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Abstract

This dissertation considers different methods to improve the performance of the Pre-
diction Analysis of Microarrays (PAM). PAM is a popular algorithm for high-dimensional
classification. However, it has a drawback of retaining too many features even after multiple
runs of the algorithm to perform further feature selection. The average number of selected
features is 2611 from the application of PAM to 10 multi-class microarray human cancer
datasets. Such a large number of features make it difficult to perform follow up study.
This drawback is the result of the soft thresholding method used in the PAM algorithm
and the thresholding parameter estimate of PAM. In this dissertation, we extend the PAM
algorithm with two other thresholding methods (hard and order thresholding) and a deep
search algorithm to achieve better thresholding parameter estimate. In addition to the new
proposed algorithms, we derived an approximation for the probability of misclassification
for the hard thresholded algorithm under the binary case.

Beyond the aforementioned work, this dissertation considers the heteroscedastic case in
which the variances for each feature are different for different classes. In the PAM algorithm
the variance of the values for each predictor was assumed to be constant across different
classes. We found that this homogeneity assumption is invalid for many features in most
data sets, which motivates us to develop the new heteroscedastic version algorithms. The
different thresholding methods were considered in these algorithms.

All new algorithms proposed in this dissertation are extensively tested and compared
based on real data or Monte Carlo simulation studies. The new proposed algorithms, in
general, not only achieved better cancer status prediction accuracy, but also resulted in

more parsimonious models with significantly smaller number of genes.
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Chapter 1

Introduction

Enormous amount of high dimensional data have been created by modern sciences and
technologies. Some well known fields that generate such data are genomics, satellite imaging,
document classification, web browsing, and online consumer transactions. Consider the
cancer genomics using microarray data as an example. There are tens of thousands of
genes that are available and coded by specific genetic sequences. During cancer progression,
genes in some cells are overly expressed leading to excessive growth and promotion of tumor
cell division. The expression value of a gene, measured as scanned intensity in microarray
experiments, reflects the activity of the gene. In genomics study, the expression values of
tens of thousands of genes can be measured simultaneously. Abundant gene expression data
from cancer microarrays are now publicly available. A common characteristic of these data
is that the number of samples (i.e. sample size) is usually less than one hundred but the
number of genes is much larger. Identifying biologically important genes that are highly
related to cancer progression is an important step toward better understanding of the disease
mechanism and development of effective therapeutic drug. Statistically, this problem can
be approached with variable selection or feature selection. Closely related to the genes
identification is the cancer status prediction. Classification models or methods serve as one
of the tools for such purpose.

A key challenge for variable selection and classification for high dimensional data is the

large number of predictors compared to the relatively small sample size. Typically, model-



based variable selection and classification require to estimate a large number of unknown
parameters. This is difficult when the sample size is small. The problem is aggravated by
the presence of large amount of noise contributed by ultra high dimensional noisy variables
(i.e. genes) that are irrelevant to the disease status. Including a large number of irrelevant
variables in a model prevents accurate parameter estimation and leads to reduced classifi-
cation accuracy. In the literature, there are not many methods that use the entire set of
variables to build classifiers. Among those, several have relatively better performance in
terms of accuracy. They are Support Vector Machine classifiers (SVM) by Chang and Lin
(2011), Naive Bayes classifier (NB), and k-Nearest Neighbor (k-NN). Since these methods
use all the variables to build classifiers, they do not offer any guidance on identification of
important genes. As a result, it is impossible to design further experiments for follow-up
study of some genes. Recent efforts have been focused mostly on variable screening to filter
out irrelevant variables or using penalization methods to shrink small parameter estimates
toward zero. Thresholding is one of the techniques used for this purpose. It uses cutoff
thresholds on some test statistics (such as a t-test to compare the mean values of a variable
in two different classes) to determine which variables have important contribution to classi-
fication accuracy. A review of several thresholding methods and classification methods will
be given in this dissertation.

One popular thresholding based method is the Nearest Shrunken Centroids classifier by
Tibshirani et al. (2002). It is known as the Prediction Analysis of Microarrays (PAM) and
has been widely cited by the scientific community. PAM was originated from the Naive
Bayes classifier assuming that the conditional distribution of predictor values given a class
label is normally distributed with predictor specific variance. The variance of the values
for each predictor were assumed to be constant across different classes in PAM. If the
conditional distribution of predictor values given the class label is correctly specified, the
Naive Bayes classifier gives the optimal classification due to Bayes Theorem. Different from
Naive Bayes classifier that uses all the variables, PAM only uses the variables that have

survived a soft thresholding. Specifically, define a class centroid to be the column vector of



features consisting of mean values over all samples in the class. Similarly, define the overall
centroid to be the column vector of features composed of mean values over all samples
across all classes. PAM compares the class centroids to the overall centroid using a t-test
in each dimension. The test statistics were compared to a thresholding parameter. Those
statistics with absolute values greater than the thresholding parameter are shrunken by the
amount of the thresholding parameter. On the other hand, those statistics whose absolute
values are below the thresholding parameter are set to zero. As a result, the variables with
small test statistic values are removed from further classification. Basically, this is the soft
thresholding. The soft thresholding parameter of PAM is obtained from cross-validation.
In general, PAM is a simple to use algorithm that gives good accuracy for both binary and
multi-class classification problems. However, there is an undesired characteristic of PAM.
Due to the random partition in cross-validation for thresholding parameter estimate, PAM
is unstable in variable selection. There could be several thousands of selected variables in
one run of PAM but only a few in another run. In general, it tends to select too many
variables.

The aforementioned disadvantage of PAM is due to two reasons: one is the choice of the
thresholding method and the other is the thresholding parameter estimate used in the PAM
algorithm. Different thresholding methods could lead to different performance. In Fan and
Fan (2008), they gave a classifier called Featured Annealed Independence Rules classifier
(FAIR). FAIR is actually a modified version of the nearest shrunken centroid classifier in
binary classification problem by using hard thresholding to replace soft thresholding. Hard
thresholding sets all test statistic values that are less than the thresholding parameter to zero
and uses the rest for the classification process. In addition, FAIR selects the thresholding
parameter by minimizing their derived upper bound of the classification error. The authors
reported that FAIR is able to drastically reduce the number of selected variables tested
on three data sets. However, FAIR is only applicable to two classes. More general cases
with multi-class data using different thresholding methods remain to be investigated. In

our exploration, we also find that the thresholding parameter makes critical difference for



the performance of the algorithm.

In this dissertation the author considers two other thresholding methods, hard and or-
der thresholdings, to improve the performance of the Nearest Shrunken Centroids classifier.
Order thresholding uses only a certain number of variables whose test statistic values are
among the highest in absolute values. Different thresholding methods lead to different re-
sulting classifiers. In addition to the different thresholding methods, an algorithm for better
thresholding parameter estimate will be introduced in this dissertation. This algorithm will
be referred as the deep search algorithm. To assess the performance of these new classi-
fiers compared to the original PAM classifier, a study of 10 multi-class human cancer gene
expression data sets was conducted. Each dataset contains samples from different human
cancer types, including bladder, breast, central nervous system, colorectal, leukemia, lung,
lymphoma, melanoma, mesothelioma, ovary, pancreas, prostate, renal, and uterus. For
classification studies, these samples are divided into two parts, training samples part, and
testing samples part. The training samples are used to train the classifiers. Then the re-
sulted models are used to predict the class label (cancer type) of each sample from the
testing samples. Further detailed information about these data sets will be given later in
this dissertation. The nonparametric approach using the Sum of Ranking Difference (SRD)
by Héberger (2010) was used to compare the overall performance of the different classifiers
based on misclassification error for independent test samples obtained for all ten data sets.
Our data analysis shows that the hard and order thresholding methods resulted in much
smaller average number of genes and in general better classification accuracy as well.

Another important thing that affects the performance of the classifier is the proper
choice of the thresholding parameter estimate. PAM algorithm uses cross-validation as a
data-driven rule to select the thresholding parameter estimate. The estimated parameter
minimizes the 10-fold cross-validation error over the training samples. In this dissertation
we examine three different thresholding parameter estimates that were suggested in liter-
ature and compare them with the thresholding parameters obtained from cross-validation.

The first two estimates are the universal thresholding parameter suggested by Donoho and



Johnstone (1994) and its modified version by Fan (1996), for both soft and hard threshold-
ing. While the third estimate is for order thresholding recommended by Kim and Akritas
(2010). A theoretical aspect of a classifier is its probability of misclassification. The the-
oretical result for the probability of misclassification for a classifier could also be used in
estimating the optimal thresholding parameter. The optimal thresholding parameter is the
parameter which minimizes the probability of misclassification. This dissertation provides
an approximation for the probability of misclassification for the homoscedastic version of
the hard thresholded algorithm under the binary case.

The other undesired characteristic of PAM is that it assumes homogeneity over different
classes and hence uses the pooled within class standard deviation in its calculations. In this
dissertation we show that the heterogeneity among class variances exist for many predictors
in most cases. Therefore, the assumption of constant variance across different classes is not
reasonable for most cases. For this reason, in this work we propose a variable selection and
classification algorithms for the heteroscedastic case. Accordingly in developing the new
heteroscedastic algorithms we considered the three thresholding methods. In this disserta-
tion simulation studies in multiple scenarios are used to compare our new heteroscedastic
case algorithms to their counter part homoscedastic algorithms including the original PAM.
Our simulation result shows that the proposed heteroscedastic algorithms are superior to
the homoscedastic algorithm in the presence of heterogeneity. The proposed heteroscedastic
algorithms resulted in smaller test error and are better in identifying important variables
than their counter part homoscedastic algorithms.

The organization of the rest of this dissertation is as follows. In Chapter 2, a literature
review of the thresholding methods and the high-dimensional classification methods will be
presented in addition to a detailed description of the Prediction Analysis of Microarrays
(PAM) algorithm. In Chapter 3, a presentation of the idea of improving the PAM algo-
rithm by considering two different thresholding methods, hard and order thresholding, are
given. Moreover, this chapter presents the deep search algorithm. Then data analysis of 10

real data sets are discussed to compare the three methods and to asses the performance of



all proposed algorithms. In Chapter 4, we compare the thresholding parameter estimates
obtained from cross-validation to different theoretically driven thresholding parameter es-
timates that were suggested in literature. Moreover, we present an approximation for the
probability of misclassication for the hard thresholding algorithm in the two classes problem.
Given the fact that the assumption of homogeneity is not reasonable in many data sets, in
Chapter 5 we introduce feature selection and classication algorithms for the heteroscedastic
case. Simulation and real data studies are used to validate the new algorithms in the case of
heteroscedasticity. In Chapter 6 we give a summary for the research done in this dissertation
and highlight its contributions to the field of high dimensional data classification. Finally,

we list a few future research of interest.



Chapter 2

Literature Review

2.1 Thresholding methods

Thresholding has been introduced under several statistical topics; such as model selection,
data mining, estimation, hypothesis testing, and image processing. Even though those topics
are completely different from each other, the thresholding concept is the same. The idea is to
use a subset of the data instead of the whole data hoping this will reduce the dimensionality
and the noise-to-signal ratio. The main challenge, in selecting the best subset that can
capture the desired features we are interested in, lies in minimizing the noise accumulation
and at the same time keeping the important signals.

The start of the thresholding goes back to Neyman (1937) who proposed the truncation
idea by using only the first m-dimensional subproblem for his smooth test for goodness
of fit. Then Bickel (1983) introduced the soft thresholding in his work on multivariate
normal decision theory. The more classical thresholding, hard thresholding, was defined in
Donoho and Johnstone (1994) and compared with the soft threshoding when used for wavelet
shrinkage in estimation process for nonparametric functions. The most recent order statistics
based thresholding method, the order thresholding, was proposed in Kim and Akritas (2010)
and Kim and Akritas (2012). They compared it to the other two thresholding methods in
the context of testing against the high-dimensional alternative and goodness of fit testing.

These three thresholding methods can be defined in general as follows.



Soft Thresholding:

As(x) = sgn(x)(|z] — Ag)4, (2.1.1)

where Ag is the soft thresholding parameter and + means positive part (k. = kI{k > 0}).

Hard Thresholding:
Ap(z) = xI{|z| > Ay}, (2.1.2)

where Ay is the hard thresholding parameter.

Order Thresholding:

Aolz) = { x if rank(|z]) >n— Ao (2.1.3)

0 otherwise ,
where Ao is the order thresholding parameter and n is the sample size before the thresh-

olding.

The benefit of using thresholding techniques and the comparison between thresholding
methods were the core topics of many literature pertaining to different applications. Ac-
cording to some articles in the literature (e.g. Bickel (1983), Donoho and Johnstone (1994),
Fan (1996), Johnstone and Silverman (2004), Tibshirani et al. (2002), and Hall et al. (2008))
the thresholding methods perform better than their non-thresholded counterparts, provided
that the thresholding parameter is chosen appropriately. One of the most interesting com-
ments that had been said about the thresholding in literature is that when thresholding
is used with the appropriate statistics it can be a good tool to find needles in haystack.
Donoho and Johnstone (1994) applied soft and hard thresholding to wavelet coefficients in
the context of nonparametric function estimation with Gaussian white noise model. By
finding the asymptotic risk for both hard and soft thresholding estimators, they showed

that the hard thresholding estimator exhibits the same asymptotic performance as the soft



thresholding estimator. Tibshirani (1996) proposed the Least Absolute Shrinkage and Se-
lection Operator (LASSO) method for linear models estimation. The LASSO is a shrinkage
and selection method that retains the good features of both subset selection and ridge re-
gression. Interestingly, under the orthonormal design matrix case X7 = X!, Tibshirani
found that the LASSO estimate has the same form as the soft thresholding (2.1.1). Fan
(1996) proposed the adaptive Neyman test and the wavelet thresholding tests based on soft
and hard thresholding as more powerful alternatives for the traditional distributional-based
or linear rank-based test statistics. He suggested using the thresholding procedures over the
adaptive Neyman test when there is no prior information about the signal concentration.
The result of his simulation study shows that the hard thresholding outperforms both soft
thresholding and adaptive Neyman test when testing multivariate normal mean in high di-
mension (i.e. Hy: 60 =0 vs 0 # 0, where X ~ N (0, I,)). Later in Fan and Fan (2008) it is
shown that using most linear discriminant analysis for high-dimensional classification can
perform as poorly as the random guessing due to noise accumulation resulted from using all
the features in the data. Hence, they proposed the Features Annealed Independence Rule
(FAIR) that uses the hard thresholding to select a subset of important features in the high-
dimensional data. Kim and Akritas (2010) found that the order thresholding techniques
improved the power of Pearson’s chi-square test significantly more than the hard and soft
thresholding in testing against the high-dimensional alternative under the Gaussian distri-
bution. In addition, using the asymptotic theory they showed that the choice of the order
thresholding parameter can be very flexible.

The appropriate choice of the thresholding parameter is critical for the good perfor-
mance of the thresholding method. Donoho and Johnstone (1994) studied the minimax
optimal thresholding parameter for the soft thresholding nonlinearity and they offer com-
puter programs for the calculations. Since the implementation of the optimal thresholds
for any other case would require a huge computational effort they suggest to use a univer-
sal thresholding parameter (2log n)l/ 2 for both soft and hard thresholding. This universal

parameter is asymptotically optimal and dose not involve computation burden. Fan (1996)



1/2

suggested taking the thresholding parameter to be (2log(na,))/?, with a,, = c(logn)~? for

some positive constants ¢ and d. This choice of the thresholding parameter is meant to

1/2 is the maximum of n independent Gaussian

remove most of the noise (because (2logn)
white noises) and avoid filtering out all the important coefficients in the test statistics. On
the other hand, cross-validation is used in Tibshirani et al. (2002) as a data-driven rule to
select the soft thresholding parameter for their nearest shrunken centroids classifier. The
optimal order thresholding parameter, defined as the number of false null hypothesis, was
recommended to be estimated by (logn)?/? by Kim and Akritas (2010) in their simulations.

There are other thresholding methods. For example, the Stein’s unbiased risk estimate
in Donoho and Johnstone (1995), the false discovery rate in Benjamini and Hochberg (1995),
the block thresholding methods of Cai and Silverman (2001) and Cai (2002), and the em-
pirical Bayes thresholding in Johnstone and Silverman (2004). In this dissertation, we only
consider the three methods in our previous discussion, i.e. soft, hard, and order thresh-
oldings. Classification in high-dimensional data is one of the most popular areas where

thresholding is implemented. The next section will be a review of classification methods in

literature.

2.2 Classification in high-dimensional setting

In case of categorical response, classification is the process of obtaining a function from
the training samples to predict the response category (class label) for any new observation
(sample). Logistic regression, Fisher discriminant analysis, and Bayes classifier are some
examples of classification methods in low-dimension setting, where the number of predictors
(features) p is less than the sample size n.

Under high-dimensional settings (p > n), the aforementioned traditional classifiers will
breakdown due to insufficient sample size to estimate the large number of unknown param-
eters. This problem is termed as the “curse of dimensionality” in literature, cf. Donoho
(2000) and Fan et al. (2006). The other problem with high-dimensional data is the existence

of large amount of noise that contribute negatively toward both parameter estimation and
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classification errors.

To overcome these problems many ideas and new methods have been introduced in
literature. Mainly, there are four directions of developing classification methods. In the first
direction researchers concentrate on the classification accuracy to construct new and better
classifiers using the same entire set of variables (features). The Naive Bayes classifier (NB),
also known as the independence rule, is one example of this direction. Other examples of
this direction are some versions of the Support Vector Machine classifiers (SVM) by Chang
and Lin (2011), k-Nearest Neighbor (k-NN), and the projection methods such as using the
Principal Component Analysis for dimension reduction (Bair et al. 2006). The use of the
entire set of features in these methods will result in high noise accumulation and therefore
less classification accuracy.

In the second direction, available classifiers such as SVM or Linear Discriminant Analysis
(LDA) are used but the focus is on finding the best features. Example classifiers in this
direction are GEMS-SVM by Statnikov et al. (2005), SCAD-SVM by Zhang et al. (2006), and
the Features Annealed Independence Rule (FAIR) by Fan and Fan (2008). Such methods
usually start with ranking the variable according to some univariate measurements, then
selecting a subset of the highest ranked variables to use in the classification process. Even
though those ranking methods reduce the dimensionality of the problem, they measure the
importance of each variable individually and do not consider the correlation or interaction
among variables.

The third direction is assembly of different classifiers or same classifiers on different
subspaces. Methods of this direction are called the ensemble methods. An ensemble method
could be a combination of tree classifiers where each trained on random subspace. Then the
majority of votes will be used as decision rule resulting in method called Random Forest
(Breiman 2001). Bagging (Breiman 1996) and Boosting (Freund and Schapire 1997) are
other examples of ensemble classifiers. Difficulties of these classifiers include; the unclarity
on how to decide the number of subclassifiers that should be included in the ensemble, and

the large memory size required to run all those subclassifiers.
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Finally, the last direction has dual goals of both feature selection and giving a better
classifier. Examples of this direction are the wrapper methods (Kohavi and John 1997), the
Prediction Analysis of Microarrays (PAM) (Tibshirani et al. 2002), and the Binary Matrix
Shuffling Filter (BMSF) (Zhang et al. 2012), among others. Classifiers of this direction often
link the feature selection with the classification accuracy. They overcome some drawbacks
of classifiers of previously mentioned directions. This makes these classifiers widely adapted
for high-dimensional classification.

