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Abstract 

Foraging traits such as prey consumption rate and the efficiency with which predators 

convert their prey into offspring are important determinants of local predator-prey dynamics.  

However, in environments with patchy prey distribution, predator dispersal and aggregation in 

response to prey-induced volatile cues becomes more critical. My dissertation addressed 

predator-prey population dynamics in response to variation in four foraging traits in the 

predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae): consumption rate, conversion 

efficiency, dispersal, and olfactory response related to prey. 

The dispersal response and olfactory sensitivity in predatory mites is modified by prey-

related cues.  For example, the dispersal response increased with decreasing prey density in a 

patch and increasing prey-related volatiles from outside the prey patch.  The olfactory response 

of predatory mites also increased with increasing numbers of prey per plant or with the length of 

time a plant was infested by prey.  These results formed the basis for development of bioassays 

used to examine genetic variation in dispersal and olfactory response of predatory mites.  

Through artificial selection I documented additive genetic variation in all four traits.  

After relaxation of selection, high-level phenotypes were stable compared to their low 

counterparts.  There were significant genetic correlations between some of the foraging traits.  

However, there were no correlations between foraging traits and life-history traits. The existence 

of genetic variation and covariation among the foraging traits suggests that predatory mites must 

be able to adopt different foraging strategies in the evolution of prey-finding in a tritrophic 

system. 



  High consumption, high conversion efficiency and high dispersal response phenotypes 

interacted differently with prey in a spatially complex landscape.  All foraging traits were 

comparable in terms of predator-prey densities and plant damage; but they were lower than the 

unselected control.  Spatial association and correlation analysis showed that all foraging traits 

were positively associated with prey; but the strongest association was observed for the high 

conversion efficiency and dispersal lines.   The variability in foraging behaviors of the predatory 

mite affects its ability to locate patchily distributed prey, thereby influencing foraging efficiency 

and population dynamics.  This research provides new information about the critical link 

between predator foraging and population dynamics relevant to biological control. 
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Abstract 

Foraging traits such as prey consumption rate and the efficiency with which predators 

convert their prey into offspring are important determinants of local predator-prey dynamics.  

However, in environments with patchy prey distribution, predator dispersal and aggregation in 

response to prey-induced volatile cues becomes more critical.  My dissertation addressed 

predator-prey population dynamics in response to variation in four foraging traits in the 

predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae): consumption rate, conversion 

efficiency, dispersal, and olfactory response related to prey. 

The dispersal response and olfactory sensitivity in predatory mites is modified by prey-

related cues.  For example, dispersal response increased with decreasing prey density in a patch 

and increasing prey-related volatiles from outside the prey patch.  The olfactory response of 

predatory mites also increased with increasing numbers of prey per plant or with the length of 

time plant was infested by prey.  These results formed the basis for development of bioassays 

used to examine genetic variation in dispersal and olfactory response of predatory mites.  

Through artificial selection I documented additive genetic variation in all four traits.  

High-level phenotypes were stable compared to their low counterparts after relaxation of 

selection.  There were significant genetic correlations between some of the foraging traits.  

However, there were no correlations between foraging traits and life-history traits. The existence 

of genetic variation and covariation among the foraging traits suggests that predatory mites must 

be able to adopt different foraging strategies in the evolution of prey-finding in a tritrophic 

system. 



  High consumption, high conversion efficiency and high dispersal response phenotypes 

interacted differently with prey in a spatially complex landscape.  All foraging traits were 

comparable in terms of predator-prey densities and plant damage but were lower than the 

unselected control.  Spatial association and correlation analysis showed that all foraging traits 

were positively associated with prey but the strongest association was observed for the high 

conversion efficiency and dispersal lines.   The variability in foraging behaviors of the predatory 

mite affects its ability to locate patchily distributed prey thereby influencing foraging efficiency 

and population dynamics.  This research provides new information about the critical link 

between predator foraging and population dynamics relevant to biological control. 
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CHAPTER 1 - Introduction 

The ability of arthropod predators to find and attack prey is a key attribute for 

suppressing prey populations.  Theoretical treatments (Hassell and May 1985; Pels et al. 2002) 

and empirical evidence (Murdoch et al. 1996) suggest that even subtle differences in predator 

foraging can lead to significant differences in predator-prey population dynamics and prey 

suppression.  Knowledge of the population impact of different predator foraging traits should 

allow us to understand the responses of predator-prey systems in different environments to 

deliberate manipulations, as might occur in biological control.  Unfortunately, there is a large 

gap between behavioral studies at individual levels and population dynamics studies of 

interactions relevant to biological control (Ives 1995).  One way to link behavior and population 

dynamics is to focus on the influence of specific predator foraging traits affecting both natural 

enemy fitness and prey suppression.  

The rate at which predators consume prey and the efficiency with which predators 

convert their food (i.e., prey) into offspring, determine predator impact on the local predator-prey 

dynamics, as described by the functional and numerical response.  In patchy environments, traits 

related to predator movement between patches become equally important to both local (i.e., 

within-patch) and regional (i.e., among patches) dynamics (Hassell 1978; Berryman and 

Gutierrez 1999).  Local consumption rate and conversion efficiency still affect regional 

dynamics to the extent that they determine local prey availability; but predator dispersal and 

colonization of prey patches affect the number of predators remaining in a “source” patch, as 

well as the number of predators that colonize new prey patches.  Thus, these predator traits will 

interact to affect the predator-prey ratio in each local patch, which in turn affects the stability of 
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the interaction (Hassell 1978; Berryman 1999) and effectiveness of biological control (Hussey 

and Bravenboer 1971).    

Acarine Predator-Prey System 

The twospotted spider mite, Tetranychus urticae Koch, is a generalist herbivore. It is 

highly polyphagous and feeds on over 180 host plants, including over 100 cultivated species (van 

de Vrie et al. 1972).  The spider mite is widely distributed in the United States and all over the 

world. Tetranychus urticae mainly colonize the underside of leaves, but also the top of plants, 

where mites produce webbing in which all stages live and most activity (e.g., feeding, mating, 

oviposition) takes place.  Adult females deposit eggs close to where they feed, and immatures do 

not move very far from where they hatch (Suski and Naegele 1968; Kondo and Takafuji 1985). 

Mites pass through five stages of development: egg, larva, protonymph, deutonymph, and adult. 

The population goes through a generation every 7 to 21 days, depending on the ambient 

temperatures in their environment.  In this way, clusters, or patches, of spider mite-infested 

leaves develop.  As mite feeding destroys leaf tissue within a patch, mites move to new, 

uninfested parts of a plant.  Because of the explosive growth potential of mite populations 

(Sabelis 1981), mites can rapidly infest and kill entire plants.  Because of their ability to disperse, 

they can rapidly infest large areas. 

The predatory phytoseiid mite, Phytoseiulus persimilis Athias Henriot, is a specialist 

predator on tetranychids and the most frequently used biological control agent for spider mites, 

especially in greenhouses (van Lenteren and Woets 1988).  The predatory mite was introduced 

into The Netherlands from Chile in 1958 (Dosse 1958) and subsequently shipped to other parts 

of the world, including the United States.  Phytoseiulus persimilis are extremely small and are 

orange to bright reddish in color.  Phytoseiid mites reproduce by pseudoarrhenotoky, which is 
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characterized by obligate fertilization of all eggs followed by a loss and/or heterochromatization 

of the paternal chromosomes in embryos that develop into males, resulting in haploid condition 

of the males (Hoy 1979; Schulten 1985; Perrot-Minnot et al. 2000).  Under normal conditions, 

the sex ratio is female-biased, usually close to 0.83 (Helle and Sabelis 1985), and each female 

can produce upto 60 eggs in her lifetime (McMurty and Rodriguez 1987). Phytoseiulus 

persimilis has five developmental stages: egg, non-feeding larva, protonymph, deutonymph and 

adult (Sabelis 1981).  When predatory mites invade a spider mite-infested plant, the predator 

population is likely to deplete the local spider mite population (Chant 1961; Takafuji et al. 1983). 

Although this means the local predator-prey interaction is limited and ephemeral, the interaction 

may persist on a regional scale due to repeated dispersal from and colonization of patches by 

both species (Diekmann et al. 1988; Nachman 1987, 1988, 1991; Sabelis et al. 1991; Walde 

1991, 1994; Jansen and Sabelis 1992).  As prey density drops to zero, P. persimilis will leave 

(Takafuji 1977; Bernstein 1984; Zhang and Sanderson 1993) and seek other patches.  Successful 

colonization of new spider mite patches by the predator is important for the persistence of the 

predator population and for biological control (Sabelis et al. 1999; Walde and Nachman 1999; 

McCauley et al. 2000). 

Because of their economic importance, the acarine predator-prey system is well studied. 

There exists a framework of information about the demography and behavior of both species of 

mites, mathematical models of both local and metapopulation dynamics, and experimental and 

theoretical studies offering extensive information on biological control (Helle and Sabelis 1985; 

Sabelis and Harmsen 1992; Sabelis et al. 1999; Walde and Nachman 1999; Pels et al. 2002).  

Thus, this system provides an appropriate model to study the effect of behavior on predator-prey 

population dynamics in patchy environments 
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Influence of Predator Foraging Behaviors on Predator-Prey Interactions 

Prey Consumption and Reproduction 

The success of P. persimilis as a control agent is largely attributed to its strong numerical 

response (Eveleigh and Chant 1982).  One component of the numerical response is the rate of 

predator reproduction in prey patches (Sabelis 1985a).  There is a direct linear relation between 

predator reproduction and prey consumption (Sabelis 1981).  Predators are generally found 

feeding in densely packed prey colonies (Bancroft and Margolies 1999); so individual 

consumption rate is relatively constant and close to the maximum possible.  When prey 

decreases in the immediate vicinity of a predator, the predator will simply move to an adjacent 

area where prey are still plentiful (Sabelis et al. 1998).  Thus, for most of the time a predator is in 

a prey patch the rate of predation and reproduction is close to its maximum (Sabelis et al. 1999). 

It is only when prey becomes scarce in the patch as a whole that the per capita predation rate 

drops.    

Aggregation in Response to Prey-Induced Volatiles 

A second component of the predator numerical response is aggregation, which leads to  

a high local predator-prey ratio.  Phytoseiulus persimilis aggregate on a plant in response to prey 

density (Jarosik 1990).  Phytoseiulus persimilis uses local cues from the prey to find spider mite 

colonies on a plant (Hoy and Smilanick 1981; Zhang and Sanderson 1992).  Predators search 

along the shoots, stems, leaf ribs and leaf edges, areas where prey colonies are often founded 

(Sabelis and Dicke, 1985).  Signals associated with prey, such as exuviae, feces, webbing, and 

eggs (Sabelis and van de Baan 1983), are detectable in the immediate vicinity of the prey patch.  

A foraging predator uses them all to decide whether to stay in or leave a patch (Sabelis 1981); 

this decision may be further enhanced by plant volatiles produced when attacked by spider mites 
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(Maeda et al. 1998; Mayland et al. 2000).  When P. persimilis locates prey-associated cues in a 

patch, it exhibits reduced walking speed and a more tortuous walking path (Sabelis 1981), both 

of which increase patch residence time of the individual forager and lead to aggregation of 

predator populations. 

Prey-induced plant volatiles may have an important influence on the P. persimilis-T. 

urticae population interaction (Dicke and Sabelis 1988).  In olfactometer tests, predatory mites 

were attracted to the odor of plants infested by Tetranychus mites in preference to the odor of 

uninfested plants (Sabelis and van de Baan 1983; Sabelis et al. 1984; Dicke 1994) or plants 

infested with non-prey herbivores (Dicke et al. 1990a, b; Turlings et al. 1990; Takabayashi et al. 

1991).  These prey-induced plant volatiles may be utilized by P. persimilis in both long-range 

and local foraging (Sabelis and Dicke 1985; Zemek and Nachman 1999).  At long range, 

volatiles may attract a predator to or cause it to search more intensively around a prey-infested 

plant (Janssen 1999).  Once a predator is on a plant, the same volatiles that attract predators may 

also be important in local arrestment (Sabelis et al. 1984).  

Dispersal Response 

In general, good searching ability is an important natural enemy trait contributing to 

successful biological control (van Lenteren and Woets 1988).  Successful colonization of new 

patches is related to the number of dispersers produced in patches (Sabelis et al. 1999).  

Production of potential colonists, in turn, is affected by predator consumption rates and 

conversion efficiency on local patches.  If predators stay in a patch until all prey are eliminated, 

local predator population growth rates should be high, local prey populations should show an 

immediate decrease, and the local interaction period will be short.  Because of the latter, the 

patch will produce few dispersing predators.  If, on the other hand, predators continually disperse 
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during the interaction, the local predator population growth rate will be lower, the local prey 

population will decrease at a lower rate (or even increase, depending on the predator-prey ratio), 

and the interaction period will be longer.  This patch will produce more predators to find and 

colonize other patches (Pels et al. 2002).  That is, the global outcome depends on the balance 

between the length of local predator-prey interactions and local production of predators (van 

Baalen and Sabelis 1995).  Circumstances that enhance predator dispersal -- aggregation, 

consumption, and reproduction -- have been suggested to lead to greater impact on the pest 

population (Jarosik 1990, Berlinger et al. 1996).  However, models of mite predator-prey 

interactions in patchy environments do not necessarily predict both local and regional persistence 

(Hassell 1978; Nachman 1987; Sabelis et al. 1998; Pels and Sabelis 1999; Pels et al. 2002).    

The matter of when a natural enemy should leave a patch (Hamilton and May 1977; 

Bernstein et al. 1988, 1991; Sjerps and Haccou 1994) is important because the timing of predator 

dispersal can affect both local and regional dynamics (Johst and Brandl 1997).  Short-lived 

arthropods, such as predatory mites, are not likely to acquire information about the global 

distributions of their resources (which, furthermore, change all the time), so these foragers 

probably rely on local environmental stimuli which generally provide adequate, but not 

necessarily optimal, information (Cowie and Krebs 1979).  Some P. persimilis may disperse 

while prey numbers are still in decline (Bernstein 1983; Zemek and Nachman 1998), but many 

will stay until almost all prey are consumed (Takafuji et al. 1983; Sabelis and van der Meer 

1986).  Foraging decisions, such as when to disperse, may be modified by environmental cues 

(e.g., host or prey density, presence of competitors, odors) and habituation to such cues (Waage 

1979).    
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Residence time in P. persimilis seems to depend on the interaction between consumption 

rate (as a measure of prey density) and prey-related plant volatiles (Margolies et al. 1997; Maeda 

et al. 1998; Mayland et al. 2000; Maeda and Takabayashi 2001a; Jia et al. 2002).  The response 

of predators to steep odor gradients associated with prey colonies depends on the predator 

feeding status; well-fed predators that happen to walk out of an odor patch frequently turn back 

to it (Sabelis et al. 1984).  However, if a predator is starved it is less likely to turn around, but 

more likely to be attracted to a distant odor source, hence resulting in leaving a patch.  Thus, 

food depletion ultimately leads to dispersal.  These behaviors cause predators to remain in 

profitable prey patches and abandon unprofitable ones (Takafuji 1977; Fernando and Hassell 

1980; Ryoo 1986; Bernstein 1984; Zhang et al. 1992).  

Timing and rate of dispersal may also be affected by plant volatiles coming from sources 

outside the local prey patch.  When, for instance, predators perceive prey-induced volatiles 

produced by nearby plants, they may leave a local patch even if abundant food remains (Maeda 

et al. 1998; Mayland et al. 2000; Maeda and Takabayashi 2001a).  Such volatiles may offer 

information on availability of prey in the general environment beyond the limits of the locally-

available patch, and may aid discovery of distant prey.  Variability in responsiveness of predators 

to prey-induced plant volatiles would then lead to different dispersal rates (Jia et al. 2002) and, 

potentially, to different local dynamics.   

Genetics of Foraging Behaviors in Natural Enemies 

Documentation of genetic variation in foraging traits is important to determine potential 

response to selection and for evaluating applications of natural enemies for biological control 

(Mackauer 1976; Lewis et al. 1990; Hoy 1990; Hopper et al. 1993; Bruins et al. 1994).  In a few 

tritrophic systems there is evidence of a genetic component in foraging behaviors, including the 
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response of natural enemies to plant chemicals for host acceptance (Mollema 1991; Powell and 

Wright 1992) and attraction to host-infested plants (Prevost and Lewis 1990; Gu and Dorn 1999; 

Wang et al. 2003).  Early work on the chemical basis of attraction of P. persimilis to T. urticae-

induced plant volatiles (Sabelis and van de Baan 1983; Dicke et al. 1990b) pointed to significant 

phenotypic variation in the olfactory response.  Quantitative genetic studies also revealed 

significant additive genetic variation for this trait (Margolies et al. 1997; Margolies 1999; Jia et 

al. 2002; Maeda 2005, 2006).   

The existence of natural genetic variation in dispersal rate, and its impact on the local 

predator-prey interaction, were demonstrated by Pels and Sabelis (1999).  They found consistent 

differences in dispersal response of two different populations of P. persimilis; one line dispersed 

only after all prey were eliminated, while in the other some females began dispersing while prey 

were still present.  Jia et al. (2002) also found substantial phenotypic variation in prey 

consumption and oviposition of P. persimilis.  Genetic variation has also been detected in 

dispersal tendency, olfactory response, prey consumption and fecundity in the predatory mite, 

Neoseiulus womersleyi (Shicha) (Maeda 2005; 2006).   

Objectives 

 This research examined changes in predator-prey population dynamics in 

response to variation in four ecologically-relevant foraging traits of a predatory mite, P. 

persimilis: consumption, conversion efficiency, dispersal and olfactory response with the aim to 

ultimately link predator behavior to population dynamics and prey suppression. 

 

The specific objectives of this study were to: 
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1) Quantify the genetic components of phenotypic variation in four ecologically-relevant 

foraging traits in the predatory mite, P. persimilis using standardized laboratory 

bioassays: 1) prey consumption, 2) efficiency with which predators convert their prey 

(food) into offspring, 3) dispersal response and 4) olfactory response.  

 

2) Examine the impact of the foraging phenotypes developed through artificial selection 

on the predator-prey interaction in a spatially complex landscape.   

  

The overall hypothesis is that the presence of genetic variation and covariation in 

foraging behaviors of predatory mites will critically impact predator performance and predator-

prey dynamics in heterogeneous environments.  The first and second chapters focused on 

development of laboratory bioassays to test predator dispersal response and olfactory response, 

respectively.  In the third chapter, I examined the genetic components of phenotypic variation in 

ecologically-relevant foraging traits of the predatory mite, P. persimilis: consumption rate, 

conversion efficiency, dispersal response and olfactory response to T. urticae-induced plant 

volatiles using artificial selection regimes.  In chapter four, I tested the impact of high predator 

foraging phenotypes developed through artificial selection experiments on predator-prey 

interactions and spatial distribution of predator and prey in a heterogeneous landscape. 
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Chapter 2-Resource-Dependent Giving-Up Time of the Predatory 

Mite, Phytoseiulus persimilis 

Journal of Insect Behavior 19: 741-52 

  

Abstract 

We examined the effect of prey (Tetranychus urticae) egg density on leaving rate of the 

predatory mite, Phytoseiulus persimilis, from leaf disks using predators with different feeding 

experiences and levels of external volatile cues related to their prey.  Predators stayed longer on 

disks with prey eggs than on those without prey eggs.  However, at each prey egg density 

predators stayed longer in the absence of prey-related volatiles from an external source.  Starved 

predators stayed longer in a prey patch than those that had not experienced starvation.  At each 

prey density, starved P. persimilis consumed a greater proportion of prey eggs than non-starved 

predators.  The total prey consumption of starved predators appears to be related to their longer 

residence time on source disks compared to satiated predators and also the per capita 

consumption rate was greater for starved predators compared to satiated predators. 

Introduction 

The predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), is a 

specialist feeder on the tetranychid mites, specifically the twospotted spider mite, Tetranychus 

urticae Koch (Acari: Tetranychidae), and therefore is the most frequently used biological control 

agent for spider mites, especially in greenhouses (van Lenteren and Woets 1988).   Spider mite 

populations develop in patches, both within a plant and among plants within a habitat.  An 

important determinant of effective short-term biological control, as well as regional persistence 
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of the predator, is predator efficiency within the entire area of pest infestation.  This depends in 

part on colonization of new prey patches, which is affected by how long predators stay in a prey 

patch, how many predators (potential colonists) are produced in a patch, and how offspring are 

distributed among patches.  Studies have shown that subtle differences in predator foraging 

behavior can lead to significant differences in predator-prey population dynamics (Pels et al. 

2002).  Thus the timing of dispersal from a prey patch is likely to be one of the critical behaviors 

influencing the predator-prey interaction. 

Foraging decisions, such as when to disperse, are primarily based on innate behaviors which 

may be modified by environmental cues (e.g., host or prey density, presence of competitors, odors) 

and habituation to such cues (Waage 1979).  Predators evaluate resources within the patch as well 

as the habitat to determine their residence time (Stephens and Krebs 1986).  Because short-lived 

arthropods such as predatory mites are not likely to acquire information about the regional 

distribution of their resources, which furthermore change all the time, these foragers probably 

rely on local environmental stimuli which may provide adequate, but not necessarily optimal, 

information about prey availability.  Some P. persimilis may disperse while prey numbers are 

still in decline (Bernstein 1983; Zemek and Nachman 1998), but many will stay until almost all 

prey are consumed (Takafuji et al. 1983; Sabelis and van der Meer 1986; Maeda et al.1998).  

Food depletion ultimately will affect leaving as predators become hungry.  Starved P. persimilis 

females turn less and walk faster (Bernstein 1983) and are more likely to move upwind (Sabelis 

and van der Weel 1993) than satiated predators, even without upwind volatiles.  All of these 

behaviors will likely result in starved predators rapidly leaving the plant in search of food 

elsewhere.  However, when predators encounter food (e.g., infested plants), they remain on the 

plant.  
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Predator foraging decisions are modified by environmental cues as well as by the internal 

physiological state of the predator (i.e., starved or satiated).  Among the cues used by predatory 

mites that may help them determine when to leave a patch are volatile chemicals that originate 

from the plant on which the prey feed (Sabelis and Dicke 1985; Sabelis and Afman 1994; 

Mayland et al., 2000).  Herbivore-induced plant volatiles (HIPV) from distant sources shorten 

the residence time of P. persimilis in a prey patch (Maeda et al.1998; Mayland et al. 2000), while 

local prey-related cues, including locally-produced HIPV, lengthen the residence time of P. 

persimilis (Mayland et al. 2000).  These factors have a similar interactive effect on the 

emigration rate of a related predatory mite, Amblyseius womersleyi (Maeda and Takabayashi 

2001) and may represent a general phenomenon.  However, our current knowledge is insufficient 

to assess how the cues interact as local prey availability decreases, as it will when predators 

freely consume prey.  Our study tests the hypothesis that predator dispersal rate from a prey 

patch will be affected by both local rewards (prey eggs) and distant cues about potential rewards 

(HIPV).  Therefore, our objectives were to determine the effects and relative importance of 

resource (prey egg density) levels in a patch and T. urticae-infested plant volatiles from outside 

the patch on leaving rate of satiated and starved P. persimilis. 

The experimental set up consisted of two components: 1) a leaf disk assay to determine 

the effect of local resource-level (prey egg density) on P. persimilis dispersal, and 2) a wind 

tunnel, within which the experiment was conducted, to examine the effect of distant T. urticae-

infested or uninfested plant volatiles on P. persimilis dispersal from the leaf disk. 
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Materials and Methods 

Mites 

 The T. urticae population was maintained on lima beans (Phaseolus lunatus cv. 

‘Sieva’) in a rearing room under 400 W high-pressure sodium vapor lamps on a 16:8 (L: D) 

photoperiod at temperatures ranging from 25 ±1oC.  Bean plants were reared in a greenhouse 

under similar conditions. P. persimilis were obtained from Koppert Biological Systems, Inc. 

(Watsonville, California), a commercial producer of beneficial arthropods.  Voucher specimens 

are in the Kansas State University Museum of Entomological and Prairie Arthropod Research 

under Lot No. 135 and 154 for T. urticae and P. persimilis, respectively.   

Leaf Disks  

To investigate the effect of resource-level on dispersal rate of P. persimilis, we used a 

petri dish bioassay similar to that described in Maeda and Takabayashi (2001); a leaf disk (2.2 

cm diam) and a square piece of leaf (2.2 x 2.2 cm) were placed 60 mm apart on water-saturated 

cotton wool in plastic petri dish (9 cm).  When we were ready to test a predator the leaf disk was 

connected to leaf square by a bridge made of parafilm (30 x 3 mm).  Our objective was to 

measure the time for predators to leave the leaf disk, or source.  Spider mite eggs served as prey 

because they are immobile and also are a preferred prey life stage (Fernando and Hassell 1980). 

We established the prey egg densities on the leaf disks: 5, 10, 20 or 40 eggs plus an uninfested 

leaf disk as a control.  To obtain the required prey egg densities, we introduced ten adult female 

spider mites and allowed them to oviposit for 24 h prior to testing.  We then removed eggs to 

achieve the appropriate density.  The leaf square on the other end of the bridge served as a sink 

to arrest predators that dispersed from the source.  The sink was heavily infested with spider 

mites to ensure that predators that dispersed from the leaf disks would not move back to the leaf 
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disk (Maeda and Takabayashi 2001).   After T. urticae eggs were established on source and sink, 

five satiated or starved P. persimilis adult females were introduced onto each leaf disk.  After 1 h 

of acclimatization, the leaf disk was connected to the leaf square by a bridge and the petri dishes 

were placed in a wind tunnel.   

