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ABSTRACT

Integer programming (IP) is a powerful technique used by many companies and orga-

nizations to determine optimal strategies for making decisions and managing resources

to achieve their goals. One class of IP problems is the multiple knapsack (MK) problem.

However, MK and other IP problems, are extremely complicated since they are NP-hard

problems. Furthermore, there exist numerous instances that can not be solved.

One technique commonly used to reduce the solution time for IP problems is lifting.

This method, introduced by Gomory, takes an existing valid inequality and strengthens

it. Lifting has the potential to form facet defining inequalities, which are the strongest

inequalities to solve an IP problem. As a result, lifting is frequently used in integer

programming applications.

This research takes a broad approach to simultaneous lifting and provides its theo-

retical background for. The underlying hypergraphic structure for simultaneous lifting

in an MK problem is identified and called a constellation. A constellation contains two

hypercliques and multiple hyperstars from various conflict hypergraphs. Theoretical re-

sults demonstrate that a constellation induces valid inequalities that could be obtained

by simultaneous lifting. Moreover, these constellation inequalities can be facet defining.

The primary advancements, constellations and the associated valid inequalities, of

this thesis are theoretical in nature. By providing the theory behind simultaneous lifting,

researchers should be able to apply this knowledge to develop new algorithms that enable

simultaneous lifting to be performed faster and over more complex integer programs.
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Chapter 1

Introduction

Integer programming (IP) is a powerful technique used by many companies across

many different industries to improve their operations and functionality. Integer program-

ming can be used to accomplish corporate goals such as maximizing profit, minimizing

cost, or managing investment portfolios. It can also be used by large organizations or in-

stitutions for scheduling purposes, logistics and routing, and to better manage resources.

As an example, AT&T saved $750 million annually by using integer programming

to implement a new system that would better design call centers for various business

customers [19]. Similarly IBM applied integer programming concepts to improve their

network of spare parts and accessibility to them, and increased revenues by $20 million

and saved another $250 million in inventory costs per year [28]. Integer programming

techniques have also been applied in other areas of business operations such as manu-

facturing [1, 40, 54], transportation [20, 21, 82, 88], and energy [66, 72, 87].
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Solving integer programs has resulted in solutions to a broader array of complex

problems. However, these problems are extremely complicated since they can take an

exponential amount of time to complete, and some have yet to be solved. Research

in integer programming focuses on finding faster techniques to solve integer programs.

While recent advancements in technology and solution methodologies have allowed more

complex problems to be solved [15], generating novel integer programming methods can

still improve the solution time required to solve integer programs and is an active research

area [53].

This thesis focuses on a particular class of integer programs called the multiple

knapsack problem (MK). The name knapsack comes from an analogy of a camper’s

problem of packing a knapsack. In this case, the camper wants to take certain objects

for his or her trip, but at the same time he or she can only carry a maximum weight.

Each of the objects has an associated benefit and weight. Therefore, the camper seeks

to maximize his or her benefit while not exceeding the maximum weight limitation.

In some similar problems, there is more than one knapsack type constraints, and these

are referred to as multiple knapsack problems. For instance, these additional constraints

can represent volume, budget, etc. Each object still has an associated benefit, but now

the camper seeks to maximize benefit without exceeding any of the constraints in the

multiple knapsack problem.

A typical application of a knapsack problem is capital budgeting. The selection of

investments is similar to the selection of objects in the aforementioned trip. Therefore,
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a capital budgeting problem can be modeled as a knapsack problem, and the solution

provides the optimal investment strategy [39, 64, 69]. Other applications of knapsack

problems include treating cancer with radiotherapy [23], improving networks for mobile

phones [60], and studying ant colony optimization [91].

1.1 Integer Programming

Integer programs are similar to linear programs except that an integer condition is

placed on all of the variables. Integer programs are optimization problems as they try to

determine the best possible solution subject to certain constraints. There is an objective

function that is to be maximized or minimized and there are constraints that restrict the

feasible solutions. This being the case, the challenge is to determine a solution that is

not only feasible, but optimal. Unfortunately IP problems are classified as NP-hard [55]

because they can not be solved in polynomial time unless P = NP. Thus, researchers

consistently seek to develop faster methods to solve integer programs.

The simplest method to solve an integer program is to enumerate every possible

solution and then choose the solution with the best objective value. Although the

technique is straightforward, it is hardly practical as the number of different solutions

exponentially escalates. Consider an integer program with 100 binary decision variables.

The number of possible solutions is 2100 = 1.27∗1030. If the number of decision variables

increases by one, the number of solutions doubles. Therefore, the number of solutions

grows exponentially, and evaluating every solution is virtually impossible. Several other
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techniques have been developed to solve integer programs. Of these techniques, two of

the most widely used are branch and bound, and cutting planes.

Branch and bound is a general algorithm to solve integer programs. The method

was first introduced by A. H. Land and A. G. Doig in 1960 [61]. Branch and bound

aims to solve integer programs by taking a systematic approach to enumerating possible

solutions. It starts by solving a linear relaxation, which is the integer program minus

the integer restriction. If the optimal solution to the linear program does not contain

all integer values, then one of the variables with a fractional value is selected as the

branching variable. From this parent node, two separate child nodes are formed. The

first node has the same linear relaxation of the parent node with the additional constraint

that the branching variable must be greater than or equal to the rounded up value of the

branching variable. The other node also has the existing linear relaxation of the parent

node, but this time the constraint is less than or equal to the rounded down value of

the branching variable. This process continues to branch until all nodes are fathomed.

A node is fathomed for one of three reasons; if the solution of the node has all integer

values, if the solution of the node is infeasible, or if the objective value of the solution

is worse than the objective value of the best found integer solution.

The effectiveness of branch and bound is contingent upon the branching criteria.

Breadth first search, which searches one level of the tree at a time, can be inefficient

since it necessitates solving a large number of linear programs before any new integer

solution can be gained. On the other hand, depth first search, which searches one
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particular branch of the tree, can be ineffective if it happens to be searching a part of

the solution space that does not have a feasible solution. Each strategy has the potential

to be good or bad given a certain problem. Thus, there is no clear notion of which search

technique is superior and it depends entirely on the problem.

Gomory introduced the idea of cutting planes, which aim to generate valid inequal-

ities [41, 42, 43]. These inequalities, or cuts as they are often referred to, cut off some

part of the linear relaxation while ensuring that any feasible solution is not eliminated.

For an inequality to be valid, every feasible integer point must satisfy the inequality.

The easiest way to determine if an inequality is valid is to substitute it as the objective

function and solve the integer program. Any cut generated from this method is inserted

into the original integer program as a new constraint and could eliminate portions of

the linear relaxation. The strongest cutting planes are those inequalities that are facet

defining.

Lifting is a frequently used method to generate cutting planes. Because of the useful-

ness of lifting, much research has been done on it over the years. The primary objective of

lifting is to strengthen valid inequalities, which is achieved by appending more variables

to the existing inequality and/or modifying the coefficients that are already included

in the inequality. On some occasions the new lifted inequality can be facet defining.

As a result, the lifted inequality can assume the role of a cutting plane and potentially

expedite the time required to solve an integer program.
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1.2 Research Motivations

In 1978 Zemel [89] introduced simultaneous lifting as a method to lift sets of integer

variables. The technique was limited to only solve problems with binary variables and

the algorithm required solving exponentially many integer programs to be successful. At

Kansas State University, Dr. Easton has continued research in topics that use simulta-

neous lifting. Recently one of his students, Talia Gutierrez, developed a new technique

to perform simultaneous uplifting [49]. This method requires the solution to an integer

program, which can be too computationally challenging to be an effective tool.

The motivation for this research is to provide the theoretical foundations of simul-

taneous lifting. Since hypergraphic structures have been used to identify various valid

inequalities, it seems promising that a new hypergraphic substructure can be identified

that allows for simultaneous lifting. With this structure researchers may be able to find

faster techniques to perform simultaneous lifting, which would make it a computationally

attractive tool.

1.3 Research Contributions

By combining number theory, polyhedral theory, graph theory, and integer pro-

gramming principles, this thesis provides new theory regarding simultaneous lifting in a

multiple knapsack problem. The major breakthrough is the discovery of a constellation

structure that exists when there are two hypercliques. This is achieved by identifying a
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collection of hyperstars that exist between the hypercliques. The result is the constella-

tion structure and more importantly, two constellation inequalities that are valid.

Constellation inequalities are beneficial since they are potentially facet defining.

Therefore, determining simultaneously uplifted inequalities from a hypergraphic struc-

ture in a multiple knapsack problem can assist in solving integer programs. In a larger

sense, a constellation structure provides a better conceptual understanding for simulta-

neous lifting. By analyzing the structure it is easier to find valid inequalities. All of this

research adds to the general body of integer programming knowledge.

Ultimately, this research provides a theoretical understanding of the relationship

between simultaneous lifting and hypergraphic structures in integer programming, and

specifically in the multiple knapsack problem. By providing the theory behind simultane-

ous lifting, researchers should be able to apply this knowledge to develop new algorithms

that enable simultaneous lifting to be performed faster and over more complex integer

programs.

1.4 Outline

A detailed introduction to integer programming and the fundamental ideas it is

predicated on are discussed in Chapter 2. Topics such as polyhedral theory, the knapsack

problem, covers and cover inequalities, and general lifting techniques are presented. In

addition, concepts and definitions from graph and hypergraph theory are explained.
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Chapter 3 presents the exact simultaneous lifting hypergraphic method discussed

in this thesis. An in depth explanation is given to show how to determine the new

simultaneous lifting inequalities and the hypergraphic structures that correspond to

them. An example of a constellation is also given to describe the process.

Chapter 4 contains any conclusions drawn from this research. The development of

a constellation structure and inequality using simultaneous lifting, as achieved through

this research, has many different possibilities for potential exploration and few of these

ideas are briefly discussed.
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Chapter 2

Background Information

To better understand the purpose of this research, it is necessary to first become famil-

iar with the background knowledge and fundamentals of integer programming. Integer

programming is a field within operations research, yet there are several other aspects of

integer programming such as polyhedral theory, lifting techniques, and graph theory that

have had a significant hand in IP research. This chapter focuses on all of these topics

and supports the basic concepts of integer programming that are required to understand

this thesis.

2.1 Integer Programming

An integer program (IP) is defined as maximize cT x, subject to Ax ≤ b, x ∈ Zn
+

where A ∈ Rmxn, C ∈ Rn and b ∈ Rm. The feasible region is the collection of integer
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solutions that satisfy the constraints of the IP, where P = {x ∈ Zn
+|Ax ≤ b}. Denote

N = {1, 2, 3, ..., n} as the indices of the variables.

IPs are usually solved by incorporating the solution of a linear program as a sub-

routine. Define the linear relaxation of an integer program to be the integer program

without the integer constraint. Thus, define IPLR to be maximize cT x, subject to

Ax ≤ b, x ∈ Rn
+. The feasible region of IPLR is PLR = {x ∈ Rn

+ : Ax ≤ b}.

A commonly used method to solve IPs is branch and bound. As mentioned earlier,

the primary drawback of branch and bound is that it may require exponential time and

memory to solve the IP. Additionally, the IP may spend considerable time searching

through a portion of the solution space that may not contain any feasible points. Thus,

an alternate strategy to solving integer programs uses valid inequalities. Valid inequali-

ties were first used by Ralph Gomory [41, 42, 43]. A valid inequality takes the form of

∑n
i=1 αixi ≤ b and all x ∈ P must satisfy this inequality. Several synonyms exist for

valid inequalities and include cuts or cutting planes. There are two main criteria of any

cut implemented for it to be valid and useful. Firstly, a cut must not eliminate a feasible

integer solution, by definition. Secondly, the purpose of a cutting plane is to eliminate

part of the feasible region of the linear relaxation. Each time a cut is generated, it is

added as a constraint to the original IP. The following example depicts this idea.

