- :
-~ AN IMPLEMENTATION OF
A LOSSLESS JOIN ALGORITH®M.

by
KARL RICHARD KLOSE

B.S., Bucknell University, 1958
M.S., University of Alabama, 196Z
M.A., University of Alabama, 1967
Ph.D., University of Alabama, 197y

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIEWCE

Department of Computer Science

KANSAS STATE UNIVERSITY
ranhattan, Kansas

1983

Approved by:

“HMajor ;roifgsdi

L p sz v
2668 | LI

RY
1982 TABLE OF CONTENTS
Keé

e, 2

ACKNOWLEDGEI'iEN TS . . . L3] . - . - . . iii

CHAPTER
l. INTRODUCTIOW & & & % & ¢ s & & & % & 4 4 4 » & & & 1
2. THEORY . . o & o o o s o s 5 s o ¢ o o s 2 & s o 4
3, DOCUMENTATION. . &« & &+ s s o s o s & o s » ¢ & « s 8

4. CONCLUSIONS. + v v o v o o o o o o o v o o v w o . 26

APPENDIX
A. DATA STRUCTURES. . L] L) L] - L] [] . . L] L] - . . » L] - 27

B. SOURCE CODEl -] L] L] .] . L] * . - . . L] L] -] . L] 32

REFERENCES - L] L] . - . L] . [] L]]] [[] . L] . [] . L] L] L] . 60

ii

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

ACKNOWLEDGEWENTS

The author expresses his sincere appreciation to
Professor Elizabeth A. Unger for suggesting tnis problem and
most especially for her patience, guidance and encouragement

during its solution.

iii

Chapter 1

INTRODUCTION

Credit for the widespread interest in the Relaticnal
Data Model must go to E. F., Codd, who in his landmark paper
[Codd, 1970] described the application of the elementary
theory of mathematical relations to large stores of
formattedl data. This model represents a significant
departure from the hierarchic and network models in both the
logical description and manipulation of data.

Simply stated, the relational model views data as a
relation or collecticn of relations. Each relation may be
thought of as a two-dimensional table whose columns and rows
are termed ‘“attributes"™ and "tuples" respectively. The
order of the columnns and rows in a relation is not
important. However, it is required that each rcw in a given
relation be distinct and that the elements or "entities" of
a given column be members of a well defined "domain" of
possible values of 1ike type. A ‘"candidate key" of a
relation is any set of attributes of that relation with the
time independent properties that each tuple of the relation
is uniguely identified by the current values of this set of
attributes and that this unigue identification property is
lost if any =attribute is removed from the set, Any

1

attribute that is contained in a candidate key is termed a
"prime attribute" while those remaining are termed
"non-prime attributes", Finally, a crucial feature of this
model is that associations or relationships among relations
in the database or among tuples in a relation are embodied
in the data itself, thus eliminating the need for external
pointers or set relationships.

Data guery and manipulation in the relational data
model fall into the two general categories of relational
algebra or relational <calculus. The relational algebra
expresses a query by applying a combination of special
operations to some set of relations in the database.
Typical algebraic operaticons include selection, projection,
restriction, cross—-product, division and the various joins
{see [Tsichritzis,1977]). The relational calculus, on the
other hand, is based on the predicate calculus where a query
identifies a set of tuples that satisfy =come specified
condition or predicate. Although these two approaches
differ significantly in concept and implementation, they
each respond to a query by returning a relation (perhaps
empty) that, hopefully, contains the desired information,
The fact that a relation synthesized using one or more join
operations from a relational algebra may contain spurious
information is the central issue of this report and will be
elaborated upon in the next chapter.

While the virtues of the relational data model such as

2

data independence, symmetry, flexibility and natural tabular
form are well documented (see [Cardenas,1979]), it was noted
by E. F. Codd as early as 1972 in [Codd,1972] that the
relational model is not without its problems. In an attempt
to free relational schemes from insertion, update and
deletion anomalies, unnecessary redundancy and the need £for
restructuring as the database grows, increased levels of
normalization were introduced., én excellent treatment of
relational database normalization theory can be found in

[Date,1981] or [Ullman,1982].

Chapter 2

THEORY

Certain problems with the relational data model such as
data redundancy and update anomalies can be overcome by the
decomposition of one or more relational schemes., The
process of decomposing a relational scheme is simply one of
replacing it with two or more sub-schemes where the set
union of the attributes present in the sub-schemes is just
the set c¢f attributes in the origiﬁal scheme, Tais
solution, however, involves a trade-off as it is frequently
necessary to recombine or "join" two or more schemes to
answer a query and, in general, as the decomposition becomes
more extensive the reliance on the join operation increases
as well, The problem that arises is that for a given
relaticnal decomposition the natural Jjoin of two relations
that represent the current values of two schemes may not
always yield &a relation containing only the information
present before the decomposition was made. If some spurious
information is generated in this process, the join is termed
"lossy" and if not, the term "lossless" is used,

Since the decision to decompose & scheme into
sub-schemes would normally be made during the design phase

of the database implementation, it is highly desirable to

know whether or not a decompositicon will lead to a "lossy"
or "lossless" Jjoin before the database is actually
implemented, The database administrator can gain this
knowledge during the design phase by submitting the current
decomposition of schemes to an implementation of Algorithm
7.2 on page 227 of ([Ullman,1982].

The intent of this report is to describe an
implementation of Algorithm 7.2 and not to he an expository
work on the theory of Jjoins therefore, most of the detail
contained in the above reference will not be reproduced
here, However, for the sake of completeness the algorithm
will be included, along with a simple example of its use,
Before the algorithm is stated it is necessary to define the
term "functional dependency". An attribute B is said to be
functionally dependent on an attribute A if, irrespective of’
time, the value of A determines the value of B, denoted by
A—>»B, The functional dependencies that hold for a
particular relational scheme can only be determined by
carefully considering the meanings of the attributes
contained in the scheme,

The statement of &Algorithm 7.2 that tests for a
lossless join follows:

INPUT: A relation scheme R=Aj...Ap, @ set of functional
dependencies F, and a decomposition d=(Ri,eeesRy)

OUTPUT: A cdecision whether d is a decomposition with a

lossless join,

METHOD:; We construct a table with n columns and k rows;
column j corresponds to attribute Aje and row i corresponds
to relation scheme Rj. In row 1 and column j put the
symbol aj if A; is in Rj. If not, put the symbol hyj there.

Repeatedly "consider" each of the dependencies X=>Y in
F, until no more changes can be made to the table, Each
time we "consider" X->¥, we look for rows that agree in all
the columns for the attributes of X, If we find two such
rows, equate the sywmbols of those rows for the attributes of
Y. When we equate two symbols, if one of them is aj, make
the other be aj. If they are by and bpy, make them both
bij or byj, arbitrarily.

If after modifying the rows of the table above, we
discover that some row has become aj...a,, then the join 1is
lossless. If not, the join is lossy (not lossless).

EXAMPLE: Consider the dJdecomposition R1(AB), R2(AD),
R3(AE), R4(BE) and R5(CDE) along with the functicnal
dependencies A—C, Bf9CD, C—=>D, DE—>C and CE=->A, Table
2-1(a) shows the original table while Table 2-1(b) reveals
the effect of the functional dependencies A=->»C and B—>CD,
Table 2~1(c) shows the effect of C—-D and, £finally, Table
2-1(d) reveals the effect of DE—C and CE~>A, Note that the
fourth row of Table 2-1(d) has become a;..a5. Therefore,
this decomposition has the 1lossless Jjoin property with

respect to the given set of functional dependencies.

A B C D E
a; @z bysz by bys
a; bpy byy a; Dbys
a; b3y b3y b3y as
by1 az by3 byy as
bs; bsy a3 a; as

(a}

B B C D E
ay a; Dby3 a; bys
a; byy; byy a, byg
a; b3y b3 oa, ag
b,y az bz a; as
bs; bs, a; a, as

(c)

Table 2-1

A B C D E
a; ay byg by, by
a; byy byy a, byg
a; b3y by3 by, aj
Byy @z b3z byy as
bs; bsy az a, as

(b)

A B € D E
ay a; byy3 a; bys
ay bpy byg a;, by
ay by ay &, ag
41 <@g &g =&y Ay
a; bsy a3 a; ag

(d)

Chapter 3

DOCUMENTATION

GENERAL: This documentation ‘refers to an
implementation of Algorithm 7.2 on page 227 of Ullman, J. D.
"Principles of Database Systems", Computer Science Press,
Rockville, MD (2nd edition, 1982).

Given a relational decomposition &and the accompanying
set of functional dependencies this algorithm allows one to
determine whether or not the particular decomposition has -
the "lossless join" property. Since the number of
attributes, relations and functional dependencies will vary
from decomposition to decomposition this implementation uses
dynamic allocation of memory for those data structures that
hold information concerning the decomposition or are
required for the execution of the algorithm.

INTERNAL DOCUMENTATION: Algorithm 7.2 was implemented
in Pascal for the PAS32 Compiler on the Interdata 8/32
computer under UNIX (version 7) at the Department of
Computer Science, Ransas State University. The code for
this implementation consists of & "pfefix“ followed by the
Pascal program, The prefix contains CONMNST, TYPE, PROCEDURE
and FUNCTION definitions that provide an interface between

the compiler and the Kkernal of the operating system. The

number and order of the definiticens in the prefix are an
important feature of the interface and care must be
exercised during program maintenance to insure that the
prefix is not changed. The Pascal program consists of the
six Kkey procedures (readschema, readfds, buildtable,
buildsearchlist, ullman, verdict), numerous auxiliary
functions and procedures along with the usual complement of
global definitions and declarations.