Wind Tunnel  

To examine the effect of T. urticae-infested or uninfested plant volatiles on leaving time 

of the predators in the petri dishes, tests were conducted in 2 plexiglass wind tunnels (each 1.5 m 

L x 0.5 m W x 0.25 m H) positioned in a fume hood to draw air through the length of the wind 

tunnels; air flow was 3 cm s-1 at the downwind end of the wind tunnels. Depending on the 

treatment, twenty T. urticae-infested or uninfested lima bean plants were placed at the upwind 

end of each wind tunnel as a potential source of volatiles (Dicke et al. 1990a).  The five petri 

dishes with 0, 5, 10, 20 or 40 prey eggs and the predatory mites were placed in the downwind 

end of each wind tunnel, 1 m from the upwind plants.  To prevent predators from perceiving 

volatile cues released from the infested leaf square which might influence their leaving time from 

the source disk, the petri dishes were oriented so the bridge was at 90º angle to the wind 

direction.  We defined a predatory mite as resident if it remained on the source disk or on the 

bridge, or dispersed if it crossed the bridge and reached the leaf square. 

To examine the effect of starvation on leaving time, P. persimilis adult females were held 

without food for 24h in a small glass vial (2.5 cm diam x  5.5 cm H) and maintained in an 

environmental chamber (24oC, 60-70% RH, L: D 16:8).  The predatory mites were then 

introduced onto the leaf disk to measure dispersal rate similar to procedures described above. 

Previous work reported no difference in giving-up time when one, five or ten predators 

were placed on a prey-infested plant (Mayland 1998).   However, to determine whether predator 
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density affected leaving rate on the small leaf disks in our study, tests were conducted with either 

one or five female P. persimilis introduced onto the each leaf disk.  A single predator was tested 

at low (5 eggs) or high prey density (40 eggs) per petri dish in order to determine the effects of 

interference on predator dispersal rate at these prey densities.  

 Statistical Analysis 

The experimental unit was a single petri dish because petri dishes with the 5 different 

prey densities were exposed to the same condition of volatiles.  There were a total of 20 

replicates for each treatment combination (prey egg density, volatiles and feeding experience). 

The number of predatory mites that left the source leaf disk was observed continuously for the 

first half hour and then every half hour for a total of 6h.  We also recorded the number of prey 

eggs that were consumed by the end of experiment.  We analyzed the giving-up time (GUT) of 

satiated and starved P. persimilis, which in the context of our study we defined as the time when 

80% of the predators (4 out of 5 predators introduced onto source/leaf disk) had left the source. 

We used this criterion because in some treatments a single predatory mite remained on the leaf 

disk at the end of the 6-h experimental period.   The same criteria was used to conduct a life test 

analysis (PROC LIFETEST) to compare leaving rates among single predator and five predators 

per petri dish using log-rank test (SAS Institute 2002).  Statistical analysis was performed by 

analysis of variance using the PROC MIXED in SAS (SAS Institute 2002). The number of T. 

urticae prey eggs consumed by satiated and starved predators at each prey egg density and 

volatile condition was analyzed the by analysis of variance using PROC GLM in SAS (SAS 

Institute 2002). 
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Results and Discussion 

The foraging behavior of P. persimilis was influenced both by local and distant cues, 

including herbivore-induced plant volatiles (HIPV) from outside the prey patch. The most 

important factors for retaining predators in a prey patch were the presence and density of prey 

eggs irrespective of external volatile cues or feeding experience of the predator.  For example, on 

disks lacking prey, predators left very quickly whether or not T. urticae-infested plants were 

present upwind.  These findings are consistent with previous studies that have shown that 

predatory mites are detained by the presence of prey eggs and prey products (Maeda and 

Takabayshi 2001; Mayland et al. 2000; Sabelis and Dicke 1985).  Retention of predators within a 

patch may result, at least in part; from area-restricted searching behavior because P. persimilis 

are known to exhibit a reduction in search speed and an increase in the number of turns 

following prey capture (Eveleigh and Chant 1982).  When prey were available on the source 

disk, the giving-up time of P. persimilis was significantly affected by both prey density on the 

source disk (F = 889.54, df = 4,344, P < 0.0001) and the presence of upwind volatiles (F = 35.23, 

df = 1,36, P < 0.0001).  Regardless of the upwind treatment, the giving-up time increased with 

increasing prey density (Fig. 2-1).  This is consistent with previous reports of prey density-

dependent dispersal rates of P. persimilis (Takafuji and Chant 1976; Takafuji 1977; Bernstein 

1983; Maeda et al. 1998; Vanas et al. 2006).   Predators left the source significantly faster in the 

presence of infested plants upwind than in the presence of uninfested plants at prey egg densities 

> 10 (Fig. 2-1).  On control leaf disks, the giving-up time was within 5.0 min regardless of the 

upwind treatment.  There was a significant interaction between local prey density and external 

volatiles on predator leaving time at prey densities > 20 (F = 44.23, df = 4,344, P < 0.0001). 

When prey was scarce predators left the source regardless of the upwind treatment; but as prey 
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became abundant the presence of volatiles upwind reduced predator giving-up time.  We 

interpret this to mean that when prey are scarce, predators leave the source regardless of the 

likelihood of finding prey elsewhere.  However, as prey become more abundant locally, 

predators are more likely to stay so the influence of external HIPV on predator dispersal is more 

likely to be noticed.    

Other investigators have shown that HIPV from outside the prey patch influence the 

leaving rate of P. persimilis (Maeda et al. 1998; Mayland et al. 2000). Residence time of P. 

persimilis in a prey patch seems to depend on the interaction between consumption rate (as a 

measure of prey density) and response to plant volatiles (Margolies et al. 1997; Maeda et al. 

1998; Mayland et al. 2000; Jia et al. 2002).  When predatory mites perceive distant volatiles in 

the air stream their behavioral response is altered.  This change in behavior could be interpreted 

as attraction to upwind plants or as non-directed stimulation of movement.  Predators outside a 

prey patch appear to use HIPV to find prey-infested plants (Janssen 1999), but in addition 

predators within a prey patch may use HIPV to define the limits of the patch.  When the 

environment is flooded with volatiles the predators will not immediately perceive being outside 

the patch and will be more likely to expand their movement beyond the source disk 

The hunger status of P. persimilis also has a significant influence on foraging behavior 

(Bernstein 1983; Sabelis and van der Weel 1993; Maeda and Takabayashi 2005).  The giving-up 

time of P. persimilis from a source leaf disk was significantly affected by starvation (F = 91.51, 

df = 1, 36, P < 0.0001).  Additionally, giving-up time of starved predators followed the same 

trend of satiated predators; i.e., giving-up time is longer in the presence of uninfested than 

infested plants upwind at prey egg densities > 20 (P < 0.0001, Fig.2-2).  On control leaf disks 

(no prey eggs) the giving-up time was less than 5 min regardless of the upwind treatment.   



- 29 - 

The degree of hunger also affected response to external volatile cues.  For example, in the 

presence of leaf volatiles from T. urticae-infested leaves, hungry predators showed intensified 

positive anemotactic (i.e., upwind) movement (Sabelis and Dicke, 1985) whereas the response of 

satiated predators is to move downwind.  There was a significant interaction between prey 

density and feeding experience at prey densities > 20 (F = 285.52, df = 4,344, P < 0.0001).   

Hunger status influenced residence time in P. persimilis, but differences in response between 

satiated and starved predators increased as local prey density increased.  Specifically, when prey 

were abundant on the source disk, starved predators remained significantly longer than satiated 

predators.  Other differences in dispersal behavior have been noted between well-fed and starved 

P. persimilis.  Sabelis et al. (1984) showed that satiated predators that pass a steep odor gradient 

at the end of the patch turn back frequently, but starved predators walk less and turn faster.  

These behaviors cause predators to remain in profitable prey patches and to abandon unprofitable 

ones (Takafuji 1977; Bernstein 1984; Zhang et al. 1992).  Predatory mites are likely to stay in 

prey patches until all prey are consumed (Takafuji et al. 1983; Sabelis and van der Meer 1986).  

Thus, food depletion ultimately leads to dispersal.  

The number of prey eggs consumed by starved P. persimilis was greater than satiated 

predators at each prey density (F=33.92, df=1, P<0.0001) and volatile condition (F=50.78, df=1, 

P < 0.0001) (Table 2-1).  There was no significant interaction between feeding experience and 

volatile condition on proportion of prey eggs consumed (F=1.80, df=1, P=0.18).  The per capita 

consumption rate was also greater for starved predators than satiated predators at each prey egg 

density (F=17.71, df=1, P<0.0001) and volatile condition (F=40.84, df=1, P<0.0001).  Hence 

the greater total prey consumption of starved predators appears to be related to their longer 

residence time on source disks compared to satiated predators.  Regardless of the feeding status, 
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predators consumed fewer prey eggs when exposed to leaf volatiles from infested leaves than 

from uninfested leaves (Table 2-1).  Hence, P. persimilis giving-up time seems to depend on the 

interaction between consumption rate (as a measure of prey density) and HIPV.   Based on this 

conclusion we might expect that predator density would affect giving-up time.  While this may 

be true for longer interactions, within the time frame of our tests the giving-up time of a single 

predator at low (5 eggs) and high prey density (40 eggs) per petri dish was similar to that of five 

predators at comparable densities (Fig. 2-1).  There was no significant difference in the leaving 

rates of satiated predators (one or 5) at 5 prey eggs (χ2 = 0.91, df= 4, P=0.922) or 40 prey eggs 

(χ2 = 0.68, df= 4, P=0.87) at either volatile condition.  Similarly, there was no significant 

difference in the leaving rates of starved predators (one or 5) at 5 prey eggs (χ2 = 6.51, df= 4, 

P=0.08) or 40 prey eggs (χ2 = 4.18, df= 4, P=0.24) at either volatile condition.  This is consistent 

with reports that P. persimilis emigration rate is independent of predator density when prey are at 

very low or at high densities (Bernstein 1984; Zemek and Nachman 1998).   

Many studies have considered the problem of when a natural enemy should leave a 

resource patch.  Knowledge of factors that affect predator giving-up time has applications for 

pest management because the timing of natural enemy dispersal can affect the ratio of natural 

enemies to pest both within a patch and throughout a region, which in turn affects pest 

suppression.  If predator response to HIPV has an impact on the ability of a predator population 

to reduce a prey population, it will affect the predator’s success as a biological control agent 

(Hopper et al. 1993; Lewis et al. 1990). The impact of the volatiles on giving-up time, and hence 

population dynamics, is likely to be modified by interactions among predators, either locally 

(Bernstein 1984) or from a distance (Janssen et al. 1997). With more specific information on the 

role of HIPV in relation to other cues available to predator, we may be able to manipulate these 
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volatiles to increase efficiency of the biological control agent (Dicke et al. 1990b; Lewis and 

Martin 1990; Tumlinson 1988; Vet and Dicke1992).  
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Figures and Tables 
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Figure 2-1 Effect of local prey density and volatiles on giving-up time of satiated P. 

persimilis from a prey patch. Circles denote tests run with 5 predators per petri dish and 

triangles those with only a single predator per petri dish. 
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Figure 2-2 Effect of local prey density and volatiles on giving-up time of starved P. 

persimilis from a prey patch. Circles denote test run with 5 predators per petri dish and 

triangle those run with only a single predator per petri dish. 
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Prey density 

 
       Upwind plants 

              
Prey eggs consumed by predator 

 
Satiated                     Starved 

 
 

0 
 
Uninfested 
Infested 

 
- 
- 

 
- 
- 

 
5 

 
Uninfested 
Infested 

 
4.00 ± 0.26 
3.00 ± 0.12 

 
5.00 ± 0.46 
2.70 ± 0.31 

 
10 

 
Uninfested 
Infested 

 
5.15 ± 1.09 
3.31 ± 0.75 

 
6.95 ± 1.70 
5.90 ± 2.40 

 
20 

 
Uninfested 
Infested 

 
6.75 ± 1.39 
4.45 ± 0.75 

 
9.50 ± 1.49 
6.75 ± 0.85 

 
40 

 
Uninfested 
Infested 

 
9.27 ± 1.10 
7.05 ± 1.12 

 
20.80 ± 2.50 
11.15 ± 1.27 

 
 

Table 2-1 Mean ± SE number T. urticae eggs consumed by predators at the end of the 

observation period (6h). 
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CHAPTER 3- Phytoseiulus persimilis Response to Herbivore-

Induced Plant Volatiles as a Function of Mite-days 

    Experimental and Applied Acarology 40: 231-239. 

Abstract 

 

The predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae), uses plant volatiles 

(i.e., airborne chemicals) triggered by feeding of their herbivorous prey, Tetranychus urticae 

(Acari: Tetranychidae), to help locate prey patches.  The olfactory response of P. persimilis to 

prey-infested plants varies in direct relation to the population growth pattern of T. urticae on the 

plant; P. persimilis responds to plants until the spider mite population feeding on a plant 

collapses, after which infested plants do not attract predators.  It has been suggested that this 

represents an early enemy-free period for T. urticae before the next generation of females is 

produced.  We hypothesize that the mechanism behind the diminished response of predators is 

due to extensive leaf damage caused by T. urticae feeding, which reduces the production of 

volatiles irrespective of the collapse of T. urticae population on the plant.  To test this hypothesis 

we investigated how the response of P. persimilis to prey-infested plants is affected by: 1) initial 

density of T. urticae, 2) duration of infestation, and 3) corresponding leaf damage due to T. 

urticae feeding.  Specifically, we assessed the response of P. persimilis to plants infested with 

two T. urticae densities (20 or 40 per plant) after 2, 4, 6, 8, 10, 12 or 14 days.  We also measured 

leaf damage on these plants.  We found that predator response to T. urticae-infested plants can be 

quantified as a function of mite-days, which is a cumulative measure of the standing adult female 
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mite population sampled and summed over time.  That is, response to volatiles increased with 

increasing numbers of T. urticae per plant or with the length of time plant was infested by T. 

urticae, at least as long at the leaves were green.  Predatory mites were significantly attracted to 

plants that were infested for 2 days with only 20 spider mites.  This suggests that the enemy-free 

period might only provide a limited window of opportunity for T. urticae because relatively low 

numbers of T. urticae per plant can attract predators.  Leaf damage also increased as a function 

of mite-days until the entire leaf was blanched. T. urticae populations decreased at this time, but 

predator response to volatiles dropped before the entire leaf was blanched and before the T. 

urticae population decreased.  This result supports our hypothesis that predator response to plant 

volatiles is linked to and limited by the degree of leaf damage, and that the quantitative response 

to T. urticae populations occurs only within a range when plant quality has not been severely 

compromised. 

Introduction 

Arthropod natural enemies use many sensory cues to aid the search for food, but the use 

of chemical cues is probably most common (Roland 1990; Vet and Dicke 1992).  Plant volatiles 

are probably important in directing parasitoids and predators to search in appropriate habitats 

(Bell 1984; Lewis and Martin 1990; Turlings et al.1990; Takabayashi and Dicke 1996), but plant 

volatiles that are produced only in response to herbivore feeding offer natural enemies more 

reliable information on the actual presence of food (Vet and Dicke 1992).  The phytoseiid mite, 

Phytoseiulus persimilis Athias–Henriot (Acari: Phytoseiidae), is a specialist predator of 

tetranychid mites and the most frequently used biological control agent for twospotted spider 

mites, Tetranychus urticae Koch (Acari: Tetranychidae), especially in greenhouses (van 

Lenteren and Woets 1988).  Among the cues that predatory mites may use to find prey-infested 
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plants are volatile chemicals that originate from the plant on which the prey feed (Sabelis and 

van de Baan 1983; Dicke et al. 1990c; Maeda and Takabayashi 2001).  Previous studies have 

demonstrated that P. persimilis are attracted to the odor of plants infested by its prey, T. urticae, 

in preference to the odor of uninfested plants (Sabelis and van de Baan 1983; Sabelis et al. 1984; 

Dicke 1994; Janssen 1999) or plants infested with non-prey herbivores (Dicke et al. 1990a, b; 

Turlings et al. 1990; Takabayashi et al. 1991). 

Maeda and Takabayashi (2001) demonstrated that the intensity of response of P. 

persimilis to T. urticae-infested plant volatiles was highly correlated with the amount of volatiles 

produced by T. urticae-infested plants.  The density of T. urticae females on kidney bean plants 

was proportional to the production of T. urticae-induced plant volatiles until the collapse of the 

adult spider mite population; however, the plants didn’t attract predators until 40 spider mites 

had fed on the plants for at least 12 days.  The authors also found that in the interval between the 

collapse of initial adult T. urticae numbers and appearance of the second generation females 

infested plants did not attract predatory mites.  They hypothesized this was a temporary enemy-

free period for T. urticae.  We suggest a mechanism for this response that may lead to an enemy-

free period.  That is, the diminished response of predators results from extensive leaf damage 

caused by T. urticae feeding, which reduces the production of volatiles irrespective of the 

collapse of T. urticae population on the plant.  To test our hypothesis we investigated three 

factors that might affect the production of T. urticae -infested plant volatiles: 1) densities of T. 

urticae per plant, 2) duration of T. urticae infestation, and 3) level of leaf damage corresponding 

to T. urticae infestation. 
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Materials and Methods 

Source Material 

Lima bean, Phaseolus lunatus cv. ‘Sieva’, served as the host plant for T. urticae in all 

experiments. Plants were grown in the greenhouse under 400 W high-pressure sodium vapor 

lamps that were set at a 16:8 (L: D) h photoperiod and 22–25°C.  Irrigation and fertilizer regime 

was uniform for all plants.  Lima bean plants were sown on two consecutive days.  Plants with 

two fully expanded cotyledons were used for the study.  New growth was clipped of periodically 

to maintain two leaves on the plant. 

The population of T. urticae used in experiments derived from a colony maintained on 

lima beans in a rearing room under light and temperature conditions as described above.  P. 

persimilis were obtained from Koppert Biological Systems, Inc. (Romulus, MI USA), a 

commercial producer of beneficial arthropods.  One-week old adult female predators were used 

in the experiment. 

Spider Mite Counts and Damage Ratings 

The number of adult female T. urticae present on each infested leaf and leaf damage was 

recorded prior to use in the experiment.  Mite-days were calculated as the cumulative number of 

adult female T. urticae per plant through time (14-day period).  We visually assessed the degree 

of T. urticae -related leaf-feeding injury using a leaf damage index (LDI) similar to that of 

Nachman and Zemek (2002), which was modification of a procedure developed by Hussey and 

Parr (1963).  The symptoms were ranked according to an ordinal scale as follows: 0, no damage; 

1, incipient damage, one or two small feeding patches; 2, feeding patches tending to coalesce, 

but only 2/3 of leaf affected; 3, 2/3 of leaf with feeding marks as chlorotic patches; 4, dense 

feeding marks over entire leaf but appearance still green; and 5, as 4, but leaf blanched and 
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beginning to shrivel. LDI was calculated as an average of four plants per treatment-time 

combination. 

Bioassay of Response of P. persimilis to T. urticae–Induced Plant Volatiles 

The response of predators to T. urticae-induced plant volatiles was examined on a 40 cm 

diameter circular arena encircled with a sticky material (Insect Coating, The Tanglefoot 

Company, MI, USA) to prevent predators from leaving.  The size of the arena was based on 

previous studies which showed that adult female P. persimilis exhibited increased turning rates 

and decreased walking speed within 20 cm of prey-infested plants (Mayland 1998).  Three 

arenas were set up side-by-side (one for each treatment and one for the control) with a vertical 

cardboard divider (60 cm H x 55 cm W) to reduce air movement and possible drift of volatiles. 

To further reduce the effect of air movement on predator orientation and activity, the arenas were 

located in a small room (3 m x 1.2 m) that was closed of when running a test.  A 40W 

fluorescent lamp located above the arenas provided illumination.  Room temperature and 

humidity were maintained at 25 ±1°C and 60%, respectively.  Tests were usually conducted from 

1000 to 1200 h.  For each repetition of the experiment, one 2.2 cm diam leaf disk was cut from 

infested parts of a plant infested with 20 or 40 T. urticae; these served as sources of T. urticae-

infested plant volatiles.  However, volatile production is not limited to the site of damage but is 

produced systemically (Dicke et al. 1990b; Turlings and Tumlinson 1992; Potting et al. 1995; 

Röse et al. 1996).  A leaf disk cut from an uninfested plant served as the control.  All spider 

mites eggs and webbing were removed from each of the leaf disks before disks were placed, one 

per arena, in the center on moist cotton wool.  This was done 2 h prior to testing to allow 

suffcient time for the volatiles to diffuse in air (Jia et al. 2002).  During this 2 h period predators 

were held without food in an empty glass vial (2.5 cm diam and 5.5 cm H) sealed with parafilm. 
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This procedure allowed the predator to empty their gut contents without affecting their foraging 

ability (Sabelis 1981).  Following the protocol of Jia et al. (2002), 10– 12 adult female P. 

persimilis were released from the edge of the arena and the number of predatory mites that found 

the central leaf disk within 10 min was recorded.  Predators were continuously observed after 

release in the arena and the time for each predator to reach the central leaf disk was recorded. 

Predators were immediately removed from the arena when they encountered the central disk to 

avoid recounting of the same individuals.  Thus, the arena bioassay tested P. persimilis attraction 

to leaf disks from a distance, and the comparison between the control and treated disks allowed 

us to test whether the response differed from that expected under random (non-attracted) 

movement.  The surface of the arena was always cleaned between trials to minimize 

contamination between runs.  Tests at each of the three inoculation levels were run 2, 4, 6, 8, 10, 

12, and 14 days post-inoculation.  Experiments were conducted over a four-month period 

(March–June) with eight replicates per treatment-time combination, hence a total of 32 (8 x 4) 

replicates per treatment-time combination. 

Statistical Analysis 

We analyzed the response of the predators, which in the context of our study we defined 

as the proportion of predators that found the central leaf disk placed in the arena in the first 10 

min (Mayland 1998).  The experimental design was a randomized complete block with repeated 

measures and nested blocking factors.  A mixed-model analysis was conducted using treatment, 

time (days after inoculation), and their interaction as fixed effects, and experiment as random 

effects.  Time was also a repeated measures factor.  Models were fit assuming numerous 

standard structures for the serial correlation, and the best-fitting model was selected using 

Akaike’s Information Criterion (Littell et al. 1996; Guerin and Stroup 2000).  F-tests for fixed 
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effects and t-tests for pairwise comparisons were performed based on the chosen correlation 

structure (Littell et al. 1996).  All tests used a 0.05 type I error rate.  All computations were done 

using PROC MIXED in SAS (SAS Institute 2001). 

Results and Discussion 

P. persimilis were attracted to leaf disks from T. urticae-infested plants, whereas leaf 

disks from control plants, which were mechanically-damaged, elicited no or a weak response 

(Fig. 3c).  There was a significant difference in response of P. persimilis to leaf disks from 20 

and 40 T. urticae-infested plants compared to the uninfested plant (t21 = -41.02, P < 0.0001 and 

t21 = 51.90, P < 0.0001) respectively (Fig. 3-2c).  This supports the assumption that leaf volatiles 

produced by the herbivorous prey were involved in the response.  Volatiles released by 

mechanical damage (i.e., cutting) are different from those released by spider mite feeding and the 

former do not attract P. persimilis while the latter do (reviewed by Turlings et al. 1995; 

Takabayashi and Dicke 1996; Dicke et al. 1998).  The response of P. persimilis to T. urticae-

infested plant volatiles increased with increasing T. urticae density per plant (F2, 14.9 =349.86, P 

< 0.0001) (Fig. 3-2a, c).  Additionally, the responsiveness of P. persimilis to T. urticae-infested 

plant volatiles also increased with the duration of infestation of T. urticae on the plant (F6, 16 

=280.36, P < 0.0001) (Fig. 3-2a, c).  Thus, the response of P. persimilis to T. urticae-infested 

plants may be quantified using mite-days, which is a measure of the standing adult female T. 

urticae population on a plant sampled and summed over time (Fig. 3-1). 

The response of P. persimilis to plant volatiles was similar for 20 T. urticae on a plant for 

4d or 40 T. urticae for 2d which equals 80 mite-days (t14.1 = -1.08, P =0.21).  Similarly, response 

of P. persimilis to plant volatiles was similar for 20 T. urticae on a plant for 8d or 40 T. urticae 

for 4d which equals160 mite-days (t24.3 =3.32, P =0.28) (Fig. 3-1).  These data support the 
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concept that plant volatile production is related to cumulative T. urticae populations over time.  

However, the mite-day concept did not hold at higher levels.  For example, there was a 

significant difference in the response of P. persimilis at 240 mite-days between the two 

combinations tested, i.e., 20 T. urticae on a plant for 12d vs. 40 T. urticae for 6d (t42.4 =4.96, P 

<0.05) (Fig. 3-1).  The attractiveness of P. persimilis to prey-infested plants shows a typical 

unimodal curve with linear increase in predator response corresponding to an increase in T. 

urticae density.  However after the peak of T. urticae density, predator response starts to 

decrease (Maeda and Takabayashi 2001).  The mite-days concept may not be a reliable indicator 

of plant volatile production beyond a certain density and/or duration of T. urticae infestation 

because of differences in induction potential for plant volatiles related to differences in T. urticae 

demography (i.e., changes in age class distribution over time).  However, we did not evaluate 

these changes.  

Leaf damage due to T. urticae feeding increased as a function of mite-days, i.e., average 

LDI per plant increased with increasing T. urticae density and duration of infestation until the 

entire leaf was blanched (Fig. 3-2a, b).  The average response of P. persimilis to 20 or 40 T. 

urticae-infested plant corresponds to LDI values of 4.8 and 4.2, respectively (Fig. 3-2b, c).  