Example 2.1.1 Consider the following IP.
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Maximize

8x1 + 6x2

Subject to

4x1 + 4x2 ≤ 5

xi ≥ 0 and integer ∀ i = 1, 2

Before solving the IP, the first step is to solve the linear relaxation of this problem. This

is done by solving the following linear program.

Maximize

8x1 + 6x2

Subject to

4x1 + 4x2 ≤ 5

xi ≥ 0 ∀ i = 1, 2

The linear relaxation solution to the problem is (11
4
, 0) with the objective value z∗ =

10. However, if we introduce a valid inequality, x1 + x2 ≤ 1, the optimal solution to the

linear relaxation is eliminated. Now consider the same linear program with this added

valid inequality.
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Maximize

8x1 + 6x2

Subject to

4x1 + 4x2 ≤ 5

x1 + x2 ≤ 1

xi ≥ 0 ∀ i = 1, 2

The solution to the linear relaxation is now (1, 0) and z = 8. Notice the solution

contains integer values so this is the optimal solution to the integer program.

2.2 Polyhedral Theory

Polyhedral theory describes the fundamental principles on which many problems are

based. It provides the basic knowledge for IP problems and deals with polyhedra, which

are the feasible sets for linear programming problems.

First a few definitions are necessary. A set, S, is a convex set if, and only if, for any

two points p and q in S, λp + (1 − λ)q ∈ S for each λ ∈ [0, 1]. It can be observed that

λp+(1−λ)q signifies a point on the line segment spanning from p to q. In other words,

a point of the form λp + (1 − λ)q where 0 ≤ λ ≤ 1 is the weighted average of p and q.

Therefore, S is called a convex set if for any two points p, q in S there is a straight line

that connects them, and the line is within the set S in its entirety. Define the convex

hull of a set S to be the intersection of all convex sets that contain S, which is denoted
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by Sconv. Convexity is a pillar of many optimization problems.

Halfspaces are the solution space for a single linear inequality. For example, all

x ∈ Rn such that
∑n

i=1 αixi ≤ β is a halfspace. The intersection of finite half spaces

forms a polyhedron. Clearly, the feasible region of a linear program is a polyhedron. A

polyhedron is trivially convex.

When trying to solve an IP, the linear relaxation is typically solved first. The linear

relaxation has the corresponding polyhedron, PLR, which contains both integer and

non-integer points. Observe that P is neither a polyhedron nor convex. However, it

is the intersection of all convex sets of P that is of interest. Determining P conv is

a primary part of integer programming research. If a linear relaxation is solved over

P conv, then an optimal solution is integer and branch and bound can be avoided. Thus,

polyhedral theory in integer programming seeks to transform the feasible region of the

linear relaxation to be P conv by adding additional constraints, valid inequalities or cuts.

A significant portion of polyhedral theory deals with the dimension of a polyhedron

and the face of a valid inequality. The dimension of a polyhedron is the number of linearly

independent vectors contained in the polyhedron. However, the feasible region of an IP

is a collection of points so affine independence is used rather than linear independence.

The collection of points x1, x2, x3, ..., xr ∈ Rn
+ are affinely independent if and only

if
∑r

i=1 λixi = 0 and
∑r

i=1 λi = 0 is uniquely solved by λi = 0 for all i = 1, ..., r.

The number of affinely independent points is one more than the number of linearly

independent vectors for a particular convex set. Furthermore, the dimension of a convex

13



set can be stated as the maximum number of affinely independent points minus one.

This also suggests that an empty set has a dimension of -1.

A critical component of integer programming polyhedral theory is the idea of a valid

inequality or cutting plane. A valid inequality is any inequality that does not eliminate

a feasible solution. Thus, αT x ≤ β is valid for P conv if, and only if, every x′ ∈ P satisfies

αT x′ ≤ β.

Every valid inequality defines a face of P conv. Let αT x ≤ β be a valid inequality of

P conv, then its corresponding face is the set of points in the polyhedron that meets this

inequality at equality. Formally, the face defined by αT x ≤ β is {x ∈ P conv : αTx = β}.

There are an infinite number of inequalities that could induce the faces of a poly-

hedron, but the most important faces are contingent upon the dimension. Those valid

inequalities that induce a face with dimension of exactly one less than the dimension of

P conv are categorized as facet defining inequalities. Defining at least one valid inequality

for each and every facet is sufficient to describe P conv. This concept is a fundamental

aspect of research in integer programming [4, 7, 9, 10, 26, 32, 34, 45, 50, 57, 65]. Fur-

thermore, finding new classes of facet defining inequalities should remain an essential

part of IP research for years to come.
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2.3 Knapsack Problem

Within the realm of integer programming, a special type of IP is the Knapsack

Problem (KP). The term knapsack is used because this kind of problem is analogous

to packing a bag with n items, where each item has a certain benefit, ci, and mass,

ai. Regardless of the benefit of the items, the total weight in the bag must be less

than the specified limit the person can carry, which in this case is b. The formulation

for a knapsack problem is maximize
∑n

i=1 cixi and subject to
∑n

i=1 aixi ≤ b and xi =

{0, 1} ∀i = 1, ..., n.

Notice that a knapsack polyhedron is independent of the objective function. Rather

a knapsack polyhedron only considers finding valid solutions and therefore only requires

satisfying the constraints. Therefore, an objective function will only be given in examples

in which it is specific to the problem. Just as IP problems are NP-hard, KP problems

follow suit. Thus, it is useful to find new methods to efficiently solve KP problems.

Let the feasible region of a KP be denoted by PKP = {x ∈ B
n :

∑n

i=1 aixi ≤ b} and

P conv
KP = conv(PKP ).

Without losing generality, assume that the variables ai are sorted in descending order.

Thus ai ≥ aj where i < j and i, j ∈ N . Assume that ai ≥ 0 ∀ i ∈ N . However, if any

ai < 0, then xi is replaced with x′
i = 1 − xi and it is equivalent to ai > 0. Moreover, if

ai ≥ b, then xi = 0 for all feasible solutions and xi can be eliminated from the problem.

With these assumptions stated it can be seen that P conv
KP is full dimensional with the

affinely independent points of 0 and ei ∀ i = 1, 2, ..., n where ei is the ith identity point.
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Objects 1 2 3 4 5 6 7 8
Benefit 100 45 60 49 36 9 14 3
Weight 20 18 15 14 12 9 7 6

Table 2.1: Associated Weight and Benefit

Example 2.3.1 Consider the following knapsack problem. Using the analogy of the

camper, in this problem there are a total of 8 objects. The associated benefits and the

weight for each object is given in the Table 1. Additionally, the camper is constrained

by a maximum weight of 53. The main objective of the problem is to maximize the

benefit while not violating the weight constraint. The corresponding IP is as follows.

Maximize

100x1 + 45x2 + 60x3 + 49x4 + 36x5 + 9x6 + 14x7 + 3x8

Subject to

20x1 + 18x2 + 15x3 + 14x4 + 12x5 + 9x6 + 7x7 + 6x8 ≤ 53

xi = {0, 1} ∀ i = 1, 2, ..., 8.

The solution to the problem is (1, 0, 1, 1, 0, 0, 0, 0) with the total benefit equal to 209.

Thus, the camper should pack objects 1, 3 and 4, which have an overall weight = 20 +

15 + 14 = 49 lbs. The benefit = 100 + 60 + 49 = 209.

A knapsack constraint has much importance since it is closely related to IP problems.

This is because any binary IP constraint can be modified to fit the stipulations of a

KP. If the IP constraint is of type ’=’, then it is transformed into two separate valid

inequalities, one with ’≤’ and the other with ’≥’. A greater than or equal to constraint

can be multiplied by -1 to become less than or equal to constraints. As mentioned
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previously, if any ai < 0, then xi is replaced with x′
i = 1 − xi. On the other hand, if

ai > 0, then that variable can be dropped from the problem. Therefore, a cutting plane

of a KP is applicable to a binary IP constraint. Determining robust cutting planes for

a KP plays a significant role in integer programming research [8, 75, 63].

There are other forms of a knapsack problem. The most relevant to this research is the

multiple knapsack problem. A Multiple Knapsack (MK) problem has multiple knapsack

constraints which may be volume, budget, or resources when considering the knapsack

analogy. The formulation for a multiple knapsack problem is maximize
∑n

i=1 cixi and

subject to
∑n

i=1 ajixi ≤ bj for j = 1, ..., m and xi = {0, 1} for i = 1, ..., n. In this case,

let the feasible region of a MK be denoted by PMK = {x ∈ B
n :

∑n

i=1 ajixi ≤ bj} for

j = 1, ..., m and P conv
MK = conv(PMK).

2.4 Covers

For a knapsack problem one of the most common cutting planes is called a cover

inequality. A cover is a set of indices that when the variables are set to one violates

the right hand side of the constraint. Formally, a cover, C , is defined as a set of indices

where Σi∈C ai > b.

When forming a cover, it is important to select the most beneficial covers. One type

of cover is a minimal cover. Minimal covers are covers in which the removal of any

one index from the set causes the set not be a cover. Formally, a cover is minimal if

ΣiǫC−{j} ai ≤ b for each j ∈ C . Minimal covers have a dimension of at least |C| − 1 in
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P conv
KP , which is why they are more useful than other covers.

Reconsider the constraint of the knapsack problem 20x1 +18x2 +15x3+14x4 +12x5 +

9x6 + 7x7 + 6x8 ≤ 53. From this constraint, a cover C can be {1, 2, 3, 5, 6, 8} because

the sum of the coefficients 20 + 18 + 15 + 12 + 9 + 6 = 80 > 53. Another cover could be

{3, 4, 5, 6, 7} as the sum of these variables is 57 > 53. Covers can include any number

or combination of variables. As a result, there can be exponentially many covers for a

given problem. A cover takes the form,
∑

i∈C xi ≤ |C| − 1, which is a valid inequality

and it is called a cover inequality.

Using the same constraint from above, the cover with indices {2, 3, 4, 5} exists because

the sum of the coefficients 18 + 15 + 14 + 12 = 59, which is greater than the right hand

side value of 53. The valid cover inequality is x2 + x3 + x4 + x5 ≤ 3. This is also a

minimal cover since the removal of any element from the cover results in the sum of the

coefficients being less than 53.

A way to strengthen a cover inequality is to find an extended cover. A set E(C) =

C ∪ {j ∈ N − C : aj > ai ∀ i ∈ C} is called an extended cover of C . E(C) can be used

to generate an extended cover inequality, which takes the form,
∑

i∈E(C) xi ≤ |C| − 1.

Extended covers are valid inequalities and the following theorem shows the necessary

and sufficient conditions for an extended cover inequality E(C) to be facet defining [50].

Theorem 2.4.1. Let C = {i1, i2, ..., ir} be a minimum cover with i1 < i2 < ... < ir. If

any of the following conditions hold, then the extended cover inequality is a facet defining

inequality of P conv
KP .
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a. C = N .

b. E(C) = N and (i) (C\{i1, i2}) ∪ {1} is not a cover.

c. C = E(C) and (ii) (C\{i1})∪{p} is not a cover, where p = min{i : i ∈ N\E(C)}.

d. C ⊂ E(C) ⊂ N and (i) and (ii).