The internal documentation will begin with a discussion
of the special input/output procedures required for the
PAS32 compiler followed by a sort of "top down" discussion
of the remaining subprograms in the general order in which
they occur in the execution of the program, The data
structures, global CONST and TYPE definitions and VAR
declarations will also be discussed as they are encountered
in the subprogram discussions,

Since PAS32 does not have the standard procedures read,
write, readln and writeln implemented in the usual fashion
it is necessary to include speciai procedures for other than
character input/output. Thus, the procedures acceptint,
displayint, displaystr, readint, writeint and writestr are
included for integer input and integer or string output.
The procedure acceptint accepts character input from a
terminal one character (digit) at a time and generates
usable integer £fields in the range {0..32767]. The

procedure readint is identical to acceptint except that it

reads character data from an external file instead of a
terminal. The procedure displayint displays non-negative
integer output to a terminal one character (digit) at a time
and one integer field of up to eleven digits per line of
output. The procedure writeint is identical to displayint
except that it writes to an external file instead of a
terminal. The procedure displaystr displays character
strings as output to a terminal, one character at a time,
until an end of 1line mark (:10:) is found. The procedure
writestr is identical to displaystr except that it writes to
an external file instead of a terminal. While this
implementation only uses two of these procedures (writeint
and writestr) the other four are included in the source code
so that they will be readily available if needed during
future program maintenance,

While this implementation is applicable to any
relational decomposition, with its associated functional
dependencies, it was designed so as to be compatible with
the existing PAS32 implementation of Bernstein's Algorithm
{Bernstein,1976]. Since this implementation of Bernstein's
Algorithm accepts a set of functional dependencies as input
and generates a third normal form schema as output it was
imperative that the implementation of Algorithm 7.2 be able
to read from two distinct input files, one containing the
functional dependencies and the other containing the schema.

Also, since PAS32 does not allow the simple designation of

10

an input file by naming it as the first argument in a read
list the problem of input file designation is handled with
the two procedures readfromfilel and readfromfile2. These
procedures are identical except for the numeric file
designation and could have been combined by passing the file
number to a single procedure as a parameter. However, since
these procedures are guite short it was decided to sacrifice
programming style for efficiency and use a separate
procedure to read from each file.

. The procedure readfromfilel manipulates the global
variables bcfilel, ccfilel and buffilel. These variables
represent the block count, character count and input buffer
for reading character data from filel, This procedure
simply moves a 512 byte block £from f£ilel into buffilel and
increments bcfilel whenever ccfilel reaches 513, If ccfilel
is less than 513 a call to readfromfilel simply returns the
character with index ccfilel in buffilel and increments
ccfilel, The process is started by setting bcfilel to 1 and
ccfilel to 513 initially in the main program. The procedure
readfromfile2 behaves in similar fashion and needs no
further comment. It is now possible to discuss the six key
procedures contained in this implementation,

The procedure readschema 1is encountered first and as
the name suggests it reads the relational schema from an
external file and builds a data structure to hold the

information obtained. This procedure is passed the global

11

variables headattrlist, relcount, and attrcount.
Headattrlist is a pointer to the data structure built by
readschema, Relcount and attrcount contain the count of
relations and attributes in the schema, respectively.
Readschema reads from the schema file a character at a time
until an alpha character is read. It then calls procedure
readattrfilel which continues to read characters from the
schema file until the attribute is read and returns the
attribute to readschema. Procedure 1listattr is now called
and is passed the attribute just read along with the
attribute count, relation count and a pointer to the data
structure being created., If the attribute is new then it is
assigned an integer code (the current value of attrct) and
an attrcell is 1linked to the data structure along with a
reicell showing the number of the relation containing this
attribute. If a search reveals that the attribute is not
new then only a relcell showing the relation number is
linked to the data structure.

The procedure testwriteattr is ar diagnostic output
procedure used to assist in debugging and testing the
procedure readschema. This procedure is passed the global
variables headattrlist, relcount and attrcount. It writes
the values of relcount and attrcount after which it
navigates the data structure pointed to by headattrlist and
writes each attribute stored along with its code and the

numbers of the relations in which it can be found.

12

The procedure readfds reads the functional dependencies
from an external file and builds a data structure to hold
the information obtained, This procedure 1is passed the
global variables headfdlist and headattrlist, where
headfdlist is &a pointer to the data structure built by
readfds. Readfds reads from the functional dependency file
a character at a time until an alpha character is read. Ik
then calls procedure readattrfile2 which continues to read
characters from the functional dependency £file until the
attribute is read and returns the attribute to readfds, If
the attribute is not the endfdlist identifier (END.) and if
not reading from a new functional dependency then the
attribute code is obtained from the attribute list. This
code and whether left or right side of dependency is placed
in an fdattrcell and linked by procedure listattrcode to the
data structure, If reading from a new functional dependency
a new fdheadercell is linked before the fdattrcell.

The procedure testwritefds is a diagnostic output
procedure used to assist in debugging and testing the
procedure readfds, This procedure is passed the glocbal
variable headfdlist and it navigates the data structure
pointed to by headfdlist and writes the attribute codes a
functional dependency at a time. It also reveals whether a
particular attribute is on the left hand or right hand side
of the functicnal dependency in which it is located.

The procedure buildtable navigates the data structure

13

pointed to by the headattrlist and builds the table to be
‘manipulated during the execution of Algorithm 7.2. This
procedure is passed the glebal wvariables headtable,
attrcount, relcount and headattrlist, where headtable, a
result parameter, points to the <c¢ell in the first row and
column of the table. The table has relcount rows and
attrcount columns. Each cell of the table contains the row
and column designation of its 1locaticon, row and column
pointer fields and an integer tag field, The tag field is
set to zero 1if the attribute c¢ode (column designator)
represents an attribute contained in the particular relation
{row designator). Otherwise, the tag field is set to the
row designator in preparation for the invocation of the
algorithm,

The procedure testwritetablie is a diagnostic output
procedure used to assist in debugging and testing the
preocedure buildtable. This procedure 1is passed the global
variable headtable and it navigates the table a row at a
time and writes the values stored in the information fields
of each cell, A description of each field written is also
furnished.

The procedure buildsearchlist builds and initializes
the data structure to be used to hold, and perhaps modify,
the tag fields from the table during the execution of the
algorithm. This procedure is Ipassed the global variables

headsearchlist and relcount, where the former is simply a

14

pointer to the data structure to be built by this procedure,
The tag fields are arbitrarily initialized to the
consecutive integer values from 1 to relcount which means
that there is a cell in this structure for each row of the
table., The two boolean fields in each cell are set to true,
This initialization was done only to facilitate the testing
of this procedure,

The procedure testwritesearchlist is a diagnostic
output procedure used to assist in debugging and testing the
procedure searchlist., This procedure 1is passed the global
variable headsearchlist and it navigates the data structure
pecinted to by headsearchlist and writes the values stored in
the tag, first and 1linked £fields. & description of each
field written is also furnished.

The procedure ullman is the heart of this
implementation in that it considers each functional
dependency in order and updates the table as reguired by
Algorithm 7.2. This procedure is passed the global
variables headtable, headfdlist, headseardhlist and
tablechanged. "As the name implies, tablechanged is a
boolean variable whose value will be true if during any
invocation of procedure ullman a change is made to one or
more taq fields of the table, Ullman navigates the entire
data structure pointed to by headfdlist, functional
dependency by functicnal dependency, a cell at a time. If a

new functional dependency 1is being considered, the data

15

structure searchlist is initialized with the boolean fields
first and linked set to false and the pointer field nexttag
set to nil. When a new cell of the data structure fdlist is
visited the attribute code and whether left hand or right
hand side of the dependency are determined. The tag fields
of that column of the table corresponding to the current
attribute code are now loaded into the tag fields of the
structure searchlist by the 1local procedure ioadtags. 1f
the attribute code represents the £first attribute on the
left hand side of a functional dependency, then the nexttag
pointer fields of the structure searchlist (for cells with
equal tag £fields) are 1linked by the 1local procedure
linktags. If not the first attribute but still on the left
hand side of a functional dependency, the nexttag pointer
fields are relinked (current 1links may be broken) by the
local procedure relinktags, if all tag fields within a
previous linkage of nexttag pointer £fields are not equal.
It is important to note that if an attribute is on the left
hand side of a functional dependency, only the nexttag
pointer fields in the structure searchlist are manipulated
and not the tag fields, If, on the other hand, the
attribute code represents an attribute on the right hand
side of a functional dependency, then the tag fields are
again loaded from the table by the local procedure loadtags.
At this point all tag fields within a given linked list of

nexttag pointer fields are equated to the value of the

16

smallest tag in the list. 1In addition, all tags external to
this linked list that had matching wvalues with tags within
the list are also set to this minimum value. After all tag
field modifications have been made the modified tag fields
are then returned to the column of the table corresponding
to the current attribute code by the 1leocal procedure
updatetable. If any change is made to a tag field of the
structure searchlist, and thus ultimately to the table, a
value of true is returned through the parameter list.to the
global variable tablechanged, If the wvalue returned is
false then the algorithm tezminétes.

The procedure verdict determines whether the given
schema has the "lossless join" property. This procedure is
passed the global wvariable tablehead and it navigates the
table a row at a time. If any row has all tag fields equal
to zero then the schema has the "lossless join" property and
this fact is reported by writing an appropriate message to
output.

The procedure writefinaltable is a diagnostic output
procedure used to show the £final condition of the table
after the algorithm has terminated., This program is passed
the global variables headtable and headattrlist. The tag
fields of the table are written a column at a time until
completed., However, the attribute corresponding to each
column of the table is obtained from the structure attrlist

and is written before the column is processed. Sample data

17

structures using the example at the end of Chapter 2 are
contained in Appendix A.

EXTERNAL DOCUMENTATION: This segment of the
documentation is devoted to the user perspective of the
implementation of Algorithm 7.2. As such, it deals with the
important issues of input file format, restrictions on
identifiers, error messages and execution of the algorithm
with its several options, It should be noted that this
documentation presupposes user familiarity with the
Interdata 8/32 computer wunder UNIX (version 7) in the
Department of Computer Science at Kansas State University.

