
UNSUPERVISED FEATURE CONSTRUCTION APPROACHES FOR

BIOLOGICAL SEQUENCE CLASSIFICATION

by

KARTHIK TANGIRALA

B.Tech., Jawaharlal Nehru Technological University, India, 2009

M.S., Kansas State University, USA, 2011

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2015

Abstract

Recent advancements in biological sciences have resulted in the availability of large amounts

of sequence data (DNA and protein sequences). Biological sequence data can be annotated

using machine learning techniques, but most learning algorithms require data to be repre-

sented by a vector of features. In the absence of biologically informative features, k -mers

generated using a sliding window-based approach are commonly used to represent biological

sequences. A larger k value typically results in better features; however, the number of

k -mer features is exponential in k, and many k -mers are not informative.

Feature selection is widely used to reduce the dimensionality of the input feature space.

Most feature selection techniques use feature-class dependency scores to rank the features.

However, when the amount of available labeled data is small, feature selection techniques

may not accurately capture feature-class dependency scores. Therefore, instead of working

with all k -mers, this dissertation proposes the construction of a reduced set of informative

k-mers that can be used to represent biological sequences. This work resulted in three novel

unsupervised approaches to construct features:

• Burrows Wheeler Transform-based approach, that uses the sorted permutations of a

given sequence to construct sequential features (subsequences) that occur multiple

times in a given sequence.

• Community detection-based approach, that uses a community detection algorithm to

group similar subsequences into communities and refines the communities to form mo-

tifs (group of similar subsequences). Motifs obtained using the community detection-

based approach satisfy the ZOMOPS constraint (Zero, One or Multiple Occurrences

of a Motif Per Sequence). All possible unique subsequences of the obtained motifs are

then used as features to represent the sequences.

• Hybrid-based approach, that combines the Burrows Wheeler Transform-based ap-

proach and the community detection-based approach to allow certain mismatches to

the features constructed using the Burrows Wheeler Transform-based approach.

To evaluate the predictive power of the features constructed using the proposed ap-

proaches, experiments were conducted in three learning scenarios: supervised, semi-supervised,

and domain adaptation for both nucleotide and protein sequence classification problems.

The performance of classifiers learned using features generated with the proposed approaches

was compared with the performance of the classifiers learned using k-mers (with feature se-

lection) and feature hashing (another unsupervised dimensionality reduction technique).

Experimental results from the three learning scenarios showed that features constructed

with the proposed approaches were typically more informative than k-mers and feature

hashing.

UNSUPERVISED FEATURE CONSTRUCTION APPROACHES FOR

BIOLOGICAL SEQUENCE CLASSIFICATION

by

KARTHIK TANGIRALA

B.Tech., Jawaharlal Nehru Technological University, India, 2009

M.S., Kansas State University, USA, 2011

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2015

Approved by:

Major Professor
Doina Caragea

Copyright

KARTHIK TANGIRALA

2015

Abstract

Recent advancements in biological sciences have resulted in the availability of large

amounts of sequence data (DNA and protein sequences). Biological sequence data can

be annotated using machine learning techniques, but most learning algorithms require data

to be represented by a vector of features. In the absence of biologically informative features,

k -mers generated using a sliding window-based approach are commonly used to represent

biological sequences. A larger k value typically results in better features; however, the

number of k -mer features is exponential in k, and many k -mers are not informative.

Feature selection is widely used to reduce the dimensionality of the input feature space.

Most feature selection techniques use feature-class dependency scores to rank the features.

However, when the amount of available labeled data is small, feature selection techniques

may not accurately capture feature-class dependency scores. Therefore, instead of working

with all k -mers, this dissertation proposes the construction of a reduced set of informative

k-mers that can be used to represent biological sequences. This work resulted in three novel

unsupervised approaches to construct features:

• Burrows Wheeler Transform-based approach, that uses the sorted permutations of a

given sequence to construct sequential features (subsequences) that occur multiple

times in a given sequence.

• Community detection-based approach, that uses a community detection algorithm to

group similar subsequences into communities and refines the communities to form mo-

tifs (group of similar subsequences). Motifs obtained using the community detection-

based approach satisfy the ZOMOPS constraint (Zero, One or Multiple Occurrences

of a Motif Per Sequence). All possible unique subsequences of the obtained motifs are

then used as features to represent the sequences.

• Hybrid-based approach, that combines the Burrows Wheeler Transform-based ap-

proach and the community detection-based approach to allow certain mismatches to

the features constructed using the Burrows Wheeler Transform-based approach.

To evaluate the predictive power of the features constructed using the proposed ap-

proaches, experiments were conducted in three learning scenarios: supervised, semi-supervised,

and domain adaptation for both nucleotide and protein sequence classification problems.

The performance of classifiers learned using features generated with the proposed approaches

was compared with the performance of the classifiers learned using k-mers (with feature se-

lection) and feature hashing (another unsupervised dimensionality reduction technique).

Experimental results from the three learning scenarios showed that features constructed

with the proposed approaches were typically more informative than k-mers and feature

hashing.

Table of Contents

Table of Contents viii

List of Figures xii

List of Tables xv

Acknowledgements xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Overview of Proposed Approaches . 3

