corrected,

homogeneous cross sections on the fly, which have been synthesized from infinite medium

and environmental spectra. The presentation used an orthogonal basis, which incorporated

physical insight into the basis (as opposed to purely analytical functions) by using the

proper orthogonal decomposition (POD), which will be discussed in detail in Chapter 3.

Fundamentally, the method is similar to the DGM method discussed in this chapter and

derived in Chapter 2. The POD basis allowed the method to account for the errors caused

by taking homogenized cross sections from an infinite media and creating a heterogeneous

core design. The authors showed that the POD basis, created using the method of snapshots,

performed better than pure analytical functions (e.g., Chebyshev polynomials).

Gamarino et al. 27 then applied their previous method to several example core configura-

tions typically encountered in modern reactor cores. Their method worked well when the

reference leakage spectrum was used, which means the method did not introduce significant

additional error. However, the method failed to correct spatial homogenization errors, thus

the authors suggested that effective spatial rehomogenization methods must be used in

conjunction with the presented spectral rehomogenization.

1.4 Methods Similar to Multigroup

By changing the membership function defined in Eq. (1.3), a plethora of multigroup like

methods may be developed. While not considered further in this work, these methods attempt

a similar goal to the generalized multigroup method presented in Section 1.3. In this section,

we briefly discuss the family of multiband methods and the linear multigroup method.

1.4.1 Multiband Methods

The most naive formulation of a multigroup structure would divide the energy range into a

series of contiguous ranges. Each range would thus become an energy group, and the number

of groups would be dependent on the range of energies spanned. Multiband methods result
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by allowing a discontinuous energy range to comprise an energy group.

Multiband methods use a set of member functions to select the energy groups that have

similar cross section values. To accomplish this, Eq. (1.3) is modified to allow discontinuous

energy ranges, i.e.

Pb(E) =


1 if Σb < Σ(E) ≤ Σb−1

0 otherwise

, (1.16)

where the subscript b refers to the energy band. Equation (1.16) is equivalent to

Pb(E) =
∑
g∈b

Pg(E) , (1.17)

where the energy bounds for each group g are selected such that the cross sections meet the

selection criteria for the energy band b.

The family of multiband methods began in 1994, where Shilkov 28 discussed a departure

from the naive approach and allowed discontinuous energy ranges to be combined to form a

single group. In his work, two methods were presented including the generalized multigroup

approximation and the Lebesgue averaging method. These methods lead to the family of

multiband methods. Typically in these methods, a group is no longer comprised of cross

sections at similar energies, but rather a group contains the energy ranges which have similar

cross sections.

This change in group structure minimally affects the form of the transport equations

but instead has a substantial impact on the scattering matrix. High energy particles lose

energy via scattering, thus transitioning from group to group. In the traditional multigroup

formulation, the scattering matrix is almost lower triangular, which signifies that high energy

particles cannot gain energy via scattering. In the multiband approach, group to group

transfer is not directly correlated to energy, thus the scattering matrix is no longer lower

triangular. Most methods of solving the transport equation are less efficient and slower to

converge with this apparent upscattering.

Considerable effort has been devoted to developing various multiband methods. An
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excellent history of the various forms and developments of multiband methods was produced

by Till 29 in 2015. A method in the multiband family was developed by Till et al. 30 , which

uses finite-elements and trial functions to partition the energy space into discrete regions.

His method extended a previous, similar method31 to use discontinuous energy groupings.

The method used modified Heaviside functions to select the group and band membership and

promised to treat self-shielding effects better than the standard multigroup approximation.

Furthermore, the method was less dependent on the initial weighting spectrum as compared

to the multigroup approximation.

1.4.2 Linear Multigroup Method

The linear multigroup method32 is another variation on the multigroup method, where the

membership functions presented in Eq. (1.3) are modified to allow partial membership in

multiple groups by use of so-called hat functions. The membership functions are modified to

Pg(E) =



E−Eg−1

Eg−Eg−1
if Eg−1 < E ≤ Eg

E−Eg+1

Eg−Eg+1
if Eg < E ≤ Eg+1

0 otherwise

, (1.18)

which produces functions similar to those shown in Fig. 1.3.

1.0

EN EN−1
. . . . . . . . .

E1 E0

N N-1 . . . . . . . . . 2 1

Figure 1.3: Hat functions used in the linear multigroup method. The number above each hat
is the group number.

This approach was developed by Attieh and Pevey 33 in 2002, which allowed a fine-energy
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group to have partial membership in more than one coarse group. Although the method

was shown to work better than the standard multigroup method for some applications, the

method suffered from several drawbacks.

First, due to partial membership in multiple coarse groups, the scattering matrix was no

longer almost lower triangular, and instead contained so-called “fictitious upscattering” similar

to multiband methods. Furthermore, the method introduced a group-to-group dependence

to the total cross section, which was non-physical. Finally, the method was only tested for

infinite homogeneous media and would be difficult to extend to full-core simulation.

1.5 Approximate Spatial Dependence

We now turn our focus to methods designed to lessen the impact of errors due to spatial

(and spectral) homogenization. As mentioned previously, the standard multigroup framework

necessarily homogenizes over spatial regions on the march to prepare few-group, nodal cross

sections for core simulations. Smearing the information over a spatial region means that

important quantities such as the leakage from that region are not automatically preserved

through naive averaging. Two main ideas exist for spatial homogenization including disconti-

nuity factors (computed using general equivalence theory) and superhomogénéisation (SPH)

factors.

Both methods seek to define homogenized cross sections such that the reaction rates

for an entire region are preserved. Without these factors, a problem using homogenized

cross sections in place of the non-homogenized cross sections can produce different reaction

rates. This section will focus primarily on SPH factors, as they are used in the present work.

Discontinuity factors34–36 are closely related to SPH factors, but require storage of the factors.

Conversely, the SPH factors are used to modify the homogenized cross sections directly, which

eliminates the storage requirements.

The beginnings of the SPH technique are outlined in 1981 by Hébert and Kavenoky 37.

The method seeks to ensure reaction rates are equivalent between the spatially fine and

spatially coarse solutions by producing a set of factors. These factors are computed by a
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ratio of the homogenized to non-homogenized flux in the homogenized region and are used to

directly adjust the values for the homogenized cross sections. In other words, these correction

factors would force equivalence between the low-order and high-order methods by adjusting

the cross sections iteratively.

Note that SPH factors are incorporated directly into the homogenized cross sections as

opposed to discontinuity factors, which are stored separately. Therefore, SPH corrected

cross sections may be used directly for nodal calculations for core models without changing

existing algorithms. In particular, the SPH method is typically used in so-called Pin-by-Pin

homogenization calculations, wherein nuclear properties are homogenized over each pincell

in the core/assembly model. The method typically produces a single SPH equivalence

factor per pincell per energy group, and many similar formulations of SPH factors exist.

Hebert 38 discusses the history of the SPH methods through the early 1990s, which includes

developments for SPH factors applicable to transport calculations instead of merely diffusion.

Each SPH algorithm contains two distinct steps. First, a spatially heterogeneous calcula-

tion is performed, which determines the values for the reaction rates and the eigenvalue for a

region. Secondly, the region is spatially homogenized, which produces a set of homogenized

cross sections. The problem is solved again but replaces the heterogeneous region with the

homogenized material, which could result in different reaction rates as compared to the

heterogeneous problem. The ratio of the reference (heterogeneous) reaction rates and the

newly calculated (homogeneous) rates leads to an equivalence factor, which is multiplied

into each cross section to force equivalence of the reaction rates. The adjusted cross sections

are used for another solution using the homogenized mesh resulting in updated reaction

rates. This process continues iteratively until convergence between the heterogeneous and

homogeneous reaction rates.

In 2004, Yamamoto et al. 39 proposed an improvement to the SPH method, which more

accurately accounts for heterogeneous boundaries in the model. SPH factors and discontinuity

factors attempt to perform a similar role, and the suggested improvement brings the two

methods into closer parity. With a small modification to the normalization of SPH factors,

flux discontinuity information stemming from adjacent assemblies can be incorporated into
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the SPH framework. This modification leads to an equivalence between SPH factors and

those of generalized equivalence theory (GET), which relies on discontinuity factors. Before

that improvement, SPH factors were less accurate for pin-by-pin calculations (i.e., preserving

the pincell reaction rates) as compared to GET. With that work, the accuracy of discontinuity

factors can be achieved without storing a separate factor for each cell as is required for

traditional discontinuity factors.

Hébert 40 presented a change in the definition of the SPH factors, which corrected for

inconsistencies in the higher-order angular moments. In particular, the traditional SPH

method was only accurate for P1 transport calculations or diffusion calculations. The

reformulation did not change the definition of the factors themselves but rather defined how

the factors were to be applied to the transport equation, specifically the parity form.

More recently, Zhang et al. 41 evaluated both GET (discontinuity factors) and the SPH

method for preparing cross sections for use in pin-by-pin calculations involving mixed fuel.

They found that both methods were sufficiently accurate for spatial homogenization. These

methods were compared using group structures containing 2 and 7 coarse groups and found

that 2 coarse groups were not sufficient to capture the energy dependence for the SP3 method.

Similar work was presented by Ortensi et al. 42 , where the SPH method was explored for

use at Idaho National Lab in regards to the MOOSE framework. In that work, the authors

presented two equivalent ways of applying SPH factors to the even/odd parity form of the

transport equation. The methods differ by which terms are multiplied, i.e., which cross

sections are adjusted, while still preserving the reaction rates. They coupled the traditional

SPH iteration into a preconditioned Jacobian free Newton Krylov solver, which they creatively

called the PJFNK-SPH method. By comparing the solution at each iteration to a reference

calculation (provided by SERPENT), the new method quickly converged, and in the process,

preserved the reaction rates of the reference solution.
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1.6 Objective and Organization

As mentioned previously, the bulk of this manuscript focuses on improving the discrete

generalized multigroup (DGM) method. As used in this work, the DGM method is most

useful for modeling assemblies using 100s to 10000s of energy groups in preparation for

full-core modeling, i.e., in the area of lattice physics. The end goal is to produce a method

that can produce more accurate cross sections for downstream use as compared to traditional

flux weighting described in Section 1.2. The improvements can be grouped into three sections,

which correspond to the organization of this manuscript.

Chapter 2 provides a detailed derivation of the baseline discrete generalized multigroup

method. Chapter 3 introduces a new basis set into the DGM method, which is more apt

to truncation. Chapter 4 encompasses the first set of improvements, which is the use of a

truncated basis set for the method. Chapter 5 focuses on ways to reduce the computational

requirements of the DGM method. Two approximations are provided, which seek to reduce

memory requirements. Chapter 6 combines the DGM method with the SPH method to lead

to homogenized, downstream cross sections. Finally, Chapter 7 provides some concluding

remarks.

This work also includes three appendices. Appendix A details how the fine-group cross

sections were created for this work. Appendix B describes how the coarse-group structures

were chosen for the DGM method. Appendix C explores different types of snapshots for use

with the POD basis creation.
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Chapter 2

The Discrete Generalized Multigroup

Method

Historically, the use of the discrete generalized multigroup (DGM) method has been to

recover the full, fine-group flux values. Previous efforts14;23 have sought ways to ensure that

the recovered fine-group flux from DGM is identical to that found by solving the transport

equation without DGM. The DGM method as presented in this chapter can recover the

fine-group solution using a complete basis set outside of some numerical differences in the

spatial discretization as discussed in Section 1.3.

In this chapter, we explore the DGM method in more detail. We begin by first deriving

the DGM equations in Section 2.1. A method of solving the DGM equation is presented

in Section 2.2. A more efficient formulation and solution method for DGM equations are

derived in Section 2.3. The chapter concludes with Section 2.4, wherein basis sets suitable

for DGM are discussed.

2.1 Derivation of the DGM Equations

Fundamentally, DGM is a way to represent the energy-space of a problem and is compatible

with any deterministic transport approximation (e.g., discrete ordinates, method of charac-
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teristics) in theory. However, the present work was implemented using discrete ordinates,

and thus the derivation, which has been adapted from a previous presentation22, is focused

on that method.

We begin with the k-eigenvalue form of the 1-D, Sn equations1 with the multigroup

approximation and with anisotropic scattering approximated using spherical harmonics

(Legendre polynomials in 1-D) written as

µa
∂

∂x
ψc,a,g + Σt

c,gψc,a,g =

Nl∑
l=0

2l + 1

2
Pl(µa)

Ng∑
g′=1

Σs
c,g←g′,lφc,g′,l

+
χc,g
2k

Ng∑
g′=1

νΣf
c,g′φc,g′,0 ,

(2.1)

where ψc,a,g is the angular flux in cell c for group g in the direction of angle a, µa is the

cosine of the angle a, Σt
c,g is the total cross section for group g in cell c, Σs

c,g←g′,l is the lth

order Legendre moment of the scattering cross section from group g′ to g in cell c, k is the

eigenvalue, χc,g is the fission spectrum in cell c for group g, Σf
c,g′ is the fission cross section in

cell c for group g′, Pl(µa) is the Legendre polynomial of lth order evaluated at µa, Nl is the

order of the Legendre expansion, Ng is the number of energy-groups, and

φc,g,l =
Na∑
a=1

waPl(µa)ψc,a,g , (2.2)

where Na is the number of discrete angles, and wa is the weight corresponding to the discrete

angle µa for the chosen angular quadrature scheme (e.g. Gauss Legendre).

Now, we divide the energy-groups g into a number of coarse groups NG such that each

fine group belongs to one, and only one coarse group G, which leads to

µa
∂

∂x
ψc,a,g + Σt

c,gψc,a,g =

Nl∑
l=0

2l + 1

2
Pl(µa)

NG∑
G′=1

NG′
g∑

g′=1

Σs
c,g←g′,lφc,g′,l

+
χc,g
2k

NG∑
G′=1

NG′
g∑

g′=1

νΣf
c,g′φc,g′,0 ,

(2.3)
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where NG
g is the number of fine groups within coarse group G.

We introduce a set of energy-dependent, orthonormal basis vectors PG
i,g, where the subscript

i is the order of the basis function, the subscript g is the fine-group index, and the superscript

G is the coarse group for the expansion. A given basis has vectors that are orthogonal within

the coarse group, and hence, a different choice of basis may be used within each coarse group.

While not a requirement of the method, the basis was assumed to be normalized with unity

weights to simplify the notation. The choice of energy basis is the subject of Section 2.4.

Multiplication by the orthogonal basis set and summation over the fine groups within a coarse

group G yields

µa
∂

∂x

NG
g∑

g=1

PG
i,gψc,a,g +

NG
g∑

g=1

PG
i,gΣ

t
c,gψc,a,g =

Nl∑
l=0

2l + 1

2
Pl(µa)

NG
g∑

g=1

PG
i,g

NG∑
G′=1

NG′
g∑

g′=1

Σs
c,g←g′,lφc,g′,l

+

NG
g∑

g=1

PG
i,g

χc,g
2k

NG∑
G′=1

NG′
g∑

g′=1

νΣf
c,g′φc,g′,0 .

(2.4)

We now define the flux moments as

φc,G,l,i =

NG
g∑

g=1

PG
i,gφc,g,l , (2.5)

and

ψc,a,G,i =

NG
g∑

g=1

PG
i,gψc,a,g . (2.6)

Thus, the flux may be reconstructed by

φc,g,l =

Ni∑
i=1

PG
i,gφc,G,l,i and ψc,a,g =

Ni∑
i=1

PG
i,gψc,a,G,i . (2.7)
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Equation (2.4) may be simplified to

µa
∂

∂x
ψc,a,G,i +

NG
g∑

g=1

PG
i,gΣ

t
c,gψc,a,g =

Nl∑
l=0

2l + 1

2
Pl(µa)

NG
g∑

g=1

PG
i,g

NG∑
G′=1

NG′
g∑

g′=1

Σs
c,g←g′,lφc,g′,l

+
χc,G,i

2k

NG∑
G′=1

NG′
g∑

g′=1

νΣf
c,g′φc,g′,0 ,

(2.8)

by defining and using

χc,G,i =

NG
g∑

g=1

PG
i,gχc,g , (2.9)

as well as Eq. (2.6).

2.1.1 Treating the total interaction term

From here, we turn our attention to the total cross section and the associated reaction rate.

We first assume that the total cross section may be split into a scalar and angular part as

Σt
c,g = Σt

c,G + δc,a,g , (2.10)

where in the traditional multigroup method, the δ term is assumed to be zero, and

Σt
c,G =

NG
g∑

g=1

PG
0,gΣ

t
c,gφc,g,0

φc,G′,0,0
. (2.11)

With the use of Eq. (2.10), the total reaction rate can be preserved as

Rt
c,G,i =

NG
g∑

g=1

PG
i,gΣ

t
c,gφc,g,0 = Σt

c,Gφc,G,0,i +
∑
a

δc,a,G,iψc,a,G,0 , (2.12)
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into which Eq. (2.6) is inserted to yield an expression for δc,a,G,i, i.e.,

δc,a,G,i =

NG
g∑

g=1

PG
i,gΣ

t
c,gψc,a,g − Σt

c,Gψc,a,G,i

ψc,a,G,0

=

NG
g∑

g=1

PG
i,gΣ

t
c,gψc,a,g − Σt

c,G

NG
g∑

g=1

PG
i,gψc,a,g

ψc,a,G,0

=

NG
g∑

g=1

PG
i,g

(
Σt
c,g − Σt

c,G

)
ψc,a,g

ψc,a,G,0
.

(2.13)

The term δ represents a correction for the assumption that the total cross section is isotropic

upon condensation from the fine-group to the coarse-group structure. Inserting Eq. (2.12)

into Eq. (2.8) yields

µa
∂

∂x
ψc,a,G,i + Σt

c,Gψc,a,G,i + δc,a,G,iψc,a,G,0

=

Nl∑
l=0

2l + 1

2
Pl(µa)

NG
g∑

g=1

PG
i,g

NG∑
G′=1

NG′
g∑

g′=1

Σs
c,g←g′,lφc,g′,l

+
χc,G,i

2k

NG∑
G′=1

NG′
g∑

g′=1

νΣf
c,g′φc,g′,0 .

(2.14)

2.1.2 Treating the scattering term

We now treat the scattering term by expanding the reaction rate as

Rs
c,g←g′,l = Σs

c,g←g′,lφc,g′,l =

Nj∑
j=0

PG′

j,g′R
s
c,g←G′,l,j , (2.15)

where

Rs
c,g←G′,l,j =

NG′
g∑

g′=1

PG′

j,g′R
s
c,g←g′,l . (2.16)
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Substituting this relationship into the scattering term of Eq. (2.14) yields

Nl∑
l=0

2l + 1

2
Pl(µa)

NG
g∑

g=1

PG
i,g

NG∑
G′=1

NG′
g∑

g′=1

Σs
c,g←g′,lφc,g′,l

=

Nl∑
l=0

2l + 1

2
Pl(µa)

NG
g∑

g=1

PG
i,g

NG∑
G′=1

NG′
g∑

g′=1

Nj∑
j=0

PG′

j,g′R
s
c,g←G′,l,j

=

Nl∑
l=0

2l + 1

2
Pl(µa)

NG∑
G′=1

Nj∑
j=0

NG
g∑

g=1

PG
i,gR

s
c,g←G′,l,j

NG′
g∑

g′=1

PG′

j,g′ .

(2.17)

By examining the (blue) term
NG′

g∑
g′=1

PG′

j,g′ at the end of the last line of Eq. (2.17), we can see

that if the basis is defined such that all basis functions higher than zeroth order integrate to

zero (equivalent to requiring the zeroth-order function be the flat function), only the j = 0

scattering term is non-zero. In other words, higher-order scattering terms (within a coarse

group) are decoupled from all but the zeroth-order term (in that coarse group), which helps

to simplify the final DGM equations as will be shown below. Recall that for simplicity, we

assume that the basis is normalized, though this is not a general restriction of the method.

With the use of such a basis and the definitions in Eqs. (2.15)–(2.16), the scattering term

can be further simplified, or

Nl∑
l=0

2l + 1

2
Pl(µa)

NG
g∑

g=1

PG
i,g

NG∑
G′=1

NG′
g∑

g′=1

Σs
c,g←g′,lφc,g′,l

=

Nl∑
l=0

2l + 1

2
Pl(µa)

NG∑
G′=1

NG
g∑

g=1

PG
i,gR

s
c,g←G′,l,0

=

Nl∑
l=0

2l + 1

2
Pl(µa)

NG∑
G′=1

NG
g∑

g=1

PG
i,g

NG′
g∑

g′=1

PG′

0,g′Σ
s
c,g←g′,lφc,g′,l

=

Nl∑
l=0

2l + 1

2
Pl(µa)

NG∑
G′=1

NG′
g∑

g′=1

PG′

0,g′φc,g′,l

NG
g∑

g=1

PG
i,gΣ

s
c,g←g′,l

=

Nl∑
l=0

2l + 1

2
Pl(µa)

NG∑
G′=1

Σs
c,G←G′,l,iφc,G,l,0 ,

(2.18)
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where

Σs
c,G←G′,l,i =

NG′
g∑

g′=1

PG′

0,g′φc,g′,l

NG
g∑

g=1

PG
i,gΣ

s
c,g←g′,l

φc,G,l,0
. (2.19)

Equation (2.18) is inserted into Eq. (2.14) to yield

µa
∂

∂x
ψc,a,G,i + Σt

c,Gψc,a,G,i + δc,a,G,iψc,a,G,0

=

Nl∑
l=0

2l + 1

2
Pl(µa)

NG∑
G′=1

Σs
c,G←G′,l,iφc,G′,l,0

+
χc,G,i

2k

NG∑
G′=1

NG′
g∑

g′=1

νΣf
c,g′φc,g′,0 .

(2.20)

2.1.3 Treating the fission term

Finally, we treat the fission term using a reaction rate expansion similar to the scattering

term, i.e., defining

Rf
c,g′ = νΣf

c,g′φc,g′,0 =

Nj∑
j=0

PG′

j,g′R
f
c,G′,j , (2.21)

where

Rf
c,G′,j =

NG′
g∑

g′=1

PG′

j,g′R
f
c,g′ . (2.22)

Using Eqs. (2.21) and (2.22), the fission term in Eq. (2.20) may be rearranged as

χc,G,i
2k

NG∑
G′=1

NG′
g∑

g′=1

νΣf
c,g′φc,g′,0 =

χc,G,i
2k

NG∑
G′=1

NG′
g∑

g′=1

Nj∑
j=0

PG′

j,g′R
f
c,G′,j

=
χc,G,i

2k

NG∑
G′=1

Nj∑
j=0

Rf
c,G′,j

NG′
g∑

g′=1

PG′

j,g′ .

(2.23)

Again, only the j = 0 terms are non-zero due to the blue summation over energy. These

terms vanish when the zeroth-order basis vector is the normalized, flat function, which leads
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to

χc,G,i
2k

NG∑
G′=1

NG′
g∑

g′=1

νΣf
c,g′φc,g′,0 =

χc,G,i
2k

NG∑
G′=1

Nj∑
j=0

Rf
c,G′,j

NG′
g∑

g′=1

PG′

j,g′

=
χc,G,i

2k

NG∑
G′=1

Rf
c,G′,0

=
χc,G,i

2k

NG∑
G′=1

NG′
g∑

g′=1

PG′

0,g′νΣf
c,g′φc,g′,0

=
χc,G,i

2k

NG∑
G′=1

νΣf
c,G′φc,G′,0,0 ,

(2.24)

where

νΣf
c,G′ =

NG′
g∑

g′=1

PG′

0,g′νΣf
c,g′φc,g′,0

φc,G′,0,0
. (2.25)

Substituting Eq. (2.25) into Eq. (2.20) leads to

µa
∂

∂x
ψc,a,G,i + Σt

c,Gψc,a,G,i + δc,a,G,iψc,a,G,0

=

Nl∑
l=0

2l + 1

2
Pl(µa)

NG∑
G′=1

Σs
c,G←G′,l,iφc,G′,l,0 +

χc,G,i
2k

NG∑
G′=1

νΣf
c,G′φc,G′,0,0 ,

(2.26)

which are the set of DGM equations. Note that the zeroth-order solution (i = 0) is nearly

equivalent to the standard multigroup approximation, in which cross sections are collapsed

via the conventional, flux-weighting procedure, with the exception being the δ term. Also

note that this derivation has assumed an orthonormal basis with unity weights, and the

rest of this work will only consider basis sets of this type. This assumption is not a general

restriction of the method, but it makes both the presentation and implementation somewhat

more concise.