Adult populations of T. urticae began to decrease after the LDI reached 4.5; but predator 

response to plant volatiles dropped before this time (Fig. 3-2b, c).  Mite-days can be applied to 

leaf damage until the leaf appears green with dense feeding symptoms of T. urticae; beyond this 

level of damage mite-days cannot be used for quantifying predator response to volatiles.  This 

suggests that the reduction in predator’s response under conditions of severe leaf damage may be 

related to a reduction in plant ability to produce volatiles. 
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Our results confirm previous reports that the response of P. persimilis to plant volatiles 

corresponds with T. urticae densities and the duration of spider mite infestation on the plant 

(Sabelis et al. 1984; Maeda and Takabayashi 2001; Gols et al. 2003).  Progressive increase in T. 

urticae density, duration of infestation, and mite-days resulted in corresponding increases in the 

level of attraction of P. persimilis (Fig. 3-2a, c).  We observed a significant response of predators 

when 20 or 40 T. urticae were introduced on the plant at 2 days (t9.96 =9.44, P < 0.0001 and t9.96 

=14.60, P < 0.0001, respectively) (Fig. 3-2a, c). Gols et al. (2003) using whole plants as odour 

sources also found that relatively low density of spider mites (only 1or 4) on a plant for 2 days 

caused P. persimilis to be significantly attracted to T. urticae-induced plant volatiles in a Y-tube 

olfactometer.  Although our experimental set-up was different from the Y-tube olfactometer used 

by Gols et al. (2003), both studies show similar results in that few spider mites per plant and 

infestation period of only 2 days is suffiicient to increase predator response.  Plants with 20 T. 

urticae for 12d resulted in 70% of the predator’s response, and plants with 40 T. urticae at 8d 

resulted in 74% predator response (Fig. 3-2a, c).  One explanation for the shift in time of the 

peak response of the predators may be because there were higher numbers of adult female T. 

urticae on plants inoculated with 40 T. urticae; this may have resulted in larger quantities of 

volatiles being produced, or volatiles being produced sooner, compared to plants infested with 20 

T. urticae.  We found that relatively low numbers of spider mites per plant will attract predatory 

mites to the plants and this would reduce the enemy-free period available for spider mites.  We 

also found that the response of predators to volatiles is linked to plant damage rather than 

directly to T. urticae populations, and that predator response decreases because leaf damage 

caused by T. urticae feeding reduces the plant’s ability to produce volatiles.  As the plant reaches 

a damage threshold, it may cease production of volatiles.  Various factors are known to influence 
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the quality and quantity of volatiles produced, including plant species or cultivar, leaf growth 

stage, herbivore species, and abiotic conditions (light intensity, time of year, and water stress) 

(Sabelis and Dicke 1985; Dicke et al. 1990a; Takabayashi et al. 1994).  Nevertheless, for a 

specified set of genetic and environmental conditions, mite-days may provide a quantitative 

assessment of P. persimilis response to T. urticae-infested plant volatiles within a given range of 

T. urticae density and duration of infestation.  Successful colonization of new spider mite 

patches by the predator is important for the persistence of the predator population and for 

biological control (Sabelis et al. 1999; Walde and Nachman 1999).  Because herbivore-induced 

plant volatiles increase the probability of the predator finding a rich prey patch, it can directly 

increase predator foraging and fecundity, thus contributing to predator population fitness.  

Investigations of the role of plant volatiles, in combination with other factors that underlie 

variation in predator behavioral response, will contribute to a better understanding of how P. 

persimilis forages for T. urticae.  It may also lead to a greater ability to manipulate plant volatiles 

to increase the efficiency of this biological control agent. 
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Figures  

 

 

Figure 3-1 Response of P. persimilis in relation to number of mite-days resulting from adult 

female T. urticae density and the duration of infestation 
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Figure 3-2 Response of P. persimilis in an arena bioassay in relation to (a) T. urticae density 

per leaf, (b) average leaf damage as per LDI scale and (c) percentage of predator 

responding over the duration of T. urticae infestation per plant 
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CHAPTER-4- Genetic Variation of Foraging Behaviors and 

Associated Life Histories in a Predatory Mite 

Abstract 

For any complex phenotype to evolve in response to ecological conditions, it is essential 

that the phenotypic variation be controlled in part by heritable genetic variation.  This heritable 

genetic variation in a population will determine how rapidly a phenotype will change in response 

to selection.  However, the existence of genetic correlations with other phenotypes may hinder 

the direction and/or rate of this response to selection.  One such complex trait is foraging 

behavior, which is composed of many related phenotypic components and has obvious links to 

individual fitness in nature.  Despite steady progress in the study of foraging behavior, key 

questions about the evolutionary or genetic mechanisms that contribute to the maintenance of 

genetic variation, and the effect of this variation on individual fitness, remain unanswered.  We 

conducted a quantitative genetic analysis for four ecologically-relevant components of foraging 

behavior including prey consumption rate, conversion efficiency, dispersal and olfactory 

response in a predatory mite, Phytoseiulus persimilis.  To quantify the portion of the phenotypic 

variation caused by genetic effects, we conducted a set of bidirectional artificial selection 

experiments on aforementioned foraging traits.   Significant additive genetic variation was 

detected in both directions of selection for nearly all of the foraging traits with the single 

exception being the low-olfactory line.  To confirm that the patterns observed in the first set of 

selection experiments were in fact the result of responses to selection and not stochastic changes 

in allele frequencies caused by genetic drift, we performed a temporally distinct second replicate 

of selection.  In this second set of selection experiments we imposed selection only in the 
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direction of, and for the traits which maintained, the selection response after the selection was 

relaxed in the first set of experiments.  Thus, in the second set of experiments we created an 

additional high consumption line, high conversion efficiency line, and a high dispersal response 

line.  The response to selection in the second replicate was similar to that obtained in the first set 

of selection experiments.  After successful selection of the lines, we assessed correlated 

responses in consumption, conversion efficiency, dispersal and olfactory response at the 

conclusion of selection for all lines subjected to selection regime I.  We detected significant 

genetic correlations between some foraging traits that were used in the selection treatments.  For 

example, consumption and dispersal both responded in a manner consistent with a correlated 

response to selection.  We also measured correlation among foraging traits and life-history traits 

such as hatching time (time to emerge from egg), hatching percent, development time (time from 

nymph to adult ecdysis), survivorship from egg to adult and daily fecundities.  There was no 

evidence of genetic correlations between the selected lines with hatching time, hatching percent 

and survivorship except for a marginally significant correlation between low consumption and 

development time.  The high- and low-consumption and conversion efficiency lines had 

significantly different fecundities than control line, whereas the high- and low-dispersal and 

olfaction lines were comparable to the control.  These results indicate that certain traits like 

consumption and dispersal likely share a common genetic basis, and depending on the mode of 

selection applied to this variation (and covariation) constraints on their independent evolution 

could occur.  Finally, we assessed the fitness of foraging phenotypes to evaluate their potential 

competitiveness in the field.  The fitness estimates in the low-consumption and low-conversion 

efficiency line were significantly diminished compared to their respective high lines and the 

unselected control.  The dispersal and olfactory response lines did not differ in their fitness 
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compared to the unselected control.  This study provides the first comprehensive examination of 

genetic variation and covariation in a suite of ecologically-relevant foraging traits that potentially 

impact the foraging success and fitness consequences of a predatory mite.     

 

Introduction 

How animals forage for food is a core issue in ecology.  This process forms the basis of 

trophic interactions and plays a fundamental role in shaping population dynamics, food webs, 

and communities.  Foraging is the expression of a complex phenotype that is composed of 

numerous behavioral and physiological components, including olfactory cues, movement 

dynamics, and consumption efficiency.  At a genetic level there is tremendous variation in 

foraging traits among individuals of a species owing to the interaction of many genes 

(Sokolowski 2001).  In addition, the foraging success of an individual is influenced by factors 

such as the distribution and suitability of resources and the risks associated with searching for 

food (Stephens and Krebs 1986).  Furthermore, ecological factors not directly related to foraging, 

such as variation in life-history traits, may also affect foraging success (Roitberg et al. 1992).   

For example, variation in body size can affect locomotory skills (Roff 1991).  Together, the 

genes, the life-history, and the landscape produce wide variation in foraging phenotypes.  

Theoretical treatments (e.g., Hassell and May 1985; Pels et al. 2002) and empirical evidence 

(e.g., Murdoch et al. 1996; Hanski et al. 2004) suggest that even subtle differences in predator 

foraging success caused by variation in any of these factors can lead to significant differences in 

predator-prey population dynamics. Therefore, we expect the evolution of foraging traits will 

depend on the relationship and interaction between the standing genetic variation and the 
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environmental variance in the trait, which ultimately gives rise to the phenotypic variation upon 

which natural selection can act.   

Three conditions are necessary for local adaptation to occur in foraging behavior 

(Carriere and Roitberg 1996): 1) a proportion of the phenotypic variation must be heritable; 2) 

phenotypic variation in foraging must have consistent fitness consequences; and 3) gene flow 

between populations associated with different habitats must be negligible to allow evolutionary 

divergence in locally-adapted foraging behaviors.  Although these conditions are true for simple 

phenotypes, the evolution of multivariate phenotypes is much more complex.  Foraging 

behaviors are a composite set phenotype made up of many related phenotypic components that 

must evolve together for entire behavior to respond to selection.  The manner in which suites of 

phenotypes respond to selection has and continues to be a central paradigm of evolutionary 

theory (Lande and Arnold 1983; Roff 1992; Stearns 1992).  Selection favoring the increase in 

one trait may be constrained by a fitness trade-off between the trait under selection and a second 

trait that is genetically correlated with the trait under selection, for example offspring size and 

offspring number.  However, only trade-offs that are the result of significant additive genetic 

covariation will be evolutionarily significant (Roff et al. 1999).  Trade offs that are the result of 

genetic covariation will persist on evolutionary time scales because the genetic correlations are 

likely the result of either pleiotropy or tight linkage between the genes underlying each of these 

two phenotypes (Falconer and Mackay 1996).  Therefore, to accurately predict the response of 

multiple phenotypic traits to selection, we must not only estimate the genetic variation of a trait 

but also the genetic covariation with other traits as the combination of these two factors will 

determine the rate and direction of future evolutionary change (Lande and Arnold 1983; Arnold 

1986).  
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In this study we were particularly interested in the evolution of responses to herbivore-

induced plant volatiles by arthropod predators.  Although understanding the genetic basis of such 

traits is extremely important for predicting the long-term population dynamics in multitrophic 

systems, only a handful of studies have provided strong evidence of a genetic component in 

foraging behaviors.  These include host acceptance (Mollema 1991; Powell and Wright 1992) 

and attraction to host-infested plants (Prevost and Lewis 1990; Gu and Dorn 1999, Wang et al. 

2003) in response to plant chemicals.  We have started to address the evolution of foraging under 

the presence of plant volatiles by conducting a set of artificial selection experiments focusing on 

several specific yet variable predator foraging traits, including response to herbivore-induced 

plant volatiles, that potentially affect both predator fitness and population dynamics. In general, 

artificial selection experiments provide a powerful tool to estimate genetic variation.  

Additionally, artificial selection can be used to estimate the strength and sign of genetic 

correlations that underlie multiple phenotypic components by quantifying the correlated response 

to selection on additional specific predator foraging traits.   

We examined genetic variation in and covariation among predator foraging traits in a 

tritrophic system consisting of a bean plant (Phaseolus lunatus L.), the twospotted spider mite, 

Tetranychus urticae Koch, and the phytoseiid mite, Phytoseiulus persimilis Athias-Henriot.  

Early work on the chemical basis of attraction of P. persimilis to T. urticae-induced plant 

volatiles (Sabelis and van de Baan 1983; Dicke et al. 1990) demonstrated significant phenotypic 

variation in the olfactory response.  While subsequent work reported significant phenotypic and 

genetic variation in response to spider mite-induced plant volatiles, dispersal in response to prey 

density and prey consumption rate was demonstrated in both P. persimilis (Margolies et al. 1997, 

Jia et al. 2002, Pels and Sabelis 1999) and the closely-related predatory mite Neoseiulus 
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womersleyi (Shicha) (Maeda 2005, 2006).   However, the potential interaction of these traits with 

each other or with other ecological factors is unknown but presumably important in the 

population dynamics of this system and the evolution and maintenance of genetic variation in 

these traits in natural populations.  Thus, this analysis of genetic variation and covariation in 

foraging traits is the first step needed to develop a comprehensive and predictive model of the 

evolutionary response to natural selection in a complex environment.  

Phytoseiulus persimilis is a specialist predator on tetranychid mites (van Lenteren and 

Woets 1988) and is commonly used as a biological control agent for twospotted spider mites.  In 

biological control, we are particularly concerned with the impact of foraging on the simple 

trophic interaction of a natural enemy and its target.  One of the earliest and simplest 

formulations of this interaction is the Lotka-Volterra predator-prey model, which couples 

predator and prey population dynamics in homogeneous environments via predator consumption 

rate (which reduces prey population growth) and the rate of conversion of prey eaten into 

predators produced (which affects predator population growth).   These two variables, 

consumption and conversion efficiency, reflect the basic link between predator foraging and 

population dynamics assuming, prey are always available.  However, when predators must find 

prey in heterogeneous landscapes, predator dispersal and ability to find new resources affect both 

individual foraging success and regional predator-prey dynamics.  In this case, the local 

consumption rate and conversion efficiency will affect regional dynamics, because by affecting 

local per capita prey availability they affect the dispersal rate of predators. In turn, when 

predators leave a prey patch they reduce the local predator population, while at the same time 

increasing colonization of other prey patches.  Thus, traits that affect predator dispersal from 

patches are equally important to local and regional (i.e., among patch) dynamics (Hassell 1978; 
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Berryman and Gutierrez 1999).  These traits will interact to affect the predator-to-prey ratio in 

each local patch, which in turn affects the stability of the species interaction (Hassell 1978; 

Berryman 1999).   

The local interaction between P. persimilis and T. urticae is limited and ephemeral 

because when P. persimilis invade a spider mite-infested plant the predators quickly eliminate 

the local spider mite population (Chant 1961; Takafuji et al. 1983).   This outcome is the result of 

a strong predator numerical response and its voraciousness.  One component of the numerical 

response is predator aggregation (Nachman 2006).   These predators locate and remain in prey 

patches in response to cues associated with prey density, including direct cues such as exuviae, 

feces, webbing, and eggs (Sabelis and van de Baan 1983), and important indirect cues such as 

prey-induced plant volatiles (Maeda et al. 1998; Mayland et al. 2000).  At long range, volatiles 

attract predators to prey-infested plants or cause them to search more intensively around a prey-

infested plant (Janssen 1999).  Once a predator is on a plant, the same volatiles that attract 

predators are also important in local arrestment (Sabelis et al. 1984).  This results in predator 

aggregation.  The other component of the numerical response is the predator reproductive rate 

(Sabelis 1985), which is directly related to the rate of prey consumption (Sabelis 1981).  

Predators are generally found feeding in densely-packed prey colonies (Bancroft and Margolies 

1999), so individual consumption rates are relatively constant and close to the maximum possible 

(Sabelis et al. 1999).  When prey density decreases in the immediate vicinity of a predator, the 

predator will simply move to an adjacent area where the prey are still plentiful.  It is only when 

prey density becomes scarce in the entire patch that the per capita predation rate drops. 

Although the local interaction within a patch is generally unstable, the predator-prey 

interaction may persist on a regional scale as a result of repeated dispersal from and colonization 
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of new patches by both prey and predators (Diekmann et al. 1988; Nachman 1987, 1988, 1991; 

Sabelis et al. 1991; Walde 1991, 1994; Jansen and Sabelis 1992; Walde and Nachman 1999; 

McCauley et al. 2000).  Predators usually disperse from occupied patches when prey density 

approaches zero (Takafuji 1977; Bernstein 1984; Zhang and Sanderson 1993; Zemek and 

Nachman 1998).   However, some individuals disperse more readily, which extends the duration 

of the local interaction and ultimately results in the production of more dispersers (van Baalen 

and Sabelis 1995).  That is, if predators stay in a patch until all prey are eliminated, local 

predator population growth rates should be high, local prey populations should show an 

immediate decrease, and the local interaction period will be short.  Because the interaction is 

brief, the patch will produce few dispersing predators.  If, on the other hand, predators 

continually disperse during the interaction, the local predator population growth rate will be 

lower, the local prey population will decrease at a lower rate (or even increase), and the 

interaction period will be longer.  This patch will produce more predators to find and colonize 

other patches (Pels et al. 2002).   Successful colonization of new prey patches is positively 

related to the number of dispersers produced in occupied patches (Sabelis et al. 1999); therefore 

dispersal rate is related to regional foraging success (Pels and Sabelis 1999).   Furthermore, 

because the rate of local prey depletion is affected by predator consumption rates and conversion 

efficiency, these traits must also affect the length of the local interaction. 

 The major objective of this study was to quantify the genetic components of phenotypic 

variation in four ecologically-relevant foraging traits in the predatory mite, P. persimilis using 

standardized laboratory bioassays (Jia et al. 2002; Nachappa et al. 2006a, b).  To this end 

multiple replicated selection regimes were used to create lines of P. persimilis with high and low 

levels (relative to an unselected control population) of the four described foraging traits: 
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consumption rate, conversion efficiency, dispersal response to prey density, and olfactory 

attraction to T. urticae-induced plant volatiles.  A first replicate of selection was initiated with an 

unconventional approach via a combination of both mass selection and family selection to 

achieve sufficient sample sizes and a significant selection response.   

We were particularly interested in the rate of and limits to the selection response. 

Selection limits may be imposed on a population either because of constraints by correlated traits 

or because all the alleles affecting the trait are either fixed or lost.  It is also possible that 

artificial selection on dispersal is opposed by natural selection on dispersal or some correlated 

traits. We examined this possibility by relaxing artificial selection on the foraging traits to see if 

natural selection acting alone would reverse the changes obtained by direct selection on the trait. 

To confirm the first replicate of selection, a second temporally distinct replicate of 

selection followed a more conventional approach, which imposed artificial selection every other 

generation with random mating in the other generations for the stable phenotypes obtained in the 

previous replicate.  This approach was used to again ensure sufficient sample sizes and a 

significant selection response.   

After stable replicated selection lines were produced, our second objective was to 

investigate the correlated responses in consumption, conversion efficiency, dispersal and 

olfactory response for all lines subjected to selection regime I.  We also measured genetic 

correlations between life history traits, including time to emerge from egg, hatching percent, 

development time (time from nymph to adult ecdysis), and survivorship from egg to adult for 

lines in selection replicate I.  Finally, we estimated fitness in terms of intrinsic rate of increase 

(rm) for each foraging phenotypes in replicate I.  To our knowledge this is the first experimental 

selection study that examines the genetic basis of a suite of ecologically-relevant foraging traits 
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that are likely to be critical for predator performance and predator-prey dynamics in 

heterogeneous landscape (Sabelis et al. 1999).  

Materials and Methods 

Study Species 

The predatory mite Phytoseiulus persimilis (Acari: Mesostigmata: Phytoseiidae) is 

globally distributed and represents one of most important biological control agent for tetranychid 

mites in a number of agricultural systems (Helle and Sabelis 1985 a, b). This predator is of 

Chilean origin (Dosse 1958) and was subsequently shipped to other parts of the world, including 

the United States (Hussey and Scopes 1977). Phytoseiid mites reproduce by pseudoarrhenotoky, 

which is characterized by obligate fertilization of all eggs followed by a loss and/or 

heterochromatization of the paternal chromosomes in embryos that develop into males, resulting 

in a haploid condition of the males (Hoy 1979; Schulten 1985; Perrot-Minnot et al. 2000).  Under 

normal conditions, the sex ratio is female-biased, usually close to 0.83 (Helle and Sabelis 1985b) 

and each female can produce 60 eggs in her lifetime (McMurty and Rodriguez 1987). 

Phytoseiulus persimilis has 5 developmental stages: egg, non-feeding larva, protonymph, 

deutonymph and adult (Sabelis 1981).  Development time (egg to adult) at 25o C is 

approximately 3 days, generation time (egg to egg) is 5 days, and average adult lifespan is 25 

days (Takafuji and Chant 1976). Nymphs and adults feed on all stages of their tetranychid prey 

but preferentially consume prey eggs (Sabelis 1981); when prey are abundant, adults will 

consume 24 prey eggs per day (Sabelis 1981).  Predators maximally produce 6 offspring per day, 

or one predator egg produced for every 0.13 prey eggs consumed (Nachappa unpublished).   

Replicate selection lines were initiated from a source population of P. persimilis that 

were purchased from Koppert Biological Systems, Inc. (Romulus, Michigan), a commercial 
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supplier of beneficial arthropods. Phytoseiulus persimilis were reared on twospotted spider 

mites, Tetranychus urticae Koch (Acari: Prostigmata: Tetranychidae), in the laboratory for one 

generation under 24+1°C, 60-70% relative humidity, 16:8 h (L: D) photoperiod to allow the 

predators to acclimate to laboratory conditions. Tetranychus urticae (prey) were maintained on 

lima beans (Phaseolus lunatus cv. ‘Sieva’) under the same temperature and photoperiod regime. 

Selection lines were maintained in 1.89 l. mason jars with the metal lids removed and replaced 

with fine mesh screen to allow air exchange.  T. urticae-infested bean plants were added to the 

jars every other day. Every week the bottom layers, consisting of dry leaves with few spider 

mites or predators, were discarded. Seven to 10 day old adult female predators were used for all 

experiments. 

Phenotypic Assays of P. persimilis 

Consumption and Conversion Efficiency Consumption and conversion efficiency were 

measured in a bioassay developed by Jia et al. (2002).  Phytoseiulus persimilis were placed in a 

vial 2.5-cm diam x 5.5- cm ht along with a 2-cm diam bean leaf disk that had 40-50 one-day old 

T. urticae eggs.  The vial was sealed with parafilm and maintained in an environmental chamber 

at 24+1°C, 60-70% relative humidity, and 16:8 h L: D photoperiod for 24 h, after which the 

number of prey eggs left on the disk was counted.  In addition, predator eggs generated within 

the 24-h period were also counted. Consumption rate was defined as the number of prey eggs 

consumed by a predatory mite within 24 h and conversion efficiency was the ratio of the number 

of prey eggs consumed to the number of predator eggs laid in that time.   

Dispersal Response Dispersal response of P. persimilis was measured in a Petri dish 

bioassay modified from Maeda and Takabayashi (2001) and Nachappa et al. (2006a).  A 2.2-cm 

diam leaf disk with T. urticae eggs was placed on water-saturated cotton wool in 90-cm diam 
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plastic petri dish.  Ten T. urticae (prey) adult females were introduced on the leaf disk and 

allowed to oviposit for 24 h; eggs were removed to achieve the appropriate density on the leaf 

disk or source.  Five P. persimilis adult females were then introduced onto each leaf disk and 

allowed a 30 min acclimatization period, after which we connected a 30 x 5 mm parafilm bridge 

to the disk; predators that walked onto and out along the bridge were counted as dispersed.  

Predators were observed continuously and were removed as soon as they came to or passed the 

midpoint of the bridge.  The time taken to disperse was then recorded.  Typically, bidirectional 

selection is imposed under the same test conditions for high and low lines.  However, we 

selected the high- and low-dispersal lines under different environmental test conditions (i.e., prey 

egg density).  Previous research has shown that the dispersal speed of an individual P. persimilis 

is significantly affected by the density of prey (40 vs. 5 prey eggs) (Nachappa et al. 2006a).  

Thus, in this study the high dispersal line represents those individuals that dispersed from the leaf 

disk in the presence of 40 eggs, while the low dispersal line is comprised of individuals that 

remained on the leaf disk in the presence of only 5 eggs.  Because the high and low dispersal 

lines were selected under different environmental test conditions it is difficult to directly 

compare the high and low selection lines. Unselected controls for both the high and low selection 

lines were maintained under each environmental test condition.   

Olfactory Response Attraction of P. persimilis to T. urticae–induced plant volatiles was 

examined using a 40-cm diam circular arena as in Jia et al. (2002) and Nachappa et al. (2006b).  

Selection for high- and low-olfactory response lines was conducted using two different levels of 

volatiles; we used a low level of volatiles to select for the high-olfaction line and high levels of 

volatiles to select for the low-olfaction line.  To achieve high or low volatile production we 

manipulated prey density on bean plants for different durations of time (for details see Nachappa 
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et al. 2006b).  Leaf disks (2.2 cm diam) were cut from the manipulated plants which served as 

source of the two different volatiles levels in the selection experiments.  Test conditions were 

similar to those followed in Nachappa et al. (2006b).  Phenotyping was performed in two arenas 

that were set up side-by-side with a vertical cardboard divider (60 cm ht x 55 cm w) between to 

reduce air movement and possible drift of volatiles.  In the center of one arena we placed a leaf 

disk from a T. urticae-infested plant; in the other we placed a leaf disk from an uninfested plant 

as a control.  For each trial, 10 to 12 adult female predatory mites were starved for 2 h and then 

released at the edge of the arena.  We recorded the number of predators that found the central 

leaf disk (source of volatiles) in the arena in the first 10 minutes.  The high-olfaction line 

consisted of individuals that found the central leaf disk in the presence of low-level of volatiles 

in the vicinity (arena).  The low-olfaction line consisted of individuals that did not find the leaf 

disk despite a high-level of volatiles in the arena.  Similar to the dispersal selection lines, the 

high- and low olfactory response lines were selected under different environmental conditions, 

hence we maintained control lines for both the high and low dispersal lines.  Comparisons 

between the test disks (infested plant) and control disks (clean plant) allowed us to test whether 

the response differed from that expected under random (non-attracted) movement.  Thus, this 

selection procedure focused on olfactory sensitivity.   

Artificial Selection Lines 

To determine whether observed phenotypic changes that have occurred in response to 

selection are the result of selection rather than effects of random genetic drift it is essential that 

all selection experiments be replicated (Falconer and Mackay 1996; Morgan et al. 2003).  

Generally, this replication would occur contemporaneously for all replicate lines within each 

selection treatment.  However, it was logistically impossible to maintain contemporaneous 
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replicate lines when performing selection on foraging behavioral phenotypes in P. persimilis.  