Another way of grouping classifiers is according to the type of classification problem
they handle. There are two types of high-dimensional classification problems, either binary
classification or multi-class classification. This depends on the number of categories of the
response variable. For binary classification, the response variable has two levels such as
in the problem of identifying cancer from no cancer samples. Some examples of classifiers
originally designed for binary classification are SVM, FAIR, BMSF, and Top Scoring Pairs
family (T'SP-family by Tan et al. (2005)). On the other hand, the multi-class classification
deals with response variables that can take more than two levels such as the problem of dis-
tinguishing among different types of cancers or the problem of identifying subtypes of cancer.
NB, PAM, and k-NN are multi-class classifiers. Moreover, many binary classifiers were ex-
tended to handle multi-class problems. See for example some versions of the Multicategory
Support Vector Machine (MSVM) proposed in Weston and Watkins (1999), Crammer and
Singer (2001), and Lee et al. (2004). Researchers also used different techniques for divid-
ing the multi-class problem into multiple binary classification problem and then use binary
classifiers. The three most popular techniques are one-vs-one (Hastie and Tibshirani (1998),
Knerr et al. (1990)), one-vs-others (Hsu and Lin (2002), Rifkin and Klautau (2004), Vapnik
(1998)), and hierarchical classification (Dumais and Chen 2000).

The PAM can handle multi-class classification problems directly and performs feature
selection using soft thresholding with the goal of reaching better classification accuracy. It is
widely adapted by researchers in many fields and is simple to implement. The next section

will be a detailed review of the PAM classifier.
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2.3 Nearest shrunken centroids

Nearest Shrunken Centroids is known by the Prediction Analysis of Microarray-s (PAM).
Given a set of n training samples from K different classes and each is a vector with p genes,
the single entry z;; represents the gene expression for gene i of sample j and y; represents
the class label for sample 7. Without loss of generality we can assume the classes are labeled
1 through K, such that y; € {1,2,..., K}. Let ny represent the number of samples from
class k and C} be the set of indices for those samples.

The centroid for class k is the column vector with the mean gene expression values,
(k)

T

L= ZjeCk z;j/ng. The overall centroid is the column vector of mean gene expression

values over all classes, T; = 2?21 z;;/n. The goal of the PAM is to shrink each class
centroid to the overall centroid. The algorithm starts by standardizing the centroids by the
within-class gene expression standard deviation. Genes with stable expression values for
samples within the same class should gain more weight according to this standardization.

This process will result in a t statistic for comparing class k to the overall centroid
™ — 7,
di, = ——"—, 2.3.1
F my(s; + So) ( )

where

_(k
2 = T ee, (05 =77
’ n—K ’
and my = y/1/ny — 1/n. The s, set to be the median of the s; values, is a constant to guard

(2.3.2)

against large d;; values caused by the possibility of small gene expression values. Then, the

centroid of the k™ class can be written as a function of the t statistic in (2.3.1)

After performing a soft thresholding on the d;; values using
dy = sgn(dix)(|di| — As)y, (2.3.4)

where Ag is the thresholding parameter and + means positive part (i.e. by = bI{b > 0}),
the new shrunken centroid is defined as

)
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In Tibshirani et al. (2002), a 10-fold cross-validation were used to choose the thresholding
parameter or the amount of shrinkage that minimizes the classification error. The resulting

shrunken centroids in (2.3.5) will then be used for classifying any new sample, say z* =

(21,25, ...,7,), by first computing the discriminant score for each class using
p * =Mk)y2
(a7 —7)
Op(z") = ———— — 2log 7, 2.3.6
o) = DS~ 2osm (2336)

where 7y, is the class prior probability satisfying Zle 7, = 1. This prior probability is used
to account for the frequency of class k in the population and it can be estimated from the
training-set by 7, = ng/n. Then, z* will be classified as a sample coming from that class
with the smallest discriminant score (i.e. argmin dx(z*)).

PAM is powerful because of two 1"easonsll:C (1) Its use of thresholding to reduce noise
signals. (2) The original classifier before using the shrunken centroids is the Naive Bayes
classifier assuming that the conditional distribution of gene expression given a class is nor-
mally distributed with gene specific variance. The variance of gene expressions from the
same gene were assumed to be constant across different classes. If the conditional distribu-
tion of gene expressions given the class label is correctly specified, the Naive classifier gives
the optimal classification due to Bayes Theorem.

It is worth mentioning that the FAIR classifier by Fan and Fan (2008) is also a shrunken
centroid classifier. It uses hard thresholding (instead of soft thresholding) on t-statistics to
shrink the class centroids toward the overall centroid. Different from PAM that is applicable
to both binary and multi-class problems, FAIR is only for binary classification. In addition,
FAIR selects the thresholding parameter by minimizing their derived upper bound of the
classification error. The decision boundary between the two classes is given by

p f(;)
Sparp(z*) = Z( i 3 1{1/ ]T\ > b}, (2.3.7)

=1 o

where 7; is the t-statistic for the i*" feature and b is the thresholding parameter. They chose

b in a way such that there are m features with , /$|Ti| > b. The optimal m is defined as

1 m 2 — 2
Mopt = aArgmacx . n[zlzl ! * m(nl n2)/n]

= m 2
1<m<p [A%am mning + ning Zi:l 7:,

, (2.3.8)
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where X%M is the largest eigenvalue of the correlation matrix R™.
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Chapter 3

Improving the Original PAM
Algorithm by Using Different
Thresholding Methods and Deep
Search Algorithm

Our first motivation to improve the popular Prediction Analysis of Microarrays (PAM)
algorithm by Tibshirani et al. (2002) is that the PAM seems to select too many features.
The average number of selected genes by the PAM is 2611 based on 10 multi-class microarray
human cancer data sets considered in this study. For the case of cancer diagnostics studies,
such a large number of genes are difficult to perform follow up experiments. One of the
reasons for this drawback of the PAM algorithm is the soft thresholding method used in the
PAM algorithm.

Another motivation of this study is the phenomenon we observed when examining the
details of how PAM chose the thresholding parameter for Leukemia2 dataset (Armstrong
et al. 2002). This phenomenon is that the number of genes survived soft thresholding
corresponding to the smallest cross-validation error could be drastically different from that
corresponding to the second smallest cross-validation error. On the other hand, the small-
est and 2nd smallest cross-validation errors only differ by one misclassified sample. This

could be a potential problem of the thresholding parameter estimate in PAM. Illustration

16



of this potential problem using Leukemia2 dataset is presented in Table 3.1 in which the
number of genes and thresholding parameter estimate based on smallest and second smallest
cross-validation errors are reported. In these cases, the number of genes corresponding to
the smallest cross-validation error could be several thousand, while the number of genes
corresponding to the 2nd smallest cross-validation error may be less than 100. In all cases,

the smallest and second smallest errors differ only by misclassification of one more sample.

Table 3.1: Illustration of potential problem of thresholding parameter estimate in PAM.
This is obtained for Leukemia2 data using pamr.cv with the seed of random number gen-
eration set to set.seed=100 in R 2.15.0. The number of genes survived soft thresholding
corresponding to the smallest cv error could be drastically different from that corresponding

to the second smallest cv error.

parameter with smallest CV error | parameter with 2nd smallest CV error

threshold n.genes CV error threshold n.genes CV error
run 1 | 0.418878 10283 5 7.539809 26 6
run 2 | 1.256635 6127 4 7.539809 26 6
run 3 | 0.418878 10283 4 7.12093 30 5
run 4 | 0.837757 7959 3 6.283174 77 4
run 5 | 6.283174 77 5 6.702052 52 6
run 6 | 1.675513 4735 5 6.702052 52 6
4 5
6 7
4 5
5 6

run 7 | 1.256635 6127 7.539809 26
run 8 | 7.539809 26 7.958687 18
run 9 | 6.702052 52 7.958687 18
run 10 | 1.256635 6127 0.418878 10283

Considering these two issues of the PAM algorithm, in this chapter we propose two ways
of improving the PAM algorithm. One way is to replace the soft thresholding used in the
PAM algorithm by either hard or order thresholding. The second way is to give a better
estimate of the thresholding parameter. We will provide an algorithm that performs a deep

search for selecting the optimal thresholding parameter.
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3.1 Method

3.1.1 Nearest shrunken centroids classification with different thresh-

olding methods

In this section, we present an improved version of the PAM algorithm. The order and hard
thresholding will be used in the PAM algorithm instead of soft thresholding. To illustrate
how the algorithm of PAM can be modified by using different thresholding method, we will
consider first the case of replacing the soft thresholding by the hard thresholding. Assume
that we have a set of n training samples and p genes. This will give a n X p matrix with each
entry z;; represents the gene expression for gene ¢ of the training sample j, where i =1, ...,p
and j = 1,...,n. If those n training samples are from K different classes, let y; denote the
class label for sample j. The class labels are the different cancer types or subtypes. Without
loss of generality we will give them the codes {1,2,..., K}. Let n; denote the number of
samples from the same class £ and C} be the set of indices for those samples. The idea of
the PAM is to shrink each class centroid fgk) = Y icc, Tij/my toward the overall centroid
T; = )5, x;;/n by using soft thresholding.

The shrunken centroid for class k is written as
T, T; + my(s; + so)dyy, (3.1.1)

where my = \/1/ny, —1/n and s7 = 37, 3" o (w35 — fgk))Q/(n — K). The s is a constant

that is set to be the median of the s; values.

In the original PAM algorithm, the d, is the thresholded value of the test statistic

*) _ =

x;, —X;
dip = ———, 3.1.2
" (s + o) (312)
using soft thresholding
di = sgn(dix)(|dir| — As)+, (3.1.3)

where 4+ means positive part (i.e. by = bI{b > 0}). The soft thresholding parameter Ag is

chosen to be the thresholding value that minimizes the misclassification error in a 10-fold
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cross-validation of the training samples.

To improve the PAM algorithm, we replace the soft thresholding in (3.1.3) by the hard
thresholding

e = diel{|dir] > Ap}, (3.1.4)

where Ap is the hard thresholding parameter. The optimal Ay can be determined by using
a 10-fold cross-validation over the training-set. It is selected to be the one that provides the
amount of shrinkage that minimizes the cross-validation misclassification error.

Then the shrunken centroid for class k& can be written as

7™ =T+ mp(si + s0)dy. (3.1.5)

The new shrunken centroids for all K classes will be used to classify any new sample z =

(21, 22,...,%p). This is done by computing the discriminant score for each class using
p o _\\(k))2
N =S BT ), 3.1.6
k:( ) Z ($i+50)2 g Tk, ( )

i=1
where 7, is the prior probability for class k satisfying Zszl 7, = 1. Using the training-set,
7 can be estimated by 7 = ng/n. Then the decision is to classify the new sample z as
coming from the class ¢ if 61(z) = 1£r}€i<nK6}€‘(z), where ¢ € {1,2,..., K}.
In the binary case, this is the FAIR classifier except that the optimal thresholding value in
FAIR is obtained with a fixed formula (2.3.8) instead of estimation with cross-validation.
Fan and Fan (2008) found in their application to 3 binary cancer data sets that FAIR selects
smaller number of genes than PAM.

In the case of improving the PAM algorithm using order thresholding, we replace (3.1.3)
by

(3.1.7)

ik T

W { dg. if rank(|dyg|) >n— Ao

0 otherwise

where A is the order thresholding parameter, which can be determined by using a 10-fold

cross-validation over the training-set.
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Then the shrunken centroid for class k£ in this case can be written as

f;\\(k) = fz‘ + mk(si + So) ;\];, (318)

and it will be used to compute the value of the new sample z discriminant score using
D o _\\\(k))g

) =S T gog 3.1.9

k(z) zzl (3i+50)2 g Tk ( )

Similar to the hard thresholding case, the decision is to classify the new sample z as coming
f he cl if 6)'(2) = min 4" h 1,2,...,K}.
rom the class ¢ if §'(2) 1I§I]1€1§IIK(5,€(Z),W€I‘€CE{, oo, K}

In all three methods described above, the informative genes are those genes that sur-

vived thresholding. The number of informative genes resulting from a specific thresholding

method is the count of all the genes that have at least one non-zero thresholded d;;. For

example under the soft thresholding method, gene ¢ can be counted as an informative gene

if at least one d, is a non-zero for any k =1,2,..., K.

Estimation of the thresholding parameter The original PAM suggested to con-
sider a grid search and the optimal thresholding parameter is the parameter value with
the smallest cross-validation error. Assume we start with a set of m thresholding param-
eter values ©g = {flo1,...,00m}. These values are typically taken to be evenly spaced in
the range of the thresholding parameter. Note that the actual thresholding parameter for
the soft thresholding lies in a continuous space. Hence the finite set ©y may not contain
the optimal parameter value, which could be between two values in ©y. Without loss of
generality, we assume that 6y, ..., 0y, are arranged in an increasing order. For the origi-
nal PAM algorithm whose optimal parameter is defined as the value that has the smallest
cross-validation error, we will repeatedly shrink the search range to find the value of the

best thresholding parameter. Specifically, let Err(6y;) represent the cross-validation er-

ror of the algorithm when 0y; is the thresholding parameter, where ¢ = 1,...,m. Define
7 = argmin{Err(0y;),i = 1,...,m} to be the index of the thresholding parameter value
1<i<m

whose corresponding cross-validation error Err(6y,,) is the smallest among all parameter
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values in set ©y. That is, inequality Err(0os) > Err(6o,,) holds for all k& # 71. Then the
optimal parameter of the original PAM algorithm is in the interval (6p,,—1,60-+1). We
then consider a second set of thresholding parameter values ©1 = {61,...,0y,,} evenly
spaced in the interval (6 —1,60-+1). The parameter value in ©; that has the smallest
cross-validation error is then identified. Denote it as ¢, ,,. This leads to a even smaller
interval (01,1, 61 r,4+1) for further search. The process is repeated and a sequence of inter-
vals (0;—1.7,—1,0i—1+,+1) is obtained for ¢ = 1,2,.... The search will be terminated when the
number of variables surviving the thresholding remains unchanged for all parameters in an
interval.

In practice, it is not necessary to always use m parameters in each interval when
the range of the number of variables that survived thresholding is below m. In partic-
ular, denote g¢;;,7 = 1,...m, to be the number of variables that survived thresholding
in the PAM algorithm using parameter 6,; in the i round of search. Then the further
search only need to consider the number of different thresholding parameter values to be
min{m, maxi<;<m(g;;) — mini<;<m(g;;)}. This was used in the actual search algorithm. At
the end of the search, there is only one parameter in the final interval and that is the op-
timal thresholding parameter for the original PAM algorithm. Theoretically speaking, the
sequence of intervals (0;_1 ,—1,8;—1,,+1) will converge to the optimal parameter if the cross-
validation errors are good estimates of the true errors. Unfortunately, the random partition
in a cross-validation may split the samples in a way such that the separation of the classes
can be easily achieved even with very high dimensional noisy data. If this happens, the
parameter obtained based on the original parameter estimation principle of PAM will be

trapped to intervals far away from the optimal parameter value.

3.1.2 Deep search algorithm for thresholding parameter estimate

As mentioned in the beginning of this chapter and previous section, a problematic situa-
tion could occur with the original thresholding parameter estimate of PAM. This happens

when the thresholding parameter corresponding to the smallest cross-validation error leads
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to several thousands of genes surviving the thresholding while the number of genes corre-
sponding to the 2nd smallest cross-validation error may be less than 100. Meanwhile, the
smallest and 2nd smallest cross-validation errors only differ by one misclassified sample. One
way to alleviate this problem is to employ multiple runs of cross-validation with different
random partitions for each thresholding parameter. In the end, the optimal parameter is
selected to be the value that minimizes the maximum (or average) cross-validation errors
from multiple runs. This idea critically depends on the speed of the algorithm to perform
one cross-validation run. We will explore this option in later studies.

An alternative idea to approach the problem is to take into consideration of whether
the obtained smallest cross-validation is largely by chance due to a random partition that
makes the class samples supper well-separated. When the samples are well separated, even a
simplest method could classify the samples well. If this happens by chance due to a special
partition, then the misclassification error for this thresholding parameter value would be
very different from those for the nearby thresholding parameter values being considered.
Specifically, suppose the algorithm starts with a set of m thresholding parameter values
©o = {bo1,---,00m} and the smallest cross-validation error is achieved by 6y, € Og. If
the true misclassification error curve is minimized at 6y, a value far away from 6., then
their will be other parameter values in ©( that have misclassification errors close to that
for y,,. In such case, 6y, is by chance to get the smallest cross-validation error due to a
special partition. Suppose 6, is the parameter value in ©y that is closest to the optimal
parameter 6y. Then the misclassification error for 6y, is close to that of 6y,,. Unfortunately,
the magnitude of the optimal thresholding parameter is unknown to us and it is difficult
to decide the sufficient distance between 6y, and 6y, to tell that the cross-validation error
at Oy, is minimized by chance among all values in ©y. On the other hand, the number of
genes that survived thresholding with parameter 6y, will be very different from the number
of genes that survived thresholding with parameter 6y,. So we will judge whether 60y, is a
by chance minimizer by comparing the number of genes. Below is the algorithm to perform

this task.
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Deep search algorithm
Input: Training-set

Output: Optimal thresholding value

Assume we start with a set of m thresholding parameter values ©g = {0, . .., 0m - These
values are typically taken to be evenly spaced in the range of the thresholding parameter.
Without loss of generality, we assume that 6g, ..., 60y, are arranged in an increasing order.

Let Err(6y;) represent the cross-validation error of the algorithm in terms of the number

of misclassifications when 6y; is the thresholding parameter, where i = 1,...,m. Define
T = argmin{Err(0y;),i = 1,...,m} to be the index of the thresholding parameter value
1<i<m

whose corresponding cross-validation error Err(6y,) is the smallest among all parameter
values in set ©¢. That is, inequality Err(6ox) > Err(6y,) holds for all k # 7. Then suppose
0o, is the parameter value in Oy that has the 2nd smallest cross-validation error. That
is, Err(fox) > Err(6o,) > Err(6y,) holds for all k # 7, v. Let g;;,j = 1,...m, denote
the number of variables that survived thresholding using parameter 6;; in the i"* round of

search. The algorithm proceeds as follows,

1. Start by searching within the m thresholding values (m=30 default) to find the threshold-
ing values corresponding to the smallest and 2nd smallest cross-validation (CV) error (i.e.

o~ and 6p,).
e In case of more than one thresholding values with the same CV error, chose the one
with the smallest number of selected genes.
e Set the temporary further search location as Oiepmyp = 0o

2. The thresholding value corresponding to the 2nd smallest CV error (6, ) can be assigned

t0 Otemp in our algorithm if both conditions in 2a and 2b are satisfied.

2a. The difference between the smallest and the 2nd smallest CV error does not differ by

more than one misclassified sample (i.e. Err(6y,) — Err(6y,) < 1).
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2b. The number of genes survived thresholding corresponding to the second smallest CV

error (go,) is either

— less than half of that for the thresholding value with the smallest CV error (i.e.
2900 < Gor);

or

— 2,000 less than that for the thresholding value with the smallest CV error (i.e.

Gor — o > 2000)

After locating this initial thresholding value (i), the next process will be to deeply search
the neighborhood of 0y, for another possible thresholding value with smaller CV error.

Record the index ¢ in Oy such that O;ep,, = Ooe.

3. To identify the neighboring interval that will be investigated, consider both sides of
the selected thresholding value (6e,,,). That is, both intervals (6y¢—1, Oos) and (Goe, 6o e+1)-

e In case the selected thresholding value in step 2 is a boundary value (i.e. ¢ =1 or

¢ =m).

— If ¢ = 1, just consider the right side of the selected thresholding value (i.e. interval
(B, Ooes1))-

— If £ = m, just consider the left side of the selected thresholding value (i.e. interval

(0o,e-1, Boe))-
e The following two conditions specify which interval to perform the deep search:

— Only perform the deep search on the interval (6ps, 09441) if the difference in

number of selected genes is more than one gene (i.e. gor — goe+1 > 1).

— Only perform the deep search on the interval (6pp—1, 6o) if the difference in

number of selected genes is less than m (i.e. gos—1 — gor < m).
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— If both gor — goe+1 > 1 and gor—1 — gor < m conditions are satisfied, perform the

deep search in (fpe—1, 0o 0+1)-

After deciding on which interval to refine the search (6ys—1, Gos+1), (Goe—1, Ooe), or (6oe,
o,041):
4. Now consider a second set of thresholding parameter values ©1 = {6011, ..., 601} evenly

spaced in the selected interval from the previous step.

e The number of thresholding values k is the minimum between m and the difference
between the number of genes that correspond to the lower and upper bounds of the
interval. For example, if the selected interval is (6ps, €pe41), then the number of

thresholding values to be considered is k = min(m, gos — go,¢+1)-

5. Run cross-validation to obtain the CV errors for the set of selected thresholding values

from the previous step.