The source code and cbiject medul es for this
implementation are contained in directory
/usr/lib/projects/dbase and are protected against
unauthorized modification. The identifier "ullman" is used
to access this implementation in its various forms and on
keying in "ullman" followed by & carriage return the system

responds with:

usage: ullman [-[{afvt] [-b fdfile]] schemafile fdfile

This response reflects the five possible options available
for invoking the algorithm,

The simplest option is invoked by keying in "ullman -v
schemafile fdfile" followed by a carriage return, where

schemafile and fdfile are input files containing the schema

18

for a relational database and its associated functional
dependencies, respectively. The precise structure of these
files will be specified later. This option executes only
the output procedure verdict from the source program, after
the algorithm terminates, and directs the output to the user
terminal unless it is specifically redirected to an output
file or device. This option will generate a row of output
for each relation in the schemafile where a row of output
consists of the string ¥*¥*kkkddebkstddrierrd* or the string
kkkkk) ossless***kkkx, Tf the latter string appears one or
more times in the output then the given schema has the
lossless join property.

The next option 1is invoked by keying in "ullman -t
schemafile fdfile”™ followed by a carriage return. This
option is the same as "ullman =-v" above except that the
final table generated by' the algorithm is also written to
output by the output procedure writefinaltable as described
in the internal documentation.

The next option 1is invoked by keying in "ullman -£
schemafile fdfile"™ followed by a carriage return. This
option is the same as "“ullman -t“‘above except that the
information fields of the data structure containing the
functional dependencies are also written to output by the
output procedure testwritefds as described in the internal
documentation,

The last option wusing two input files is invoked by

19

keying in "ullman -a schemafile fdfile"™ <followed by a
carriage return, This option is the same as "ullman -f"
above except that the information fields of the data
structure containing the schema are also written to ocutput
by the output procedure testwriteattr as described in the
internal documentation. In addition, the output procedure
testwritetable is invoked after procedure buildtable and
again after each pass of the algorithm.

The final option reguires only one input file and is
invoked by Kkeying in "ullman -b fdfile" <£followed by a
carriage return, Each of the following tasks described is
accompl ished automatically and no action is reqguired on the
part of the user, This option differs significantly from the
previous ones in that the fdfile is first submitted as input
to "bern5", the Kansas State University implementation of
Bernstein's Algorithm, The third normal form schema is
extracted from the output £from "™pern5" and is placed in a
newly created file called "schemafile® that can now be found
in the current directory. The end of medium character
(control-Y) has been affixed to the end of schemafile as
required by the source program for proper input control, At
this point both the schemafile and fdfile are submitted to
"ullman -v" with the same effect as already described above,
except that the schemafile is written to output before the
verdict is announced. If one wants to use "bern5" along

with an option cother than "ullman -v" it is a simple matter

20

to invoke "ullman -b" and then to invoke "ullman®" with any
of the other three options using as input the original
fdfile and the newly generated schemafile now located in the
current directory.

The formats of the schemafile and fdfile were dictated
by the existing implementation "bern5" since one option of
"ullman® uses both the input ¢to and partial ocutput from
"bern5" as its two input sources. An attribute name in
either file may be at most 28 characters in length and must
begin with a letter (upper or lower case) followed by zero
or more letters, digits, %, _, or # (except END). If option
"ullman -b" is used then the attributes may not contain
lower case letters or special characters as ®bern5™ does not
recognize them.,

The structure of the £fdfile is a rather naturel
representation of a set of functional dependencies and is

probably best described by the following example:

A= C a > C ;

B = CE -~ B>C, E;

C—=1D C>D ;

DE = C D, E>C;

CE = A Ce¢ E >A ;
END. "Y

Example 3-1

21

In this example the left hand column represents a set of six
functional dependencies with single character attributes "A"
through "E" as they might appear in the database literature,
The right hand column reveals the «corresponding £fdfile
format for this set of dependencies, Since the semicolon is
used as a separator, imbedded blanks are ignored and more
than one dependency may be placed on each line if desired.
Regardless of which option of "ullman" is wused it is
essential that the string "END" in the last line of the file
be upper case. |

Although the structure of the schemafile is guite
ﬁnlike the usual representation of a relational schema it is

probably still best described by the following example:

R1(A,C, E, D) (DE) (CE) >A
R2 (C,D) (C)>pD
R3(a,C) (a) >C
R4 (B,C, E) (B) >CE
Y

Example 3-2

In this example the right hand column reveals the structure
of the schemafile generated by submitting the fdfile of
Example 3~1 to "ullman -b". As was noted earlier, this file

is only a part of the output from "bern5" and represents a

22

third normal form schema for the relational database with
the set of functional dependencies as shown in Example 3-1.
Each row of this particular file represents a relation in
the schema that contains each of the attributes shown in
that row. The attributes in parentheses represent candidate
keys for that relation whereas, non-prime attributes appear
to the right of the greater-than sign. The left hand column
of this example shows a set of relations as they might
appear in the database 1literature. Since "ullman" |is
applicable to other than third normal form schema it is not
necessary to identify the candidate keys of a relation.
Hence, the schemafile for the relational schema of Ex#mple

3=-2 could be simply constructed as follows:

(A CDE) >
(C D) >

(a C) >

(B C E) >

"y
Example 3=-3

Obviously, this would only be done if an option other than
"ullman ~b" were being used, as "ullman ~b" automatically
creates the schemafile for the user. If the schemafile is

being created by the user, then it is crucial that at least

23

one pair of parentheses appear to the 1left of the
greater-than sign in each relation, as the first
left-parenthesis encountered after a greater-than sign has
been read signals the beginning of a new relation., Also,
recall that schemafile must terminate with a (control-Y).
The source program for this implementation of Algorithm
7.2 emits only five error messages. There are two in the
procedure readschema and three in the procedure readfds. If
the first character read in the procedures readschema or
readfds is an end of medium character (control-Y), then the
program responds with "**error-schema file empty**" or
"x*orror-fd file empty**", respectively. If a character is
read from the schemafile or £fdfile that is not iﬁ £he
respective CASE constant lists of procedures readschema or
readfds, then a response of "**error-invalid character in
schema file**" or "**error-invalid character in fd file**"
is received. It should bDbe noted that the failure to
terminate either input file with (control-Y) will result in
an infinite loop with one of the two previous error messages
repeatedly written to output. The function attrcode is
local to procedure readfds and will respond with the error
message “"**error—-attribute not found**" if it cannot find
the attribute, passed to it as a parameter, in the current
list of attributes. This message will be received only if
the fdfile contains an attribute not encountered in the

schemafile. A simple misspelling of an attribute name to

24

include an upper-lower case mismatch is the likely cause.
It is important to note that each option of "ullman® is
independent of the others and, therefore, multiple options

can not be used.,

25

Chapter 4

CONCLUSIONS

This implementation should be a wvaluable additicn to
the growing family of departmental database utility programs
as its five options allow for a wide variety of uses., For
example, if one is designing a relational database and has
only a set of functional dependencies, then option "ullman
-b" will generate a set of third normal form schemes as well
as determine whether or not the decomposition has the
lossless join property. If a decomposition of schemes has
already been made, then option "ullman =-v" will simply check
for lossless joins. If, on the other hand, one is interested
in following the execution of the algorithm, then option
"ullman ~a" will writé the modified table to output after
each pass through the functional dependencies,

Future work in the relational database area might
include an implementation of an algorithm for testing the
preservation of functional dependencies with respect to a
given relational decomposition. This could be followed by
an implementation of a lossless join algorithm for

multivalued dependencies,

26

Appendix A

DATA STRUCTURES

- Cell Descriptions

attrcell (attrlist)

attrname

attrcode

nextattr

inrel

relcell (attrlist)

relnumber

nextrelnum

fdheadercell (fdlist)

nextfd

nextfdattr

fdattrcell (fdlist)

attrcode

lhs

nextfdattr

tablecell (table)

attrcode

Tow

rowptr

" colptr

tag

searchcell (searchlist)

nextcell

tag

linked

first

nexttag

27

Attribute List

headattrlist

A 1 o] o S o > o nil
B 2 0 o——> o > nil
Y
D 3 0 o > o > nil
4
E 4 o) o~ S~ O o—t nil
Y
C 5 |nil] o S nil

28

Functional Dependency List

headfdlist

o] ~en > 5 F |nil

Y

o) - 4 5 F o 3 nil
o) . - 3 F {nil

Y

P 5 -l 4 T s, > nil
v
nil = >t 4 T oy = nil

29

Initial Table

headtable

C
2
1 > 1 > 1 >~ 1 1 {nil
? o) 0 0 0 1
VL Y Y Y \
3
2 > 2 2 2 2 [nil
o} 0 0 o] 2
4 Y \ Y
3
3 ! 3 > 3 — 3 3 Inil
0 0 0 0 ? 3
r 4 r Y 4'
3
4 > 4 4 > 4 4 1nil
0 o o) o o} 4
i 4 y 4 Y
3
5 = 5 —— 5 > 5 5 fnil
nil nil nil nil nil] 0

30

Search List

headsearchlist
(o} 0 T T P
r ¢
o} 0 T E ?
r r
? 0 T F nil
[
o) 4 T T nil
4

nil 5 T T nil

31

Appendix B

SOURCE CODE

as modified for the interdata
8/32 under unix v7 at the

department of computer science
kansas state university

"per brinch hansen

information science
california institute of technology

#
L
#
@
&
utility programs for #
the solo systenm #
#
#*

18 may 1975 1 jan 1983"
Uik b A AR A A
prefix
FEEFEEFFEFE"

const nl = "(:10:)1?
; ff t(:12:)7
; er t(:13:)1
; em t(:25:)1

const pagelength = 512

type page = array (. 1 .. pagelength .) of char

L 2]

const linelength = 132

type line = array (. 1 .. linelength .) of char

-e

const idlength = 12

-

type identifier = array (. 1 .. idlength .) of char

-y

type file = 1 .. 2

type filekind = (empty , scratch , ascii , seqcode , concode)