Thus, rather than eliminating replication from our selection experiment, we created replicates 

that were temporally separated.  In the first replicate of selection, because of limitations in the 

number of offspring created and scored each generation, we used two generations of individual 

selection followed by family selection and random mating to increase population sizes (See 

Selection Lines I below).  In the temporally distinct second replicate of the selection experiment 

(See Selection Lines II below), we used a more typical selection regime by alternating a 

generation of individual selection with a generation of random mating, thus allowing us to use a 

consistent selection regime and still obtain population sizes large enough to phenotype and use 

for artificial selection.   

Selection Lines – I Bidirectional selection was initiated using a combination of mass 

individual selection (Falconer and Mackay 1996) and family selection (Lynch 1980) to develop 

the initial replicate of the selected lines (Fig. 4-1A).  Consumption and conversion efficiency 

lines were initiated by phenotyping 300 to 350 individuals from a randomly mating population, 

whereas the dispersal and olfactory response lines were initiated from 170 to 200 individuals.  

From these initial populations, one line was selected for increased trait values, one line for 

decreased trait values. Further, for the dispersal and olfactory response lines a randomly mated 

population with respect to the trait under selection served as the unselected control because the 

high and low lines for these foraging traits were tested under different environmental conditions.  

The proportion selected as breeders in each generation was the 20% extremes (high and low) of 

the base population distribution. The same percentage of individuals was selected from each 

generation to form the subsequent generations. We tested even-aged individuals, such that adults 

were allowed to oviposit for only 3 to 4 days and then removed.  Because of this procedure only 
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a small number of offspring were available for the following round of selection.  The result was 

that population size was reduced to 10-20 individuals after two generations of individual mass 

selection for consumption and conversion efficiency and three generations of selection for 

dispersal and olfactory response.  Thus, to increase our sample size we modified the selection 

protocol at generation 2 to family selection.  For family selection a whole family is chosen to 

represent the breeders for the next generation as a unit according to its mean phenotypic value 

(Falconer and Mackay 1996).  These families are then mixed within lines to produce the 

subsequent generations. Each family was founded by a single mated female and was maintained 

in a 0.5 l mason jars under laboratory conditions. Family selection was started with 10-20 

families, of which 3-4 families were selected to continue each line.  From each of these families, 

8-10 adult female P. persimilis were selected as mothers and their offspring were pooled to form 

the next generation.  At generation 3, each line was randomly mated within each line (i.e., 

selection was not imposed) because the lines were initially composed of partially inbred 

individuals (offspring of the generation 2 families) (Fig. 4-1A).  At generation 4 individuals were 

randomly mated within lines at which time the population consisted mainly of outbreds (mating 

between generation 3 offspring) and resulted in an increase in the population size of each line.  

Individual selection was resumed at generation 5 and continued until there was no longer any 

change in the phenotypic trait mean.  

It is possible that artificial selection on consumption, conversion efficiency, dispersal or 

olfaction might be opposed by natural selection acting on these traits, or some other linked traits, 

in the direction opposite of the artificial selection.  If this is the case we would expect the 

phenotypic response observed in the selection lines would have been lost when selection was 

relaxed.  To test this possibility, selection was relaxed after the generation in which the selection 



- 70 - 

response was 0.  This was generation six for all traits with the exception of consumption in 

which selection was relaxed at generation seven.  After selection was relaxed these lines were 

maintained by collecting fifty to sixty offspring from each line in the same manner described in 

the selection experiment.  Levels of consumption, conversion efficiency, dispersal and olfaction 

were measured after 10-12 generations of relaxed selection and within line random mating at 

which time we tested 40-50 adult female P. persimilis from each selection line.   

Selection Lines – II For those traits in which selection appeared to be stable after 

selection was relaxed we conducted a second replicate of selection: high consumption, high 

conversion efficiency and high dispersal response.  The selection lines in the second replicate 

were initiated from a source population of a different cohort from the Koppert source population.  

Predator conditions and age of predators were identical to those in the first replicate of the 

selection experiment.  Selection was initiated by phenotyping 80-100 adult female predators 

from the source population for each trait.  Selection was imposed as before by utilizing the 

breeding individuals that made up the 20% tail of the base population distribution (Fig. 4-1B).  

Individual based mass selection was used for each selection event.  However, because of the 

difficulties encountered in the maintenance of sufficient population sizes during the first 

replicate, in the second replicate we only selected every other generation until no further change 

in the trait was observed (Fig. 4-1B).  Similar to selection replicate I, an unselected control was 

maintained for the high dispersal line. We did not initiate a relaxation experiment in the second 

replicate.   

Correlated Responses to Selection 

Foraging Traits After selection plateaued in the first replicate of selection, we examined 

correlated responses in consumption, conversion efficiency, dispersal and olfactory response for 
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all lines subjected to selection regime I.  The test populations were started by randomly choosing 

adult female predators from each selection line.  Each foraging phenotype was then measured 

using previously described bioassays (see Phenotypic Bioassay section).  

Life-History Traits We developed a life table to estimate life-history parameters and 

genetic correlations between life history traits and selected traits in each selection line of 

replicate I.  A life table was also developed for the unselected control or base population from 

which the first replicate of selection lines was initiated.  To estimate the life table of each line it 

is essential to have a cohort of age-synchronized individuals.  Thus we used ten to fifteen adult 

female predators to produce a cohort of offspring from each selection line.  These females were 

placed on whole leaves set abaxial side up on water-saturated cotton wool in 90-cm diam plastic 

petri dish. The adult female predators were allowed to oviposit for 24 h.   The cohort upon which 

the life-history traits were measured was initiated by collecting thirty to forty one-day-old 

predator eggs from each line and placing them individually on a 2.2 cm diam leaf disk which was 

inserted into small glass vial. The vial was sealed with parafilm and maintained in an 

environmental chamber at 24+1°C, 60-70% relative humidity, and 16:8 h L: D photoperiod.  The 

vials were inspected and prey eggs were provided as food daily.  Once nymphs reached 

adulthood, adult females were placed as a group in a single vial for 4-8 h under the 

environmental conditions mentioned above to allow random mating.  Ten mated adult females 

were then placed individually in vials under similar environmental conditions as described 

above.  The vials were checked daily and prey eggs were provided as food until < 50% of the 

population were alive. The life-history traits measured were hatching time (time to emerge from 

egg), hatching percent, development time (time from nymph to adult ecdysis), survivorship from 

egg to adult of individual adult females.  
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Based on the complete life-table, we calculated the intrinsic rate of natural increase, rm 

for each selection line assayed in the test population.  The intrinsic rate of increase can be 

computed as a solution to: 1 = Σlxmx exp (-rmx) where lxmx, is the net female productivity, lx, is 

the fraction of females alive at age x, and mx, is the average number of female offspring produced 

by each female at age x.  This equation was iterated for rm until a value of one was obtained.  

This value of rm is the maximum exponential rate of increase by a population growing within 

defined physical conditions (Birch 1948; Carey 1993).  Estimates of standard errors for these 

demographic growth parameters were generated by jackknife analysis of lxmx life-table data.  The 

jackknife method removes one observation (i.e., a single individual) at a time from the original 

data set and recalculates the statistic of interest from the truncated data set.  These new estimates, 

or pseudovalues, form a set of jackknife estimates upon which summary statistics (means and 

variances) for rm can be estimated (Shao and Tu 1985; Meyer et al. 1986).  The jackknife method 

of resampling is commonly used for estimating variance for population growth statistics (Meyer 

et al. 1986).  

Statistical Analysis 

Analyses were conducted using the statistical program SAS v 9.1 (SAS Institute 2002).  

To measure the response to selection a one-way Analysis of Variance (ANOVA) using PROC 

GLM was performed to identify direct responses to selection between the high- and low-

selection lines for consumption and conversion efficiency in replicate I.  A one-way ANOVA 

was done to determine direct responses to selection between the selection lines and control for 

dispersal and olfactory response.  Because the high- and low-dispersal and olfactory response 

lines were selected under different environmental conditions, separate controls for the high and 

low lines were maintained for the respective foraging trait.  The model tested for differences in 
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the mean phenotypic values each generation between selection lines and the unselected control.  

The mean phenotypic value of the high- and low lines post-relaxation of selection was compared 

with the unselected control using a one-way ANOVA.  For the dispersal and olfactory response 

lines, relaxation effects were examined using a one-way ANOVA between level of trait post-

relaxation and the control line.  To confirm that responses observed in selection replicate I were 

consistent, a second temporally distinct replicate was initiated on stable phenotypes obtained in 

selection regime I.  A univariate GLM analysis was performed between selection lines of 

replicate I and II for the stable phenotypes.  Based on results of selection regime I and II (Fig. 4-

1A, B), realized heritability (h2) for each selection line was calculated by regressing the 

cumulative selection differential (s) on the cumulative selection response (R).  The selection 

response and the selection differential were calculated for each generation in which selection was 

applied (in generations where selection was relaxed the s = 0; Fig. 4-1A, B) (Falconer and 

Mackay 1996).  The selection differential (s) was calculated each generation as the difference 

between the phenotypic mean of selected parental population relative to the mean of the entire 

population.  The response to selection (R) was calculated as the difference between the 

phenotypic mean of the progeny and the phenotypic mean of the previous generation (Falconer 

and Mackay 1996).  The realized heritabilities (h2) and associated standard errors were calculated 

in PROC GLM by regressing the Σs on ΣR.  The slope of this relationship represents the line-

specific estimate of the heritability (Falconer and Mackay 1996).  

The following analyses were performed to measure correlated responses to selection in 

replicate I.  A one-way ANOVA (PROC GLM) was used to measure correlated responses in 

consumption rate and conversion efficiency for the high and low lines and unselected base 

population of each foraging trait.  Correlated response to dispersal was calculated using a two-
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way ANOVA with effects of selection line and prey density in the model.  Because the high- and 

low-dispersal lines were selected under different prey density conditions (5 prey for low line and 

40 prey for the high line) prey density was included in the model.  The correlated responses to 

olfactory response were also calculated using a two-way ANOVA with effects of selection line 

and volatile level in the model.  To differentiate between random movement and olfactory 

sensitivity, we had two volatile test conditions: infested volatiles and clean volatiles.  Hence, 

volatile level was included in the model.  A one-way ANOVA (PROC GLM) was used to test for 

correlated responses to selection in the different life-history traits (i.e., hatching time, hatching 

percent, development time and adult survival).  Mean jackknife estimates of intrinsic rate of 

increase (rm) were compared between high- and low lines and control for each foraging trait 

using a one-way ANOVA.   

Results 

Response to Selection, Stability and Heritability of Phenotypes 

Consumption Selection regime I significantly affected mean prey egg consumption in the 

high and low lines in generation 1 (F1,156  = 78.25, P < 0.0001, Fig. 4-2).  The high and low 

consumption lines was differentiated at the end of the 7-generation period (F1,23 =801.22, P < 

0.0001, Fig. 4-2).   Prey consumption rate responded rapidly to selection with an asymmetrical 

response; it was stronger in the high line than in the low line (mean prey consumption rate ± se, 

high line: 42.00 ± 1.05; low line: 17.20 ± 1.41; base: 25.95 ± 0.91, Fig. 4-2).   

There were significant differences among the high- and low consumption lines than the 

unselected control after relaxation of selection (measured in selection regime I only, F2,120 

=131.99, P < 0.0001).  The high consumption line remained at high levels despite relaxation of 

selection, but in the low line the prey consumption rate increased significantly when selection 
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was discontinued so that it was no longer different than the base (mean prey consumption rate ± 

se, high line: 40.76 ± 0.63; low line: 28.90 ± 0.58; base:  27.16 ± 0.68).  

To confirm that the lines were in fact responding to selection and not simply diverging 

because of random genetic drift, we performed a second replicate of selection for the stable 

phenotypes (high consumption).  The prey consumption rate was not significantly different in the 

high lines between selection regimes at the end pf the experiment (F1,55  = 1.13, P = 0.29, Fig. 4-

2, mean consumption ± SE, high line selection regime I: 42.00 ± 1.71; high line selection regime 

II: 39.91 ± 0.98).  The selection response was more rapid in selection regime I than selection 

regime II because in the former selection was imposed every generation (except generation 3 and 

4) whereas selection was imposed every other generation in selection regime II (Fig. 4-1A, B).   

Realized heritabilities for consumption were estimated by regressing the cumulative response 

to selection (ΣR) on the cumulative selection differential (Σs) for each selection line.  Heritability 

estimates of the high and low lines were significant and greater than zero (Table 4-1).  Realized 

heritabilities for high consumption lines were comparable between the two selection regimes 

(Table 4-1).   

Conversion Efficiency There was significant differentiation between the high- and low-

conversion lines by generation 1 (F1,146  = 144.48, P < 0.0001, Fig 4-3) which continued until the 

end of the selection experiment (F1,101  =75.80, P < 0.0001, Fig 4-3).   

Two months after selection was relaxed, the high conversion efficiency line remained 

significantly higher than the low line and control whereas the low conversion efficiency line was 

comparable to the base population (measured in selection regime I only, F2,111=131.99, P=0.008; 

mean conversion efficiency ± se, high line: 0.18 ± 0.013; low line: 0.11 ± 0.014; base: 0.13 ± 

0.014).   
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The second replicate of the high conversion efficiency line was not significantly different 

from selection replicate I at the end of the experiment (F1,78 = 0.07, P = 0.79, Fig. 4-3, mean 

conversion efficiency ± SE, high line selection regime I: 0.17 ± 0.007, high line selection regime 

II: 0.17 ± 0.01).   

Heritability estimates from the high and low conversion lines was significant (Table 4-1).  

Realized heritabilities for the high conversion efficiency lines were comparable between the two 

selection regimes (Table 4-1).   

Dispersal Response As mentioned previously, the high and low dispersal lines were 

selected under different environmental test conditions so unselected controls were maintained 

under each environmental test condition.  After the first generation of selection, the high 

dispersal lines were differentiated from the base population (F1,183  = 52.29, P < 0.0001, Fig. 4-

4A) and continued to be higher through the end of selection (F1,99  = 84.47, P < 0.0001, Fig. 4-

4A).  The response to selection reached a plateau at generation 2 which suggests that the 

dispersal response of P. persimilis has a lower potential for selection than other foraging traits 

that have higher levels of variation.  There was significant differentiation between the low 

dispersal line and the unselected control by generation 1 (F1,146  = 5.48, P =0.02, Fig. 4-4B); but 

there were no differences in generation 2 (F1,66 = 0.02, P =0.89).  Differences were observed at 

generation 3 (F1,102 =5.13, P =0.03) and continued through the 6-generation period (F1,113 =8.19, 

P =0.005, Fig. 4-4B).  

The relaxation experiment indicated that the high dispersal line had a higher dispersal 

rate than the base population (F1,78 =25.28, P <0.0001, mean time to disperse ± se, high 

line:10.22 ± 2.97; base: 40.49 ± 2.97).  The low dispersal line did not show a loss in phenotypic 
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value of the trait compared to the base population after relaxation of selection (F1,70 =18.42, P 

<0.0001, mean time to dispersal ± se, low line: 22.66 ± 1.77; base: 9.45 ± 2.50). 

Although, both the high- and low-dispersal lines were stable after relaxation of selection, we 

initiated a second temporally separate replicate only for the high dispersal lines.  We were only 

interested in the stability of the high foraging phenotypes including consumption and conversion 

efficiency because we wanted to examine the impact of the high foraging phenotypes on 

predator-prey dynamics in the greenhouse.  In the second replicate of selection, the high 

dispersal line was significantly different from the control in generation 1 (F1,98 =9.97, P=0.0003, 

Fig. 4-4A) and continued through the experiment (F1,79 =48.92, P<0.0001, Fig. 4-4A).  The 

response to selection in the upward direction plateaued in generation 2 for both selection regimes 

(Fig. 4-4A).  Further, the second replicate of the high dispersal line was not significantly 

different from selection replicate I (F1,118 = 2.61, P = 0.10, Fig. 4-4A, mean time to disperse ± 

SE, high line selection regime I: 10.20 ± 0.47, high line selection regime II: 11.38 ± 0.57).   

The heritability estimates were significant for both the high- and low-dispersal lines. In 

contrast to other foraging traits, heritability was greater in the low line than the high line (Table 

4-1).  Realized heritabilities for high dispersal lines were comparable between the two selection 

regimes (Table 4-1).   

Olfactory Response Similar to the protocol for dispersal selection lines, the high- and 

low-olfactory response lines were selected under different test conditions.  We maintained 

controls for both test conditions where predator response to clean volatiles was assayed to 

differentiate between random movement in the presence of clean volatiles and olfactory 

sensitivity in the presence of prey-infested volatiles.  There was no significant differentiation 

between the high olfaction line and the unselected control by generation 1 (F1,16 = 2.62, P =0.13, 
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Fig. 4-5A).  However, differences were observed in generation 2 (F1,14=5.22, P =0.04) until the 

end of the 6-generation period (F1,11 =12.96, P =0.004, Fig. 4-5A).  There was significant 

differentiation between the low olfaction line and the unselected control in generation 1 (F1,13= 

7.02, P =0.02, Fig. 4-5B); but no significant differences were observed at the end of the selection 

experiment (F1,7 =3.04, P =0.13, Fig. 4-5B).   These results indicate that there is little or no 

genetic variation in the low-olfactory response or the environmental component of the phenotype 

masks the genetic component. 

The high olfactory response line reverted back to pre-selection levels after relaxation of 

selection (F1,7= 2.01, P =0.19, mean percentage response ± se, high line: 25.00 ± 2.40; base: 

18.00 ± 2.17).  The low-olfactory response line was not different from the base population after 

relaxation of selection (F1,6= 3.43, P =0.11); low line: 37.50 ± 3.81; base: 47.50 ± 3.81). Hence 

selection was not imposed a second time on the high- and low-olfactory response lines. 

The heritability estimates were much lower for the olfactory response lines than the other 

foraging traits, indicating that most of the variability in the olfactory response resulted from 

factors other than additive genetic variance (Table 4-1).  Heritability estimates for the low 

olfactory response line were not significant (Table 4-1).   

Correlated Responses to Selection 

Foraging Traits 

Consumption Bidirectional selection did not the affect prey consumption rate of the 

conversion efficiency (F2,25 = 0.00, P = 0.99), dispersal (F2,23 = 0.06, P = 0.94) or olfactory 

response (F2,25= 0.22, P = 0.814) lines compared to the base population. The average prey 

consumption rate of the base population was 25.20 ± 0.93 eggs per 24 h. 
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Conversion Efficiency A negative correlation was detected between the low 

consumption line and conversion efficiency (F2,24= 7.34, P = 0.003).  The low-consumption line 

had higher conversion efficiency than the high consumption line and base population (mean 

conversion efficiency ± se, high line: 0.11 ± 0.05; low line: 0.14 ± 0.05; base population: 0.12 ± 

0.005).  Selection did not affect the conversion efficiency of the dispersal lines (F2,23 = 0.13, P = 

0.87) and olfactory response lines (F2,25= 3.61, P = 0.06). 

Dispersal Response In contrast to the consumption and conversion efficiency selection 

lines, the dispersal lines were selected under different test (prey density) conditions: 5 prey for 

the low line and 40 prey for the high line.  Hence, the correlated response to dispersal was 

calculated using a two-way ANOVA with effects of selection line and prey density in the model.  

The average leaving time of the base population in the presence of 5 eggs was 25.00 ± 5.08 and 

40 prey eggs was 55.55 ± 5.61. 

Consumption was positively correlated with dispersal (F2,55 = 5.86, P = 0.005). That is the 

high consumption line left the prey patch sooner, and the low line stayed longer on the leaf disk 

than the unselected control (Fig. 4-6A).  The dispersal response was slower in the presence of 40 

prey eggs than 5 eggs (F1,55 = 41.38, P < 0.0001, Fig. 4-6A).   

Conversion efficiency was not correlated with dispersal response (F2,54= 1.41, P = 0.25, Fig. 

4-6B).   However, dispersal response of high- and low conversion efficiency lines was much 

faster with 5 prey eggs than 40 eggs (F1,54= 54.65, P < 0.0001, Fig. 4-6B).   

Olfactory response was positively correlated with dispersal response (F2, 61= 10.61, P 

=0.0002, Fig. 4-6C).  The high olfactory response line left the prey patch sooner than the low 

line and unselected control (P<0.0001), and the low line stayed slightly longer on the leaf disk 

than the unselected control (P=0.05).  Similar to the consumption and conversion lines, the 
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olfactory response lines also dispersed faster in the presence of 5 eggs than 40 eggs (F1, 61 = 

38.23, P < 0.0001, Fig. 4-6C).  There was a significant two-way interaction between selection 

and prey density on the dispersal response of the olfactory lines than the control (F2, 61 = 5.07, P 

= 0.009).   

Olfactory Response The olfactory response bioassay was conducted under two test 

conditions (high- and low-level of volatiles).  We maintained a control where predator’s response 

was assayed in response to clean volatiles to differentiate between random movement in the 

presence of clean volatiles and olfactory sensitivity in the presence of prey-infested volatiles.  A 

two-way ANOVA with selection regime and type of volatiles in the model was used to test for 

correlated responses in olfaction. The mean percentage response of the base population in the 

presence of infested volatiles was 42.00 ± 4.28 and in the presence of clean volatiles was 16.00 ± 

4.28. 

The high consumption line was positively correlated with olfactory response (F1,24 = 

19.90, P < 0.0001, Fig. 4-7A).  The low line was comparable to the unselected control.  For all 

lines the olfactory response increased significantly in the presence of infested volatiles compared 

to clean volatiles (F2,24 = 70.4, P < 0.0001, Fig. 4-7A).   There was a significant two-way 

interaction between selection regime and volatile level on the olfactory response of the 

consumption lines (F2,24 = 6.63, P = 0.006, Fig. 4-7A).  

The high conversion efficiency line was also positively correlated with olfactory response 

(F2, 24 = 136.52, P < 0.0001, Fig. 4-7A). The high line had higher olfactory sensitivity compared 

to the low line and base population.  Again, the olfactory sensitivity of mites increased in the 

presence of volatiles but not to clean volatiles (F1, 24 = 26.00, P < 0.0001, Fig. 4-7B).   There was 
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a significant effect of interaction (F2, 24 = 17.48, P< 0.0001) between selection and volatile level 

on the olfactory response (Fig. 4-7B).   

Similar to other high foraging phenotypes, the high dispersal line also showed positive 

correlation with olfactory response (F2, 18= 9.85, P = 0.0013, 4-7C).  The low dispersal line had 

diminished olfactory response compared to the high line and base population (Fig. 4-7C).  The 

lines showed an increased olfactory response in the presence of volatiles compared to when they 

were absent (F1,18= 44.52, P <0.0001, Fig. 4-7C).  There was a significant selection x volatile 

interaction (F2,18 = 7.83, P = 0.0036) on the olfactory response of the dispersal lines compared to 

the unselected control (Fig. 4-7C).   

Life-history Traits and Intrinsic Rate of Increase 

Hatching Time and Percent Selection regime had no significant effect on the hatching 

time (days) of the high- and low-consumption (F2,102  = 0.28, P = 0.75), conversion efficiency 

(F2,111 = 1.05, P = 0.35), dispersal (F2,107 = 1.95 P = 0.14) or olfactory response (F2,104  = 1.00, P 

= 0.37) lines compared to the unselected control.  The average hatching time in the base 

population was 1.21 ± 0.08 days.  

Hatching percent did not differ in the high- and low-consumption (F2,102  = 1.11, P = 0.33), 

conversion efficiency (F2,111 = 2.38, P = 0.09), dispersal (F2,107 = 1.01 P = 0.37) or olfactory 

response (F2,104= 1.02, P = 0.36) lines compared to the unselected control.  The average hatching 

percent in the unselected base population was 94.73 ± 3.59.  

Development Time Selection regime had a significant effect on the development time 

(days) from nymph to adult ecdysis in the consumption lines (F2,101 = 7.12, P = 0.001).  The low 

consumption line had a slightly longer development time compared to high consumption line and 

unselected control (mean development time ± se, high line: 3.00 ± 0.03; low line: 3.16 ± .04; 
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base population: 3.00 ± 0.03).  Bidirectional selection did not affect development time of the 

conversion efficiency (F2,106 = 1.08, P = 0.45), dispersal (F2,105= 1.98, P = 0.14) or olfactory 

response (F2,103, = 2.17, P = 0.11) lines compared to the unselected control population.  The 

average development time in the base population was 3.00 ± 0.03 days. 

Survivorship Bidirectional selection on foraging traits did not affect the survivorship of 

the high- and low-consumption (F2,81 =0.29, P = 0.75), conversion efficiency (F2,81 =0.83, P = 

0.43), dispersal (F2,81 =0.04, P = 0.96) or olfactory response (F2,81 =0.49, P = 0.61) lines 

compared to the unselected base population.  The percentage survivorship for a cohort of 

predatory mites from the base population was 68.57 ± 3.66. 

Fecundity The high consumption line had a significantly higher fecundity than the low 

consumption line and the unselected control (F2,66 =54.67, P <0.0001, mean fecundity ± se: high 

line: 3.58 ± 0.12; low line: 1.86 ± 0.12).  Similar result was obtained for conversion efficiency 

lines (F2,66 =98.18, P <0.0001, mean fecundity ± se: high line: 3.51 ± 0.08; low line: 1.94 ± 

0.08).  Selection on high- and low-dispersal did not affect daily fecundity of the lines (F2,66 

=0.85, P =0.43, mean fecundity ± se: high line: 2.34 ± 0.08; low line: 2.12 ± 0.08).  Similarly, 

selection did not affect fecundity of the high- and low olfactory response lines (F2,66 =2.54, P 

=0.08, mean fecundity ± se: high line: 2.12 ± 0.08; low line: 2.03± 0.08).  The average daily 

fecundity in the base population was 2.27 eggs. 