6. If £ > 0, repeat steps 1 to 5 with the parameter values in ©,. Otherwise, report the

optimal thresholding value as the most recently obtained 0;¢.

3.2 Data analysis

Data sets  Ten multi-class gene expression data sets for human cancers were investigated
in this study. These ten data sets are listed in Table 3.2. We obtained those data sets from
the first author of Tan et al. (2005). The number of classes in those data sets ranges from
3 to 14 and the number of genes ranges from 2308 to 16063. Each dataset contains two
parts, training samples part (training-set), and testing samples part (test-set). The training
samples are used to train the classifiers by calculating the class shrunken centroids. Then

those shrunken centroids are used to predict the class label of each sample in the test-set.
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Table 3.2: Summary of data sets used in this dissertation.

Dataset Platform No of No of No of samples Reference

abbreviation classes genes Training Testing

SRBCT cDNA 4 2308 63 20 Khan et al. (2001)
Breast Afty 5 9216 54 30 Perou et al. (2000)
Cancers Affy 11 12533 100 74 Su et al. (2001)

DLBCL cDNA 6 4026 58 30 Alizadeh et al. (2000)
GCM Affy 14 16063 144 46 Ramaswamy et al. (2001)
Leukemial Affy 3 7129 38 34 Golub et al. (1999)
Leukemia2 | Affy 3 12582 57 15 Armstrong et al. (2002)
Leukemia3 | Affy 7 12558 215 112 Yeoh et al. (2002)

Lungl Afty 3 7129 64 32 Beer et al. (2002)

Lung?2 Affy 5 12600 136 67 Bhattacharjee et al. (2001)

Methods to be compared  The PAM algorithm in Tibshirani et al. (2002) uses the
soft thresholding (3.1.3) to shrink the class centroids to the over all centroid. In this study,
we compare the original PAM with the other two thresholding methods, hard thresholding
(3.1.4) and order thresholding (3.1.7). For easier discussion, from now on we will refer to the
hard thresholded PAM algorithm by HTh, the order thresholded PAM algorithm by OTh,
and the soft thresholded PAM algorithm (the original PAM) by STh.

The R software, version 2.15.0, was used for programming of those three PAM algorithms.
In our code for the STh, we mainly used functions from the pamr package that was developed
by the authors of Tibshirani et al. (2002). The pamr.cv function is used to perform cross-
validation for selecting the soft thresholding parameter. This function uses 30 thresholding
values by default. These values evenly split the whole range of the test statistic values
(3.1.2). The default number of thresholding values 30 is small compared to the range of the
test statistic values. So one application of pamr.cv with 30 values may not find the optimal
thresholding value. In our code we refine the neighborhood of the thresholding value with
the smallest cross-validation error following the search procedure described at the end of

Section 3.1.1. Specifically, we first identify a shorter interval and evenly re-split this interval
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into 30 values. Then we calculate their cross-validation error for each value. This process
will continue until we reach the thresholding value with the smallest cross-validation error.
After determining the shrinkage parameter using cross-validation, the pamr.train function is
used to build the classifier with the informative genes that survived the thresholding. Then
the model is used to classify the class label of each test sample by applying the method of
nearest centroid classification using the pamr.predict function.

For the HTh and OTh algorithms, we wrote our own functions to calculate the class
centroids, to perform cross-validation, and to predict the class label for the test samples.
The refining process is also implemented in our code for these two algorithms. In all three
algorithms the number of folds for the cross-validation is set to be 10 unless some class
sample size is less than 10. In the later case, the fold is set to be the smallest class size.

STh, HTh, and OTh use the smallest cross-validation error for the thresholding pa-
rameter estimate. The deep search algorithm in Section 3.1.2 results in possibly different
parameter estimate. We refer to these algorithms using soft, hard, and order thresholding
along with deep search algorithm for parameter estimate as STh2, HTh2, and OTh2, re-

spectively.

Comparison metric For fair comparison, we train each classifier with the training
samples and predict the class label for the test samples. The data used in this dissertation
were already divided into training and test samples by earlier authors Tan et al (2005).
We will adopt the same partition in our study. In binary classification problems, multiple
metrics (such as proportion of correctly classified samples, Mathew’s Correlation coefficient,
sensitivity, specificity, area under the receiver operating characteristic (ROC) curve) may
be used for comparison. In the case of at least 3 classes, proportion of correctly classified
samples or (misclassified samples) is typically used in the literature as the comparison metric.
When discussion is within the same dataset, the number of misclassified test samples by
different methods can also be used. We will use the test error in our comparison. It is defined

as the percent of misclassification error, which is equal to the number of misclassified test
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samples divided by the total number of test samples. We will also compare the number of
informative genes used in each method. It is widely accepted that the better method is one

that used less genes to achieve the same accuracy as other methods using more genes.

3.2.1 Performance of STh, OTh, and HTh

In this section, we discuss the performance of the three PAM algorithms using the 10 multi-
class human cancers data sets. In all that follows, our reported misclassification error refers
to the percentage of misclassified test samples. We repeated this process 100 times for each
dataset. The random partition of the training data in cross-validation could lead to different

estimated thresholding parameter and hence possibly a different test error.

3.2.1.1 Detailed comparison

We will start by discussing the results of each dataset individually. For each dataset, we will
compare the performance of the three PAM algorithms; the STh (the original PAM) that
uses soft thresholding, the HTh that uses hard thresholding, and the OTh that uses order
thresholding. For better visualization of our comparison, in Figures 3.1 to 3.10 we plotted
the test errors of the STh against the test errors of both OTh and HTh. We computed
the number of times out of 100 runs that the OTh has less test error than the STh and
this proportion is given in the plots as P(Err, < Erry). Similarly, P(Err, < Errg) and
P(Err, < Erry) are given in the plots with their meaning accordingly defined. Below those
plots we reported the mean, median, and standard error of the different algorithms based on
the 100 runs. The average number of informative genes for each algorithm is also reported.

Starting with the small round blue cell tumors (SRBCT) dataset analysis in Figure 3.1,
we can see that only one sample out of the 20 test samples was misclassified for all three
methods in all 100 runs, except for one run for the OTh that has misclassified 5 samples. So
for this dataset the three methods are almost equivalent with a 5% test error. However, the
average number of informative genes used by the OTh is equal to one third of the number

used in the STh. The total number of genes in this dataset is 2308 genes. The average
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number of informative genes used by the OTh is 1.4% of the total number of genes. HTh

used 4 more genes on average than the OTh.

Error comparison for SRBCT cancer data
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P(Err_h<Err_s)= NaN
< P(Err_o<Err_h)=0
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Test error of order and hard thresholding
3
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1.00 1.05 1.10 1.15 1.20

Test error of soft thresholding

Order Hard Soft
Mean test error 5.2 5 5
Median test error 5 5 5
Standard error of
mean test error 0.2 0 0
Average number
of active genes 32 36 94

Figure 3.1: SRBCT analysis: Scatter plot of the STh test error vs HTh and OTh test
errors from 100 runs. The plotting symbol H (in red) is for HTh and O (in black) is for
OTh. The numbers used in the plot are the frequencies of test errors out of 100 runs. The
table gives a summary of the percentage of test errors. One sample out of the 20 test samples
was misclassified for all three methods in all 100 runs, except for one run in which OTh
misclassified 5 samples. Average number of genes used in OTh is about 1/3 of that by STh.
"NaN” in the plot means that STh and HTh have similar numbers of misclassified samples

i all 100 runs.

Figure 3.2 displays the result for the Breast cancer dataset analysis. The OTh has the
smallest test error and has the smallest average number of informative genes. The HTh has
the highest mean test error, but similar median test error to the STh. The STh selected the
highest number of genes again. It used more than 3300 (36% of the total number of genes),
while the OTh only used 7.4% of total number of genes to achieve even better performance.

The STh has the smallest standard error of the mean test error. Then the OTh has the
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second smallest standard error and the HTh has the largest standard error.

Error comparison for Breast cancer data
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Average number
of active genes 679 1494 3317

Figure 3.2: Breast cancer data analysis: Scatter plot of the STh test error vs HTh and
OTh test errors from 100 runs. Count is used in the plot. The plotting symbol H (in
red) is for HTh and O (in black) is for OTh. The numbers to the right of the plotting
symbols report how many runs out of 100 has the plotted test error value. The table gives
a summary of the percentage of misclassification in the 30 test samples. The probabilities
given in the plot represents the proportion of times out of 100 runs that the test error for one
thresholding method is smaller than another. The table reports a summary of the percent of

misclassification error for test samples and average number of informative genes based on
100 runs.

Figure 3.3 presents the result from the Cancers dataset analysis. This dataset contains
different types of cancer samples; prostate, breast, lung, ovary, colorectum, kidney, liver,
pancreas, bladder/ureter, and gastroesophagus. For this dataset the STh has the best
performance in that it has the smallest mean test error, standard error for mean test error,
and average number of informative genes. In fact, almost all test errors of STh in 100 runs

reached the smallest of the three methods except in one run, in which the HTh has one
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less misclassified sample than STh. All three methods used more than 1000 genes, but the
OTh used 81 genes less than the HTh. The OTh and the HTh have the same median test
error. The percentages of identified informative genes by the three methods are 8.9% with

the STh, 11.8% with the OTh, and 12.4% with the HTh method.

Error comparison for Cancers cancer data
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Figure 3.3: Cancers analysis: Scatter plot of the STh test error vs HTh and OTh test errors
from 100 runs. Count is used in the plot. The plotting symbol H (in red) is for HTh and
O (in black) is for OTh. The numbers to the right of the plotting symbols report how many
runs out of 100 has the plotted test error value. The table gives a summary of the percentage
of misclassification in the 7/ test samples. The probabilities given in the plot represents the
proportion of times out of 100 runs that the test error for one thresholding method is smaller
than another. The table reports a summary of the percent of misclassification error for test

samples and average number of informative genes based on 100 runs.

Moving to Figure 3.4, this analysis is for the Diffuse large B-cell lymphoma (DLBCL)
dataset. In this case the OTh and the HTh always have less test errors than that for the
STh in all 100 runs. Both OTh and HTh have zero median test error. Even though the HTh

had a better mean test error and standard error, the OTh had the smallest average number
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of selected genes. There is a very big difference in the number of selected genes between the

OTh and the STh methods, as OTh selected 360 genes while STH selected 3483 genes.

Error comparison for DLBCL cancer data
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Figure 3.4: DLBCL analysis: Scatter plot of the STh test error vs HTh and OTh test er-
rors from 100 runs. Count is used in the plot. The plotting symbol H (in red) is for HTh and
O (in black) is for OTh. The numbers to the right of the plotting symbols report how many
runs out of 100 has the plotted test error value. The table gives a summary of the percentage
of misclassification in the 30 test samples. The probabilities given in the plot represents the
proportion of times out of 100 runs that the test error for one thresholding method is smaller
than another. The table reports a summary of the percent of misclassification error for test

samples and average number of informative genes based on 100 runs.

On the other hand, we see the opposite result with the GCM dataset analysis given in
Figure 3.5. The OTh and the HTh always have larger test errors than that for the STh in
all 100 runs. This dataset is a collection of samples from 14 common human tumor types
and it has the largest number of genes. In this analysis all three algorithms had the worst
test error rate among all data sets in this study. In addition, all three methods used more

than 2000 genes. The median test error was 43.48% for the STh and 52.17% for both OTh
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and HTh. The OTh has the smallest standard error (0.1) while the HTh has the largest
(0.27) standard error. The average number of selected genes ranged from 2010 for the STh
to 3716 genes for the HTh method.

Error comparison for GCM cancer data
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Figure 3.5: GCM data analysis: Scatter plot of the STh test error vs HTh and OTh test er-
rors from 100 runs. Count is used in the plot. The plotting symbol H (in red) is for HTh and
O (in black) is for OTh. The numbers to the right of the plotting symbols report how many
runs out of 100 has the plotted test error value. The table gives a summary of the percentage
of misclassification in the 46 test samples. The probabilities given in the plot represents the
proportion of times out of 100 runs that the test error for one thresholding method is smaller
than another. The table reports a summary of the percent of misclassification error for test

samples and average number of informative genes based on 100 runs.

Figures 3.6 — 3.8 are for Leukemia cancer data sets. Even though all of them are for the
same cancer, the results based on the three data sets are very different. This might be due to
the following reasons: (1) The number of classes in these three data sets are different. There

are 3 classes in Leukemial and Leukemia2 but there are 7 classes in Leukemia3 data. (2) The
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training sample sizes are different (38, 57, 215 for Leukemial, Leukemia2, and Leukemia3
respectively.) (3) The genes and the number of genes in the three data sets are different.
Leukemial data used a much earlier version of Affymetrix GeneChip array that has 7129
genes. Leukemia2 and Leukemia3 used later versions of Affymetrix GeneChip array(s), one
with 12582 genes and the other one with 12558 genes. In terms of accuracy, STh appears to
be the best method out of the three for two of the data sets but has the worst performance
in the remaining dataset. In terms of the average number of informative genes, however,
the STh has the worst performance in two out of the three data sets. It is interesting
to see that the number of genes that survived thresholding with the STh method show a
clear association with the version of Affymetrix GeneChip array. In the earlier version (i.e.
Leukemial data) STh has 111 genes survived while in the later version(s) more than 5300
genes survived thresholding.

For the Leukemial dataset, Figure 3.6 summarizes the result of this analysis. Here the
STh has 3% mean test error and 111 average number of selected genes. Both values are less
than those for either OTh or HTh. In all 100 runs, STh has the smallest test error among
all 3 methods. The HTh and OTh have comparable performance in test errors but the OTh
used less number of informative genes.

Figure 3.7 for Leukemia2 dataset shows STh has the worst performance among the three
methods in that it not only has the largest average and median test errors but also has
trouble in informative genes selection. The final model of STh kept on average 5389 genes,
which is 16 times more than that used by OTh. The OTh has the smallest average number
of selected genes (327). There is also a big difference in the number of selected genes for
the HTh (1492) and STh (5389). The HTh has similar median test error of 6.67% to that
for the OTh but smaller standard error. The median test error for the STH is 20%.

The analysis for the third Leukemia cancer dataset (Figure 3.8) shows that the STh has
the least mean test error (1.11%) but with a very large average number of selected genes,
8637. This number of selected genes is the highest among all 10 data sets. OTh has an

average of 5.01% test error with an average number of genes being 1156. HTh has mean
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Error comparison for Leukemial cancer data
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of active genes 139 149 111

Figure 3.6: Leukemial cancer data analysis: Scatter plot of the STh test error vs HTh
and OTh test errors from 100 runs. Count is used in the plot. The plotting symbol H (in
red) is for HTh and O (in black) is for OTh. The numbers to the right of the plotting
symbols report how many runs out of 100 has the plotted test error value. The table gives
a summary of the percentage of misclassification in the 34 test samples. The probabilities
given in the plot represents the proportion of times out of 100 runs that the test error for one
thresholding method is smaller than another. The table reports a summary of the percent of
misclassification error for test samples and average number of informative genes based on
100 runs.
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Error comparison for Leukemia2 cancer data
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Figure 3.7: Leukemia2 cancer data analysis: Scatter plot of the STh test error vs HTh
and OTh test errors from 100 runs. Count is used in the plot. The plotting symbol H (in
red) is for HTh and O (in black) is for OTh. The numbers to the right of the plotting
symbols report how many runs out of 100 has the plotted test error value. The table gives
a summary of the percentage of misclassification in the 15 test samples. The probabilities
given in the plot represents the proportion of times out of 100 runs that the test error for one
thresholding method is smaller than another. The table reports a summary of the percent of
misclassification error for test samples and average number of informative genes based on
100 runs.
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Error comparison for Leukemia3 cancer data
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Test error of soft thresholding

Order Hard Soft
Mean test error 5.01 4.26 111
Median test error 5.36 5.36 0.89
Standard error of
mean test error 0.1 0.2 0.07
Average number
of active genes 1156 2073 8637

Figure 3.8: Leukemia3 cancer data analysis: Scatter plot of the STh test error vs HTh
and OTh test errors from 100 runs. Count is used in the plot. The plotting symbol H (in
red) is for HTh and O (in black) is for OTh. The numbers to the right of the plotting
symbols report how many runs out of 100 has the plotted test error value. The table gives
a summary of the percentage of misclassification in the 112 test samples. The probabilities
given in the plot represents the proportion of times out of 100 runs that the test error for one
thresholding method is smaller than another. The table reports a summary of the percent of
misclassification error for test samples and average number of informative genes based on
100 runs.

37



test error of 4.46% with average number of informative genes being 2073. On average the
HTh has 0.75% less mean test error than the OTh with the price of using on average 917

more genes.

Error comparison for Lungl cancer data
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Test error of order and hard thresholding
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6.0 6.2 6.4 6.6 6.8 7.0 7.2

Test error of soft thresholding

Order Hard Soft
Mean test error 18.75 18.62 21.84
Median test error 18.75 18.75 21.88
Standard error of
mean test error 0.17 0.15 0.03
Average number
of active genes 87 134 50

Figure 3.9: Lungl cancer data analysis: Scatter plot of the STh test error vs HTh and
OTh test errors from 100 runs. Count is used in the plot. The plotting symbol H (in
red) is for HTh and O (in black) is for OTh. The numbers to the right of the plotting
symbols report how many runs out of 100 has the plotted test error value. The table gives
a summary of the percentage of misclassification in the 32 test samples. The probabilities
given in the plot represents the proportion of times out of 100 runs that the test error for one
thresholding method is smaller than another. The table reports a summary of the percent of
misclassification error for test samples and average number of informative genes based on

100 runs.

The last two data sets are for Lung cancer. The analysis of Lungl dataset analysis in
Figure 3.9 shows that OTh and HTh have equivalent performance in terms of the test error
but OTh used less genes. The STh has the smallest average number of selected genes in

this case. Figure 3.10 presents the analysis for the Lung2 dataset with best performance
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achieved by OTh followed by the STh. In this case the OTh classified all test samples
correctly in all 100 runs. The STh had the smallest average number of informative genes,

1911. The OTh used 2106 genes and the HTh used the highest number of genes (3910).

Error comparison for Lung2 cancer data
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Order Hard Soft
Mean test error 0 2.7 1.33
Median test error 0 4.48 0
Standard error of
mean test error 0 0.21 0.15
Average number
of active genes 2106 3610 1911

Figure 3.10: Lung?2 cancer data analysis: Scatter plot of the STh test error vs HTh and
OTh test errors from 100 runs. Count is used in the plot. The plotting symbol H (in
red) is for HTh and O (in black) is for OTh. The numbers to the right of the plotting
symbols report how many runs out of 100 has the plotted test error value. The table gives
a summary of the percentage of misclassification in the 67 test samples. The probabilities
given in the plot represents the proportion of times out of 100 runs that the test error for one
thresholding method is smaller than another. The table reports a summary of the percent of
misclassification error for test samples and average number of informative genes based on
100 runs.
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3.2.1.2 Overall comparison based on all ten data sets

It can be seen from the previous section that none of the three algorithms (STh, OTh,
and HTh) is absolutely the best across all ten data sets. In this section, we consider to
combine the results from different data sets and provide an overall comparison. Specifically,
we have the average percentage of misclassification errors for each method based on 100
runs for each cancer dataset. We also have the average number of informative genes from
the 100 runs per method and dataset combination. Since the percent of misclassification
errors are mostly small while the numbers of informative genes from different methods have
drastically different ranges, a nonparametric approach without the assumption of constant
variance and normality is more meaningful than a parametric method.