Thus we can extend the cover C to E(C) by appending 1, which results in E(C) =

{1, 2, 3, 4, 5}. The extended cover inequality is x1 +x2+x3 +x4+x5 ≤ 3. This inequality

satisfies Theorem 2.4.1 and is facet defining. The eight affinely independent points that

help prove this are shown in the following matrix.

1 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0

0 1 0 1 1 1 1 1

1 1 1 0 1 1 1 1

1 1 1 1 0 1 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Extended covers can be very helpful, but sometimes these inequalities are not facet

defining. Lifting improves the dimension of an inequality. There are several ways to do

lifting and these techniques are discussed in the next section.
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2.5 Lifting

Determining methods to generate cutting planes is a staple of integer programming

research. One way to create cutting planes is a technique called lifting. The purpose of

lifting is to strengthen an existing valid inequality by changing some of the coefficients

in the inequality. Ralph Gomory [44] was the first to implement lifting and further

advancements in the technique were made in [4, 10, 11, 12, 22, 26, 29, 32, 34, 37, 46, 47,

49, 57, 65, 68, 74, 90]. There are at least three broad categories of lifting; up vs down,

exact vs approximate, and sequential vs simultaneous. Given the three categories and

the two options for each lifting attribute, there are a total of 8 (23) different ways to

conduct lifting.

An important component of lifting is the concept of a restricted space. Let the

restricted space of P conv on the set of E ⊆ N be defined as P conv
E,K = conv{x ∈ P : xj =

kj for all j ∈ E} where K = (k1, k2, ..., k|E|) ∈ Z|E|. Instead of observing the polyhedron

in entirety, only a subset of variables is considered in a restricted space. This implies

that xj = kj for all j ∈ E. In other words all variables with indices in E are fixed to

certain values.

The general lifting procedure starts with an inequality
∑

i∈N\E αixi +
∑

i∈E αixi ≤ β

that is valid over P conv
E,K . The lifting procedure seeks a valid inequality of the form

∑

i∈N\E αixi +
∑

i∈E α′
ixi ≤ β ′ that is valid over P conv . These different versions of lifting

are determined by the size of the set E, the values of K and the values of α′ and β ′.

Exact lifting stipulates that the coefficients be calculated with complete accuracy.
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Thus, exact lifting should increase the dimension of the inequality as there must exist

a point not in the restricted space that meets the exact lifted inequality it at equality

[10, 36, 78]. Since exact lifting typically requires solving an integer program, researchers

have sacrificed the accuracy of the lifting coefficient for a faster time to obtain the

coefficient. This is called approximate lifting and has been used by [76, 85].

Sequential lifting changes the coefficients for one variable at a time so |E| = 1.

Simultaneous lifting modifies the coefficient of a group of variables at the same time and

|E| ≥ 2. In recent times, a substantial amount of research has recently been done on

efficient methods to perform simultaneous lifting[5, 48, 49, 79, 86].

Uplifting assumes that there is a valid inequality of P conv
E,K where K = {0, 0, ..., 0}.

Uplifting does not change the right hand side of the valid inequality and seeks to increase

the coefficients associated with variables in E. Since this thesis primarily focuses on

uplifting, any P conv
E,K with K = {0, 0, ..., 0} is denoted as P conv

E .

Conversely, down lifting assumes a valid inequality of P conv
E,K where K = {uj1, uje , ...,

uj|E|
} where uj is the upper bound for variable j. Down lifting typically decreases the

values of the right hand side of the valid inequality and also the coefficients for the

variables in E. There is also a middle lifting, which is roughly a combination of both up

and down lifting [84].

This research develops theoretical results for exact simultaneous uplifting.

21



2.5.1 Sequential Lifting

The most widely used lifting method is sequential uplifting [7, 9, 50, 67, 83, 84].

Sequential uplifting a binary variable begins by formulating an IP in which the valid

inequality is the objective function, while the constraints are kept the same as the

original. Then the variable that is to be lifted is set to 1 so another constraint is inserted

to represent this. Next the IP is solved and the objective value, Z∗, is computed. To

determine the lifting coefficient, α = β − Z∗. Each time a different variable is lifted, a

constraint is substituted to set that variable to 1 and the objective function is updated.

With these changes the IP is then resolved. The new objective value is obtained and

then α is calculated. The process repeats for each variable that is to be lifted. The

order of lifting is important as different orders result in different lifting coefficients. The

following example explains this.

Example 2.5.1 The next example uses the previous knapsack problem and has C =

{1, 2, 3, 4}. The cover inequality is x1 + x2 + x3 + x4 ≤ 3. The variables to be sequen-

tially uplifted are x5, x6, x7 and x8. Sequentially lifting x5 requires solving the following

integer program:
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Maximize

x1 + x2 + x3 + x4

Subject to

20x1 + 18x2 + 15x3 + 14x4 + 12x5 + 9x6 + 7x7 + 3x8 ≤ 53

x5 = 1

xi = {0, 1} ∀ i = 1, 2, ..., 8.

The solution is Z∗ = 2 with (0, 0, 1, 1, 1, 0, 0, 0). The coefficient for lifting x5 is α5 =

3 − 2 = 1. The new uplifted inequality is now x1 + x2 + x3 + x4 + x5 ≤ 3. Next x6 is

lifted by solving the following problem.

Maximize

x1 + x2 + x3 + x4 + x5

Subject to

20x1 + 18x2 + 15x3 + 14x4 + 12x5 + 9x6 + 7x7 + 3x8 ≤ 53

x6 = 1

xi = {0, 1} ∀ i = 1, 2, ..., 8.

The solution is Z∗ = 3 with (0, 0, 1, 1, 1, 1, 0, 0). The coefficient for lifting x6 is α6 =

3−3 = 0. The inequality is now x1+x2+x3+x4+x5+0x6 ≤ 3. Since x6 was uplifted into

the inequality with a zero coefficient, and both x7 and x8 have smaller coefficients than

x6, it can be concluded that Z∗ will be 3 or higher. As a result, α7 and α8 are 0. Thus, the

sequentially lifted inequality is finished and is x1+x2+x3+x4+x5+0x6 +0x7+0x8 ≤ 3.
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This inequality is facet defining.

As stated earlier, sequential lifting involves changing one variable at a time, each

with its own coefficient, in the overall inequality. This requires resolving an optimization

problem each time a new variable is to be lifted. It is also important to note that the

order the variables are lifted can vary. As a result, there are (n − |C|)! different ways

to perform sequential lifting in this problem. Similarly, as the lifting order varies, the

coefficients of the lifted variables may possibly change.

In the previous example x5 was the first variable to be lifted, but it is possible to

start with any of the variables from x5 to x8. In this problem any variable from x5 to x7

chosen to be lifted first would have an α = 1, while the the other two variables would

have α = 0. No matter the order x8 is lifted with a coefficient of 0. Performing each

of the lifting sequences leads to the group of valid and facet defining inequalities listed

below:

x1 + x2 + x3 + x4 + x5 ≤ 3

x1 + x2 + x3 + x4 + +x6 ≤ 3

x1 + x2 + x3 + x4 + +x7 ≤ 3

Averaging these inequalities together results in the following inequality: x1 + x2 +

x3+x4+ 1
3
(x5+x6+x7) ≤ 3. Since x5 to x7 are being uplifted with the same value this is

an example of simultaneous lifting, which is discussed in the next section. Furthermore,

this 1
3

coefficient can be strengthened so this is an example of approximate simultaneous

uplifting.

24



2.5.2 Simultaneous Lifting

The advent of simultaneous lifting is another approach to generate cutting planes.

This method originated in 1978 by Zemel [89]. However, Zemel’s method could only

lift integer programs with binary variables and still required solving exponentially many

IPs. Clearly, this method is technically accurate, but it cannot be applied in a practical

instance so it is more of a theoretical result.

Since the late 1990s research has continued in this area. The next development in

simultaneous lifting was sequence independent lifting [5, 48, 79]. Sequence indepen-

dent lifting is a technique that ignores the order in which the variables are lifted and

does not require solving any integer programs. The basic idea is to develop a super-

additive function for a cover inequality and then there exists a lower bound for every

coefficient. Thus, all variables are lifted simultaneously based off of a simple expression.

While sequence independent lifting is a faster technique to create cutting planes, it is

only an approximate lifting technique. Therefore, the valid inequalities formed are not

necessarily facet defining and could be strengthened.

Exact simultaneous lifting aims to work efficiently but not sacrifice any precision. In

simultaneous lifting a set of variables is added to the inequality. The advantage of this

method is that by lifting multiple variables at the same time it reduces the number of

optimization problems that have to be solved. Furthermore, these inequalities tend to

be stronger cuts. Once the lifted inequality is formed it can be used as a cutting plane

and reduce the solution space of a integer program.
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A substantial amount of work on simultaneous lifting has continued at Kansas State

University under the guidance of Todd Easton. Easton and Hooker worked on the back-

ground concepts regarding simultaneous lifting research [52]. Ultimately, they presented

a linear time algorithm to simultaneously lift a set of variables into a cover inequality

for a binary knapsack problem.

In this case, let C represent a cover and E ⊆ N\C . The variables in E are simulta-

neously lifted into the cover inequality, which takes the form of
∑

i∈C xi + α
∑

j∈E xj ≤

|C| − 1 where α is the coefficient of lifting. This algorithm takes O(|C| + |E|) time to

generate a valid inequality assuming C and E are sorted in descending order.

Later Sharma extended this idea by performing additional theoretical research and

computational studies [78]. The advantage of Sharma’s technique is that it assists in

selecting which sets of variables to lift. The algorithm generates numerous inequalities

and needs quadratic time to run. Sharma also showed impressive computational results.

While Sharma was developing her method, Gutierrez [49] developed a lifting tech-

nique that can exactly lift sets of bounded integer variables simultaneously by solving a

single integer program. Gutierrez’s algorithm begins by setting α high, such as α = M .

An integer program is solved where the objective is the left hand side of the proposed

simultaneously lifted inequality with the specific α value. The constraints are the same

as of the original IP. If Z ≤ β, then the algorithm terminates and reports α as the lifting

coefficient. If Z > β, then the x∗ from the IP is used to solve for a new α and the process

repeats. The following problem demonstrates Gutierrez’s technique with the previous
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example.

Example 2.5.2 Reconsider the constraint 20x1 + 18x2 + 15x3 + 14x4 + 12x5 + 9x6 +

7x7 + 3x8 ≤ 53. This example has the cover C = {1, 2, 3, 4}. The valid inequality is

x1 + x2 + x3 + x4 ≤ 3. Since C is minimal, this inequality is facet defining over P conv
KPC

.

The variables to be simultaneously uplifted are x5, x6, and x7. This inequality takes the

form of x1 + x2 + x3 + x4 + α(x5 + x6 + x7) ≤ 3.

Applying Gutierrez’s method to this problem results in solving the following IP.

Maximize

x1 + x2 + x3 + x4 + x5 + M(x5 + x6 + x7)

Subject to

20x1 + 18x2 + 15x3 + 14x4 + 12x5 + 9x6 + 7x7 + 3x8 ≤ 53

xi = {0, 1} ∀ i = 1, 2, ..., 8.

The objective function has the value Z∗ = 3M+1 with the solution of (0, 0, 0, 1, 1, 1, 1,

0). Inserting the solution into the simultaneously lifted constraint set at equality results

in (0+0+0+1)+α(1+1+1) = 3. Solving for α leads to α = 2
3
. Since Z∗ > β = 3, the

process repeats again with the proposed inequality, x1+x2+x3+x4+
2
3
(x5+x6+x7) ≤ 3.