1.2.1 Burrows Wheeler Transform Approach 3

1.2.2 Community Detection Approach . 4

1.2.3 Hybrid Approach . 5

1.3 Biological Problems Addressed . 5

1.4 Research Questions . 6

1.5 Contributions . 7

1.6 Outline . 8

2 Background 10

2.1 Biological Background . 10

2.1.1 Genes and Proteins . 10

2.1.2 Alternative Splicing and Protein Localization 11

2.2 Machine Learning Background . 14

viii

2.2.1 Learning Frameworks . 14

2.2.2 Feature Representation and Dimensionality Reduction 22

3 Related Work 27

3.1 Burrows Wheeler Transform in Bioinformatics 27

3.2 Community Detection in Bioinformatics . 28

3.3 Sliding Window Approach in Bioinformatics 30

3.4 Feature Selection . 30

3.5 Sequential Pattern Mining Algorithms . 31

4 Proposed Feature Construction Approaches 34

4.1 Burrows Wheeler Transform Approach . 35

4.1.1 Burrows Wheeler Transform Preliminaries 35

4.1.2 Feature Construction based on Burrows Wheeler Transform 35

4.2 Community Detection Approach . 40

4.2.1 Community Detection Preliminaries 40

4.2.2 Identifying Motifs Using Community Detection - TFBSGroup 43

4.2.3 Feature Construction for Large Nucleotide Sequence Datasets 45

4.2.4 Feature Construction for Protein Sequence Datasets 48

4.3 Hybrid Approach . 50

4.3.1 Motivation . 50

4.3.2 Feature Construction Using the Hybrid Approach 51

5 Experimental Setup 54

5.1 Datasets . 54

5.1.1 Alternative Splicing Datasets . 54

5.1.2 Protein Localization Datasets . 56

ix

5.2 Research Questions . 58

5.3 Experimental Setup: 5-fold Cross-Validation 59

5.4 Learning Algorithms and Other Experimental Details 62

6 Burrows Wheeler Transform Approach: Experiments and Results 64

6.1 Research Questions . 64

6.2 Parameters and Experiments . 66

6.2.1 Default Parameters . 66

6.2.2 Experiments . 67

6.3 Results . 69

6.3.1 Dimensionality Comparison . 69

6.3.2 Supervised Scenario: b-mers versus k -mers 69

6.3.3 Semi-supervised Scenario: b-mers versus k -mers 73

6.3.4 Domain Adaptation Scenario: b-mers versus k -mers 74

7 Community Detection Approach: Experiments and Results 80

7.1 Research Questions . 80

7.2 Parameters and Experiments . 83

7.2.1 Default Parameters . 83

7.2.2 Experiments . 84

7.3 Results . 87

7.3.1 Dimensionality Comparison . 87

7.3.2 Supervised Scenario: c-mers versus k -mers 87

7.3.3 Semi-supervised Scenario: c-mers versus k -mers 91

7.3.4 Domain Adaptation Scenario: c-mers vs k-mers 92

7.3.5 Varying the Number of Motifs . 92

7.3.6 Varying the Number of Samples and Sample Size 97

x

7.3.7 Varying the Number of Mismatches and Hamming Distance 99

7.3.8 Varying the Substitution Score Threshold 101

8 Hybrid Approach: Experiments and Results 103

8.1 Research Questions . 103

8.2 Parameters and Experiments . 104

8.2.1 Default Parameters . 104

8.2.2 Experiments . 106

8.3 Results . 109

8.3.1 Dimensionality Comparison . 109

8.3.2 Supervised Learning Scenario . 109

8.3.3 Semi-supervised Learning . 119

8.3.4 Domain Adaptation Scenario . 120

9 Conclusion and Future Work 127

9.1 Conclusion . 127

9.1.1 Contributions . 127

9.1.2 Merits . 128

9.1.3 Limitations . 129

9.2 Future Work . 130

Bibliography 132

xi

List of Figures

2.1 Simplified gene structure . 11

2.2 Central dogma of molecular biology . 12

2.3 Splicing phase of central dogma . 12

2.4 Alternatively spliced and contitutive exons 13

2.5 Abstract working of the supervised learning scenario. 17

2.6 Abstract working of the semi-supervised learning scenario. 18

2.7 Abstract working of the domain adaptation scenario. 22

4.1 Feature construction with the Burrows Wheeler Transform approach. 36

4.2 Communities of a network . 41

4.3 Construction of a N -partite graph of k-mers for two nucleotide sequences . . 44

4.4 Sequential feature construction with community detection approach 46

4.5 Sample motif identified using the community detection algorithm 47

4.6 PAM30 substitution matrix . 49

4.7 Sequential feature construction with hybrid approach 51

4.8 Using b-mers to reduce network nodes in HBA approach. 52

5.1 General preprocessing of alternative splicing sequences (exon triplets) 56

5.2 The 5-fold cross-validation setting for conducting experiments 60

5.3 The 5-fold cross-validation setting for the supervised learning scenario 60

5.4 The 5-fold cross-validation setting for the semi-supervised learning scenario . 61

5.5 The 5-fold cross-validation setting for the domain adaptation scenario 62

xii

6.1 Evaluation of Burrows Wheeler Transform-based features in the supervised

learning scenario, using the NBM algorithm 72

6.2 Evaluation of Burrows Wheeler Transform-based features in the semi-supervised

learning scenario, using the self-training algorithm 76

6.3 Evaluation of Burrows Wheeler Transform-based features in the semi-supervised

learning scenario, using the co-training algorithm 77

6.4 Evaluation of Burrows Wheeler Transform-based features in the domain adap-

tation scenario, using NBM for domain adaptation algorithm 78

7.1 Evaluation of community detection-based features in the supervised learning

scenario, using the NBM algorithm . 89

7.2 Evaluation of community detection-based features in the semi-supervised

learning scenario, using the self-training algorithm 94

7.3 Evaluation of community detection-based features in the semi-supervised

learning scenario, using the co-training algorithm 95

7.4 Evaluation of community detection-based features in the domain adaptation

scenario, using NBM for domain adaptation algorithm 96

7.5 Variation of the AUC values with the number of top motifs selected when

using community detection-based approach 98

7.6 Variation of the AUC values with sample size (S) and number of samples (R)

when using community detection-based approach 100

8.1 Evaluation of b-mers, c-mers, cb-mers, h-mers, u-mers and r-mers in the su-

pervised learning scenario, using the NBM algorithm 113

8.2 Evaluation of b-mers, c-mers and cb-mers in the supervised learning scenario,

with NBM algorithm . 114

xiii

8.3 Evaluation of b-mers and h-mers in the supervised learning scenario, with

NBM algorithm . 115

8.4 Evaluation of cb-mers and h-mers in the supervised learning scenario, with

NBM algorithm . 116

8.5 Evaluation of h-mers and u-mers in the supervised learning scenario, with

NBM algorithm . 117

8.6 Evaluation of b-mers, c-mers, cb-mers, h-mers, u-mers and r-mers in the semi-

supervised learning scenario, using the self-training algorithm 121

8.7 Evaluation of b-mers, c-mers, cb-mers, h-mers, u-mers and r-mers in the semi-

supervised learning scenario, using the co-training algorithm 122

8.8 Evaluation of b-mers, c-mers, cb-mers, h-mers, u-mers and r-mers in the do-

main adaptation learning scenario, using NBM for domain adaptation algorithm125

xiv

List of Tables

6.1 Dimensionality comparison: Burrows Wheeler Transform-based approach . . 69