Finally, note that the higher-order equations (i > 0) are dependent on the solution to

only the zeroth (i = 0) equation for a particular value of G. As discussed previously, the

decoupling is accomplished by requiring that all higher-order basis function (i > 0) integrate

to zero or, equivalently, that the zeroth-order (i = 0) basis function is the flat function.
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Decoupling the moments serves to simplify the solution of the higher-order equations by

converting them to purely-absorbing, fixed-source problems, which are a much easier class

of problems to solve numerically than those with scattering. Further, the decoupling also

improves the stability of the method by preventing higher-moment flux values (which may be

arbitrarily small or negative) from appearing in any denominators (e.g., in Eq. (2.13)).

2.2 Iterative Solution of the DGM Equations

The DGM equations (i.e., Eq. (2.26)) can be solved iteratively as depicted by Algorithm 1.

We begin the method by assuming a starting flux vector. The closer this vector is to the true

fine-group solution, the faster the method will converge.

Since χc,G,i does not depend on the fine-group flux, it is computed once at the beginning

of the method. Then, (1) the fine-group flux is collapsed into coarse-group moments using

Eqs. (2.5) and (2.6). Next, (2) coarse-group cross section moments are computed using

Eq. (2.11), Eq. (2.13), Eq. (2.19), and Eq. (2.25). Now, (3) Eq. (2.26) is solved with i = 0

as an eigen equation leading to updated zeroth-order, coarse-group moments as well as the

eigenvalue. Then, (4) each higher-order moment (i > 0) is found by solving Eq. (2.26).

Next, (5) reconstruct the fine-group flux from the updated coarse-group moments. This new

fine-group flux is a more accurate approximation as compared to the initial, assumed flux

vector, and thus (6) return to step (1) until the method converges. The iteration between

successive fine-group collapses is the recondensation method discussed in Section 1.3.

Although straightforward in principle, the DGM equations as defined by Eq. (2.26) and

their solution by Algorithm 1 exhibit several drawbacks that limit practicality. Due to the

definition for δc,a,G,i in Eq. (2.13), the fine-group angular flux must be stored, which can

lead to significant storage requirements. Additionally, because the coarse-group cross section

moments depend on the cell-wise fine-group fluxes, the coarse-group cross section moments

become cell-wise quantities even if the underlying fine-group cross sections are not spatially

dependent. Again, this can lead to large storage requirements. Ways to address these concerns

are the topic of Chapter 5.
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Input: cell and material properties, basis vectors
Compute χ moments
Guess the initial, fine-group flux
while not converged do

Compute flux moments
Compute cross-section moments
Solve zeroth-order equations (i = 0)
Update the eigenvalue
for all moments i > 0 do

Solve ith-order equation
end
Reconstruct fine-group flux

end
Algorithm 1: Iterative procedure for solving DGM

The DGM method is also prone to instabilities, i.e., the method may be divergent in some

cases as discussed in detail by Gibson and Forget 22 . As presented in Algorithm 1, the DGM

method is an example of fixed-point iteration. This class of problems continually applies an

operator onto a vector until either the method converges to a fixed-point or it diverges. The

simplest form of fixed-point iteration is Picard iteration, which is a problem of the form

φk+1 = F(φk) , (2.27)

where F is some operator acting upon the vector φ.

For the case of DGM, stability can be improved by adding a relaxation coefficient λ ∈ (0, 1]

into Picard iteration, i.e.,

φk+1 = λF(φk) + (1− λ)φk , (2.28)

which is known as Krasnoselskii iteration. Note that if λ = 1.0, this method reduces to Picard

iteration. For divergent problems, a smaller value of λ may be used to improve stability and

convergence at the cost of additional iterations. For highly stable problems, λ may be set

above unity, which would increase the convergence rate using over-relaxation.
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2.3 Precomputing the Coarse Moments

As discussed in the previous sections, the DGM method relies on an iterative approach to

find the fine-group solution. Each recondensation iteration begins with the fine-group flux

(or an approximation), which is used to produce coarse-group cross section moments. These

moments are then used to update the coarse-group flux moments, which leads to an improved

fine-group flux. Using the definitions for the coarse-group cross section moments (Eq. (2.11),

Eq. (2.13), Eq. (2.19), and Eq. (2.25)), fine-group cross sections data as well as fine-group

flux must be stored and used at every iteration. Ideally, DGM can be cast in such a way as

to partially precompute these quantities and remove the dependence on fine-group data after

the initial computation. A change of this nature would greatly improve the DGM method in

terms of both computational and memory costs.

This kind of improvement was first suggested by Everson and Forget 23 for reducing the

cost of storing δc,a,G,i. The goal for this section is to not affect the solution of Eq. (2.26), but

rather to increase solution efficiency. We begin by examining the total cross section moments

defined in Eq. (2.11) utilizing the definition of the flux moments from Eq. (2.7) as

Σt
c,G =

NG
g∑

g=1

PG
0,gΣ

t
c,gφc,g,0

φc,G,0,0

=

NG
g∑

g=1

PG
0,gΣ

t
c,g

Nj∑
j=0

PG
j,gφc,G,0,j

φc,G,0,0

=

Nj∑
j=0

φc,G,0,j

NG
g∑

g=1

PG
0,gΣ

t
c,gP

G
j,g

φc,G,0,0

=

Nj∑
j=0

φc,G,0,jΣ
t∗
c,G,0,j

φc,G,0,0
,

(2.29)

where

Σt∗
c,G,i,j =

NG
g∑

g=1

PG
i,gΣ

t
c,gP

G
j,g . (2.30)
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Σt∗
c,G,i,j is the total cross section mass matrix and Nj is the number of moments in the

expansion. With this definition, the total cross section moments no longer depend on the

fine-group data, and may instead be updated using only coarse-group information. Note that

these savings are offset by now requiring all coarse-group flux moments to be stored. This

final point will receive further discussion at the end of the section.

Next, we perform a similar reformulation for the δ term as

δc,a,G,i =

NG
g∑

g=1

PG
i,g

(
Σt
c,g − Σt

c,G

)
ψc,a,g

ψc,a,G,0

=

NG
g∑

g=1

PG
i,g

(
Σt
c,g − Σt

c,G

) Nj∑
j=0

PG
j,gψc,a,G,j

ψc,a,G,0

=

Nj∑
j=0

ψc,a,G,j

NG
g∑

g=1

PG
i,g

(
Σt
c,g − Σt

c,G

)
PG
j,g

ψc,a,G,0

=

Nj∑
j=0

ψc,a,G,j

(
NG

g∑
g=1

PG
i,gΣ

t
c,gP

G
j,g −

NG
g∑

g=1

PG
i,gΣ

t
c,G,0P

G
j,g

)
ψc,a,G,0

=

Nj∑
j=0

ψc,a,G,j

NG
g∑

g=1

PG
i,gΣ

t
c,gP

G
j,g − Σt

c,G

NG
g∑

g=1

PG
i,g

Nj∑
j=0

ψc,a,G,jP
G
j,g

ψc,a,G,0

=

Nj∑
j=0

ψc,a,G,jΣ
t∗
c,G,i,j

ψc,a,G,0
− Σt

c,G

ψc,a,G,i
ψc,a,G,0

,

(2.31)

using the definitions in Eqs. (2.6) and (2.7). Next, the scattering term is redefined from
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Eq. (2.19) as

Σs
c,G←G′,l,i =

NG
g∑

g=1

PG
i,g

NG′
g∑

g′=1

Σs
c,g←g′,lφc,g′,l

φc,G′,l,0

=

NG
g∑

g=1

PG
i,g

NG′
g∑

g′=1

Σs
c,g←g′,l

Nj∑
j=0

PG′

j,g′φc,G′,l,j

φc,G′,l,0

=

Nj∑
j=0

φc,G′,l,j

NG
g∑

g=1

PG
i,g

NG′
g∑

g′=1

Σs
c,g←g′,lP

G′

j,g′

φc,G′,l,0

=

Nj∑
j=0

φc,G′,l,jΣ
s∗
c,G←G′,l,i,j

φc,G′,l,0
,

(2.32)

where

Σs∗
c,G←G′,l,i,j =

NG
g∑

g=1

PG
i,g

NG′
g∑

g′=1

Σs
c,g←g′,lP

G′

j,g′ . (2.33)

Finally, the same treatment is applied to the fission cross section moments beginning with

the Eq. (2.25) as

νΣf
c,G′ =

NG′
g∑

g′=1

PG′

0,g′νΣf
c,g′φc,g′,0

φc,G′,0,0

=

NG′
g∑

g′=1

PG′

0,g′νΣf
c,g′

Nj∑
j=0

PG′

j,g′φc,G′,0,j

φc,G′,0,0

=

Nj∑
j=0

φc,G′,0,j

NG′
g∑

g′=1

PG′

0,g′νΣf
c,g′P

G′

j,g′

φc,G′,0,0

=

Nj∑
j=0

φc,G′,0,jνΣf,∗
c,G′,j

φc,G′,0,0
,

(2.34)

where

νΣf,∗
c,G′,j =

NG′
g∑

g′=1

PG′

0,g′νΣf
c,g′P

G′

j,g′ . (2.35)
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Using these reformed definitions, Algorithm 1 can be rearranged slightly, as shown in

Algorithm 2. Now, the mass matrices are computed before the DGM iteration, which means

that neither fine-group data nor the fine-group solution is needed until the end of the

algorithm (and that is only if a the fine-group solution is required in addition to the coarse-

group solution). The method retains the previous property of decoupling the higher-order

Input: cell and material properties, basis vectors
Compute χ moments Compute mass matrices
Guess the initial, fine-group flux
Compute flux moments
while not converged do

Compute coarse-group cross-section moments
Solve zeroth-order equation (i = 0)
Update the eigenvalue
for all moments i > 0 do

Solve ith-order equation
end

end
Reconstruct fine-group flux

Algorithm 2: Reformulated iterative procedure for solving DGM

moments provided that the zeroth basis is the flat function. Further, the reformulation makes

no approximations except those used for the base DGM derivation. Thus, with the use of

this reformulation, DGM may be significantly accelerated by avoiding several fine-group

expansions during the recondensation iteration due to reduced computational complexity and

smaller memory footprint. However, storage requirements are unchanged in the case of a

complete basis set, since the total number of stored moments is equal to the number of fine

groups.

2.4 Basis Sets for DGM

2.4.1 Basis Limitations

As derived in Section 2.1, the DGM method relies on an orthogonal basis, and full recovery

of the fine-group flux requires that the basis be complete. The derivation assumed that the
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basis had unity weights and that the basis was normalized. The last statement is not a

requirement of the method but was assumed for a cleaner presentation.

One requirement of the basis is that the zeroth-order function must be the flat function

or equivalently that all basis functions except the zeroth must integrate to zero. This feature

decouples the solution of the higher-order DGM equations found in Eq. (2.26) from all but

the zeroth equation. The zeroth-order equation is consistent with the standard multigroup

approximation described in Section 1.2, and that the higher-order equations serve to correct

fine-group information. Note that the eigenvalue is preserved by the zeroth-order equation,

which allows the higher-order equations to be solved as fixed source problems. In other words,

the expense of the eigenvalue solution is necessary only for the zeroth-order equation.

2.4.2 Previous work

As mentioned in the derivation of the DGM method in Section 2.1, an energy-dependent,

orthonormal basis set PG
i,g is needed to collapse the energy space from fine group to coarse

group. Historically, this basis consisted of the well known, Legendre polynomials, the first

several of which are shown in Fig. 2.1. The Legendre polynomials are continuous and

orthogonal in the range from -1 to 1. The basis set is defined by setting the zeroth-order

function to the flat function, i.e. P0(x) = 1, and the first-order function to P1(x) = x. Then,

the nth order function is formed by orthogonalizing Pn(x) = xn against all lower-order basis

functions. Using such a basis, an infinite number of basis functions are needed to perfectly

reconstruct a continuous function, e.g., the fine-group flux.

While early work12;13 related to DGM used continuous polynomials, several difficulties

quickly arose. The primary concern was that many Legendre functions are needed to

approximate a step function, which is the general shape of the flux after the multigroup

approximation is applied. Furthermore, the Legendre polynomials create oscillatory behavior

in the reconstructed function, which has the potential for unphysical, negative flux values.

More recent developments in the DGM method have explored the use of the discrete

Legendre polynomials (DLPs)43 shown in Fig. 2.2. The discrete versions of the Legendre
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Figure 2.1: Legendre polynomials through order 5

polynomials are formed similarly to the continuous version except that the functions are

evaluated at a finite number of discrete points. The DLPs are a more natural fit for

approximating discrete data points due to the discrete nature of the basis. For example, N

data points may be exactly reproduced using at most N DLPs vectors (i.e., through order

N − 1). In Fig. 2.2, 50 points were used, and the basis has been normalized so each vector is

unity when measured with the euclidean norm.

Note that the DGM method breaks the energy space into a number of coarse-group

regions. Each of these regions uses a basis that is orthonormal over the coarse group. As an

example, say a 44-group spectrum was broken into four coarse-group regions with 26 fine

groups in the highest energy coarse group, 15 in the next highest, 2 in the penultimate, and 1

group in the lowest coarse group. The DLP basis sets used for such a structure are shown in

Fig. 2.3, where the vertical bars show the boundaries between the coarse groups. In general,

the basis for each coarse group will contain a number of degrees of freedom equal to the

number of energy groups within a coarse group. Thus, for our example, the highest energy

group contains 26 orthogonal DLP functions that are each of length 26. The lowest energy
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Figure 2.2: discrete Legendre polynomials through order 5

group contains only a single vector, which is equal to unity with a length of one since only

one fine group is in the coarse group.

While an improvement for eliminating the oscillatory flux behavior, high-order DLP

vectors (n > 50) can lose orthogonality due to numerical roundoff. To combat this issue,

an alternative discrete basis was explored in the DGM method23, which used the Fourier

transform. In particular, the discrete cosine transform (DCT) can produce a basis set with all

necessary properties for DGM. The basis utilizes a flat zeroth vector, while each of the higher

vectors is a cosign function with different frequencies, evaluated at a number of discrete

points. The DCT basis avoids orthogonality troubles because each function can be defined

directly as opposed to the recurrence relationship used to define the DLPs.

Until this point, all considered basis sets were complete, i.e., that an arbitrary vector

could be reproduced exactly using that basis. The remainder of this manuscript is focused

on the consequences of using an incomplete basis, i.e., a truncated basis. In other words,

functions cannot be reproduced exactly, but rather approximately, by using only the low-order

basis vectors. A truncated basis performs the best when the low-order basis vectors have
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Figure 2.3: DLP vectors applied to a 44-group spectrum. Vertical bars show the boundaries
between the coarse groups. The basis is orthogonalized over each coarse group.

approximately the same shape as the expanded function. However, the energy-dependent

neutron flux is not well represented by the low-order functions of either the DLPs or the

DCTs. Thus, neither basis set performs well under truncation. In Chapter 3, we will explore

a different discrete basis, which incorporates physical shapes into the underlying basis to

improve the low-order expansions.
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Chapter 3

DGM with Truncation in Energy

This chapter will introduce the idea of an incomplete basis set into the discrete generalized

multigroup (DGM) equations from Section 2.1. Until this point, the DGM equations have

been used as a way to collapse a fine-group problem over energy to coarse-group moments. The

DGM approach promises to provide a way to reduce the group structure from a highly-coupled

relationship to a coarse-group calculation, which may be refined using relatively low-cost,

higher-order moments. A coarse-group problem is much quicker to solve, but recovery of

the exact fine-group solution using DGM requires more computational effort than a direct

fine-group solution. Only through the means of appropriate approximations (some discussed

in this chapter) will DGM uphold its promise. The work in this chapter follows the same basic

structure of DGM, but now, the fine-group solution will not be recovered exactly. Instead,

the DGM equations will be used to approximate the fine-group solution.

As discussed at the end of Chapter 2, a truncated basis will be used, which will decrease

the number of degrees of freedom for the energy variable. This truncation introduces error

into the basis expansion, the extent of which is determined by the basis. A basis set based on

the SVD is introduced in Section 3.1, which is constructed to provide accurate reconstructions

using a small number of degrees of freedom. The basis discussed in Section 3.1 relies on

snapshots, which resemble the fine-group flux. This basis is used throughout the remainder

of this work, and details about snapshot selection are presented in Chapter 4 for each test
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problem. Details regarding the solver and code are presented in Section 3.2.

3.1 Derivation of the POD Basis

The primary objective of this work is to use the DGM method as a way to collapse the

energy-space of a problem to prepare cross sections for downstream use. In other words,

the number of degrees of freedom (DOF) for the energy space must be reduced, ideally to

minimize the resulting error. To this end, we explore the proper orthogonal decomposition

(POD) for generating a basis for DGM.

The POD extracts the fundamental modes of a system. The method presented here goes

by several names including the Karhunen-Loève transform (KLT) and Principal Component

Analysis (PCA)44. POD has been used in a variety of applications including image com-

pression44, fluid dynamics45, and reactor eigenvalue problems46. Additionally, the method

was used to approximate the boundaries between regions in the response matrix method47;48.

Fundamentally, the method is related to the singular value decomposition (SVD).

In a basis expansion, a discrete or continuous function f(x) is represented by a summation

of moments in the selected basis, i.e.,

f̃(x) ≈
k∑
i=0

aiPi(x) , (3.1)

where the ith moment ai of the function f(x) in the basis P (x) is defined as

ai =
∑
x

f(x)Pi(x) for i ∈ [0, 1 . . . , k] , (3.2)

where f̃(x) is the reconstructed (approximated) function, and k is the order of the expansion.

If the basis is complete, f(x) can be reproduced exactly. For an arbitrary, discrete vector x

containing N points, N orthogonal basis functions are required for a complete expansion of

f(x) in the general case. Similarly, a continuous function would require an infinite number of

orthogonal functions for completeness.
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To reduce the DOF of the energy space, a truncated (incomplete) basis is necessary, and

f(x) is approximated. If the basis functions are similar to f(x), a low-order expansion can

reproduce the function with high accuracy. For example, although f(x) = x2 is a continuous

expansion, a second-order expansion in the continuous Legendre polynomials is an exact

representation. Thus, if the basis Pi(x) can be formed as to be similar to f(x), a truncated

basis will introduce minimal error into the expansion.

Indeed, the central goal of POD is to represent a function f(x) such that a kth-order

expansion provides the smallest possible error in the euclidean norm for the reconstructed

function f̃(x). The method of snapshots45 is used to construct the basis. This method forms

a set of vectors, which closely resemble the function f(x). For example, the energy-dependent,

scalar flux for a spatial cell in a reactor assembly closely resembles that of neighboring spatial

cells. Snapshot selection is discussed for each of the test problems in Chapter 4.

We begin by assuming that we have a number of snapshots N , each of which is a vector

with length M . These vectors are formed into the data matrix D ∈ RM×N , where dn is the

nth column of D and the nth snapshot, i.e. D = [d1,d2, . . . ,dN ]. The SVD of D is

D = UDΣDV
ᵀ
D , (3.3)

where UD ∈ RM×M and VD ∈ RN×N are orthonormal matrices containing the left and right

singular vectors of D, respectively, and ΣD ∈ RM×N is a diagonal matrix containing the

singular values of D. Calculations proceed more easily using a semi-positive definite matrix,

and thus, we define

B ≡DᵀD , (3.4)

where B ∈ RN×N is semi-positive definite. The SVD of B is

B = UBΣBV
ᵀ
B = DᵀD = VDΣDU

ᵀ
DUDΣDV

ᵀ
D = VDΣ2

DV
ᵀ
D = QΛQ−1 , (3.5)

where UB = VB = VD = Q ∈ RN×N are the right singular vectors of D, and ΣB = Σ2
D =

Λ ∈ RN×N contain the square of the singular values of D. Note that the SVD of B is
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equivalent to the eigenvalue decomposition of D, i.e., Q and Λ contain the eigenvectors and

eigenvalues of D, respectively. A semi-positive matrix guarantees that the singular values in

ΣB are non-negative, and we sort the values in decreasing order, i.e., σ1 ≥ σ2 ≥ . . . σM ≥ 0,

where

Σ =



σ1 0 . . . 0

0 σ2 . . . 0

...
...

. . .
...

0 0 . . . σM


. (3.6)

This sorting ensures that the decomposition is unique up to degenerate singular values and

that the vectors contained in Q are sorted in order of importance, i.e., the zeroth-order vector

q1 is the fundamental mode of D. The basis P ∈ RM×N is now formed by projecting these

modes back onto the snapshots, i.e.,

pi = Dqi for i ∈ [0, 1, . . . ,M ] , (3.7)

or

P = DQ , (3.8)

where qi is the ith column of Q and pi is the ith POD basis vector and ith column of P .

Finally, the matrix P is orthonormalized to construct the basis. This method provides N

basis vectors of length M , which closely approximate the snapshots of length M contained in

D. A complete basis is formed by the first M basis vectors if N ≥M , and, thus, any vector

of length M can be represented exactly using the first M vectors in P .

For most applications, creating the basis is complete at this step, but the DGM method

requires that the zeroth vector is flat. Thus a vector of ones is inserted as the first column

of P changing the size to P ∈ RM×N+1. The basis is reorthonormalized, and the resulting

vectors are ready for use with the DGM method.

As an example, consider the set of vectors presented graphically in Fig. 3.1. The energy

space of a 44-group structure has been divided into four coarse-group regions as indicated by
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Figure 3.1: POD vectors applied to a 44-group spectrum. Vertical bars show the boundaries
between the coarse groups. The basis is orthogonalized over each coarse group.

the vertical bars in the figure. In order of decreasing energy, these coarse groups contain 26,

15, 2, and 1 fine groups. Notice that each group structure uses a different orthogonal basis

except for the zeroth, which is the normalized flat function in each case. The figure shows

the so-called POD combine basis, which is described in Chapter 4.

During basis creation, the POD method also creates a matrix holding the singular values,

which is ΣD from Eq. (3.3). Each of these values provides a measure of the significance

of the corresponding singular vector. By plotting these values, one may gain insight into

how much information is lost due to truncation. For the vectors shown in Fig. 3.1, the

corresponding singular values are presented in Fig. 3.2. In the figure, CG=0 corresponds

to the highest energy coarse group, and the singular values for all four coarse groups are

presented in decreasing order. When a basis is truncated to a given order, information is lost,

and the extent of the information loss is related to the magnitudes of the singular values.

This work did not seek to predict the performance of a basis from the singular values, but

such a prediction could provide a means to further refine a successful basis.
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Figure 3.2: Singular values of the POD vectors applied to a 44-group spectrum. These are
the singular values corresponding to the vectors shown in Fig. 3.1. CG=0 corresponds to the
highest energy coarse group.

3.2 Unotran

To test the performance of a new basis for the DGM method, a one-dimensional (1-D)

transport code using the discrete-ordinates solver was developed. The discrete-ordinates

solver was not accelerated and written in the FORTRAN language. The underlying routines

were wrapped with Python using the f2py package, and, thus, the solver can be called in a

Python script. The source code is available in an open-source repository49.

In the discrete-ordinates solver, a 16-angle Gauss Legendre quadrature and the diamond

difference spatial discretization were used. It was previously shown that the DGM method is

not exact for high-order, spatial discretization methods (e.g., diamond difference)23; however,

the induced error was found to be much smaller than the error introduced by truncating the

basis for the tested problems in this manuscript, i.e., the spatial-discretization error does not

impact the results.

Isotropic scattering was assumed in the test problems, though the solver was implemented

44



to handle anisotropic scattering expanded using a Legendre representation. As described in

Appendix B, anisotropic scattering reduced the stability of the DGM method for the selected

test problems, and, thus, was not pursued further in this work.

Finally, the Scale 44, Scale 238, and the ECCO 1968 group structures were used in this

work. These group structures were incorporated into Serpent6 to generate cross sections.

The cross sections generated using these group structures are described in Appendix A.
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Chapter 4

Energy Truncation Results

The discrete generalized multigroup method as discussed in Chapter 2 has previously been

implemented using the Legendre polynomials (both discrete and continuous versions) and

similar, traditional bases. When the energy variable is represented with a complete (full

order) basis, the choice of basis has little impact on the resulting flux vector and reaction

rates. However, when truncated, the resulting vector can be quite different depending on

how much information the basis can preserve in the lowest orders. A basis constructed using

proper orthogonal decomposition, which was the topic of Chapter 3, is designed to preserve

much more information in the low orders as compared to Legendre polynomials. While DGM

with a truncated basis will contain some amount of error in the flux vector and reaction rates

relative to a reference, DGM using a POD basis should have less error than the DLP basis.

This chapter explores how the DGM method performs with a truncated basis set. In

particular, several different POD bases are constructed using different sets of snapshots.

The performance of these POD bases is compared against the DLP basis as a function of

truncation to determine both what information provides a good basis for DGM as well as if

the method is viable with a truncated basis.