-

; type fileattr

32

-e -e

-

-e

= record

kind : filekind

addr : integer

protected : boolean

notused : array (. 1 .. 5 .) of integer
nd

D w=e as we

type iodevice
= (typedevice , diskdevice , tapedevice , printdevice
» carddevice)

type iooperation = (input , output , move , control)
type icarg = (writeeof , rewind , upspace , backspace)

type ioresult
= (complete , intervention , transmission , failure , endfile
, endmedium , startmedium)

type ioparam
= record
operation : iooperation
; status : ioresult
; arg : iloarg
end

type taskkind = (inputtask , jobtask , outputtask)
type argtag = (niltype , booltype , inttype , idtype , ptrtype)
type pointer = @ boolean

type argtype
= record
case tag : argtag
of niltype , booltype : (bool : boolean)
inttype ¢ (int : integer)
idtype : (id : identifier)
ptrtype : (,ptr : pointer)

(]
=
D we we we

const maxarg 10

type arglist = array (. 1 .. maxarg .) of argtype
type argseq = (inp , out)
type progresult
= (terminated , overflow , pointererror , rangeerror

» Varianterror , heaplimit , stacklimit , codelimit , timelimit
s callerror)

33

-e -ae - “-a -e -e -e - “-e -w - -e -e -e -a “-e

-e

-e

procedure read (var ¢ : char)

procedure write (¢ : char)

procedure open (£ : file ; id : identifier ; var found : boolean)

procedure close (f : file)

procedure get (f : file ; P : integer ; var block : univ page)

procedure put (f : file ; p : integer ; var block : univ page)

function length (f : file) : integer
procedure mark (var top : integer)
pfocedure release (top : integer)
procedure identify (header : line)
procedure accept (var ¢ : char)
procedure display (¢ : char)

procedure readpage (var block : univ page ; var eof :

procedure writepage (block : univ page ; eof : boolean)

procedure readline (var text : univ line)
procedure writeline (text : univ line)

procedure readarg (s : argseq ; var arg : argtype)
procedure writearg (s : argseq ; arg : argtype)

procedure lookup

(id : identifier ; var attr : fileattr ; var found : boolean)

procedure iotransfer
(device : iodevice
; var param : ioparam
; var block : univ page

procedure iomove (device : iodevice ; var param : ioparam)

funection task : taskkind
procedure run

(id : identifier
; var param : arglist

34

boolean)

;s var line : integer
; var result : progresult
)

W P
end of prefix
FHFR#EF G ERFFEFFFEET

(**ii*!iii!liﬂiﬂiﬂl!‘iliiliii**ii*l!iﬂ!l*ﬁii*ll*lii!iﬂ**ii***iiilii**l**)
(i*iiiiiill*!*i!!Il***il*iHli**l*i*iiEiIii*ii**ii*liiiii*&!*lﬂii*l*i!i!ﬁ)

(%%
(&=
(#%
(%8
(e
(%
(li
(#%
(e

##)
this program implements algorithm 7.2 on page 227 of Ullman, d. i)
PRINCIPLES OF DATABASE SYSTEMS, Computer Science Press,)
Rockville,MD (2nd edition, 1982). ::3
written by: karl klose ")
')

date: may 1983 i)
! : *l)

(iliillil!l!ﬁiii!i!ll*llﬂili****i*i*!ﬁ%*i!iﬂlii!****ﬁ*****ili*ii*ii*ﬁ**i)
(IiI*iii!i*i!liill!!*!**ﬁﬂ***Iiiiiiiii******ii*liiiii*iliii**ﬂ***iliﬁ*i*)

; program p (paramline : line)

const maxattrlength = 28

type attrary = packed array [1 .. maxattrlength] of char
attrptr = @ attrcell
relptr = @ relcell
fdhptr = @ fdheadercell
fdptr = @ fdattrecell
tblptr = @ tablecell
srchptr = @ searchcell
attrecell
= record
attrname attrary
; attrcode integer
; nextattr : attrptr
; inrel : relptr
end
relcell = record relnumber : integer ; nextrelnum : relptr end
fdheadercell = record nextfd : fdhptr ; nextfdattr : fdptr end
fdattrecell
= record
attrcode : integer
; lhs : boolean
; nextfdattr : fdptr
end
tablecell
= record
attrcode : integer
; row : integer

e W ME WE WE WE WwE

s ee ss

35

-

tag : integer
rowptr : tblptr
colptr : tblpir
end
searchcell
= record
tag : integer
linked : beoolean
first : boolean
nextcell : srchptr
nexttag : srchptr
nd

s W we

D we = e we

var ccfilel : integer

WE WE We Wt W We Wi W WA WS WE W

ccfile2 : integer
befilel : integer
befile2 : integer

buffilel : page
buffile2 : page
headattrlist : attrptr
relcount : integer
attrcount : integer
headfdlist : fdhptr
headtable : tblptr

headsearchlist : sréhptr

tablechanged : boolean

(i!§*iiG*****i!liii!iil!ﬂ!iii***ii**!ii!!***iﬁi*ﬁ*****ﬂi*iiiiii*****ﬁﬂii)

(*# this procedure accepts character input from a terminal one char- i)

(* acter at a time and generates usable integer fields. %)
(FE SRR RS R R RSN R AR RSN R AR R RN R RA R AR AR R R R RN BRI R)

procedure acceptint (var int

-

H

.
’

-

const maxint = 32767
type digit = '0' .. 'gQ!

var overflow : boolean
d : integer

Be WMo we

¢ : char

begin

int :=

overflow := false
digits := []

accept (¢)

me W we wa Wy

do begin

d:=ord {(¢) = ord (

digits : sef of digit

: integer)

for ¢ := "0' to '9' do digits := digits + [¢]
while ((¢ in digits) & not overflow)

!ol)

36

3 if int > (maxint - d) div 10
then overflow := true
else int := 10 # int + d
; accept (¢)
H
end
if overflow
then begin
int := maxint
; while (¢ in digits) do accept (¢)
’
end
end (¥procedure acceptint#)

we

QA d i s i At i d st iR 22 Tt Rt ls st st s s tidsiistazilatlis)

(#* this procedure displays integer output one character at a time and #)

(* one field per line of output %)
L L T T T T T T T T P T T T T T T T

; procedure displayint (i1 : integer)

; var digit , j , int

: integer
; intstring : array [1

.« 11] of char

; begin
int := abs (i)
for } 1= 1 to 11 do intstring [j] := ' !
J =1
repeat digit := int mod 10
intstring [j] := chr (digit + 48)
int := int div 10 ’
Jii=J-1

until int = 0
s if i <0

then intstring [j] := "=
; for j := 1 to 11 do display (intstring [j])
; display (nl)
end (¥procedure displayint#)

-e we wa

we we we

(Ii!!*!ii*!*llli**!i!!!liiliil*iiliill!!*il**ii***********iii**ii***li*ﬁ)

(* this procedure displays character strings as output, one character #)

(* at a time until an end of line mark (:10:) is found. ®)
(R R R RO R RN AR NSRRI RR LR N D)

3 procedure displaystr (text : line)
; var 1 : integer
3 begin
i:=1

; while (text [i] <> '(:10:)1)
do begin

E i}

display (text [i])
s 1 =1 +1
end
; display (nl)
end (#procedure displaystr#)

(SRR RN R RN R TR RN RN RN RN R RN NI R PR R AR RN R RERRE)

(#* this procedure reads character input one character at a time and ¥)

(% generates useable integer fields. : *)
(ER R R R RN R R RN RPN R PR R R R R RGN BN

; procedure readint (var int : integer)
; const maxint = 32767
; type digit = '0' .. 'g!

; var overflow : boolean
; d : integer '
; digits : set of digit
; ¢ : char

begin
int :=
overflow := false
digits := []
for ¢ := '0' to '9' do digits := digits + [¢]
read (¢)
while ((¢ in digits) & not overflow)
do begin ;
d:=ord (¢) -—ord (10!)
7 1f int > (maxint - d) div 10
then overflow := true
else int := 10 # int + d
; read (¢)
H
end
;3 if overflow
then begin
int := maxint
; while (¢ in digits) do read (¢)
?
end
end (¥%procedure readint#)

s

MY W We we W

(i*IilIiill!*iilil*!i*l!iﬂi!*iiIili!%l*li!*lﬂ*i***ii!!iiliiﬁ!ﬂi****i**i*)

(* this procedure writes integer output one character at a time and #)

(* one field per line of output. %)
G e T e TP T 22 T R e

3 Procedure writeint (i : integer)

38

var digit , jJ , int : integer
; intstring : array [1 .. 11] of char

{ begin

int := abs {(1)

for j := 1 to 11 do intstring [j] := ' ¢
0

repeat digit := int mod 10

intstring [j] := chr (digit + 48)

int := int div 10

we we

Ji=J-1 ;
until int = 0 =
s if i <0

then intstring [j] := '-?
;) for J := 1 to 11 do write (intstring [j])
; write (nl1)
end (¥procedure writeint#)

(ARFRRFAERHRI RN RN RV RE RN A H RSB IR LA SR B R B AR R PR RN DA RA LR R R IRARARRRRARE)

(# this procedure writes character strings as output, one character at #)

(# a time until an end of line mark (:10:) is found. #)
L T T T T I P T T P T e T e T L T S T T

; procedure writestr { text : line)

j var 1 : integer

; begin
iz::x=1
; while (text [1] <> '(:10:)')
do begin
write (text [i])
31 =1+ 1
end

3 write (nl)
end (¥procedure writestr#¥)

QAR A L T L e P e e L L I a e L et e 1))
(*# this procedure manipulates the global variables befilel, ccfilet #)

(* and buffilel., it simply moves a 512 byte block from filel into #)
(* the buffer buffileil where it is read a character at a time until #)
(* exhausted, at which time the next block is moved to buffilel. #)
(* befilet! is the block count and is set to 1 initially, whereas #)
(# ccefile! is the character count and is set to 513 initially. #)

(R E RN RN AR R R RN RN R R AR RO RN R RPN R R R R R RN RN ERER)
; procedure readfromfilel (var ¢ : char)
s begin
if eefilel » 512
then begin
cefilel := 1

39

get (1 , befilel , buffilel)
befilel := suce (befilel)

D e ws e

nd
; ¢ := buffilel [cefilef]

; cefilel := succ (cefilel)

: ' .

end (#%procedure readfromfilel#)
(uiiiniiiiialtuiiai!aanaiuuiiﬁaiiiurnin*aii:iiiiiiﬂ*iiaiu*iaaiiﬁa*iiiaav)
(* this procedure manipulates the global variables befile2, cefile2 &)

(# and buffile2. it simply moves a 512 byte block from file2 into #)
(# the buffer buffile2 where it is read a character at a time until #)
(* exhausted, at which time the next block is moved to buffileZ. #)
(* befile2 is the block count and is set to 1 initially, whereas #)
(% cefile2 is the character count and is set to 513 initially. &)

(il!Iilliiiiiii!iiiiiil!iﬁ!!!i!!!i!!**i!!!**il!ii*iiii*!l!*illi!!!*ii!*!)