We will use a recent nonparametric approach proposed in Héberger (2010) and Héberger
and Kollar-Hunek (2011) to do the comparison. This methods is called the Sum of Ranking
Difference (SRD). It assumes that there is a golden standard. In our setting, the golden
standard can be set to be the best performance out of all methods being compared. For
example, if comparing methods based on their accuracy values then the maximum accuracy
from all methods on each dataset is the best and hence the maximum is the golden stan-
dard. After computing the maximum accuracy among all methods for each experiment (or
dataset), ranks of the maximum values is called the ideal ranking. The accuracy values of
each method on different data sets are also ranked. Then the absolute values of the dif-
ferences between the ideal ranking and the accuracy ranking for each method is computed.
The SRD is the sum of the absolute differences. According to this approach, the method
with the smaller SRD value is better than a method with bigger SRD value.

In our study, we first applied this method to the mean test errors to compare the three
algorithms. We assume the golden standard to be the minimums of the mean test error
across three algorithms for each dataset. Table 3.3 shows the SRD calculations based on
the mean test errors from 100 runs on each method for all three methods. The minimums
of the mean test error across three algorithms for each dataset, as our golden standard,

are shown in the second column. The ranks of these values (i.e., ideal ranking) are on the
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Table 3.3: The SRD of mean test errors for the three thresholding methods.

Ideal STh OTh HTh

Min rnk | error rnkl diffl | error rnk2 diff2 | error rnk3 diff3
Lung2 0.00 1 1.33 2 1 0 1 0 2.7 2 1
DLBCL | 0.97 2 8.7 6 4 1.63 2 0 0.97 1 1
Leukemia3 1.11 3 1.11 1 2 5.01 3 0 4.26 3 0
Leukemial 3.00 4 3 3 1 11.5 6 2 11.79 7 3
SRBCT | 5.00 5 5 4 1 5.2 4 1 5 4 1
Breast 5.70 6 6.23 5 1 5.7 5 1 7.93 5 1
Leukemia2 | 11.53 7 13.73 8 1 13.2 7 0 11.53 6 1
Cancers | 12.05 8 12.05 7 1 16.42 8 0 16.35 8 0
Lungl | 18.62 9 21.84 9 0 18.75 9 0 18.62 9 0
GCM | 44.00 10 44 10 0 51.7 10 0 52.46 10 0
12 4 8

third column. The ranks of the mean test errors of each algorithm on different data sets are
given in rnkl, rnk2, and rnk3 columns. The ranks for the OTH algorithm are similar to the
ideal ranking except for three data sets. The absolute difference between each algorithm
ranks and the ideal rank are those values in columns diffl, diff2, and diff3. The sum of
those differences for each algorithm is the sum rank difference and it is given in the last
row of the table. This result is presented in Figure 3.11. The OTh has the smallest sum
rank difference (4); the HTh is in the middle with sum rank difference 8; and the STh has
the largest sum rank difference value (12). This means that the OTh is the closest to our
reference, the minimum mean test error. Therefore, according to the SRD method the OTh
is the best algorithm in terms of the test error. The HTh is second and the STh is the least
efficient algorithm. As our aim is to find the most efficient method generally over all data
sets, and presumably for further (similar) data sets as well, the above sequence should be
recommended for users of OTh, HTh and STh algorithms. When additional methods are
included in comparison, the values of the golden standard will change (i.e. become of the
new minimum errors across all methods). The recommendation needs to be reconsidered
accordingly.

Beside the prediction accuracy of classifiers, identifying informative genes is very impor-
tant for the researcher. This importance comes from the need to reduce the large number

of irrelevant genes such that biologically important genes can be identified for targeted
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The SRD of mean test errors
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Figure 3.11: The SRD comparison of mean test errors for the three thresholding methods.
The z-axis and the left-side y-axis are the scaled SRD values. The right-side y-axis is the

relative frequencies in percentages for the SRD theoretical distribution function.

therapy. Moreover, smaller number of informative genes is convenient for followup studies.
Hence, the number of informative genes identified by each thresholding method is another
comparison criterion often used in literature. In Table 3.4 we listed the average number of
informative genes selected over 100 runs of each algorithms for each dataset. OTh has the
smallest overall average number of informative genes across all ten data sets (see the bottom
row of Table 3.4). In addition, the OTh was the most consistent, in terms of the number of
informative genes, compared to the other two algorithms. Its standard error of the average
number of informative genes ranged from 0.9 to 47.5. While for the HTh it ranged from 1
to 258 and for the STh it ranged from 6 to 414.9. Even though the STh method identified a
reasonable number of informative genes in some cases, it resulted in very large numbers in
four cases Breast, DLBCL, Leukemia2, and Leukemia3. The HTh never had the minimum
average number of informative genes. It had either the middle value or the largest value. In
terms of overall average across all data sets as shown in the bottom row of Table 3.4, HTh
is in between OTh and STh. We applied also the SRD approach to the average number
of informative genes from 100 runs for each dataset to compare those three thresholding
methods. As shown in Figure 3.12 the OTh and the HTh have tied SRD value that is much
smaller than the SRD value for the STh.
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Table 3.4: Average number of informative genes based on 100 runs for each thresholding

method. The value in parenthesis is the standard error.

STh HTh OTh
Lungl 50(6.0) 134(42.7) 87(16.5)
SRBCT 94(8.0) 36(1.0) 32(.9)
Leukemial 111(50.0) 149(18.4) 139(12.0)
Cancers 1111(37.7)  1548(66.4)  1469(39.6)
Lung2 1911(169.3) 3610(88.1)  2106(38.0)
GCM 2010(89.9) 3716(212.9) 2931(33.9)
Breast 3317(152.3) 1494(132.5) 679(43.9)
DLBCL 3483(63.9) 716(55.4) 360(8.7)
Leukemia2 5389(414.9) 1492(258.1)  327(47.5)
Leukemiad 8637(208.9) 2073(254.5) 1156(38.6)
overall average 2611 1497 929
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Figure 3.12: The SRD comparison for the number of informative genes for the three thresh-
olding methods. The z-axis and the left-side y-axis are the scaled SRD values. The right-side

y-axis is the relative frequencies in percentages for the SRD theoretical distribution function.
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3.2.2 Performance of STh2, OTh2, and HTh2

STh2, OTh2, and HTh2 are the improved versions of the STh, HTh, and OTh, respectively.
The deep search algorithm (3.1.2) is used for selecting the optimal thresholding parameter. Tt
performs deep search in the neighborhood of the thresholding value for optimal thresholding
parameter. The thresholding value corresponding to the second smallest cross-validation
error is considered if its misclassification error differ from the smallest error by only one
more sample and if it provides significant decrease in the number of selected genes.

In this section, we discuss the performance of those three algorithms: STh2, OTh2, and
HTh2. Our analysis for this section is also for the 10 multi-class human cancers data sets
listed in Table 3.2. In all that follows, our reported misclassification error refers to the
percentage of misclassified test samples. The random partition of the training data in cross-
validation could lead to different estimated thresholding parameters and hence possibly
different test errors. So we repeated this process 100 times for each dataset.

The Sum of Ranking Difference (SRD) by Héberger (2010) will be used again in this
section to compare the different algorithms. We will start by comparing the performance
of the three algorithms that use the deep search: the STh2, HTh2, and OTh2. Figure 3.13
presents the results for the SRD of mean test errors for these three algorithms. The golden
standard for the SRD method is assumed to be the minimums of the mean test error across
three algorithms for each dataset. The OTh2 and HTh2 have the same sum rank difference
and it is smaller than that for the STH2. This means that they are closer to the minimum
mean test error than the STH2. Therefore, according to the SRD method the OTh2 and
HTh2 are better algorithms in terms of the test error than the STh2. Comparing these
results to those of STh, HTh, and OTh in Figure 3.11; it is clear that using the deep search
algorithm reduced the SRD value for the STh2. Moreover, the differences between the SRD
for the three algorithms that use the deep search are smaller.

The SRD results for the number of informative genes are presented in Figure 3.14. The
golden standard for the SRD method assumed to be the minimums for the number of

informative genes across three algorithms for each dataset. The HTh2 has the smallest sum
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The SRD of mean test error
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Figure 3.13: The SRD comparison of mean test errors for the three algorithms STh2,
OTh2, and HTh2. The x-azis and the left-side y-axis are the scaled SRD values. The right-
side y-axis is the relative frequencies in percentages for the SRD theoretical distribution

function.
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Figure 3.14: The SRD comparison for the number of informative genes for the three al-
gorithms STh2, OTh2, and HTh2. The x-axis and the left-side y-axis are the scaled SRD
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rank difference, which means that it is the closest to the minimum number of informative
genes. Therefore, according to the SRD method the HTh2 is the best algorithm in terms
of the number of informative genes. The OTh2 is in the middle and STh2 still has much
larger SRD value. Comparing these results to those of STh, HTh, and OTh in Figure 3.12;
we also noticed that using the deep search algorithm reduced the SRD value for the STh2
from that of STh.

Next we compare the performance of all six algorithms STh, OTh, HTh, STh2, OTh2,
and HTh2. Figure 3.15 presents the results for the SRD of mean test errors for these six
algorithms. Among all six algorithms, the OTh has the smallest sum rank difference, which
means that it is the best algorithm in terms of the test error. The OTh2, HTh2 and HTh
have tied second SRD value. The STh2 has the third largest SRD value and the largest
SRD value was for the STh. Therefore, according to the SRD method the OTh is the best
algorithm and the STh is the worst algorithm in terms of the test error if all six algorithms

were compared.
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Figure 3.15: The SRD comparison of mean test errors for all six algorithms STh, OTh,
HTh, STh2, OTh2, and HTh2. The z-axis and the left-side y-axis are the scaled SRD
values. The right-side y-axis is the relative frequencies in percentages for the SRD theoretical

distribution function.

The results of the SRD method for the number of informative genes for all six algorithms

are presented in Figure 3.16. The interesting observation in this figure is that each one of
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Figure 3.16: The SRD comparison for the number of informative genes for all six algo-
rithms STh, OTh, HTh, STh2, OTh2, and HTh2. The z-axis and the left-side y-axis are
the scaled SRD wvalues. The right-side y-axis is the relative frequencies in percentages for

the SRD theoretical distribution function.

the deep search algorithms has the same SRD value as its counterpart. The HTh2 and its
counterpart HTh have the smallest sum rank difference. The OTh2 with OTh are in the
middle and STh2 with STh have much larger SRD value.

For a closer view of the results of the algorithms that use the deep search and to compare
them with their counterpart algorithms (STH, OTh, and HTh), Table 3.5 presents the mean
test errors and the average number of informative genes based on 100 runs for each one of
the six algorithms. The average number of selected genes by the STh2 were reduced from
those by STh for all data sets. The mean test errors for the STh2 stayed almost the same
as those for the STh except for the Leukemia2 dataset, for which STh2 has 7% less mean
test error than its counterpart STh. For the Leukemia2 dataset, the average number of
selected genes for the STh2 is 2236, while it was 5389 for those of STh. The average number
of selected genes for the HTh2 was reduced from those of HTh for all data sets except for
both Cancers and Leukemial data sets. The difference in mean test errors between HTh2
and its counterpart HTh is not more than 2% except for the Leukemia2 dataset (about
4%). In addition, the difference in mean test errors between OTh2 and its counterpart

OTh is not more than 2% except for the Leukemia2 dataset (about 5%). Even though the
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difference in average number of selected genes for the OTh2 and OTh are not as large as

those between STh2 and STH or HTh2 and HTh there is still obvious reduction except for

GCM, Leukemial, and Lungl data sets.

In conclusion, the deep search algorithm results in significant decrease in the number of

selected genes for each method, while it kept the mean test errors barely changed. That is,

the algorithms with deep search and their counterpart without deep search have similar test

errors in that the difference in the test errors is no more than 2%.

Table 3.5: The percent of mean misclassification error for test samples and average number

of informative genes based on 100 runs for each thresholding method with and without the

deep search algorithm.

STh STh2 HTh HTh2 OTh OTh2
error  n.genes €rror  n.genes | €rror n.genes error  n.genes | error  n.genes error  n.genes

SRBCT 5 94 5 18 5 36 5 26 5.2 32 5 30
Breast 6.23 3317 6.33 2266 7.93 1494 5.57 549 5.7 679 6.87 371
Cancers 12.05 1111 12.31 956 16.35 1548 15.65 1631 16.42 1469 16.89 1360
DLBCL 8.7 3483 8.97 3399 0.97 716 0.83 491 1.63 360 1.83 250
GCM 44 2010 43.87 1692 52.46 3716 54.11 3709 51.7 2931 51.61 3009
Leukemial | 3 111 3.09 41 11.79 149 11.32 190 11.5 139 9.68 169
Leukemia2 | 13.73 5389 6.73 2236 11.53 1492 7.6 208 13.2 327 8.13 109
Leukemia3 | 1.11 8637 3.01 4606 4.26 2073 4.85 1943 5.01 1156 5.07 1020
Lungl 21.84 50 21.62 13 18.62 134 18.47 48 18.75 87 18.69 91
Lung?2 1.33 1911 0.69 717 2.7 3610 2.06 3290 0 2106 0.01 2083
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Chapter 4

The Optimal Thresholding Parameter
Estimate and The Probability of

Misclassification

4.1 The choice of the optimal thresholding parameter

estimate

The appropriate choice of the thresholding parameter estimate is critical for the good perfor-
mance of the classifiers. In Chapter 3 algorithms, cross-validation is used as a data-driven
rule to select the thresholding parameter similar to the PAM algorithm. The estimated
parameter minimizes the 10-fold cross-validation error over the training samples. In this
section we examine three different thresholding parameter estimates that were suggested
in literature. Assume that 7 is the number of values of interest before thresholding. One
thresholding parameter estimate that we will be investigating in this section is the universal
thresholding parameter (2logn)'/?, which is suggested by Donoho and Johnstone (1994)
for both soft and hard thresholding. This universal thresholding parameter should asymp-
totically remove all the noise in case of independent Gaussian white noise sequence. Fan
(1996) modified the universal thresholding to (2log(na,))*/?, with a, = c(logn)~¢ for some
positive constants ¢ and d. Upon considering the convergence rate for the test statistic, he

recommended the values of ¢ = 1 and d = 2. This choice of the thresholding parameter is

49



meant to remove most of the noise, but at the same time avoid filtering out all the impor-
tant coefficients in the test statistics. On the other hand, the optimal order thresholding
parameter was recommended to be estimated by (log7n)*? in the simulations of Kim and
Akritas (2010). The effectiveness of these three thresholding parameter estimates will be
compared to the cross-validation parameter estimate through comparing the test error and
the number of selected variables.

For our study in this section we will use the actual human cancers gene expression data
sets listed in Table 3.2, except for Leukemia3 dataset. Leukemia3 dataset was removed from
this analysis and all the following analyses in this dissertation because about 71% of its data
values are zeros. All the data sets already divided by the authors of Tan et al. (2005) to
training samples and test samples. Classifiers are trained with the training samples and then
prediction of the class label for the test samples are conducted. The random partition of the
training data in cross-validation could lead to different estimated thresholding parameter and
hence possibly a different test samples prediction error. We repeated this process 100 times
for each dataset in case of estimating the thresholding parameter using cross-validation.

Also, it is worth mentioning that previously in Chapter 3, we wrote our own codes for
the HTh and OTh algorithms to calculate the class centroids, perform cross-validation us-
ing the training data, and to predict the class labels for the test samples. For a completely
fair comparison, in the rest of the studies of this dissertation we code all the algorithms
by modifying the functions from the pamr package, which was developed by the authors
of Tibshirani et al. (2002). The 3 different thresholding methods in our study give 3 algo-
rithms. The functions that we modified from the pamr package are: pamr.train, pamr.cv,
pamr.predict, nsc, nsccv, and diag.disc. The soft.shrink function was replaced by the new
hard.shrink function to perform hard thresholding or by the new order.shrink function to
perform order thresholding. The refining process described at the end of Section 3.1.1 was
also implemented in these algorithms. Specifically, this process refine the neighborhood of
the thresholding value with the smallest cross-validation error to reach a better estimate

of the optimal thresholding parameter. In all algorithms the number of folds for the cross-
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validation with the training data is set to be 10 unless the dataset under study has some
classes with sample size less than 10. In the later case, the fold is set to be the smallest
class size. From now on, to refer to our codes from Chapter 3 we will add an asterisk (*)
to the algorithm name. There is a little difference in some of the results of the codes of
Chapter 3 and the codes from modifying the pamr package. This difference might be due
to the different versions of R used which results in different random partition for the cross-
validation. For Chapter 3 the available R version was 2.15.0 and for Chapter 4 the updated

R version we used is 3.0.2. Table 4.1 list the results from the algorithms in both chapters.

Table 4.1: Results based on our own code (Chapter 3) versus those based on modified pamr
package (Chapter /). The given results are the average for 100 runs of each algorithm with

random partition of the training data in cross-validation.

STh* STh HTh* HTh OTh* OTh

test  selec. test selec. | test  selec. test selec. | test selec. test  selec.
Dataset error genes error genes | error genes error genes | error genes error genes
SRBCT 5 94 5 110 |5 36 5 40 |5.2 32 5 48
Breast 6.23 3317 9.2 4312 | 7.93 1494 5 866 | 5.7 679 4.9 1233
Cancers 12.05 1111 11.97 1413 |16.35 1548 12.01 1431 |16.42 1469 11.84 1824
DLBCL 8.7 3483 8.2 3649 |0.97 716 7.8 721 [1.63 360 7.37 829
GCM 44 2010 44.17 2271 |52.46 3716 54.59 4145 |51.7 2931 bH4 3881
Leukemial | 3 111 3.24 299 |11.79 149 13.29 94 |[11.5 139 12.06 179
Leukemia2 | 13.73 5389 15.13 6061 | 11.53 1492 11.73 1630 |13.2 327 25.4 2506
Lungl 21.84 50 21.78 121 |18.62 134 19.53 83 |18.75 87 19.94 604
Lung2 1.33 1911 14 2303 | 2.7 3610 4.43 4275 |0 2106 4.45 4419

The results for the soft (STH) and hard (HTh) thresholding algorithms are presented in
Table 4.2. The thresholding parameters were estimated by either using cross-validation, the
universal thresholding (2log(n)) /2, or the modified universal thresholding [2log (nlog™*n)]~/2,
where 7 in these estimates represent the number of test statistics before thresholding. Specif-

ically, in our study 7 equals the number of genes multiplied by the number of classes.

In terms of the value of the estimated thresholding parameter, the modified universal
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Table 4.2: Percent of misclassification error for test samples (test error) and number
genes) for the soft thresholding algorithm (STh) and the hard
thresholding algorithm (HTh). The thresholding parameters were estimated by using cross-
validation (CV) based on 100 runs, the universal thresholding (Uni.) (2log(n))~'/2, or Fan

of selected genes (selec.

(1996) modified universal thresholding (M.Uni.) [21og (nlog™?n)]~"/2.

STh HTh
CvV Uni. M.Uni. Cv Uni. M.Uni.

test  selec. | test  selec. | test  selec. || test  selec. | test  selec. | test  selec.
Dataset €ITOr genes | error  genes | €ITOr  genes || error  genes | error  genes | error  genes
SRBCT 5 110 |5 62 5 150 5 40 5 62 0 150
Breast 9.2 4312 | 36.67 177 |6.67 423 5 866 |6.67 177 |3.33 423
Cancers 11.97 1413 |10.81 925 |12.16 1732 | 12.01 1431 |13.51 925 |12.16 1732
DLBCL 8.2 3649 |26.67 355 |23.33 435 7.8 721 |20 79 10 435
GCM 44.17 2271 | 43.48 3048 |45.65 5112 | 54.59 4145 | 56.52 3048 | 58.7 5112
Leukemial || 3.24 299 |[2.94 66 2.94 191 13.29 94 11.76 66 8.82 191
Leukemia2 || 15.13 6061 |20 410 |20 1206 | 11.73 1630 |26.67 410 |26.67 1206
Lungl 21.78 121 |21.88 99 21.88 210 19.53 83 18.75 99 21.88 210
Lung2 14 2303 |0 1279 12.99 2312 || 4.43 4275 |0 1270 | 1.49 2312
average 13.34 18.61 15.62 14.82 17.65 15.89

thresholding is smaller than the universal thresholding to avoid filtering some of the impor-
tant genes. This is clear in the results as the number of selected genes with the modified
universal thresholding parameter estimate is larger than that using the universal threshold-
ing parameter estimate. The thresholding parameter estimates with the cross-validation are
smaller than those with the universal thresholding in 8 data sets for the STh and in 7 data
sets for the HTh. They are even smaller than the modified universal estimate in four data
sets.