Several test problems were defined, and each test problem was explored using several,

distinct basis sets. The first problem studied, presented in Section 4.1, is an infinite medium

problem. This problem was used to ensure that DGM can be used with a truncated basis
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in the absence of spatial effects. The second problem studied is a 1-D, 10-pin “slab reactor”

and is presented in Section 4.2. This spectrally challenging problem serves to illustrate

the performance of truncated DGM in the presence of rather extreme coupled space-energy

heterogeneities. Additional, 1-D test problems were defined based loosely on a BWR core

design, and are presented in Section 4.3. These BWR problems are more challenging than the

other 1-D problems in this chapter, and the results provide some insight into how performance

is expected to change as spatial heterogeneity increases. Finally, a preliminary application

of truncated DGM to 2-D models was made with the use of a multi-assembly reactor that

represents a simplified version of the C5G7 benchmark. These results are shown in Section 4.4.

This problem extends the method to two spatial dimensions, which serves as further validation

of the method. The chapter concludes in Section 4.5 with a summary of the general behavior

of truncated basis sets.

To evaluate the success of a truncated basis, each test problem was solved using a truncated

basis at varying order. After converging to the tolerance, the DGM solution was compared

to a reference solution computed using the standard, multigroup, discrete-ordinates method.

For any truncated basis, some information is lost, which introduces error into the solution.

This chapter seeks to quantify this error and its dependence on the choice of basis.

The metric used in this chapter for describing the degree of truncation is the (number

of energy) degrees of freedom (DOF). To compute the DOF for the tested cases, we first

need a coarse-group structure, which is generated as discussed in Section 3.2. As an example,

assume that a 44-group structure is to be collapsed into 3 coarse groups, which contain 37, 6,

and 1 fine groups, respectively. The zeroth-order case uses a single degree of freedom per

coarse group, which results in three DOF. The first-order case uses two degrees of freedom

per coarse group, but the final group is already full order; thus, five DOF are used. This

process continues until 43rd-order, which is full order, and the DGM solution is no longer

truncated. Each test problem was analyzed using a different group structure (based on the

cross sections for that problem); each structure is described in the corresponding section.
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4.1 Infinite Medium

4.1.1 Problem Description

The first problem is an infinite medium containing UO2, which was modeled in 1-D, slab

geometry as five cells subject to reflective boundary conditions. Each cell has a length of 1

cm, which gives the total problem a length of 5 cm. This problem was chosen to prove that a

truncated basis can be used successfully with DGM. Although spatially trivial, the infinite

medium problem is energy dependent and the DGM method is fundamentally a method for

treating the energy variable. Thus, this problem is the first step in testing the DGM method

with truncated basis sets.

Two POD-driven basis sets were applied to this infinite-medium problem. Snapshots for

the first basis were generated from a single UO2 pin model with reflective conditions, and

this basis set is called POD uo2. Note that this model has spatial dependence and, hence, no

snapshot from this model represents the true, infinite-medium spectrum. The second basis is

called POD inf and uses snapshots from the infinite medium problem, i.e., the application

problem of interest. In both cases, snapshots of the spatially-dependent scalar flux are used

as described in Chapter 3. In the latter case, spatial variation only arises from convergence

tolerances; in principle, the snapshots would not vary in space.

The POD basis sets are compared to the traditional discrete Legendre polynomials. It is

expected that POD inf will perform the best as snapshots of the actual solution are used.

Since there is no spatial variation, the error in the DGM solution is expected to be equal to

the error tolerance using 2 degrees of freedom per coarse group. Note that the POD uo2 basis

is using heterogeneous snapshots to predict the homogeneous test problem, which provides

some insight into how successful imperfect snapshots can perform.

For this problem, the fine-group structure is collapsed into a number of coarse groups

for use with DGM. The method for doing so is detailed in Appendix B, but the resulting

structures are presented in Table 4.1. From the table, the 44-group structure was collapsed

to three coarse groups, whereas the 238-group structure was collapsed to 16 coarse groups.
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Table 4.1: Coarse-group (CG) structures for the infinite medium problem. The numbers
represent the fine groups included within each coarse group.

44-group 238-group
CG 1 1-37 1-56
CG 2 38-43 57-78
CG 3 44 79-107
CG 4 108-109
CG 5 110-118
CG 6 119-120
CG 7 121-128
CG 8 129-136
CG 9 137
CG 10 138-166
CG 11 167-226
CG 12 227-231
CG 13 232-234
CG 14 235-236
CG 15 237
CG 16 238

4.1.2 Results

For the infinite medium problem, POD is largely unnecessary because no spatial variation is

present. As such, the system can be captured with a single snapshot, which is observed in

Fig. 4.1. In Fig. 4.1a, one can see the error in the k-eigenvalue as a function of truncation

for various basis sets using the 44-group structure. The error is relative to the reference

eigenvalue from a discrete ordinates solution of the test problem. Figure 4.1b shows the error

for the scalar flux as a band of errors ranging from the minimum to the maximum errors as a

function of space.

As observed in both figures, the choice of basis greatly impacts the truncation error.

When a basis vector is the solution (as in POD inf), the method is equivalent to the reference

within numerical precision. A basis composed of similar snapshots (as in POD uo2) performs

better than the discrete Legendre polynomials (DLP). The DLP vectors are dissimilar to the

scalar flux, and thus, require many DOF to accurately represent the solution in the DGM

method.

Figure 4.2 shows the errors for the 238-group structure. Notice that the relative success
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Figure 4.1: 44-group infinite medium problem

of a basis set is similar to that of the 44-group structure. Also, note that all basis sets used

for DGM require that the zeroth-order basis function be the flat function. Thus, all basis

sets share the same error for zeroth order as they are equivalent.
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Figure 4.2: 238-group infinite medium problem
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4.2 10-pin Results

4.2.1 Problem Description

The next test problem selected for this work is a simple 1-D model of the material junction

between two assemblies as shown in Fig. 4.3, which is adapted from previous work50. The

geometry consists of five UO2 pincells adjacent to five mixed oxide (MOX) pincells. The

boundary condition on either side of the model was reflective. This problem serves as a small

jump in difficulty from the infinite medium problem. The 10-pin problem contains multiple

materials that have different, cross-section resonances, and, hence, serves as a useful test case

for the coarse-group selection technique (as discussed in Appendix B) needed by the DGM

method. Moreover, because the problem is quick to solve, it provides a useful vehicle for

determining the ideal snapshot information required for a successful, truncated basis.

UO2 UO2 UO2 UO2 UO2 MOX MOX MOX MOX MOX

R
efl

ectR
efl

ec
t

0.09 cm 1.08 cm

Figure 4.3: Configuration for the 10-pin Test Problem

Fuel regions were 1.08 cm thick with 0.09 cm of the moderator on each side. Each fuel

section (UO2/MOX) was meshed using 22 cells, and each moderator section (blue) was

meshed using 3 cells, and, thus, the model had a total of 280 spatial cells. The UO2 fuel was

selected to be approximately 2.2% enriched as discussed in Appendix A, where the methods

to generate cross sections and the material compositions are presented.

For this test problem, five POD basis sets were created. The first two utilized snapshots

from either a single UO2 pin or a single MOX pin and are called POD uo2 and POD mox,

respectively. These basis sets are expected to perform relatively poorly as snapshot information

is missing from half of the problem. The next basis set combines snapshots from both of the

single pin solutions to form the POD pins basis.

Next, snapshots were taken from a problem with a UO2 pin adjacent to a MOX pin with

reflective conditions (i.e., a 2-pin problem). These snapshots were combined with those from
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the two individual pins to form the POD combine basis set. The final basis set was formed

using snapshots from the true solution, which is called POD full. Note that POD full is

highly impractical as the solution is required to approximate the solution. However, this

basis provides insight into the potential best performance of a POD basis.

The coarse-group structures used for this problem are presented in Table 4.2. From the

table, the 44-group structure was collapsed to four coarse groups, the 238-group structure

was collapsed to 29 coarse groups, and the 1968-group structure was collapsed to 68 coarse

groups.

Table 4.2: Coarse-group (CG) structures for the 10-pin problem. The numbers represent the
fine groups included within each coarse group. The number in parenthesis (e.g., (+20)) is the
number to add to the coarse group to get the proper index, i.e., CG 1 for column (+20) is
actually CG 21.

44-group 238-group 1968-group
add’l. # (+0) (+0) (+20) (+0) (+20) (+40) (+60)

CG 1 1-26 1-56 206-209 1-60 1201-1260 1656 1898
CG 2 27-41 57-107 210-225 61-120 1261-1320 1657 1899
CG 3 42-43 108-109 226-228 121-180 1321-1380 1658 1900
CG 4 44 110-118 229-231 181-240 1381 1659-1668 1901-1929
CG 5 119-120 232-233 241-300 1382-1391 1669-1728 1930-1935
CG 6 121-136 234-235 301-360 1392 1729-1788 1936-1964
CG 7 137 236 361-420 1393-1449 1789-1791 1965-1967
CG 8 138-172 237 421-480 1450 1792 1968
CG 9 173-177 238 481-540 1451-1465 1793
CG 10 178-179 541-600 1466 1794
CG 11 180 601-660 1467-1517 1795
CG 12 181 661-720 1518 1796
CG 13 182 721-780 1519 1797-1830
CG 14 183-185 781-840 1520-1527 1831-1890
CG 15 186 841-900 1528-1587 1891-1892
CG 16 187 901-960 1588 1893
CG 17 188 961-1020 1589 1894
CG 18 189 1021-1080 1590 1895
CG 19 190 1081-1140 1591-1595 1896
CG 20 191-205 1141-1200 1596-1655 1897
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4.2.2 Results

The results for the 44-group, 10-pin problem begin with Fig. 4.4 in which the errors as a

function of DOF for both the k-eigenvalue and the spatial-cell fission density are shown.

Similarly to the infinite medium problem, the k-eigenvalue error results in Fig. 4.4a show that

a successful basis utilizes snapshots that are similar to the application, i.e., the 10-pin core.

In this case, the POD uo2 and POD mox performed similarly to the DLPs, which is to say,

poorly under truncation. However, POD pins and POD combine performed nearly as well as

POD full despite containing snapshots from simplified problems. The junction information

in POD combine seems to provide little benefit when the basis is compared to POD pins.

The two basis sets performed quite similarly, yet POD pins used a smaller set of snapshots.

Figure 4.4b shows the maximum error for the fission density among the 220 fuel cells

relative to the 10-pin reference solution. The truncated DGM method produces fission density

errors of about two orders of magnitude larger than k-eigenvalue errors. However, the relative

performance of the basis sets is quite similar. Note that at full order (i.e., the right-most

point on the figures) that the solution is no longer truncated and the DGM solution matches

the reference fine-group solution to within the convergence tolerance.

Figure 4.5 contains the errors for the 44-group, scalar flux relative to the reference solution.

To compute the data, the maximum relative error was found for each energy group, which

results in a spatially-dependent error for each DOF. The data points shown are the average

over space, which is a shaded region representing the range of spatial errors. On average

the POD combine basis set slightly outperforms POD pins for all except the most truncated

solutions. As observed previously, the DLPs do not perform well under truncation for this

problem.

Figure 4.6 contains the k-eigenvalue and fission density errors for the 238-group structure,

while Fig. 4.7 contains the scalar flux errors. As compared to the 44-group results, 238-group

basis sets perform as expected. The relative errors are approximately equal for the same

expansion order (number of points from the left side of the figures). Additionally, the relative

performance of the basis sets was quite similar to the 44-group results.

53



0 10 20 30 40
Degrees of Freedom

10 8

10 6

10 4

10 2

100

102
R

el
 e

ig
en

va
lu

e 
er

ro
r 

[%
]

DLP
POD_uo2
POD_mox

POD_pins
POD_combine
POD_full

(a) Eigenvalue error

0 10 20 30 40
Degrees of Freedom

10 8

10 6

10 4

10 2

100

102

M
ax

 r
el

 F
D

 e
rr

or
 [%

]

DLP
POD_uo2
POD_mox

POD_pins
POD_combine
POD_full

(b) Fission density error

Figure 4.4: 44-group 10-pin problem
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Figure 4.5: Scalar flux error for 44-group, 10-pin problem

The 1968-group structure results are presented in Fig. 4.8 and Fig. 4.9. Overall, the

relative performance of the basis sets is similar to the 44-group and 238-group results. The

majority of the accuracy is gained in the first few degrees of freedom for each basis set, which

is expected due to the construction of the POD basis. In particular, a 0.1% error in the

fission density is found using only 4 DOF per coarse group and the POD combine basis.
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Figure 4.6: 238-group 10-pin problem
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Figure 4.7: Scalar flux error for 238-group, 10-pin problem

4.3 BWR Results

4.3.1 Problem Description

Another set of test problems was designed to represent a heterogeneous bundle of fuel akin

to a boiling water reactor (BWR). The 1-D core designs of these two problems are presented

in Fig. 4.10, which are adapted from previous work22. Each core design is comprised of seven

assemblies, and each assembly consists of 6 material regions, which are four 3.2512 cm fuel

regions surrounded by 1.1176 cm of water. In this work, configuration one means the design
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Figure 4.8: 1968-group 10-pin problem
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Figure 4.9: Scalar flux error for 1968-group, 10-pin problem

including the UO2-Gd fuel, whereas configuration two means the design using MOX fuel.

Core 1Core 1

Core 2Core 2

Assembly 1 Assembly 2 Assembly 3

1.1176 cm 3.2512 cm

UO2-1 UO2-2 UO2-Gd MOX Water

Figure 4.10: Configuration for the BWR Test Problem

Three different types of assemblies were created, which feature different fuel materials on
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the interior. The model for configuration one is comprised of assemblies one and two, while

configuration two is comprised of assemblies one and three. Each assembly was modeled with

two water regions on the sides and four fuel regions in the middle. The water regions were

1.1176 cm long and used six spatial cells each, whereas each fuel region was 3.2512 cm long

and used 18 spatial cells. Thus, each assembly measured 15.24 cm and used 84 spatial cells.

The total length of the seven assemblies in a core model was 106.68 cm and was modeled

using 588 spatial cells.

Three UO2 fuels were used for the BWR type problems. The first was approximately 2.2%

enriched, which was called UO2-1. The second was approximately 3.6% enriched, which was

named UO2-2. The final UO2 variant was approximately 4.0% enriched and also contained

the poison gadolinium, which was named UO2-Gd. The MOX fuel contained approximately

3.6% enriched UO2 mixed with isotopes of neptunium, plutonium, and americium. The

material compositions are detailed in Appendix A.

As in the previous problems, the fine-group structures are collapsed into a number of

coarse groups for use with DGM. The method for doing so is detailed in Appendix B, but

the resulting structures are presented in Table 4.3 for configuration one and Table 4.4 for

configuration two. All three group structures (44-group, 238-group, and 1968-group) were

used for both configurations. For configuration one, the 44-group structure was collapsed

to 12 coarse groups, the 238-group structure was collapsed to 34 coarse groups, and the

1968-group structure was collapsed to 72 coarse groups. Structures for configuration two were

collapsed to 4, 29, 68 coarse groups for the 44-group, 238-group, and 1968-group structures,

respectively.

The POD basis types used for the two configurations are quite similar. Each problem

used four POD basis sets in addition to the DLP basis. The first POD basis was formed

similarly to POD pins from the 10-pin problem, but the snapshots come from pins using the

materials in the BWR problem (i.e., configuration one used snapshots from a UO2-1 pin, a

UO2-2 pin, and a UO2-Gd pin). For simplicity, the basis will remain named POD pins, but

note that the basis is different for each test problem.

The next POD basis is constructed from snapshots extracted from assembly models.
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Table 4.3: Coarse-group (CG) structures for the BWR problem configuration one. The
numbers represent the fine groups included within each coarse group. The number in
parenthesis (e.g., (+20)) is the number to add to the coarse group to get the proper index,
i.e., CG 1 for column (+20) is actually CG 21.

44-group 238-group 1968-group
add’l. # (+0) (+0) (+20) (+0) (+20) (+40) (+60)

CG 1 1-11 1-56 225 1-60 1201-1260 1656 1957
CG 2 12-34 57-78 226 61-120 1261-1320 1657 1958
CG 3 35 79-107 227 121-180 1321-1380 1658 1959
CG 4 36 108-109 228 181-240 1381 1659-1668 1960
CG 5 37 110-118 229 241-300 1382-1391 1669-1728 1961
CG 6 38 119-120 230 301-360 1392 1729-1788 1962
CG 7 39 121-128 231 361-420 1393-1449 1789-1791 1963
CG 8 40 129-136 232 421-480 1450 1792 1964
CG 9 41 137 233 481-540 1451-1465 1793 1965
CG 10 42 138-140 234 541-600 1466 1794 1966
CG 11 43 141-200 235 601-660 1467-1516 1795 1967
CG 12 44 201-214 236 661-720 1517-1518 1796 1968
CG 13 215-216 237 721-780 1519 1797-1820
CG 14 217-218 238 781-840 1520-1527 1821-1880
CG 15 219 841-900 1528-1587 1881-1940
CG 16 220 901-960 1588 1941-1949
CG 17 221 961-1020 1589 1950-1951
CG 18 222 1021-1080 1590 1952-1953
CG 19 223 1081-1140 1591-1595 1954-1955
CG 20 224 1141-1200 1596-1655 1956

All three assemblies from Fig. 4.10 were modeled with reflective conditions, and scalar flux

snapshots were used to construct the next two basis sets. For configuration one, POD assay 12

was formed using snapshots from both assembly types used in the model (assembly 1 and

assembly 2). Similarly, configuration two uses a basis called POD assay 13. Additionally,

both configurations use the basis called POD assay all, which uses snapshots from all three

models, thus including snapshots, which are dissimilar to those in the configuration.

The final basis is POD core#, where # is replaced by the configuration number for the

respective test problem. This basis is constructed using snapshots of the test problem itself,

i.e., the solution was used to form the basis to approximate the solution. Although this basis

is impractical for any real application, it again serves as a useful comparison as to the best

possible performance of a POD basis.
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Table 4.4: Coarse-group (CG) structures for the BWR problem configuration two. The
numbers represent the fine groups included within each coarse group. The number in
parenthesis (e.g., (+20)) is the number to add to the coarse group to get the proper index,
i.e., CG 1 for column (+20) is actually CG 21.

44-group 238-group 1968-group
add’l. # (+0) (+0) (+20) (+0) (+20) (+40) (+60)

CG 1 1-26 1-56 206-209 1-60 1201-1260 1656 1898
CG 2 27-41 57-107 210-225 61-120 1261-1320 1657 1899
CG 3 42-43 108-109 226-228 121-180 1321-1380 1658 1900
CG 4 44 110-118 229-231 181-240 1381 1659-1668 1901-1929
CG 5 119-120 232-233 241-300 1382-1391 1669-1728 1930-1935
CG 6 121-136 234-235 301-360 1392 1729-1788 1936-1964
CG 7 137 236 361-420 1393-1449 1789-1791 1965-1967
CG 8 138-172 237 421-480 1450 1792 1968
CG 9 173-177 238 481-540 1451-1465 1793
CG 10 178-179 541-600 1466 1794
CG 11 180 601-660 1467-1517 1795
CG 12 181 661-720 1518 1796
CG 13 182 721-780 1519 1797-1830
CG 14 183-185 781-840 1520-1527 1831-1890
CG 15 186 841-900 1528-1587 1891-1892
CG 16 187 901-960 1588 1893
CG 17 188 961-1020 1589 1894
CG 18 189 1021-1080 1590 1895
CG 19 190 1081-1140 1591-1595 1896
CG 20 191-205 1141-1200 1596-1655 1897

4.3.2 Results

The following results are divided into separate sections for each of the two configurations. The

first section will showcase results from configuration one, which used the fuel that contained

gadolinium. The results from configuration two, which used MOX fuel, will follow.

4.3.3 Configuration 1

The results for the 44-group, configuration one test problem are presented in Fig. 4.11 and

Fig. 4.12. Similarly to the 10-pin test problem, the eigenvalue errors in Fig. 4.11a are smaller

than those for the fission density (Fig. 4.11b) and the scalar flux (Fig. 4.12) by nearly two

orders of magnitude. Again the errors are compared against the degrees of freedom used in
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the truncated DGM problem. Also, note that at full order (DOF=44), basis sets are complete

(i.e., no truncation) and the DGM results match the reference discrete ordinance solution to

the convergence tolerance.

From these figures, we can see that all POD basis sets perform similarly for the first few

orders within a coarse group. At higher orders, POD core1 is the best performing, which is

expected as it is formed from the solution snapshots. POD assay 12 performs nearly as well

as POD core1, whereas POD assay all performs slightly worse. This shows that including

POD snapshots for assemblies that are not present in the actual test problem can decrease

performance. We also see that POD pins, the worst performing POD basis tested, still greatly

outperforms DLP.

Similar trends are observed for the 238-group structure. The k-eigenvalue errors are

located in Fig. 4.13a, and the fission density errors are presented in Fig. 4.13b. Scalar flux

errors are presented in Fig. 4.14. Again, we can observe that the majority of the gains from

a POD basis are located in the low orders. For example, a 0.01% error in the fission density

can be represented by approximately 75 degrees of freedom using the POD assay 12 basis,

which is approximately 6 DOF per coarse group.

Once again, we can observe similar relative performance between the basis sets for the

1968-group structure. Figure 4.15 showcases the eigenvalue and fission density errors, while

Fig. 4.16 contains the scalar flux errors. From Fig. 4.15b, a 0.01% error in the fission

density can be achieved using approximately 300 DOF in the POD assay 12 basis, which is

approximately 8 DOF per coarse group.

4.3.4 Configuration 2

The second configuration, which included MOX fuel instead of gadolinium poisoned UO2,

was found to be slightly easier to capture using DGM as compared to configuration one. This

manifests in slightly reduced errors for a constant DOF. Again, results are shown for all three

group structures (44-group, 238-group, and 1968-group) in the form of k-eigenvalue, fission

density, and scalar flux errors. All errors are relative to a discrete ordinates reference using
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Figure 4.11: 44-group BWR-1 problem
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Figure 4.12: Scalar flux error for 44-group, BWR-1 problem

the same fine-group structure as the respective DGM problem.

Figure 4.17 contains the 44-group results for the k-eigenvalue and fission density errors,

while Fig. 4.18 presents the scalar flux errors as a function of degrees of freedom. As in the

other test problems, the relative performance of the basis sets was similar to prediction. The

POD core2 basis performed the best but is impractical as it requires the correct solution a

priori. POD assay 13 performed nearly as well as the core basis despite losing the assembly

interaction snapshots. POD assay all performed nearly the same as POD assay 13, which

suggests that the extra snapshots from the gadolinium fuel did not strongly affect the solution.

Finally, POD pins performed surprisingly well despite missing snapshots of any material
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Figure 4.13: 238-group BWR-1 problem
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Figure 4.14: Scalar flux error for 238-group, BWR-1 problem

interactions.

The 238-group results for the k-eigenvalue are presented in Fig. 4.19a, and the fission

density errors are located in Fig. 4.19b. Scalar flux errors are shown in Fig. 4.20. Again,

we see similar relative performance between the different basis sets, and every POD basis

outperformed the DLP basis. Note once again that DGM requires a flat basis function as the

zeroth basis, so all basis sets perform identically at one DOF per coarse group, which is the

left-most point on each of the figures. For the 238-group structure, approximately 6 DOF are

required per coarse group (about 75 total DOF) to achieve 0.01% error in the fission density.

Finally, the 1968-group results for the k-eigenvalue and fission densities are shown in
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Figure 4.15: 1968-group BWR-1 problem
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Figure 4.16: Scalar flux error for 1968-group, BWR-1 problem

Fig. 4.21, and the scalar flux errors are located in Fig. 4.22. Once again, similar relative

performance is observed for the POD basis sets, and the k-eigenvalue error is approximately

two orders of magnitude lower than the fission density error for a constant DOF. A 0.01%

error in the fission density can be achieved using approximately 7 DOF per coarse group

(approximately 275 DOF total) and the POD assay 13 basis.
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Figure 4.17: 44-group BWR-2 problem
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Figure 4.18: Scalar flux error for 44-group, BWR-2 problem

4.4 2-D Results

4.4.1 Problem Description

The final test problem is a two-dimensional structure, which uses the same materials as

the 10-pin problem discussed in Section 4.2. A diagram of the geometry is presented in

Fig. 4.23, where the colors refer to the same materials as in the 10-pin problem. Each pincell

is divided into 64 spatial cells as shown in Fig. 4.24, which gives a total of 46656 spatial cells

in the problem. Each pincell has a pitch of 1.26 cm, and the boundaries for the divisions are
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Figure 4.19: 238-group BWR-2 problem
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Figure 4.20: Scalar flux error for 238-group, BWR-2 problem

at 0.1015 cm, 0.1967 cm, 0.43133 cm, 0.639015 cm, 0.8467 cm, 1.0633 cm, and 1.1585 cm.

Boundary conditions for the problem were vacuum on the bottom and right sides of Fig. 4.23

and reflective on the top and left sides.