So the following IP is solved.
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Maximize

x1 + x2 + x3 + x4 + x5 + 2
3
(x5 + x6 + x7)

Subject to

20x1 + 18x2 + 15x3 + 14x4 + 12x5 + 9x6 + 7x7 + 3x8 ≤ 53

xi = {0, 1} ∀ i = 1, 2, ..., 8.

The objective function has the value Z∗ = 31
3

with the solution of (0, 0, 1, 1, 1, 1, 0, 0).

Inserting this solution into the simultaneously lifted constraint set at equality results in

(0 + 0 + 1 + 1) + α(1 + 1 + 0) = 3. This results in α = 1
2
. Since Z∗ > β = 3, the process

repeats with the proposed inequality x1 +x2 +x3 +x4 + 1
2
(x5 +x6 +x7) ≤ 3. Next, solve

Maximize

x1 + x2 + x3 + x4 + x5 + 1
2
(x5 + x6 + x7)

Subject to

20x1 + 18x2 + 15x3 + 14x4 + 12x5 + 9x6 + 7x7 + 3x8 ≤ 53

xi = {0, 1} ∀ i = 1, 2, ..., 8.

The objective function has the value Z∗ = 3 with the solution of (0, 1, 1, 1, 0, 0, 0, 0).

Since Z∗ = β = 3, the lifting procedure is completed and α remains at 1
2
. Thus,

Gutierrez’s simultaneous lifting algorithm generates the inequality x1 + x2 + x3 + x4 +

1
2
(x5 + x6 + x7) ≤ 3. The simultaneously lifted inequality clearly dominates the average

of the sequentially lifted inequality since the coefficient for lifting has increased from 1
3

to 1
2
. This inequality is facet defining as shown by the affinely independent points given
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in the following matrix.

0 1 1 1 0 0 0 0

1 0 1 1 0 0 0 1

1 1 0 1 1 1 1 1

1 1 1 0 1 1 1 1

0 0 0 0 0 1 1 0

0 0 0 0 1 0 1 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1

2.6 Graph Theory

From the outset of integer programming, graph theory has played a critical role

in improving the solution times to integer programs. This thesis builds upon the pre-

vious knowledge by focusing on the graphical and hypergraphical structures necessary

to perform exact simultaneous uplifting. Before these results can be discussed some

background on graph theory is necessary.

Graph theory has been in various problems from all sorts of sciences. Graphs are

uniquely helpful as they can visually represent large and complex problems that are

otherwise based on intangible ideas. They have applications in wireless communication

problems and mobile network optimization [30, 59, 81]. In addition, graph theory has a

played a vital role in electrical engineering and the development of computer chips [24,
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33, 38]. Some other fields that use graph theory are theoretical chemistry and genetics.

In chemistry, scientists use graph theory to better understand molecular structures and

bonds between atoms [6, 70, 80]. Similarly, graph theory is used for gene sequencing and

understanding biological systems [51, 62, 73]. Thus, the understanding of graph theory

is beneficial as it has a wide use of applications and it can contribute in many different

areas of research.

A graph is defined by G = (V, E) where V (G) = {1, ..., n} is the set of vertices and

E(G) = {d1, ..., dm} is the set of edges where di = {u, v} with u, v ∈ V . Given graphs

G = (V, E) and G′ = (V ′, E ′), if V ′ ⊂ V and E ′ ⊂ E, then G′ is a subgraph of G.

Graphs can have many different structures, each with unique properties and signifi-

cance. Some common types of graph structures include a clique, a hole, a star, a wheel,

and a tree, which are defined below.

An v1 − vn path begins from vertex v1 and follows edges until it reaches vn. It is

formally defined by V = {v1, ..., vn} and E = {vi, vi+1} for i = 1, ..., n− 1.

A cycle, Ln, is a graph that is a path with an additional edge between the starting

and ending vertices. It is formally defined by V = {v1, ..., vn} and E = {{Vi, Vi+1} : i =

1, ..., n− 1} ∪ {n, 1}.

A clique, Kn, is a graph where every vertex is adjacent to every other vertex.

Formally, a graph Kn is a clique of size n if and only if V (Kn) = {v1, ..., vn} and

{u, v} ∈ E(Kn) for all u, v ∈ V (Kn). In other words, a clique contains all possible


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
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edges.

A star or fan, Sn, is a graph where one central vertex is adjacent to all other peripheral

vertices but none of these peripheral vertices are adjacent to each other. It is formally

defined by V = {v1, ..., vn} and E = {{V1, Vi} : i = 2, ..., n}.

A hole, Yn, is a graph that is a cycle with no additional edges in the induced subgraph.

It is formally defined by V = {v1, ..., vn} and E = {{i, i+1} : i = 1, ..., n−1}∪{{n, 1}}.

An antihole, An, is the compliment of a hole. Therefore An = Kn \ E(Yn).

A wheel, Wn, is a graph that can be seen as a single central vertex adjacent to all other

peripheral vertices and the peripheral vertices form a cycle. Equivalently, a wheel can

also be thought of as the combination of a star and hole together. It is formally defined

by V = {v1, ..., vn} and E = {(V1, Vi) : i = 2, ..., n}∪{vi, vi+1 : i = 2, ..., n−1}∪{vn, v2}.

A tree is a graph without any cycles. Trees play an important role when implementing

branching techniques to solve integer programs. For more information regarding graph

theory, refer to Diestel [35].

The basics of graph theory can be extended into hypergraph theory. Hypergraphs

build upon graphs by allowing for more flexibility regarding the characteristics of the

graph. Some graphical structures that are not possible to create with graphs can be

made with hypergraphs, and this allows for further research and applications in various

fields.
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2.7 Hypergraph Theory

In basic graph theory a graph is simply depicted by a list of vertices and edges

with 2 vertices in each edge. In hypergraph theory a hypergraph has edges that contain

any number of vertices. Although hypergraphs are less common than regular graphs,

they still have a significant impact on numerous applications and research endeavors.

Hypergraph theory has been used in the research of coding theory and many other

algorithms used in computer programming [13, 27, 77]. To better understand hypergraph

theory, some basic concepts are explained in [14].

The extension of graph theory to hypergraph theory has been emphasized in this

thesis, however there is some ambiguity of graph to hypergraph transitions that must be

accepted. The reason is that graphs can be represented by a simple listing of the vertices

and edges. Yet in the case of hypergraphs because a particular edge can encompass

multiple vertices, the definition of hypergraph structures is open to interpretation.

Take a cycle and a hypercycle for example. In regular graphs a cycle can be six

vertices (1, 2, 3, 4, 5, 6) and the six edges {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 1}}

that form a closed loop. For the hypercycle, even an edge that consists of three vertices

can form different hypergraphs. One hypercycle can have the edges shift by one vertex

at a time to form a total of six edges, {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 1},

{6, 1, 2}}. On the other hand, a stipulation can be that only the last vertex in the edge

can overlap between edges. This will result in a total of three edges {{1, 2, 3}, {3, 4, 5},

{5, 6, 1}}. The following definitions play an integral part in setting a foundation for the
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new research on hypergraphs and constellations.

A hypergraph, H = (V, E), is defined by a set of vertices, V (H) = {1, ..., n} and a

set of edges E(H) = {d1, ..., dm} where di ⊆ V (H) for all i = 1, ..., m. Unlike a graph

where edges are forced to be two vertices, hypergraphs can have an arbitrary number

of vertices in each edge. Thus, edges in a hypergraph can be any subset of vertices in

the vertex set. Given two hypergraphs H = (V, E) and H ′ = (V ′, E ′), if V ′ ⊆ V and

E ′ ⊆ E, then H ′ is a subhypergraph of H.

Critical to this work is the definition of a uniform hypergraph. A k-uniform hyper-

graph, Hk, is a hypergraph where all edges have k vertices. A k-uniform hypergraph is

denoted as Hk and defined as Hk = (V, E) where all d ∈ E satisfy |d| = k.

Similar to graphs, hypergraphs have several different structures that play a key role

in integer programming research. These include a hyperclique, a hyperhole, a hyperfan,

a hyperstar, a hyperwheel, and a hypertree which are defined below.

A hyperclique, Kn,k, where n is the number vertices and k is the edge size, is a

hypergraph that contains all possible edges of size k. Formally, a k-uniform hypergraph

Hk with n vertices is a hyperclique if, and only if, E(Kn,k) = {{u1, ..., uk} : u1, ..., uk ∈

V (Hk)}. This means that selecting any k vertices from the entire set of vertices is an

edge. It is important to note that in a hyperclique all possible
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edges exist.

A hyperfan, Fn,m,k, [52] is a k uniform hypergraph with n nodes that contains m < n

vertices, called CM , in the middle or hub. The remaining n − m vertices are called
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perimeter vertices and denoted by CP . Each edge contains CM and an additional k−m

nodes from CP . Additionally, ei∩ ej = CM for each ei, ej ∈ E(Fn,m,k). Notice that each

vertex in the perimeter is in exactly one edge.

A hyperstar, Sn,m,l,k, is a k uniform hypergraph with n nodes that contains m < n

vertices, called CM , in the middle or hub. The remaining n − m vertices are called

perimeter vertices and denoted by CP . The edge set consists of all possible combinations

that include exactly l vertices from the middle and k − l vertices from the perimeter.

Thus E(Sn,m,l,k) = {d ⊆ V : |d| = k, |d ∩ CM | = l and |d ∩ CP | = k − l}. There are

clearly
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edges in a hyperstar.

Observe that this definition is a slight modification from the hyperstars used by

Hooker and Easton [52]. Their hyperstars only had three parameters and assumed that

each edge must contain every vertex in the middle. This definition is more generic and

necessary for this research.

A hyperhole, Yn,k is a hypergraph with n vertices, {v1, ..., vn} if there is a relabeling of

the vertices such that E(Yn,k) = ∪n
i=1{vi, v(i mod n)+1, v((i+1) mod n)+1, ..., v((i+k−2) mod n)+1}.

Thus, a hyperhole creates a cyclic type structure of the edges.

A hyperantihole, An,k, is the compliment of a hyperhole. Therefore An,k = Kn,k \

E(Yn,k).

A hyperwheel is the union of a hyperfan and a hyperhole. Observe that the union of

a hyperstar and a hyperhole with the same sized edges is a hyperclique.
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A hypertree is an acyclic hypergraph; however the definition of a hypercycle is am-

biguous. So a hypergraph is a hypertree if the following reduction graph is acyclic. Let

an edge graph of a hypergraph be defined as follows. Each vertex of the graph corre-

sponds to an edge of the hypergraph. If two edges of the hypergraph share a vertex,

then the corresponding vertices in the graph have an edge between them.

2.8 Conflict Graphs and Integer Programming

Graphs are very helpful to integer programming research because they can be used to

show relationships between variables. Once the graph is determined, different graphic

structures create valid inequalities. In some cases, the structures can lead to facet defin-

ing inequalities, which is a primary goal of much of the research in integer programming.

The definitions discussed above are important because they act as a liaison between in-

teger programming and graph theory.

A graph of particular interest in this thesis is the conflict graph Gc = (Vc, Ec) [3,

31, 56]. It is a graph that depicts the constraints of a binary integer program. In a

conflict graph each vertex represents a variable, while an edge {u, v} exists between two

vertices if setting both variables equal to one is not a feasible point. Determining all

of the edges in a conflict graph and combining them together forms a conflict graph.

Thus, a conflict graph is used to visually show which sets of variables are infeasible.

The following example demonstrates how a knapsack problem can be converted into a

conflict graph.

35



Example 2.8.1 Consider the following example.