In terms of the test error, the smallest average test error for both STh and HTh algo-
rithms is achieved by the cross-validation estimate. The second smallest average test error is
achieved by the modified universal thresholding parameter estimate. The universal thresh-

olding has the largest average test error in both STh and HTh algorithms. The universal
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thresholding in the STh algorithm has similar test errors to those of the modified universal
thresholding in four data sets. Therefore, the general suggestion from this study is that
using the cross-validation to estimate the thresholding parameter tend to give better result
than that based on the universal or modified universal thresholding parameter estimates for

both soft and hard thresholding algorithms.

Table 4.3: Comparison of different thresholding parameter estimates for the order thresh-
olding algorithm (OTh) based on percent of misclassification error for test samples (test
error) and the number of selected genes (selec. genes). The thresholding parameters were

estimated either using cross-validation based on 100 runs or Kim and Akritas’s formula

[log n]*/2.
OTh
cross-validation Kim and Akritas

test selec. test selec.
Dataset error genes error genes
SRBCT 5 48 5 28
Breast 4.9 1233 36.67 36
Cancers 11.84 1824 60.81 41
DLBCL 7.37 829 30 33
GCM 54 3881 67.39 44
Leukemial 12.06 179 14.71 30
Leukemia2 | 25.4 2506 6.67 28
Lungl 19.94 604 21.88 30
Lung2 4.45 4419 11.94 36

The result for the order thresholding algorithm (OTh) is presented in Table 4.3. The
thresholding parameter for this algorithm was estimated by either using cross-validation or
Kim and Akritas (2010) estimate (logn)®2, where 1 represent the number of test statistics
before thresholding (i.e. the number of genes multiplied by the number of classes). It is
very clear from the result in Table 4.3 that the thresholding parameter estimates based on

Kim and Akritas (2010) are larger than the cross-validation parameter estimates for all data
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sets. Therefore, the number of genes that survived thresholding with the Kim and Akritas
(2010) parameter estimates are much smaller than that based on cross-validation estimates.
Unfortunately, the small number of genes selected by Kim and Akritas (2010) parameter
estimate did not yield better performance. Instead, using the cross-validation to estimate
the order thresholding parameter results in a better performance for the OTh in most data
sets. Leukemia2 is the only dataset that Kim and Akritas’s thresholding parameter estimate
results in smaller test error.

In conclusion, it can be seen from the results of this section that none of the four
thresholding parameter estimates are absolutely the best in every single dataset. However,
the overall comparison across all nine data sets is in favor of the thresholding parameter

estimates obtained from cross-validation in all three algorithms, STh, HTh, and OTh.

4.2 Probability of misclassification

Motivated by Hall et al. (2008) who compared the theoretical performance of classifiers by
obtaining their classification boundaries and following the foot steps of Fan and Fan (2008)
who used the probability of misclassification to estimate the thresholding parameter, this
section is devoted to deriving the probability of misclassification for the two classes case
(binary classification). That is, the probability of misclassifying a sample from one class
as coming from the other class. In the first part of this section we derive the probability
of misclassification for the exact discriminant function. In the second part we derive the
probability of misclassification for the PAM discriminant function under hard thresholding.

The discriminant function is derived from the posterior probability of the class label y

given a set of variables z* = (xf, 23, ..., xp). This posterior probability can be written as

P(y)P(z}, 75, .., 73|y)
P(x1, 73, ...,73)

P@y) [ Pl

= — - (using the naive independence assumption)
P(xy, 75, ..., x3%)

P(y|z7, x5, ..., x)) =

wy Ly

(4.2.1)
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Since the denominator is constant given the sample x*, the comparison of the posterior

probability for different classes will depend only on the numerator
p

P(ylat, 23, ..., x;) < P(y) [ [ P(«7ly)-

i=1

Hence, the predicted class label (i.e. @) is the one that achieves the highest posterior

probability.
p

j = argmaz P(y) || P(«}ly).

ye{1,2,....K} i1

As in PAM, assume that the variables given the class label have a Gaussian distribution
with common variance among classes (i.e. zily = k ~ N|ux;, 02]). Under this assumption

the posterior probability for class k (i.e. y = k) can be written as

p

Ply = ko, 23, .ox}) o Ply=k) [] Plaily = k)

Take the logarithm for both sides,

log{P(y = k|a],25,....,x;)} oc log{P(y =k)} — Zlog{aZ } i{(xfz_—al;ki)z}

x 2log{P(y =k)} — Z{ “’“ }

Since maximizing the log posterior probability is equivalent to minimizing the negative log

posterior, the discriminant function for class k£ can be written as
P 2
S(z*) = Z{%} — 2log (), (4.2.2)
1=1
where 7 denotes the class prior probability P(y = k).

Therefore, the class with the smallest discriminant score (i.e. argmin 0y (x*)) is the one that
k

has the largest posterior probability given the sample x*.
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4.2.1 Probability of misclassification using the exact discriminant

function

Considering the two classes case, without loss of generality we assume that the new sample
a* = (2}, 5, ..., 23) is from class 1 (i.e. 7 ~ Nluy;,07]) but is classified to class 2. That is,
for sample z}, class 2 has smaller discriminant score than class 1. Hence, the probability of

misclassification using the discriminant function in (4.2.2) is

Ploy(27) < i (2")]

= Po(27) = 01(27) < 0]

p
_ _ * 2
—p {(l'z MQZ) 2(1’1 Mlz) } o 210g (@) <0
0; T
| =1
[P
Qr¥ — R N — (16 .
=P {(',L.z H2i Ml;)( M21+M11)}_210g (E)<0
g; T
=1
Fp
2w — g i M2 — M1 i M2
_p {('rz M1 + /122 i) (pa MQ)}—210g<@><0
0; T
| =1
[P
2w — 2 i Mo i — M
_p {([ T M1]+[M12 pi2i]) (11 'LLQ)}—2log(E)<O
g; T
| i=1
- . 2
2(x] — p i M2 i — o
- p { (2] “1>§“1 M2)}+ E :{(ul Zug) }_210g<@><0
oj o; T
L =1 i=1
- ) 2
;= i i Mg 1 i g
_p E {(Iz Ml)(gﬂl M2>}<log(ﬂ)—— {(m 2#2)}
o; m 2 03
| =1 i=1
p P ,
;= i i M2 1 i M2
_p E {(m pi) “2>}<1og(@)—— {(m 2u2)} (42.3)
0; ; T 2 o;
L =1 i=1

(xf — 1) /o; is standard normal because z* is from class 1 by assumption. Hence the

P (i — /~L2z')2]

2

summation on the left hand side of the inequality in (4.2.3) follows N {O, Z ,
i= o;
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by using the independence assumption. Now by dividing both sides of the inequality by the

standard deviation of the left hand side, the probability of misclassification becomes

p p

Z{ (z;‘;imi) . (Mli;uzi) } log <:_i> _ % Z{ (Nli;iéwih }

- p i=1 < i=1

Therefore, the left hand side of the inequality is now standard normal and the probability of
misclassification can be written in terms of the standard normal cumulative density function

O(-) as

() -1 3]

(4.2.4)

From (4.2.4) we can clearly see that the probability of misclassification does not depend
on the variables that have identical means for class 1 and 2. In other words, variables with
equal class means contribute nothing to the classification process. This is why the T-test

statistics is used in the PAM to filter out all these variables.

4.2.2 Probability of misclassification using PAM discriminant func-

tion with hard thresholding

Considering the two classes case, assume a given set of n training samples from 2 different
classes and each is a vector with p variables, the single entry z;; represents the value for
variable ¢ of sample j and y; represents the class label for sample j. Without loss of generality
we can assume the labels for the two classes are 1 and 2. Let nj represent the number of
samples from class k£ and Cj be the set of indices for those samples.

PAM estimates the parameters (my, pgi, and o;) in the discriminant function (4.2.2)
from the training set. Specifically, 7 is estimated by the relative frequency 7, = ng/n,

is estimated by the class centroid Tgk) = Zjeck z;j/ng, and o; is estimated by the sample
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pooled standard deviation s; = \/Zk >ico, (@i — igk))Q/(n — 2). Then considering a given

set of m variables that survived hard thresholding, the discriminant function of class k£ can

be written as
m

¥ — f(k) 2
Se(zt) = Z{ﬁ} — 2log(#), (4.2.5)

1=1

where E;(k) is the shrunken centroid for class k, and sg = median{sy, sz, ..., Sp}.
In the following theorem we will give approximation to the probability of misclassification
if this discriminant function (4.2.5) is used in the classification algorithm. Denote ®(-) and

¢(+) as the CDF and pdf of the standard normal distribution.

Theorem 4.2.1. Without loss of generality, denote the selected m variables as X1, ..., X;,.
Suppose the selected m variables have mean piy;, pio;, @ = 1,...,m in class 1 and 2, respectively.
Assume i, proi, i = 1,...,m are fized values, such that py; # pg for all i € {1,...,m}.
Furthermore, assume m = o(min(ny,n2)). Then the probability of misclassification for
the two classes case using the above estimated discriminant function (4.2.5) of the hard

thresholding algorithm s

el (e () )] <0 () <o (5)

ni n2

where ™ = —, W9 = —, 09 = median{oy,...,0,},
1 n 2 0 0 { 1 p}
m
o
Cin = E T . : ,
! m (O'Z' + 0'0)4
=1
z _ 7@
with T,; = ————, i=1, ..., p independently distributed as noncentral t
S; "
ning

distribution with n — 2 degrees of freedom and noncentrality parameter 1=E2

)
MAVEZT

and

m 2
2 Z o; + 0y N1N9
=1
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Proof of Theorem 4.2.1: Assume that the new sample z* = (7, 23,

L xr

,xy) is from

class 1 (i.e. xf ~ Nluy;,0?]), but it is classified to class 2 that has distribution N|[ug;, 02]

for variable z7. In this case, for sample =}, class 2 has smaller discriminant score than class

1. Hence, the probabili

ity of misclassification in this case is

= P0y(z") — d1(z*) < 0]
[ @) )
Z N2 (g — )2 7
— P (Iz xz ) (xl xz ) o 210g 73-2 < O
: (Sl -+ 80)2 T
mn \(1) \(2) \(1)
Z{ o) (2
Sl + 80)2 T
- (2) Wy 21 (@)
—\ —\ —\ —\ A
_p 2 : — 0.5z, — 0.5z, ) (7, —7;") ~log (7AT2) <0
(Si -+ 80)2 1
- (@), O 0 _ )
_p x _U12+N11_05[ xi ])(xz —Z; ) —log(A)<O
Z (s; + S0)? 1
—\(1)  =\2)
Denote 7; = = ’( n x) ) and a; = 0.5[7, @ 4 .(1)]. Then
S; So
Ploy(z") < di(a")]
' m
p E {(@—eri‘uli—@i)ﬁ}_log (7?2) <0
(Si + So) T
| =1
r m m
P E {(ﬁ — ,Ulz‘)ﬁ'} n E {(Hli ai)ﬁ} ~log <7:T2) <0
(55 + 0) (si+ s0) LS
| =1 i=1
r m m
)z 5 { ( ,U’lz)%z } < log 7?2> B E { (:U’lz - dz)%l }
(si + so) 1 (s; + s0)
| =1 i=1
r m m
p E {(ivf —t) o } < log (E) _ E {(Mu - é@-)ﬁ}
o; (si + so) T (si + so)
| i=1 i=1



Since x* is from class 1 by assumption, (x} — py;)/0; follows standard normal distribution.

So conditional on the observed data Xj,...

the inequality follows N |0, ZW
S; So

m

=1

72

, X,,, the summation in the left hand side of

2
o
L by using the independence assumption. Now

dividing both sides of the inequality by the conditional standard deviation of the left hand

side, the probability of misclassification becomes

m m

(2} —p11) Ti0; f (H1—6;) T
D ) ee(2) - D {4

p =1 < 1=1
m m
%22022 721»201»2
Z (si+50)? Z (si+s0)?

i i=1 i=1 |

Denote the ratio in the left hand side of the inequality as Z. Then given the n training

samples, Z has standard normal distribution. Hence, the probability can be written as the

expectation of the conditional probability on the given training samples as

training samples (X1, Y1), ..., (X, Yy)

1=1

How is this
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(4.2.6)

expression related to the test statistic in PAM algorithm? Note that the test




statistics used in the PAM algorithm for variable selection is

7 7,
dp; = ! - , (4.2.7)
(Si -+ So) % — %

where 7; = Zizl 2?21 Tij /.

For the two classes case, the test statistics in (4.2.7) can be written as

(k) mzV4nz? _(k _( _(2
- T, — :n:cg)—nlxz(-)—m:cg)
Z 11 11
(Sl + SQ) " n 77/(37, + S()) mn
( (1) _=(2) ( =) _=(2)
nQ(JU 3311 )1 fO?“ k — T, —T; _ fOT' ]{3 — 1
n(s;+so) T (s —i—so)\/%
= ! _
(2) (1) —(2) _—(1)
m (@, xi)l for k= — N for k=2
\ n(si+so) ng n (si+50) ning
k+1 (1) =(2)
_ ( 1) ( Ly — % )
(si+50)y/7im
Notice that in the two classes case dy; = —dy,;. Hence, Without loss of generality we can use
_\(1) . _\(2)
the test statistic for the first class dy; = to rewrite the fraction in
87' + SO ning ning
(4.2.6) so that the probability of misclassification is
_ . -
N V(1)
T2\ _ (=7, ) 1 v/ n
log <ﬁ1> Z{ < (81+80) d TL17’LQ> dlz TLlTLQ}
E|® =1 (4.2.8)

m
2
'L'
n1n2 i+50)?
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To derive (4.2.8) from (4.2.6), first rewrite the summation in the numerator as

m m 2 1 1 2)
~ A~ —\ —\ —\ —\
Z (i — &)ii | _ Z (i — 057 + )@Y - 7,?)
— (Si -+ So) — (8@' + 80)2
1= 1=
mn 2 1 \(1 2
—\ —\ g —\

= S [ 0sER g @D o)
— (Si + 50) (Si + 50)
1=
m

Y R 70 -7 @ -

N 2 (Si + So) (Si + So)
=1
m

- Y ui -7+ -7 ) @ - 7)

B 2 (8; + s0) (i + so0)
=1
m

- 1)+ @ -7 @ -

B 2 (i + s0) (i + s0)
=1
m

= S 7)) 1 @ -E) @ )

a (81‘ + 80) 2 (Si + 80) (Si + 50)
=1
- 1)

(,Uli —Z; ) 1 \ n \ n
- E i ) d\. 4.2.9
{ (56 + 50) 2" ng |\ nang ( )

=1

For the summation in the denominator

m m
S o} S @ — 7207
(Si + 80)2 n (SZ' + 80)4
1=1 1=1
m
-y @ -2 o
n (Si + 80)2 (Si + 50)2
1=1

m
2
- g 42— 9i 4.2.10
11(7’1,1712)(81'—}-80)2 ( )
=1

Putting (4.2.9) and (4.2.10) into (4.2.6) gives us (4.2.8).
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Back to (4.2.8), we extend the second term in the numerator and write the probability

as
I3 'L_"E n 1 .
log ( ) Z{ 151+50 d\ll \/ m} 2 Z TL1’I‘L2
E @ =1 — =1
Z ”177;12 5z+30)2
1 _n_ (E\i(l)*ﬂli) n
log ( ) 2 Z "1"2 Z{ (sits0) dy; \/ m}
= K| = 4 =t —
2 n Uiz 2 n
Zd\“(”lm)(&—l-m)z Z \11 an sﬁ—so)
L i=1 i
1 n (@mﬂili) \
log ( ) 2 Z ”1”2 Z (sits0) dy;
= E|® — =l + == . (4.2.11)
2/(_n 01-2 2 01.2
D i) > ity
L i=1 i=1 .

To simplify the writing in our next steps, let we refer to the first term in (4.2.11) by A and

the second term by Ay, i.e. the misclassification probability is equal to E [® (A + Aq)].

Now, Taylor expansion can be used to approximate the cumulative distribution function

®(-) such that

E[®(A+A)] = E[®(A)+Ai1g(A) + 0,(A})]

= B[2(A)] + E[A1¢(A)] + E[Op(A])] (4.2.12)
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Note that ¢(A) is a function of d?, i = 1,...,m. Therefore,

= Op(m/n1),

ElA¢(A)] = E[E(A1p(A)[dy;, si + 50)]
= E[¢(A) - E(Ar|dy;, si+ s0)]
ZE[@“ DI
. (si + 0) .
= E|¢(A) = — 0,
2
d\2' O-i
21: 1 (Si+80)2
and
m 2 m
—(E;(l)_”“) (7 —M1z)2
A? = izlm <At _
o} o?
Zd\f@' (sits0)? Zd\f@'m
=1 i=1

where the inequality is due to Holder’s inequality.

Hence, after simplifying the last two terms in (4.2.12), the probability of misclassification is

equal to

E[®(A)] + Op(m/m1)

For the term A we first write the test statistic d}; as

3V _F® 20z

(4.2.13)

A
dli_

sZ + so P

_n_ sZ —|— 30
ni.ng
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Then A can be written in terms of T,,; and A,; as

log (;—f) -1 Zd‘ﬁ(m"nz) log (%) ZT2 AZ()
A= = = = = . (4.2.14)
2 n U? n 02
Zd\ll(nmz ) (si+s0)? Z n1n2 (s -1-50)2
i=1

Denote the denominator as C,,

m
_ E > n o?
ct
S; + So) ming (8; + So)?

—1/2

2
Let g(si, s0) = (_18_—1)4' Then consider the Taylor expansion of g(-,-) at (o;,00), where
8i T So
oo =median{o;,i = 1,2, ...,p}.
a.g(Sia 80) 69(82'7 SO)
9(si;80) = g(os,00) + (8 — 03) s, + (50 — 00) ~ Ose

$i=04,50=00 §i=04,50=00

+0,((si — 04)%) + Op((s0 — 00)*) + Op((si — 04)(s0 — 00))-

Note that
dg(s;, . )
g(; SO) — 25i(3i + 50) 4 + S?(—4)(Si + 30) 5
Si
89(‘91'7 SO) _ QO'Z' B 40'12
Jsi 8=04,50=00 (Ui + 00)4 (Ui + 00)5
and
8 (2
9(883080) = —dsi(si +50) "
ag(‘sia SO) . —40'12
90 (0 +00)>

§i{=04,50=00

65



We know that s; — 0; = O,(n™Y/?), and sy — 0¢ = O,(n~*/?). So,

9(si, s0) = (03, 00) + (si — 03) Bi + (50 — 00) Boi + Op(n™?),

20; 402 — 42
where ; = SR ' and =" .
ﬁ (Ui+00)4 (Ui+00)5 50 (Ui+00)5
Now,
¢ m ~1/2
ot o= [ E T3 - g(si50) - 07
n
[ i=1
(m
= SN Tl o
[ i=1
m ~1/2
+ E Tr%z [(si — i) Bi + (80 — 00) Boi + Op(n_l)] : Ui2
1=1
~1/2
== B (71n +'(j2n j;i 3() )
n
where C,, = Z 2. g(os,00) - 02, and Oy, = Z ;— ) Bi + (s0 — 00) Boilo?
Note that T2, i=1, ..., p are independently distributed as noncentral F distribution

with (1,n — 2) degrees of freedom and noncentrality parameter

2

2
\ = Mg — H2j NNy (Hu - M%)
o; n n g;
ning

So,

przy = =D0EN (Wz <u1ifu2i)2>

n—4 n
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Var(T%) = 2

( “+( A)(n—4) ninj 1 N
= = el Cr R O

2,2
- O(n5)+0<n3)20(1)

Therefore, by Theorem 14.4-1 of Bishop et al. (2007), we know

m

m m
E 207 = O, E E [Tfn} ol | +0, E Var|T?] o}
=1 ) =1

m
1 N9 mmniyny
= 0| M D) | =0, (M),
1=1

So,

¢t = 2 {Cn+ G to, (%)}_m. (4.2.15)

Compared to Ci,, Cy, + O, (M) is negligible as n — oo. So, we can apply Taylor’s

n2

expansion to (x + Ax)~Y2 at zy # 0,
1
(x4 Az) V2 =g71/2 _ §x_3/2Ax + O(z 752 (Ax)?).