Intrinsic Rate of Increase Bidirectional selection significantly affected the intrinsic rate 

of increase (rm) of the consumption lines (F2,27 =854.39, P <0.0001, Table 4-2) and conversion 

efficiency lines (F2,27 =569.43, P <0.0001, Table 4-2) compared to the unselected base 

population.  The high consumption line had the highest intrinsic rate of increase and the low 

consumption line had the lowest.  However, selection did not affect rm of the dispersal lines 
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(F2,27 =2.88, P =0.07, Table 4-2) or olfactory response lines (F2,27 =1.63, P =0.21, Table 4-2) 

compared to the unselected control line.  

Discussion  

Selection experiments are a powerful tool to estimate genetic variation and gain information 

about the genetic architecture of traits, including duration of response, asymmetry of response 

and selection limits.  Artificial selection can be used to create foraging phenotypes that differ by 

a single trait to determine potential correlations in specific predator foraging traits and, hence, 

the adaptive significance of the manipulated traits.  Our experiments demonstrate that all four  

foraging traits evaluated in P. persimilis -- prey consumption rate, conversion efficiency, 

dispersal and olfactory response -- are genetically variable and can evolve rapidly in response to 

selection.  For all traits except olfactory response, there was a rapid response to selection and 

steady divergence of the high and low lines, which suggests that multiple genes probably affect 

these traits (Macnair 1990; Falconer and Mackay 1996; Orr 1998).  Selection response in the 

foraging traits peaked after 3 or 4 generations for both high and low lines.  For all traits we 

observed an asymmetrical response to selection, with selection for increased foraging behavior 

producing a faster response than selection for decreased foraging behaviors.   

Previous studies on P. persimilis have demonstrated phenotypic variation in predator 

responsiveness to volatiles produced by T. urticae-infested bean plants (Margolies et al. 1997; 

Margolies 1999; Jia et al. 2002).  Maeda (2006) also found genetic variation in dispersal 

tendency, olfactory response, prey consumption and fecundity in another predatory mite, 

Neoseiulus womersleyi (Shicha).  The existence of natural genetic variation in dispersal rate, and 

its impact on the local predator-prey interaction, was suggested by Pels and Sabelis (1999).  

They tested two isofemale lines of P. persimilis, each derived from a different geographically 
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isolated population, and found consistent differences in prey-dependent dispersal; one line 

dispersed only after all prey were eliminated, while in the other some females began dispersing 

while prey were still present.  To our knowledge these are the only studies that have focused on 

the genetic variation in foraging traits in the evolution of prey-finding by predators in a tritrophic 

system. 

The realized heritabilities for foraging traits obtained from the selection experiments were 

much larger than expected for most behavioral traits in animals (Plomin 1990).  The strong 

response to selection and high heritability estimates confirms the magnitude of genetic influence 

on the foraging traits.  Heritability estimates from the present study for consumption and 

conversion efficiency were larger than those estimated for the dispersal and olfactory response.  

A previous study in P. persimilis showed that broad sense heritability estimates for consumption 

and oviposition rate estimated from isofemale lines were 0.88 ± 0.09 and 0.18 ± 0.04, 

respectively (Jia et al. 2002).  The realized heritabilities estimated for dispersal and olfactory 

response in P. persimilis was less than 0.5 (except for low dispersal line).  Heritability estimates 

for olfactory response were below the range 0.44–0.82 of those estimated for olfactory response 

in Margolies et al. (1997).  This means that most of the variability in olfactory response cannot 

be attributed to additive genetic variance.  In addition, heritabilities for the high consumption, 

high conversion efficiency and high dispersal response were comparable under the two selection 

regimes.  This confirms that the patterns observed in the initial selection responses could be 

replicated, thus confirming that the lines were in fact responding to selection and not simply 

diverging because of random genetic drift.  Laboratory estimates of heritability are thought to 

overestimate natural heritabilities due to reduced environmental variability compared to a field 

population (Riska et al. 1989).  However, some studies show that laboratory estimates provide 
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reasonable estimations of magnitude and significance of heritabilities in the wild (Riska et al. 

1989; Weigensberg and Roff 1996).   

The only trait that did not show a response to selection was the low olfactory response, which 

was not different from the unselected base population even after 3-4 generations of selections.  

Empirical evidence for the depletion of genetic variance in single traits by selection is diverse.  

Limits were initially thought to be due to the exhaustion of standing variation in populations. 

However, theoretical work (Lande 1975) showed that mutation could maintain genetic variance 

in large populations and this could contribute to selection responses, as validated empirically 

(Frankham 1980; Mackay et al. 1996; Hill and Mbaga 1998).  Nevertheless, natural selection can 

affect the level of genetic variation in natural populations of considerable size (Merila et al. 

2001).  Low-olfactory response may have been under strong and continuing directional selection, 

which may have resulted in the fixation of genetic variation.  This might explain the lack of 

heritability in the low-olfactory response line; hence, there appears to be little genetic variance 

available for direct selection.  Another hypothesis is that mechanistic or physiological constraints 

make it unlikely that genetic variation in one direction will be generated by mutation (Blows and 

Hoffman 2005).  In predatory mites, the size of the mite puts constraints on the elaborateness of 

the sensory system (peripheral olfactory system) and the size of the neuronal circuits that process 

chemical cues.  This may likely limit evolutionary divergence in olfactory response of mites.  

We were also interested in examining the limits to the selection response.  Selection limits 

may be imposed on a population either because of constraints by correlated traits or because all 

the alleles affecting the trait are either fixed or lost.  It is also possible that artificial selection on 

dispersal is opposed by natural selection on dispersal or some correlated traits.  We examined 

this possibility by relaxing artificial selection on all foraging phenotypes to see if natural 
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selection acting alone would reverse the changes obtained by direct selection on the foraging 

traits.  All high foraging phenotypes were stable for 10-12 generations (approximately 2 months) 

after relaxation of selection except the high olfaction line.  The low foraging phenotypes reverted 

back to pre-selection levels except in the low-dispersal line.  In unpredictable environments, 

populations are expected to exhibit polymorphism for foraging traits (Southwood 1977).  In fact, 

Jia et al. (2002) showed that there was a continuous distribution of foraging behaviors including 

prey consumption, fecundity, dispersal and olfactory response in P. persimilis.  The persistence 

of the high foraging phenotypes and decline in the low phenotypes (with one exception) indicates 

that the low foraging phenotypes can be lost under certain environmental conditions unless 

specific selection for these traits occurs.  All selection lines were reared on abundant prey 

resources in the relaxation study, which suggests that different genotypes may be maintained 

under different environments.  For example, the low consumption line might be successful 

during fluctuating prey resources, whereas the high consumption line is maintained only under 

abundant prey resources.  Both theoretical (Barton and Turelli 1989; Goldstein and Holsinger 

1992) and empirical (Denno et al. 1991) studies suggest that if different genotypes exist and are 

favored by different environments, genetic variation can be maintained by spatially fluctuating 

environments.  Temporally fluctuating environments also may maintain genetic variation 

(Mackay 1981; Gillespie and Turelli 1989) and this may be accomplished by opposing selection 

on the trait in question. 

In theory, foraging behaviors, including consumption, conversion efficiency, dispersal and 

olfactory response, should be correlated with the ability to persist in a new habitat (Lewontin 

1965; Simberloff 1981; Safriel and Ritte 1983).  If life-history traits have evolved to function 

together to enhance survival and reproduction (Stearns 1992), then the phenotypic associations 
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predicted in theory should be reflected in genetic and phenotypic correlations between foraging 

behaviors and life-history traits because of their involvement in colonization and reproduction 

(Safriel and Ritte 1980; Parsons 1983).  Such correlations have been observed in many insect 

species (Palmer and Dingle 1986; Dingle et al. 1988; Gu and Danthanarayana 1992; Mackay et 

al. 1996).  However, studies on foraging behaviors in predatory arthropods and parasitoids 

provide no evidence of such correlations (Li and Margolies 1993, 1994; Wang et al. 2003; 

Maeda 2005, 2006).  It may be that the foraging behaviors show low genetic correlations with 

fitness traits because the number of loci affecting foraging behaviors is low compared to the 

number of loci affecting total fitness (Mackay et al. 1996).  However, conclusions about 

correlations must be made with caution because we might not find trade-offs in practice because 

of: variation in acquisition and allocation processes, genotype-environment interaction or 

variation in third traits in complex multivariate systems (e.g., Van Noordwijk and De Jong 1986; 

Pease and Bull 1988; Reznick et al. 2000; Blows and Hoffmann 2005).  Nevertheless, artificial 

selection has proven to be a reliable and informative method to detect correlations or trade-offs 

(Maynard-Smith et al. 1985; Hill and Caballero 1992; Stearns 1992).  

We detected a significant negative correlation between consumption and conversion 

efficiency; the low consumption line had higher conversion efficiency.  By having higher 

conversion efficiency, the low consumption phenotypes may be able to compensate for low 

intake of food.   The absence of such a mechanism might not allow the persistence of low 

consumption phenotypes in the field.  Selection did not affect the prey consumption rate of the 

conversion efficiency, dispersal and olfactory response phenotypes.  The same result was true for 

the conversion efficiency of the consumption, dispersal and olfactory response phenotypes.  In 

contrast, Jia et al. (2002) showed that patch residence (converse of dispersal response) of P. 
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persimilis in the presence of prey-infested volatiles was negatively related with prey 

consumption rate; i.e., lines that dispersed sooner had lower consumption rates (Jia et al., 2002).  

However, in the absence of prey-infested volatiles, such as in the present study, we found no 

genetic relationship between dispersal and consumption rate.  A previous study conducted using 

isofemale inbred lines of the predatory mite, Neoseiulus womersleyi (Shicha), also showed that 

prey eggs consumed did not differ in dispersal and olfactory response (Maeda 2005, 2006).   

 There was a positive genetic correlation between high consumption and dispersal and, 

conversely, a positive correlation between low consumption and dispersal response in the 

presence of abundant prey.  Previous work by Jia et al. (2002) also demonstrated a negative 

relationship between residence time and prey consumption of P. persimilis; i.e., those mites that 

consumed more prey tended to leave sooner on single plants infested with T. urticae eggs.  We 

also detected a positive correlation between olfactory response and dispersal; the high olfaction 

line had a faster leaving rate than the low line and base population in the presence of abundant 

prey.  These results suggest that some of the genes that contribute to variation in consumption 

rate and olfactory response have pleiotrophic effects on the dispersal response of P. persimilis.   

For all traits considered, the high foraging phenotypes showed a positive correlation with 

olfactory response.  It seems that olfactory sensitivity increases with foraging levels of the 

phenotype.  The presence of prey-infested plant volatiles is critical for foraging success of P. 

persimilis in patchy heterogeneous prey habitats.  These predators locate and remain in prey 

patches in response to cues associated with prey density, including direct cues such as exuviae, 

feces, webbing, and eggs (Sabelis and van de Baan, 1983), and important indirect cues such as 

prey-induced plant volatiles (Maeda et al. 1998; Mayland et al. 2000).  At long range, volatiles 

attract predators to prey-infested plants or cause them to search more intensively around a prey-
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infested plant (Janssen 1999).  Once a predator is on a plant, the same volatiles that attract 

predators are also important in local arrestment (Sabelis et al. 1984).  Foraging phenotypes with 

high levels of consumption, conversion efficiency and dispersal must also have olfactory 

sensitivity in order to locate and stay in a prey patch.  Hence, habitat heterogeneity play a major 

role in the maintenance of genetic variation in its olfactory response, as was suggested in studies 

of odor-guided behavior of Drosophila melanogaster Meigen (Mackay et al. 1996), Cotesia 

glomerata (L.) (Wang et al. 2003).   

Genetic analysis of dispersal and olfactory response in arthropods indicate presence 

(Margolies et al. 1997; Jia et al. 2002; Wang et al. 2003; Maeda 2005) or absence of correlations 

(Maeda 2006).  When herbivore-induced plant volatiles originate outside a prey patch containing 

predatory mites, a positive correlation between olfactory response and dispersal tendency would 

be expected because the residence time of predatory mites is affected by their responsiveness to 

herbivore-induced volatiles (Maeda and Takabayashi 2001; Jia et al. 2002).  A statistical model 

of the effects of travel costs on dispersal tendency of predators predicted that it is adaptive to 

disperse early to maximize foraging efficiency when the travel cost is small (Bernstein et al. 

1991).  Because a sensitive olfactory response to prey-induced plant volatiles would decrease the 

travel cost (for reviews, see Vet and Dicke 1992; Dicke 1994; Takabayashi and Dicke 1996), 

predators with strong olfactory sensitivity should also exhibit high dispersal tendency. But when 

the travel cost is high, predators are expected to be more sedentary (Bernstein et al. 1991). 

Therefore, if predators had low olfactory sensitivity, a low dispersal tendency would also be 

expected.  If the olfactory response and the dispersal tendency were genetically unrelated, the 

predatory mites may be able to adopt different foraging strategies (e.g., high olfactory sensitivity 

and low dispersal tendency) as an adaptation to different foraging conditions.  Although we 
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could not test these predictions in natural populations of P. persimilis, Maeda (2005) showed that 

no natural population of N. womersleyi had a high olfactory sensitivity combined with a low 

dispersal tendency, and no natural population had a low olfactory sensitivity combined with a 

high dispersal tendency.  The absence of such combinations of the two behavioral traits in 

natural populations suggests that natural selection would favor specific combinations of the two 

behavioral traits (i.e., a foraging strategy comprising both olfactory response and dispersal 

tendency). 

Potential differences in the acquisition and allocation of energy seem to be of particular 

relevance in explaining these results (van Noordwijk and de Jong 1986; Reznick et al. 2000).  In 

our study, the high consumption line and the high conversion efficiency line had a stronger 

olfactory response.  This result may be attributed to the genetic variation in resource allocation.  

That is, well-fed individuals or individuals that are more efficient in converting prey into 

offspring may allocate more resources to all aspects of their foraging behavior, such as olfactory 

sensitivity.  Further no negative correlations with life-history traits were detected for the high 

consumption and conversion efficiency phenotypes.  On the other hand, some genotypes such as 

the high dispersal line have a better ability to acquire resources and, hence, have more resources 

to allocate to other aspects of their life-history (Reznick et al. 2000).  Additionally, the high 

dispersal phenotype showed no evidence of trade-offs with other foraging traits (consumption, 

conversion efficiency and olfactory response) suggesting that genetic variation in resource 

acquisition might result in the positive correlation between dispersal response and foraging traits.  

However, there is a cost for acquisition that is required for this variation to exist which is thought 

to be maintained via temporal and spatial variability of resources or prey.  P. persimilis forages 

in heterogeneous environments with patchy distributions of its prey, T. urticae; improved 
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acquisition of resources in environments with ample prey might trade off with environments with 

insufficient prey.  

Interestingly, we detected asymmetry in the correlated responses in foraging traits of each 

selection line.  For all traits considered, significant positive correlations with foraging behaviors 

were detected in the high lines compared to the low lines.  For example, the high consumption 

line also had high dispersal and, conversely, the low lines had lower dispersal ability.  The same 

was true for correlations in olfactory response of the foraging phenotypes.  These results indicate 

that components of foraging behaviors are partly independent.  Hence, future responses to 

selection may or may not be constrained by the underlying correlations.  

We found no genetic correlations among foraging traits and life-history traits including 

hatching time (time to emerge from egg), hatching percent, development time (time from nymph 

to adult ecdysis), or daily survivorship to bidirectional selection with one exception; there was a 

negative correlation between low consumption and development time.  The low-consumption 

line had a statistically longer development time (3.16 d) compared to the high consumption line 

and base population; but this might not translate to significant biological differences over the 

lifespan of the organism. Lack of correlations between key life-history traits and foraging traits 

suggest that habitat heterogeneity of P. persimilis may play a role in the maintenance of genetic 

variation of specific predator foraging traits.  Strong genetic correlations can inhibit rapid 

responses to selection when they are acting on a multitude of traits simultaneously (Cheverud 

1984).  The lack of genetic correlation and rapid response to selection in 3 of the 4 foraging traits 

suggest that there may be a small number of loci with large phenotypic effects controlling the 

traits (Macnair 1990; Falconer and Mackay 1996; Orr 1998).  Our experiment was carried under 

beneficial conditions when trade-offs may be masked (e.g., Van Noordwijk and De Jong 1986; 
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Reznick et al. 2000; Messina and Fry 2003).   Nevertheless, our analyses identified no major 

patterns of correlations among key foraging traits in the predatory mite.  

High foraging phenotypes would contribute to a high reproductive success (Vet 2001), and 

natural selection should favor these genotypes and, hence, eliminate the additive genetic variance 

(Bulmer 1976).   However, the existence of genetic variation and correlations among foraging 

traits of predatory mites suggests that predatory mites must be able to adopt different foraging 

strategies in a tritrophic system.  Phytoseiulus persimilis must deal with the potential conflicts 

that arise in allocating time and energy to different foraging demands, especially when resources 

become scarce.  In tritrophic systems in which herbivores-induced plant volatiles attract natural 

enemies of tetranychid mites, natural selection might be expected to favor predator genotypes 

that employ plant volatiles more effectively to find and exploit their prey.  That is, predatory 

mites that are more sensitive to chemical volatiles are more likely to efficiently locate new prey 

patches and may be at a selective advantage, especially when food becomes scarce.  Although 

selection imposed on a population in nature is usually far from obvious, in the absence of other 

forces the additive genetic variance of foraging behaviors in predatory mites is expected to be 

reduced over time.  Thus, finding a substantial amount of genetic variation in foraging behaviors 

of predatory mites is in conflict with this expectation, suggesting that the selection may not be 

directional or consistent.  The advantage of certain genotypes with low consumption may be 

compensated for by having high conversion efficiency.  In this way, natural selection imposed on 

the population may vary spatially and temporally and both genotypes may have similar fitness in 

nature.  It is also possible that traits such as olfactory response may be influenced by variation in 

prey numbers as well as by phenotypic variability of the plants, which may contribute to the 

natural variation in foraging phenotypes. 
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Finally, we assessed fitness estimates or intrinsic rate of increase (rm) for each foraging 

phenotype.  The intrinsic rate of increase can be defined as the rate of increase per individual 

under specified physical conditions, in an unlimited environment where the effects of increasing 

density do not need to be considered (Birch 1948).  There were significant differences in the 

intrinsic rate of increase (rm) between the consumption lines and the unselected base population. 

The high consumption line had a higher  rm than the low and control lines, which was expected 

because the reproductive potential of the high consumption line is much greater than the low and 

control lines.  The high conversion efficiency line also had higher rm than the low line and base 

population owing to the higher fecundity of the high conversion line than the low and control 

lines.  There was no difference in the rm of the high- and low-dispersal and olfactory response 

lines compared to the base population because these lines did not differ in survivorship or 

fecundity.  For a phenotype to be successful in a given environment it may need a certain 

minimum value for its intrinsic rate of natural increase, rm.  It does not necessarily follow that the 

higher the intrinsic rate of increase the more successful will the phenotype be, or that phenotypes 

with lower intrinsic rate of increase will cease to exist.  Natural selection may operate to select 

phenotypes with an rm  high enough to enable them to compete successfully with other 

phenotypes but small enough to prevent a rate of multiplication which would exhaust the food 

supply in the environment (Birch 1948).  Any given value of  rm  may be attained by several 

routes because rm has a number of component variables: the length of development of the 

immature stages, the survival rate of the immature stages, the adult survival and the age-specific 

fecundity schedule (Birch 1948).    

An important question thus arises: Under what foraging conditions will P. persimilis exhibit 

a foraging strategy based on a strong or weak foraging response in consumption, conversion 
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efficiency, dispersal and olfactory response?  Because P. persimilis preys specifically on 

tetranychid mite species, such as T. urticae – a highly polyphagous species, the predators 

confront many plant-prey combinations.  Therefore, the foraging conditions for P. persimilis 

would differ depending on the quantity and quality of herbivore-induced plant volatiles (for 

reviews, see Takabayashi and Dicke 1996; Dicke 1999), as well as in terms of prey abundance 

and prey distribution patterns.  In addition, P. persimilis can also survive on alternative foods 

such as pollen (Ashihara et al. 1978) and are also known to cannibalize egg and nymphal stages; 

but they cannot reproduce without tetranychid species (Polis 1981; Elgar and Crespi 1992).  To 

reveal the factors that determine the foraging strategies of P. persimilis it will be necessary to 

systematically examine the effect of specific foraging traits under different conditions of prey 

abundance and distribution.   

Genetic variation in the prey-consumption rate, conversion efficiency, dispersal and 

olfactory response, i.e., traits related to foraging efficiency, has clear practical, ecological, and 

evolutionary implications.  Increasing the efficiency of natural enemies is a key concern in 

biological control (Lewis and Nordlund 1985).  Good searching ability is an important 

component of successful control of pests by natural enemies (van Lenteren and Woets 1988), and 

predators that use prey-related volatile cues to search for prey may be more effective at locating 

prey patches (Rosen and Huffaker 1983), especially over a relatively long distance.  Bearing this 

in mind, several scientists have proposed breeding plants that produce higher levels of prey-

induced plant volatiles to attract natural enemies to infested plants (Dicke et al. 1990; Lewis and 

Martin 1990; Vet and Dicke 1992).  The results of the present study suggest that it may be 

possible to select and breed predatory mites that have a strong olfactory response, strong 

dispersal, a high fecundity, and a high prey consumption rate.  However, it remains unclear how 
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genetic variation in the foraging traits will influence the predator’s search efficiency and 

predator-prey population dynamics (Jia et al. 2002).  We will examine the role and impact of 

each of these traits on the predator-prey interaction at scales ranging from individuals, at which 

level we can examine issues relevant to fitness, to populations, at which level we can examine 

issues relevant to biological control.   
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Figure 4-1 Diagram of the selection regime of two replicates A) bidirectional selection, B) 

alternating selection.  For all traits the high and the low line were selected simultaneously. 

An unselected control line (not shown in diagram) was maintained under laboratory 

conditions.  Arrows indicate selection lines for each trait. 
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Figure 4-2 Mean ± SE prey consumption rate per generation for P. persimilis to different 

selection regimes. 
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Figure 4-3 Mean ± SE conversion efficiency per generation for P. persimilis to different 

selection regimes. 
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Figure 4-4 Mean ± SE dispersal response per generation for A) high lines and B) low line in 

P. persimilis to different selection regimes. 
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Figure 4-5 Mean ± SE olfactory response per generation for A) high line and B) low line in 

P. persimilis to different selection regimes. 
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Figure 4-6 Correlated response in the dispersal ability of A) consumption lines, B) 

conversion efficiency lines and C) olfactory lines in the presence of 5 or 40 prey eggs.  

Phenotypic means ± SE are indicated for each line.  
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Figure 4-7 Correlated response in the olfactory response of A) consumption lines, B) 

conversion efficiency lines and C) dispersal lines to infested or clean plant volatiles.  

Phenotypic means ± SE are indicated for each line.  
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Table 4-1 Realized heritability estimates of foraging traits in P. persimilis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Trait 

 

Line 

 

Heritability ± SE 

 

P 

Consumption  High line 1 0.48 ± 0.11 
 

0.008 

 High line 2 0.42 ± 0.003 
 

<0.0001 

 Low line 0.26 ± 0.13 
 

0.05 

Conversion efficiency  High line 1 0.44 ± 0.16 
 

0.05 

 High line 2 0.56 ± 0.15 
 

0.02 

 Low line 0.20 ± 0.02 
 

0.002 

Dispersal response  High line 1 0.29 ± 0.02 
 

<0.0001 

 High line 2 0.28 ± 0.009 
 

<0.0001 

 Low line 0.64 ± 0.11 
 

0.005 

Olfactory response  High line 0.08 ± 0.02 
 

0.023 

 
 

Low line 0.01 ± 0.04 0.83 
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Table 4-2 Intrinsic rate of increase (rm) ± SE generated from jackknifes lxmx data for 

cohorts of P. persimilis selection lines.  

 

 

 
Trait 

 

rm 

 
Consumption high line 0.429 ± 0.003 

Consumption low line 0.298 ± 0.002 

Conversion efficiency high line 0.418 ± 0.002 

Conversion efficiency low line 0.307 ± 0.003 

Dispersal response high line 0.367 ± 0.002 

Dispersal response low  line 0.369 ± 0.002 

Olfactory response high line 0.380 ± 0.002 

Olfactory response low line 0.374 ± 0.004 

Unselected control  0.375 ± 0.002 
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CHAPTER 5- Ecological Consequences of Genetic Variation in 

Foraging Behaviors of a Predatory Mite: Spatio-Temporal 

Dynamics of a Predatory Mite and its Prey  

Abstract 

Behavior underlies the ability of all animals to acquire essential resources.  Thus, 

behavior provides a critical link to population dynamics, especially in complex or changing 

environments.   To integrate behavior in the analyses of predator-prey population dynamics in 

heterogeneous landscapes, we conducted a greenhouse study to evaluate the role of several 

foraging-related traits on the dynamic interaction between the predatory mite, Phytoseiulus 

persimilis, and its prey, the twospotted spider mite, Tetranychus urticae, in a patchy 

environment.  Through artificial selection, we created predator lines with high levels of either 

prey consumption, prey-to-predator conversion efficiency, or predator dispersal response.  Using 

these lines we examined the impact of these predator foraging traits in a two-patch system under 

different predator-prey population ratios.  We found significant differences in predator-prey 

densities and plant damage among the foraging traits.  All foraging traits were comparable in 

predator-prey densities, whereas the control population had the lowest predator densities and the 

highest prey and plant damage.  The initial predator release ratio did not affect predator numbers; 

however prey and plant damage differed depending on the ratio (1:10 or 1:30).  Spatial analysis 

showed that the adult predator and prey distribution was aggregated for most of the experiment.  