Maximize

4x1 + 1x2 + 7x3 + 5x4 + 6x5

Subject to

6x1 + 6x2 + 5x3 + 3x4 + 2x5 ≤ 7

xi ∈ {0, 1}

By looking at the constraint it is clear that setting x1 = 1 and x2 = 1 is not a

feasible point as 6 + 6 = 12, which is greater than 7. Thus {1, 2} ∈ Ec. Similarly,

x2 = 1 and x3 = 1 is not feasible so {2, 3} ∈ Ec. The same process can be repeated

for all combinations of variables 1, 2, 3, 4 and 5. This results in V (Gc) = {1, ..., 5} and

E(Gc) = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}}.

Observe that the vertices of each edge cannot both be set to one and be feasible.

Thus, edge {i, j} implies a valid inequality xi + xj ≤ 1. For edge {1, 5} the inequality is

x1 + x5 ≤ 1. In some instances, these inequalities can be combined to form a stronger

inequality. A common example of this is the clique inequality [4].

In this example {1, 2, 3, 4} is a clique. It is clear that a conflict graph is a set of

indices for which at most only one variable is set to one. If more than one variable

is set to one, then it is infeasible. The conflict graph has a clique {1, 2, 3, 4} since

E(Gc) contains {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. These associated inequalities

are listed below.

x1 + x2 ≤ 1
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x1 + x3 ≤ 1

x1 + x4 ≤ 1

x2 + x3 ≤ 1

x2 + x4 ≤ 1

x3 + x4 ≤ 1

Notice that all six edges of a
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clique are present. By combining the 6 inequalities,

the valid inequality x1 + x2 + x3 + x4 ≤ 1 can be formed. This is commonly known

as a clique inequality. A clique inequality is important because of its facet defining

characteristics.

In general, a maximal clique, Kn, is facet defining and has the following inequality

of
∑

i∈Kn
xi ≤ 1. Since every edge exists, no two variables can be set to one. Thus the

sum of all variables has to be one or less. Therefore the clique inequality is valid.

A star is also a useful structure. In general, a star, Sn, has the inequality (n−2)x1 +

∑n−1
i=2 xi+1 ≤ n − 2. Every node has an edge with x1, this suggests that at most x1 is

set to one, or all other variables can be set to one. Because the coefficient for x1 is the

same is the right hand side, the star inequality accommodates this and is valid. Stars

are important because they set the foundation for hyperstars, which are used in this

thesis. While stars alone are helpful in showing basic relationships among the indices,

hyperstars are much more useful since they can be facet defining. As a result, the

advancement from a star to a hyperstar is significant for the purpose of this research.
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Many researchers have used conflict graphs to depict integer programming polytopes

and to derive facet-defining inequalities. In some restrictive classes of integer programs,

induced subgraphs such as odd holes and odd anti-holes have also been shown to induce

valid inequalities, which are facet defining in some instances [2, 3, 16, 18, 25, 71]. An

odd hole, Yn, has the inequality
∑

i∈Yn
xi ≤ (⌊n

2
⌋). On the other hand, an odd anti-

hole has the inequality
∑

i∈An
xi ≤ 3. These structures are not necessarily used in this

thesis, however the goal in research of conflict graphs is to assist in determining valid

inequalities that are potentially facet defining.

2.9 Conflict Hypergraphs and Integer Programming

A conflict hypergraph, H = (V, E), is similar to a conflict graph except that the

edges include more than 2 vertices. Once again these edges correspond to infeasible sets

of vertices based off the constraints of the given integer programming problem. The

next example modifies the previous example to show how a conflict hypergraph can be

generated. Notice that b is now 13 instead of 7.

Example 2.9.1 Consider the following example.

Maximize

4x1 + 1x2 + 7x3 + 5x4 + 2x5

Subject to

6x1 + 6x2 + 5x3 + 3x4 + x5 ≤ 13

xi >= 0 ∀ i = 1, 2, ..., 5.
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By looking at the constraint it is clear that setting x1 = 1, x2 = 1, and x3 = 1 is

not a feasible point as 6 + 6 + 5 = 17. Thus {1, 2, 3} ∈ E. Similarly, x1 = 1, x3 = 1,

and x4 = 1 is not feasible so {1, 3, 4} ∈ E. The same process can be repeated for all

combinations of variables 1, 2, 3, and 4. Every edge implies a specific inequality. These

are listed below.

x1 + x2 + x3 ≤ 2

x1 + x2 + x4 ≤ 2

x1 + x3 + x4 ≤ 2

x2 + x3 + x4 ≤ 2

The conflict hypergraph has V (H) = {1, ..., 5} and E(H) = {{1, 2, 3}, {1, 2, 4},

{1, 3, 4}, {2, 3, 4}, {3, 4, 5}}. Notice that the induced hypergraph of {1, 2, 3, 4} is a K4,3

hyperclique. Therefore, a K4,3 hyperclique exists with V (H) = {1, ..., 4} and E(Hc) =

{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. The associated hyperclique inequality x1 + x2 +

x3 + x4 ≤ 2 is clearly valid.

Similar to a clique, a hyperclique inequality is significant because it can also have

facet defining characteristics. In general a hyperclique Kn,k defines a valid inequality of

the form
∑

i∈Kn,k
xi ≤ k − 1. Since a hyperclique implies that every edge is present in

the conflict hypergraph it suggests that only k − 1 variables can be selected. Selecting

k variables would form an edge irrespective of which variables are taken. Therefore the

39



hyperclique inequality is valid.

Another structure that creates a valid inequality is a hyperstar. A hyperstar Sn,m,l,k

induces a valid inequality. Recent work on hyperstars by [52] required m = l. In this case

a hyperstar generates a valid inequality of the form
∑

i∈CM
n−k+1

l
xi +

∑

i∈CP xi ≤ n−m.

These researchers provide additional results on when these inequalities are facet defining.
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Chapter 3

Simulataneous Uplifting with

Constellations

Chapter 3 discusses the basics of the constellation inequalities as well as the criteria

used to construct a constellation. Multiple theorems are given to assist in the proof

and understanding of constellations. Furthermore, an example with the step by step

process to determine the new constellation inequalities are shown. The inequalities are

also shown to be facet defining, which is an important aspect of research in integer

programming.
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3.1 Constellation Background

The fundamental advancement of this thesis is the creation of the conflict hyper-

graph substructure that enables simultaneous lifting. This structure is referred to as

a constellation, which is a collection of hyperstars and hypercliques across several con-

flict hypergraphs. Several preliminary comments must be given prior to providing a

definition.

The basic idea of a constellation is to have a small hyperclique, Km,k0
, surrounded

by a larger hyperclique, Km+p,kq , with hyperstar substructures, denoted by Sm+p,m,i,ki

where i ranges from 1 to k0 − 1, being contained in the hypergraphs consisting of edges

ranging in size from k0 +1 to kq −1. The vertices of the smaller hyperclique become the

middle of the constellation and the vertices of the larger hyperclique minus the vertices

of the smaller hyperclique are the perimeter.

With these two hypercliques, several hyperstars must be found. The middle and

perimeter of all of the hyperstars is the same as the middle and perimeter of the con-

stellation. The vertices selected from the middle of the hyperstar range from 1 to the

size of the edges in the smaller hyperclique minus one. Once the number of elements

from the middle are determined, the hypergraph with the minimum sized edge must

be determined where the induced subhypergraph of the middle and perimeter vertices

contains a hyperstar with the appropriate properties.

Formally, a collection of uniform hypergraphs H = {Hk0
, Hk1

, ..., Hkq} is a constella-

tion with m + p nodes, denoted by Cm,k0,S,m+p,kq where S is a set of four tuples, if, and
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only if, the following properties are satisfied:

(i) Each Hki
for i = 1, ..., q, has m + p vertices and each set of vertices can be

partitioned into the middle CM and the perimeter CP with |CM | = m and |CP | = p.

(ii) In Hk0
the induced subhypergraph of CM is a hyperclique.

(iii) In Hkq the induced subhypergraph of CM ∪ CP is a hyperclique.

(iv) For each (m + p, m, l, kl) ∈ S, the hypergraph with edges of size k ∈ l has a

subhyperstar with middle CM , perimeter CP and l vertices taken from the middle.

Constellations are complicated subhypergraphic structures. In general determining

the hyperstars that are a part of the constellations is a challenging problem. There is

no way to know beforehand exactly what the edge size of the conflict hypergraphs will

be nor how many edges will need to be argued to provide evidence of this hypergraph.

However, there is a bound on the number of edges required given by


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



m
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


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






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




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




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

represents the edges needed for the middle hyperclique. Addition-

ally,









m + p

kq
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





signifies the edges needed for the perimeter hyperclique. Next,
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is the maximum number of edges that could be found for any combination derived from
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a set of indices, and (
∑kq−1

i=1









m

i









) represents each possibility of edges selected from the

middle hyperclique. Together these factors contribute to the bound on edges needed to

find a constellation.

With such a complicated structure, do constellations even exist? Provided that there

are at least two hypercliques present in a multiple knapsack problem, a constellation can

always be found in a conflict hypergraph. The following theorem formalizes this idea.

Theorem 3.1.1. Given a PMK with corresponding collection of conflict hypergraphs

H1,...,Hn, if there exist Km,k0
and Km+p,kq hypercliques where V (Km,k0

)∩V (Km+p,kq ) =

V (Km,k0
) 6= ∅ and p ≥ 1, then Hk0

,...,Hkq contains a constellation.

Proof: Let CM = V (Km,k0
) and CP = V (Km+p,kq ) \V (Km,k0

) and (i) is satisfied.

From the assumption, conditions (ii) and (iii) are satisfied by the two hypercliques.

Since Km+p,kq is a hyperclique, there exists a hyperstar substructure in Hkq of the form

Sm+p,m,m′,kq for m′ = 1, ..., k0 − 1 and condition (iv) is satisfied.

2

Now that constellations are a common structure used in conflict hypergraphs, the

next step is to find the appropriate valid inequalities. Since there will be multiple hyper-

stars, it is necessary to find a lifting coefficient that is valid for each of the hyperstars. To

ensure that this occurs, the minimum lifting coefficient determined from the hyperstars

has to be used. The lifting coefficient puts a higher weight on the variables in CM , and

together with the variables in CP , a new valid inequality is created.
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The set of hyperstars S is the set of hyperstars Sm+p,m,j,kj
where m + p is the total

number of vertices, j is the number of vertices selected from CM , and kj is the edge size

for that particular hyperstar. The procedure to determine these hyperstars is simple

to describe, but NP-hard in general. Start by selecting one variable in the middle

hyperclique, and then select variables from the perimeter until infeasibility is reached.

Then select two variables from the middle, and select as many variables as needed to

reach infeasibility. Each time the process is repeated take one more variable from the

middle and follow the same steps. Continue to do this until k0 − 1 variables have

been taken from the middle. Once all of the hyperstars are determined, they form

S where S = {(m + p, m, 1, k1), (m + p, m, 2, k2), ..., (m + p, m, k0 − 1, kk0−1)} and

represents hyperstars in the appropriate hypergraph. All of this forms a constellation.

The following theorem describes how the lifting coefficients for both valid inequalities

are calculated from the set of hyperstars constructed from the two hypercliques.

Theorem 3.1.2. Given a multiple knapsack with corresponding collection of conflict

hypergraphs H, if there exists a constellation with middle CM and perimeter CP of the

form Cm,k0,S,m+p,kq where S represents the hyperstars in the constellation and is {(m +

p, m, 1, k1), (m+p, m, 2, k2), ..., (m+p, m, k0 −1, kk0−1)}, then the following inequalities

are valid for P conv
MK :

α
∑

i∈CM xi+
∑

i∈CP xi ≤ kq−1 where α ≤ α′∗ = min{min{j=1,...,k0−1}{
kq−1−(kj−j−1)

j
},

kq−1

k0−1
} (1).