6.2 Evaluation of Burrows Wheeler Transform-based features in the supervised

learning scenario . 71

6.3 Evaluation of Burrows Wheeler Transform-based features in the semi-supervised

learning scenario . 75

6.4 Evaluation of Burrows Wheeler Transform-based features in the domain adap-

tation learning scenario . 79

7.1 Dimensionality comparison: Community detection-based approach 87

7.2 Evaluation of community detection-based features in the supervised learning

scenario . 88

7.3 Evaluation of community detection-based features in the semi-supervised

learning scenario . 93

7.4 Evaluation of community detection-based features in the domain adaptation

scenario . 97

7.5 AUC values obtained with NBM classifiers learned in the supervised scenario,

when varying the number of motifs, t, selected to construct features in the

community detection-based approach . 98

7.6 AUC values obtained with NBM classifiers learned in the supervised scenario,

when varying the number of mismatches, d, in the community detection-based

approach. 101

xv

7.7 AUC values obtained with NBM classifiers learned in the supervised sce-

nario, when varying the maximum Hamming distance, x, in the community

detection-based approach. 101

7.8 AUC values obtained with NBM classifiers learned in the supervised scenario,

when varying the minimum substitution score, s, in the community detection-

based approach. 102

8.1 Dimensionality comparison: BWT, CDA and HBA approaches versus union

of BWT and CDA-based features . 110

8.2 Evaluation of b-mers, c-mers, cb-mers, h-mers, u-mers and r-mers in the su-

pervised learning scenario . 118

8.3 Evaluation of b-mers, c-mers, cb-mers, h-mers, u-mers and r-mers in the semi-

supervised learning scenario, when self-training is used as the semi-supervised

classifier. 123

8.4 Evaluation of b-mers, c-mers, cb-mers, h-mers, u-mers and r-mers in the semi-

supervised learning scenario, when co-training is used as the semi-supervised

classifier. 124

8.5 Evaluation of b-mers, c-mers, cb-mers, h-mers, u-mers and r-mers in the do-

main adaptation learning scenario . 126

xvi

Acknowledgments
The following dissertation, while an individual work, would not have been possible with-

out the help and supervision of several people. I am greatly thankful to all the people who

have helped and inspired me during my Ph.D years.

First and foremost, I am greatly indebted to my adviser, Dr. Doina Caragea. It has

been an honor to be her student for both my M.S. and Ph.D. This dissertation would not

have been completed without her patience and steadfast encouragement. I appreciate all her

contributions of time and ideas that helped me have six productive years at Kansas State

University and a great experience. Her insightful comments and constructive criticisms at

different stages of my research were thought-provoking and they helped me focus my ideas.

Dr. Caragea was a fabulous advisor: sharp, perceptive, and mindful of the things that truly

matter. I am indebted to her for her continuous encouragement and guidance. Thank you

does not seem sufficient but it is said with appreciation and respect.

I am grateful to be a student of Dr. Susan J. Brown and to have her as my Ph.D.

committee member. Her knowledge and ideas in the field of bioinformatics motivated me

during my early stages of education at Kansas State University. I am also thankful to my

M.S. committee members, Dr. Torben Amtoft and Dr. Mitch Neilsen, for their support and

guidance right from the beginning of my years at Kansas State University.

I am also thankful to the former and current staff at Department of Computing and

Information Sciences, Kansas State University, for their various forms of support during my

graduate study.

I would like to thank Ana Stanescu and Nic Herndon for their collaborative work and

valuable discussions related to research. I would like to thank all my friends for their won-

derful support during all these years. I greatly value their friendship and deeply appreciate

their belief in me.

xvii

Most importantly, none of this would have been possible without the love and patience

of my family. My deepest gratitude to my parents, Mr. V. G. Krishna Murthy Tangirala

and Mrs. V. Satya Kumari Kambhampati, to my brother-in-law, Mr. V. S. Harinarayana

Vemu, and to my sister, Mrs. Harika Vemu, for their love and support at every stage of my

life. It is only because of their motivation and encouragement that I am able to complete

my Ph.D.

At last, I want to acknowledge the importance of the Beocat Research Cluster to my

work. The computing for this dissertation was performed on the Beocat Research Cluster at

Kansas State University, which is funded in part by grants MRI-1126709, CC-NIE-1341026,

MRI-1429316, CC-IIE-1440548.

xviii

Chapter 1

Introduction

1.1 Motivation

Next-generation sequencing technologies have led to the availability of large amounts of

biological sequence data (i.e., raw data, such as nucleotide sequences, and derived data,

such as protein sequences), resulting in challenging sequential data annotation. Machine

learning is commonly used to address classification problems in the field of bioinformatics,

especially problems that help annotate biological sequences. However, learning algorithms

require data to be represented as vectors of features. In general, the more informative the

features are, the better the classifiers trained from the respective data. When available,

biologically informative features (e.g., known DNA motifs or protein domains) are used to

represent sequences. For most problems however, biologically informative motifs or domains

are not readily available. In the absence of biologically informative motifs, the sliding

window approach is commonly used to generate sequential features, referred to as k -mers.

In the sliding window approach, a window of size, k, is traversed across all sequences. The

fragment of the sequence within the window is captured, and all possible unique fragments

form a set of k -mers. Motifs of variable-length are believed to carry better information than

motifs of fixed length. The size of the window, k, is varied in order to generate variable length

1

k-mers. Disadvantages of variable-length k -mers include high dimensionality of feature space

(the number of features used to represent the sequences). For large datasets, the number of

k -mers constructed is exponential in k. High-dimensional feature spaces increase learning

time (time taken to learn a classifier from the data) and classification time (time taken by

the classifier to classify new data) of the algorithm by a large extent. In addition, certain

features among the constructed k-mers may not be informative, potentially acting as noise

and misleading the classifier.