For this test problem, four POD basis sets were created. The first utilized snapshots from

pincells of either UO2 MOX and was called POD 2D pins. The second POD basis modeled a

9x9 pin assembly with reflective conditions for both UO 2 and MOX fuels and combined the

snapshots to form the POD 2D assays basis.

The next basis set was formed using snapshots from the true solution, which is called

POD 2D full. Note that POD 2D full is highly impractical as the solution is required to
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Figure 4.21: 1968-group BWR-2 problem
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Figure 4.22: Scalar flux error for 1968-group, BWR-2 problem

approximate the solution. However, this basis provides insight into the best performance of a

POD basis.

The final basis set was the basis POD 1D which formed from the same snapshots as

POD pins from the 1-D, 10-pin problem. This basis was inexpensive and contained much of

the same information as the more expensive 2-D models. Due to computational cost, only

the 44-group structure was used for the 2-D problem, and the corresponding coarse-group

structure is presented in Table 4.5. From the table, the 44-group structure was collapsed to

six coarse groups. Also due to computational costs, each order is only converged to 1×10−6,

which should be enough to see the relative performance of the basis sets, but could contribute
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Figure 4.23: Configuration for the 2-D Test Problem

Figure 4.24: Spatial mesh for each pincell in the 2-D Test Problem

to a systematic bias in the results. Note that the test code described in Section 3.2 was

unaccelerated, which means that this 2-D problem requires far more computational resources

than the 1-D problems in this chapter.
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Table 4.5: Coarse-group (CG) structures for the 2-D problem. The numbers represent the
fine groups included within each coarse group.

coarse group group bounds
CG 1 1-11
CG 2 12-28
CG 3 29-30
CG 4 31-41
CG 5 42-43
CG 6 44

4.4.2 Results

The results for the 44-group, 2-D problem begin with Fig. 4.25 wherein the errors as a

function of DOF for both the k-eigenvalue and the spatial-cell fission density are shown.

The 2-D problem was considerably more unstable than the 1-D problems and required a

Krasnoselskii coefficient of less than 0.1 for convergence. Additionally, the errors are larger

than the 1-D cases, which suggests that this problem was harder for DGM to capture details.

All errors are relative to a discrete ordinates reference using the same fine-group structure as

the respective DGM problem.

Figure 4.25 contains the 44-group results for the k-eigenvalue and fission density errors,

while Fig. 4.26 presents the scalar flux errors as a function of degrees of freedom. The

POD 2D full basis performed the best but is impractical as it requires the correct solution a

priori. POD 2D assays performed nearly as well as the full basis despite losing the assembly

interaction snapshots. Finally, POD 2D pins performed about the same as POD 1D;

Figure 4.5 contains the errors for the 44-group, scalar flux relative to the reference solution.

To compute the data, the maximum relative error was found for each energy group, which

results in a spatially-dependent error for each DOF. The data points shown are the average

over space, which is a shaded region representing the range of spatial errors. On average

POD 2D assays performed nearly as well as POD 2D full. As observed previously, the DLPs

do not perform well under truncation when used with DGM.
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Figure 4.25: 44-group 2-D problem
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Figure 4.26: Scalar flux error for 44-group, 2-D problem

4.5 Conclusions

From these test problems, it is clear that a properly constructed POD basis is far superior to

DLP for reducing errors in a truncated DGM solution. Without truncation, all basis sets

provide the same solution, which is identical to that of the reference discrete ordinates solution

within convergence tolerance. However, with truncation, the DGM method will disregard the

higher-order moments of cross sections and fluxes, which result in lost information. A good

basis set allows capturing the shape of the cross sections and fluxes in few orders, which can

be easily achieved using a POD basis.
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A POD basis is formed from snapshots, which are attained by solving small models, which

are similar to the test problem. In other words, we can solve several pincell models to create

a basis, which will approximate a full core. The results in this chapter show that a successful

POD basis for use in DGM contains snapshots of all fuel types. For the 10-pin problem, the

POD pins model outperformed POD uo2 and POD mox, which shows that all fuel types

should be represented in the snapshots.

Additionally, material junction snapshots help reduce the error. For example, POD pins

(no pin junction) was compared against POD combine (pin junction) in the 10-pin problem,

and POD combine was found to be superior. This trend continues for the BWR test problems

when comparing POD pins to POD assay. If the test problem contains heterogeneous core

models, which include material junctions, snapshots should be included that capture the

junction. The best performing, practical basis for the 10-pin problem was tied for POD pins

and POD combine, which achieved less than a 0.1% error in the fission density with three DOF

per coarse group for the 44-group structure. The same basis sets achieved less than 0.01%

error when using four DOF per coarse group for both the 238- and 1968-group structures.

Including snapshots of materials that are not present in the test problem can hurt

performance, e.g., POD assay 12 compared to POD assay all for BWR configuration one.

When forming the POD basis, the low-order basis functions form an average of the snapshots,

so non-present material can shift the functional shape. However, if the extra material snapshots

are similar to other materials in the problem (i.e., the UO2 fuel containing gadolinium, which

is similar to non-poisoned UO2), the functional shape of the low-order basis is not drastically

shifted. As an example, POD assay 13 and POD assay all used in BWR configuration two

performed quite similarly, which is due to the extra material snapshots being similar to

the other snapshots, thus the basis was not drastically altered. For the first configuration,

POD assay 12 was the best performing, practical basis, which achieved 1% error in the fission

density with three DOF per coarse group. The 238- and 1968- group structures for the same

basis achieved less than 0.1% error in the fission density for the first configuration. Errors for

the second configuration were similar to the first configuration.

Using DGM for a 2-D problem proved to be challenging due to instabilities and computa-

70



tional costs. Since only the 44-group structure was able to be computed in a reasonable time,

conclusions for 2-D, higher-group structures must be foregone. However, it seems that as a

problem increases in complexity, the truncated DGM method has a harder time capturing

the information in low orders, which manifests in larger overall errors compared to the 1-D

test problems. It is possible that introducing advanced solution techniques such as GMRES

will increase the stability of the method, which would greatly improve the solution speed and

potentially the accuracy.

Finally, it seems that for these test problems, approximately the same number of DOF

are required per coarse group to achieve a similar error. For most cases, approximately 8

degrees of freedom are needed per coarse group to achieve an error of 0.01% in the fission

density relative to the reference solution. This trend seems to persist for the various group

structures. Thus, although the required total DOF to achieve an error goal will change for

different group structures (as more coarse groups are used), the number of DOF per coarse

group is relatively consistent.

Note that the results in this chapter utilized POD bases constructed from snapshots of the

scalar flux φ, but additional information could be included in the snapshots before computing

the POD basis. Preliminary exploration has tested the inclusion of snapshots for the net

neutron current as well as snapshots of the total cross sections. These findings can be found

in Appendix C, but the summary is that the inclusion of the types of snapshots does not

help the performance of the basis at low orders. The inclusion of the new neutron current

does seem to improve higher-order expansions, which is consistent with previous work48 that

included snapshots of the neutron current in POD basis sets for applications in the response

matrix method.
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Chapter 5

Improvements and Approximations

for the Discrete Generalized

Multigroup Method

As originally implemented, the DGM method is impractical. One of the problems is a

large memory footprint due to requiring that the angular flux be stored. Additionally, the

cross section moments are dependent on the spatially-dependent scalar flux, and, therefore,

the cross section moments are spatially-dependent even if the cross sections themselves are

not. This chapter explores a method for reducing these requirements and assesses the error

introduced via approximation. In Section 5.1, we introduce several homogenization methods,

which are aimed at reducing the memory footprint of the DGM method. The methods

are tested on several test problems, which were the same problems described in Chapter 4.

Results from the applications are presented in Section 5.2. The chapter concludes with

Section 5.3, which includes a summary of the results as well as potential areas of future study.
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5.1 Approximations of the cross section moments

The approximations explored in this chapter can be broken into two categories. The first

is approximating the spatial dependence of the cross section moments, which is discussed

in Section 5.1.1. The second is approximating the angular dependence of the angular flux,

which is discussed in Section 5.1.2.

5.1.1 Spatial Homogenization

As discussed briefly in Section 1.5, spatial homogenization is traditionally used in the

preparation of cross sections. In particular, it is common to apply a fine-group structure

on a detailed, but small, spatial domain (e.g., a pincell) and subsequently to homogenize

over that domain to create averaged or “effective” cross sections in a coarser-group structure.

These homogenized cross sections are then used for models with larger spatial domains (e.g.,

assembly or full-core models). The DGM method already collapses the fine-group structure

to a coarse-group structure but does not perform any spatial homogenization. The goal of

this section is to use spatial homogenization as a way to reduce the memory footprint of

DGM and assess the impact of this approximation on error.

We begin by examining the total cross section moments, which were defined in Eq. (2.11)

as

Σt
c,G =

Nj∑
j=0

φc,G,0,jΣ
t∗
c,G,0,j

φc,G,0,0
, (2.11 revisited)

where all terms were defined in Chapter 2. The total cross section moments are spatially

dependent, and we use traditional flux weighting to average the moments over a spatial region

as

Σt
r,G =

∑
c∈r

Σt
c,Gφc,G,0,0Vc∑

c∈r
φc,G,0,0Vc

=

∑
c∈r

Nj∑
j=0

φc,G,0,jΣ
t∗
c,G,0,jVc∑

c∈r
φc,G,0,0Vc

, (5.1)

where r is a region of space containing spatial cells c, and Vc is the volume of cell c (length

in 1-D or area in 2-D). With this definition, a total reaction rate over a region r and coarse
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group G is preserved for a known flux. A similar definition can be formed for the scattering

and fission terms. Though several approaches exist to homogenize δ in space, it was decided

to implement the conventional flux-weighted scheme, i.e,

δr,a,G,i =

∑
c∈r

δc,a,G,iφc,G,0,0Vc∑
c∈r

φc,G,0,0Vc
. (5.2)

While many choices for spatial homogenization are available, this work explored two,

which were chosen to minimize the deviation from the underlying problem. The first was to

homogenize over adjacent spatial cells with the same material, thus instead of a set of cross

sections for each fine-mesh cell, the number of material moments was reduced to the number

of coarse-mesh cells. Of the two methods, this choice was expected to have a smaller impact

with regards to error.

The second choice was to homogenize over all cells with the same material, thus instead

of a set of cross section moments for each fine-mesh cell, the number of material moments

was reduced to the initial number of materials. This choice provided the best reduction in

memory use but was expected to introduce significant error into the DGM method.

5.1.2 Approximating the Angular flux

In addition to storing spatially-dependent cross section moments, the term δc,a,G,i is also

angular dependent, and, hence, the angular flux must be stored as discussed in Chapter 2.

As a reminder, δc,a,G,i was defined in Eq. (2.31) as

δc,a,G,i =

Nj∑
j=0

ψc,a,G,jΣ
t∗
c,G,i,j

ψc,a,G,0
− Σt

c,G

ψc,a,G,i
ψc,a,G,0

. (2.31 revisited)

Typically, the angular flux is not stored in practice due to the large memory requirements

and the fact that only flux moments are needed for computing reaction rates. Consequently,

we explore a method for approximating the angular flux. Assume that angular flux moments
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(computed using spherical harmonics) through order L are computed in place of the full

angular flux, i.e.,

ψc,a,G,i ≈
L∑
l=0

2l + 1

4π

l∑
m=−l

φmc,G,i,lR
m
a,l , (5.3)

where Rm
a,l is the harmonic for degree l and order m evaluated at angle a, and φmc,G,l,i is the

corresponding flux moment. Using this approximation for ψ, Eq. (2.31) can be approximated

using moments of the coarse-group scalar flux instead. For testing this approximation, both

a flat approximation (L = 0) and a linear (L = 1) were used. An alternative definition that

should be explored in future work is the direct expansion of the product δc,a,G,iψc,a,G,0 in

spherical harmonics for inclusion as a traditional scattering term.

5.2 Approximation Results

In this section, we apply the aforementioned approximations to three different test problems,

which were previously used in Chapter 4. Each of these problems was tested using the 44-,

238-, and 1968-group structures, which were discussed in Section 3.2. The coarse-group

structures corresponding to each fine-group structure are discussed in the description for

each problem in Chapter 4. To test the approximations, several cases were developed. These

cases are summarized in Table 5.1. The first is the 10-pin problem, which is presented in

Section 5.2.1. The BWR configuration 1 and 2 are presented in Section 5.2.2 and Section 5.2.3,

respectively. Finally, the approximations are applied to the 2-D problem in Section 5.2.4.

The first case is the use of the flat approximation of ψ. The second case is to use a

linear approximation for ψ. The spatial approximations begin in the third case, where cross

section moments were homogenized over adjacent cells of the same material. The fourth case

homogenized the cross section moments over all spatial cells sharing a material type. The

fifth and final case used both a linear approximation for ψ and homogenized the cross section

moments over all similar spatial cells (i.e., combined the second and fourth cases). All five of

these cases were explored in the DGM method using a full-order (complete basis) as well as a

truncated basis.
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Table 5.1: Summary of the test cases used for evaluating the spatial and angular approxima-
tions.

Short Name Description
Full-(1) Flat approximation of ψ using a complete basis
Full-(2) Linear approximation of ψ using a complete basis
Full-(3) Spatial homogenization over coarse-mesh region using a complete basis
Full-(4) Spatial homogenization over material type using a complete basis
Full-(5) Both Full-(2) and Full-(4)

Trun.-(1) Flat approximation of ψ using a truncated basis
Trun.-(2) Linear approximation of ψ using a truncated basis
Trun.-(3) Spatial homogenization over coarse-mesh region using a truncated basis
Trun.-(4) Spatial homogenization over material type using a truncated basis
Trun.-(5) Both Trun.-(2) and Trun.-(4)
Full-Ref Reference solution computed using discrete ordinates

Trun.-Ref Reference DGM solution using a truncated basis but no approximations

For the truncated cases, the basis used a maximum of three degrees of freedom per

coarse group, which corresponds to the third point from the left in the figures in Chapter 4.

At this point, the truncation error was approximately the same order of magnitude as the

approximation cases explored in this chapter. Note that the values presented in this chapter

are the power peaking factors for each pincell, which is computed by dividing the fission

density within a pincell by the average pincell fission density for the problem. Since the

power peaking factors are averaged quantities for the pincell, the errors for this chapter are

expected to be smaller than those presented in Chapter 4. All of the cases are compared

against a reference, fine-group solution for the same problem.

To compare the homogenization methods, the eigenvalue and power peaking factors are

computed for each case as well as the reference for each test problem and group structure.

The results are tabulated in the next sections, which present the reference values along with

the error of each case relative to that reference.

5.2.1 10-pin results

The first test problem is the 10-pin problem, which is described in Section 4.2. The problem

used 280 total spatial cells, which were divided evenly between the 10 pincells. Results using
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the 44-group structure are presented in Table 5.2. These results are from using the POD pins

basis.

Table 5.2: 44-group, 10-pin test problem comparison of DGM with and without spatial
homogenization and expanded δ. The column “Full-Ref” contains the reference values for k
and the power peaking factors. The remaining columns are the percent errors relative to the
reference. The Trun cases each used 9 degrees of freedom for the DGM expansion.

Full-Ref Full-(1) Full-(2) Full-(3) Full-(4) Full-(5)
keff 1.07 -0.30 -0.12 -0.14 -0.72 -0.44

Pin 1 0.95 -2.57 -1.57 -0.13 -11.06 -12.06
Pin 2 0.93 -2.60 -1.57 -0.18 -10.64 -11.49
Pin 3 0.88 -2.61 -1.53 -0.28 -9.47 -10.14
Pin 4 0.78 -2.49 -1.40 -0.40 -7.14 -7.60
Pin 5 0.60 -2.03 -1.10 -0.51 -3.43 -3.67
Pin 6 1.74 0.15 0.13 0.54 -1.67 -1.90
Pin 7 1.14 2.49 1.48 0.10 6.17 6.33
Pin 8 1.02 2.69 1.55 0.07 10.21 10.84
Pin 9 0.99 2.39 1.37 0.02 11.20 12.26
Pin 10 0.98 2.17 1.25 0.00 11.08 12.50

Full-Ref Trun.-Ref Trun.-(1) Trun.-(2) Trun.-(3) Trun.-(4) Trun.-(5)
keff 1.07 -0.12 -0.37 -0.22 -0.24 -0.70 -0.47

Pin 1 0.95 -0.28 -2.98 -1.92 -0.38 -10.73 -11.43
Pin 2 0.93 -0.17 -2.89 -1.81 -0.33 -10.27 -10.88
Pin 3 0.88 0.04 -2.69 -1.57 -0.22 -9.06 -9.55
Pin 4 0.78 0.29 -2.29 -1.18 -0.11 -6.72 -7.09
Pin 5 0.60 0.35 -1.70 -0.79 -0.14 -3.10 -3.33
Pin 6 1.74 0.13 0.19 0.17 0.59 -1.32 -1.51
Pin 7 1.14 -0.26 2.32 1.27 -0.15 5.75 5.87
Pin 8 1.02 0.02 2.84 1.68 0.08 9.61 10.07
Pin 9 0.99 0.04 2.59 1.53 0.08 10.64 11.42
Pin 10 0.98 -0.03 2.34 1.35 0.01 10.57 11.64

For this problem, we see that angular approximations (cases 1 and 2) introduced approxi-

mately a 1% error into the pin powers, and approximately 0.1% error into the eigenvalue.

As shown in Table 5.2, the truncated basis introduced approximately a 0.1% error into the

solution when using 9 degrees of freedom. Truncated, angular approximations are slightly

less favorable than the complete basis but introduce the same magnitude of error.

The spatial homogenization over coarse-mesh regions (case 3) introduced approximately

0.1% error into both the pin powers and eigenvalue for both the complete and truncated
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Figure 5.1: Spatially dependent, relative fission density errors for the 44g, 10-pin problem

basis sets. Apparently favorable error cancellation means that the cost to accuracy is small

for using this scheme with a truncated basis. Spatial homogenization over materials (case 4),

however, introduced approximately a 10% error into the solution, particularly at the problem

boundaries. Adding a linear angular approximation (case 5) slightly increased all errors, but

shows that the largest savings to memory came at a cost of approximately a 10% error for

the 44-group case.

The spatial dependence of the error is shown in Fig. 5.1, which includes curves for both

a complete and a truncated basis used with DGM. Note that the errors presented in the

figure are cell fission densities; thus, the figure results show a different quantity than the data

presented in Table 5.2 that has been averaged over a spatial region. The errors introduced by

truncation are small compared to those in the approximations for the 44-group structure.

Results from the 10-pin problem using the 238-group structure are presented in Table 5.3.

Angular approximations (cases 1 and 2) introduced approximately 0.3% error for the power

peaking factors and approximately 0.03% error into the eigenvalue. Truncating the basis

to 58 DOF introduced approximately 0.1% error. Homogenizing over coarse-mesh regions
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Table 5.3: 238-group, 10-pin test problem comparison of DGM with and without spatial
homogenization and expanded δ. The column “Full-Ref” contains the reference values for k
and the power peaking factors. The remaining columns are the percent errors relative to the
reference. The Trun cases each used 58 degrees of freedom for the DGM expansion.

Full-Ref Full-(1) Full-(2) Full-(3) Full-(4) Full-(5)
keff 1.12 -0.05 0.02 -0.05 -0.25 -0.03

Pin 1 0.94 -0.56 -0.33 -0.06 -1.11 -1.01
Pin 2 0.92 -0.52 -0.30 -0.06 -0.91 -0.89
Pin 3 0.87 -0.44 -0.24 -0.06 -0.68 -0.69
Pin 4 0.77 -0.36 -0.18 -0.06 -0.35 -0.39
Pin 5 0.60 -0.37 -0.19 -0.07 -0.03 -0.08
Pin 6 1.74 -0.06 -0.01 0.15 -0.32 -0.43
Pin 7 1.15 0.31 0.18 -0.07 0.36 0.31
Pin 8 1.03 0.47 0.25 0.02 0.87 0.91
Pin 9 1.00 0.56 0.29 0.02 1.00 1.08
Pin 10 0.99 0.59 0.31 0.02 1.01 1.10

Full-Ref Trun.-Ref Trun.-(1) Trun.-(2) Trun.-(3) Trun.-(4) Trun.-(5)
keff 1.12 -0.15 -0.17 -0.14 -0.18 -0.32 -0.16

Pin 1 0.94 0.03 -0.47 -0.28 -0.02 -0.92 -0.89
Pin 2 0.92 0.03 -0.44 -0.26 -0.02 -0.79 -0.81
Pin 3 0.87 0.02 -0.39 -0.22 -0.03 -0.63 -0.66
Pin 4 0.77 -0.02 -0.36 -0.21 -0.07 -0.37 -0.41
Pin 5 0.60 -0.12 -0.44 -0.31 -0.18 -0.14 -0.18
Pin 6 1.74 0.25 0.17 0.20 0.36 0.02 -0.06
Pin 7 1.15 -0.16 0.13 0.02 -0.18 0.28 0.26
Pin 8 1.03 -0.14 0.31 0.13 -0.12 0.65 0.69
Pin 9 1.00 -0.06 0.45 0.25 -0.05 0.75 0.83
Pin 10 0.99 -0.04 0.51 0.29 -0.02 0.73 0.84

(case 3) introduced approximately 0.1% error, whereas homogenizing over material (case 4)

introduced approximately 1% error. The largest memory savings (Trunc.-(5)) introduced less

than a 1% error for the 238-group case, which is approximately an order of magnitude less

than the same case for the 44-group structure.

The spatial dependence of the error is shown in Fig. 5.2, which includes curves for both

a complete and a truncated basis used with DGM. Note that the errors presented in the

figure are on cell fission densities, thus will not compare directly with the data presented

in Table 5.3. From Fig. 5.2, we see that truncating the energy variable seems to provide

favorable cancellation of errors, which manifests in slightly reduced errors for the truncated
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Figure 5.2: Spatially dependent, relative fission density errors for the 238g, 10-pin problem

basis vs the complete basis.
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Figure 5.3: Spatially dependent, relative fission density errors for the 1968g, 10-pin problem

Results from the 10-pin problem using the 1968-group structure are presented in Table 5.4.
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Table 5.4: 1968-group, 10-pin test problem comparison of DGM with and without spatial
homogenization and expanded δ. The column “Full-Ref” contains the reference values for k
and the power peaking factors. The remaining columns are the percent errors relative to the
reference. The Trun cases each used 151 degrees of freedom for the DGM expansion.

Full-Ref Full-(1) Full-(2) Full-(3) Full-(4) Full-(5)
keff 1.15 -0.03 0.00 0.01 -0.04 0.01

Pin 1 0.94 0.15 0.08 -0.05 -0.48 -0.11
Pin 2 0.92 0.15 0.09 -0.05 -0.26 -0.03
Pin 3 0.87 0.15 0.09 -0.05 -0.07 0.06
Pin 4 0.77 0.09 0.07 -0.04 0.13 0.18
Pin 5 0.60 -0.10 -0.02 -0.02 0.27 0.22
Pin 6 1.74 -0.12 -0.05 0.14 -0.53 -0.65
Pin 7 1.15 -0.07 -0.02 -0.10 -0.18 -0.31
Pin 8 1.03 -0.07 -0.06 0.01 0.32 0.22
Pin 9 1.00 -0.04 -0.06 0.02 0.58 0.49
Pin 10 0.99 -0.02 -0.05 0.02 0.71 0.59

Full-Ref Trun.-Ref Trun.-(1) Trun.-(2) Trun.-(3) Trun.-(4) Trun.-(5)
keff 1.15 -0.05 -0.07 -0.05 -0.04 -0.07 -0.03

Pin 1 0.94 0.06 0.16 0.13 0.02 -0.32 -0.03
Pin 2 0.92 0.06 0.16 0.13 0.02 -0.17 0.02
Pin 3 0.87 0.04 0.13 0.11 0.00 -0.04 0.07
Pin 4 0.77 -0.02 0.03 0.03 -0.05 0.08 0.11
Pin 5 0.60 -0.15 -0.22 -0.17 -0.16 0.11 0.07
Pin 6 1.74 0.26 0.13 0.19 0.35 -0.02 -0.12
Pin 7 1.15 -0.22 -0.23 -0.22 -0.27 -0.23 -0.33
Pin 8 1.03 -0.17 -0.18 -0.19 -0.16 0.05 -0.03
Pin 9 1.00 -0.06 -0.07 -0.09 -0.05 0.26 0.18
Pin 10 0.99 -0.02 -0.02 -0.04 -0.00 0.35 0.26

Angular approximations (cases 1 and 2) introduced approximately 0.1% error for the power

peaking factors and approximately 0.01% error into the eigenvalue. Truncating the basis

to 151 DOF introduced approximately 0.1% error. Homogenizing over coarse-mesh regions

(case 3) introduced approximately 0.05% error, whereas homogenizing over material (case 4)

introduced approximately 0.5% error. The largest memory savings (Trunc.-(5)) introduced

less than a 0.2% error for the 1968-group case, which is approximately a third of the error for

the same case for the 238-group structure.