∑

i∈CM xi+α
∑

i∈CP xi ≤ k0−1 where α ≤ α′′∗ = min{min{j=1,...,kq−1}{
k0−1−j

kj−j−1
}, k0−1

kq−1
}
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(2).

Proof: Given a PMK such that the conflict hypergraphs contain a constellation with

middle CM and perimeter CP of the form Cm,k0,S,m+p,kq . It suffices to prove the extreme

case when α = α∗ for any of the inequalities. If the extreme inequality is valid, then the

inequality is valid for any α < α∗. The proof will treat each inequality separately, but

the arguments are similar.

For contradiction, assume that constellation inequality (1) is invalid. Thus, there

exists an x′ ∈ PMK such that α
∑

i∈CM x′
i +

∑

i∈CP x′
i > kq − 1 (*). Assume |{x′

i = 1 :

i ∈ CM}| = m′ and |{x′
i = 1 : i ∈ CP}| = p′. If m′ = 0, then the inequality (*) reduces

to either hyperclique inequality or there are not enough coefficients in CP to violate this

inequality, a contradiction.

If p′ = 0, then m′ ≤ k0 − 1 due to the Km,k0
hyperclique. Since α ≤ kq−1

k0−1
, * reduces

to α
∑

i∈CM x′
i ≤

kq−1

k0−1
(k0 − 1) = kq − 1, a contradiction. Thus, m′ ≥ 1 and p′ ≥ 1.

Equation (*) now reduces to αm′ + p′ > kq − 1 and α >
kq−1−p′

m′ . However, Hkm′

does not contain a hyperstar with CM , CP and m′ vertices selected from CM due to the

existence of x′ where km′ = m′ + p′. Consequently, the hyperstar in the constellation

that contains m′ vertices from CM must have edges of size km′ where km′ ≥ m′ + p′ + 1.

Thus, (m + p, m, m′, km′) ∈ S where km′ ≥ m′ + p′ + 1. Since α is less than or equal to

the minimum, it must be less than the particular case when m′ vertices are taken from

the hub. Thus, α ≤ kq−1−(m′+p′+1−m′−1)
m′ = kq−1−p′

m′ <
kq−1−p′

m′ , which is a contradiction to

∗ and the first inequality is valid.
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For contradiction, assume that constellation inequality (2) is invalid. Thus, there

exists an x′′ ∈ PMK such that
∑

i∈CM x
′′

i + α
∑

i∈CP x
′′

i > k0 − 1 (**). Assume |{x
′′

i =

1 : i ∈ CM}| = m′′ and |{x
′′

i = 1 : i ∈ CP}| = p′′. If p′′ = 0, then the inequality (**)

reduces to hyperclique inequality, which is clearly valid, a contradiction.

If m′′ = 0, then p′′ ≤ kq − 1 due to the Km+p,kq hyperclique. Since α ≤ k0−1
kq−1

, **

reduces to α
∑

i∈CP x′′
i ≤ k0−1

kq−1
(kq − 1) = k0 − 1, a contradiction. Thus, m′ ≥ 1 and

p′ ≥ 1.

Equation (**) now reduces to m′′ + αp′′ > k0 − 1 and α > k0−1−m′′

p′′
. However, Hkm′′

does not contain a hyperstar with CM , CP and m′′ vertices selected from CM due to the

existence of x′′ where km′′ = m′′ + p′′. Consequently, the hyperstar in the constellation

that contains m′′ vertices from CM must have edges of size km′′ where km′′ ≥ m′′+p′′+1.

Thus, (m + p, m, m′′, km′′) ∈ S where km′′ ≥ m′′ + p′′ + 1. Since α is the minimum, it

must be less than the particular case when m′′ vertices are taken from the hub. Thus,

α ≤ k0−1−m′′

m′′+p′′+1−m′′−1
= k0−1−m′′

p′′
< k0−1−m′′

p′′
, which is a contradiction to ∗∗ and the result

follows.

2

As mentioned in Chapter 2, defining at least one valid inequality for each and every

facet sufficiently describes P conv. Thus, the aim is that the new constellation inequalities

are not only valid, but more importantly facet defining. Before this important result

can be obtained, one more definition is necessary.

For each constellation, there exists an α′∗ = min{j=0,...,k0−1}{
kq−1−(kj−j−1)

j
}. Define
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j′ to be the j that achieves this minimum. Similarly, let α′′∗ = min{j=1,...,kq−1}{
k0−1−j

kj−j−1
}

and j′′ be the j that achieve this minimum. The next theorem describes when the

constellation inequality defines a large dimensional face.

Theorem 3.1.3. Given a multiple knapsack problem with corresponding collection of

conflict hypergraphs Hk0
,...,Hkq and a Cm,k0,S,m+p,kq , then

The constellation inequality (1) defines a face of dimension at least m + p − 1 if

α = α′∗, every vertex in CP is in at least one minimal edge in Km+p,kq with K0 +2 ≤ Kq

and every vertex in CM is in at least one minimal edge in Sm+p,m,j′,kj′
where j′ is the

arg min{j=1,...,kq−1}{
k0−1−j

kj−j−1
}.

Proof: To show that constellation inequality α′∗
∑

i∈CM xi +
∑

i∈CP xi ≤ kq − 1 (1) with

α′∗ = min{j=1,...,k0−1}{
kq−1−(kj−j−1)

j
} defines a face of dimension m + p − 1, assume j′

is the arg min{j=1,...,kq−1}{
k0−1−j

kj−j−1
}, every vertex in CP is in at least one minimal edge

in Km+p,kq , every vertex in CM is in at least one minimal edge in Sm+p,m,j′,kj′
. Assume

similar assumptions for (ii).

Clearly, the dimension of a multiple knapsack problem is full dimensional (dim(P conv
MK =

n)) as long as no ai,j > bi, which is a standard assumption for all multiple knapsack

problems. From Theorem 3.1.2 (i) and (ii) are valid. From the assumption regarding

ai,j > bi, H1 contains no edges and so k0 and kq ≥ 2. Thus, the origin never satisfies (i)

or (ii) at equality since the right hand side is at least one. Consequently, both (i) and

(ii) induce faces of dimension at most n−1. So it remains to find n affinely independent

points that meet each of these inequalities at equality.
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Hooker [52] has shown that if there exists a hyperclique Km,k in a conflict hypergraph

such that each vertex belongs to a minimal edge, then there there exist m points that

meet the hyperclique inequality at equality. Consequently, P contains |CM| affinely

independent points that meet
∑

i∈CM xi = k0 − 1. Clearly each of these points have

all variables associated with indices in CP set equal to 0 and meet this constellation

inequality at equality.

Finding the remaining n− |CM| affinely independent points is fairly straightforward

and follows a similar line of reasoning as used by Hooker. From the assumption every

vertex in CP is in at least one minimal edge in the hyperstar in Hkj′′
. Now create a

graph G = (CP , EG) by having {u, v} ∈ EG if u and v ∈ CP and u and v are in the same

minimal edge in the hyperstar in Hkj′′
. The graph G naturally divides in to components

and only component 1 will be considered here. Iteratively repeating this process provides

|CP | more affinely independent points.

Due to the structure of the hyperstar every minimal edge in the hyperstar must

contain at least 2 vertices in CP or CM does not induce a maximal hyperclique a con-

tradiction to a constellation. Select a minimimal edge in the hyperstar and let this

edge be denoted by d = {i1, ..., ij′′, ij′′ + 1, ..., ikj′′
} where vertices i1, ..., ij′′ ∈ CM and

ij′′ + 1, ..., ikj′′
∈ CP . Include the points

∑

j=d ej − el for each l ∈ {ij′′ + 1, ..., ikj′′
}. Let

D = {ij′′ + 1, ..., ikj′′
}.

In G find a vertex vi adjacent to D. Thus there exists a minimial edge d′ that contains

vi and at least one vertex from D. If |d′ \ D| = 1, then include the point
∑

j∈d′ ej − el
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for some l ∈ (d′ ∩D) \CM . If |d′ \D| ≥ 2, then include the points
∑

j∈d′ ej − el for each

l ∈ d′ \ D. Set D to be D ∪ d′ and iteratively repeat this process until D is equal to

component 1. Repeating for each component generates the remaining points.

These points are clearly affinely independent as the bulk of the points comprise a

cyclical permutation of say r ones over a r + 1 rows and columns. Furthermore, each

point is feasible due to the definition of a minimal edge and finally, each of these points

meet the inequality at equality. Thus, this inequality has at least m+p points in P that

meet this inequality at equality and the result follows.

2

With this complicated proof, it is now trivial to follow a similar argument to show

that the other constellation inequality can define a large dimensional face. Formally,

Corollary 3.1.4. Given a multiple knapsack problem with corresponding collection of

conflict hypergraphs Hk0
,...,Hkq and a Cm,k0,S,m+p,kq , then

The constellation inequality (2) defines a face of dimension at least m + p − 1 facet

defining if α = α′′∗, every vertex in CM is in at least one minimal edge in Km,k0
and

every vertex in CP is in at least one minimal edge in Sm+p,m,j′′,kj′′
where j′′ is the

arg min{j=1,...,kq−1}{
k0−1−j

kj−j−1
}.

Proof: An extremely similar proof exists for the other inequality. The difference is the

points that begin are taken from the Km+p,kq and the points cycle through CP . Then the

points are found similarly by fixing the number of points taken from CP and removing

one from CM in the appropriate minimal edge in the hyperstar. Thus, the result follows.
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2

With these two results, it is now straightforward to provide conditions when these

inequalities are facet defining. While many conditions exist one of the simplest involves

the maximality of a hyperclique.

Theorem 3.1.5. Given a multiple knapsack problem with corresponding collection of

conflict hypergraphs Hk0
,...,Hkq that contain a Cm,k0,S,m+p,kq , which satisfies the condi-

tions in Theorem 3.1.3, and CP is a maximal hyperclique in Hkq \CM , then the constel-

lation inequality (1) is facet defining.

Proof: Since CP is a maximal hyperclique in Hkq \ CM , there exists does not exist at

least one edge in Hkq of the form {vk} ∪ {v1, ...vkq−1} for each vk ∈ Hkq \ (CP ∪ CM).

Since this edge doesn’t exist, the point ek + e1 + ... + ekq−1 is feasible and clearly meets

the constellation inequality (1) at equality. Add these points to the previous m + p

points generated from Theorem 3.1.3. These points are clearly affinely independent and

the result follows.

2

A similar result is readily available for the other constellation inequality.

Theorem 3.1.6. Given a multiple knapsack problem with corresponding collection of

conflict hypergraphs Hk0
,...,Hkq that contain a Cm,k0,S,m+p,kq , which satisfies the condi-

tions in Theorem 3.1.3, and CM is a maximal hyperclique in Hk0
\CP , then the constel-

lation inequality (2) is facet defining.
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Proof: Since CM is a maximal hyperclique in Hk0
\ CP , there exists does not exist at

least one edge in Hk0
of the form {vk} ∪ {v1, ...vk0−1} for each vk ∈ Hk0

\ (CP ∪ CM).

Since this edge doesn’t exist, add the point ek + e1 + ... + ek0−1 to the previous m + p

points generated from Corollary 3.1.4. These points are clearly affinely independent and

meet the inequality at equality. So the result follows.