Spatial association and correlation analysis confirmed the impact of foraging traits on predator- 

prey coincidence.  The high conversion efficiency and dispersal lines had significant spatial 
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association and correlation with prey, whereas the consumption and unselected control were 

comparably lower.  We hypothesize that prey patchiness may have reduced the feeding rate of 

the high consumption line and the control because these lines were less efficienct in locating 

distant prey patches.  In contrast, the high dispersal and conversion efficiency lines exhibited a 

positive aggregative response wherein the majority of predators clustered in prey patches, 

thereby reducing prey and increasing reproductive output.  Overall, we observed a positive 

spatial association between predator and prey, which changed over time.  Our results indicate 

that foraging behaviors of the predatory mite affect its ability to locate patchily-distributed prey, 

thereby influencing foraging efficiency and predator-prey population dynamics.  In addition, it 

appears that there may be multiple effective strategies for exploiting prey in this simple patch 

system. 

Introduction 

How animals forage for food is a core issue in ecology.  This process forms the basis of 

trophic interactions and plays a fundamental role in shaping population dynamics, food webs, 

and communities (Begon et al. 1996).  Thus, foraging behavior provides a critical link to 

understanding population dynamics, especially in complex or changing environments.  Despite 

its importance, the gap between studies of predator/parasitoid foraging behavior and population 

dynamics is growing (Ives 1995; Roitberg and Mangel 1997; Morales and Ellner 2002).  Instead 

of focusing on the impact of foraging behavior on population dynamics, many ecologists have 

attempted to explain observed variability by examining with ever increasing detail the 

evolutionary and mechanistic processes that underlie predator and parasitoid dynamics.  

Likewise, studies of population dynamic have centered on finding general rules that determine 

when natural enemies will aggregate or disperse, and how these might stabilize population 
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dynamics models (Hassell and May 1973, 1974; Murdoch and Oaten 1975; Gurney and Nisbet 

1978;  May 1978; Comins and Hassell 1979).  By attempting to generalize the effects of spatial 

heterogeneity on population dynamics, these studies have drawn the discourse further from 

questions of behavior.  

To bridge the gap, an important question to answer is how does variation in foraging 

behavior affect foraging efficiency and, thus, predator-prey/parasitoid-host interactions in 

spatially-heterogeneous environments? (Ives 1995).  Spatial heterogeneity can be described in 

terms of the distribution of prey or hosts among patches and is important to understanding 

predator-prey/host-parasitoid interactions and dynamics for several reasons.  First, patchily 

distributed prey present a foraging challenge for predators or parasitoids.  Second, the stability of 

predator-prey or parasitoid-host interactions, both theoretically and empirically, is increased 

when prey and hosts both have a heterogeneous distribution (e.g., Bailey et al. 1962; Hassell and 

May 1973, 1974; Murdoch and Oaten 1975; Gurney and Nisbet 1978; May 1978; Comins and 

Hassell 1979).  For example, the pattern of parasitism depends on the spatial distribution of the 

host which stabilizes the dynamics (Nicholson and Bailey 1935; Wright 1940; Huffaker et al. 

1963; Pimentel et al. 1963; Hassell et al. 1991).  Third, the pattern of predation or parasitism 

among patches of prey influences population dynamics (Ellner et al. 2001).   

Foraging behavior is the expression of a complex phenotype.  At a genetic level there 

may be tremendous variation in foraging traits among individuals of a species owing to the 

interaction of many genes (Sokolowski 2001).  In addition, ecological factors not directly related 

to foraging, such as variation in life history traits, may also affect foraging success (Roitberg et 

al. 1992).  Furthermore, the foraging success of an individual is influenced by factors such as the 

spatial and temporal distribution and suitability of resources, and the risks associated with 
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searching for food (Stephens and Krebs 1986).  Together, the genetic variation, the life history, 

and the landscape produce wide variation in foraging phenotypes.  Theoretical treatments (e.g., 

Hassell and May 1985; Pels et al. 2002) and empirical evidence (e.g., Murdoch et al. 1996; 

Hanski et al. 2004) suggest that even subtle differences in predator foraging, whether due to 

differences in phenotype or landscape structure, can greatly alter predator-prey population 

dynamics and prey suppression.   

The question then arises, “Which attributes of predator foraging behavior are likely to 

have a large impact on predator-prey population dynamics?” The rate at which predators 

consume prey and the efficiency with which predators convert their food (i.e., prey) into 

offspring, determine the predator’s impact on the local predator-prey dynamics, as described 

generally by the functional and numerical response.  These two variables, consumption and 

conversion efficiency, reflect our understanding of the basic link between predator foraging and 

population dynamics assuming prey are always available.  Within a local prey patch, which can 

be considered a homogeneous resource, the rate at which predators consume prey, and the 

efficiency with which predators convert their prey into offspring determine predator impact on 

local predator-prey dynamics.  In heterogeneous or patchy landscapes, local (within patch) 

consumption rate and conversion efficiency affect regional as well as local dynamics because, by 

affecting local per capita prey availability, they affect the leaving rate of predators.  In turn, 

when predators disperse from a patch they reduce the local predator population size (and the 

local predator-to-prey ratio) while at the same time increasing colonization of other prey patches 

and the predator-to-prey ratios in them thereby increasing global predator productivity (van 

Baalen and Sabelis 1995).  Thus, traits that affect predator movement from and between patches 

are equally important to both local and global (i.e., among patch) dynamics (Hassell 1978; 
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Berryman and Gutierrez 1999).  These traits will interact to affect the predator-to-prey ratio in 

each local patch, which in turn affects the stability of the interaction (Hassell 1978; Berryman 

1999).   

In homogeneous environments of predators and prey, individual predators should 

maximize their immediate benefits at the expense of long-term yields (Rosenzweig and 

MacArthur 1963; Maynard Smith 1982).  Thus, natural selection favors predators with the 

highest consumption and population growth rate, and this will often cause predator-prey 

dynamics to become unstable (May 1972).  When spatial structure prevents the populations from 

being well mixed, such predators may have a selective disadvantage because they do not make 

full use of the prey’s growth capacity and, hence, produce fewer offspring.  Most models on prey 

exploitation consider only strategies that differ in the predation rate (Slobodkin 1974; Gilpin 

1975).  Alternatives to these strategies include conversion efficiency and rate of emigration from 

a local population as argued by van Baalen and Sabelis (1995) and Pels et al. (2002).  All of 

these strategies affect the population growth rate of the predator and thereby the predation 

pressure on the prey population.  Low consumption or conversion rates and dispersal rates during 

the interaction will allow the local prey population to represent a larger resource in the future, 

which in turn may benefit the final size of the local predator population.  In contrast, high 

consumption or conversion and dispersal rates during the interaction will cause the predators to 

have a higher impact on the local prey population, thereby giving up opportunities to exploit the 

full growth capacity of the prey population.  However, it is not known which strategy would be 

most likely to be successful.  The best strategy would depend on the degree to which predators 

can monopolize the exploitation of local prey populations, which in turn depends on the spatial 
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structure, the number of migrants, and, in particular, the stochastic nature of the colonization 

process (Pels et al. 2002).   

In trying to understand population dynamics of predators and prey on the whole, very 

little quantitative information is available concerning the interrelations between population 

densities, spatial distributions and coincidence between predators and prey in time and space.  

Recently, spatial autocorrelation and variance among the various components in ecological 

systems has been more often treated as a source of useful information due to developments in 

geographic information systems and spatial statistics (Legendre 1993; Horne and Schneider 

1995).  

Within ecology there is currently interest in many forms of spatial studies, including the 

effects of scale, metapopulation dynamics, spatio-temporal dynamics, spatially-explicit 

modelling and spatial synchrony.  Ecologists study spatial pattern to infer the existence of 

underlying processes, such as movement or responses to environmental heterogeneity.  Spatial 

structure may indicate intraspecific and interspecific interactions such as competition, predation, 

and reproduction, or be driven by environmental heterogeneity of variables such as resource 

availability (Perry 1998).  However, care is required in inferring causation, since many different 

processes may generate the same spatial pattern.  Methods for analyzing spatial pattern have 

been developed in a wide variety of disciplines.  The spatial pattern of sampled counts of any 

species may be regular, random or clustered, regardless of the properties of the frequency 

distribution of the counts.  For two species, whatever the spatial pattern of the counts of the 

individual species, the two populations may display positive spatial association, as with diseased 

plants and their pathogen, dissociation (negative spatial association), as with an insect host in 

refuge from its parasitoid attacker (e.g., Reeve and Murdoch 1986), or randomness with respect 
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to one another.  Traditionally, patterns for a single species have been measured using the 

relationship between variance and mean (e.g., Taylor 1961; Clark and Perry 1994), and 

association between two species has been measured by the correlation coefficient (Murchie et al. 

1999).  But in both of these approaches the information concerning the locations of the counts is 

discarded.  We used the SADIE (Spatial Analysis by Distance Indices (SADIE) methodology, 

developed explicitly for the spatial analysis of ecological data in the form of spatially referenced 

counts (Perry et al. 1999).  This system provides a biologically more intuitive index than 

traditional mathematically-based ratios involving sample variance and mean, and increased 

power due to the greater use of the spatial information in the sample.  The SADIE technique 

provides a means to measure overall spatial pattern for a single set of data (Perry 1998) and 

spatial association for two sets of data (Perry 1998).  It also provides a measure and map of local 

association and that quantifies the degree to which each unit contributes to an overall measure of 

spatial association (Winder et al. 2001).  

The present study examined the functions and impacts of three specific predator foraging 

traits including consumption, conversion efficiency and dispersal response in an acarine 

predator-prey interaction that occurs in spatially complex landscapes.  Specifically, our aim was 

to investigate the spatial and temporal dynamics of a predatory mite, Phytoseiulus persimilis 

Athias-Henriot and its herbiovorous prey, the twospotted spider mite, Tetranychus urticae Koch 

under different predator-prey release ratios.  Through artificial selection we developed lines of P. 

persimilis that exhibit high levels of three traits that should affect the spatial interaction of 

predators with their prey: consumption rate, efficiency of conversion of prey eaten into predator 

offspring, and dispersal in response to prey density (Margolies et al. 1997; Margolies 1999; Jia et 

al. 2002; Nachappa et al. 2008).  By selectively manipulating levels of individual predator 
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foraging traits (keeping others constant), we had the unique opportunity to address the question 

of the importance of individual response to population processes in landscapes (Ives 1995; Lima 

and Zollner 1996; Roitberg and Mangel 1997), thereby helping to link behavior and predator-

prey population dynamics.  Deciphering the impact of individual foraging behavior on a 

predator-prey system should also address the adaptive nature of specific phenotypes in an 

ecological context (Brakefield 2003).   

We predicted different dynamics between selection lines and prey depending on predator-

prey release ratios.  We hypothesized that at the release ratio of 1:10 (one predator per 10 prey), 

high levels of consumption, conversion efficiency and dispersal response would lead to better 

prey suppression of the prey population owing to spatial and temporal synchrony between 

predator and prey.  Studies on greenhouse ornamentals have shown successful control of spider 

mite numbers and plant damage at a predator-prey ratio of 1:10 (Markkula and Tiittanen 1976).   

At predator-prey ratio of 1:30, we predicted that the specific predator foraging traits will have 

different spatial and temporal distribution patterns with respect to prey.  A predator–prey ratio of 

1:30 is less than optimum for reduction of spider mite numbers and damage (Hamlen and 

Lindquist 198; Opit et al. 2004); so we expected to observe differences in the improved selection 

lines. We hypothesized that the consumption line will reduce spider mite numbers and damage 

locally and be positive correlated with the prey.  However, they would not be successful in 

locating distant prey patches as they would continue to feed at local prey patches until prey 

extinction.  We predicted that the conversion efficiency line would be positively associated, both 

locally and regionally, with prey causing reduction in prey numbers.  Predators with a high 

dispersal response should be negatively correlated with prey initially, but disperse to distant prey 

patches resulting in overall positive association regionally with prey.   
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Materials and Methods 

Study Organisms 

The prey in our system, the twospotted spider mite, Tetranychus  urticae Koch (Acari: 

Prostigmata: Tetranychidae), is a generalist herbivore that feeds on over 180 plant species, 

including over 100 cultivated species (van de Vrie et al. 1972).  This spider mite is widely 

distributed throughout the world. Mites pass through five stages of development: egg, larva, 

protonymph, deutonymph, and adult. The population goes through a generation every 7 to 21 

days, depending on the ambient temperatures in their environment. Tetranychus urticae mainly 

colonize the underside of leaves where mites produce webbing in which all stages live and most 

activity (e.g., feeding, mating, oviposition) takes place. Adult females deposit eggs close to 

where they feed, and immatures do not move very far from where they hatch (Suski and Naegele 

1968; Kondo and Takafuji 1985); in this way, clusters, or patches, of spider mites develop.  As 

mite feeding destroys leaf tissue within a patch, mites move to new, uninfested parts of a plant. 

As plants deteriorate spider mites disperse either by walking or as aerial plankton.  The 

twospotted spider mites we used in our experiments were from a laboratory colony maintained 

on lima bean plants (Phaseolus lunatus cv. ‘Sieva’) at 24°C, 60-70% relative humidity, 16:8 h 

(L: D) photoperiod. 

The predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Mesostigmata: 

Phytoseiidae), is a specialist predator on tetranychids and the most frequently-used biological 

control agent for spider mites, especially in greenhouses (van Lenteren and Woets 1988).  The 

predatory mite was introduced into The Netherlands from Chile in 1958 (Dosse 1958) and 

subsequently shipped to other parts of the world including the United States.  Phytoseiulus 

persimilis are extremely small and are orange to bright reddish in color. Phytoseiid mites 
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reproduce by pseudoarrhenotoky, which is characterized by obligate fertilization of all eggs 

followed by a loss and/or heterochromatization of the paternal chromosomes in embryos that 

develop into males, resulting in a haploid condition of the males (Hoy 1979, Schulten 1985, 

Perrot-Minnot et al. 2000).  Under normal conditions the sex ratio is female-biased, usually close 

to 0.83 (Helle and Sabelis 1985) and each female can produce 60 eggs in her lifetime (McMurty 

and Rodriguez 1987). Phytoseiulus persimilis has 5 developmental stages: egg, non-feeding 

larva, protonymph, deutonymph and adult (Sabelis 1981).  All motile stages feed on spider mites.  

When predatory mites invade a spider mite-infested plant, the predator population is likely to 

deplete the local spider mite population (Chant 1961; Takafuji et al. 1983). Although this means 

that the local predator-prey interaction is limited and ephemeral, the interaction may persist on a 

regional scale due to repeated dispersal from and colonization of patches by both species 

(Diekmann et al. 1988; Nachman 1987, 1988, 1991; Sabelis et al. 1991; Walde 1991, 1994; 

Jansen and Sabelis 1992). As prey density drops to zero, P. persimilis will leave (Takafuji 1977; 

Bernstein 1984; Zhang and Sanderson 1993) and seek other patches.  

The P. persimilis population from which we initiated selection was purchased from 

Koppert Biological Systems, Inc. (Romulus, Michigan), a commercial supplier of beneficial 

arthropods.  Phytoseiulus persimilis were reared on twospotted spider mites in the laboratory for 

one generation under 24°C, 60-70% relative humidity, 16:8 h (L: D) photoperiod to allow the 

predators to acclimate to laboratory conditions. Selection lines were maintained in 1.89 l. mason 

jars with the metal lids removed and replaced with fine mesh screen to allow air exchange.  T. 

urticae-infested bean plants were added to the jars every other day. Every week the bottom 

layers, consisting of dry leaves with few spider mites or predators were discarded.  
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Foraging Traits 

Artificial selection was imposed to create lines that exhibited high levels of each of three 

ecologically-relevant foraging traits: consumption, conversion efficiency and dispersal response. 

Consumption and conversion efficiency were measured in a bioassay developed by Jia et al. 

(2002).  Individual P. persimilis were presented with 40-50 one-day old T. urticae eggs for 24 h, 

after which the number of prey eggs left and the number of predator eggs generated were 

counted. Consumption rate was defined as the number of prey eggs consumed by a predatory 

mite within 24 h and conversion efficiency was the ratio of the number of prey eggs consumed to 

the number of predator eggs laid in that time.  The dispersal response of P. persimilis was 

measured in a Petri dish bioassay modified from Maeda and Takabayashi (2001) and Nachappa 

et al. (2006a).   Five P. persimilis adult females were placed on a leaf disk containing 40 prey 

eggs.  After a 30 min acclimation period, we placed one end of a 30 x 5 mm parafilm strip on the 

leaf disk and counted as dispersers those predators that walked out to the mid-point of the strip. 

The high dispersal line was composed of those individuals that dispersed from the leaf disk in the 

presence of 40 eggs. 

Selection on each trait was conducted once for the entire experiment following Nachappa 

et al. (2008).   Seven to 10 day old adult female predators were used for all experiments. After 

selection plateaued, we measured all three traits in each line to make sure that only the trait of 

interest had changed.  Three or four isofemale lines were started from each selected line to 

maintain the level of the trait in the line (Hopper et al. 1993; Jia et al. 2002).  These isofemale 

lines were maintained throughout the experiment.  One to two months before starting each 

replicate, females from the isofemale lines for each trait were combined so lines could interbreed 

for two generations, at which time they were phenotyped to ensure they exhibited the desired 
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level of the traits.  Predators were collected from the arrays at the end of each replicate and again 

phenotyped to assess any change in the level of the trait during the course of the experiment. 

Greenhouse Experimental Design 

We conducted three time-replicated experiments in 69.4 m2 greenhouses at the 

Throckmorton Plant Sciences Center at Kansas State University, Manhattan, KS, USA from 

Spring 2007 through Spring 2008.  Temperature and relative humidity data were automatically 

collected every hour in each greenhouse with two HOBO™ environmental monitors (Onset 

Computer Corporation, Bourne, MA).  The average daily temperature (º C) for each of the 

greenhouse experiment were (replicate 1: 24.25 ± 3.27, replicate 2: 23.89 ± 4.19, replicate 3: 

25.79 ± 6.66; mean ± SE) and relative humidity (%) (Replicate 1: 52.17 ± 15.89, replicate 2: 

40.36 ± 14. 12, replicate 3: 42.26 ± 12.27; mean ± SE).  The average length of day and night 

(light: dark) during the experiment was approximately 16:8 (L: D) h.  To minimize aerial 

movement of predator and prey we used a fine mesh screen on the fans to reduce air velocity to 2 

m/s.  Prior tests have shown that this air speed does not allow aerial movement of mites.  Air 

velocity recorded at the front of the greenhouse was 1-1.34 m/s, 1-1.14 m/s in the middle and 

0.4-0.8 m/s in the back of the greenhouse.   

The experimental unit consisted of 24 plants set in 8 x 3 arrays based on a design used by 

Takafuji (1977) to study the effect of dispersal on this predator-prey interaction.  Plants within an 

array were packed together as closely as possible so mites could move directly from plant to 

plant or pot to pot.  To isolate the arrays from each other, two arrays were set on each 

greenhouse bench with a minimum of 10m between them. Further, each array was provided with 

a moat-system (Opit et al. 2004) to prevent mites from leaving the arrays. 
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The experiment was designed so that all units started with a similar number of spider 

mites in the same location. We created two prey patches at opposite ends of the long axis of each 

array using a single prey-infested as a patch.  To create a patch, individual plants at the trifoliate-

leaf stage were inoculated with spider mites prior to grouping plants into arrays.  Spider mites 

were left for 10 d to become established, after which time infested and uninfested plants were 

assembled into the array and predators were introduced onto one of the infested plants at either a 

1:10 or 1:30 predator-prey ratio based on pre-release counts of prey.  The number of spider mites 

was estimated by counting adult spider mites, after which we released the predators to achieve 

the appropriate predator:prey ratio.   

Population Counts 

Numbers of adult prey and predators were counted on each plant once every 6 days for 24 

days.  Plant damage was also assessed every 6 days using the Leaf Damage Index (LDI) 

modified from Hussey and Parr (1963). The symptoms were ranked according to an ordinal scale 

as follows:  0, no damage; 1, incipient damage, one or two small feeding patches; 2, feeding 

patches tending to coalesce, but only 2/3 of leaf affected; 3, 2/3 of leaf with feeding marks as 

chlorotic patches; 4, dense feeding marks over entire leaf but appearance still green; 5, as 4, but 

leaf blanched and beginning to shrivel.  LDI was calculated as an average of 24 plants per 

treatment combination.  Additionally, at the end of each experiment we collected predators and 

tested to see if there was any loss in phenotypic value of the trait.  

Spatial Distribution and Association 

To determine the distribution patterns of predatory mites and spider mites, we used 

SADIE  (Spatial Association using Distance IndicEs; Perry 1998; Perry et al. 1999).  The 

program for performing this analysis is available as a free download at 
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www.rothamsted.bbsrc.ac.uk/pie/sadie/SADIE_home_page_1.htm.  SADIE analyzes the geo-

referenced data to measure the degree of clustering in counts.  A cluster can have two forms: a 

patch or a gap.  A patch is a region of relatively large counts close to one another, and a gap is a 

region of relatively small counts close to one another (Perry 1995).  To quantify the degree of 

clustering, SADIE calculates the distance to regularity (D), defined as the minimum total 

distance that individuals in an observed arrangement would need to move to produce a uniform 

or regular spatial distribution (Perry 1998).  The higher the value of D, the more the observed 

arrangement of counts is spatially aggregated.  The degree of non-randomness was quantified by 

comparing the observed D with the mean expected distance to regularity (Ea) of randomization 

results for rearrangements in which the sampled counts first were randomly redistributed among 

the sampling locations (Perry 1995; 1998).  The overall aggregation index, Ia , was calculated as 

Ia= D/Ea.  A value of Ia = 1 suggests a spatially random pattern, Ia>1 suggests a more aggregated 

pattern, and Ia<1 suggests a more regular pattern (Perry et al. 1999).  The associated probability 

(Pa) was calculated from the formal randomization tests (Perry et al. 1999; Perry and Dixon 

2002) under the null hypothesis that observed counts were arranged randomly among the given 

sample locations.  In addition, SADIE quantifies the contribution of each plant count at each 

sample location to a patch or a gap with unitless clustering indices.  The clustering indices vi and 

vj measure the degree to which a sampling unit contributes to clustering as a member of a patch 

and a gap, respectively (Perry1998; Perry et al. 1999); vi or vj equals 1 for a random distribution 

of counts, vi >1 for a unit that belongs to a patch and vj <−1 for a unit that belongs to a gap.  All 

SADIE statistics were generated with SADIESHELL version 1.5.3 (Rothamsted Experimental 

Station, Harpenden, Herts, UK). 
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SADIE was also used to analyze spatial association (Perry et al. 1999; Perry and Dixon 

2002) that compared the cluster indices for spider mites and predatory mites on a single location 

or plant.  SADIE quantifies the contribution of counts at each sample location to a patch and a 

gap (Perry 1998; Perry et al. 1999).  Positive association was indicated by the coincidence of a 

patch for one data set with a patch for the other, or by the coincidence of two gaps; negative 

association was indicated by a patch coinciding with a gap.  The measure of spatial association 

was represented by a SADIE index, X, the linear relationship between the clustering indices of 

the two sets: X>0 for positively associated populations, X ≈ 0 for populations positioned at 

random with respect to one another, and X<0 for negatively associated populations.  The 

randomization method (Perry et al. 1999; Perry and Dixon 2002) was used to construct a formal 

test of significance in spatial association.  The null hypothesis tested was that the spatial 

arrangement of predator adults is random with respect to those of the prey (i.e., no spatial 

association).  Spatial association analysis was used to measure the temporal change of spatial 

distributions of predator and prey populations every 6 days up to 24 days.  Sigma plot (Systat 

Software, Inc. Chicago, IL, USA) was used to map the patches and gaps.  All SADIE statistics 

were generated with SADIESHELL version 1.5.3 (Rothamsted Experimental Station, 

Harpenden, Herts, UK). 

Statistical Analysis 

The experimental design was a repeated measures 4 x 2 factorial with 4 foraging 

behaviors (high consumption, high conversion efficiency, high dispersal response and unselected 

control) released at 2 predator ratios (1:10 and 1:30 predator: prey).  Further, there were 4 

sampling periods:  days 6, 12, 18 and 24.  Response variables from each array were: 1) total 

number of prey; 2) total number of predators; 3) average damage index; 4) SADIE Aggregation 
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Index for prey and 5) for predators; 6) SADIE gap index for prey and 7) for predators; 8) SADIE 

Patch Index for prey and 9) for predators; 10) spatial correlation coefficient; and 11) SADIE 

Association Index.  Data were analyzed in SAS PROC MIXED (SAS Institute 2002) as a 

completely randomized design using foraging trait, ratio, time and their interaction as fixed 

effects, and replicate as random effects.  Time was also a repeated measures factor.  Models were 

fit assuming numerous standard structures for the serial correlation, and the best-fitting model 

was selected using Akaike’s Information Criterion (Littell et al. 1996; Guerin and Stroup 2000).  

F-tests for fixed effects and t-tests for pairwise comparisons were performed based on the chosen 

correlation structure (Littell et al. 1996).  Within each experimental unit we also examined the 

simple correlation (SAS Institute 2002) between the number of predator and prey on each plant 

at each sampling time to assess the degree of spatial association between predator and prey 

density.   

Results 

Foraging Traits 

We successfully selected for lines that exhibited high levels of the three foraging traits: 

consumption, conversion efficiency and dispersal (Nachappa et al. 2008) (Table 5-1).  In every 

case only the targeted trait changed (Nachappa et al. 2008).  We did not detect any significant 

change in the phenotypic level of the traits prior to release and after termination of each 

greenhouse experiment (Table 5-2).  There was one exception, the conversion efficiency was 

reduced at the end of the experiment in Rep 1 (P = 0.01); but it was different from the unselected 

control (Table 5-1). 
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Population Counts 

Predators. Type of foraging trait (selected lines and unselected population) and the 

duration of the predator-prey interaction (time) had significant individual effects on predator 

numbers (Table 5-3).  There was also a significant interaction between foraging trait and time 

(Table 5-3).  Predator populations increased over time, but there were significant differences in 

the pattern of population growth and final predator densities among the high consumption, 

conversion efficiency, dispersal lines and the unselected control (Fig. 5-1).  There were no 

differences in predator densities at day 6 (t 158 = 0.20, P= 0.84) or day 12 (t 158 = 0.80, P= 0.43).  