The spatial dependence of the error is shown in Fig. 5.3, which includes curves for both

a complete and a truncated basis used with DGM. Note that the errors presented in the
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figure are for cell fission densities, thus will not compare directly with the data presented in

Table 5.4. Again, it seems that truncating the energy variable provides favorable cancellation

of errors, which manifests in slightly reduced errors for the truncated basis vs the complete

basis.

From these results, the impact of spatial and angular approximations appears to be

inversely proportional to the number of energy groups. For the 1968-group structure, the

approximations used with a truncated basis introduced approximately the same error as

using the truncated basis alone, which is likely due to favorable cancellation of errors.

5.2.2 BWR - Configuration 1 results

This section contains the results from the first BWR configuration, which is described in

Section 4.3. The problem used a total of 588 spatial cells divided evenly between seven

assemblies. For the results in this section, power peaking factors were computed for each

assembly, i.e., the ratio of each assembly fission density to the average assembly fission density

was computed. As was the case for the 10-pin problem, the results provided in this section

for the assembly powers are expected to be better than those in Chapter 4 as the values

are for an entire assembly instead of for individual spatial cell. The results obtained for the

truncated case are based on the POD pins, which is different than the POD pins basis used

for the 10-pin problem as discussed in Section 4.3.

Results from the BWR problem for configuration 1 using the 44-group structure are

presented in Table 5.5. Angular approximations (cases 1 and 2) introduced approximately

2% error for the power peaking factors and approximately 0.6% error into the eigenvalue.

Truncating the basis to 16 DOF added approximately 0.5% error. Homogenizing over

coarse-mesh regions (case 3) introduced approximately 2% error, whereas homogenizing

over material (case 4) introduced approximately 5% error. The largest memory savings

(Trunc.-(5)) introduced approximately 5% error for the 44-group case, which is approximately

half of the error from the 44-group, 10-pin problem.

The spatial dependence of the error is shown in Fig. 5.4, which includes curves for both
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a complete and a truncated basis used with DGM. Note that the errors presented in the

figure are for cell fission densities, thus will not compare directly with the data presented in

Table 5.5. We can see that the largest errors occur near the boundaries, which are vacuum

for this problem.

Table 5.5: 44-group, BWR-configuration 1 test problem comparison of DGM with and without
spatial homogenization and expanded δ. The column “Full-Ref” contains the reference values
for k and the power peaking factors. The remaining columns are the percent errors relative
to the reference. The Trun cases each used 16 degrees of freedom for the DGM expansion.

Full-Ref Full-(1) Full-(2) Full-(3) Full-(4) Full-(5)
keff 0.92 0.62 0.65 -0.04 -0.79 0.59

Assay 1 0.39 -8.45 -4.68 -1.37 -6.91 -6.44
Assay 2 0.54 -2.73 -1.32 -2.45 -6.29 -5.28
Assay 3 2.12 2.44 1.35 1.32 3.82 3.29
Assay 4 0.90 -0.81 -0.67 -2.08 -4.40 -3.52
Assay 5 2.12 2.44 1.35 1.32 3.82 3.29
Assay 6 0.54 -2.73 -1.32 -2.45 -6.29 -5.28
Assay 7 0.39 -8.45 -4.68 -1.37 -6.91 -6.44

Full-Ref Trun.-Ref Trun.-(1) Trun.-(2) Trun.-(3) Trun.-(4) Trun.-(5)
keff 0.92 -0.70 -0.14 -0.09 -0.82 -1.40 -0.29

Assay 1 0.39 1.11 -7.98 -4.46 -0.08 -6.83 -6.17
Assay 2 0.54 0.02 -2.61 -1.33 -2.18 -5.64 -4.66
Assay 3 2.12 -0.16 2.32 1.31 1.02 3.51 2.96
Assay 4 0.90 -0.24 -0.77 -0.67 -2.11 -3.79 -2.97
Assay 5 2.12 -0.16 2.32 1.31 1.02 3.51 2.96
Assay 6 0.54 0.02 -2.61 -1.33 -2.18 -5.64 -4.66
Assay 7 0.39 1.11 -7.98 -4.46 -0.08 -6.83 -6.17

Results from the BWR problem for configuration 1 using the 238-group structure are

presented in Table 5.6. Angular approximations (cases 1 and 2) introduced approximately

2% error for the power peaking factors, where the majority of the error was at the boundary.

The eigenvalue has approximately 1.3% error relative to the reference problem. Truncating

the basis to 56 DOF added approximately 4% error. Homogenizing over coarse-mesh regions

(case 3) introduced approximately 0.5% error, whereas homogenizing over material (case 4)

introduced approximately 5% error. The largest memory savings (Trunc.-(5)) introduced

approximately 5% error for the 238-group case, which is approximately the same as the

44-group results.
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Figure 5.4: Spatially dependent, relative fission density errors for the 44g BWR-1 problem

The spatial dependence of the error is shown in Fig. 5.5, which includes curves for both

a complete and a truncated basis used with DGM. Note that the errors presented in the

figure are for cell fission densities, thus will not compare directly with the data presented in

Table 5.6. For this case, we see that the errors for the truncated basis are dominated by the

truncation, which manifests as all of the curves appearing similar.

Results from the BWR problem for configuration 1 using the 1968-group structure are

presented in Table 5.7. Angular approximations (cases 1 and 2) introduced approximately

0.2% error for the power peaking factors, where the largest errors were at the boundary.

The eigenvalue had approximately 0.03% error relative to the reference problem. Truncating

the basis to 164 DOF added approximately 0.1% error. Homogenizing over coarse-mesh

regions (case 3) introduced approximately 0.02% error, whereas homogenizing over material

(case 4) introduced approximately 0.3% error. The largest memory savings (Trunc.-(5))

introduced approximately 0.3% error for the 1968-group case, which is approximately an

order of magnitude less than the 238-group results.

The spatial dependence of the error is shown in Fig. 5.6, which includes curves for both
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Table 5.6: 238-group, BWR-configuration 1 test problem comparison of DGM with and
without spatial homogenization and expanded δ. The column “Full-Ref” contains the reference
values for k and the power peaking factors. The remaining columns are the percent errors
relative to the reference. The Trun cases each used 56 degrees of freedom for the DGM
expansion.

Full-Ref Full-(1) Full-(2) Full-(3) Full-(4) Full-(5)
keff 0.96 1.32 1.34 -0.26 -1.70 1.10

Assay 1 0.40 -13.46 -7.27 -0.67 -13.23 -12.57
Assay 2 0.53 -4.24 -1.95 -0.06 -5.89 -4.25
Assay 3 2.12 3.86 2.08 0.13 4.57 3.73
Assay 4 0.89 -1.30 -1.09 0.07 -2.91 -1.43
Assay 5 2.12 3.86 2.08 0.13 4.57 3.73
Assay 6 0.53 -4.24 -1.95 -0.06 -5.89 -4.25
Assay 7 0.40 -13.46 -7.27 -0.67 -13.23 -12.57

Full-Ref Trun.-Ref Trun.-(1) Trun.-(2) Trun.-(3) Trun.-(4) Trun.-(5)
keff 0.96 1.39 1.47 1.48 1.38 1.21 1.45

Assay 1 0.40 -10.08 -11.22 -10.63 -10.20 -10.91 -10.92
Assay 2 0.53 -3.81 -4.35 -4.11 -3.81 -4.28 -4.23
Assay 3 2.12 3.16 3.58 3.39 3.18 3.50 3.47
Assay 4 0.89 -1.49 -1.80 -1.75 -1.46 -1.77 -1.71
Assay 5 2.12 3.16 3.58 3.39 3.18 3.50 3.47
Assay 6 0.53 -3.81 -4.35 -4.11 -3.81 -4.28 -4.23
Assay 7 0.40 -10.08 -11.22 -10.63 -10.20 -10.91 -10.92

a complete and a truncated basis used with DGM. Note that the errors presented in the

figure are for cell fission densities, thus will not compare directly with the data presented in

Table 5.7. Here, we again see the favorable cancellation for the truncated basis.

Overall, we can see a similar trend to the results from the 10-pin problem, which is that

more energy groups seems to lead to a smaller impact for spatial and angular approximations.

The largest errors were at the boundary for nearly all cases. Overall, for a 1968-group structure,

approximating the spatial and angular dependence causes errors, which are approximately

the same order of magnitude as a truncated basis. This suggests that for a truncated DGM

solution, approximations for space and angle may have a negligible cost to eigenvalue or

assembly power errors.
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Figure 5.5: Spatially dependent, relative fission density errors for the 238g BWR-1 problem
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Figure 5.6: Spatially dependent, relative fission density errors for the 1968g BWR-1 problem
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Table 5.7: 1968-group, BWR-configuration 1 test problem comparison of DGM with and
without spatial homogenization and expanded δ. The column “Full-Ref” contains the reference
values for k and the power peaking factors. The remaining columns are the percent errors
relative to the reference. The Trun cases each used 164 degrees of freedom for the DGM
expansion.

Full-Ref Full-(1) Full-(2) Full-(3) Full-(4) Full-(5)
keff 0.98 0.03 0.03 0.00 -0.07 0.04

Assay 1 0.40 -0.72 -0.30 -0.05 -0.73 -0.69
Assay 2 0.53 -0.29 -0.15 0.01 -0.25 -0.21
Assay 3 2.13 0.23 0.12 0.00 0.22 0.19
Assay 4 0.89 -0.12 -0.12 0.02 -0.08 -0.05
Assay 5 2.13 0.23 0.12 0.00 0.22 0.19
Assay 6 0.53 -0.29 -0.15 0.01 -0.25 -0.21
Assay 7 0.40 -0.72 -0.30 -0.05 -0.73 -0.69

Full-Ref Trun.-Ref Trun.-(1) Trun.-(2) Trun.-(3) Trun.-(4) Trun.-(5)
keff 0.98 -0.02 -0.01 -0.00 -0.02 -0.07 0.01

Assay 1 0.40 -0.15 -0.70 -0.38 -0.19 -0.71 -0.69
Assay 2 0.53 -0.09 -0.35 -0.23 -0.07 -0.29 -0.27
Assay 3 2.13 0.06 0.25 0.16 0.06 0.23 0.22
Assay 4 0.89 -0.04 -0.17 -0.16 -0.02 -0.11 -0.10
Assay 5 2.13 0.06 0.25 0.16 0.06 0.23 0.22
Assay 6 0.53 -0.09 -0.35 -0.23 -0.07 -0.29 -0.27
Assay 7 0.40 -0.15 -0.70 -0.38 -0.19 -0.71 -0.69

5.2.3 BWR - Configuration 2 results

A second BWR configuration was developed, which used mixed oxide (MOX) fuel in place of

gadolinium-uranium fuel. This configuration is fully described in Section 4.3. Once again the

588 total spatial cells were divided into seven assemblies, and power peaking factors were

computed for each. These results are from utilizing the POD pins basis.

Results from the BWR problem for configuration 2 using the 44-group structure are

presented in Table 5.8. Angular approximations (cases 1 and 2) introduced approximately

1% error for the power peaking factors and approximately 0.6% error into the eigenvalue.

Truncating the basis to 9 DOF added approximately 1% error. Homogenizing over coarse-

mesh regions (case 3) introduced approximately 0.5% error, whereas homogenizing over

material (case 4) introduced approximately 3% error. The largest memory savings (Trunc.-

(5)) introduced approximately 4% error for the 44-group case, which is approximately half of

87



Table 5.8: 44-group, BWR-configuration 2 test problem comparison of DGM with and without
spatial homogenization and expanded δ. The column “Full-Ref” contains the reference values
for k and the power peaking factors. The remaining columns are the percent errors relative
to the reference. The Trun cases each used 9 degrees of freedom for the DGM expansion.

Full-Ref Full-(1) Full-(2) Full-(3) Full-(4) Full-(5)
keff 1.10 0.20 0.66 -0.45 -3.00 -0.15

Assay 1 0.39 -7.05 -1.09 -1.38 -5.99 -6.14
Assay 2 0.94 -0.96 0.15 -0.15 1.45 1.30
Assay 3 1.43 1.83 0.28 0.31 -0.97 -0.79
Assay 4 1.47 1.41 -0.16 0.32 3.20 3.12
Assay 5 1.43 1.83 0.28 0.31 -0.97 -0.79
Assay 6 0.94 -0.96 0.15 -0.15 1.45 1.30
Assay 7 0.39 -7.05 -1.09 -1.38 -5.99 -6.14

Full-Ref Trun.-Ref Trun.-(1) Trun.-(2) Trun.-(3) Trun.-(4) Trun.-(5)
keff 1.10 -0.64 -0.79 -0.46 -0.94 -2.71 -1.03

Assay 1 0.39 -3.71 -6.58 -3.11 -4.57 -6.40 -6.44
Assay 2 0.94 -0.53 -0.65 -0.14 -0.51 1.62 1.56
Assay 3 1.43 0.88 1.43 0.61 0.96 -1.09 -1.01
Assay 4 1.47 0.93 1.54 0.64 1.21 3.44 3.40
Assay 5 1.43 0.88 1.43 0.61 0.96 -1.09 -1.01
Assay 6 0.94 -0.53 -0.65 -0.14 -0.51 1.62 1.56
Assay 7 0.39 -3.71 -6.58 -3.11 -4.57 -6.40 -6.44

the error from the 44-group, 10-pin problem.

The spatial dependence of the error is shown in Fig. 5.7, which includes curves for both

a complete and a truncated basis used with DGM. Note that the errors presented in the

figure are for cell fission densities, thus will not compare directly with the data presented in

Table 5.8. For this case, the errors are highest at the center of the MOX fuel regions.

Results from the BWR problem for configuration 2 using the 238-group structure are

presented in Table 5.9. Angular approximations (cases 1 and 2) introduced approximately

0.4% error for the power peaking factors and approximately 0.5% error into the eigenvalue.

Truncating the basis to 58 DOF added approximately 0.3% error. Homogenizing over

coarse-mesh regions (case 3) introduced approximately 0.5% error, whereas homogenizing

over material (case 4) introduced approximately 1.5% error. The largest memory savings

(Trunc.-(5)) introduced approximately 1% error for the 44-group case, which is smaller than

the results using a 44-group structure.
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Figure 5.7: Spatially dependent, relative fission density errors for the 44g BWR-2 problem
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Figure 5.8: Spatially dependent, relative fission density errors for the 238g BWR-2 problem

The spatial dependence of the error is shown in Fig. 5.8, which includes curves for both

a complete and a truncated basis used with DGM. Note that the errors presented in the

figure are for cell fission densities, thus will not compare directly with the data presented in
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Table 5.9: 238-group, BWR-configuration 2 test problem comparison of DGM with and
without spatial homogenization and expanded δ. The column “Full-Ref” contains the reference
values for k and the power peaking factors. The remaining columns are the percent errors
relative to the reference. The Trun cases each used 58 degrees of freedom for the DGM
expansion.

Full-Ref Full-(1) Full-(2) Full-(3) Full-(4) Full-(5)
keff 1.15 0.31 0.51 -0.25 -2.08 0.11

Assay 1 0.39 -4.11 0.04 -0.55 -3.32 -3.47
Assay 2 0.95 -0.52 0.25 -0.03 -0.38 -0.48
Assay 3 1.42 0.98 -0.06 0.08 0.68 0.82
Assay 4 1.48 0.96 -0.22 0.17 0.93 0.88
Assay 5 1.42 0.98 -0.06 0.08 0.68 0.82
Assay 6 0.95 -0.52 0.25 -0.03 -0.38 -0.48
Assay 7 0.39 -4.11 0.04 -0.55 -3.32 -3.47

Full-Ref Trun.-Ref Trun.-(1) Trun.-(2) Trun.-(3) Trun.-(4) Trun.-(5)
keff 1.15 -0.33 -0.07 0.04 -0.46 -1.23 -0.17

Assay 1 0.39 -0.74 -3.73 -1.85 -1.03 -3.44 -3.50
Assay 2 0.95 -0.17 -0.54 -0.16 -0.16 -0.42 -0.47
Assay 3 1.42 0.28 0.93 0.45 0.29 0.74 0.82
Assay 4 1.48 0.07 0.89 0.31 0.19 0.92 0.89
Assay 5 1.42 0.28 0.93 0.45 0.29 0.74 0.82
Assay 6 0.95 -0.17 -0.54 -0.16 -0.16 -0.42 -0.47
Assay 7 0.39 -0.74 -3.73 -1.85 -1.03 -3.44 -3.50

Table 5.9. For this case, the largest source of error is from the boundaries.

Results from the BWR problem for configuration 2 using the 1968-group structure are

presented in Table 5.10. Angular approximations (cases 1 and 2) introduced approximately

0.05% error for the power peaking factors and approximately 0.1% error into the eigenvalue.

Truncating the basis to 151 DOF added approximately 0.1% error. Homogenizing over coarse-

mesh regions (case 3) introduced approximately 0.05% error, whereas homogenizing over

material (case 4) introduced approximately 0.1% error. The largest memory savings (Trunc.-

(5)) introduced approximately 0.2% error for the 1968-group case, which is approximately an

order of magnitude smaller than the results from the 238-group structure.

The spatial dependence of the error is shown in Fig. 5.9, which includes curves for both

a complete and a truncated basis used with DGM. Note that the errors presented in the

figure are for cell fission densities, thus will not compare directly with the data presented
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Table 5.10: 1968-group, BWR-configuration 2 test problem comparison of DGM with and
without spatial homogenization and expanded δ. The column “Full-Ref” contains the reference
values for k and the power peaking factors. The remaining columns are the percent errors
relative to the reference. The Trun cases each used 151 degrees of freedom for the DGM
expansion.

Full-Ref Full-(1) Full-(2) Full-(3) Full-(4) Full-(5)
keff 1.17 -0.04 0.10 -0.04 -0.69 -0.09

Assay 1 0.39 -0.22 0.05 -0.07 -0.03 -0.13
Assay 2 0.95 -0.11 0.03 0.06 -0.15 -0.11
Assay 3 1.42 0.14 -0.03 -0.06 0.15 0.12
Assay 4 1.48 -0.00 -0.02 0.07 -0.08 -0.03
Assay 5 1.42 0.14 -0.03 -0.06 0.15 0.12
Assay 6 0.95 -0.11 0.03 0.06 -0.15 -0.11
Assay 7 0.39 -0.22 0.05 -0.07 -0.03 -0.13

Full-Ref Trun.-Ref Trun.-(1) Trun.-(2) Trun.-(3) Trun.-(4) Trun.-(5)
keff 1.17 -0.06 -0.09 0.02 -0.10 -0.59 -0.13

Assay 1 0.39 -0.01 -0.19 0.04 -0.06 -0.06 -0.12
Assay 2 0.95 -0.09 -0.18 -0.07 -0.04 -0.17 -0.17
Assay 3 1.42 0.09 0.20 0.08 0.04 0.17 0.19
Assay 4 1.48 -0.06 -0.06 -0.08 0.00 -0.09 -0.08
Assay 5 1.42 0.09 0.20 0.08 0.04 0.17 0.19
Assay 6 0.95 -0.09 -0.18 -0.07 -0.04 -0.17 -0.17
Assay 7 0.39 -0.01 -0.19 0.04 -0.06 -0.06 -0.12

in Table 5.10. For the 1968-group structure, the magnitudes of the errors are considerably

smaller than the 238-group structure, and all cases perform similarly.

Once again the impact of spatial and angular approximations is inversely proportional to

the number of energy groups. For the 1968-group structure, the approximations used with a

truncated basis introduced approximately the same error as using the truncated basis alone,

which is likely due to favorable cancellation of errors.

5.2.4 2-D results

A 2-D problem was designed to test how the spatial homogenization and angular approximation

schemes extend to higher spatial orders. The 2-D problem used 44 energy groups and modeled

304 pincells, which were each divided into 64 spatial cells. With these and the moderator

cells, a total of 46656 were used. The problem is fully defined in Section 4.4. The 238 and
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Figure 5.9: Spatially dependent, relative fission density errors for the 1968g BWR-2 problem

1968 group structures were prohibitively expensive for this problem. This section presents

the results from using the POD 2D pins basis, which was described in Section 4.4. Note

that for the 2-D problem, homogenization over coarse-mesh region provided relatively little

memory savings as each pincell was homogenized as shown in Fig. 5.10, where each unique

number is a homogenized region. The 64 spatial cells of Fig. 4.24 are reduced to 49 spatial

cells when case 3 is implemented.
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Figure 5.10: Homogenized cells for each pincell in the 2-D problem. The 64 spatial cells from
Fig. 4.24 are reduced to 49 spatial cells for case 3, regional spatial homogenization.

Figure 5.11 presents the results from the non-truncated DGM solution to the 2-D problem.
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The figure shows several cells, which each represent a pincell. The highest value in each cell

of the figure is the power peaking factors for the pincell computed from the reference solution

(Full-Ref), while the remaining numbers are percent errors relative to the reference. The

power peaking factors were computed by dividing the pincell fission density for a cell by the

fission density averaged over non-moderator cells. The pincell fission density was computed

by summing the fission density from each of the 64 spatial cells in a pincell.

For the errors, the first column is Full-(1) (flat approximation of ψ) then Full-(2) (linear

approximation of ψ), while the second column is Full-(3) (spatial homogenization over region)

then Full-(4) (spatial homogenization over material) then Full-(5) (both case 2 and case 4).

The yellow highlighted values are the maximum for that homogenization scheme over the

assembly, while the blue highlighting is the minimum. The top and the diagonal are reflective

surfaces while the right face is adjacent water. For convenience, Fig. 5.12, Fig. 5.13, and

Fig. 5.14 are zoomed in plots of the same data as Fig. 5.11.

The results from the truncated problem are presented in Fig. 5.15, which follows a similar

layout to the non-truncated figures. For these results, the basis was truncated to 9 DOF.

The top value in each cell is the power peaking factor for the (non-truncated) reference

solution, while the other values are percent errors relative to the reference. The first column

of the errors is Trun.-Ref then Trun.-(1) then Trun.-(2), while the second column is Trun.-(3)

then Trun.-(4) then Trun.-(5). The yellow highlighted values are the maximum for that

homogenization scheme over the assembly, while the blue highlighting is the minimum.

The top and the diagonal are reflective surfaces while the right face is adjacent water. For

convenience, zoomed in versions for Fig. 5.15 are available in Fig. 5.16, Fig. 5.17, and Fig. 5.18.

Note that the errors from homogenizing over material type (case 4) are listed as N/A in

Fig. 5.11 and Fig. 5.15. The method of spatially homogenizing over material type caused the

problem to be exceedingly unstable, which prevented a solution for a Krasnoselskii parameter

greater than 0.01. We can also see that the linear approximation of ψ (case 2) performed

nearly two orders of magnitude worse than the flat approximation of ψ (case 1). Since

the 1-D tests suggest the opposite trend (i.e. linear approximation is better than a flat

approximation), an error may be present in the 2-D implementation related to the angular

93



approximation. This would also impact the results for case 5, which combines the results of

cases 2 and 4. Also note that although case 4 was unstable, combining this method with case

2 resulted in a reduced error as compared to case (2) alone, which is likely due to favorable

cancellation once again.

5.3 Conclusions

Overall, spatial homogenization and angular approximations appear to be relatively suc-

cessful for use in the discrete generalized multigroup method. In all 1-D cases, the linear

approximation (case 2) for the angular flux performed better than the flat approximation

(case 1), especially in problems with a large angular variation, which was entirely expected.

For most cases, a linear approximation introduced approximately a maximum of 1% error

into the solution, and the higher-group structures (238- and 1968-group) typically saw errors

smaller than that.

Spatial homogenization for the 1-D problems provided a similar story, where the method

of homogenizing over coarse region (case 3) performed far better than homogenizing over

material (case 4), which was expected. However, for large group structures, the impact of

case 4 was often less than 0.1% error in the pin powers, which was approximately the same

error introduced by truncating the basis.

It seems that for problems with a large group structure, spatial and angular approximations

can be used with nearly negligible additional cost to error if a truncated basis is to be used

for DGM. Essentially, large problems are both where a researcher would want the most

approximations to minimize the computation time and also where these approximations have

the smallest impact. More research is needed to show that this holds in general instead of just

to the test problems in this chapter. Additionally, more research effort will be required to

explain why this trend holds, but a likely explanation is simply that more degrees of freedom

were used for the problem, thus removing information from the space and angle dimensions

had a proportionally smaller impact.

For the 2-D problem, the flat approximation (case 1) was more successful than the linear
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approximation (case 2) though this may be due to an error in the angular approximation.