2

The next section provides a detailed example for constructing a constellation given

a multiple knapsack problem. This assists in understanding how the theory described

above can be applied in a practical sense.

3.2 Constellation in a Multiple Knapsack

A constellation can be a difficult concept to visualize, let alone comprehend. Thus the

next example combines all of the criteria required to form a constellation and uses the

theorems to determine the new constellation inequalities. A detailed explanation of the

process is given, followed by the valid inequalities and the affinely independent points

to show that these inequalities are indeed facet defining for the given multiple knapsack

problem.

Example 3.2.1 The following example depicts a constellation.

52



12x1 + 17x2 + 153 + 4x4 + 18x5 + 8x6 + 9x7 + 13x8 + 9x9 + 8x10 + 6x11 + 6x12 ≤ 53

18x1 + 15x2 + 163 + 18x4 + 6x5 + 10x6 + 11x7 + 8x8 + 10x9 + 7x10 + 7x11 + 8x12 ≤ 56

10x1 + 12x2 + 113 + 16x4 + 17x5 + 10x6 + 9x7 + 11x8 + 8x9 + 6x10 + 8x11 + 7x12 ≤ 54

xi = {0, 1} ∀ i = 1, 2, ..., 12.

Observe that {1, 2, 3, 4, 5} induces a K5,4 hyperclique. This is because constraint

1 has edges {1, 2, 3, 5} and {2, 3, 4, 5}. In addition constraint 2 has edges {1, 2, 3, 4},

{1, 2, 4, 5}, and {1, 3, 4, 5}. Notice all









5

4









= 5 edges are derived. Therefore, the valid

hyperclique inequality is x1 + x2 + x3 + x4 + x5 ≤ 4.

Now the size of the large hyperclique must be determined and {1, ..., 12} induces a

K12,7 hyperclique. This is because the point (0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1) is feasible so

there does not exist a K12,6. However, the point (0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1), which has

the seven variables with the smallest coefficients from constraint 1, violates constraint

2 as 71 > 56. Replacing any variable with another in this point would only increase the

value of the point and therefore violate constraint 1. Thus, the K12,7 is a hyperclique with

the corresponding valid inequality x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12 ≤

6.

The basis of a constellation are two hypercliques with one vertex set a subset of

the other vertex set. Clearly, the K12,7 and K5,4 hypercliques are such structures. The

constellation is on vertices {1, 2, ..., 12}, which will be partitioned into the middle CM =

{1, 2, 3, 4, 5} and the perimeter CP = {6, 7, ..., 12}. Therefore, the simultaneously lifted
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inequality will take the form α′(x1+x2+x3+x4+x5)+x6+x7+x8+x9+x10+x11+x12 ≤ 6.

A second inequality x1 + x2 + x3 + x4 + x5 + α′′(x6 + x7 + x8 + x9 + x10 + x11 + x12) ≤ 3

is also formed.

To calculate α′ and α′′ it requires determining the edge size that would induce a

hyperstar of the appropriate size on the conflict hypergraph generated from {1, 2, ..., 12}.

Since there is a K5,4, no four vertices from the middle can induce a feasible solution.

Therefore, the only hyperstars of interest have 1, 2 or 3 vertices selected from the middle.

Thus, we must find the minimum kq1
, kq2

, and kq3
that make S12,5,1,kq1

, S12,5,2,kq2
, and

S12,5,3,kq3
hyperstars.

In this example, a total of 1462 conflict hypergraph edges are argued. This number

is based on the two hypercliques found above, and the three hyperstars each with the

appropriate kqi
values that together constitute of a constellation. Although the number

of edges has already been given, it is actually calculated after all of the hypercliques and

hyperstars are determined. For this problem the max number of edges would be
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) and this equals 1672, which is greater than

1462.

There is a S12,5,1,6 hyperstar. Observe that the point (0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1)

is a feasible point. Thus, there is not a S12,5,1,5 hyperstar. In constraint 1, taking

variable 2 from CM and the five smallest coefficients corresponding to indices from

CP form the point (0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1). Evaluating this point in constraint 1
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leads to a sum of 54 > 53 and so this point is not feasible. Similarly, taking variable

5 from CM and the corresponding five smallest coefficients from CP form the point

(0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1), which leads to a sum of 55 > 53 and it violates constraint

1. Therefore any point with either variable 2 or 5 from CM and five variables from CP

is not feasible and the corresponding edges exist in H6.

Applying the same method to constraint 2 results in showing that either variable 1 or

4 from CM and the five smallest coefficients from CP violate this constraint. Therefore,

these edges are in H6.

In constraint 2, taking variable 3 from CM and the five smallest coefficients of the in-

dices from CP form either the point (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1) or (0, 0, 1, 0, 0, 0, 0, 1, 1, 1,

1, 1). Choosing any other combination of five variables from CP with variable 3 violates

the second constraint. Now both (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1) and (0, 0, 1, 0, 0, 0, 0, 1, 1, 1,

1, 1) violate constraint 1 as 57 > 53 and 56 > 53, respectively. Therefore any point with

variable 3 from CM and five variables from CP is not feasible.

Thus, there is no feasible point with one variable from CM and five variables from

CP . Consequently, H6 contains a S12,5,1,6 hyperstar.

There is also a S12,5,2,6 hyperstar. Observe that the point (0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1)

is a feasible point. Thus, there is not a S12,5,2,5 hyperstar because it is missing at least

one edge. In constraint 1, excluding variable 4, selecting any two of variables 1, 2, 3,

or 5 from CM and the four smallest coefficients of the indices from CP violates this

constraint.
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Next in constraint 2, taking variable 4 along with any one of variables 1, 2, or 3 from

CM and the four smallest coefficients of the indices from CP violates this constraint.

Similarly, in constraint 3 taking variables 4 and 5 from CM and the four smallest coef-

ficients of the indices from CP violates the third constraint.

Thus, there is no feasible point with any two of the five variables from CM and four

variables from CP . Consequently, H6 contains a S12,5,2,6 hyperstar.

For the last case, there is a S12,5,3,5 hyperstar. Observe that the point (1, 0, 0, 1, 1, 0, 1,

0, 0, 0, 0, 0) is a feasible point. Thus, there is not a S12,5,3,4 hyperstar because it is missing

at least one edge. In constraint 1, excluding variable 4, selecting any three of variables

1, 2, 3, or 5 from CM and the two smallest coefficients of the indices from CP violates

this constraint.

In constraint 2, taking variable 4 along with any two of variables 1, 2, or 3 from CM

and the two smallest coefficients of the indices from CP violates the constraint. Lastly,

in constraint 3 taking variables 4 and 5, and one of variables 1, 2, or 3 from CM and the

two smallest coefficients of the indices from CP violates the third constraint.

Thus, there is no feasible point with any three of the five variables from CM and two

variables from CP and H5 contains a S12,5,3,5 hyperstar.
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3.3 Constellation Summary

In summary H4 contains a K5,4 hyperclique, H5 contains a S12,5,3,5 hyperstar, H6

contains S12,5,1,6 and S12,5,2,6 hyperstars, and H7 contains a K12,7 hyperclique. The

conflict hypergraphs H4,...,H7 contain a constellation of the form C5,4,S,12,7 where S =

{(12, 5, 1, 6), (12, 5, 2, 6), (12, 5, 3, 5)}. Using Theorem 3.1.3 the simultaneous lifting co-

efficient is calculated by finding the minimum {kq−1−p′

m′ }. Thus, S12,5,1,6 has α′ = 2, the

S12,5,2,6 has α′ = 1.5, the S12,5,3,5 has α′ = 1.6667, and the K5,4 has α′ = 2. The resulting

constellation inequality is valid and is

1.5(x1 + x2 + x3 + x4 + x5) + x6 + x7 + x8 + x9 + x10 + x11 + x12 ≤ 6.

It is shown that the valid constellation inequality is facet defining by the following

twelve affinely independent points: e1 + e5 +
∑12

i=10 ei, e2 + e4 +
∑12

i=10 ei,
∑5

i=3 ei +

∑12
i=10 ei − ej for j = 3, 4 and 5, and

∑12
i=6 ei − ej for j = 6, ..., 12. This signifies that

the dimension of the face is eleven, which is one less than the dimension of P conv and is

therefore facet defining. The following matrix shows these points.
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1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 1 0 1 1 1 1 1

0 0 0 0 0 1 1 0 1 1 1 1

0 0 0 0 0 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 0

The easiest points to identify are the last seven as these are the points from the CP .

Because CP is a K7,6 hyperclique, there are









7

6









= 7 points with six 1’s permuted

through them. Clearly the rest of the indices in these points are set to zero. These seven

points are clearly affinely independent and generated from the minimal edges.

The five remaining points relate to CM . Each of these points must take two indices

from CM and three from CP to satisfy the valid inequality at equality. These are the

j′ from the theorem. Using x3, x4, and x5, three points can be found by selecting each

combination of two out of three variables. This matrix consists of two 1’s cyclically

permuted through the three points, while x1 and x2 are set to zero. This is again due
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to the minimal edge {3, 4, 5, 10, 11, 12}. Because the only common divisor of three and

two is one, this guarantees that these three points are affinely independent.

The other two points must include x1 and x2. In both cases feasibility is the main

criteria so x5 was used with x1, and x4 was used with x2. These two points are also

affinely independent since x1 and x2 were used mutually exclusively. For all five of these

points x10, x11, and x12 were set to one, while the rest of the indices were set to zero

to ensure feasibility. Since all twelve points are affinely independent it shows that the

inequality is facet defining.

The nice thing about this method is that both inequalities can be found from the

same hypergraphs and hyperstars. As mentioned earlier, H4 contains a K5,4 hyperclique,

H5 contains a S12,5,3,5 hyperstar, H6 contains S12,5,1,6 and S12,5,2,6 hyperstars, and H7

contains a K12,7 hyperclique. The conflict hypergraphs H4,...,H7 contain a constellation

of the form C5,4,S,12,7 where S = {(12, 5, 1, 6), (12, 5, 2, 6), (12, 5, 3, 5)}. Using Theorem

3.1.3 the simultaneous lifting coefficient is calculated by finding the minimum {k0−1−m′′

p′′
}.

Thus, S12,5,1,6 has α′′ = .5, the S12,5,2,6 has α′′ = .333, the S12,5,3,5 has α′′ = 0, and the

K12,7 has α′′ = .5. The resulting constellation inequality is valid and is

x1 + x2 + x3 + x4 + x5 + 0(x6 + x7 + x8 + x9 + x10 + x11 + x12) ≤ 3.

It is shown that the valid constellation inequality is facet defining by the following

twelve affinely independent: ei+e(i mod 5)+1+e(i+1 mod 5)+1 for i = 1, ..., 5, e1+e4+e5+ei

for i = 6, ..., 12. This signifies that the dimension of the face is eleven, which is one less
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than the dimension of P conv , and is facet defining. The following matrix shows these

points.

0 1 1 1 0 1 1 1 1 1 1 1

0 0 1 1 1 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0 0 0

1 1 0 0 1 1 1 1 1 1 1 1

1 1 1 0 0 1 1 1 1 1 1 1

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

For the second inequality inequality, finding the twelve affinely independent points is

much easier. The first five points are found by selecting three of the five variables in CM

and all variables in CP are set to zero. The next seven points simply include x1, x4 and

x5 from CM and then one variable from CP with each variable in CP used once. Since

all twelve points are affinely independent it shows that this inequality is facet defining.