: procedure readfromfile2 (var ¢ : char)

; begin
i1f cefile2 > 512
then begin
cefile2 :=
get (2 , befilez , buffile2)
befile2 := suce (befile?)

H
H
H
end
3 ¢ 1= buffile2 { cefilez]
; cefile2 := suce (ccfile2)
]
end (#*procedure readfromfile2#)

(I*Ili!i!iIiliﬂl!i*iiliilii*i*ii!*i**i*iﬁliﬁ*ﬁi*ii****ﬁ*ii**i*iﬂ!ii*!iil)

(* once an alpha character is found by the calling routine this pro- #¥)
(# cedure continues reading characters from filel and forming an at- #)

(* tribute name until a non-alpha character is read. the attribute #)
(* name and the non-alpha character are then returned to the calling %)
(# routine. #)

(**’*i*!iiiﬁi****ﬂiii!i!ﬂil**iii*ii*ﬁﬂli*ii*I*iiﬂ!ii*i***iii!*iii****&ii)

; procedure readattrfilel (var attr : attrary ; var ch : char)

;5 var index : 1 .. maxattrlength
j count : 1 .., maxattrlength
s+ Eoodcharset : set of char

begin
goodcharset
:=[lal .e ‘Z' " !AI e lZ! 3 |0| % 191 p l#i 4 L | . !%l]

; for index := 1 to maxattrlength do attr [index] '

; count := 1

10

; while (ch in goodcharset)
do begin
attr [ecount] := ch
;s count := count + 1
; readfromfilel (ch)
end
end (*procedure readattrfilel#)

(!ﬁ!*!Il!i!!i*i*!!i**iill!ilii%l!lliiiil!li*!ii*!**i!ii*i***iﬁ*li*i*ﬂi*l)

(* once a alpha character is found by the calling routine this pro- #)
(# cedure continues reading characters from file2 and forming an at- #)
(®* tribute name until a non-alpha character is read. the attribute #)
(* name and the non-alpha character are then returned to the calling #) .
(* routine, #)

(RERER RSN N R R RN R RN RS R RN AR RNR BN RB A RN AR TR RN P RN LR NIRRT

; procedure readattrfile2 (var attr : attrary ; var ch : char)

; var index : 1 .. maxattrlength
§ count : 1 ., maxattrlength
; goodcharset : set of char

begin
goodcharset
::[ta| .o lzl . IAI . IZI " IO! . lgl ’ I#I . r ’ I’%l]
4

for index := 1 to maxattrlength do attr [index"] := !
count := 1
while (ch in goodcharset)
do begin
attr [count] := c¢ch
; count := count + 1
; readfromfile2 (ch)
end
end (¥procedure readattrfile2#)

ws we ws

(l!ll**!l*i*!**li!iiiiii******i*ﬂ***li**liiliiﬂliiiii!ii*ii*iiiii*i**i*i)

(* this procedure receives an attribute just read, a current count of #)
(# relations, a current count of attributes and the head-pointer of #)
(* the attribute list and either finds the attribute in the list and 2)
(®* updates its relation number or enters the new attribute in the list #)
(* along with its relation number. the attribute count and head- #)

(* pointer of the list are returned to the calling routine. #)
(AR RN R RN RN R RN RN R RN E AR AR B R RN

; Procedure listattr
(attr : attrary
relet : integer
var attrcet : integer
var headptr : attrptr

Tt WY e e

;7 var aptr : attrptr

41

;j rptr : relptr

; reltail : relptr

s location : attrptr
; found : boolean

(RS RN RN RSN NN RN RN RN SRR BU R)
(# this procedure is local to procedure listattr and simply gener- #)

(* ates, links and defines a new attribute record when the local ®)
(®* procedure searchattrlist does not find a given attribute. it #)
(* also increments the attribute count and returns this value to #)
(* the calling routine. *)

(lili*li!*!ﬂ*i*lliilll!*lliil!Ii!!%il*lii*iﬁl*!**ii!ii*!*i*!!i!ﬁ*ii*ii)

; procedure listnewattr
(attr : attrary
aptr : attrptr
var attret : integer
relect : integer

T e W we

var rptr : relptr
; index : integer
; atemp : attrptr

begin

attret := attret + 1

atemp := aptr

for index := 1 to maxattrlength
do atemp @ . attrname [index] := attr [index]
atemp @ , attreode attrect
atemp 8 , nextattr nil

new (rptr)

atemp € . inrel := rptr

rptr @ . relnumber := relct
rptr 8 . nextrelnum := nil
nd (¥procedure listnewattr#)

-e
we W
L] (1]

(D e we ws we we wa

(*l!llllIiiiiii*iiiiil*!ﬂ*i*!*i*ii****iﬁ*i*iiﬂﬂi*ﬂ**ﬁ***!*ﬂ*ii**i****i)

(® this procedure is local to procedure listattr and simply searches #)
(*# the non-empty attribute list and returns the location of the at- #)
(# tribute, if found, or the tail of the attribute list if the at- #)

(* tribute is not found. *)
G L T T T e T T T Ty T PP T T PP TR T T L))

; procedure searchattrlist
(head : attrptr
attr : attrary
var location : attrptr
var found : boolean

e M e WA

;§ var temp : attrptr

42

; begin
temp := head
;s while ((temp @ . attrname <> attr)
& (temp @ . nextattr <> nil)
)

do temp := temp @ . nextattr
; if temp @ ., attrname = attr
then begin found := true ; location := temp end
else begin found := false ; location := temp end
end (#procedure searchattrlist#)

(lil'iliiiillilli’l!!!l!i!i**&*i!i!ii**l‘iﬁi’!lillil!iiﬁiliii!i**i*I**ii!)

(% this function is local to procedure listattr and is invoked only #¥)
(* when the attribute just read is found in the attribute list. in #)
(% this case it simply scans the relation incidence list for this #)
(* attribute and returns the location of the tail of this list to #)

(* .the calling routine.)
(F RN R RN RSN RN R RPN RN RS R R RN RN B RER)

; function rtail (location : attrptr) : relptr
; var temp : reiptr

; begin
temp := location @ . inrel
; while (temp € . nextrelnum <> nil)
do temp := temp @ , nextrelnum
;s rtail := temp
end (#function rtail#)

; begin (#*procedure listattr#)
if headptr = nil
then begin
new { aptr)
; headptr := aptr
; listnewattr (attr , aptr , attret , relet)
end
else begin
searchattrlist (headptr , attr , location , found)
; if not found
then begin
new (aptr)
; location @ . nextattr := aptr
; listnewattr (attr , aptr , attret , relet)
end
else begin
new (rptr)
reltail := rtail { location)
reltail € . nextrelnum := rptr
rptr @ . relnumber := relct
rptr @ . nextrelmum ;= nil

we ws we we

43

end '

end

end (*procedure listattr#)

(FRRRRERR AR NI R R AR IS TR IR RN AR E R SRR RN R RSP ER R R F RN R SRR R R RN R RN RE)
(* this procedure reads the relational schema from a file and creates
(* a linked structure of attributes found and relations in which they
(# are found. the pointer to the head of this structure, the number

(* of relations found, and the number of attributes found are returned

(* to the calling routine.
QAT I e e e R I e e e T e e T A R T IR T R T 1)

3 procedure readschema

-

(var headptr : attrptr ; var relect , attrect : integer)

var attr : attrary
; arrow : boolean
; ch : char

begin
arrow := true
relet := 0
attret :=
headptr := nil
readfromfilel (ch)
if ch = en
then writestr ('##error-schema file empty##(:10:)}"')
else while (c¢h <> em)

do case ch

of "A' ., tZ2' , Yar ,, tgz!

: begin

readattrfilel (attr , ch)
; listattr (attr , relet , attret , headptr)
end
nl, ' "', ') readfromfilel (ch)
(!
: begin

if arrow

then begin

arrow := false

; relet := relct + 1

; readfromfilel (ch)
' end

else readfromfilei (ch)
end
'>' : begin arrow := true ; readfromfilel (ch) end
else
: begin

write (ch)
; writestr

e we WE Wwe wa

wd we

~r wa

('##error-invalid character in schema file®#¥(;10:)!