That is,

mny n2>:| —1/2
n2

[Om + Ch + O, (

= O = L 00 v 0, (M) 03] 1o, (Chf/? (o, + 0, (M0172)] 2)

n? n?

_ 1 _ mnin _
= Oln1/2 - 50277,01”3/2 + Op ( n; = Cln3/2>

2
+0, <C;,E/2 [cg L o0y, M2 | (mn) D . (4.2.16)

" n? n
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Similar to the order of ZT 262 it can be shown that

ng ’L7

=1

Cin = E T3 - g(oi,00) - 07

m

CQn = E ng( 57,0 + E T /BDZ
=1
m

= E o B0y (n™1?) + E 1307 BoiOp(n~"72)

1=1
- 0, (M) (4.2.17)

372
Therefore, putting (4.2.17) and (4.2.17) into (4.2.16) gives

mny nzﬂ —1/2
n2

[Cm + Chu + O, (

YN SR
=0y, = 5000y, 4 0, (

mnq Na [m nq ng} —3/2
n? n

mnyns\ =52 [(mnine)? mnine mnin mnq ng)?
+Op(< 1 2) [( 13 2) I 12 12 2_|_( 14 2) })
n n vn3 n n

1
_ o2 —C’ nC—s/z o (L
tn 2 O Jmninan

mmnyng\ /21 mmnyng\ /2 1 mmnyne\—1/2 1
+Op(< n > E—i_( n ) n3/2+( n ) n2

_ 1 _ 1
= Oln1/2 _ 5027101”3/2 —+ Op (W) . (42]_8)

68



Put (4.2.18) into (4.2.15). We have
1 /nin 1
ot= B2 ontr 2 JIMR oos20, Lo (—— ). 42.19
n n In 2 n 2 + n\/m ( )

Si . o; + Op(n_l/Z) B ag;
si+sy  oi+og+0,(n72) o+ o

+ 0,(n~"?) to rewrite the

Next, use A,; =

numerator of A.

log (

)_l>]>|>}>
N———
|
DO | =
o
>
S

S
3 3
)

=1
m
7AT2 1 2 g; 1 2 n
= =) -= T2 ‘ ~32
o <ﬁ1) 2 Z " (Ui+00 O ) ning
=1
m
o 1 9 o > n mmny Ny n
=1 = —= E T ‘ @)
©8 <ﬁ1) 2 m(az—l—ao) NNy * ( ny/n nlng)
1=1
7?('2 m
=log|(—)—a,+ 0O <—>, 4.2.20
g( 1) "\vn ( )

2
_ 1 E 2 [og} n
where Ap — B Tnz <o’i—|—0'0> (n1n2)'

=1
Therefore, putting (4.2.19) and (4.2.20) into (4.2.14) gives

n1N9 ,1/2 n1n2 3/2 1 @ — m
[\/ \/ Con 0y (n\/ﬁ)} [l‘)g (7?1) it O (\/ﬁ)]
_ n1N2 Cl—nl/Q [ ( ) _ an] _% [T —3/202n log (7@) (4.2.21)
V. n m

1 /nng _ ning _ ) m
2 1n 2 01"3/202n n 1n : Cln1/2 P (ﬁ) (4.2:22)
1 /nin _ m 1 m

-3 171201) (Om?’/QOgn—\/ﬁ) + 0, (—n o %> (42.23)

10, (s () -0, (1) -
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Note that a, = O,(m). (4.2.25)

By (4.2.17), (4.2.17), and (4.2.25) we know that:

The first term in (4.2.22) is equal to O, < . (mnl ng)_3/2 : w\}iﬁ@ : m) =0, (@> :
V. n n ny/n

The second term in (4.2.22) is equal to O, (\ iy (mnl n2)_1/2 . %) =0, (@)
n n n

. . nin9 mmninyg., _ mni Ny m m
The first term in (4.2.23) is equal to O, <1 / -( )= —) =0, (—
vm

The second term in (4.2.23) is equal to O, (

1
The first term in (4.2.24) is equal to O, (7 log (@>> :
ny/'m ny

1 V
The second term in (4.2.24) is equal to O, < : m) =0, (_m> .
nym n

Therefore,

4 - [ning C,l—nl/Q [log (@) _ an] L ang Cl—n3/202n log <@>
n Uy 2 n m
Vm 1 N2
Op (7= | +Op{ —=log (=] |-
" ”(ﬁ O v 2\

Denote the first two terms of A by b, that is

_ I 1 _ 1
y_ [mn2 co? [log (2) B an} 1 iy Co2Cy Tog (2)
n T 2 n ™

Apply Taylor’s expansion to ®(z) at zg = b, ®(x) = ®(xg) + (z — 20)P(x0) + o(x — x0).

B(A) = d(b) + O, (\/—\/g) +0, (ﬁlog (Z-j)) .




1

m) +0 (n —log <Z—j)> (4.2.26)

Then,

S

To Calculate E [®(b)], note that the second term in b is of smaller order than the first term.

L jog <@)) — o,(1).

>—3/2.mn1n2> _0 (
P \ymn

The order of the second term is
mmnqny

n1n9 o
O, (U - 'log<n—1> ( .

Apply Taylor’s expansion to ®(b) again, we get
U

o0 = o{ (%) )
f i (2) )

ny/n

L0, ([ /TN Cl_ng/QCQn log (2
n 1
The last term in ®(b) is of order
. 2 . 2
NN i mnyng\ =3 (mnyng)?\ 1 _
(4.2.27)

Therefore, £ [®(b)]

= F [(I) ( el 01_711/2 {log (_7?2) - a/n:|):|
V n Uis!
Con 0 ”nan 2 1o LEAN a (4.2.28)
3/2 n in g Al n i

Cln
(4.2.29)
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To calculate (4.2.28), note that Cy, and a, are both functions of 72,7 = 1,2,...,p. Cy, is

nz’

the only term that is a function of both 72,7 =1,2,....,p and s;, 50,7 = 1,2, ..., p.
So, the term (4.2.28) can be written as
T [ning 72\ Con ning —1/2 T
E|—= -1 — ) —" —=C,, |1 —ap
< 2 w8 ('ﬁ'l) Cff i n o8 m ¢

Tots s Tnp)
The order of

1 ALy 7AT2 an . 1 No
= og (=2 ). =2 log (—2) ) = o0,(1).
2 n 5 (7?1> Of’f s 0 (\/nm ©8 (m)) o(1)

Since ¢(+) is bounded in probability, we known the term in (4.2.28) is of order

0 (\/i_m log (Zj)) . (4.2.30)

E

Finally, putting (4.2.13), (4.2.26), (4.2.27-4.2.29), and (4.2.30) all together, we can write

the probability of misclassification as

E[®(A+ Ay)] = E[®(A)] 4+ O(m/ny)

The approximation expression of the probability of misclassification in Theorem 4.2.1

clearly shows how the signal and the noise affect the misclassification error as the number
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of selected variables m increases. In particular, as m increases the expectation in the first
term of the approximation decreases, while the other two terms of the approximation will
increase. This relation reflects the trade-off between the signal and noise as the number
of selected variables m increases. Moreover, the approximation shows that the number of
selected variables m should be less than the sample size of the class 1 (ny), otherwise the
probability of misclassification will be more than one. Note that class 1 is the true class of
the sample under classification.

Note that what inside the probability in the first term of the approximation in Theorem
4.2.1 is of order

n1ng Cl—nl/Q {log (2) _ an] _ n1n2 Ol—nl/z log <2> o jane Ol—nl/zan
n T n T n
1 N9 _
= 0, (ﬁlog (n_1> m~2m
1
= 0, (— log (@> - \/E) (4.2.31)
m T

Considering the order of (4.2.31), we can quantify the probability of misclassification for
different situations as follows

Case 1: Assume m — oo.

e With m — oo, and \/Lalog (Z—j) = o(y/m), then the term (\/Lmlog <Z—f) — ﬁ) —

—oo and hence the probability of misclassification goes to zero.

e Withm — oo, m=o (log (Z—f)), and

N
bility of misclassification goes to one.

— ng/ny — oo. That is, /m = o (Lm log (;‘—f)) and ny/n; — 0o, then the proba-

— ny/ny — 0, then the probability of misclassification goes to zero.

e With m — oo, and log (n2/n1) converges to some constant log(a), then the probability

of misclassification goes to zero.
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Case 2: Assume m stays fixed.

e With fixed m and 72 =1+ o(1), then \/Lalog (2—?) — 0 and the term \/La log (Z—f) —

vm — —y/m. Therefore, the probability of misclassification goes to ®(—+/m).

e With fixed m and log (Z—f) — 00, then @ (\/%log (Z—f) — \/ﬁ) — 1. That is, if the
new sample x* comes from class 1, but the number of training samples from class 1 is
limited while the number of training samples (ng) from class 2 — oo, then this new

sample will be misclassified with probability 1.

e With fixed m and log ("2> converges to some constant log(a), then the probability of

ni

misclassification is approximately ® (\/%»n log (a) — \/ﬁ)

Corollary 4.2.2. Under the assumptions of Theorem 4.2.1, if o; = o,¥i =1, ..., p, then the
probability of misclassification for the two classes case with hard thresholding is

o (e o ()=o) o () +o (3)

m

_1_n 2
where a,, = STies E T

i=1
Note that the expectation in the probability of misclassification only depends on the

distribution of T,;,7 = 1,...,p, which is noncentral T-distribution with n — 2 degrees of

freedom and =£2L noncentrally parameter. Also, T, ..., ), are independent.

K3

nin2

Corollary 4.2.3. Assuming equal number of samples for both classes (i.e. ny = ny = ng).
Under the assumptions of Theorem 4.2.1, if 0; = o,¥i = 1,...,p, then the probability of

misclassification for the two classes case with hard thresholding is
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Chapter 5

Feature Selection and Classification

Based on Heteroscedastic Models

5.1 Introduction

Assume a given set of n training samples from K different classes. Let nj represent the
number of samples from class k£ and C}, be the set of indices for those samples. Each sample
is a vector of expression values for p genes. Let z;; represent the gene expression for gene

1 of sample j. The ith element of class k£ centroid is the average gene expression value,

El(»k) => jecy, Tij /ny, for gene i. The ith element of the overall centroid is the average gene

expression values over all training samples in all classes, T; = Z;;l zij/n.
The PAM test statistic for comparing class k£ to the overall centroid is

) — 7,
dyp — i — 0 5.1.1
k my(s; + So) ( )

where my, = \/1/ny — 1/n and s; is the pooled within-class standard deviation for gene i.
The s( is a constant to guard against large test statistics values caused by the possibility
of small gene expression values. In the PAM algorithm, sq is set to be the median of the s;

values. After thresholding the test statistics values, the resulting values are used to compute

(

the shrunken centroids, f; " These shrunken centroids will then be used for classifying any

new sample, say z* = (z], 25, ... ,a:;;), by comparing the discriminant scores for all classes.
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The discriminant function for class k is

SR NG

i=1
where 7y, is the class prior probability, which can be estimated from the training samples by
ng/n. The sample 2* will be assigned to the class with the smallest discriminant score (i.e.
argmin dg(z*)).

’;Fhe PAM test statistic (5.1.1) and discriminant function (5.1.2) use the pooled within-

class standard deviation

. _f(k) 2

n—K
This pooled standard deviation assumes homogeneity over different classes for the same
gene. However, the assumption of constant variance (over different classes) is often not
reasonable in practice. This can be seen in the heatmap of the sample standard deviations
for some genes over different classes. Figures 5.1, 5.2 and 5.3 are the heatmaps of the
sample standard deviation for the DLBCL, Leukemia2, and Lung2 data sets, respectively.
The heatmaps for the other real data sets listed in Table 3.2 can be found in Appendix A.
It is very clear from these heatmaps that many genes have completely different standard
deviations, as represented by different colors for different classes. For some data sets, the
difference in the standard deviation among different classes for some genes are more than
10,000 such as in Leukemia2 dataset (see Figure 5.2).

In this chapter we present an improved version of the PAM algorithm for the het-
eroscedastic situation. Starting in next Section 5.2 we present our heteroscedastic case test
statistic and discriminant function. Then we describe the thresholding of the heteroscedastic
test statistic using the different thresholding methods discussed in this dissertation. In Sec-
tion 5.3 we present the performance of our heteroscedastic algorithms using both simulation

and real data analysis.
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Figure 5.1: Heatmap of the sample standard deviation for 50 genes from the DLBCL cancer
dataset. These are for the top 50 genes that have the highest range of the standard deviations
for different classes. For most genes, the cell_lines class has the highest standard deviation

which is 3 times more than standard deviation in other classes for some cases.
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Figure 5.2: Heatmap of the sample standard deviation for 50 genes from the Leukemia2
cancer dataset. These are for the top 50 genes that have the highest range of the standard
deviations for different classes. For most genes, the AML class has the highest standard

deviation. The range of the standard deviations among different classes is more than 10,000

for a lot of genes.
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Figure 5.3: Heatmap of the sample standard deviation for 50 genes from the Lung2 cancer
dataset. These are for the top 50 genes that have the highest range of the standard deviations
for different classes. The range of the standard deviations among different classes is up to
3,000 for some genes. For most genes, the NORMAL class has the lowest standard deviation.
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5.2 Method

5.2.1 Heteroscedastic case test statistic and discriminant function

In this section we will present our proposed test statistic and discriminant function for the
heteroscedastic case. Under the assumption of heterogeneity the numerator of the PAM test
statistic (5.1.1) has a different form of standard error. In heterogeneity case, the variance

of the difference between the class k centroid and the overall centroid is

Var@® —7) = Var@®) + Var(@) — 2Cov@" | %)

7,

= Var@M) +—Zn Var(@™ —2001}( (k) Dk (k)>, (5.2.1)
n

where the last equality (5.2.1) assumed that the genes are independent as in the original

PAM algorithm.

K
Then, Var(@® —z) = V 2 Var@™) — 222 var@®
en, ar(z; T;) ar(T mE: ar(T . ar(z;"’)

= n_2nkVar (k —l—— E n2 Var(T
n Z
n —2ny Var(z 1 & Var(x )
o n—=2ny 2
o n n2 Z M = =

Therefore, the estimated standard error of the difference between the class k centroid and
the overall centroid (i.e. the numerator of the PAM test statistic) under the heterogeneity

assumption is
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K
1 2 1
2 2
<n—k — ﬁ) St 3 Z NnSim s (5.2.2)
where s;; is the sample standard deviation for gene ¢ under class k, which can be calculated
from the training samples as follows:

~=(k)\2
Sik = \'/ZJGCI’c ( ! ) . (523)

n—1

Accordingly, the test statistics we propose for the heteroscedastic case is

o 7

di, = - = : (5.2.4)
VE = )5+ 530 + = T (58 + 53)

where sgr is a constant, for class k, to guard against large test statistics values caused by

the possibility of small gene expression values. We set sgr to be the median of the genes’

standard deviation values for class k (i.e. sor = median(sig, Sok, -+, Spk))-

For deriving the discriminant function under the assumption of heterogeneity, consider
the Naive Bayes classifier. According to the Naive Bayes, for a new sample with a given set

of variables 2* = (7,23, ..., 7

), the predicted class label (i.e. ¢) is the one that achieves

the highest posterior probability. This posterior probability can be written as

P(y)P (3, x5, ..., |y)
P(x3, x5, e T3

P(y|zi, x5, ..., x)) =

wy Ly

P(y) _HP(CL’}‘Iy)

= — (using the naive independence assumption)
P(x3, 25, ..., x;)

(5.2.5)

Since the denominator is constant given the sample x*, then the comparison of the posterior

probability will depend only on the numerator

p

P(ylz}, a3, ... 7}) o< P(y) [ Paly).

=1
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Hence, the predicted class label is

p

j= argmaz P(y) [] P(«;ly).

ye{lvz 7777 K} =1

Therefore, the posterior for class k (i.e. y = k) for the Gaussian case as assumed by PAM is

Py = kla}, a5, .oal) o Ply=k) ][] Paily = k)

Taking the logarithm for both sides,

log{P(y = k|z},a3,...25)} o log{P(y = k)} — Zlog{azk\/_} zp:{@f;f—g%)z}

=1 ik

x 2log{P(y —221og{%} ij{ “"“ }

In application, the prior probabilities P(y = k) is estimated by the relative frequency
7, = ny/n of class y in the training set. The parameters o;; and g, remain to be estimated
from the training set using the maximum likelihood. Specifically, o;; is estimated by the
sample standard deviation s;;, (5.2.3) and g is estimated by the shrunken centroid E;(k)
that is defined in terms of the thresholded test statistic d},. The thresholding could be done

using one of the three thresholding methods (soft, hard, or order) discussed earlier in this

dissertation. That is the ith element of the shrunken centroid can be defined as

K

1 2 1

E;(k) =7 + d;sfM) (n_k _ 5) (2, + 82,.) + — E nm (82, + s8,.), (5.2.6)
m=1

where d\ich) is the thresholded test statistic with method M= soft, hard, or order.
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Therefore, the class label that maximizes the posterior (5.2.5) is the class with the
minimum discriminant score. The discriminant score for class k is
Sl - (27 — T;(k))Q - 2 2 -
k(x™) :;m+2;10g\/sik+50k—210g7rk, (5.2.7)

where sgi, is given in (5.2.4) (i.e. sor = median(sik, Sok, ., Spr)) and T\i(k) is given in (5.2.6).

5.2.2 Thresholding the test statistics in the heteroscedastic case

Previously in Chapter 3 we discussed three algorithms: STh for soft thresholding (the
original PAM), HTh for the hard thresholding, and OTh with order thresholding. Those
three algorithms use the original PAM test statistics (5.1.1) and discriminant function (5.1.2)
but with different thresholding methods. As we mentioned at the beginning of this chapter,
the original PAM test statistics and discriminant function use the pooled standard deviation
that assumes homogeneity over different classes for all genes. In this section, we briefly
describe how the heteroscedastic test statistics (5.2.4) and discriminant function (5.2.7) will
be used to produce improved versions of these algorithms.

Starting with the training data that has a set of n training samples, each with p genes.
This will give a n x p matrix with each entry x;; represents the gene expression for gene i
of the training sample j, where ¢ = 1,...,p and 7 = 1,...,n. Denote the class labels of the
response variable as 1,2, ..., K if the n training samples are from K different classes. Let ny
denote the number of samples from class & and C} be the set of indices for those samples.