The flat approximation introduced a maximum of 3.24% error in the power peaking factors

for the 2-D problem for the non-truncated case and 0.51% error for the truncated case. This

maximum error occurred at the reflective boundary adjacent to the junction of the MOX

assembly with the moderator. Case 3 (regional homogenization) introduced relatively little

error, but as previously mentioned was not over large regions. Thus case 3 also provided

only a small benefit to computational costs. More efforts are required to test the impact of

homogenizing over larger regions such as entire pincells. Overall, the 2-D results suggest that

the homogenization schemes can be successful, but more efforts are needed to verify these

findings.

Finally, more efforts are required to quantify the memory saving from these approximations.

In this work, the impact on error was assessed, but direct measurement of the memory use

could provide additional support for the use of these approximations. Further, the spatial

homogenization approximation was applied in two rather limited ways. It would be interesting

to spatially average over natural, homogenization regions such as a pincell and assess the

impact for the DGM approach.
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Figure 5.11: 44-group 2-D test problem comparison of non-truncated DGM with and without
spatial homogenization and expanded δ. The top value in each cell is the reference power
peaking factor, while the other values are percent errors relative to the reference. Of the
percent errors the first column is Full-(1) then Full-(2), while the second column is Full-
(3) then Full-(4) then Full-(5). The yellow highlighted values are the maximum for that
homogenization scheme over the assembly, while the blue highlighting is the minimum. The
top and the diagonal are reflective surfaces while the right face is adjacent water.
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Figure 5.12: Top left assembly of Fig. 5.11

97



2.04
0.26

-0.03 N/A
-5.63 -0.44

2.05
0.24

-0.04 N/A
-5.37 -0.56

2.04
0.26

-0.03 N/A
-4.87 -0.59

2.01
0.26

-0.03 N/A
-4.14 -0.49

1.97
0.28

-0.02 N/A
-3.19 -0.25

1.92
0.28

-0.02 N/A
-2.16 -0.01

1.86
0.31

-0.01 N/A
-0.87 0.43

1.78
0.30

-0.03 N/A
0.66 1.00

1.83
0.21

-0.10 N/A
1.96 1.11

1.31
0.72

0.47 N/A
2.08 6.54

1.36
0.66

0.42 N/A
2.05 6.03

1.44
0.64

0.41 N/A
2.45 5.81

1.35
0.66

0.42 N/A
3.32 5.99

1.29
0.70

0.46 N/A
4.57 6.43

1.30
0.66

0.42 N/A
5.31 6.27

1.36
0.61

0.40 N/A
6.07 6.10

1.31
0.55

0.35 N/A
6.44 5.49

1.57
0.28

0.15 N/A
4.75 2.76

1.11
0.89

0.81 N/A
6.62 10.31

1.23
0.78

0.72 N/A
6.02 9.20

1.23
0.77

0.71 N/A
7.05 8.85

1.12
0.87

0.81 N/A
8.66 9.55

1.19
0.73

0.70 N/A
8.98 8.95

1.24
0.54

0.57 N/A
9.10 7.25

1.50
0.20

0.29 N/A
5.93 3.16

1.00
0.97

1.14 N/A
9.19 12.17

1.06
0.87

1.04 N/A
8.66 11.14

1.14
0.80

0.98 N/A
8.39 10.23

1.11
0.76

0.96 N/A
9.01 10.02

1.12
0.77

1.01 N/A
10.08 10.19

1.08
0.69

0.92 N/A
10.77 10.00

1.11
0.64

0.87 N/A
11.38 9.71

1.09
0.49

0.77 N/A
10.96 8.33

1.43
0.05

0.42 N/A
6.81 3.42

0.93
0.98

1.48 N/A
11.11 13.45

0.95
0.92

1.42 N/A
10.98 12.80

0.98
0.90

1.41 N/A
10.92 12.04

1.07
0.76

1.30 N/A
10.70 11.01

1.04
0.67

1.24 N/A
12.31 10.90

0.95
0.69

1.26 N/A
13.72 11.29

1.00
0.43

1.05 N/A
12.75 9.41

1.36
-0.10

0.60 N/A
7.71 3.79

0.88
0.88

1.84 N/A
12.30 14.10

0.93
0.78

1.76 N/A
11.87 13.15

1.00
0.71

1.72 N/A
11.69 12.28

0.98
0.64

1.61 N/A
11.92 11.72

1.00
0.62

1.56 N/A
12.64 11.58

0.95
0.54

1.53 N/A
13.58 11.57

0.97
0.46

1.52 N/A
14.38 11.41

0.97
0.23

1.30 N/A
13.37 9.55

1.31
-0.34

0.80 N/A
8.22 3.89

0.87
0.61

2.23 N/A
12.11 13.52

0.97
0.50

2.13 N/A
11.47 12.38

0.97
0.45

2.06 N/A
12.32 11.79

0.89
0.50

2.09 N/A
13.78 12.28

0.94
0.33

1.95 N/A
14.01 11.59

1.01
-0.07

1.60 N/A
12.88 8.82

1.29
-0.66

1.07 N/A
7.82 3.30

0.98
0.02

2.77 N/A
7.70 9.10

1.02
-0.03

2.67 N/A
7.66 8.58

1.07
-0.06

2.57 N/A
8.05 8.31

1.01
-0.09

2.58 N/A
8.84 8.33

0.96
-0.11

2.60 N/A
9.94 8.55

0.98
-0.23

2.44 N/A
10.35 8.08

1.04
-0.37

2.23 N/A
10.46 7.35

1.05
-0.60

2.01 N/A
9.28 5.42

1.38
-1.11

1.48 N/A
5.12 0.83

1.65
-0.91

3.24 N/A
-2.49 -0.54

1.66
-0.92

3.20 N/A
-2.13 -0.62

1.65
-0.94

3.16 N/A
-1.60 -0.68

1.63
-0.99

3.11 N/A
-0.98 -0.74

1.60
-1.05

3.05 N/A
-0.29 -0.80

1.58
-1.15

2.91 N/A
0.27 -1.01

1.58
-1.27

2.71 N/A
0.62 -1.43

1.63
-1.40

2.46 N/A
0.38 -2.40

1.95
-1.53

2.06 N/A
-0.90 -4.30

Figure 5.13: Top right assembly of Fig. 5.11
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Figure 5.14: bottom right assembly of Fig. 5.11
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Figure 5.15: 44-group 2-D test problem comparison of truncated DGM with and without
spatial homogenization and expanded δ. The top value in each cell is the power peaking
factor, while the other values are percent errors relative to the reference. Of the percent
errors the first column is Trun.-Ref then Trun.-(1) then Trun.-(2), while the second column is
Trun.-(3) then Trun.-(4) then Trun.-(5). The yellow highlighted values are the maximum for
that homogenization scheme over the assembly, while the blue highlighting is the minimum.
The top and the diagonal are reflective surfaces while the right face is adjacent water.
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Figure 5.16: Top left assembly of Fig. 5.15
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9.71 5.27

1.38
-0.17 -1.26
0.93 N/A
5.88 0.89

1.65
-0.51 -1.23
2.17 N/A

-1.83 -0.43

1.66
-0.50 -1.24
2.15 N/A

-1.47 -0.50

1.65
-0.48 -1.24
2.12 N/A

-0.92 -0.55

1.63
-0.47 -1.29
2.08 N/A

-0.26 -0.60

1.60
-0.46 -1.34
2.02 N/A
0.47 -0.66

1.58
-0.42 -1.41
1.93 N/A
1.11 -0.85

1.58
-0.39 -1.51
1.78 N/A
1.54 -1.25

1.63
-0.40 -1.66
1.54 N/A
1.40 -2.17

1.95
-0.35 -1.76
1.23 N/A
0.29 -3.98

Figure 5.17: Top right assembly of Fig. 5.15
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0.39
0.17 0.32
0.16 N/A
3.93 1.87

0.42
0.24 0.30
0.28 N/A
3.87 1.02

0.50
0.25 0.35
0.40 N/A
2.47 -1.01

0.43
0.26 0.20
0.35 N/A
3.93 0.42

0.53
0.27 0.30
0.48 N/A
1.93 -2.01

0.42
0.23 0.01
0.41 N/A
4.30 0.21

0.52
0.21 0.00
0.45 N/A
1.96 -2.48

0.58
0.19 -0.10
0.40 N/A
0.82 -4.08

0.58
0.12 -0.37
0.13 N/A
0.41 -4.98

0.41
0.24 -0.22
0.48 N/A
4.83 0.20

0.51
0.19 -0.28
0.47 N/A
2.34 -2.56

0.56
0.15 -0.44
0.34 N/A
1.01 -4.27

0.57
0.11 -0.60
0.16 N/A
0.51 -5.18

0.39
0.22 -0.49
0.59 N/A
5.11 0.05

0.49
0.16 -0.54
0.57 N/A
2.53 -2.73

0.55
0.14 -0.67
0.47 N/A
1.20 -4.38

0.56
0.07 -0.98
0.16 N/A
0.60 -5.39

0.55
0.07 -1.24

-0.08 N/A
0.59 -5.87

0.53
0.03 -1.64

-0.48 N/A
0.57 -6.33

0.39
0.16 -0.90
0.65 N/A
4.64 -0.67

0.49
0.10 -0.87
0.67 N/A
2.20 -3.26

0.55
0.02 -1.38
0.17 N/A
0.43 -5.75

0.53
-0.01 -1.76
-0.19 N/A
0.34 -6.27

0.52
-0.01 -2.03
-0.49 N/A
0.38 -6.64

0.41
-0.09 -1.47
0.71 N/A
2.75 -2.50

0.51
-0.14 -1.50
0.64 N/A
0.76 -4.68

0.55
-0.14 -1.62
0.50 N/A

-0.17 -5.95

0.55
-0.18 -1.97
0.11 N/A

-0.57 -6.74

0.53
-0.18 -2.30
-0.24 N/A
-0.58 -7.18

0.51
-0.18 -2.62
-0.58 N/A
-0.56 -7.56

0.50
-0.19 -2.96
-0.92 N/A
-0.69 -8.07

0.49
-0.30 -3.48
-1.49 N/A
-1.41 -9.02

0.49
-0.47 -1.97
0.82 N/A

-0.61 -5.39

0.57
-0.46 -2.01
0.67 N/A

-1.67 -6.79

0.59
-0.47 -2.16
0.44 N/A

-2.20 -7.70

0.59
-0.47 -2.43
0.12 N/A

-2.35 -8.27

0.57
-0.45 -2.73
-0.23 N/A
-2.27 -8.63

0.54
-0.43 -3.07
-0.59 N/A
-2.17 -8.95

0.52
-0.42 -3.45
-1.00 N/A
-2.21 -9.37

0.51
-0.48 -3.90
-1.50 N/A
-2.63 -10.08

0.51
-0.62 -4.30
-1.96 N/A
-3.44 -11.02

Figure 5.18: bottom right assembly of Fig. 5.15
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Chapter 6

Incorporating SPH into DGM

In this chapter, we discuss the possibility of using the discrete generalized multigroup method

to produce cross sections for downstream use. As mentioned in Chapter 1, the computation of

SPH factors is one method for correcting cross sections after spatial or energy homogenization.

In Section 6.1, the standard derivation of SPH factors is presented. Following that, Section 6.2

derives a form of the SPH factors for use in DGM. We then present three test problems to

evaluate the use of DGM-SPH factors in Section 6.3. The results from the test problems are

presented in Section 6.4. The chapter concludes in Section 6.5 with a summary of general

observations as well as suggestions for future research areas.

6.1 SPH Factors

The use of SPH factors as discussed in Chapter 1 provides a way to ensure that reaction

rates are preserved while applying homogenization techniques. To review their derivation,

first, consider a general reaction rate as

Rc,g = Σc,gφc,g , (6.1)
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where c is a spatial cell, and g is a energy group from the fine-group structure. We desire to

homogenize this information over a number of spatial cells in region r as

R̄r,g =

∑
c∈r

Rc,gVc∑
c∈r

Vc
=

∑
c∈r

Σc,gφc,gVc∑
c∈r

Vc
, (6.2)

where Vc is the volume for spatial cell c. Let’s assume that we can find a spatially-averaged

cross section for a region, which is multiplied into a spatially-averaged flux as

R̄r,g = Σ̄r,gφ̄r,g , (6.3)

where the spatially-averaged flux φ̄r,g is defined as

φ̄r,g =

∑
c∈r

φc,gVc∑
c∈r

Vc
, (6.4)

which leads to the definition for the spatially-averaged cross section Σ̄r,g as

Σ̄r,g =

∑
c∈r

Σc,gφc,gVc∑
c∈r

φc,gVc
. (6.5)

Defined in this way, the reaction rate should be preserved; however, in practice this is not

always true because the flux found by solving the transport equation with homogenized cross

sections is not the same as that found by Eq. (6.4).

To eliminate (or, at least, to minimize) this error, we seek a correction factor, which is

applied to the cross sections directly to force preservation of reaction rates. We first assume

that the reference problem has been solved, which results in the spatially-fine scalar flux and

corresponding reaction rates. In other words, φref
c,g has been found by solving the transport

equation using Σc,g. Using this reference flux in Eqs. (6.3) and (6.5) leads to a reference,

homogenized cross section Σ̄ref
r,g and corresponding reaction rate R̄ref

r,g.

The transport equation is then solved again using the homogenized cross sections Σ̄ref
r,g,
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which results in φ̄homog
c,g . Then, this flux vector is spatially averaged over a region using

Eq. (6.4) to find φ̄homog
r,g . The spatially-homogenized reaction rate can be written as

R̄homog
r,g = Σ̄homog

r,g φ̄homog
r,g , (6.6)

where Σ̄homog
r,g is the homogenized cross section. We require that the reaction rate is unchanged

by the spatial homogenization, and, thus, we set the reference and homogenized reaction

rates equal, or

Σ̄ref
r,gφ̄

ref
r,g = R̄ref

r,g = R̄homog
r,g = Σ̄homog

r,g φ̄homog
r,g , (6.7)

which suggests that the spatially-homogenized cross section be defined as

Σ̄homog
r,g = Σ̄ref

r,g

φ̄ref
r,g

φ̄homog
r,g

= ωr,gΣ̄
ref
r,g , (6.8)

where ωr,g is the SPH factor for region r and group g, i.e., the correction factor sought. Notice

that the SPH factor depends on the homogenized flux φ̄homog
r,g , which in turn depends on the

SPH factor. Thus, the homogeneous problem is iteratively solved until convergence of the

SPH factors, at which time, the reaction rate is preserved for the region.

Note that as presented here, an infinite number of SPH factors can be defined that preserve

the reaction rates. Therefore, it is common to normalize the flux levels as

∑
r

Vrφ
homog
r,g∑

r

Vr
=

∑
c

Vcφ
ref
c,g∑

c

Vc
, (6.9)

where Vr =
∑
c∈r

Vc, which ensures that a unique set of SPH factors is determined. Once the

SPH factors are determined for each group and region, the reaction rates are preserved over

the homogenized region, and the homogenized cross sections are ready downstream use in

core models.

Thus far, these equations assume that only spatial homogenization is performed. However,

SPH factors can also preserve reaction rates when homogenizing over energy with the
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modification that Eq. (6.4) becomes

φ̄r,G =

∑
g∈G

∑
c∈r

φc,gVcEg∑
g∈G

∑
c∈r

VcEg
, (6.10)

and Eq. (6.5) becomes

Σ̄r,G =

∑
g∈G

∑
c∈r

Σc,gφc,gVcEg∑
g∈G

∑
c∈r

φc,gVcEg
, (6.11)

where Eg is the width of energy group g. In many transport calculations, it is convenient

to solve using Eg = 1 for all g, which means that the solution vector is actually φc,gEg. If

desired, the actual flux may be easily recovered after solving the transport equation. For

several illustrative examples of the 1-group calculation of SPH factors, the work of Yamamoto

et al. 39 is an excellent resource.

6.2 Derivation of DGM-SPH

In this section, we seek a way to correct the coarse-group moments produced by DGM using

an approach similar to SPH. However, we desire a form of the SPH factors that do not require

reformation of the fine-group flux or cross sections from the coarse-group moments. In other

words, we seek SPH factors that can be used to correct the mass matrices of Section 2.3,

where the SPH factors are computed using moments of the flux vectors. However, we first

must have a relationship for spatial homogenization of the mass matrices. In the following

derivation, we will assume that any treatment of the energy variable is done by the DGM

method such that only spatial homogenization is required.

We begin with the definition of the total mass matrix defined in Section 2.3 as

Σ̄t∗
r,G,i,j =

NG
g∑

g=1

PG
i,gΣ̄

t
r,gP

G
j,g . (6.12)

where the mass matrix has been formed directly from the spatially-averaged, fine-group data
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Σ̄t
r,g. Over the next few steps, we will find a definition for the homogenized mass matrix Σ̄t∗

r,G,i,j

that is a function of the spatially-dependent mass matrices Σt∗
c,G,i,j. The spatially-averaged,

fine-group cross sections are also defined as

Σ̄t
r,g =

∑
i

Pi,gΣ̄
t
r,G,iφ̄r,G,0

φ̄r,g
, (6.13)

where Pi,g is an element of an orthogonal basis as discussed in Chapter 2. This definition is

substituted into Eq. (6.12) to find

Σ̄t∗
r,G,i,j =

∑
g∈G

Pi,g

∑
k

Pk,gΣ̄
t
r,G,kφ̄r,G,0

φ̄r,g
Pj,g . (6.14)

A cross section moment may be spatially homogenized as

Σ̄r,G,i =

∑
c∈r

Σc,G,iφc,G,0Vc∑
c∈r

φc,G,0Vc
, (6.15)

which is inserted into Eq. (6.14) to yield

Σ̄t∗
r,G,i,j =

∑
g∈G

Pi,g

∑
k

Pk,g

∑
c∈r

Σc,G,kφc,G,0Vc∑
c∈r

φc,G,0Vc
φ̄r,G,0

φ̄r,g
Pj,g . (6.16)

We now rearrange Eq. (6.16) to find

Σ̄t∗
r,G,i,j =

∑
g∈G

Pi,gPj,g
φ̄r,g

∑
k

Pk,g

∑
c∈r

Σc,G,kφc,G,0Vc∑
c∈r

φc,G,0Vc
φ̄r,G,0 . (6.17)

The spatially-averaged flux moments are defined as

φ̄r,G,0 =

∑
c∈r

φc,G,0Vc∑
c∈r

Vc
, (6.18)
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which is substituted into Eq. (6.17) to find

Σ̄t∗
r,G,i,j =

∑
g∈G

Pi,gPj,g
φ̄r,g

∑
k

Pk,g

∑
c∈r

Σc,G,kφc,G,0Vc∑
c∈r

Vc
. (6.19)

We now switch the order of summation and rearrange to yield

Σ̄t∗
r,G,i,j =

∑
c∈r

Vc
L

∑
g∈G

Pi,gPj,g
φ̄r,g

∑
k

Pk,gΣc,G,kφc,G,0 , (6.20)

where L =
∑
c∈r

Vc. The total reaction rate moments are defined as

Rt
c,G,i = Σt

c,G,iφc,G,0 =
∑
j

φc,G,jΣ
t∗
c,G,i,j , (6.21)

which is substituted into Eq. (6.20), to yield

Σ̄t∗
r,G,i,j =

∑
c∈r

Vc
L

∑
g∈G

Pi,gPj,g
φ̄r,g

∑
k

Pk,g
∑
l

φc,G,lΣ
t∗
c,G,k,l . (6.22)

After once again changing the order of summation and rearranging, we arrive at

Σ̄t∗
r,G,i,j =

∑
c∈r

Vc
L

∑
l

φc,G,l
∑
k

Σt∗
c,G,k,l

∑
g∈G

Pi,gPj,gPk,g
φ̄r,g

. (6.23)

Equation (6.23) provides a relationship that will spatially homogenize the total mass matrix

without requiring access to the fine-group cross section. Note that the fine-group flux does

appear in the relationship, which is easily computed as φ̄r,g =
∑
i

Pi,gφ̄r,G,i as discussed in

Chapter 2 with Eq. (2.7).

Similar steps as above may be followed to arrive at relationships for spatially homogenizing

the scattering and fission cross sections as

Σ̄s
r,G←G′,i,j =

∑
c∈r

Vc
L

∑
k

φc,G′,k
∑
l

Σs
c,G←G′,i,l

∑
g′∈G′

Pj,g′Pk,g′Pl,g′

φ̄r,g′
, (6.24)
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and

Σ̄f
r,G′,j =

∑
c∈r

Vc
L

∑
k

φc,G′,k
∑
l

Σf
c,G′,l

∑
g′∈G′

Pj,g′Pk,g′Pl,g′

φ̄r,g′
, (6.25)

respectively. The spatially-averaged chi moment for a region is given by

χ̄r,G,i =

∑
c∈r

χc,G,iVc∑
c∈r

Vc
. (6.26)

With these relationships defined, we are now in a position to find the SPH factors to

correct the homogenized mass matrices. The total reaction rate moments are defined as

R̄t
r,G,i = Σ̄t

r,G,iφ̄r,G,0 =
∑
j

φ̄r,G,jΣ̄
t
r,G,i,j , (6.27)

which can be used to form a relationship similar to Eq. (6.7), as

Σ̄ref
r,G,iφ̄

ref
r,G,0 = R̄ref

r,G,i = R̄homog
r,G,i = Σ̄homog

r,G,i φ̄
homog
r,G,0 =

∑
j

φ̄homog
r,G,j Σ̄homog

r,G,i,j . (6.28)

If we followed a similar path as Eq. (6.8), we could define

Σ̄homog
r,G,i = Σ̄ref

r,G,i

φ̄ref
r,G,0

φ̄homog
r,G,0

= ωr,GΣ̄ref
r,G,i . (6.29)

However, this provides a correction factor for the coarse-group moments and not for the mass

matrices! Thus, Eq. (6.29) cannot be our path forward.

We would like to define

∑
j

φ̄ref
r,G,jΣ̄

ref
r,G,i,j =

∑
j

φ̄homog
r,G,j Σ̄homog

r,G,i,j , (6.30)

and set each of the terms equal, i.e.,

Σ̄homog
r,G,i,j =

φ̄ref
r,G,j

φ̄homog
r,G,j

Σ̄ref
r,G,i,j = ωr,G,jΣ̄

ref
r,G,i,j , (6.31)
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but this leaves the higher-order flux moments φ̄homog
r,G,j in the denominator. This quickly leads

to instabilities as φ̄homog
r,G,j may be arbitrarily small for J > 0 as discussed in Chapter 2. Thus,

once again, Eq. (6.31) cannot be our path forward.

Instead, we define

rkr,G =
R̄ref
r,G,0

R̄k, homog
r,G,0

, (6.32)

which is the ratio of the zeroth-order, reference reaction rate and the zeroth-order, homogenized

reaction rate for the kth iteration of the SPH algorithm. We can then define the SPH factors

for the kth iteration as

ωkr,G = ωk−1
r,G r

k
r,G . (6.33)

Defined in this way, the SPH factors will converge in tandem with the homogenized reaction

rates. The SPH factors ωr,G are then applied to the mass matrices as

Σ̄homog
r,G,i,j = Σ̄ref

r,G,i,jωr,G . (6.34)

Since the DGM method is designed to preserve the bulk reaction rates in the zeroth-order

terms, an alternative method is to only apply the SPH factors to the zeroth-order terms in

the mass matrices, i.e.,

Σ̄homog
r,G,0,0 = Σ̄ref

r,G,0,0ωr,G . (6.35)

These ideas manifested in four different methods to test, which result from the two sets of

two choices. The first choice is to compute the reaction rate ratios with either the zeroth-order,

total reaction rates or with the fission reaction rates. The second choice is to apply the SPH

factors to all orders of the mass matrices or just the zeroth-order moments.

Additionally, the success of using the ratio of fluxes was measured as well and the resulting

SPH factors could be applied to all orders of just the zeroth order of the mass matrices.

The final method to test uses the SPH corrected cross sections from the non-DGM case,

i.e., Eq. (6.8), then computes homogenized mass matrices directly from the fine-group data.

These methods are summarized in Table 6.1, which names each method and summarizes the
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method for computing the SPH factors.

Table 6.1: Methods for computing the SPH factors for use with DGM

Method Description
Rt - ω0 Total reaction rates and applied to 0th-order mass matrices
Rf - ω0 Fission reaction rates and applied to 0th-order mass matrices
Rt - ω Total reaction rates and applied to all mass matrices
Rf - ω Fission reaction rates and applied to all mass matrices
φ - ω0 0th scalar flux moments applied to 0th-order mass matrices
φ - ω 0th scalar flux moments applied to all mass matrices
ωg DGM with SPH corrected fine-group cross sections

SPH corrected Non-DGM solution that corrects cross sections with SPH factors
Non-SPH corrected Non-DGM solution with no SPH correction

These DGM-SPH methods were compared against the standard approach of using SPH

factors as discussed in Section 6.1, which is to say homogenizing the cross sections without

using DGM. Finally, we compare these methods to the performance of homogenizing cross

sections without the use of correction with SPH factors. In Table 6.1, these test cases appear

at the end and are called “SPH corrected” and “Non-SPH corrected”, respectively. Both of

these non-DGM cases are tested by creating coarse-group structures for homogenization that

use the same number of degrees of freedom as a DGM expansion of order i. For example, if

a DGM coarse group contains 15 fine groups and uses a third-order expansion, then three

degrees of freedom are utilized of the 15 possible DOF. The non-DGM cases would divide the

15 fine groups into three sub-regions, thus forming three coarse groups for homogenization

resulting in three DOF, which can be compared to the DGM cases.