)
by

)
|
*)
*)
%)

} readfromfilel (ch)
end
end
end (¥procedure readschema#)

('Illill!ll!li*ﬂll!lillilliﬁ!*!i!l!illi!i!ilil!iiIii*iil*ili!ﬁﬁiiﬁiliiii)

(* this procedure writes the salient information stored in the data)

(* structure constructed by the procedure readschema. ¥)
(SRR R SR E R RN RN R R RN RR RS R TRRERR AR R AR RN R R SRR RN AR ENY)

3 procedure testwrifeattr (head : attrptr ; rect , act : integer)

; var atemp : attrptr
; rtemp : relptr
i : integer

3 begin
writestr (‘'##¥¥enter procedure testwriteattr®®##(:10:)')
writestr ('the rel et is(:10:)')
writeint (ret)
writestr ('the attr ct is(:10:)')

writeint (act)
atemp := head
repeat for i := 1 to maxattrlength
do write (atemp @ . attrname [i])
write (nl)
writestr (tattr code is(:10:)')
writeint (atemp € . attrecode)
writestr ('attr is in following rel(:10:)')
rtemp := atemp € . inrel
repeat writeint (rtemp € . relnumber)
; rtemp := rtemp @ . nextrelrunm
until (rtemp = nil)
; atemp := atemp @ . nextattr
until (atemp = nil)
;5 writestr ('###¥#leave procedure testwriteattr*=##(:10:)')
end (*procedure testwriteattr#)

WE WA WA WM e W

we we we ws we wa

(i!llii!!i!l*l**iiiilllii!****ii**lii!*iliil!ﬂ*iiiiii**ﬂ#**#****ﬁ**i!*i*)

(® this procedure reads the functional dependencies from a file and #)
(* creates a linked structure that contains each functional depend- #)
(#* ency. ®)

(i*i*!*!**ﬂ*l!!*!i*!!*!iilil!iil!*ill*i*i!l!!i*!!*!!*’E!!*!!!***iiiiiﬁi*)

3 procedure readfds '
(var fdheadptr : fdhptr ; attrheadptr : attrptr)

; var attr : attrary
3 ¢h : char
; lhs : boolean
; newfdlevel : boolean
; endfdlist : attrary

45

we we

index ; integer
acode : integer
; tempptr : fdhptr

(l*llilf‘l!l!llllllll*i!l!!iﬂlli!lil!liiiIililillllli*lliii!iillii!lli)

(* this procedure is local to procedure readfds and simply creates #)
(# and links a new header cell to the structure before a new level #)

(*®* of functional dependencies is read and linked. *)
(AR i e e T e e e T St T e T ie 1))

; procedure linknewhdrcell (var fdheadptr , tempptr : fdhptr)
; var hdrptr : fdhptr

; begin
if fdheadptr = nil
then begin
new (hdrptr)
fdheadptr := hdrptr
tempptr := hdrptr
tempptr € . nextfd := nil
; tempptr @ . nextfdattr := nil
end
else begin
new (hdrptr)
; tempptr € . nextfd := hdrptr
; tempptr := hdrptr
; tempptr @ . nextfd := nil
; tempptr 8 . nextfdattr := nil
end
end (*procedure linknewhdrcell#)

(!!lﬂ!l******i**liiiiili*!!l*i*iii!ii*i**’ii*ii*iiiiiiI**ii*l***!l**ll)

(®* this function is local to procedure readfds and when passed an #)

(*# attribute it returns the corresponding attribute code. - #)
(BRRR RN RPN R R R RN RN R RN R RS RN R AN R IR RN

; function attrcode (attr : attrary ; ahptr : attrptr) : integer

; var tempaptr : attrptr
; index : integer

; begin
tempaptr := ahptr
; while ((tempaptr € . attrname <> attr)
& (tempaptr <> nil)
)

do tempaptr := tempaptr @ . nextattr
3 if tempaptr = nil
then begin
writestr ('##error-attribute not found#®¥(:10:)')
; for index := 1 to maxattrlength

46

do write (attr [index])
; attrcode :=
end]
else attrcode := tempaptr @ . attrcode
end (*function attrcode#)

(FHFREAERRAR AR AR AR R AR AR RS AR AREBA IR R RS FRF R AR IR NN R DI R RS R RS lil)

(* this procedure is local to procedure readfds and it creates, ®)
(*# defines and links a new cell in the functional dependency linked #)
(# structure to hold the attribute code and location of the current #)

(# attribute. #)
(SRS EEE R R E RSB NR R ENRS RN R RN RN R R RE RN NSRRI RREE)

3 procedure listattrcode
(tempptr : fdhptr ; acode : integer ; lhs : boolean)

; var cellptr : fdptr
y next : fdptr
; temp : fdhptr

; begin
if tempptr € . nextfdattr = nil
then begin

new { cellptr)
temp := tempptr
temp @ ., nextfdattr := cellptr
cellptr @ . attrcode := acode
cellptr @ . lhs := lhs
cellptr @ , nextfdattr := nil
end
else begin
next := tempptr @ . nextfdattr
while (pext @ . nextfdattr <> nil)
do next := next @ . nextfdattr
new (cellptr)
next € . nextfdattr := cellptr
cellptr @ . attrcode := acode
cellptr @ , lhs := lhs
cellptr @ . nextfdattr := nil

end
end (¥procedure listattrcode®)

We we wa Wwe W

ws

e we we wE we

begin (#procedure readfds#)
ihs := true

newfdlevel := true
fdheadptr := nil
endfdlist [1] := 'E!
endfdlist [2] := 'N'
endfdlist [3] := 'D!

for index := 4 to maxattrlength do endfdlist [index] := ' !
readfromfile2 (ch)

if ch = em

WA Ws WE WE WE we W W

47

then writestr ('##error-fd file empty##(:10:)")
else while (ch <> em)
do case ch
of At .. 'Z' 4, tg@' ., 2!
: begin
readattrfile2 (attr , ch)
; if attr <> endfdlist
then begin
if newfdlevel
then begin
linknewhdrcell (fdheadptr , tempptr)
; newfdlevel := false
end
; acode := attrcode (attr , attrheadptr)
3 listattrcode (tempptr , acode , lhs)
end
end
'>' : begin lhs := false ; readfromfile2 (ch) end

nl , *', 't ', ': readfromfile?z (ch)

: begin
lhs := true
; newfdlevel := true
; readfromfile?2 (ch)
end
; else
: begin
write (ch)
; writestr .
(*#¥%erpror-invalid character in fd file®##(:10:)"')
;s readfromfile? { ch)}
end
end
end (¥procedure readfds#)

we wa ws

(Iiiii!*l'ilii*ﬂ*‘l********ilii*l**i*#l*i*il!iiiiﬂil*iﬁ*!!iiili***ii*i*ii!)

(®* this procedure writes the salient information stored in the data #)

(* structure constructed by the procedure readfds. *)
(SRR RS RN RN RN E NSRS RN RN ARG R DR R SRRSO B R)

; Procedure testwritefds (head : fdhptr)

; var hdrtemp : fdhptr
; celltemp : fdptr

begin
writestr ('##%#enter procedure testwritefds®###(:10:)')
; hdrtemp := head
; repeat celltemp := hdrtemp € . nextfdattr
; repeat writeint (celltemp @€ . attrcode)
; if celltemp € . lhs
then writestr ('#is on the LHS#(:10:)')

-

48

else writestr ('#is on the RHS®(:10:)')
3 celltemp := celltemp @ . nextfdattr
until (celltemp = nil)
; hdrtemp := hdrtemp @ . nextfd
until (hdrtemp = nil)
; writestr (‘'####lecave procedure testwritefds####(:10:)"7)
end (®*procedure testwritefds#)

(R SRR RSN RN RN RN RN R RSN RN TR RN R R R R R R RN R RN)
(¥ this procedure builds and initializes the table to be manipulated #)
(* by ullmans algorithm and returns the pointer to the head of this ®)

(* structure to the calling routine. ®)
(R RN R RPN R RN R R RN RN R RN RN R SRR RN AR ERERRRNE)

; procedure buildtable

(var tblhead : tblptr
attrct , relet : integer
athead : attrptr

et AR ww

s var rowindex : integer
; rowtemp : thlptr
; nextrow : tblptr

QI e R S T I P E T T e T PR S AT T IS R 22 1 2)
(* this procedure is local to procedure buildtable and simply builds #)

(* a row of the table and returns the pointer to the head of this #)

(* row to the ealling routine. *)
QLI TR T T T P e e L E T T I T R R T TP TR P S TR T2 T 1)

; procedure buildrow
(var rowhead : tblptr ; rownumber , attret : integer)

var colindex : integer
;s tptr : tblptr
; temp : tblptr

s

begin

new (tptr)

rowhead := tptr

temp := tptr

temp € . attrcode := 1

temp € . row := rownumber
temp € . tag := rownumber
for colindex := 2 to attrct
do begin

new (tptr)

temp @ . rowptr := tptr
temp := tptr

temp € . attrcode := colindex
temp @ . row := rownumber
temp 8 . tag := rownumber

Ws We WE we wa W

we we we wa e

4g

end
; temp @ . rowptr := nil
end (#procedure buildrow#)

(i!i**‘*ii*iliiliil!lilliiliiillilllllllil*i!i*illliiﬂiiililiiliiilill)

(* this procedure is local to procedure buildtable and simply links #)

(* a newly built row to the table. ®)
(**.'.'lli‘I'.I!i"ili'i"**'*ii*ii*!l*'i"li'i'*‘il'*ﬂ****‘******"i*)

3+ brocedure linkrow
(oldrow , newrow : tblptr ; attret : integer)

var colindex : integer
; oldtemp : tblptr
; newtemp : tblptr

begin
oldtemp := oldrow
newtemp := newrow
for colindex := 1 to attret
do begin

oldtemp @ . colptr := newtemp
; oldtemp := oldtemp @ . rowptr
; newtemp := newtemp € . rowptr
end
end (¥procedure linkrowi#)

“-e we

(R R R RSN RN R R)
- {* this procedure is local to procedure buildtable and it navigates #)
(* both the table and the attribute structure and it sets the tag #)
(# field to zero for each cell of the table corresponding to the #)

(* intersection of an attribute and a relation. *)
(!ill!ii*i*illl!!illIl*Iil*!!l!ii*li!*!li*iii!i!*!liIiiiilllli!iiiilli)

; procedure settag (tblhead : tblptr ; athead : attrptr)

; var tbltemp : tblptr
; colsave : tblptr
; attemp : attrptr
; reltemp : relptr

; begin
tbltemp := tblhead
colsave := tblhead

attemp := athead
while (attemp <> nil)
do begin
reltemp := attemp € . inrel
; repeat while (reltemp € . relnumber <> tbltemp € . row)
do tbltemp := tbltemp @ . eolptr
; tbltemp € . tag := 0
; reltemp := reltemp & . nextrelnum

- we we

50

until (reltemp = nil)
attemp := attemp @ . nextattr
colsave := colsave @ . rowptr
tbltemp := colsave

end
end (#procedure settag#)

e we W

; begin (¥#procedure buildtable#)
buildrow (rowtemp , 1 , attrect)
tblhead := rowtemp
for rowindex := 2 to relct
do begin
buildrow (nextrow , rowindex , attrect)
linkrow (rowtemp , nextrow , attret)
; rowtemp := nextrow
end
;s settag (tblhead , athead)
end ('procedure buildtable#)

e ws

(Illl!i!!llﬂ***lﬂlliﬂ'!iiliiiiﬂil**ililli‘l*li*iI‘Iillilii**ﬁ**ﬂ!*iii*i*iii!)