First, the three algorithms start by computing each class centroid fgk) => jecy, Tij /g
and the overall centroid z; = Z?Zl x;;/n to find the heteroscedastic test statistic for each
gene ¢ in class k using

0 3

di, = : ,
K
V= Dt 53 + 2 Ty (52 + 53)

where s;, = \/ZjeCk (@i —fl(-k))Q/(n — 1) and so is the median of the genes’ standard

deviation values for class k (i.e. sor = median(sig, Sog, -, Spk))-
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Then in case of using the soft thresholding, all the test statistic values will be thresholded

using soft thresholding
A5 = sgn(d) (|| — As) s (5.2.8)

where + means positive part (i.e. by = bI{b > 0}). The soft thresholding parameter Ag is
chosen to be the thresholding value that minimizes the misclassification error in a 10-fold
cross-validation of the training samples. The ith element of the shrunken centroid for class

k is written in terms of the thresholded test statistic d;f) as

K
=\k) _ = \(S) 1 2 2 2 1 § : 2 2
T, =T+ dzk (n—k — ﬁ) (Sik + Sok) + n2 P nm(sim + SOm)'

The shrunken centroids for all K classes will be used to classify any new sample z* =

(21,25, ..., ;). This is done by computing the discriminant score for each class using

P x _ =\(k)\2 P
* E : (’I"z —Z; ) § : / 9 9 A

where 7, = ny/n is the estimated probability for class k using the training-set.

Then the decision is to classify the new sample x* to class ¢ = argmin d(z*). This al-
1<k<K

gorithm using soft thresholding will be denoted by STh3 in further discussion.

In case of using the hard thresholding, we replace the soft thresholding in (5.2.8) by the
hard thresholding

dy = diI{]dix| > A}, (5.2.10)

where Ay is the hard thresholding parameter. The optimal Ay can be determined by using
a 10-fold cross-validation over the training-set. It is selected to be the one that provides
the amount of shrinkage that minimizes the cross-validation misclassification error. This

algorithm, which uses hard thresholding, will be denoted by HTh3.
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In case of using the order thresholding, we replace the soft thresholding in (5.2.8) by the
order thresholding

(5.2.11)
0 otherwise

d\(o) _ { d; Zf rcmk(]dlk\) >n— AO

where Ap is the order thresholding parameter, which can be determined by using a 10-fold

cross-validation over the training-set as well. This algorithm, which uses order thresholding,

will be denoted by OTh3.

5.3 Numerical comparisons

In this section we present simulation and real data analysis to show the performance of our
proposed algorithms (STh3, HTh3, and OTh3) that use the heteroscedastic test statistics
(5.2.4) and discriminant function (5.2.7) compared to those algorithms (STh, HTh, and
OTh) that use the homoscedastic PAM test statistics (5.1.1) and discriminant function
(5.1.2).

The R software, version 3.0.2, was used for programming all algorithms to be compared
in this section. Previously in Chapter 3, we wrote our own codes for the HTh and OTh
algorithms to calculate the class centroid and perform cross-validation using the training
data, and to predict the class labels for the test samples. For a completely fair comparison,
in the studies of this section we code all the algorithms by modifying the functions from
the pamr package, which was developed by the authors of Tibshirani et al. (2002). The 3
different thresholding methods and the two versions of the test statistics and discriminant
functions give 6 algorithms. The functions that we modified from the pamr package are:
pamr.train, pamr.cv, pamr.predict, nsc, nsccv, and diag.disc. The soft.shrink function was
replaced by the new hard.shrink function to perform hard thresholding or by the new or-
der.shrink function to perform order thresholding. The refining process described at the end
of Section 3.1.1 was also implemented in these algorithms. Specifically, this process refine
the neighborhood of the thresholding value with the smallest cross-validation error to reach

a better estimate of the optimal thresholding parameter. In all algorithms the number of
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folds for the cross-validation with the training data is set to be 10 unless the dataset under
study has some classes with sample size less than 10. In the later case, the fold is set to be
the smallest class size.

All data sets, either generated or real data, that will be used in this section are divided
into training and test samples. Classifiers are trained with the training samples and then
prediction of the class label for the test samples are conducted. For the real data in our
study, we will adopt the same partition of training and test samples that is already divided
by the authors of Tan et al. (2005). In the multi-class classification problems, the proportion
of correctly classified samples or proportion of misclassified samples is typically used in the
literature as the comparison criterion to compare the performance of different classifiers. In
our study we will mainly use the proportion of misclassified test samples (test error) in our
comparison. It is defined as the number of misclassified test samples divided by the total
number of test samples. We will also compare the number of selected variables (genes) used
in each method when the misclassification rates are similar for different algorithms. It is
widely accepted that the better method is the one that uses less genes to achieve the same
accuracy as other methods using more genes.

The random partition of the training data in cross-validation could lead to different
estimated thresholding parameter and hence possibly a different test error. In all our stud-
ies we repeat the classification process 100 times for each dataset and report the average

percentage of misclassified samples and the number of informative genes from the 100 runs.

5.3.1 Simulation study

For the simulation study we generated different high dimensional data sets with clear het-
eroscedasticity among different classes. Then we discuss the performance of the three algo-
rithms for the heteroscedastic case STh3, HTh3, and OTh3 compared to their counter parts
STh, HTh, and OTh applied to these data sets.

Example 1: Two classes The first simulation setup is for two classes (binary
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classification). For the first class we generated 20 training samples and 50 test samples
and for the second class 30 training samples and 50 test samples. Each sample has 10,000
independent variables. For the first class, all 10,000 variables were generated from a standard
normal distribution N(0,1). For the second class, all the variables were generated from
normal distribution with standard deviation 3. The means for the first 20 variables in the
second class are 110 for i = 1,2,...,20 and the means for the rest 9,980 variables are zeros.
For easier discussion, from now on we will refer to these 20 variables as the double-signal
variables since the two classes differ for both mean and variance for these variables. In

mathematical notation, the generated data for class k, variable i, and sample j is
N(0,1)  for k=1

P (5.3.1)

Y N(£,3%) for k=2,i=1,2,..,20

N(0,3%) for k=2,i=21,22,...,10,000.

Even though the first 20 variables have different means for the two classes, the signal to
noise ration (£) is between 1:30 to 2:3, which is very low. So this dataset is mainly used to
evaluate performance at low signal to noise ratio case.

Additionally, we generated another dataset with a stronger difference in the mean signals
by increasing the mean of the first 20 variables in class two. Specifically, the data for the
first 20 variables of the second class were generated from N (%, 3?) for i = 1,2,...,20. The
mean }'1 provides 2.5 times stronger signal than the mean % in the previous case. The other

variables were still generated from N(0,3%) . In summary, the generated data in terms of
the class k, variable i, and sample j is
N(0,1) for k=1,
2l ~ . (5.3.2)
N(:3%) for k=2,i=1,2,..,20
N(0,3%) for k=2,i=21,22,..,10,000.

The pdf of these variables are given in Figures 5.4 and 5.5, which correspond to the
distributions in (5.3.1) and (5.3.2), respectively. For each variable there is a big overlap of

possible values between the two classes. This makes the classification difficult.
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Figure 5.4: The distributions of the different variables in each of the two classes in (5.3.1).
The red curve corresponds to the pdf of the variables 21-10,000 in class 2
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Figure 5.5: The distributions of the different variables in each of the two classes in (5.3.2).
The red curve corresponds to the pdf of the variables 21-10,000 in class 2

The result for these two simulation settings is listed in Table 5.1. It can be seen that there
is a clear advantage of using the heteroscedastic versions of the algorithms with any of the
three thersholding methods. In the first dataset (data from (5.3.1)), all three heteroscedastic
algorithms (STh3, HTh3, and OTh3) perform better than their counter parts (STh, HTh,
and OTh) in terms of the test errors as there is a large reduction in the test error when using
the heteroscedastic algorithms. Specifically, the test errors changed from 48.42, 38.52, and
34.89 for STh, HTh, and OTh to 1.71, 1.5, and 1.95 for STh3, HTh3, and OTh3 respectively.

In the second dataset (data from (5.3.2)), which has a larger mean difference for the first
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20 variables, the heteroscedastic algorithms still perform better than their counter parts in
terms of the test errors. The test errors are 1.78, 2.22, and 1.94 for STh, HTh, and OTh
while the errors are 0.71, 1.07, and 0.92 for STh3, HTh3, and OTh3 respectively which are
about half of the errors for the homoscedastic algorithms. Increasing the signals by using
dataset from (5.3.2) gives a drastic boost to the performance of the homoscedastic version
algorithms. The test errors for STh, HTh, and OTh is much smaller than their test errors
in the first dataset (5.3.1). They changed from 48.42, 38.52, and 34.89 in the first dataset
to 1.78, 2.22, and 1.94 in the second dataset. On the other hand, from this simulation
with the two data sets we see that the heteroscedastic version algorithms are less prone to

classification error due to weak mean signals.

Table 5.1: Ezample 1 simulation results: Percent of mean misclassification error for test
samples (test error), the average number of selected variables (selected variables), and the
average of how many selected variables are from the first 20 double-signal variables. All these
results are based on 100 runs for each algorithm. STh, HTh, and OTh are the homoscedastic
verston algorithms. STh3, HTh3, and OTh3 are the heteroscedastic version algorithms.

Data from (5.3.1) Data from (5.3.2)

out of the 20 out of the 20

test selected  double-signals | test selected  double-signals
algorithm | error variables yes no error variables  yes no
STh 48.42 22.95 3.07 19.88 | 1.78 7.21 7.05 0.16
STh3 1.71 21.12 3.27 17.85 | 0.71 13.76 11.38  2.38
HTh 38.52 5.27 1.75 3.92 2.22 5.6 5.59 0.01
HTh3 1.5 27.57 3.65 23.92 | 1.07 5.01 4.98 0.03
OTh 34.89 7.11 2.06 5.05 1.94 6.45 6.22 0.23
OTh3 1.95 26.25 3.62  22.63 | 0.92 4.74 4.68 0.06

In terms of the selected variables, the stronger signal in the first 20 variables from dataset
(5.3.2) makes it less necessary to use variables that only differ in variance for the two classes.
For example, in the first dataset the average number of selected variables for the SHh3 is

21.12, among which 3.27 of them are from the 20 double-signals and 17.85 are from the
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rest of the variables. In the second dataset an average 13.76 variables were selected, among
which 11.38 are from the 20 mean signals and 2.38 are from the rest of the variables. For the
other algorithms, the average number of selected noisy variables that has no mean signal
ranges from 3.5 to 22.63 for data from (5.3.1). But for data from (5.3.2), an average of less

than 1 such variables were selected.

Example 2: Three classes The second simulation setup is for three classes. For
the first class we generated 20 training samples and 50 test samples. For each of the other
two classes we generated 30 training samples and 50 test samples. Each sample has 10,000
independent variables. The distributions for the first two classes were generated similar
to those in the first dataset of Example 1. That is, all 10,000 variables in the first class
were generated from a standard normal distribution N(0,1). For the second class, all the
variables were generated from normal distribution with standard deviation 3. The means

for the first 20 variables are -, i = 1,2, ..., 20 and the means for the rest 9,980 variables are

10’

zeros. For the third class, all the variables were generated from normal distribution with

standard deviation 5. The means for the first 20 variables are Qigi, 1 =1,2,...,20 and the

means for the rest 9,980 variables are zeros. In summary, the generated data in terms of
the class k, variable i, and sample j is
[ N(0,1) for k=1

N(,3%)  for k=2i=1,2,..,20

2B~ N3 for k=2,i=21,22,...,10,000. (5.3.3)

N(#545%) for k=3,i=1,2,..,20

N(0,52)  for k=3,i=21,22,..,10,000.

\

This is a case with low signal to noise ratio with multiple classes. The addition of
third class with even bigger variation contributes further challenge to the classification. The
results for this simulation are listed in Table 5.2. Similar to Example 1 simulation, all three
heteroscedastic version algorithms (SHT3, HTh3, and OTh3) perform better than their

counter parts (STh, HTh, and OTh) in terms of the test errors. The test errors and number

90



of selected variables in this example are larger than those in the first dataset of Example
1 (data from (5.3.1)) because of the additional class in this example. Still there is a large
reduction in the test error when using the heteroscedastic version algorithms. The test errors
for STh, HTh, and OTh were 63.33, 63.55, and 62.64 respectively. On the other hand the
test errors for STh3, HTh3, and OTh3 were 20.95, 21.97, and 22.46 respectively. Moreover,
we notice from the results of this simulation that a much large number of variables were
selected by the original PAM algorithm STh to reach almost the same test error in both
HTh and OTh, while it was reduced to when using the heteroscedastic algorithms. Also,
the results show that the number of selected variables needed by the hard thresholding
algorithms to make the classification were the smallest compared to the soft and order
thresholding algorithms. Among the heteroscedastic version algorithms the STh3 has the

smallest test error.

Table 5.2: Ezample 2 simulation result: Percent of mean misclassification error for test
samples (test error) and average number of selected variables (selected variables) based on
100 runs for each algorithm. The value in parenthesis is the median absolute deviation.
STh, HTh, and OTh are the homoscedastic version algorithms. SThS, HTh3, and OThS are

the heteroscedastic version algorithms.

OTh 62.64(2) 35(3.5) | 62.86(2) 32(4)
OTh3 22.46(2.33)  63(15) | 21.39(2.67) 91(29.5)

Data from (5.3.3) Data from (5.3.4)
test selected | test selected
algorithm | error variables | error variables
STh 63.33(2) 226(7) | 62.82(2) 84(6.5)
STh3 20.95(1.33)  40(10) | 19.67(1.33) 49(19.5)
HTh 63.55(2.67) 10(1) 62.89(2.33) 13(1)
HTh3 21.97(2) 39(12.5) | 20.91(2.33)  46(14)
( (
( (

For different situation other than using the same variance for all variables in the same
class, we considered using different variances for different variables. Specifically, we ran-

domly generated 10,000 values from each of the distributions N(1,.3%), N(3,.3%), and
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N(5,.3%) for class 1, 2, and 3 respectively. Then we used the absolute values of these

generated values as the standard deviation for the variables in each class, respectively. This

way we have different variances for different variables, but at the same time we insured the

presence of heterogeneity among different classes. In summary, the generated data in terms

of the class k, variable 7, and sample j is

/

N(0,0%) for
N(%,a%) for
N(0,03) for

N(Z503) for

10 7
N(O,a%) for

k=10 ~ N(1,0.3%)

k=205~ N(3,03%,i=1,2,..,20
k=205~ N(3,0.32),i = 21,22, ..., 10, 000. (5.3.4)
k=305~ N(5032),i=12 .20

k=3,05 ~ N(5,0.32),i = 21,22, ..., 10, 000.

The plots of the pdfs correspond to the distributions in (5.3.3) and (5.3.4) are in Figures

5.6 and 5.7, respectively.
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Figure 5.6: The distributions of the different variables in each of the three classes in (5.5.3).

The red curve corresponds to the pdf of the variables 21-10,000 in class 2

The results of the analysis of this dataset are also given in Table 5.2. The test errors for

STh, HTh, and OTh were 62.82, 62.89, and 62.86, while the test errors for STh3, HTh3,

and OTh3 were 19.67, 20.91, and 21.39, respectively. The test errors for the heteroscedastic

algorithms in this case are slightly smaller than those in the previous simpler case, which

has common variance for all variables in the same class. Specifically, for data from (5.3.3)
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Figure 5.7: The distributions of the different variables in each of the three classes in (5.5./).
The red curve corresponds to the pdf of the variables 21-10,000 in class 2

the test errors for STh3, HTh3, and OTh3 were 20.95, 21.97, and 22.46 respectively, while
for data from (5.3.4) the test errors were 19.67, 20.91, and 21.39 respectively. On the other
hand, the number of selected variables used by the heteroscedastic algorithms are slightly
larger than those for dataset (5.3.3). Similar to the common variance case (data from
(5.3.3)), the number of selected variables needed by the hard thresholding algorithms to
make the classification were the smallest. Also, among the heteroscedastic algorithms the

STh3 has the smallest test error.

Example 3: Multi-class For this multi-class simulation, we mainely mimic the
sizes (i.e. number of classes, number of variables, and number of samples) of the ten multi-
class human cancers gene expression data sets that we are investigating in this dissertation.
These summary of the ten data sets are listed in Table 5.3. The number of classes in those
data sets ranges from 3 to 14 and the number of genes ranges from 2308 to 16063. Each
dataset contains two parts, training samples part (training-set), and test samples part (test-
set). The number of samples in this study range from 38 to 215 for the training samples
and 15 to 112 for the test samples.

The detailed classes and the number of training and test samples in each class are listed in

Table 5.4. The simulated data only differ from the real data by the data values. Here they
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Table 5.3: Settings of real data for simulation settings.

Dataset No of No of No of samples
abbreviation | classes genes Training Testing
SRBCT 4 2308 63 20
Breast 5 9216 54 30
Cancers 11 12533 100 74
DLBCL 6 4026 58 30
GCM 14 16063 144 46
Leukemial 3 7129 38 34
Leukemia?2 3 12582 57 15
Leukemia3 7 12558 215 112
Lungl 3 7129 64 32
Lung?2 5 12600 136 67

were generated under different setups to simulate a clear heteroscedasticity among different
classes. To distinguish between the generated data and the real one, we will add asterisk
(*) at the end of the name of the generated data.

Without loss of generality, assume the classes for each dataset are labeled 1 through K

(i.e. k€ {1,2,...,K}), where K is the total number of classes.

Scenario 1: For class k, all the variables were generated from normal distribution with
standard deviation 2k — 1. The means for the first 20 variables are %k, 1=1,2,...,20 and

the means for the rest of the variables are zeros. In summary, for a dataset with p variables

NG N (Ek, 2k —1]%) for i=1,2,..,20

ij ™ (5.3.5)
N(0,[2k —1)2)  for i=21,22, .. p.

It should be noted that this data generation scheme produces really big noise for some
of the classes if the number of classes is big. For example, with the GCM dataset setting,
the standard deviation ranges from 1 to 27.

The results for this simulation are listed in Table 5.5. The advantage of using the

heteroscedastic versions algorithms with any of the three thersholding methods can be seen

94



Table 5.4: Number of training samples (tr) and test samples (te) in each class of the data

sets used in this dissertation.

Dataset Number of samples in each class
SRBCT class BL EWS NB RMS
tr 8 23 12 20
te 3 6 6 5
Breast class basal cell_lines ERBB2 lumina normal
tr 3 7 3 12 5
te 7 12 6 20 9
Cancers class | BL BR CO GA KI LI LUA LUS OV PA PR
tr 8 12 11 11 10 6 9 8 9 6 10
te 0 14 12 1 1 1 5 6 18 0 16
DLBCL class B_Cell Cell lines CLL DLBCL FL T_Cell
tr 7 4 7 30 6 4
te 3 2 4 16 3 2
GCM class | Bl Br CNS Co Le Lu Ly Mel Mes Ov Pa Pr Re Ut
tr 8 8 16 8 24 8 16 8 8 8 8 8 8 8
te 3 3 4 3 6 3 6 2 3 3 3 2 3 2
Leukemial | class AML B_Cell T_Cell
tr 11 19 8
te 14 19 1
Leukemia2 | class ALL AML MLL
tr 20 20 17
te 4 8 3
Leukemia3 | class ALL AML BCR E2A HYP MLL Others
tr 28 52 9 18 42 14 52
te 15 27 6 9 22 6 27
Lungl class ADEN COID NORMAL
tr 44 13 7
te 23 6 3
Lung2 class ADEN COID NORMAL SCLC SQUA
tr 93 13 12 4 14
te 46 7 5 2 7

in these results. The three heteroscedastic version algorithms (STh3, HTh3, and OTh3)
have smaller test errors than their counter parts homoscedastic version algorithms (STh,
HTh, and OTh) for all data sets except for the Cancers* dataset, which has the second
largest number of classes (11). For the homoscedastic version algorithms there are 6 test
errors that are more than 50%, while only 4 or less test errors that are more than 50% for
the heteroscedastic version algorithms. For comparing the thresholding methods, the STH3
has the smallest test error in 4 of this simulation data sets, while the HTh3 and OTh3 have

the smallest test error in 3 data sets each. Moreover, the number of selected variables in the
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HTh3 were smaller than those in STh3 and OTh3 except for the DLBCL* and Lung2 data
sets. Considering the significant reduction in the test error when using the heteroscedastic
algorithms we can see that the homoscedastic test statistic (PAM test statistic) used in
the STh, HTh, and OTh algorithms was not able to correctly identify variables with mean
signals and instead it selects more of the noisy variables. For example, with the SRBCT
dataset the HTh only selected 3 variables to reach 70.52 test error, while the HTh3 was
able to detect more of the informative variables (25) to reach 42.36 test error. On the other
hand, the overfitting might be another problem of the homoscedastic version algorithms.
For example, in the Leukemia2* dataset the STh reached 53.20 test error by selecting 408
variables, while the STh3 only needed 82 variables to reach 10.60 test error.