However, lines differed at day 18 (t 158 = 3.27, P= 0.0013) and day 24 (t 158 = 11.67, P= 0.0013).   

Overall, the high conversion efficiency line had the highest predator densities (8.41 ± 1.65; mean 

predator number ± SE) and the unselected control had the lowest predator densities (4.13 ± 1.65) 

(Fig. 5-1). 

Prey.  Foraging trait, predator-prey ratio, and time predators and prey interacted all had a 

significant effect on prey populations (Fig. 5-2A, B).  In addition, there was a significant three-

way interaction among these factors on prey numbers (Table 5-3).  The greatest prey densities at 

either ratio were observed in the unselected population (1:10: 54.29 ± 17.19 and 1:30: 114.17 ± 

17.19; mean prey number ± SE) (Fig. 5-2A, B), whereas the lowest prey numbers were detected 

in the conversion efficiency line (1:10: 38.78 ± 17.19 and 1:30: 56.94 ± 17.19) (Fig. 5-2A, B).  

Time had a significant effect on prey population growth rate.  There were no differences in prey 

numbers at day 6 (t 158 = 1.26, P=0.21); but differences were observed at day 12 (t 158 = 2.51, 

P=0.01), day 18 (t 158 = 4.59, P<0.0001) and day 24 (t 158 = 7.29, P<0.0001) (Fig. 5-2A, B).  All 

two-way interactions between main factors were significant or nearly significant for prey 

numbers (Table 5-3).  At all times, prey numbers were much lower at the predator release ratio 
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of 1:10 (43.08 ± 15.18) (t 158 = 5.51, P=0.005) than at 1:30 (74.06 ± 15.1817) (t 158 = 2.84, 

P<0.0001) (Fig. 5-2). 

Plant Damage.  Foraging trait, predator-prey ratio, and time predators and prey 

interacted had a significant effect on plant damage. There were also significant two-way 

interactions between foraging trait and time of interaction and between predator release ratio and 

time of interaction (Table 5-3).  The average plant damage ratings corresponded well with mean 

prey densities for the respective foraging traits over time (cf. Figs. 5-2A, B, 5-3).  There were 

significant differences among selected lines and the control with respect to plant damage, with 

the unselected control having the greatest plant damage (Fig. 5-3).  Plant damage also increased 

over the course of the experiment and significant differences were detected at day 6 (t 158 = 2.44, 

P=0.02), day 12 (t 158 = 6.52, P<0.0001), day 18 (t 158 = 14.16, P<0.0001) and day 24 (t 158 = 

20.65, P<0.0001).  Plant damage was much lower at the 1:10 predator release ratio (1.57 ± 0.17; 

mean damage ± SE) (P<0.0001) than at the 1:30 ratio (2.01 ± 0.17) (t 158 = - 3.66, P<0.0001). 

Spatial Distribution of Predators 

Aggregation Index.  Foraging trait, predator-prey ratio, and time of interaction 

significantly affected predator aggregation.  There was also a significant interaction between 

foraging trait and time with respect to aggregation patterns of predator populations (Table 5-4).  

Predator spatial distributions were significantly aggregated (Ia >1) for all foraging traits and for 

the unselected control (Consumption: 1.76 ± 0.09, Conversion: 1.64 ± 0.09, Dispersal: 1.68 ± 

0.09 and Unselected control: 1.83 ± 0.09; mean aggregation index ± SE) (all P<0.0001).  Further 

significant differences were only observed between conversion efficiency and the unselected 

control (P=0.01) and dispersal ability and the unselected control (P=0.05).  Aggregation indices 

were significant for all sampling periods with an increasing trend from day 6 to 24 (Day 6: 1.48 
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± 0.11, Day 12: 1.74 ± 0.11, Day 18: 1.80 ± 0.11 and Day 24: 1.87 ± 0.11) (all P<0.0001).  

Spatial distributions only differed between day 6 and day 18 (P=0.003) and day 6 and 24 

(P=0.004). Overall, spatial distributions for predators were aggregated (Ia >1) and no uniform (Ia 

<1) or random (Ia =1) distributions were observed for all foraging traits. 

Gap Index. The gap index (vj) was significantly affected by foraging trait, predator-prey 

ratio, and time of interaction. There was a significant two-way interaction between foraging trait 

and time (Table 5-4).  Gap indices (vj) for all lines were less than -1, indicating group of small 

adult predator counts that are close to one another (Consumption: -1.71 ± 0.07, Conversion: -

1.60 ± 0.07, Dispersal: -1.62 ± 0.07 and Unselected control: -1.78 ± 0.07; mean gap index ± SE) 

(all P<0.0001).  Significant differences in gap indices were detected between conversion 

efficiency and control (P=0.01) and between dispersal and control (P=0.02) which was similar to 

the result obtained for aggregation index.  The gap index for predator populations at the sampling 

periods were significantly different (Day 6: -1.45 ± 0.10, Day 12: -1.75 ± 0.10, Day 18: -1.76 ± 

0.10 and Day 24: -1.75 ± 0.10) (all P<0.0001).  The gap index shows an increasing trend from 

day 6 through day 24.  The gap indices were significantly different between day 6 and 12 

(P=0.001), 6 and 18 (P=0.001) and 6 and 24 (P=0.001). 

Patch Index. Only the main effects of time of interaction and predator-prey ratio were 

significant with respect to patch index (vi) of predators (Table 5-4).  The patch indices were 

significantly greater than 1 indicating grouping of large adult predator counts (Day 6: 1.23 ± 

0.12, Day 12: 1.77 ± 0.12, Day 18: 1.78 ± 0.12 and Day 24: 1.84 ± 0.12; mean patch index ± SE) 

(all P<0.0001).  The patch index for predators shows a growing trend from day 6 through day 24.  

Similar to the patterns obtained for gap indices, the patch indices were only different between 

day 6 and 12 (P=0.004), 6 and 18 (P=0.0004) and 6 and 24 (P<0.0001).  This indicates that 
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clusters of large counts (patches) are prevalent initially, but as populations grow small counts 

(gaps) become more predominant.  Overall, patch indices were significantly different at predator-

prey ratios of 1:10 (1.54 ± 0.09) and 1:30 (1.76 ± 0.09).  Although foraging trait did not 

influence patch index, the indices were (Consumption: 1.70 ± 0.11, Conversion: 1.50± 0.11, 

Dispersal: 1.67 ± 0.11 and Unselected control: 1.73 ± 0.11). 

Spatial Distribution of Prey 

Aggregation Index.  Only time of predator-prey interaction had a significant main effect 

on aggregation of prey populations (Table 5-4).  Prey populations were significantly aggregated 

(Ia >1) at all sampling period and showed an increasing pattern (Day 6: 1.18 ± 0.11, Day 12: 1.34 

± 0.11, Day 18: 1.43 ± 0.11 and Day 24: 1.63 ± 0.11 mean aggregation index ± SE) (all 

P<0.0001).  Aggregation indices were significantly different among the selected lines and the 

unselected control for all days except between day 6 and 12 (P=0.17) and day 12 and 18 

(P=0.32).  The spatial distribution of prey adults for a specific foraging trait and the control also 

showed aggregated patterns (Consumption: 1.43 ± 0.12, Conversion: 1.51 ± 0.12, Dispersal: 1.32 

± 0.12 and Unselected control: 1.31 ± 0.12).  Aggregation indices for prey were more aggregated 

than uniform (Ia <1) and no random patterns (Ia =1) were observed.  Interestingly, uniform or 

regular distributions were observed in at day 18 and 24.   

Gap Index. There was a significant main effect of time on gap index of prey populations 

(Table 5-4).  The gap indices for prey populations at the different sampling periods were 

significantly different among selected lines and control and showed an increasing trend as well 

(Day 6: -1.17 ± 0.10, Day 12: -1.25 ± 0.10, Day 18: -1.41 ± 0.10 and Day 24: -1.543 ± 0.10; 

mean gap index ± SE) (all P<0.0001).  Gap indices were significantly different among selected 

lines between day 6 and 18 (P=0.01), day 6 and 24 (P=0.0002) and day 12 and 24 (P=0.004). 
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The gap indices for specific foraging traits were (Consumption: -1.38 ± 0.11, Conversion: -1.46 

± 0.11, Dispersal: -1.29 ± 0.11 and Unselected control: -1.25 ± 0.11).   

Patch Index. There was only a significant main effect of time on patch index of prey 

populations which was similar to results obtained for aggregation and gap indices of prey 

populations (Table 5-4).  The patch indices for prey populations at the sampling periods were 

significantly different (Day 6: 1.06 ± 0.11, Day 12: 1.28 ± 0.11, Day 18: 1.35 ± 0.11 and Day 24: 

1.60 ± 0.11; mean patch index ± SE) (all P<0.0001).  The patch index also shows an increasing 

trend from day 6 through day 24 similar to that observed for aggregation index.  Patch indices 

were significantly different between all sampling periods except day 6 and 12 (P=0.11), day 12 

and 18 (P=0.57).  Although non-significant, patch indices for specific foraging traits were greater 

than 1 (Consumption: 1.36 ± 0.13, Conversion: 1.41± 0.13, Dispersal: 1.28 ± 0.13 and 

Unselected control: 1.25 ± 0.13).   

Spatial Association between Predator and Prey 

Foraging trait and time of predator-prey interaction had a significant effect on the spatial 

association index, X.  However, there were no significant interactions among main effects (Table 

5-3).  Spatial association between predator and prey was positive for all selected lines and the 

control (Consumption: 0.03 ± 0.08, Conversion: 0.20 ± 0.08, Dispersal: 0.29 ± 0.08 and 

Unselected control: 0.05 ± 0.08 mean association index ± SE) (Fig. 5-4A, B, C, D).  However the 

association index was significant only for conversion efficiency (P=0.01) and dispersal lines 

(P=0.0003) and they were not different from each other (P=0.38) (Table 5-3) (Fig. 5-4A, B, C, 

D).  Spatial analysis indicated no significant differences between consumption and control 

(P=0.83), conversion efficiency and control (P=0.18), or consumption and conversion efficiency 

(P=0.12) (Fig. 5-4).  The spatial association patterns between predator and prey were 
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significantly different between dispersal and control (P=0.03) and dispersal and consumption 

(P=0.02) (Fig. 5-4A, B, D).  

Spatial association between predator and prey was positive and significant at all times 

except day 18 (Day 6: 0.31 ± 0.08, Day 12: 0.16 ± 0.08, Day 18: -0.11 ± 0.08 and Day 24: 0.22 ± 

0.08) (Fig. 5-4A, B, C, D).  There were no significant differences in the spatial association index 

between day 6 and 12 (P= 0.17), day 6 and 24 (P= 0.38) or day 12 and 24 (P=0.61).   

Correlation between Predator and Prey Densities 

There were no significant interactions among the main effects (Table 5-3).  However, the 

density distributions of predator and prey were positively correlated for the specific foraging trait 

and unselected control (Consumption= 0.23 ± 0.04, Conversion: 0.33 ± 0.04, Dispersal: 0.33 ± 

0.04 and the Unselected control: 0.16 ± 0.04; mean correlation coefficient, r ± SE) (all P<0.0001 

except control P=0.0001).  The highest correlation coefficient was observed for the high 

conversion efficiency and the lowest for the unselected control.  The high conversion efficiency 

was not different from dispersal line (P=0.98) but was different from the unselected control (P= 

0.0011) and the high consumption line (P= 0.04).  The high dispersal lines was different from the 

control (P= 0.0012) and the high consumption line (P=0.05).  

The predator-prey numbers were positively correlated for all time periods except day 18, 

where no correlation was found (Day 6: 0.37 ± 0.04, Day 12: 0.29± 0.04, Day 18: 0.10 ± 0.04 

and Day 24: 0.36 ± 0.04) (all P<0.0001 except day 18, P=0.12).  There was no significant 

difference between day 6 and 12 (P= 0.35), day 6 and 24 (P= 0.42) or day 12 and 24 (P=0.90).  

We detected strong positive correlations initially (day 6 and 12), random distribution of predator 

and prey at day 18 and strong correlations at day 24.  Further there were significant differences 
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in correlation coefficients between days 6 and 18 (P=0.01), and marginally significant 

differences between days 12 and 18 (P=0.08) and days 18 and 24 (P=0.06).  

Discussion 

There has been a call for better integration of behavior in analyses of predator-prey/host-

parasitoid population dynamics (Ives 1995; Lima and Zollner 1996; Roitberg and Mangel 1997; 

Morales and Ellner 2002).  In particular, how movement behavior of predators (and prey), when 

one or both occur in spatially-complex (i.e., patchy) distributions, affects predator foraging 

efficiency and predator-prey dynamics has not been adequately investigated.  In fact, we know of 

no comprehensive experimental study of how spatial heterogeneity affects predator foraging 

efficiency and population dynamics.  Therefore, current models – evolutionary or mechanistic – 

cannot predict predator foraging behavior.  In contrast, several studies have shown the effects of 

spatial heterogeneity on the foraging efficiency of parasitoids (Madden and Pimental 1965; 

Cheke 1974), including how spatially distributed hosts influence foraging efficiency (Kareiva 

1986; Kareiva and Odell 1987; Kareiva and Sahakian 1990).  Spatial heterogeneity such as plant 

architecture affects predator foraging efficiency and behavior indirectly by mediating prey 

availability, density, abundance and distribution (Pimentel 1961; Lawton 1983; Freese 1995; 

Clark and Messina 1998).  

To explicitly link predator foraging behavior with predator-prey population dynamics, an 

obvious question to ask is: how does spatial heterogeneity affect the efficiency of predators 

foraging for prey? (Ives 1995).  In the present study we established a patchy prey distribution of 

the twospotted mite, T. urticae, and compared foraging efficiency of the acarine predator, P. 

persimilis (in terms of both prey number and plant damage), and predator-prey spatial dynamics 

based on differences in predator foraging traits and predator-prey release ratios.  Results 
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supported our prediction that depending on the initial predator:prey ratio, the high levels of the 

three foraging traits -- consumption, conversion efficiency and dispersal selection -- would alter 

predator-prey population growth rates and associated plant damage compared to the unselected 

control.  At either predator:prey ratios (1:10 or 1:30), the foraging traits were comparable to the 

unselected control in their ability to suppress prey.  This result was also true for plant damage.  

However, initial predator: prey ratio did not influence predator densities.  Because the high 

conversion line had the lowest prey densities and prey damage, it is not surprising that it had the 

highest predator populations.  As expected, in the high conversion efficiency line predators had a 

higher reproductive output per prey consumed than in the high consumption line.  Additionally, 

there is evidence that predator offspring dispersed more quickly than those in the high 

consumption line and, thus, were able to locate distant prey patches better.  In essence, the 

conversion efficiency line exhibited attributes of both the high consumption and high dispersal 

line, which might make it more successful for locating prey patches and for maximizing 

reproductive output.   

Unexpectedly, the high consumption line was not as effective in reducing prey 

populations as the other selected lines.  In fact, besides more prey consumed, this line had a 

reproductive output similar to that found in the dispersal line.  Several models and experiments 

have shown that variability in prey consumption depends on prey distribution (e.g., Cappuccino 

1987; Kareiva 1990; Hastings et al. 1997; Yasuda and Ishikawa 1999; Bohan et al. 2000).  We 

believe that prey patchiness may have reduced the overall feeding rate of the high consumption 

line, and would continue to do so unless predators were able to compensate by adopting a non-

random searching behavior presumably in response to prey-induced plant volatiles (Janssen 

1999).  In contrast, the high dispersal and conversion efficiency lines have mechanisms that lead 
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to a positive aggregative response which leads to a high local predator-prey ratio in the most 

profitable prey patches, thereby reducing prey and increasing reproductive output.   

The initial predator-to-prey ratio is a major factor that determines predator-prey 

interactions (Pels et al. 2002).  Thus, we hypothesized that the predator-prey interaction for P. 

persimilis and T. urticae would differ depending on the initial predator-prey ratio.  But this ratio 

did not affect predator numbers in our study.  Because the reproductive output of predators 

depends primarily on prey availability, and because there were ample prey available at both the 

1:10 and 1:30 ratios, this may explain why we did not detect differences in predator reproductive 

output.  For example, there were sufficient prey locally for the high consumption line to 

maximize its output; conversely, the high dispersal line was able to locate distant prey patches, 

feed and also maximize its reproductive potential.   

We did detect differences in prey numbers and plant damage depending on the ratio of 

predators to prey.  Differences among selected lines and the control were marginal at a predator 

release ratio of 1:10, but they were greater at 1:30.  This finding supports our prediction that 

selected lines would differ in their ability to impact predator-prey population growth rate 

depending on the initial predator-prey ratio and, more specifically, that all lines of predators 

would be effective at the higher release ratio.  A release ratio for P. persimilis of 1:10 has been 

shown to be successful in controlling spider mite numbers and preventing plant damage 

(Markkula and Tiittanen, 1976). On the other hand, a predator-prey ratio of 1:30 does not protect 

plants from spider mites and damage (Hamlen and Lindquist 1981, Opit et al. 2004).  

Among selected lines, differences in predator and prey populations were detected at day 

18 and day 12, respectively.  Both the predator and prey go through one generation every 7-10 
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days; hence, differences in population growth occurred after a minimum of two generations.  

Prey damage to leaves, however, was significantly different at all times.   

There was a significant interaction between foraging traits and time for predator, prey and 

prey damage, suggesting that changes in predator and prey populations and plant damage occur 

differently over time for different foraging traits.  The significant interaction between predator-

prey ratio and time with respect to prey numbers and plant damage indicates that the influence of 

predator numbers on prey populations and associated damage develops at different rates.  In 

general, plant damage was much lower at the 1:10 ratio than at 1:30.  This result is expected 

because relatively more predators were present at the 1:10 ratio.   

Our study showed that adult predator and prey distribution was largely aggregated over 

the course of the experiment with an aggregation index, Ia >1.  Further we did not detect random 

distributions for either predator or prey.  However, uniform or regular (Ia <1) distributions were 

observed occasionally for adult prey in all selected lines and in the control population at days 18 

and 24.  We believe that the uniform pattern of distribution of prey is probably the outcome of 

predation pressure.  High predation pressure reduced prey numbers at which time it would be 

advantageous for prey to be evenly distributed when at low density as indicated in our study and 

Nachman (2006) and switch to a more patchy distribution when density increases (Nachman 

2006).  If the degree of prey aggregation is high, the predators would be able to achieve a higher 

predation rate than they would obtain if the prey had been evenly distributed and low (Nachman 

2006).  At high prey densities, prey are aggregated and relatively large part of the predator 

population will waste time by searching patches with prey densities below average; whereas the 

remaining part spends time in patches with high prey density.  Owing to satiation of the 

predators staying in the most profitable patches, the mean predation rates, averaged over all 
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patches, will thus be lower than if all predators had been exposed to the mean prey density 

(Nachman 2006).  This may explain why prey and predator densities were comparable among 

selected lines in our study.   

Spatial association and correlation analysis confirms the impact of foraging traits on 

predator-prey coincidence by correlating densities or by clustering indices, respectively.  Given 

that P. persimilis is a specialist predator on tetranychid mites, T. urticae (van Lenteren and 

Woets 1988), it is not surprising that we found spatial and temporal with prey items that forms 

the bulk of its diet.  A study on strawberries also showed significant association between P. 

persimilis immature stages and T. urticae eggs and immatures and P. persimilis eggs and adults 

with T. urticae eggs and adults.  This indicates that P. persimilis adults were laying eggs within 

developing colonies of T. urticae and then moving on to new colonies leaving prey available for 

the immature stages (Fitzgerald et al. 2008) which is consistent with the “parent-offspring” 

conflict theory.  In the current study we did not measure association between different life stages 

of predator and prey.  However, we detected a higher aggregation index for predators than prey, 

which may be indicate that adult female predators might lay eggs in a prey patch with sufficient 

prey and then leave to find other patches.  

Predators from the high conversion efficiency and dispersal lines showed significant 

spatial association and correlation with prey, whereas those from the consumption line and the 

unselected control population had comparably lower spatial associations.  Lines with high 

dispersal ability (adults tend to leave prey patch sooner) and conversion efficiency (adults leave 

more offspring locally which also disperse) were better able to locate the distant prey patch.   In 

contrast, predators from the high consumption line and unselected control apparently had a 

reduced leaving rate, which may explain the low coincidence with prey.  Overall, the spatial 
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association between predators and prey were positive initially (local patch) but then showed 

dynamic patterns depending on the foraging strategy of the individual predator.   

It is interesting to note that the spatial association was not significant at day 18.  In the 

present study, the association index and correlation analysis reverted to positive and were 

significant at day 24.  There may be several reasons for a negative association between predator 

and prey on day 18.  Aggregation indices showed that predator and prey were initially 

aggregated in one prey patch (Ia of >1).  As predator populations increased, they reducing prey 

densities at which time prey adopt an even distribution among palnts (aggregation index Ia of <1 

at day 18).  Predators however, are aggregated (Ia of >1) in some prey patches and cannot 

efficiently “track” prey in all plants and causing spatial decorrelation with prey.  This causes a 

delay in predator’s ability to find prey patches consequenlty prey densities increase and they 

become aggregated once again.  It is well known that effective natural enemies can cause 

arthropod populations to adopt an even or uniform distribution (Wilson et al. 1984) at low 

population densities through predation (Wilson et al. 1984) or through induced predator-

avoidance behavior (Onzo et al. 2003).   

Two hypotheses have been put forward to explain why different strategies for exploiting 

prey persist in nature despite selection on predators.  First, the evolution of “super” predators is 

prevented by constraints on the predators (MacArthur and Levins 1967).  Second, the evolution 

of super predators is counteracted by the evolution of antipredator traits in the prey (Red Queen 

hypothesis; Van Valen 1973).  Pels et al. (2002) performed simulations using a metapopulation 

model with different exploitation strategies such as conversion efficiency, consumption, and 

immigration to determine which of the predator’s exploitation strategies are evolutionarily stable 

and whether these strategies minimize the overall density of prey.  Under selection for 



- 145 - 

conversion efficiency they found that the predator-prey system always goes globally extinct yet 

persists under selection for consumption or emigration rates, and that the evolutionarily stable 

exploitation strategies reduces local prey population growth rates.   

Our experimental study confirms Pels et al. (2002) results in that all three exploitation 

strategies of interest were effective in reducing prey density.  This result is interesting in that 

previous research (Nachappa et al. 2008) showed that fitness estimates (intrinsic rates of 

increase, rm) (Birch 1948) associated with different P. persimilis foraging traits were 

significantly different.  In particular, the high consumption and conversion line had the highest 

fitness and high dispersal line was comparable to the unselected control.  On the basis of these 

findings one would expect that the high consumption line would be most favored by natural 

selection.  Our study was conducted under a limited spatial distribution of prey -- two isolated 

patches per landscape or plant array -- which may not have been sufficiently heterogeneous for 

predators to manifest their full potential of its foraging strategies.  We might also expect different 

predator-prey dynamics had we continued the experiment for longer periods or during declining 

prey populations.  

Whether in natural or managed ecosystems, natural enemies must interact with their 

herbivorous prey in spatially heterogeneous landscapes in which the location and abundance of 

the two species may not be consistently correlated.  However, for biological control to be 

effective the spatial coincidence of natural enemies and pests is important (Beddington et al. 

1978; Murdoch and Oaten 1989).  Their spatial coincidence depends in large part on the way in 

which natural enemies respond to pest density and distribution in terms of dispersal, prey 

consumption, and reproduction.  The mechanisms underlying these factors determine the local 

and global abundances of both species, as well as the efficacy of biological control.  For 
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example, the fact that prey aggregation benefits the predators at low densities may also have 

implications for biological control because it slows down the growth rate of the prey and helps 

the predators to survive during periods of prey scarcity (Murdoch and Briggs 1996).  The 

knowledge of the spatio-temporal dynamics of prey and predator distributions can potentially 

provide valuable information on when and where to release natural enemies in augmentative 

biological control programs.   
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Figure 5-1 Mean predator numbers per array at four sampling periods. Vertical bars 

indicate ± SE for the experiment. 
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Figure 5-2 Mean prey numbers per array at predator release ratios of A) 1:10 and B) 1:30 sampled at four time periods. 

Vertical bars indicate ± SE for the experiment.
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Figure 5-3 Mean plant damage ratings per array at four sampling periods. Vertical bars 

indicate ± SE for the experiment. 
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Figure 5-4 Example maps of spatial association patterns of predator and prey populations per array during the course of the 

experimental period. A) unselected control, B) consumption, C) conversion efficiency and D) dispersal response. Red color 

indicates spatial association index, X>0, positive association between predator and prey, green color indicates spatial 
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association index, X<0, negative association or dissociation between predator and prey, white color indicates spatial 

association index, X=0, random pattern of predator and prey. 
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Table 5-1 Levels of response in specific predator foraging traits and the unselected control 

after selection plateaued. Means within columns followed by the same letter are not 

statistically different at P<0.0001. 

 

 

 

Selected Line 

Response 

Prey consumed in 

24h 

Ratio of offspring 

produced to prey 

consumed in 24 h 

Time to leave prey 

patch (min) 

Consumption 39.91 ± 1.17 a 

 

0.11 ± 0.05   b 46.30 ± 5.33 b 

Conversion efficiency 27.88 ± 1.98 b 

 

0.17 ± 0.008 a 51.50 ± 4.35 b 

 

Dispersal  23.97 ± 2.37 b 

 

0.12 ± 0.01   b 11.38 ± 1.67 a 

Unselected control 24.08 ± 3.91 b 

 

0.12 ± 0.005 b 55.55 ± 3.20 b 
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Table 5-2 Levels of response in specific predator foraging traits immediately before and after greenhouse experiments. 