(®# this procedure writes the salient information stored in the data #)
(* structure constructed by the procedure buildtable. the information #)

(* is written in row-wise fashion. #)
(R R R R R RN RN RIS F R RN

; procedure testwritetable (tblhead :'tblptr)

3 var tbltemp : tblptr
; rowsave : tblptr

7 begin
writestr ('##¥¥enter procedure testwritetable####(:10:)')
tbltemp := tblhead
rowsave ;= tblhead
repeat writestr ('¥#¥new row##(:10:)')
: repeat writeint (tbltemp € . attrcode)
; Wwritestr ('®is the attrcode#(:10:)')
writeint (tbltemp € . row)
writestr ('#is the row#(:10:)')
writeint (tbltemp € . tag)
writestr ('#is the tag®*(:10:)')
tbltemp := tbltemp € . rowptr
until (tbltemp = nil)
rowsave := rowsave @ . colptr
; tbltemp := rowsave
until (rowsave = nil)
; writestr ('#¥#%2leave procedure testwritetable###&(:10:)")
end {#procedure testwritetable#)

e Me we Wi We wa

-

51

(liill!iii!l!ﬂ!!il!!*ii!Iliiiil!iliiliiii!li!ili!Iii*!ilii!*!iiiil**!*il)

{# this procedure builds and initializes the search list to be used by ¥)
(% ullmans algorithm to identify and store equal tag fields, or tuples #)
(% of tag fields, from the table in preparation for a possible table #)
(* update. %)
(PSSR R R RN SRR RN RN R RN RSN BN R RN RN RN RN R RN BB R RN RN

; procedure buildsearchlist
(var srchlsthead : srchptr ; relet : integer)

var index : integer
; srchtempl : srchptr
3 srchtemp2 : srchptr

begin

new (srchtempl)

srchlsthead := srchtemp1
srchtempl € . tag :=
srchtempl! € . nexttag := nil
srchtempl @ . linked :=z false
srchtempl @ . first := false
for index := 2 to relect

do begin

new { srchtemp2)

srchtemp! @ . nextcell := srchtemp?

e We We wa we we

]

; srchtemp2 @ . tag := index

; srchtemp2 @ . nexttag := nil
; srchtemp2 € . linked := false
; srchtemp2 @ . first ;= false
; srchtempl := srchtemp2

end
; srchtemp2 @ , nextcell := nil
end (¥procedure. buildsearchlist®)

(iﬁi!Elliiliiililili*ii*i**!*ﬁiliiliiﬁ!ii****!iﬂiiﬁ**!****iiiil*il**ﬂ*i*)

(# this procedure writes the salient information stored in the data #)

(# structure constructed by the procedure buildsearchlist. #)
(R R R R R R RN RN R RN NN R U RN R RN RN REE)

; Pprocedure testwritesearchlist (srchlsthead : srchptr)

; var index : integer
3 srchtemp : srchptr

begin
writestr
("®##%¥¥enter procedure testwritesearchlist####(:10:)')
; srchtemp := srchlsthead '
; repeat writeint (srchtemp @ . tag)
; if not srchtemp @ . first
then writestr ('#first is false#(:10:)')
else writestr ('#first is true®(:10:)')

52

; 1f not srchtemp € . linked
then writestr ('%#linked is false#(:10:)"')
3 8rchtemp := srchtemp € . nextcell
until (srchtemp = nil)
; writestr
('#%#¥#]eave procedure testwritesearchlist##®#(;10:)")
end (¥%procedure testwritesearchlist#)

.(I!*i!!ii!!***illﬁliiil!!ili!iil!iiliii!*lIiiil!*i*!ii!!i!ii*l!i**iii*i*)

(# this procedure executes a complete pass of ullmans algorithm and %)
(* makes appropriate modifications to the table. if no changes are #)
(* made to the table a boolean to this effect is returned to the main #)
(* program. ®)

(*!!!Illﬂ'iﬂ!*Ii!il*i!iiiIiil!ii*ii*iii*li*ilil*iiiii**i**ii**l****ii***)

3 procedure ullman

(tablehead : tblptr
fdlisthead : fdhptr
searchhead : srchptr
var changed : boolean

Tt W W W

; var coltemp : tbhlptr
fdhtenp : fdhptr
attrtemp : fdptr
searchtemp : srchptr
attrcode : integer
lhs : boolean
newlhs : boolean

e WE WME WA We We

(i**!!*!iil*iﬁii**iﬂ!iiili!i**ﬁii*ii*lﬁ*ﬁl!i*ﬂ**!!iﬂii*ii**i*ii*ﬁﬁ**!i)

(* this function is local to procedure ullman and when passed an #)
(# attribute code it returns a pointer to the column of the table #)
(# corresponding to this attribute code. #)

(ﬂiﬁ*!!ii!l**il!iii!i***i!**iﬁ*ii**l**iﬁiiﬁ*i!i!**i*il!ii!***i!iiﬁilii)

; function column (attrcode : integer ; tablehead : tblptr)
: tblptr

; var tabletemp : tblptr

$ begin
tabletemp := tablehead
; while (tabletemp @ . attrcode <> attrcode)
do tabletemp := tabletemp @ . rowptr
; colunn := tabletemp
end (¥#function column#)

53

(FERLRTERN IR GA BRI ERF R R AR R H R RS TR A IR BRI EE R FRB AR RN AR D ARV SRR R RBREERE)

(# this procedure is local to procedure ullman and simply loads the #)
(* tag fields from the appropriate column of the table into the re- #)

(# spective tag fields of the search list, #)
(F SRR NSRS RSN NS H RSN RIS NIRRT I RIS E TR R RN R IR RN

} Procedure loadtags (column : tblptr ; searchhead : srchptr)

3 var coltemp : tblptr
; searchtemp : srchptr

; begin

coltemp := column

searchtemp := searchhead

repeat searchtemp € . tag := coltemp @ . tag
3 Searchtemp := searchtemp € . nextecell

; coltemp := coltemp @ . colptr

until (coltemp = nil)

end (¥procedure loadtags#)

e e

(Il!l**li*!*ﬁi*!!!***liiii**liiiliiiiii*!**ﬂ**iliiiiii!l*‘I!i*iliiiiii)

(* this procedure is local to procedure ullman and it links search #)
(* cells with equal tag fields and sets the boolean fields first and #)

(* linked to true as appropriate. &)
(i"’ii*i!*iii'i'ﬂi*"******i*ii!i*iii**i**i*****i*ﬁii*Ii*i*‘**i***ii*)

{ Procedure linktags (searchhead : srchptr)

; var srchsave : srchptr
; srchtempl : srchptr
; srchtempZ : srchptr
; tagsave : integer

begin
srchsave := searchhead
s while (srchsave <> nil)
do begin
if not srchsave € . linked
then begin
srchtempl :=z srchsave
archtemp2 := srchsave
tagsave := srchsave @ . tag
srchsave € ., first := true
srchsave @ . linked := true
while (srchtempl € . nextcell <> nil)
do begin
srchtempl := srchtempl @ . nextcell
; if srchtempl € . tag = tagsave
then begin '
srchtemp2 € . nexttag := srchtempi
; srchtemp2 := srchtempi
; srchtemp! @ . linked := true

-t wme we

o W

54

end
end
end :
; srchsave := srchsave @ . nextcell

end
end (%*procedure linktags#)

(HERERRRRRRA R R R RN DR IR R AR PR RN PR R R AR RN R AT R R RN IR R AR R RN R RN
(#* this procedure is local to procedure ullman and it relinks the #)

(* tag fields in the event that a functional dependency has more %)
(% than one attribute on its left hand side and it resets the bool- #)
(* ean field first to true as appropriate. #)

{ !ii*!!!i*ilii*ll**i*ili!iﬂ*!*!*!*l'l'l'iiii!!**ii*!*!**l***ﬁ*!!*i**i*i**)

; procedure relinktags (searchhead : srchptr)

3+ var srchsave : srchptr

; srchsame : srchptr

s srchdiff. : srchptr

; srchtemp : srchptr

; tagsave : integer

; newlist : boolean
; begin

srchsave := searchhead
; while (srchsave <> nil)
do begin
if srchsave € . first
then begin
newlist := true
srchsame := srchsave
srehdiff := srchsave
srchtemp := srchsave
tagsave := srchsave @ . tag
while (srchtemp € . nexttag <> nil }
do begin
archtemp := srchtemp @ , nexttag
; if srchtemp 6 . tag <> tagsave
then begin
if newlist
then begin
srchdiff := srchtemp
; Srchdiff @ ., first := true
s newlist :;= false
end
srchsame @ . nexttag := srchtemp € . nexttag
if not srchtemp @ . first
then srchdiff @ . nexttag := srchtemp
;7 srchdiff := srchtemp
end
else srchsame := srchtemp
end

e we ws we we

55

?

if not newlist
then srchdiff € . nexttag := nil

end
; srchsave := srchsave @ . nextcell

end

end (¥procedure relinktags#)

(liiii!ii*iiiﬂ*iiilil**ii*i!iii!ii*!iili!!!***i*!i*i*!**iiiili**ﬂ**iﬁ*)

(% this procedure is local to procedure ullman and it resets the tag #)
(*# fields for a column of the table corresponding to an attribute on ¥)

(* the right hand side of a functional dependency.