Feature selection techniques are commonly used to reduce dimensionality of input fea-

ture space while retaining a majority of the informative features. Most feature selection

techniques use available labeled data to estimate feature-class dependencies of the features.

The features are then sorted and filtered based on corresponding feature-class dependency

scores. Feature selection can be applied in supervised learning scenario (large amounts of la-

beled data are used in the learning process), semi-supervised learning (SSL) scenario (small

amounts of labeled and large amounts of unlabeled data are used in the learning process),

and domain adaptation scenario (large amounts of labeled data from a source domain as

well as small amounts of labeled data and large amounts of unlabeled data from the tar-

get domain are used to classify new unseen data of the target domain). However, in SSL

or domain adaptation scenarios, as the amount of available labeled data is small, feature

selection may not accurately capture the feature-class dependency scores. Therefore, alter-

native methods to generate a reduced set of informative features can presumably benefit

semi-supervised learning and domain adaptation algorithms.

The work in this dissertation focuses on generating a low-dimensional informative fea-

ture set to represent biological sequences in the context of biological sequence classification

using learning algorithms. A specific objective of this work is to generate a reduced set of

informative variable-length k -mers, without using the class labels of the sequences (in an

unsupervised manner).

2

1.2 Overview of Proposed Approaches

The premise of this work is to generate a low-dimensional informative feature set that could

improve the performance of the learning algorithms in terms of run time and accuracy.

Therefore, this work proposes three novel approaches: the first approach uses Burrows

Wheeler Transform (BWT), a context-based transformation of a sequence; the second uses

a community detection algorithm (CDA); and the third approach is a hybrid approach

(HBA), a combination of the BWT and CDA-based approaches. The proposed approaches

are unsupervised (do not take into account class labels of sequences) and can therefore

use knowledge from labeled and unlabeled data in SSL or domain adaptation scenarios to

generate a low-dimensional feature set, as opposed to the feature selection technique which

uses only small amounts of available labeled data. This work investigates performance of

the proposed approaches in supervised, semi-supervised, and domain adaptation scenarios.

The following sections provide a brief overview of the three proposed approaches (BWT,

CDA, and HBA) in order to generate a reduced set of informative k -mers. As these ap-

proaches do not take into account class labels of the sequences, they have the potential to

provide significant help to semi-supervised and domain adaptation approaches.

1.2.1 Burrows Wheeler Transform Approach

For biological sequences, filtering sequential features based on the frequency of occurrence

is a simple and traditional approach to reduce dimensionality of the feature space. The

principle of filtering k -mers that occur multiple times in a given sequence motivated the

use of Burrows Wheeler Transform (BWT) to generate a reduced set of k -mers. BWT

was first introduced by Burrows and Wheeler [1994] to address data compression. The

ability of BWT to efficiently identify multiple occurrences of a sequence fragment generated

significant interest among researchers, especially in the field of bioinformatics. Characters

in the BWT of a sequence are grouped based on similarity of corresponding suffixes in the

3

original sequence. The work inthis dissertation exploits this grouping of prefixes based on

lexicographically similar suffixes, in order to generate variable-length features that occur

multiple times in at least one sequence. In addition to filtering sequential features based

on the frequency of occurrence, the BWT-based approach also takes into account other

properties, such as suffix information and length, in order to retain most informative features

while filtering out uninformative features.

1.2.2 Community Detection Approach

Motifs that are informative with respect to a biological problem (e.g., alternative splicing

events, splice sites, protein localization) may occur at various locations (across different

sequences) with certain mismatches. Therefore, identifying those k -mers that occur in

several sequences with a small number of mismatches might result in an informative set

of features. The work in this dissertation, proposes a novel approach of using a community

detection algorithm to identify sequential features with mismatches.

A community is a sub-network with nodes that are highly/densely connected compared

to other network nodes. A community reflects a group of closely associated nodes. Com-

munities in a network identify structural and topological properties of a network. A motif

is a set of closely associated subsequences of certain length with mismatches. This disserta-

tion, investigated the potential use of communities to identify motifs, by defining nodes as

subsequences of certain length and communities as sets of closely associated subsequences.

In the process of identifying motifs through communities, a community detection algorithm

to initially identify all possible communities in a network of subsequences was used. Each

community, a set of subsequences, was further refined to form a motif. As most of the com-

munity detection algorithms are time consuming, a fast and effective technique to generate

community detection-based features to represent sequences for classification purposes was

proposed in this work.

4

1.2.3 Hybrid Approach

The BWT-based approach generates mostly non-overlapping subsequences that occur mul-

tiple times in at least one sequence. Contrarily, the CDA-based approach identifies sub-

sequences that occur across different sequences with certain mismatches. Under the as-

sumption that BWT features that occur across different sequences with mismatches are

potentially more informative than the BWT and CDA features alone, a hybrid approach

that combines the BWT and CDA-based approaches was proposed to construct sequen-

tial features. A pipeline in which features obtained using the BWT-based approach were

redirected to the CDA-based approach was created, thereby identifying BWT features that

occur across different sequences with mismatches.

1.3 Biological Problems Addressed

This work primarily compares the performance of features constructed using the proposed

approaches with k -mers. Experiments were conducted on nucleotide and protein sequences

for the following sequence classification problems:

• Prediction of alternative splicing events: Alternative splicing, a process that

occurs during gene regulation, is responsible for protein diversity. Five major types

of alternative splicing events exist: exon skipping, intron retention, alternative donor

site, alternative acceptor site and mutually exclusive exons. This work specifically

addresses the problem of classifying exons (DNA sequences) as either alternatively

spliced or constitutive.

• Prediction of protein localization: Protein localization prediction is the process

of predicting where the protein resides in the cell. Protein subcellular localization

identification, essential for genome annotation, also plays an important role in under-

standing protein function. Experiments were conducted on four protein subcellular

5

localization datasets.

1.4 Research Questions

The following research questions were addressed in this dissertation:

• How informative are the features constructed by exploiting properties of

BWT?