 

  

 

 

 

 

 

 

Effect Replicate 1 Replicate 2 Replicate 3 

 Before After Before After Before After 

Consumption 35.57 ± 0.89 35.43 ± 0.54 36.42 ± 1.23 34.59 ± 0.73 37.43 ± 1.41 34.00 ± 0.65 

Conversion efficiency 0.18 ± 0.03 0.15 ± 0.01 0.16 ± 0.02 0.15 ± 0.02 0.18 ± 0.01 0.15 ± 0.01 

Dispersal 7.60 ± 1.27 7.54 ± 0.90 11.23 ± 1.43 

  

10.31 ± 0.98 13.52 ± 1.76 9.42 ± 1.61 
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Table 5-3 Influence of type of foraging trait, predator release ratio and time of interaction on the number of predators, prey 

and associated plant damage.  P-values highlighted in bold highlight are significant. 

 

Effect      Predators         Prey Plant damage Correlation 

coefficient (r) 

Spatial 

association 

index (X) 

Foraging trait 0.0004 0.0002 0.006 0.002 0.05 

Ratio 0.44 

 

<0.0001 0.0003 0.69 0.86 

Foraging trait x ratio 0.16 0.07 0.75 0.52 0.82 

Time <0.0001 <0.0001 <0.0001 0.05 0.0016 

Foraging trait x time <0.0001 <0.0001 0.003 0.55 0.10 

Time x ratio 0.92 <0.0001 0.002 0.30 0.57 

Foraging trait x time x ratio 0.37 

 

<0.0001 0.47 0.90 0.97 
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Table 5-4 Influence of type of foraging trait, predator release ratio and time of interaction on spatial distribution indices: 

aggregation (Ia), gap (Vj) and patch (Vi).  P-values highlighted in bold are significant. 

Effect Aggregation index (Ia) Gap index, Vj Patch index, Vi 

 Predators Prey Predator Prey Predators Prey 

Foraging trait 0.05 0.39 0.04 0.32 0.13 0.69 

Ratio 0.04 0.53 0.03 0.28 0.004 0.98 

Foraging trait x ratio 0.25 0.42 0.22 0.43 0.54 0.49 

Time 0.002 0.0009 0.01 0.001 0.0002 0.0014 

Foraging trait x time 0.02 0.62 0.03 0.65 0.26 0.63 

Time x ratio 0.07 0.60 0.13 0.54 0.11 0.68 

Foraging trait x time x ratio 0.80 0.65 0.62 0.44 0.71 

 

0.90 
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CHAPTER 6- Conclusions 

Knowledge of the population impact of predator foraging is critical for understanding 

how behavioral responses affect predator-prey interactions under different environments, and to 

impose deliberate manipulations of predators in response to different environmental conditions, 

as might commonly occur in biological control.  One way to link foraging behavior and 

population dynamics is to focus on the influence of specific predator foraging traits affecting 

both natural enemy fitness and pest suppression.  My dissertation research addressed the role of 

four foraging traits in the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: 

Phytoseiidae), and their impact on its interaction with its prey, the twospotted spider mite, 

Tetranychus urticae Koch (Acari: Tetranychidae).  Results of my dissertation research, which 

identified the role and impact of predator foraging traits on natural enemy fitness and population 

consequences of the traits relevant to biological control, help to unify these areas of research.   

In Chapter 2, I showed that the dispersal response of predatory mites was modified based 

on prey density in a patch and levels of external volatile cues related to their prey.  The dispersal 

response decreased with increasing levels of prey in a patch irrespective of external volatile 

levels or feeding experience.  Knowledge of environmental factors that affect predator giving-up 

time has applications for pest management because the timing of natural enemy dispersal can 

affect the ratio of natural enemies to pests, both within a patch and throughout a region.  In turn, 

this affects pest suppression.  With more specific information on the role and relative importance 

of external and internal cues available to predators, it may be possible to manipulate these cues 

to increase the efficiency of P. persimilis and other biological control agents.  
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In Chapter 3, I showed that the olfactory response of the predatory mite to prey-infested 

plants varies in direct relation to the population growth pattern of prey on the plant.  The 

predator’s response can be quantified as a function of mite-days, which is a cumulative measure 

of the standing adult female mite population sampled and summed over time.  That is, response 

to volatiles increased with increasing numbers of prey per plant, or with the length of time the 

plant was infested by prey.  Knowledge of the role of plant volatiles, in combination with other 

factors that underlie variation in predator behavioral response, will contribute to a better 

understanding of how P. persimilis forages for T. urticae.  It may also lead to a greater ability to 

manipulate plant volatiles to increase the effciency of this biological control agent in a variety of 

ways.  Some of these ideas include: 1) application of natural enemy-attracting volatiles, or other 

chemicals (e.g., jasmonic acid) which induce such volatiles, to crop fields; 2) breeding plants for 

increased production of these volatiles; and 3) genetically engineering plants for increased 

production of attractants.  The bioassays and protocols developed in Chapters 2 and 3 were 

applied to artificial selection experiments on the dispersal and olfactory responses of P. 

persimilis, respectively.   

In chapter 4, I examined the genetic components of phenotypic variation in ecologically-

relevant foraging traits of the predatory mite: consumption rate, conversion efficiency, dispersal 

response and olfactory response to prey-induced plant volatiles using artificial selection regimes.  

I detected significant additive genetic variance in both directions of selection for nearly all of the 

foraging traits, the single exception being the low-olfactory response.  The high foraging 

phenotypes were stable after relaxation of selection, whereas their low counterparts were not.  

There were significant genetic correlations between some foraging traits that were used in the 

selection treatments.  For example, the high consumption line had a faster dispersal response 
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than the low line.  There was no correlation among foraging traits and life-history traits such as 

hatching time (time to emerge from egg), hatching percent, development time (time from nymph 

to adult ecdysiast), fecundity and survivorship from egg to adult.  Further, foraging traits differed 

in their intrinsic rate of increase (rm) which reflects their potential success under natural 

conditions.  Thus, finding a substantial amount of genetic variation in foraging behaviors of 

predatory mites and a lack of trade-offs with life-history traits suggests that correlations may not 

maintain the genetic variation in these traits.  There may be other mechanisms that maintain 

genetic variation in foraging traits such as habitat heterogeneity.  Future experiments may 

include testing the foraging traits in different environments to determine whether habitat 

heterogeneity maintains genetic variation in the foraging traits.  A Quantitative Trait Loci (QTL) 

analysis can be done to help map regions of the predatory mite genome that contain genes 

involved in specifying the foraging trait. 

Chapter 5 examined the impact of high, stable foraging phenotypes - consumption rate, 

conversion efficiency and dispersal response - on the predator-prey interaction under different 

conditions of prey density and distribution.  In multiple-plant greenhouse experiments, I found 

significant differences between selected foraging phenotypes and the unselected control line in 

terms of predator-prey densities and plant damage.  All foraging traits were comparable in 

predator-prey densities and plant damage, whereas the control population had the lowest predator 

densities and the highest prey numbers and damage.  Spatial association and correlation analysis 

further confirmed the impact of foraging traits on predator-prey coincidence by correlating 

densities or by clustering indices, respectively.  Certain foraging traits such as dispersal and 

conversion efficiency were more strongly correlated or associated with prey than were the 

consumption and unselected control line.  I believe that prey patchiness may have reduced the 
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feeding rate of predators from the high consumption line because they were not efficient in 

locating distant prey patches.  This study supports my contention that variability in foraging 

traits of the predatory mite, P. persimilis, affects its ability to locate patchily-distributed prey, 

thereby influencing foraging efficiency and population dynamics.  Results of my dissertation 

demonstrates that the expression of foraging behaviors in response to ecological conditions is 

dependent on phenotypic variation, which is controlled in part by heritable genetic variation and 

genetic correlations with other phenotypes, and that this variation has consequences for 

individual’s fitness.  This work indicates that in a simple landscape structure with two spatially-

separated prey patches and abundant prey, all behavioral variants maximize relative fitness 

(reproductive potential) and prey suppression.  Certain foraging traits were concentrated in local 

prey patches, whereas others moved among prey patches.  Results of this study suggest that 

future studies on foraging behaviors should examine predator fitness and prey suppression in 

landscapes with different levels of prey and distribution.   

Implications for Biological Control 

Knowledge of the genetic and ecological effects of predator foraging traits has 

implications for augmentative biological control.  Increasing natural enemy efficiency remains a 

high priority for researchers, but identifying traits that affect efficiency is difficult.  My results 

indicate that several predator foraging traits are heritable and amenable for breeding programs to 

improve the efficiency of P. persimilis.  In addition, the high foraging phenotypes, including 

high consumption, conversion efficiency and dispersal, were stable after relaxation of selection 

for up to two months, which potentially reduces the labor costs that would be associated with 

repeated selection of predators in a rearing facility.  Stability of foraging traits also makes them 

reliable and suitable for field releases.  Absence of pleiotropic effects with other foraging and 



- 170 - 

life-history traits further confirms the suitability of these foraging phenotypes for augmentative 

biological control programs.  

I am of the opinion that the high conversion efficiency line would have the greatest 

potential for mass rearing and would also be the most efficient for field release.  From the 

commercial producer’s point of view, the high conversion efficiency line may be the most 

feasible for breeding programs because it has a high reproductive potential per prey consumed, 

which may reduce the cost of rearing in terms of prey supply.  Greenhouse experiments suggest 

that the high conversion efficiency line would have the highest spatial correlation with prey.  

Thus, it is reasonable to assume that releasing predators from this line may result in the lowest 

prey densities and highest predator numbers.   

Data obtained from genetic studies may enable future pest management efforts to be fine-

tuned according to the structure of a particular landscape.  The ability of predators to locate 

resources in a landscape is influenced not only by the pattern of prey patches, but also by the 

amount of habitat fragmentation, i.e., the size of habitat patches, and the distance between them.  

There are several factors that can be varied to determine population dynamics of the foraging 

traits with prey.  The spatial scale of the experiment can be varied; increasing the scale (such as a 

commercial greenhouse) will provide information about global population dynamic processes 

that occur.  In contrast, decreasing the scale will provide information on the mechanistic aspects 

of predator-prey dynamics.  Use of different prey patches (uniform to fragmented), more patches, 

or altering the inter-patch distance will help to differentiate the effectiveness of the foraging 

traits.  For example, the high dispersal line may be more efficient in exploiting distant prey 

patches irrespective of prey patch distribution.  Increasing prey density per patch may also 

distinguish the high consumption line from the high conversion efficiency and dispersal lines.  
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Distribution of predators can also be varied, from fine- to coarsely-grained.  The duration of the 

predator-prey interaction is a key determinant of success of both short-term and long-term 

biological control programs.  For the latter, the stability of the interaction is an important factor.  

By varying the duration of the experiment and the environmental components of the landscape, 

we may be able to assess which combination of traits, time and environmental conditions 

provides short- or long-term prey suppression.   Other areas of research to be considered for 

future augmentative release programs are: releasing predators selected for composite traits.  For 

example, high conversion efficiency with dispersal, or high consumption, high dispersal and high 

development might prove to be an effective suite of traits.  Mixed releases of multiple predator 

lines selected for different foraging traits might also be a viable option for effective long-term 

pest management.  With this information it may be possible to modify augmentation programs 

(e.g., change predator release patterns or predator: prey ratio) or conservation programs (e.g., by 

changing environmental conditions for specific predator lines) to increase the efficiency of 

biological control.   
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Appendix A - Chapter 2 

SAS CODES 

1) The effect of prey egg density, volatiles and feeding experience on giving-up time (GUT) of 

satiated and starved P. persimilis was analyzed using PROC MIXED. 

Proc mixed method=Type3; 

Class prey volatiles status run; 

Model RI=prey|volatiles|status/DDFM=KR; 

Random Run (Status*volatiles); 

LSMeans prey volatiles status/Diff; 

run; 

                                         

2)  The number of T. urticae prey eggs consumed by satiated and starved predators at each prey 

egg density and volatile condition was analyzed the by analysis of variance using PROC GLM in 

SAS (SAS Institute 2002). 

proc glm; 

Class status volatiles; 

model tsmc= status| volatiles; 

lsmeans status |volatiles /pdiff; 

run; 
 

 

3) The same criteria was used to conduct a life test analysis (PROC LIFETEST) to compare 

leaving rates among single predator and five predators at each prey density per petri dish using 

log-rank test (SAS Institute 2002). 

proc lifetest; 

time survday*censor(0); 

strata predator status density volatiles; 

run; 

proc lifetest; 

time survday*censor(0); 

run; 
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Appendix B - Chapter 3 

SAS CODES 

1) A mixed-model analysis was conducted using treatment, time (days after inoculation), and 

their interaction as fixed effects, and experiment as random effects.  Time was also a repeated 

measures factor.  Models were fit assuming numerous standard structures for the serial 

correlation, and the best-fitting model was selected using Akaike’s Information Criterion (Littell 

et al. 1996; Guerin and Stroup 2000).  F-tests for fixed effects and t-tests for pairwise 

comparisons were performed based on the chosen correlation structure (Littell et al. 1996).  All 

tests used a 0.05 type I error rate.   

proc sort; 

  by trt expt set; 

run; 

 

proc print; 

run; 

 

Proc Mixed CL; 

Class expt set trt time; 

Model time= trt time trt*time; 

Random expt set(expt) expt*trt; 

Repeated time/subject=trt*set(expt) Type=cs; 

RUN; 

 

Proc Mixed CL; 

Class expt set trt time; 

Model time= trt time trt*time; 

Random expt set(expt) expt*trt; 

Repeated time/subject=trt*set(expt) Type=ar(1); 

RUN; 

 

Proc Mixed CL; 

Class expt set trt time; 

Model time = trt time trt*time; 

Random expt set(expt) expt*trt; 

Repeated time/subject=trt*set(expt) Type=csh; 

RUN; 

 

Proc Mixed CL; 

Class expt set trt time; 

Model time = trt time trt*time; 
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Random expt set(expt) expt*trt; 

Repeated time/subject=trt*set(expt) Type=arh(1); 

RUN; 

 

Proc Mixed CL; 

Class expt set trt time; 

Model time = trt time trt*time; 

Random expt set(expt) expt*trt; 

Repeated time/subject=trt*set(expt) Type=toep; 

RUN; 

 

Proc Mixed CL; 

Class expt set trt time; 

Model time = trt time trt*time; 

Random expt set(expt) expt*trt; 

Repeated time/subject=trt*set(expt) Type=toeph; 

RUN; 

 

Proc Mixed CL; 

Class expt set trt time; 

Model time = trt time trt*time; 

Random expt set(expt) expt*trt; 

Repeated time/subject=trt*set(expt) Type=ante(1); 

RUN; 

 

title1 'The chosen model is Unstructured correlation'; 

 

Proc Mixed CL; 

Class expt set trt time; 

Model time = trt time trt*time / ddfm=kr; 

Random expt set(expt) expt*trt; 

Repeated time/subject=trt*set(expt) Type=unr; 

parms .03 .0027 .034 .039 .043 .265 .195 .512 .362 .105  

      -.63 -.13 -.24 .11 -.42 .51 .33 -.51 .59 .53 .31 .35 .04 -.10 .25 .25 -

.19 .63 .57 .51 .22; 

lsmeans trt trt*time / diff; 

ods output lsmeans=lsm; 

ods output diffs=diffs; 

RUN; 

 

title2 'Comparisons of TRTs 1 and 2'; 

 

proc print data=diffs; 

  where trt=1 and _trt=2; 

run; 

 

title2 'Comparisons of all TRTs at each point in time'; 

 

proc print data=diffs; 

  where time = _time; 

run; 

 

title2 'Plot of LSMeans against time for each TRT'; 

 

proc gplot data=lsm; 

  plot estimate*time=trt; 

ru
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Appendix C - Chapter 4 

0

20

40
60

80

100

0 5 10 15 20 25 30 35 40 45 50
Phenotypes

F
re

q
u
e
n
c
y

0

20

40
60

80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

Phenotypes

F
re

q
u
e
n
c
y

High Consumption Low Consumption

Mean prey consumption

N
o

. 
o

f 
m

it
e

s
 d

is
p

la
y
in

g
 c

o
n

s
u

m
p

ti
o

n

0

20

40
60

80

100

0 5 10 15 20 25 30 35 40 45 50
Phenotypes

F
re

q
u
e
n
c
y

0

20

40
60

80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

Phenotypes

F
re

q
u
e
n
c
y

High Consumption Low Consumption

0

20

40
60

80

100

0 5 10 15 20 25 30 35 40 45 50
Phenotypes

F
re

q
u
e
n
c
y

0

20

40
60

80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

Phenotypes

F
re

q
u
e
n
c
y

High Consumption Low Consumption

Mean prey consumption

N
o

. 
o

f 
m

it
e

s
 d

is
p

la
y
in

g
 c

o
n

s
u

m
p

ti
o

n

 

Figure A-1 Frequency distribution of consumption phenotypes in P. persimilis per 

generation. 
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Figure A-2 Frequency distribution of conversion efficiency phenotypes in P. persimilis per 

generation. 
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Figure A-3 Frequency distribution of dispersal response phenotypes in P. persimilis per 

generation. 
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Figure A-4 Frequency distribution of olfactory response phenotypes in P. persimilis per 

generation. 
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Figure A-5 Response of prey consumption rate to selection in P. persimilis relative to the 

cumulative selection differential for both high and low lines.  The linear regression for high 

replicate 1: r
2 

= 0.78, F 1,5 = 17.22, P =0.01; high replicate 2: r
2 

= 0.99, F 1,5 = 14072.8, P 

<0.0001 and low line: r
2
 = 0.44, F 1,2 = 3.89, P= 0.11). 
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Figure A-6 Response of conversion efficiency to selection in P. persimilis relative to the 

cumulative selection differential for both high and low  lines.  The linear regression for 

high replicate 1: r
2 

= 0.64, F 1,4 =7.28, P =0.05; high replicate 2: r
2 

= 0.78, F 1,4 = 14.59, P 

=0.02 and low line: r
2
 = 0.37, F 1,4= 2.24, P= 0.21). 
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Figure A-7 Response of dispersal to selection in in P. persimilis relative to the cumulative 

selection differential for both high and low lines.  The linear regression for high replicate 1: 

r
2 

=0.98, F 1,4 =235.90, P <0.0001 and high replicate 2: r
2 

= 0.99, F 1,4 =850.01, P <0.0001 and 

low line: r
2 

=0.89, F 1,4 =30.39, P =0.005. 
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Figure A-8 Response of olfaction to selection in P. persimilis relative to the cumulative 

selection differential for both high and low lines.  The linear regression for high line: r
2 

=0.76, F 1,4 =12.86, P =0.02; low line 2: r
2 

= 0.02, F 1,4 = 0.08, P =0.78. 
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SAS CODES 

1. To measure the response to selection a one-way Analysis of Variance (ANOVA) using PROC 

GLM was performed to identify direct responses to selection between the high- and low-

selection lines: 

PROC GLM; 

Class rep line; 

Model variable= line; 

lsmeans generation/ stderr pdiff; 

run; 

 

2. A one-way ANOVA was done to determine direct responses to selection between the selection 

lines and control.   

PROC GLM; 

Class line gen; 

Model variable = line; 

lsmeans line/ stderr pdiff; 

run; 

 

3. Responses of foraging traits prior to- and post-relaxation of selection were examined using a 

one-way ANOVA.   

PROC GLM; 

Class line; 

Model variable= line; 

lsmeans line/ stderr pdiff; 

run; 

 

4. A univariate GLM analysis was performed between selection lines of replicate I and II for the 

stable phenotypes. 

PROC GLM; 

Class rep line gen; 

Model variable= line; 

lsmeans line|gen/ stderr pdiff; 

run; 
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5. The realized heritabilities (h2) and associated standard errors were calculated in PROC GLM 

by regressing the Σs on ΣR.   

Proc reg; 

model r=s/ clm cli alpha=0.05; 

plot r*s; 

plot student.*predicted.; 

output out=new student=sres; 

proc univariate data=new normal plot; 

var sres; 

run; 

 

6. A one-way ANOVA (PROC GLM) was used to measure correlated responses in consumption 

rate and conversion efficiency for the high and low lines and unselected base population of each 

foraging trait.   

PROC GLM; 

Class line; 

Model variable= line; 

means line/ lsd tukey lines; 

run; 

 

7. Correlated response to dispersal and olfaction was calculated using a two-way ANOVA with 

effects of selection line and prey density in the model. 

PROC GLM; 

Class line density; 

Model variable= density or volatile|line; 

lsmeans line|density or volatile/stderr pdiff; 

run; 

 

8. A one-way ANOVA (PROC GLM) was used to test for correlated responses to selection in the 

different life-history traits (i.e., hatching time, hatching percent, development time and adult 

survival). 

PROC GLM; 

Class line; 

Model variable= line; 

lsmeans line/ stderr pdiff; 

run; 

 

9. Mean jackknife estimates of intrinsic rate of increase (rm) were compared between selection 

lines and control for each foraging trait using a one-way ANOVA.   
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PROC GLM; 

Class line; 

Model rm= line; 

lsmeans line/stderr pdiff; 

run; 
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Appendix D - Chapter 5 

 

 

 

Table A-1 ANOVA table to determine the levels of response in specific predator foraging 

traits and the unselected control after selection plateaued. 

 

 

 

 

 

 

 

 

 

Selected Line 

Response 

Prey consumed in 

24h 

Ratio of offspring 

produced to prey 

consumed in 24 h 

Time to leave prey 

patch (min) 

Consumption F3,215= 29.36, 

P<0.0001 

F3,164= 11.84, 

 P<0.0001 

F3,75= 105.81, 

P<0.0001 Conversion efficiency 

Dispersal  

Unselected control 
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Table A-2 ANOVA table to determine the effect of foraging behavior, predator release ratio and time on the number of 

predator, prey and associated prey damage.

Effect      Predators         Prey Plant damage Correlation 

coefficient (r) 

Spatial 

association 

index (X) 

Foraging trait F3,158 = 6.50 F3,158 = 6.84 F3,158 = 4.34 F3,62 = 5.58 F3,62 = 2.67 

Ratio F1,158 = 0.61 F1,158 = 22.09 F1,158 = 13.36 F1,62 = 0.16 F1,62 = 0.03 

Foraging trait x ratio F3,158 = 1.77 F3,158 = 2.39 F3,158 = 0.40 F3,62 = 0.76 F3,62 = 0.30 

Time F3,158 = 226.43 F3,158 = 249.48 F3,158 = 731.62 F3,62 = 2.60 F3,62 = 5.72 

Foraging trait x time F9,158 = 4.70 F9,158 = 15.35 F9,158 = 3.00 F9,62 = 0.88 F9,62 = 1.73 

Time x ratio F3,158 = 0.17 F3,158 = 15.35 F3,158 = 5.36 F3,62 = 1.26 F3,62 = 0.68 

Foraging trait x time x ratio F9,158 = 1.11 F9,158 = 11.99 F9,158 = 0.97 F9,62 = 0.46 F9,62 = 0.29 
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Table A-3 ANOVA table to determine the effect of foraging trait, predator release ratio and time on spatial distribution 

parameters including aggregation (Ia), gap (Vj) and patch (Vi) indices.

Effect Aggregation index (Ia) Gap index, Vj Patch index, Vi 

 Predators Prey Predator Prey Predators Prey 

Foraging trait F3,62 = 2.51 F3,62 = 1.03 F3,62 = 2.87 F3,62 = 1.19 F3,62 = 1.95 F3,62 = 0.50 

Ratio F1,62 = 4.42 F1,62 = 0.39 F1,62 = 5.10 F1,62 = 1.18 F1,62 = 8.81 F1,62 = 0.00 

Foraging trait x ratio F3,62 = 1.39 F3,62 = 0.95 F3,62 = 1.51 F3,62 = 0.94 F3,62 = 0.73 F3,62 = 0.81 

Time F3,62 = 5.38 F3,62 = 6.21 F3,62 = 3.79 F3,62 = 6.08 F3,62 = 7.66 F3,62 = 5.84 

Foraging trait x time F9,62 = 2.40 F9,62 = 0.80 F9,62 = 2.27 F9,62 = 0.76 F9,62 = 1.29 F9,62 = 0.79 

Time x ratio F3,62 = 2.51 F3,62 = 0.63 F3,62 = 1.92 F3,62 = 0.73 F3,62 = 2.11 F3,62 = 0.51 

Foraging trait x time x ratio F9,62 = 0.59 F9,62 = 0.76 F9,62 = 0.80 F9,62 = 1.01 F9,62 = 0.70 F9,62 = 0.46 
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SAS CODES 

 

1. Data were analyzed in SAS PROC MIXED (SAS Institute 2002) as a completely randomized 

design using foraging trait, ratio, time and their interaction as fixed effects, and replicate as 

random effects.  Time was also a repeated measures factor.   

The variables analyzed were 1) total number of prey; 2) total number of predators; 3) 

average damage index; 4) SADIE Aggregation Index for prey and 5) for predators; 6) SADIE 

gap index for prey and 7) for predators; 8) SADIE Patch Index for prey and 9) for predators; 10) 

spatial correlation coefficient; and 11) SADIE Association Index.   

 
Proc Mixed; 

Class unit rep trait time ratio; 

Model variable= trait|ratio|time; 

Repeated time/subject=unit Type=cs; 

Random rep; 

lsmeans trait|time|ratio/pdiff; 

RUN; 

 

2. Within each experimental unit we also examined the simple correlation (SAS Institute 2002) 

between the number of predator and prey on each plant at each sampling time to assess the 

degree of spatial correlation between predator and prey density. 

proc corr data =corr_multiarray; 

var tsm predators; 

run; 

   

3.  A one-way ANOVA to determine the levels of response in specific predator foraging traits 

and the unselected control after selection plateaued. 

 PROC GLM; 
Class line; 

Model variable= line; 

lsmeans line/ stderr pdiff; 

run; 
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4.  A one-way ANOVA to determine the levels of response in each predator foraging traits 

immediately before and after greenhouse experiments 

 

PROC GLM; 

Class line; 

Model variable= line; 

means line/lsd tukey lines; 

run 