Table 5.5: Scenario 1 simulation result: Percent of mean misclassification error for test
samples (test error) and average number of selected variables (selec. var.) based on 100 runs
for each algorithms. STh, HTh, and OTh are the homoscedastic version algorithms. SThS,
HTh3, and OThS3 are the heteroscedastic version algorithms. In all data sets the variables

were generated according to (5.3.5) with 20 mean signals.

STh STh3 HTh HTh3 OTh OTh3
test  selec. test selec. | test selec. test selec. |test selec. test selec.
Dataset error var.  €rror var. |error var. error var. | error var. error var.
SRBCT* 73.04 86 40.24 33 70.52 3 4236 25 ]69.64 31 41 40
Breast* 60.17 46 60.60 119 |60.53 3 51.83 49 |61.27 13 53.97 191

Cancers™ 80.89 5091 93.14 1266 | 80.49 2244 96.96 28 |80.82 4348 99.38 1098
DLBCL* 46.67 62 38.73 804 |46.67 3 29.77 979 146.50 11 28,57 1106
GCM* 87.07 5192 81.50 287 |86.93 1820 73.61 24 |86.87 3864 74.83 171
Leukemial* | 45.06 200 1.97 170 |45.35 20 5.15 31 4488 32 3.88 65

Leukemia2* | 53.20 408  10.60 82 55.87 59 1573 5T |57.73 87 1347 121
Leukemia3™* | 61.42 6 o54.71 17 64.37 5 4479 10 |64.06 & 45.10 11

Lungl* 28.09 16 4.78 182 2794 51 9.06 55 12772 91 841 147
Lung2* 31.34 7 14.98 522 |31.06 18 10.73 549 |30.48 45 10.64 897

It is interesting to note that the three dataset settings with 3 classes (Leukemial,

Leukemia2, lungl) lead to smallest test errors for the heteroscedastic algorithms. Even
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though the signal to noise ratio is low, the misclassification error for the heteroscedastic

algorithms can be as low as 1.97%.

Scenario 2: For class k, all the variables were generated from normal distribution with
standard deviation 2k — 1. For the means, we randomly select 20 variables (denote this set
of variables by ¢) and set the means for those variables to be 2, while the means for the rest
of the variables are zeros. The 20 randomly select variables are different for each class (not
overlapping). This way the contribution of the mean signals are the same in magnitude,
but they are from 20 different variables in different classes. In the case of gene expression
dataset, this set of selected variables can be thought of as the identifiers (markers) for each

class. In summary, the generated data in terms of the class k, variable i, and sample j is

i (5.3.6)
N (0,[2k —1]*) for otherwise,

where ¢y is a set of 20 randomly select variables that are different for each class (i.e.

¢i(No; =0 for i # j).

Table 5.6: Scenario 2 simulation result: Percent of mean misclassification error for test
samples (test error) and average number of selected variables (selec. var.) based on 100 runs
for each algorithms. STh, HTh, and OTh are the homoscedastic version algorithms. SThS3,
HThS, and OThS are the heteroscedastic version algorithms. In all data sets the variables

were generated according to (5.3.6) with 20 mean signals for each class.

No of STh STh3 HTh HTh3 OTh OTh3

No of | mean test selec. test selec. | test selec. test selec. | test selec. test selec.
Dataset classes | signals | error  var. error  var. | error  var. error  var. | error  var.  error  var.
SRBCT* 4 80 74 143 39 31 72.28 45 41.36 28 72.04 72 41.08 31
Breast* 5 100 60.27 53 55.67 33 60.83 4 50.77 50 61.40 10 51.03 135
Cancers* 11 220 81.45 4269 90.22 398 | 80.18 1934 92.64 52 80.43 4347 99.08 1384
DLBCL* 6 120 46.67 58 36.13 723 | 46.67 3 29.60 918 | 46.50 12 28.27 1100
GCM* 14 280 86.89 4653 T76.17 27 86.93 1219 75.09 28 87.02 2791 76.72 286
Leukemial* 3 60 48.09 534 1.71 149 | 46.44 32 6 37 45.88 44 4.32 68
Leukemia2* 3 60 60.20 432  10.67 75 61.60 59 16.80 49 61.20 98 13.73 150
Leukemia3* 7 140 69.57 44 48.31 12 70.36 2 47.20 13 69.28 12 46.87 15
Lungl* 3 60 28.12 30 5 177 | 28.03 56 9.66 90 27.91 117 8.97 154
Lung2* 5 100 31.34 5 15.54 636 | 31.30 26 10.85 621 | 30.87 29 10.69 989
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The results for this simulation are listed in Table 5.6. Note that the number of mean
signals in this scenario depends on the number of classes since we generated 20 mean signals
for each class. The number of the mean signals are listed in the third column of the Table
5.6. The advantage of using the heteroscedastic version algorithms with any of the three
thersholding methods can be seen in this scenario results as well. The three heteroscedastic
version algorithms (STh3, HTh3, and OTh3) have smaller test errors than their counter
parts homoscedastic version algorithms (STh, HTh, and OTh) for all data sets except for
the Cancers* dataset, which has the second largest number of classes (11).

Scenario 3: For class k, all the variables were generated from normal distribution
with mean zero and standard deviation 2k — 1. This way the means for all variables are the
same, but the variances differ by class. Therefore, the class variance will be the only effect

on the signals. That is

zit) ~ N (0,[2k —1?), where k =1,2,..., K.

)

(5.3.7)

Table 5.7: Scenario 3 simulation result: Percent of mean misclassification error for test
samples (test error) and average number of selected variables (selec. var.) based on 100 runs
for each algorithms. STh, HTh, and OTh are the homoscedastic version algorithms. SThS3,
HThS, and OThS are the heteroscedastic version algorithms. In all data sets the variables

were generated according to (5.5.7) without mean signals.

STh STh3 HTh HTh3 OTh OTh3

No. of test selec.  test selec. | test selec.  test selec. | test selec.  test selec.
Dataset variables | error  wvar. error  var. error var. error var. error var. error var.
SRBCT* 2308 74.32 28 41.48 21 72.64 2 43.84 24 71.48 4 42.36 43
Breast* 9216 60.27 50 55.13 31 60.60 3 49.73 49 61.27 12 52.43 156
Cancers* 12533 81.57 3981 90.12 327 80.19 2059 92.76 63 80.27 3770 98.73 1374
DLBCL* 4026 46.67 62 38.57 666 46.67 3 29.87 984 46.50 11 29.17 1098
GCM* 16063 86.91 4773 75.74 9 86.98 1303  74.76 31 86.87 2413  76.63 347
Leukemial* | 7129 4494 81 1.65 150 44.65 8 4.71 33 44.82 20 4.35 68
Leukemia2* | 12582 60.20 639 11.80 84 63.13 53 15.93 59 61.93 101 14.13 145
Leukemia3* | 12558 69.65 41 46.41 9 70.29 3 47.30 13 69.47 13 47.90 17
Lungl* 7129 28.13 17 4.97 169 27.97 39 9.72 56 27.84 67 8.28 181
Lung2* 12600 3134 5 15.81 552 31.28 17 11.01 664 30.90 22 10.66 1017
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The results for this simulation are listed in Table 5.7. Even though there is no mean
signals in this scenario, the advantage of using the heteroscedastic versions algorithms with
any of the three thersholding methods is still obvious. The three heteroscedastic version of
the algorithms (STh3, HTh3, and OTh3) have smaller test errors than their counter parts
(STh, HTh, and OTh) for all data sets except for the Cancers™ dataset, which has the second
largest number of classes (11). Similar to the previous scenarios, for the homoscedastic
version algorithms there are 6 test errors that are more than 50%, while only 3 or less test
errors that are more than 50% for the heteroscedastic version algorithms. Two of those
aforementioned large test errors for the heteroscedastic algorithms are for settings with the
largest number of classes, Cancers* and GCM*. The number of classes for these data sets

are 11 and 14, respectively.

Table 5.8: Comparing Scenario 1 simulation result to Scenario 3 simulation result for the
soft thresholding method algorithms STh and SThS.

STh STh3
Data from (5.3.5) Data from (5.3.7) Data from (5.3.5) Data from (5.3.7)
out of the 20 out of the 20
test selec. mean signals test selec. test selec. mean signals test selec.

Dataset error var. yes  no error var. error var. yes  no error var.
SRBCT* 73.04 86 3 83 74.32 28 40.24 33 9 24 41.48 21
Breast* 60.17 46 0 45 60.27 50 60.60 119 7 112 55.13 31
Cancers* 80.89 5091 11 5080 81.57 3981 93.14 1266 13 1254 90.12 327
DLBCL* 46.67 62 0 62 46.67 62 38.73 804 12 791 38.57 666
GCM* 87.07 5192 9 5184 86.91 4773 81.50 287 11 276 75.74 9
Leukemial* 45.06 200 1 198 44.94 81 1.97 170 5 165 1.65 150
Leukemia2* 53.20 408 5 403 60.20 639 10.60 82 5 7 11.80 84
Leukemia3* 61.42 6 3 3 69.65 41 54.71 17 10 7 46.41 9
Lungl* 28.09 16 0 16 28.13 17 4.78 182 4 178 4.97 169
Lung2* 31.34 7 1 6 3134 5 14.98 522 9 513 15.81 552

To see how well the homoscedastic algorithms identify variables with difference in mean
signals compared to the heteroscedastic algorithms, in Table 5.8 we list the soft thresholding
algorithms simulation results for the data with 20 mean signals (Scenario 1) and the data
without any mean signals (Scenario 3). We can see that the homoscedastic test statistic

(PAM test statistic) used in the STh algorithm was less able to correctly identify variables
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with mean signals and instead it selects more of the noisy variables. The median number of
selected variables out of the 20 mean signals for the STh is only 2, while for the STh3 the

number of selected variables out of the 20 mean signals is 9.

5.3.2 Real data analysis

For this data analysis section we will use the actual human cancers gene expression data
sets listed in Table 5.3. The class labels and number of training and test samples in each
class are listed in Table 5.4. Leukemia3 dataset was removed from this analysis because
about 71% of its data values are zeros.

The result for this real data analysis is listed in Table 5.9. From this data analysis, the
smallest median test error is 6.73 achieved by the OTh3 algorithm. The result shows that
for the order thresholding algorithms, the test errors of the heteroscedastic version were less
than the test errors of the homeostatic version in 7 out of the 9 data sets. The test errors for
the OTh ranged between 4.45 and 54 with median test error of 11.84, while for the OTh3
ranged between 0.6 and 51.48 with median test error of 6.73. For the hard thresholding
algorithms, the test errors of the heteroscedastic version were less than the test errors of the
homeostatic version in 6 out of the 9 data sets. The median test error for HTh is 11.73 and
for HTh3 is 6.8. But for the soft thresholding algorithms, the median test error for STh is
9.2 and for STh3 is 12.78. Only in 2 out of the 9 data sets the test errors of STh3 were less
than the test errors of STh. Mainly, the SRBCT and Breast data sets show a smaller test
errors when using the homeostatic version with any of the thresholding methods. However,
for the Breast dataset the test errors for the hard and order thresholding algorithms were
smaller than the test errors for the soft thresholding algorithms. In general, the test errors
for the HTh3 and OTh3 were smaller than those for the STh3 for all data sets except for the
GCM dataset. One of the noticeable reduction in test error when using the heteroscedastic
version algorithms is with the Leukemia2 dataset. For Leukemia2 dataset, the test errors
the homoscedastic version algorithms (STh, HTh, and OTh) were 15.13, 11.73, and 25.4 ,
while the test errors the heteroscedastic version algorithms (STh3, HTh3, and OTh3) were
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2.87, 0.13, and 0.6 respectively. In terms of the number of selected genes, the HTh3 and

OTh3 algorithms selected a smaller number of genes than the STh3 algorithm in 7 data

sets.

Table 5.9: Real Data Analysis: Percent of mean misclassification error for test samples

(test error) and average number of selected genes (selec. genes) based on 100 runs for each
algorithms. STh, HTh, and OTh are the homoscedastic version algorithms. STh3, HThS3,

and OThS3 are the heteroscedastic version algorithms.

STh STh3 HTh HTh3 OTh OTh3

test  selec. test selec. | test selec. test  selec. |test selec. test  selec.
Dataset error genes error genes | eIror genes error genes | error genes error  genes
SRBCT 5 110  23.75 1093 |5 40 18.9 215 |5 48 199 169
Breast 9.2 4312 23.03 4840 |5 866 6.8 907 4.9 1233 6.73 786
Cancers 11.97 1413 12.78 11645|12.01 1431 12.32 9958 |11.84 1824 11.05 7887
DLBCL 8.2 3649 6.2 3901 | 7.8 721 3.17 3108 |7.37 829 1.87 2022
GCM 44.17 2271 47.54 11991 | 54.59 4145 52.63 12779 | 54 3881 51.48 9869
Leukemial [ 3.24 299 4.21 1059 |13.29 94 3.06 927 112.06 179 2.35 945
Leukemia2 | 15.13 6061 2.87 3895 |11.73 1630 0.13 1136 |[25.4 2506 0.6 1232
Lungl 21.78 121 26.78 523 |19.53 83 1897 119 [19.94 604 17.19 571
Lung2 14 2303 3.58 7329 |4.43 4275 1.79 3409 |4.45 4419 2.13 3148
median 9.2 12.78 11.73 6.8 11.84 6.73
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Chapter 6

Summary and Future Research

6.1 Summary

In this dissertation, we studied different approaches to improve the performance of the
widely used Prediction Analysis of Microarrays (PAM) by Tibshirani et al. (2002). We
investigated three problems of the PAM algorithm: retaining too many features, estimat-
ing the thresholding parameter, and handling the heteroscedastic situation. The proposed
approaches in this dissertation present alternative methods that alleviate these problems of
the PAM algorithm. Retaining too many features is a result of the soft thresholding used
in the PAM and hence our first approach was to consider different thresholding methods,
hard and order thresholding. The estimation process of the thresholding parameter in the
PAM algorithm could have a potential problem of missing the optimal thresholding pa-
rameter. This is a result of considering only a finite number of thresholding values in the
PAM algorithm while the parameter space is continuous. The risk of using finite numbers
of thresholding values will increase when considering the smallest cross-validation error as
a single selection criteria. This can be seen by comparing the numbers of informative genes
corresponding to the smallest and 2nd smallest cross-validation errors as shown at the be-
ginning of Chapter 3. To overcome this problem we take into consideration how likely the
smallest cross-validation error approximates the true error. In particular, we consider the

2nd smallest cross-validation error in our second approach and compare it to the small-
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est cross-validation error. In addition, refining the neighborhood of the initially selected
thresholding value might result in a better thresholding parameter estimate. These ideas
are implemented in our deep search algorithm.

Additionally, in this dissertation we compared the data driven thresholding parameter
estimation method via cross-validation to three different thresholding parameter estimates
that were suggested in literature. The overall comparison using a real data analysis was
in favor of the thresholding parameter estimates obtained from cross-validation. However,
the result of this analysis shows that none of the four thresholding parameter estimates are
absolutely the best in every single dataset. Therefore, we derived an approximation for the
probability of misclassification for the hard thresholding version algorithm in the two classes
problem. Such approximation can be considered as a firm foundation upon which future
research for estimating the optimal thresholding parameter can be based.

The PAM algorithm assumes homogeneity over different classes for the same variable in
both variable selection and classification. However,in this research, we have shown that this
assumption is not reasonable for many data sets. Therefore, we derived the test statistics
and discriminant functions based on the heteroscedastic models. The test statistics are
derived to compare the difference between the class centroid and the overall centroid. The
discriminant function was derived from the posterior probability of the class label given the
new sample under the assumption of heterogeneity similar to the Naive Bayes classifier. As
a result of this work we provided heteroscedastic version algorithm for each of the three
previously mentioned thresholding methods. It is very hard to validate the assumption of
homogeneity for all variables in the high dimensional data because of the large number of
variables involved. Thus, the devolvement of heteroscedastic version algorithms is a major
contribution for the field of high dimensional classification.

Even though it has been shown in many studies that it is unexpected for a single method
to outperform all other methods in all cases, our deep search algorithm results in some
significant decrease in the number of selected genes. At the same time, the algorithms

with deep search resulted in similar test errors to their counterpart without deep search
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in that the difference in the test errors is no more than 2%. Moreover, the additional
two thresholding methods we considered, hard and order thresholding, not only resulted
in much more parsimonious models with significantly smaller number of genes, but also
achieved better or at least comparable cancer status prediction accuracy for several data
sets. From the results presented in this dissertation, it is very clear that the choice of
thresholding method is of great importance for cancer classification. Also, our simulation
results show the importance of acknowledging the heteroscedasticity in the classification
process. Therefore, the algorithms in this dissertation provide important improvement for
the PAM algorithm and they are very useful algorithms to be used in high dimensional

multi-class classification problems.

6.2 Future research

First of all, since the choice of the thresholding method is of great importance for the classifi-
cation, we would be interested in applying our proposed algorithms for real high dimensional
data from other fields than the cancer classification using microarray data. This might lead
us to identify the thresholding method that works best for each field or each specific type
of data. Also, when using different data sets the new algorithms will be vetted for their

usefulness and validity.

Second, the derivation of the PAM algorithm and the new algorithms proposed in this
dissertation assume that the predictors are independent from each other. Thus, future re-
search of interest would be studying the performance of the proposed algorithms when there

is violation for this assumption.

In Chapter 4, for computational simplicity, we considered the two classes case (binary
classification) to derive the probability of misclassification for the hard thresholding algo-
rithm. The extension of this work would be considering the multi-class case. Furthermore,

deriving approximations for the other two thersholding methods, soft and order threshold-
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ing, is of great interest. By obtaining these approximations, in additional to the one derived
in this dissertation for the hard thresholding case will provide another approach for com-

paring the theoretical performance of the different thresholding methods.

One more topic of interest comes from the fact that PAM and the algorithms in this
dissertation assume that the predictors have a continues Gaussian distribution for deriving
the classifier discriminant function. It would be interesting to study the performance of the
proposed algorithms in this dissertation when the predictors follow different distributions.
In particular, how robust is the performance of these algorithms when some predictors have
discrete distributions. Also, it would be of interest to derive different discriminant functions

for the different distributions if necessary.
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Appendix A

Heatmaps for heterogeneity among

different classes
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Figure A.1: Heatmap of the sample standard deviation for 50 genes from the SRBCT
cancer dataset. These are for the top 50 genes that have the highest range of the standard

deviations for different classes.
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Figure A.2: Heatmap of the sample standard deviation for 50 genes from the Breast cancer

dataset. These are for the top 50 genes that have the highest range of the standard deviations

for different classes.
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Figure A.3: Heatmap of the sample standard deviation for 50 genes from the Cancers
dataset. These are for the top 50 genes that have the highest range of the standard deviations

for different classes.
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Figure A.4: Heatmap of the sample standard deviation for 50 genes from the GCM cancer
dataset. These are for the top 50 genes that have the highest range of the standard deviations

for different classes.
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Figure A.5: Heatmap of the sample standard deviation for 50 genes from the Leukemial
cancer dataset. These are for the top 50 genes that have the highest range of the standard

deviations for different classes.
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Figure A.6: Heatmap of the sample standard deviation for 50 genes from the Lungl cancer
dataset. These are for the top 50 genes that have the highest range of the standard deviations

for different classes.
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