BWT produces a context dependent permutation of an input sequence (set of charac-

ters) such that characters adjoining similar contexts are grouped together. Therefore,

any contiguous occurrence of a character in the BWT of a sequence can reflect an as-

sociated subsequence occurring multiple times across the sequence. This work investi-

gates the potential use of this BWT property to generate a low-dimensional informative

sequential feature set for various learning scenarios (supervised, semi-supervised, and

domain adaptation).

• How informative are the features constructed using CDA-based approach?

This work investigates if communities can be related to motifs, used to generate low-

dimensional informative features. Because most of the community detection algo-

rithms are time-consuming, this work also proposes a fast and effective technique to

generate community detection-based features.

• Can a hybrid approach between BWT and CDA-based approaches result in

even better features as compared to features obtained from each approach

individually?

The BWT-based approach, when combined with the CDA-based approach, generates

BWT features with certain mismatches that occur across various sequences. This

work investigates the predictive power of the features constructed using the hybrid

approach to classify biological sequences.

6

1.5 Contributions

The major published contributions of this dissertation include:

• Generating Features Using Burrows Wheeler Transformation for Biological

Sequences [Tangirala and Caragea, 2014b]

• Semi-supervised Classification of Protein Sequences Using Burrows Wheeler

Transformation-based Features [Tangirala and Caragea, 2014c]

• Predicting Protein Localization Using a Domain Adaptation Näıve Bayes

Classier with Burrows Wheeler Transform Features [Herndon et al., 2014]

• Community Detection-based Features for Sequence Classification [Tangirala

and Caragea, 2014a]

• Community Detection-based Feature Construction for Protein Sequence

Classification [Tangirala et al., 2015]

Other anticipated contributions of this dissertation include:

• A Hybrid Approach to Construct Sequential Features for Biological Sequence Classi-

fication Problems

7

1.6 Outline

The rest of the dissertation is organized as follows:

• Chapter 2: A brief introduction to the two biological problems addressed in this

dissertation followed by machine learning preliminaries are presented. Furthermore,

details about sliding window approach used to generate sequential features, k -mers,

to represent biological sequences and details of feature selection and feature hashing

techniques also are discussed.

• Chapter 3: Reviews previous work on the applications of BWT and community

detection in bioinformatics. Furthermore, a review of various feature selection tech-

niques, approaches that used features constructed using the sliding window approach,

and approaches designed to construct or identify patterns and motifs from biological

sequences are presented as well.

• Chapter 4: A detailed explanation of the three proposed approaches (BWT, CDA

and HBA) to construct low-dimensional informative sequential features.

• Chapter 5: Description of the datasets corresponding to the alternative splicing

and protein localization problems, followed by experimental setup to evaluate the

predictive power of the proposed features in different learning scenarios are discussed.

• Chapter 6: Outlines specific research questions, and presents corresponding experi-

ments and associated results to evaluate the BWT-based approach. A detailed analy-

sis of the results suggests that the BWT-based approach is successful in reducing the

dimensionality of k-mers, while retaining most informative features.

• Chapter 7: Outlines specific research questions, and presents corresponding exper-

iments and associated results to evaluate the CDA-based approach. A thorough in-

vestigation of the effect of different parameters on the predictive power of features

8

constructed using the CDA-based approach is conducted. A detailed analysis of the

results suggests that the CDA-based approach is successful in reducing the dimension-

ality of k-mers, while retaining most informative features.

• Chapter 8: Outlines specific research questions, and presents the corresponding ex-

periments and associated results to evaluate the HBA approach. Experiments have

been primarily conducted to compare proposed approaches with each other and with

feature hashing.

• Chapter 9: A summary of the proposed approaches to construct sequential features,

list of contributions, a set of limitations, and several directions for future work are

discussed.

9

Chapter 2

Background

2.1 Biological Background

2.1.1 Genes and Proteins

A gene is the hereditary unit of every living organism [Pennisi, 2007; Gerstein et al., 2007;

Pearson, 2006]. Genes are segments of DNA (Deoxyribonucleic acid) consisting of two com-

plementary strands held together by hydrogen bonds. A DNA molecule is made up of four

different nucleotides: guanine (G), cytosine (C), adenine (A), and thymine (T). Nucleotide

G pairs with C, and A with T. In eukaryotes, a gene consists of exons that represent protein

coding information and intervening sequences called introns. The beginning of an intron is

marked by a donor site, and the end of the intron is marked by an acceptor site, together,

referred to as splice sites. Figure 2.1 shows a simplified picture of the gene structure.

Genes are responsible for growth and development, and they play a crucial role in protein

synthesis. Protein synthesis consists of several stages, of which gene transcription is the

first stage. During transcription, RNA polymerase, an enzyme that produces the primary

transcript Ribonucleic acid (RNA), traverses across the gene to generate pre-mRNA, which

is the unprocessed mRNA. Transcription begins at the transcription start site and ends

10

at the transcription stop site (shown in Figure 2.1). The pre-mRNA is then transformed

into mRNA during splicing, a process that occurs in between transcription and translation

phases. During splicing, pre-mRNA is modified so that introns are skipped and exons are

joined. Splicing is carried out by a complex called spliceosome, which contains activity that

cleaves and joins the RNA transcript. The flanked intron forms a loop structure, called a

lariat, involving the adenine base. The lariat is later subsequently degraded. Finally, during

the translation phase, the mRNA is transformed into a protein. Translation begins at the

translation start site and ends at the translation stop site. The entire process is known

as the Central Dogma of Molecular Biology, as shown in Figure 2.2. The mRNA contains

protein coding information. Figure 2.3 details the splicing step in the protein synthesis

process. In this picture, the pre-mRNA corresponding to a gene consisting of four exons

was transformed into mRNA; all exons were retained, and all introns were skipped.

Figure 2.1: Simplified gene structure: components of a gene relevant to this work are
highlighted.

2.1.2 Alternative Splicing and Protein Localization

This work addresses two sequence classification problems:

• Alternative splicing events in genes (nucleotide sequence classification)

11

Figure 2.2: Central dogma of molecular biology: main steps involved in protein synthesis.