6.3 Test Problem for DGM with SPH

To test the DGM method with SPH, we returned to the 10-pin problem discussed in Section 4.2.

In practice, however, we need two types of problems for testing SPH correction. The first of

these will be used to generate homogenized cross sections and will be the smaller of the two.

This problem will be called the “generation” problem in this chapter. The second is used to

test the success of the cross sections and will be called the “test” problem in this chapter. In
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this section, we test three different choices of generating problem and apply all three sets of

corrected cross sections to the same test problem.

UO1
2 UO2

2 UO3
2 UO4

2 UO5
2 MOX1 MOX2 MOX3 MOX4 MOX5

R
efl

ectR
efl

ec
t

1.26 cm

Figure 6.1: Configuration for the test problem, where materials are generated by homogenizing
over each pincell

As mentioned, the test problem will be the 10-pin problem, which is homogenized over

each of the 10 pincells to produce 10 unique materials with associated cross sections as shown

in Fig. 6.1. The 44-group structure was used for this purpose, which was collapsed into four

coarse groups as described in Table 4.2. The first generating problem used the same geometry

and materials as the test problem, i.e., we expect traditional SPH correction to preserve the

reaction rates exactly.

The second generating problem is presented in Fig. 6.2 and uses a reduced number of

pins and will be called the 2-pin problem. The 2-pin problem used the same materials and

the same number of mesh cells per pin as the 10-pin problem from Section 4.2, but with

the geometry shown in Fig. 6.2. The 2-pin problem was homogenized over each of the two

pincells in Fig. 6.2 to produce a homogenized UO2 material and a homogenized MOX material,

which was used as the corresponding materials in the test problem shown in Fig. 6.3. As

this problem is different than the test problem, SPH factors are not expected to reproduce

reaction rates exactly because the method is correcting the rates to the “wrong” values, i.e.,

to different than the test problem.

UO2 MOX

R
efl

ectR
efl

ec
t

0.09 cm 1.08 cm1.08 cm

Figure 6.2: Configuration for the 2-pin, generating problem
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Figure 6.3: Test geometry for the generating problems that produce a reduced number of
materials

The final generating problem uses the same geometry as the 10-pin, test problem, but

homogenizes over all of the pins for a given material, thus forming a homogenized UO2

material and a homogenized MOX material as shown in Fig. 6.4. This final generating

problem will be called the 5-pin problem. These materials are tested using the geometry

shown in Fig. 6.3. Once again, the SPH method is correcting the cross sections to the “wrong”

values, and are not expected to correctly reproduce the reaction rates.

UOh
2 MOXh

R
efl

ectR
efl

ec
t

6.3 cm

Figure 6.4: Configuration for the test problem, where materials are generated by homogenizing
over each pincell

These three problems were used to study the performance of the SPH method both with

and without DGM. For the standard (non-DGM) solution, energy homogenization was used

to collapse the 44-group solution to a structure using the same degrees of freedom as the

corresponding DGM solution.

The steps for testing the standard SPH method are as follows

1. Solve the generating problem with standard (fine-group) cross sections

2. Homogenize the standard cross sections using the reference scalar flux

3. Solve the generating problem with the homogenized cross sections

4. Solve for the SPH factors

5. Correct the homogenized cross sections with the SPH factors
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6. Return to step (3) until SPH factors (and cross sections) have converged

7. Solve the test problem with standard (fine-group) cross sections

8. Solve the test problem with SPH-corrected, homogenized cross sections

9. Compare the solutions to the test problem

A DGM solution truncated to zeroth order is comparable to the standard SPH approach

since reaction rates are preserved by the zeroth-order DGM equation. Thus, the goal for

this section is to embed more information in the cross section moments than a traditional

downstream scheme would allow for a given number of degrees of freedom. As such, the

SPH-corrected mass matrices will be corrected with a full-order DGM solution, but the

resulting mass matrices will be used with a truncated basis. This will allow comparisons of

the success as a function of order, which should be dependent on the orthogonal basis chosen.

For this work, four basis sets are selected, which include the discrete Legendre polynomials

(DLPs), then three POD-driven basis sets. The POD basis sets are POD full, POD combine,

and POD pins, which are described in Section 4.2. The steps for testing the SPH method for

use with DGM are

1. Solve the generating problem with standard mass matrices using full-order DGM

2. Homogenize the standard mass matrices using the reference scalar flux moments

3. Solve the generating problem with the homogenized mass matrices using full-order

DGM

4. Solve for the SPH factors using the chosen method from Table 6.1

5. Correct the homogenized mass matrices with the DGM-SPH factors

6. Return to step (3) until SPH factors (and mass matrices) have converged

7. Solve the test problem with standard (fine-group) cross sections (not using DGM)
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8. Solve the test problem with SPH-corrected, homogenized mass matrices using oth-order

DGM

9. Compare the solutions to the test problem

6.4 Results

In this section, each of the methods presented in Table 6.1 is compared against the standard

approach to homogenizing using SPH. This is done for all three of the generating problems

discussed in the preceding section. To compare each of the methods, a reference solution of

the test problem is computed, which is used to compute reference pincell, fission densities.

Then, the steps in Section 6.3 are used to produce pincell fission densities for each of the

methods including the non-DGM case.

In Fig. 6.5, a comparison of the methods is presented for the first generating problem.

Figure 6.5a presents the DGM methods utilizing the DLPs, whereas Fig. 6.5b uses the

POD combine basis set for DGM calculations. The SPH corrected curve that represents

a non-DGM solution is not present because this method had no error for this generating

problem as mentioned previously since the generating problem matches the test problem.

The Non-SPH corrected curve from the figures corresponds to using a non-DGM solution to

homogenize over both space and energy that is not corrected via SPH. All data points in

the figure are the maximum error in the pincell fission density relative to the reference test

problem. Spatially dependent results are tabulated in Table 6.2.

Some of the methods discussed in Table 6.1 are more successful than others. In particular,

the ratio of reaction rates (either fission or total) appears to perform the best when applied

to all orders of the mass matrix. The ratio of fission reaction rates (Rf - ω) seems to perform

better than the ratio of total reaction rates (Rt - ω) for the POD basis, but the two methods

perform similarly for the DLP basis. For the POD basis, both of these methods have less

than a 1% error after using three degrees of freedom per coarse group.

Note that correcting the fine-group cross sections with SPH before computing the mass
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(a) Using the DLP basis for DGM
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(b) Using the POD combine basis for DGM

Figure 6.5: Comparison of the DGM-SPH methods when solving the test problem with
cross sections generated by the 10-pin problem. All errors are computed relative to a non-
homogenized, fine-group solution of the test problem, and present the maximum error as a
function of space for a pincell fission density as a function of degrees of freedom in the energy
variable.
Note that the SPH corrected curve is at an error of 0.0 for this problem as the generating

problem matches the test problem.

matrices (ωg) is the most successful method at the high orders. All three of these methods

are more accurate than the uncorrected cross sections (Non-SPH corrected) once 3 degrees

of freedom are used per coarse group for the POD basis. Also note that although three

different POD basis sets were tested, the performance was nearly identical, and thus, only

the POD combine basis is presented in this section.

Results from the second generating problem are presented in Fig. 6.6 which again includes

the performance of the DLP basis in Fig. 6.6a and performance of the POD combine basis in

Fig. 6.6b. The spatially dependent results are tabulated in Table 6.3. For this problem, the

SPH method is correcting the reaction rates to the wrong value since the generating problem

does not match the test problem. Thus, the performance of the SPH corrected curve is quite

poor until many degrees of freedom are used. However, the performance of the DGM-SPH

methods is nearly the same as compared to the first generating problem.

Again we see that the ratio of the fluxes (φ - ω) is not a viable method, but the ratio of

reaction rates is relatively successful. In particular, the best performing method is the ratio
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Table 6.2: Errors in normalized fission densities for each pincell in the test problem using
cross sections from the first generating problem relative to the reference. All columns are
in percent error except for the Ref column, which is the normalized fission density for each
pincell. SPH-X refers to Non-DGM, SPH-corrected, results, and NON-X refers to Non-DGM,
Non-SPH results, where X=0 is one DOF per coarse group, X=2 is three DOF per coarse
group, and X=Full is full order in all coarse groups. The DGM-SPH methods are provided
for three DOF per coarse group utilizing the POD combine basis.

Pin Ref SPH-0 SPH-2 SPH-Full NON-0 NON-2 NON-Full
0 0.290 0.000 0.000 0.000 2.669 0.687 0.302
1 0.283 0.000 0.000 0.000 2.653 0.731 0.353
2 0.267 0.000 0.000 0.000 2.622 0.844 0.483
3 0.237 0.000 0.000 0.000 2.598 1.106 0.776
4 0.184 0.000 0.000 0.000 2.825 1.971 1.741
5 0.529 0.000 0.000 0.000 0.774 0.634 0.629
6 0.347 0.000 0.000 0.000 1.689 0.525 0.277
7 0.310 0.000 0.000 0.000 1.665 0.312 0.001
8 0.300 0.000 0.000 0.000 1.544 0.204 0.097
9 0.297 0.000 0.000 0.000 1.476 0.164 0.126

Pin Ref Rt - ω0 Rf - ω0 Rt - ω Rf - ω φ - ω0 φ - ω ωg
0 0.290 21.723 5.849 0.608 0.020 12.119 12.102 0.065
1 0.283 2.651 0.520 0.674 0.090 14.748 14.739 0.034
2 0.267 18.047 7.163 0.805 0.229 19.176 19.174 0.222
3 0.237 18.761 11.412 0.894 0.389 20.824 20.850 0.440
4 0.184 7.531 8.000 0.640 0.319 9.571 9.579 0.449
5 0.529 2.702 0.270 0.691 0.165 11.734 11.753 0.028
6 0.347 1.517 2.997 0.609 0.079 8.472 8.478 0.314
7 0.310 1.388 2.260 0.021 0.147 5.953 5.941 0.064
8 0.300 1.689 1.891 0.182 0.011 5.113 5.088 0.066
9 0.297 1.628 1.796 0.135 0.174 4.831 4.799 0.125

of the total reaction rate that is applied to only the zeroth-order mass matrices (Rf - ω0).

However, this method was not viable for the first generating problem. Taking the ratio of

total reaction rates and applying to all orders (Rt - ω) performs quite well and was consistent

with the performance of the first generating problem. Again, forming the mass matrices from

SPH corrected, fine-group data performs quite well. Note once again, that the DGM-SPH

methods are closer to the reference solution than the Non-DGM cases once three degrees of

freedom are used per coarse group for the POD combine basis.

Finally, the performance of the third generating problem are presented in Fig. 6.7 with
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(a) Using the DLP basis for DGM
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(b) Using the POD combine basis for DGM

Figure 6.6: Comparison of the DGM-SPH methods when solving the test problem with
cross sections generated by the 2-pin problem. All errors are computed relative to a non-
homogenized, fine-group solution of the test problem, and present the maximum error as a
function of space for a pincell fission density as a function of degrees of freedom in the energy
variable.
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(a) Using the DLP basis for DGM
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(b) Using the POD combine basis for DGM

Figure 6.7: Comparison of the DGM-SPH methods when solving the test problem with
cross sections generated by the 5-pin problem. All errors are computed relative to a non-
homogenized, fine-group solution of the test problem, and present the maximum error as a
function of space for a pincell fission density as a function of degrees of freedom in the energy
variable.

the DLP basis results in Fig. 6.7a and the POD combine results in Fig. 6.7b. The results

are tabulated in Table 6.4. This problem leads to considerably more instabilities for the

DGM methods, which manifested in spikes in the error where some of the methods failed
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Table 6.3: Errors in normalized fission densities for each pincell in the test problem using
cross sections from the second generating problem relative to the reference. All columns are
in percent error except for the Ref column, which is the normalized fission density for each
pincell. SPH-X refers to Non-DGM, SPH-corrected, results, and NON-X refers to Non-DGM,
Non-SPH results, where X=0 is one DOF per coarse group, X=2 is three DOF per coarse
group, and X=Full is full order in all coarse groups. The DGM-SPH methods are provided
for three DOF per coarse group utilizing the POD combine basis.

Pin Ref SPH-0 SPH-2 SPH-Full NON-0 NON-2 NON-Full
0 0.290 54.323 42.434 0.507 21.566 4.083 0.233
1 0.283 53.374 41.883 0.525 20.952 4.056 0.280
2 0.267 50.937 40.239 0.526 19.520 3.954 0.404
3 0.237 45.383 35.914 0.392 16.801 3.701 0.699
4 0.184 31.113 23.865 0.607 12.240 3.586 1.788
5 0.529 17.210 13.198 1.037 1.413 0.597 0.641
6 0.347 23.875 23.261 0.556 9.517 2.375 0.059
7 0.310 37.528 32.468 0.474 14.835 2.898 0.030
8 0.300 41.108 33.156 0.318 16.749 2.893 0.072
9 0.297 41.936 32.603 0.257 17.332 2.816 0.086

Pin Ref Rt - ω0 Rf - ω0 Rt - ω Rf - ω φ - ω0 φ - ω ωg
0 0.290 0.522 1.610 0.867 1.864 6.253 6.257 0.455
1 0.283 0.205 1.331 0.594 1.589 7.239 7.242 0.573
2 0.267 0.418 0.777 0.070 1.062 9.244 9.246 0.763
3 0.237 1.142 0.121 0.538 0.442 11.978 11.977 0.845
4 0.184 0.279 0.865 0.122 0.816 12.851 12.849 0.161
5 0.529 0.302 0.276 0.445 0.399 16.475 16.473 1.031
6 0.347 0.838 0.201 0.188 0.409 1.282 1.282 0.273
7 0.310 0.351 0.891 0.673 1.476 4.081 4.078 0.404
8 0.300 0.615 1.101 0.952 1.810 3.808 3.803 0.246
9 0.297 0.585 1.047 0.975 1.843 3.450 3.445 0.129

to converge. Outside of these artifacts, computing the mass matrices from SPH-corrected,

fine-group data (ωg) performs the best. The second best performing method utilized the

ratio of fission reaction rates with SPH factors applied to all orders of the mass matrices (Rf

- ω). Both of these methods are closer to the reference result as compared to the traditional

SPH correction, and are around a 1% error in the relative fission density error when using

the POD combine basis truncated to three DOF per coarse group.

For each of the tested generating problems, the DGM-SPH methods seem to be more

problem independent than the traditional SPH correction. This is likely because the DGM
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Table 6.4: Errors in normalized fission densities for each pincell in the test problem using
cross sections from the third generating problem relative to the reference. All columns are
in percent error except for the Ref column, which is the normalized fission density for each
pincell. SPH-X refers to Non-DGM, SPH-corrected, results, and NON-X refers to Non-DGM,
Non-SPH results, where X=0 is one DOF per coarse group, X=2 is three DOF per coarse
group, and X=Full is full order in all coarse groups. The DGM-SPH methods are provided
for three DOF per coarse group utilizing the POD combine basis.

Pin Ref SPH-0 SPH-2 SPH-Full NON-0 NON-2 NON-Full
0 0.290 10.339 8.268 0.346 6.238 1.387 0.335
1 0.283 8.287 6.656 0.345 5.701 1.310 0.394
2 0.267 3.072 2.416 0.314 4.467 1.129 0.544
3 0.237 8.688 7.519 0.158 2.266 0.851 0.895
4 0.184 38.662 33.336 0.741 0.317 1.115 2.117
5 0.529 30.712 29.898 1.399 0.061 0.427 0.906
6 0.347 5.218 5.476 1.316 1.524 0.476 0.018
7 0.310 17.843 17.535 0.914 3.690 0.749 0.104
8 0.300 21.532 20.860 0.510 4.554 0.780 0.145
9 0.297 22.538 21.693 0.356 4.777 0.742 0.158

Pin Ref Rt - ω0 Rf - ω0 Rt - ω Rf - ω φ - ω0 φ - ω ωg
0 0.290 0.484 0.395 0.566 0.956 11.470 11.467 0.238
1 0.283 0.018 0.972 0.154 0.506 13.542 13.539 0.337
2 0.267 0.928 2.206 0.674 0.403 18.507 18.504 0.498
3 0.237 2.054 4.013 1.780 1.649 28.276 28.274 0.565
4 0.184 0.093 3.749 1.981 2.072 46.512 46.511 0.326
5 0.529 2.964 5.928 2.889 0.673 35.895 35.894 1.392
6 0.347 6.892 0.038 4.749 2.368 5.634 5.633 1.068
7 0.310 1.142 3.255 2.354 0.458 3.833 3.835 0.879
8 0.300 0.292 3.694 1.240 0.277 5.999 6.002 0.485
9 0.297 0.468 3.528 0.950 0.447 6.376 6.378 0.282

method provides a way to retain spectral information into the cross section moment my way

of the basis collapse using an orthogonal basis. In other words, the DGM method better

maintains the material interactions than traditional SPH correction for these problems.

It seems that the DGM-SPH methods can allow for a variable amount of error, which is a

function of the number of degrees of freedom. However, the choice of basis is still important

for this method as the errors in the DGM-SPH methods using the POD combine basis plateau

at approximately three degrees of freedom per coarse group. The errors resulting from the

DLP basis do not plateau until nearly a full order expansion. This is because the errors from
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a POD expansion fall below that of the SPH correction at few DOF for a POD basis, but

require many more DOF for the DLP basis.

Prior research39 has shown that SPH factors do not correctly account for the neutron

leakage. The selected problems include a junction between two different fuel types, which

causes a non-zero leakage from the homogenized regions. However, the DGM-SPH approach

seems to better preserve the leakage, which results in improved SPH performance as compared

to the non-DGM approach for general problems.

6.5 Conclusions

As presented in Section 6.4, many of the various DGM-SPH methods perform better than the

standard approach for SPH in terms of the relative error in the fission density. The method

Rf - ω performed consistently well, which computed the SPH factors from the ratio of the

reference fission reaction rate to the homogenized fission reaction rate and applied the SPH

factors to all moments of the mass matrices. The methods that utilized the ratio of scalar

fluxes did not perform well for any of the generating problems.

While promising, the methods in this chapter do not represent an ideal solution yet. The

methods described in Section 6.2 describe a method to use SPH factors that preserve the

zeroth-order reaction rate moments. However, the higher-order moments are not preserved

with respect to the reference except for the case of ωg, which uses the SPH-corrected, fine-

group data that we are trying to avoid. More work is needed to find a method to compute

DGM-SPH factors that are capable of preserving the higher-order moments, which will further

improve the performance.

Furthermore, this method must be validated against other problems to ensure the general

performance of the DGM-SPH methods is consistent. In particular, this work should be

applied to larger group structures, e.g., the scale 238-group or the ECCO 1968-group structures.

Additionally, this method should be tested on larger problems as well as problems with more

challenging spectral features.

Further, the methods in this section have used a naive approach to computing the SPH
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factors, which is unable to preserve neutron leakage. Another path forward for the DGM

method is to explore correction factors that can preserve the leakage such as the generalized

equivalence theory first mentioned in Section 1.5.
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Chapter 7

Conclusions

7.1 Concluding Remarks

The overarching goal for this work was to seek improvements to the discrete generalized

multigroup (DGM) method, which would ultimately lead to homogenized cross sections for

downstream use. This work can be divided into three major thrusts, which correspond to

Chapter 4, Chapter 5, and Chapter 6, respectively. In the following pages, we will summarize

the major findings of this research, and then end with outlining avenues for continuing this

research.

The DGM method provides a way to model the energy variable within a transport

calculation that expands the fluxes and cross sections using an orthogonal basis. In theory,

the DGM method maps a fine-group, energy structure to a number of coarse energy groups.

A transport problem can be solved on the coarse energy grid, and then the fine-group fluxes

may be reconstructed. However, as originally designed, the DGM method suffered from

several drawbacks, which include:

• a potential for negative fluxes or instabilities

• a requirement to store the angular flux

• spatially dependent cross section moments even if the cross sections themselves are not
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• high computational expense compared to standard multigroup treatment of the energy

variable

This work sought to find improvements for the method that would bring DGM closer to

practicality.

In Chapter 4, we explored a new way to define bases for DGM that has the capability of

embedding information about the physics into the basis vectors. This technique constructs a

basis using the proper orthogonal decomposition (POD) and the method of snapshots. The

resulting POD basis made possible the use of DGM with a truncated basis. Historically, the

DGM method was used with the Legendre polynomials, which do not accurately approximate

the shape of the fluxes with low-order expansions. Using POD instead allows an accurate

representation of the fluxes in the DGM method even at low-order expansions. Thus, with the

introduction of a small truncation error, the method can be performed with computational

savings.

To test the truncated basis, the infinite medium problem, three 1-D problems, and one

2-D problem were tested with a variety of POD basis sets. These tests showed that the best

POD basis sets utilized snapshots from all material types as well as junctions of material

types. A decrease in performance was observed for basis sets that included snapshots of extra

materials, though the effect was much smaller than the absence of material information. For

these problems, most practical POD basis sets achieved less than 0.1% error in the fission

density utilizing three degrees of freedom (DOF) per coarse group for the 1-D problems.

This finding was nearly independent of group structure, though more work is required to

determine if this trend holds for more difficult problems. To achieve an error of 0.01% in the

fission density, approximately eight degrees of freedom per coarse group were required.

This work continued in Chapter 5 by exploring reformulations of the DGM equations as

well as approximations for the cross section moments. First, many computational savings are

found by precomputing so-called “mass matrices,” which are partially-computed, cross section

moments. This improvement was at no cost to accuracy, and it provided more than an order

of magnitude improvement to the computational speed. The other experiments explored
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in Chapter 5 did introduce error but were designed to address some of the aforementioned

drawbacks.

First, the angular flux is required for the DGM method for one particular term that stores

the total angular reaction rate. This work sought to approximate this angular dependence

using a low-order Legendre expansion, which removes the need to store the angular flux.

Linear expansion of the scalar flux was found to introduce approximately a 1% error in the

fission densities whereas flat approximation resulted in roughly double the errors. When used

in conjunction with a basis truncated to three DOF per coarse group, the errors are only

slightly increased.

The second approximation was designed to address the cross-section moment storage

requirements. Since the cross-section moments are functions of the spatially-dependent fluxes,

the moments will be spatially dependent even if the cross sections are not. To reduce the

storage, this work explored two homogenization options for the cross-section moments. The

first would homogenize the cross-section moments over a certain spatial region, e.g. a pincell.

The second option would homogenize the moments over all cells sharing a material type.

The greatest storage savings were from the second option, but the smallest impact to

errors was from the first option. Homogenizing over region introduced approximately 0.5%

error into the fission densities, while homogenizing over material had errors of approximately

10% in the fission densities for the 44-group problem. Material homogenization performed

better over an order of magnitude better for the larger group structures. When used with a

basis truncated to three DOF per coarse group, the first option errors increased very slightly.

The errors for the truncated second option were slightly smaller than the non-truncated

case, which was likely due to favorable cancellation. Overall, a truncated DGM solution that

utilized spatial homogenization over regions and linear expansion of the angular flux would

have approximately the same error as the truncated solution without approximation. Thus,

the memory requirements for a truncated DGM solution can be greatly reduced by no longer

requiring the angular flux and reducing the spatial dependence of the moments.

The final exploration for this work explored the use of spatial homogenization factors

(SPH factors) that are designed to preserve reaction rates when homogenizing cross sections.
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SPH factors are designed to work for both spatial and energy homogenization to prepare

cross sections for downstream use. Chapter 6 explored ways to use SPH factors with the

DGM method. In particular, we desired a method that collapsed the fine-group cross sections

to mass matrices for use with DGM and directly homogenized the mass matrices without

reconstructing the fine-group data. The method for deriving SPH factors for DGM is not

as simple as that of the non-DGM derivation, but an effective method was found. The

performance of the SPH corrected mass matrices was dependent on the basis, but the

performance was improved as compared to traditional homogenization schemes for a test

problem.

In particular, the use of SPH with DGM seemed to be more problem independent than

traditional SPH calculations. The DGM moments were able to retain some of the material

interactions in the higher-order terms, which greatly improved the performance relative to

traditional methods for general problems. While SPH factors can preserve reaction rates for

a specific problem, if those corrected cross sections are used for a different problem, reaction

rates are no longer preserved and can perform worse than the uncorrected cross sections.