As seen above, identifying a constellation structure and determining a constellation

inequality is a tedious process. Finding the appropriate hypercliques and hyperstars is
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an NP-hard problem in general. However, if we restrict the IP, then some polynomial

time methods may be obtainable. The next section discusses a constellation in a binary

knapsack instance, which is the simplest IP.

3.4 Constellation in a Knapsack

A binary knapsack problem is more conducive for constellations not only because

there is just one constraint, but because it allows for all of the variables to be sorted in

descending order. The benefit is that as soon as an edge is found, numerous other edges

exist of the same size because one could exchange a index in the edge with any index

that has a higher coefficient and this new edge exists. An example of this is moving from

a cover to an extended cover. Thus, determining the conflict hypergraphs and ultimately

the resulting constellation inequality can be done much faster.

This basic sorting principle led to the linear [52], quadratic [78] and psuedopolynomial

[58] time algorithms to simultaneous uplift a cover inequality in a knapsack constraint.

Thus, it is natural to revisit the knapsack polyhedron to examine the constellations

that these researchers unknowingly implemented. The following example presents these

issues.

Example 3.4.1 Consider the feasible region of the following knapsack problem.

29x1 + 29x2 + 263 + 26x4 + 16x5 + 16x6 + 16x7 + 15x8 + 15x9 + 15x10 + 13x11 + 12x12 + 12x13 ≤ 63

xi = {0, 1} ∀ i = 1, 2, ..., 13.
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Observe that {1, 2, 3, 4} induces a K4,4 hyperclique. This is because the point

(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) is infeasible as 110 > 92. Thus, the edge {1, 2, 3, 4} exists

and the valid hyperclique inequality is x1 + x2 + x3 + x4 ≤ 3.

Now the size of the large hyperclique must be determined and {1, ..., 13} induces a

K13,7 hyperclique. This is because the point (0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) is feasible so

there does not exist a K13,6. However, the point (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1), which

has the seven variables with the smallest coefficients from the constraint violates the

right hand side as 98 > 92. Replacing any variable with another in this point would

only increase the value of the point and therefore violate the constraint. Thus, the K13,7

is a hyperclique with the corresponding valid inequality x1 + x2 + x3 + x4 + x5 + x6 +

x7 + x8 + x9 + x10 + x11 + x12 + x13 ≤ 6.

The basis of a constellation are two hypercliques with one vertex set a subset of

the other vertex set. Clearly, the K13,7 and K4,4 hypercliques are such structures. The

constellation is on vertices {1, 2, ..., 13}, which will be partitioned into the middle CM =

{1, 2, 3, 4} and the perimeter CP = {5, 6, ..., 13}. Therefore, the simultaneously lifted

inequality will take the form α′(x1 + x2 + x3 +x4) +x5 + x6 + x7 + x8 + x9 + x10 + x11 +

x12 + x13 ≤ 6. A second inequality x1 + x2 + x3 + x4 + α′′(x5 + x6 + x7 + x8 +x9 + x10 +

x11 + x12 + x13) ≤ 3 is also formed.

To calculate α′ and α′′ it requires determining the edge size that would induce a

hyperstar of the appropriate size on the conflict hypergraph generated from {1, 2, ..., 13}.

Since there is a K4,4, no four vertices from the middle can induce a feasible solution.
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Therefore, the only hyperstars of interest have 1, 2 or 3 vertices selected from the middle.

Thus, we must find the minimum kq1
, kq2

, and kq3
that make S13,4,1,kq1

, S13,4,2,kq2
, and

S13,4,3,kq3
hyperstars.

There is a S13,4,1,6 hyperstar. Observe that the point (0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1)

is a feasible point. Thus, there is not a S13,4,1,5 hyperstar. In the constraint, taking

variable 4 from CM and the five smallest coefficients corresponding to indices from CP

form the point (0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1). Evaluating this point leads to a sum of

93 > 92 and so this point is not feasible. Replacing x4 with any other variable in CM

would only increase the value of the point or keep it the same. Therefore any point with

one variable from CM and five variables from CP is not feasible and the corresponding

edges exist in H6.

There is also a S13,4,2,6 hyperstar. Observe that the point (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1)

is a feasible point. Thus, there is not a S13,4,2,5 hyperstar because it is missing at least

one edge. In the constraint, selecting variables 3 and 4 from CM and the four smallest

coefficients of the indices from CP forms the point (0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1). This

point violates the constraint as 104 > 92. Replacing x3 or x4 with any other variable in

CM would only increase the value of the point. Therefore any point with two variables

from CM and four variables from CP is not feasible and the corresponding edges exist

in H6.

For the last case, there is a S13,4,3,4 hyperstar. Observe that the point (0, 1, 1, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0) is a feasible point. Thus, there is not a S13,4,3,3 hyperstar because it is miss-
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ing at least one edge. In the constraint, selecting variables 2, 3 and 4 from CM and the

smallest coefficient of the indices from CP forms the point (0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

This point violates the constraint as 93 > 92. Replacing either x2, x3 or x4 with x1 in

CM would only increase the value of the point. Therefore any point with three variables

from CM and one variable from CP is not feasible and the corresponding edges exist in

H4.

In summary H4 contains a K4,4 hyperclique, H6 contains S13,4,1,6 and S13,4,2,6 hyper-

stars, and H7 contains a K13,7 hyperclique. The conflict hypergraphs H4, H6, H7 contain

a constellation of the form C4,4,S,13,7 where S = {(13, 4, 1, 6), (13, 4, 2, 6), (13, 4, 3, 4)}.

Using Theorem 3.1.3 the simultaneous lifting coefficient is calculated by finding the

minimum {kq−1−p′

m′ }. Thus, S13,4,1,6 has α′ = 2, the S13,4,2,6 has α′ = 1.5, the S13,4,3,4 has

α′ = 2, and the K4,4 has α′ = 2. The resulting constellation inequality is valid and is

1.5(x1 + x2 + x3 + x4) + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 ≤ 6.

It is shown that the valid constellation inequality is facet defining by the following

thirteen affinely independent points: e1+e4+
∑13

i=11 ei, e3+e4+
∑13

i=11 ei, e2+e4+
∑13

i=11 ei,

e2 + e3 +
∑13

i=11 ei, e5 +
∑13

i=9 ei, e6 +
∑13

i=9 ei, and
∑13

i=7 ei − ej for j = 7, ..., 13. This

signifies that the dimension of the face is twelve, which is one less than the dimension

of P conv and is therefore facet defining. The following matrix shows these points.
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1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 1 0 1 1 1 1 1

0 0 0 0 1 1 1 1 0 1 1 1 1

0 0 0 0 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 0

Both inequalities can be found from the same hypergraphs and hyperstars. The

conflict hypergraphs H4, H6, H7 contain a constellation of the form C4,4,S,13,7 where

S = {(13, 4, 1, 6), (13, 4, 2, 6), (13, 4, 3, 4)}. Using Theorem 3.1.3 the simultaneous lifting

coefficient is calculated by finding the minimum {k0−1−m′′

p′′
}. Thus, S13,4,1,6 has α′′ = .5,

the S13,4,2,6 has α′′ = .333, the S13,4,3,4 has α′′ = ∞, and the K13,7 has α′′ = .5. The

resulting constellation inequality is valid and is
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x1 + x2 + x3 + x4 + .333(x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13) ≤ 3.

It is shown that the valid constellation inequality is facet defining by the following

thirteen affinely independent points: e1+e4+
∑13

i=11 ei, e3+e4+
∑13

i=11 ei, e2+e4+
∑13

i=11 ei,

e2 + e3 +
∑13

i=11 ei, e3 + e4 + e5 + e12 + e13, e3 + e4 + e6 + e12 + e13, e3 + e4 + e7 + e12 + e13,

e3+e4+e8+e12+e13, e3+e4+e9+e12+e13, and e3+e4+
∑13

i=10 ei−ej for j = 10, ..., 13. This

signifies that the dimension of the face is twelve, which is one less than the dimension

of P conv and is therefore facet defining. The following matrix shows these points.
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0 1 1 1 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0 0

1 1 0 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1 1 1

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 1 0 1 1

0 0 0 0 1 1 1 1 1 1 1 0 1

0 0 0 0 1 1 1 1 1 1 1 1 0

Notice that in this example there was not a hyperstar that corresponded to H5. This

simply suggests that no combination of exactly five variables from CM or CP creates a

minimal edge. However, for the purposes of a constellation it is not required that conflict

hypergraph of every edge size be present. Instead, the presence of the hyperstars is of

importance and is what ultimately leads to the determination of the lifting coefficient.
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Chapter 4

Conclusion

The primary achievement of this thesis is to add to the general body of knowledge in

integer programming. This research takes a broad approach to simultaneous lifting and

provides theoretical background for it. Both knapsack and multiple knapsack instances

are considered for implementing this method.

The major break through is the discovery of a constellation structure. This is benefi-

cial because a constellation examines the underlying hypergraphic structures of multiple

conflict graphs that exist in a knapsack or multiple knapsack problem at the same time.

A constellation inequality builds on these principles by combining two hypercliques and

multiple hyperstars together to determine the constellation structure. This is the most

significant result because constellations assist in deriving the fundamental structure for

exact simultaneous lifting.

Another advancement is the formulation of constellation inequalities. Most impor-
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tant is that one constellation can be used to create two distinct inequalities. Further-

more, these constellation inequalities are potentially facet defining, and this research

provides some conditions for this to occur.

Finally, this thesis takes these abstract ideas into real examples. Two examples from

the knapsack and multiple knapsack problems demonstrate the power and existence of

the constellation structures and their inequalities. It is noteworthy that these constella-

tion inequalities are derived without solving an integer program.

Fundamentally, this research provides the theoretical basis to help researchers gener-

ate more efficient techniques to perform simultaneous lifting for various classes of integer

programs. Thus, there exists a substantial amount of research that should be pursued

as a result of this work and the next section discusses some of these topics.

4.1 Future Work

One promising area of research would be to develop a polynomial time algorithm

to generate valid constellation inequalities. Currently, using this method is extremely

complicated and does not a have a significant benefit other than the knowledge and

theory behind simultaneous lifting. However, an efficient algorithm to determine and

implement constellation inequalities in multiple knapsack problem, or even a general

integer program, would allow simultaneous lifting to be applied in more situations.

A constellation is proven to define two valid inequalities, but after concluding this
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research, it became evident that there is another valid inequality in Example 3.2.1.

Notice that the points that generated the facet defining inequalities used 2 in CM and

3 in CP , and 0 in CM and 6 in CP , while the other inequality used 3 in CM and 0 in

CP , and 3 in CM and 1 in CP . It appears that there is a third inequality that would

use 2 in CM and 3 in CP , and 3 in CM and 1 in CP . The inequality generated from

this would be 2(x1 + ... + x5)+x6 + ... + x12 ≤ 7. Observe that this is not a lifted cover

inequality, which makes this an interesting research area. Jennifer Bolton [17] is using

this idea and the knapsack polytope as her thesis topic.

In this thesis, the constellation inequalities focus on hyperstars with two sets of

variables, the middle and the perimeter. However, it is possible that more than two

sets of variables could be simultaneously lifted. The challenge would be to identify

structures that have three embedded hypercliques and understanding how a hyperstar

has to change to enable an iterative form of simultaneous lifting.

This research provides a theoretical understanding of the relationship between simul-

taneous lifting and hypergraphic structures in integer programming, and specifically in

the multiple knapsack problem. By providing the theory behind simultaneous lifting, re-

searchers should be able to apply this knowledge to develop new algorithms that enable

simultaneous lifting to be performed faster and over more complex integer programs.

This should enable a reduction in the solution time of the integer programs.
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