Figure 2.3: Splicing phase of central dogma in which the pre-mRNA is transformed into
mRNA.

12

• Protein localization (protein sequence classification)

Alternative Splicing

One gene was historically believed to correspond to one protein. However, the discovery of

alternative splicing provided an explanation for protein diversity [Black, 2003].

Alternative splicing is a mechanism responsible for the formation of multiple proteins

from a single gene, meaning that several mRNA isoforms can be generated from the pre-

mRNA corresponding to a gene. A skipped exon, a retained intron, alternative 5‘ donors,

alternative 3‘ acceptors and mutual exclusive exons, as discussed by Black [2003], are possible

alternative splicing events.

Figure 2.4 shows an example of an alternatively spliced exon, specifically, Exon 3 in

Figure 2.4 is retained in one transcript and skipped in another transcript, thereby being

alternatively spliced. Exons 1, 2, and 4 appear in both transcripts, so they are constitutive

exons. Recent studies have found that approximately 95% of human genes are alternatively

spliced [Pan et al., 2008]. As alternative splicing events contribute significantly to protein

diversity, identifying such events is important.

Figure 2.4: Alternatively spliced and constitutive exons: Exon 3 is skipped in the first
transcript and retained in the second transcript, therefore, alternatively spliced. Exons 1, 2,
and 4 are constitutive exons because they are retained in both transcripts.

13

Protein Localization

Most proteins in eukaryotes are encoded in the nuclear genome, synthesized in the cytosol,

and sorted before they reach their final destination. For prokaryotes, proteins are synthesized

in cytoplasm; some of the synthesized proteins must be targeted to other locations. Proteins

must be localized at their respective subcellular location in order to perform their functions.

Identification of protein’s subcellular localization is an important step in many analyses

because it may provide evidence regarding protein function. Identifying protein localization

can also benefit the study of a particular protein. In the case of surface-exposed and secreted

proteins, protein localization identification can also benefit the process of identifying drug

targets [Bellier et al., 2013; Mora et al., 2003; Allan and Wren, 2003].

However, experimental determination of protein subcellular localization is a costly pro-

cess in terms of time and work [Rey et al., 2005]. Increased availability of protein localiza-

tion datasets motivated researchers to use advanced computational tools, including machine

learning, for classifying protein sequences based on localization.

2.2 Machine Learning Background

Machine learning [Mitchell, 1997] is a branch of artificial intelligence focused on the design

and development of algorithms for learning classifiers from data. Machine learning algo-

rithms are primarily designed to address classification problems less expensively, including

DNA or protein sequence classification problems, at several orders of magnitude faster than

human experts who can potentially classify sequences.

2.2.1 Learning Frameworks

Traditional machine learning algorithms use labeled data (class labels of the data are known)

to train a classifier, and use the model to predict new unseen data. This framework is also

referred to as the supervised learning framework. In real world, available data can be

14

labeled or unlabeled (class labels of the data are unknown). For several problems, especially

in biology, labeling data is a costly process. Therefore, in addition to using available labeled

data, machine learning algorithms that utilize knowledge from available unlabeled data or

knowledge of labeled data from a different domain could benefit the classification process.

Various learning frameworks have been proposed to best fit different assumptions regarding

availability of labeled and unlabeled data. The following three learning frameworks were

considered in this work:

• Supervised learning

• Semi-supervised learning

• Domain adaptation

A majority of machine learning algorithms require data to be represented as a vector of

features with each feature carrying a certain degree of information about a class. Classifi-

cation accuracy of a classifier is largely affected by the quality of the features. The more

informative the features used to represent the data are, the better the classifier trained from

the respective data. Feature representation of a data sample is referred to as an instance.

An instance is an n dimensional vector corresponding to a particular sample (biological

sequence in this work), where n is the total number of features used to represent the data.

Following is additional background information of the three learning frameworks used in

this work.

Supervised Learning

Supervised learning utilizes labeled data to train a classifier and then the classifier is used

to predict new unseen test data. Performance of the supervised classifier is highly depen-

dent on the amount of labeled data. When the amount of available labeled data is small,

supervised classifier, may result in poor performance. Figure 2.5 shows an abstract working

of a supervised learning algorithm. Support Vector Machines (SVM) [Cortes and Vapnik,

15

1995], Random Forests (RF) [Breiman, 2001] and Näıve Bayes (NB) [Kibriya et al., 2004;

Cheeseman and Stutz, 1996; Sahami et al., 1998] are commonly used supervised learning

algorithms; each algorithm captures different information. SVM is a deterministic binary

classifier that generates a boundary that splits labeled data based on respective class labels.

The boundary acts as a classifier to classify new unseen data. RF is an ensemble of classifiers

that constructs a set of decision trees at training time. The new data is assigned to a class

that is the mode of classes of individual trees. NB and its variant NBM (Näıve Bayes Multi-

nomial) are probabilistic generative models that take into account class distributions in the

process of training the classifier. Studies reveal that, with appropriate preprocessing, NBM

is a popular, competitive method compared to other advanced learning algorithms such as

SVM and RF [Rish, 2001; Rich and Alexandru, 2006; Jason et al., 2003; Huang et al., 2003],

especially for text categorization problems, which are based on word frequencies.

Because biological sequence classification is similar to text categorization in terms of

feature representation (frequencies) and format of the data (set of alphabets), and given

that NBM does not have any parameters that need to be tuned, NBM was used as the base

classifier for all the experiments conducted in this work.

Näıve Bayes: NB makes the assumption that features are independent given the class.