However, SPH-corrected, DGM moments resulted in approximately 1% error in the pincell

fission densities when using a POD basis truncated to three DOF per coarse group.

7.2 Future Work

The DGM method is still far from a replacement for standard methods such as the discrete

ordinates method. When used as a method for solving the transport equation, the DGM

method finds a solution using both more memory and more computational time. Further,

the DGM method suffers from instabilities, which can only be somewhat mitigated by the

use of Krasnoselskii iteration. This work explored the DGM method using an unaccelerated,

discrete ordinates solver. However, it is possible that advanced solvers such as GMRES would

improve the performance or stability of the DGM method. Using acceleration schemes is

likely to be the best way to test the performance of the DGM method for larger problems.

The most promising area for this work was the creation of homogenized cross sections. A
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lingering task is to compute these cross sections using the various approximations discussed

in Chapter 5. SPH correction may be enough to correct for the error introduced by the

approximations. Further, only simple problems were tested for homogenizing the cross

sections, thus future exploration should be done on more difficult and realistic problems.

Additionally, the stability of the DGM method greatly impacts the success of future

research. One avenue for assessing stability is by creating idealized cross sections and

perturbing the structure to determine the cause of the instabilities. Such an approach may

lead to strategies for mitigating the unstable behavior, which would greatly increase the

tractability of the DGM approach.

Although the DGM method is not yet ready to be the industry standard for lattice physics

calculations, it provides much potential. Standard multigroup solutions assume that the

shape of the flux is flat within a coarse group, which discards much of the dependence. The

DGM method provides a way to recapture the higher-order dependence, and future research

may lead to ways to do so more efficiently.
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Appendix A

Cross Section Generation using

Serpent

All cross sections used in this work were generated using Serpent6. A relatively simple

2-D, pincell model with reflective conditions was created that used various fuel materials

surrounded by water. The geometry is shown in Fig. A.1.

1.26 cm

0.4095 cm

Figure A.1: The pincell model developed in Serpent.

Serpent is a Monte Carlo code, which allows homogenizing cross sections over spatial

regions to produce cross sections for a desired group structure. For this work, three group

structures were chosen, which were built into Serpent, named scale44 (SCALE 44-group

structure), scale238 (SCALE 238-group structure), and nj20 (ECCO 1968-group structure).

An example input file for Serpent is presented in Listing A.1.
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Table A.1: Atomic compositions in atom/barn.cm

UO2-1 UO2-2 UO2-Gd MOX Water

H-1 2.73×10−2 2.73×10−2 2.73×10−2 2.73×10−2 4.03×10−2

O-16 2.87×10−2 2.87×10−2 2.86×10−2 2.86×10−2 2.02×10−2

Zr (nat) 4.79×10−3 4.79×10−3 4.79×10−3 4.79×10−3 7.86×10−3

U-234 1.50×10−6 2.52×10−6 2.63×10−6 2.32×10−6

U-235 1.68×10−4 2.75×10−4 2.87×10−4 2.53×10−4

U-238 7.39×10−3 7.28×10−3 6.88×10−3 6.70×10−3

Gd-154 9.68×10−6

Gd-155 6.58×10−5

Gd-156 9.10×10−5

Gd-157 6.96×10−5

Gd-158 1.10×10−4

Gd-160 9.80×10−5

Np-237 3.23×10−5

Pu-238 1.59×10−5

Pu-239 2.93×10−4

Pu-240 1.32×10−4

Pu-241 6.38×10−5

Pu-242 3.76×10−5

Am-241 2.04×10−5

Am-242 1.05×10−5

This work utilized four different fuel materials. The atomic compositions of each of these

materials are presented in Table A.1. The materials include three different varieties of UO2

as well as a MOX fuel. An input file similar to the example script was generated for each of

the four fuels for each of the three group structures for a total of 12 input files. Serpent was

used to process each of these files, which leads to an output file that was processed using

Python to extract the homogenized cross sections.

The 44-group cross sections produced by Serpent are shown in Fig. A.2, whereas the 238-

and 1968-group cross section are in Fig. A.3 and Fig. A.4 respectively. These figures show

the total cross section as a function of energy for each of the materials.
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Figure A.2: Cross sections for 44-group structure

Figure A.3: Cross sections for 238-group structure
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Figure A.4: Cross sections for 1968-group structure
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Listing A.1: Example input for serpent cross section generation

% ** UO2 -2 PINCELL SIMULATION
set title "UO2 -2 PINCELL"
% *******************************************************************
% ** SURFACE CARDS

surf 1 sqc 0.0000 0.0000 0.6333 /* outmost SURFACE */
surf 2 cyl 0.0000 0.0000 0.4095 /* fuel */

% *******************************************************************
% ** CELL CARDS

cell 1 1 fuel -2 % Fuel
cell 2 2 water 2 -1 % moderator
cell 11 0 fill 1 -2
cell 12 0 fill 2 2 -1

% Reflective boundary
cell 99 0 outside 1 % Outside world

% *******************************************************************
% ** MATERIAL CARDS
% ** fuel discretization
mat fuel sum tmp 456

1001.03c 2.73e-2
8016.03c 2.87e-2

40000.03c 4.79e-3
92234.03c 2.52e-6
92235.03c 2.75e-4
92238.03c 7.28e-3

% ** Water
mat water sum moder lwtr 1001 % Considering the binding effects

1001.03c 4.03e-2
8016.03c 2.02e-2

40000.03c 7.86e-3
% *******************************************************************
% ** thermal scattering data for light water
therm lwtr lwj3 .11t
% *******************************************************************
% ** reflective boundary condition
set bc 2
set gcu 0 1 2 % homogenious in universe 0
set sym 8 % square symmetry for error reduction
set nfg scale44
set micro scale44
ene grid44 4 scale44
%********************************************************************
% ** Neutron population and criticality cycles:
set pop 1000000 100 20 1.00
% ** Decay and fission yield libraries
% ** end ************************************************************
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Appendix B

Creating a Coarse-Group Structure

In this appendix, the method for selecting a coarse-group structure from a fine-group structure

is presented. The method is based on the basic algorithm introduced by Gibson and Forget 22 .

Their method incorporated four rules which were:

• limit the ratio of the smallest to the largest cross section in a coarse group

• relax the ratio for groups containing only small cross sections

• cap the number of fine groups per coarse group

• force coarse-group breaks where desired.

Their recommended limits were a smallest to largest ratio of 2, which was suppressed for

cross sections below 1.5 cm−1 in coarse groups with up to 60 fine groups.

The work presented in the remainder of this manuscript began with these rules but

explored several variations in an attempt to find stable configurations. In the work of Gibson

and Forget 22 , only a single material was used, but for multiple materials, a method was

needed to create stable structures for sets of cross sections. The findings for such a method

are presented in Section B.1.

A brief study was explored, which would make use of noncontiguous, coarse-group

structures, which are akin to the banded methods discussed in Section 1.4. The results of the

139



study are presented in Section B.2. Ultimately, this work utilized a cross section difference

instead of a cross section ratio to select a coarse group as discussed in Section B.3.

Finally, the lessons learned from each of these studies led to a parameter search to

select the more stable structures for use in this work. The parameter search is presented

in Section B.4, along with the resulting group structures. Finally, the search for stable

parameters for linear anisotropic scattering problems is discussed in Section B.5.

For this section, we sought a simple way to assess the stability of a coarse-group structure

from the structure alone. One attempt was to explore the diagonal dominance of the mass

matrices as computed in Section 2.3. In particular, the mass matrix computed from the total

cross section Σt∗
m,G,i,j was explored. For a particular material m and coarse-group G, the mass

matrix was a square matrix that could be checked for diagonal dominance. It was found

that strong diagonal dominance was neither sufficient to predict stability nor required for

stability. Thus, to assess stability, the 44-group, 10-pin problem as discussed in Section 4.2

was solved for various parameters to find the stable configurations. The basis was chosen to

be the POD combine basis. Though stability can be improved by the use of Krasnoselskii

iteration as discussed in Section 2.2, the stability in this section assumes λ = 1.0.

B.1 Group structures with multiple materials

When using multiple materials, we desire a group structure to be the same for all materials.

To this end, several methods for combining the cross sections were explored. The first method

preprocessed the cross sections to find the minimum value over material for each energy group.

The second method still preprocessed the cross sections, but instead found the maximum

value over material for each energy group. The third method took the average over material

as the cross section values for each group. The final method limited the ratio in each coarse

group of the maximum cross section of all materials to the minimum cross section of all

materials.

While each of these methods could produce group structures, some were far more stable

consistently. The results are presented in Fig. B.1, where each square represents a complete
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solve and identifies the stability. The number on each square is the degrees of freedom used

in that problem, while the color assesses the stability. The horizontal axis is the order of

the basis expansion. The vertical axis is the ratio of maximum to minimum cross section

within a coarse group after the aforementioned preprocessing. The minimum cutoff was set

to ignore the ratio if the maximum cross section was below 1.5 cm−1.

We desire a method that is stable for all expansion orders, thus methods that have an

entire yellow row. Also, we prefer a low number of coarse groups. The number of coarse

groups can be read from the plot as the number on the leftmost column.

The first method performed quite poorly, which is expected as resonance regions were

disregarded. The fourth method performed quite well but produced group structures with

few fine groups per coarse group for some problems, which limited the success of the DGM

method. The second method was chosen as the best option for its simplicity and success.

B.2 Non-contiguous group structures

Non-contiguous group structures were also explored. These structures were similar to the

banded methods discussed in Section 1.4. The same four methods of preprocessing the data

from Section B.1 were applied. In theory, a noncontiguous group structure would allow for

less cross section variation within each coarse group as well as fewer coarse groups. However,

as observed in Fig. B.2, the noncontiguous structures are much less stable than the contiguous

structures. The structures required very specific ratios for stability, which could not be

assessed a priori. It is possible that further research could find a fruitful path for success in

this direction, but all group structures chosen for this work were contiguous.

B.3 Additive difference vs multiplicative ratio

To simplify the method for selecting group structures, we explored the use of a cross section

difference instead of a cross section ratio for each coarse group. In essence, the difference

between the largest cross section and the smallest cross section in a coarse group was limited.
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(a) Method 1: compare minimum

(b) Method 2: compare maximum
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(c) Method 3: compare average

(d) Method 4: compare difference

Figure B.1: Stability of the four methods for selecting the coarse-group structure. Numbers
are the degrees of freedom used in the problem. The ordinate is the expansion order, thus
the left column utilizes only the flat function, while the right column is a full expansion. The
abscissa is the ratio of maximum to minimum cross section in a group. The purple squares
are already full order and were not run. Yellow squares represent problems that were stable.
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(a) Non-contiguous method 1: compare minimum

(b) Non-contiguous method 2: compare maximum

144



(c) Non-contiguous method 3: compare average

(d) Non-contiguous method 4: compare difference

Figure B.2: Stability of the four methods for selecting the noncontiguous coarse-group
structure. Numbers are the degrees of freedom used in the problem. The ordinate is the
expansion order, thus the left column utilizes only the flat function, while the right column
is a full expansion. The abscissa is the ratio of maximum to minimum cross section in a
group. The purple squares are already full order and were not run. Yellow squares represent
problems that were stable.
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With this small change, there was no need to relax the ratio for small cross sections. To test

this method, the same preprocessing steps were applied as presented in Section B.1.

(a) Method 1: compare minimum

(b) Method 2: compare maximum

The results for the contiguous group structures are presented in Fig. B.3, while the

noncontiguous structures are presented in Fig. B.4. From the figures, we can see that more
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(c) Method 3: compare average

(d) Method 4: compare difference

Figure B.3: Stability of the four methods for selecting the coarse-group structure. Numbers
are the degrees of freedom used in the problem. The ordinate is the expansion order, thus
the left column utilizes only the flat function, while the right column is a full expansion.
The abscissa is the difference of maximum to minimum cross section in a group. The purple
squares are already full order and were not run. Yellow squares represent problems that were
stable.
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(a) Non-contiguous method 1: compare minimum

(b) Non-contiguous method 2: compare maximum
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(c) Non-contiguous method 3: compare average

(d) Non-contiguous method 4: compare difference

Figure B.4: Stability of the four methods for selecting the noncontiguous coarse-group
structure. Numbers are the degrees of freedom used in the problem. The ordinate is the
expansion order, thus the left column utilizes only the flat function, while the right column is
a full expansion. The abscissa is the difference of maximum to minimum cross section in a
group. The purple squares are already full order and were not run. Yellow squares represent
problems that were stable.
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configurations are stable. In particular, below a certain threshold cross section difference, all

orders are stable, which is highly desired. Overall, using a cross section difference instead of

a cross section ratio improved the stability, and this method was chosen for the work in this

manuscript.

Note also that the noncontiguous structures are also improved using a cross section

difference. In both contiguous and noncontiguous tests, the second method (preprocessing to

find the maximum cross section over material) was either outright or tied for the most stable

method for coarse-group selection.

The performance of the noncontiguous basis structures are presented in Fig. B.5 and

Fig. B.6 for the 44- and 238-group solutions to the 10-pin problem as discussed in Section 4.2,

respectively. The group structures are formed following the noncontiguous method 2 with a

maximum difference set to 1.3. In the figures, a basis beginning with POD is a continuous

group structure, whereas a basis name beginning with NCT is a noncontiguous group structure.

From the figures, the noncontiguous basis set tends to provide better performance (lower

errors) as compared to the contiguous basis sets. This does come at a cost to stability, which

manifests as requiring a slightly smaller value for the Krasnoselskii coefficient. Due to time

constraints, the noncontiguous structures were not explored for additional problems, but the

performance here is promising.

B.4 Structures used in this manuscript

Plots similar to the rest in this section were produced for each of the test problems to check

for stable parameters. It was found that using the following rules produced sufficiently

stable group structures for the infinite medium problem (Section 4.1), the 10-pin problem

(Section 4.2), and the second configuration of the BWR problem (Section 4.3):

• limit the difference of the smallest to the largest cross section in a coarse group to 1.3

cm−1

• cap the number of fine groups per coarse group to 60.
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Figure B.5: 44-group comparison of contiguous basis to noncontiguous basis sets formed with
the same snapshots. POD XXX uses a continuous group structure formed with method 2.
NCT XXX uses a noncontiguous group structure formed with method 2. XXX refers to the
base snapshot model, which is described in Section 4.2.

For the remaining problems, the following parameters were used:

• limit the difference of the smallest to the largest cross section in a coarse group to 1.0

cm−1

• cap the number of fine groups per coarse group to 60.

This choice of parameters required the Krasnoselskii of less than unity for most problems.

However, the structures utilized few coarse groups, which balanced the computational expense

of a reduced λ. The required relaxation coefficients are shown in Table B.1 for each test

problem and group structure. Each of these parameters was found by beginning at unity

and iterating lower until a stable value was found. It is clear that problems with finer-group

structures are inherently less stable, thus require lower λ values.

B.5 Legendre Order

Since anisotropic scattering in the form of Legendre moments is supported in Unotran,

stable parameters were sought for linear anisotropy. The results of the parameter search for
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Figure B.6: 238-group comparison of contiguous basis to noncontiguous basis sets formed
with the same snapshots. POD XXX uses a continuous group structure formed with method
2. NCT XXX uses a noncontiguous group structure formed with method 2. XXX refers to
the base snapshot model, which is described in Section 4.2.

Table B.1: Required Krasnoselskii iteration coefficients λ for stability

44-group 238-group 1968-group
Infinite Medium (Section 4.1) 0.8 0.7 0.4

10-pin (Section 4.2) 0.8 0.5 0.3
BWR-1 (Section 4.3) 0.7 0.6 0.5
BWR-2 (Section 4.3) 0.8 0.4 0.3

2-D (Section 4.4) 0.1 – –

contiguous group structures are presented in Fig. B.7. Since the stability of the method was

severely reduced, only isotropic scattering was considered in the remainder of the manuscript.
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(a) Method 1: compare minimum

(b) Method 2: compare maximum
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(c) Method 3: compare average

(d) Method 4: compare difference

Figure B.7: Stability of the four methods for selecting the coarse-group structure for
anisotropic scattering. Numbers are the degrees of freedom used in the problem. The
ordinate is the expansion order, thus the left column utilizes only the flat function, while
the right column is a full expansion. The abscissa is the difference of maximum to minimum
cross section in a group. The purple squares are already full order and were not run. Yellow
squares represent problems that were stable.
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Appendix C

Snapshot Selection

This chapter explores what information improves a basis for use in the remainder of this

work. In particular, we explore what snapshots provide useful information for use in creating

a POD basis, which is the topic of Section 3.1. Several ideas are explored in this appendix,

and these are showcased using the 44- and 238-group structures as discussed in Appendix A.

Further, these group structures will be used for the 10-pin problem, which is presented in

Section 4.2.

For this section, we will use a POD basis constructed from snapshots of the scalar flux

extracted from the 10-pin problem as the reference basis. This means that the 10-pin problem

is solved, which generates 280 vectors of the group-dependent scalar flux. These snapshots

form the POD full basis as described in Section 4.2. For comparison’s sake, several different

snapshot models from that same section are presented on these plots.

In Section C.1 we explore the difference between computing the POD basis from snapshots

directly then truncating for each coarse group against truncating the snapshots first. Then,

Section C.2 explores the effect of adding snapshots of the net neutron current to the scalar

flux snapshots. Section C.3 tests how snapshots of the total cross section change the POD

basis. Finally, Section C.4 presents the effect of combining the scalar flux, the net neutron

current, and the total cross section snapshots.
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C.1 Order of POD truncation

As discussed in Section 3.1, a POD basis is formed from a set of snapshots. The SVD is used

to extract the most common shapes or modes within the snapshots, and a basis is formed that

mimics those modes. This has the result of creating an orthogonal basis that can accurately

reproduce a vector with a low-order basis expansion if that vector is similar to the snapshots.

When a basis is used for the DGM method, an orthogonal basis must be used for each

of the coarse groups. Thus, for DGM we have two choices for forming the POD basis. The

first choice is to truncate each snapshot to only the parts corresponding to the fine groups g

within coarse group G, which truncates each snapshot to a length of o. A basis PG ∈ Ro×o is

then formed from those snapshots. This process is the subject of Chapter 3, and is used for

the remainder of this work.
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Figure C.1: 44-group comparison of when to truncate the basis. POD XXX truncates the
snapshots then forms the basis for the coarse group. POD2 XXX forms the basis then
truncates the basis to the order of the coarse group. XXX refers to the base snapshot model,
which is described in Section 4.2.

The second is to form a basis set P ∈ Rg×g from the non-truncated snapshots, where g

is the number of fine groups. The basis is then truncated to the vectors corresponding to

g ∈ G and reorthogonalized, where G is the coarse group. This process then produces an

orthogonal basis PG ∈ Ro×o for each coarse group G, where o is the number of fine groups

within coarse group G.
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Figure C.2: 44-group comparison of when to truncate the basis. POD XXX truncates the
snapshots then forms the basis for the coarse group. POD2 XXX forms the basis then
truncates the basis to the order of the coarse group. XXX refers to the base snapshot model,
which is described in Section 4.2.

We demonstrate the impact of this choice in Fig. C.1 and Fig. C.2. In the figures, the first

method (truncate snapshots then make basis) is labeled as POD XXX, where XXX refers to

the snapshot model. The second method is labeled as POD2 XXX.

As one can see, this choice has a negligible effect on the performance of the basis. This is

expected as the underlying basis vectors are nearly identical between the two methods, which

can be observed in Fig. C.3. This suggests that there is not a strong coupling between the

coarse groups, which could be problem dependent. It is possible that for a highly scattering

problem, a difference could arise, but more work is needed to assess this possibility.

C.2 Snapshots of the current

In this section, we explore the impact of including snapshots of the net neutron current into

the POD calculation. All POD basis sets in this section include snapshots of the scalar

flux. However, it is possible to include additional snapshots prior to forming the POD basis.

Here, we explore if the inclusion of the net neutron current allows a POD basis to better

approximate the solution of the DGM method, particularly at the low orders. As shown in
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Figure C.3: 44-group comparison of the resulting POD basis from the two methods when
using the ‘POD full’ snapshot model. Black vertical bars are the dividing points between the
coarse groups.

Fig. C.4, the differences in the resulting vectors are negligible at low orders, thus we expect

the impact to be small.

Indeed, we see a small impact on the resulting 44-group fission density and eigenvalue

errors in Fig. C.5. It seems that the inclusion of the net current snapshots does improve

the basis, but only for the high orders, which is of lesser importance in this work. For the

low orders, there is almost no difference between including or disregarding the net current

snapshots. The impact on the 238-group results is presented in Fig. C.6, which show the

same trends as the 44-group results.

These tests were performed on a test problem with isotropic scattering. It is possible that

for anisotropic scattering, including snapshots of the net neutron current could improve the

stability of the problem, which was discussed in Section B.5. However, the J snapshots were

not required for the success of a low-order, isotropic scattering DGM solution.

C.3 Snapshots of the total cross section

Since the DGM method uses a basis expansion for both fluxes and cross sections, another idea

is to determine the effect of inserting snapshots of the total cross section before computing
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Figure C.4: 44-group comparison of the resulting POD basis from including or disregarding
snapshots of the net neutron current. Black vertical bars are the dividing points between the
coarse groups.

the basis. In theory, this would allow the cross section moments to be better represented

at low orders, which could provide better performance and lower errors at the low orders.

Figure C.7 presents a comparison of the first three orders of a basis computed with and

without the total cross section snapshots.

We can see the performance of the new basis sets in Fig. C.8 for the 44-group problem

and in Fig. C.9 for the 238-group problem. The discontinuities in some of the lines are

where the solution was unstable and is thus unavailable. These results suggest that adding

snapshots of the total cross section does not improve the solution at low orders, and degrades

the solution in some cases. At higher orders, some improvement to the errors can be observed

in particular for the poorly performing basis sets of XXX uo2 and XXX mox. However, the

increased performance is accompanied by a cost to stability. Thus, snapshots of the total

cross section are not ideal and are not used in the remainder of this work.

C.4 Snapshots of both current and total cross section

For completeness, this section explores the effect of including both snapshots of the net

neutron current as well as the total cross section. Since the performance of either choice
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Figure C.5: 44-group comparison of impact of including snapshots of the neutron current J .
POD XXX uses snapshots of only the scalar flux φ. POD XXX + J includes snapshots of φ
and J . XXX refers to the base snapshot model, which is described in Section 4.2.

was not favorable in the previous sections, it is unlikely that the combination is useful.

Nevertheless, Fig. C.10 compares the standard basis formed from scalar flux snapshots against

the POD basis computed from including snapshots of the scalar flux, net neutron current,

and the total cross section.

In Fig. C.11 and Fig. C.12, the 44- and 238-group results are presented, respectively. As

expected, the performance is comparable to the inclusions of either the net current snapshots

or the total cross section snapshots in isolation. At the higher orders, better performance

(lower errors) can be achieved at the cost of stability, which is manifesting as discontinuities

in the curves. At the lower orders, which is of interest to this work, almost no difference can

be observed.
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Figure C.6: 238-group comparison of impact of including snapshots of the neutron current J .
POD XXX uses snapshots of only the scalar flux φ. POD XXX + J includes snapshots of φ
and J . XXX refers to the base snapshot model, which is described in Section 4.2.
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Figure C.7: 44-group comparison of the resulting POD basis from including or disregarding
snapshots of the total cross section. Black vertical bars are the dividing points between the
coarse groups.
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Figure C.8: 44-group comparison of impact of including snapshots of the total cross section
Σt. POD XXX uses snapshots of only the scalar flux φ. POD XXX + Σt includes snapshots
of φ and Σt. XXX refers to the base snapshot model, which is described in Section 4.2.
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Figure C.9: 238-group comparison of impact of including snapshots of the total cross section
Σt. POD XXX uses snapshots of only the scalar flux φ. POD XXX + Σt includes snapshots
of φ and Σt. XXX refers to the base snapshot model, which is described in Section 4.2.
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Figure C.10: 44-group comparison of the resulting POD basis from including or disregarding
snapshots of the total cross section. Black vertical bars are the dividing points between the
coarse groups.
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Figure C.11: 44-group comparison of impact of including snapshots of the total cross section
Σt and the net neutron current J . POD XXX uses snapshots of only the scalar flux φ.
POD XXX + Σt + J includes snapshots of φ, Σt, and J . XXX refers to the base snapshot
model, which is described in Section 4.2.
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Figure C.12: 238-group comparison of impact of including snapshots of the total cross section
Σt and the net neutron current J . POD XXX uses snapshots of only the scalar flux φ.
POD XXX + Σt + J includes snapshots of φ, Σt, and J . XXX refers to the base snapshot
model, which is described in Section 4.2.
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