(lllli!!I%iiii*i!li*l!***il!!i***i%iii*!!***!li*!iiii*!***iiiii*l*ii*i)

; procedure resettags

(searchhead : srchptr ; var changed : boolean)

; var srchsave : srchptr
srchtempl : srchptr

:
-
b
-
?

; begin

; srchtemp2 : srchptr

lowtag : integer
tagsave ; integer

srchsave := searchhead
while (srchsave <> nil)
do begin
if srchsave @ . first
then begin

we an

e Weé¢ wa

srchtempl := srchsave
lowtag := srchtempl @ . tag
while (srchtempl @ . nexttag <> nil)
do begin
srchtempi := srchtempl 8 . nexttag
3 if srchtempl @ . tag < lowtag
then lowtag := srchtempt € . tag
end
srchtemp2 := searchhead
srchtempl := srchsave
repeat tagsave := srchtempl € . tag
; repeat if -srchtemp2 @ . tag = tagsave
then begin
if srchtempz @ . tag <> lowtag
then changed := true
; srchtemp2 @ . tag := lowtag
end
; srchtemp2 := srchtemp2 @ . nextcell
until (srchtemp? = nil)
; srchtemp2 := searchhead
; srchtempl := srchtempl @ . nexttag
until (srchtempi = nil)

end
; srchsave := srchsave € . nextcell

56

end
end (*procedure resettags#)

(EREERIEE R R R E R R ARG R R RS RARFRFE RN FAT IR ART A DR R AR FAEF AN RV RRRTEER)

(* this procedure is local to procedure ullman and simply updates i)
(* the tag fields in the appropriate column of the table with the #)
(* tag fields of the search list. %)

(Iii!li!!!l!l!lllilii!li*ilii*!iii!l*liii!lii!iiliii***!*ﬁi!ilii!i*ill)

H proeedﬁre updatetable (searchhead : srchptr ; column : tblptr)

;3 var coltemp : tblptr
} searchtemp : srchptr

begin

c¢oltemp := column

searchtemp := searchhead

repeat coltemp @ . tag := searchtemp @ . tag
; Searchtemp := searchtemp @ . nextcell

; coltemp := coltemp @ . colptr

until (coltemp = nil)

end (¥procedure updatetable#)

begin (¥procedure ullman#)
changed := false
fdhtemp := fdlisthead
repeat attrtemp := fdhtemp € . nextfdattr
newlhs := true
searchtemp := searchhead
repeat searchtemp @ . first := false
; searchtemp @ . linked := false
; Searchtemp @ . nexttag := nil
; searchtemp := searchtemp € ., nextcell
until (searchtemp = nil)
repeat attrcode := attrtemp @ . attrcode
1lhs := attrtemp @ . 1lhs
coltemp :z column (attrcode , tablehead)
loadtags (coltemp , searchhead)
if newlhs
then begin
linktags (searchhead)
3 newlhs := false
end
else if 1lhs
then relinktags (searchhead)
else begin
resettags (searchhead , changed)
; updatetable (searchhead , coltemp)
end
; attrtemp := attrtemp € . nextfdattr
until (attrtemp = nil)
; fdhtemp := fdhtemp € . nextfd

-
we wa

“e ws we

Wwe wWe wa we

7

until (fdhtemp = nil)
end (#procedure ullman#)

('Illi'l'li'lIii!!lii!illllii!*iiﬁi*!!i*l!i!*!iiliiiliiilii!!*il!%iﬂi*l*lﬂl*i)

(* this procedure scans the table a row at a time and writes the mess- #)

(* age ###aE¥)ogslessHw¥##%&# if a row with all zero tags is found %)
(% and #EEEREREENRERARERIAEER otherwise. #)
L I I T T P Tt T R P P TS T AT T PR P2 2 T 2)

; procedure verdict (tblhead : tblptr)

; var tbltemp : tblptr
; rowsave : tblptr
; leossless : boolean

begin
writestr (t####Fenter procedure verdict####(:10:)')
tbltemp := tblhead
rowsave := tblhead.
lossless 1= true
repeat repeat if tbltemp @ . tag <> 0
then lossless := false
; tbltemp := tbltemp € . rowptr
until (tbltemp = nil)
if lossless
then writestr ('##¥##¥#]osslesgiesdes#(:10:)"')
else writestr ('REEHFREFIEREEAEARERBER(:10:)")
lossless := true
rowsave := rowsave € . colptr
tbltemp := rowsave
until { rowsave = nil)
; writestr ('####]eave procedure verdict¥#%#(:10:)')
end (¥procedure verdict#)

-e

we WMe Wa we

-e

e wa wa

(iilli!!iiiii§'li-l'l'l'lﬂ'!*ill!ﬂ*i*!**I'i'l*il'3**3***ﬁ*!**i***ﬂi***********l**)

(* this procedure writes the tag fields of the final table in column- ¥)

(# wise fashion along with the attribute associated with each column., #)
(R R R R RN R RN R R RN R RPN RN SRR RE B RN

s progcedure writefinaltable
(tblhead : tblptr ; attrhead : attrptr)

var tbltemp : tblptr
s colsave : tblptr
; atemp : attrptr
; index : integer

begin

writestr (‘'###¥enter procedure writefinaltable####(;10:)')
tbltemp := tblhead

colsave := tblhead

atemp := attrhead

-

wh wa we

58

repeat writestr ('#¥pnew column#¥(:10:)')
; writestr ('#the attribute for this column is#(:10:)"')
for index := 1 to maxattrlength
do write (atemp € . attrname [index])
write (nl)
atemp := atemp @ . nextattr
writestr ('#the tags for this column are®(:10:)')
repeat writeint (tbltemp € . tag)
3 tbltemp := tbltemp @ . colptr
until (tbltemp = nil)
; colsave = colsave @ . rowptr
; tbltemp := colsave
until (colsave = nil)
; writestr ('®#®¥]eave procedure writefinaltable®####(:10:)")
end (®*procedure writefinaltable#)

we -

ME we W ey

(l'I"l'!'I'ili'l!!i****il'l!iiII"II'l'!iI'IGili'Il*!*i!i*i!iiiii**!*!*iiii!i*l!*lﬂii)

(#)
(# X main program . %)
(# ¥)
(R AR R R RN R R RN TR R RRR R R R TR R R R SRR AN
; begin

cefilel := 513

cefile2 := 513

befilel := 1

befile2 := 1

readschema (headattrlist , relcount , attrcount)
testwriteattr (headattrlist , relecount , atircount)
readfds (headfdlist , headattrlist)
testwritefds (headfdlist)
buildtable (headtable , attrecount , relcount , headattrlist)
testwritetable (headtable)
buildsearchlist (headsearchlist , relcount)
testwritesearchlist (headsearchlist)
repeat ullman
(headtable , headfdlist , headsearchlist , tablechanged)
; testwritetable (headtable)
until (not tablechanged)
verdict (headtable)
writefinaltable (headtable , headattrlist)
end.

MO WA WA we We WE WE W we we W we

-y wae

59

REFERENCES

Bernstein, P. A, [1976]. "Synthesizing third normal form
relations from functional dependencies®, ACM Transactions
on Database Systems 1:4, pp. 277-298,

Cardenas, A. F. [1979]. Data Base Management Systems, Allyn
and Bacon, Boston, Massachusetts.

Codd, E. F. [1970]. "A relational model for large shared
data banks", Comm. ACM 13:6, pp. 377-387.

Codd, E. F. [1972]. "Purther normalization of the data base
relational model", in Data Base Systems (R. Rustin, ed.)
Prentice~Hall, Englewood Cliffs, New Jersey, pp. 33-64,

Date, C. J. [198l1]. An Introduction to Database Systems
(Third Edition), Addison-Wesley, Reading, Massachusetts.

Tsichritzis, D. C. and F. H. Lochovsky [1977]. Data Base
Management Systems, Academic Press, New York.

Ullman, J. D. [1982]. Principles of Database Systems (Second
Edition), Computer Science Press, Rockville, Maryland.

60

AN IMPLEMENTATION OF
A LOSSLESS JOIN ALGORITHHM

oy

KARL RICHARKD KLOSE

B.S., Bucknell University, 1958

M.S., University of Alabama, 196z
M.A., University of Alabama, 1967
Ph.D., University of Alabama, 1970

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIEWRCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1983

ABSTRACT

While the relational data model 1is an important
advancement in the theory of database design, it is not
without its problems. In an attempt to _reduce data
redundancy and update anomalies relational decomposition 1is
employed. It is frequently necessary to recombine some of
these decomposed schemes to answer a query and all too often
infﬁrmation is lost when two schemes are rejoined. ‘%his
loss of information is termed a "lossy" join whereas, if no
information is lost the term "lossless" join is used. It is
possible for a database administrator to test a particular
decomposition of schemes during the design phase of a
database implementation by submitting the decomposition of
schemes to an implementation of a "lossless™ Jjoin
algorithm. This work describes an implementation of this
algorithm written in Pascal for the ©PAS32 compiler on the
Interdata 8/32 computer under UNIX v7 at the Department of

Computer Science, Kansas State University.