Let F = {f1, f2, ..., fn} be the set of n features used to represent a data sample and C =

{c1, c2, ..., ck} be a set of k classes of the data. Then, an instance of a data sample, X, can

be represented using the set of n features as x1, x2, ..., xn, being values of the features f1, f2,

..., fn. Based on the independence assumption, the probability of an instance given a class,

P(X|ci), referred to as likelihood, for (1≤i≤k) can be written as the product of probabilities

of all features given the class:

P (X|ci) =
n∏

j=1

P (xj|ci) (2.1)

The testing phase in the NB algorithm involves the computation of the posterior prob-

ability (probability of each class given the features of the test sample), which is computed

16

using Bayes Theorem as follows:

P (ci|X) =
P (ci)× P (X|ci)

P (X)
(2.2)

The label for a new data sample (y) is assigned based on the class that has maximum

posterior probability:

cnew = argmax
i∈{1...k}

P (ci)×
n∏

j=1

P (xj|ci) (2.3)

Learning/training a classifier reduces to learning P (ck) and P (xn|ck) for all n features

and k classes. NBM is a version of NB that uses the multinomial distribution to estimate

likelihood, which is specifically used when features are discrete (specifically, counts) but not

binary.

Figure 2.5: Abstract working of the supervised learning scenario.

Semi-supervised Learning

SSL uses knowledge from labeled and unlabeled data to learn models that can be used to

predict unseen test data. SSL is effective when very little labeled data and large amounts

of unlabeled data are available. Figure 2.6 shows an abstract working of SSL. Self-training

17

(ST) [Yarowsky, 1995] and co-training (CT) [Blum and Mitchell, 1998] are two prominent

iterative-based approaches under the SSL framework that were used in this work. Algorith-

mic details of CT and ST are provided below.

Figure 2.6: Abstract working of the semi-supervised learning scenario.

Self-training: ST [Yarowsky, 1995], also known as self-teaching or bootstrapping, is an

iterative SSL algorithm. Input to the ST algorithm is a set of labeled instances, L, unlabeled

instances, U , and test instances, T . The objective is to use L and U to iteratively generate

a classifier, C, that can accurately classify new unseen test T . Let iMax be the maximum

number of iterations. The following pseudo-code describes the working of ST algorithm:

At each iteration, i, a base classifier, Ci is learned from Li (initially, Li = L), and Ci

is then used to predict Ui (initially, Ui = U). Predicted instances, Up
i , are sorted based on

prediction probabilities and the most confident predictions (i.e., highest prediction proba-

bilities), Top(Up
i), are added to the labeled set for the next iteration (Li+1), such that the

original class distribution is preserved. Therefore, the amount of labeled data is increased

at the end of each iteration, while the amount of unlabeled data is decreased (Li+1 > Li

and Ui+1 < Ui). This process is repeated for a certain number of iterations (iMax) or until

completion of all unlabeled instances. At each iteration, the classifier is expected to improve

by including the most confident unlabeled predictions. The final base classifier CiMax is then

18

Input: Labeled data, L; unlabeled data, U ;
Output: Self-training classifier - CST ;
i = 1;
Li = L;
Ui = U ;
while (i <= iMax) and (size(Ui) >0) do

Learn Ci from Li;
Up
i ← Predictions of Ui using Ci;

Top(Up
i) : Top predictions from Up

i ;
Ui+1 = Ui - Top(Up

i);
Li+1 = Li + Top(Up

i);
i = i + 1;

end
return CiMax;

Algorithm 1: Pseudo-code for learning a self-training classifier (CST).

used to predict the test data, T .

Co-training: CT [Blum and Mitchell, 1998], another iterative SSL algorithm, is a

two-view learning process. In CT, the initial feature set is split into two independent and

sufficient sets of features or views [Nigam and Ghani, 2000].

• Independence assumption: Given the class, features in one view should be condition-

ally independent of features in the other view.

• Sufficiency assumption: Each view, by itself, should be sufficient for classification given

sufficient amounts of labeled data.

Labeled, unlabeled, and test instances are then represented using the two views of fea-

tures. Let L1, U1, and T 1 be labeled, unlabeled, and test data represented in one view,

and L2, U2, and T 2 in the other view, respectively. Let iMax be the maximum number

of iterations. The two views are generated by splitting the features, but not the instances.

Each view contains a different feature representation of instances corresponding to the same

set of sequences. The following pseudo-code describes the working of CT algorithm:

At each iteration i, two base classifiers C1
i and C2

i are learned from L1
i and L2

i and used

to predict U1
i and U2

i . Predicted instances, U1p
i and U2p

i , are sorted and, based on prediction

19

Input: Labeled data, L; unlabeled data, U ;
Output: Co-training classifier, CCT ;
i = 1;
Represent L as L1 and L2;
Represent U as U1 and U2;
L1
i = L1; L2

i = L2;
U1
i = U1; U2

i = U2;
while (i <= iMax) and (size(U) >0) do

Learn C1
i from L1

i ;
Learn C2

i from L2
i ;

U1p

i ← Predictions of U1
i using C1

i ;
U2p

i ← Predictions of U2
i using C2

i ;

Top(U1p
i) : Top predictions from U1p

i ;

Top(U2p
i) : Top predictions from U2p

i ;

U1
i+1 = U1

i - Top(U1p
i);

L2
i+1 = L2

i + Top(U1p
i);

U2
i = U2

i - Top(U2p
i);

L1
i = L1

i + Top(U2p
i);

i= i + 1;

end
CCT = C1

iMax & C2
iMax;

return CCT ;
Algorithm 2: Pseudo-code for learning a co-training classifier (CCT).

20

probabilities, confident unlabeled examples of one view are added to the labeled set of the

opposite view for the next iteration (best predictions of U1
i to L2

i+1 and best predictions of

U2
i to L1

i+1), such that original class distribution is preserved. Intuitively, instances best

predicted by one classifier in one view, may not be well predicted by the classifier in the

other view. Transferring information to the other classifier in this way can increase the

performance of both classifiers. This process is repeated for a certain number of iterations

(iMax) or until the completion of all unlabeled instances. Test instances (T 1 and T 2)

are predicted based on mutual agreement between the two final base classifiers (C1
iMax and

C2
iMax).

We should note that the performance of CT is heavily dependent on the views that are

used to represent the data. CT is expected to give best results when the two views are

sufficient and independent.

Domain Adaptation

When minimal or no labeled data is available, but ample amounts of unlabeled data and a

large corpus of labeled data is accessible for a similar problem, an alternative to SSL is to use

a supervised classifier, which is trained on the labeled data from a similar problem, called

the source domain, to label data from the problem of interest, called the target domain.

However, although this classifier would be accurate on the data from the source domain, its

classification accuracy would typically decrease for data from the target domain. A better

alternative is to use a classifier in a domain adaptation setting and utilize advantageously

the large volume of unlabeled data from the target domain and large volume of labeled data

from a related source domain, as well as labeled data from the target domain. Figure 2.7

shows an abstract working of the domain adaptation algorithm.

The primary step in the domain adaptation algorithm is to filter out source specific

features and represent source and target domain data using only selected target features.

Let sL be total data from the source domain (used as labeled), tL be labeled data from

21

Figure 2.7: Abstract working of the domain adaptation scenario.

the target domain, tU be unlabeled data from the target domain, and tT be test data from

the target domain, represented using selected target features. The following pseudo-code

describes the process of using knowledge from source and target data to learn a domain

adaptation classifier:

Similar to ST, during the first iteration, the target unlabeled data (tU) is predicted

using only the source and target labeled datasets (sL and tL). Then, a number of instances,

proportional to the class prior, that have highest probabilities for their corresponding class

(Top(tUp
i)), are selected from the unlabeled dataset at each iteration, and are used as

labeled instances in subsequent iterations. Remaining instances in the unlabeled dataset

are used with “soft-labels” (i.e., with weight proportional to their probability distributions)

in subsequent iterations, unless they “became labeled” through ST. The process is iterated

until convergence, i.e., until labels for instances in the unlabeled dataset no longer change.

The resulting classifier is used to predict target test data (tT).

2.2.2 Feature Representation and Dimensionality Reduction

For any learning algorithm, the time required to train a classifier or the time the classifier

requires to classify test data is highly dependent on the total number of features used to

represent the respective data. Reducing the dimensionality of the feature space can benefit

the learning algorithm. When sufficient amount of labeled data is available, feature selection

22

Input: Source labeled, sL; target labeled, tL; target unlabeled, tU ;
Output: Domain adaptation classifier - CDA;
i = 1;
tLi = tL;
tUi = tU ;
Learn Ci from tLi and sL;
tUp

i ← Predictions of tUi using Ci;
Top(tUp

i) : Top predictions from tUp
i ;

tUi+1 = tUi - Top(tUp
i);

tLi+1 = tLi + Top(tUp
i);

repeat
i = i + 1;
Learn Ci from tLi, tU

p
i and sL;

tUp
i ← Predictions of tUi using Ci;

Top(tUp
i) : Top predictions from tUp

i ;
tUi+1 = tUi - Top(tUp

i);
tLi+1 = tLi + Top(tUp

i);

until (tUp
i == tUp

i−1);
return CiMax;

Algorithm 3: Pseudo-code for learning a domain adaptation classifier (CDA).

techniques select top informative features that can be used to represent the data. This

section presents details of the traditional sliding window-based approach used to generate

sequential features, k -mers, to represent biological sequences. This section also provides

details of feature selection (Section 2.2.2) and feature hashing (Section 2.2.2) techniques,

which are primarily used to reduce dimensionality of input feature space.

Sliding Window-based Approach

In order to generate sequential features using the sliding window-based approach, a window

of a particular size, k, is traversed across the sequence and the fragment of the sequence

within the window is captured. All possible unique subsequences or fragments (referred to

as k -mers) are used as features to represent biological sequences. As features of variable

length are more informative than features of fixed length, the size of the window, k, is

varied to capture variable length features. However, variable length k -mers result into a

23

high dimensional feature set, leading to increased computational complexity and decreased

classification accuracy.

Therefore, feature selection techniques are commonly used to reduce dimensionality of

the feature space, while retaining most informative features, as described in Section 2.2.2.

Feature Selection

A majority of feature selection techniques are based on the class distribution of instances

containing a feature (a.k.a., document frequency, or df , in text classification) and do not

take into account frequency of occurrence of a feature value within an instance (a.k.a., term

frequency, or tf , in text classification). Largeron et al. [2011] introduced Entropy-based

Category Coverage Difference (ECCD) that utilizes tf instead of df to compute entropy-

based dependencies between features and classes.

Let Mj represent the number of instances belonging to class cj. Max(M1..c) returns

the number of instances belonging to the majority class. The multiplication ratio rj of a

particular class cj can be computed as follows:

rj =
Max(M1..c)

Mj

(2.4)

Let tji be the number of occurrences of a particular feature fi in class cj (tf for a set

of instances belonging to the same class). To account for imbalanced data, ECCD was

modified by multiplying tji with a multiplication ratio rj corresponding to cj [Tangirala and

Caragea, 2014b], resulting in nj
i :

nj
i = tji × rj (2.5)

For a set of d documents, frequency frji of a particular feature fi in category cj is given

by

24

frji =
nj
i∑

d n
j
i

(2.6)

Shannon entropy SE(fi) of feature fi [Shannon, 1948] can be computed by:

SE(fi) = −
c∑

j=1

(
frji
)
×
(
log2

(
frji
))

(2.7)

Then ECCD(fi, cj) is defined as

ECCD(fi, cj) = (P (fi|cj)− P (fi|c̄j))×
Emax − SE (fi)

Emax

(2.8)

where P(fi|cj) is the probability of feature fi occurring in instances belonging to class

cj and P(fi|c̄j) is the probability of feature fi occurring in instances belonging to all classes

other than cj. Emax is the maximum Shannon entropy of all features (Equation 2.9).

Emax = argMax
i=1..n

(SE(fi)) (2.9)

In this work, ECCD was used to compute feature-class dependency values. All the

features were then sorted based on ECCD scores and most informative features (top features)

were selected. When sorting features, the class with the highest ECCD score is considered

to obtain a final score of the feature.

Feature Hashing

When the amount of available labeled data is not sufficient (semi-supervised and domain

adaptation learning scenarios), feature selection techniques, which rely on labeled data, may

not accurately capture feature class dependency scores. Therefore, unsupervised dimension-

ality reduction techniques that reduce dimensionality of the input feature space without

using class labels are essential. Feature hashing [Weinberger et al., 2009; Shi et al., 2009;

Forman and Kirshenbaum, 2008] is an unsupervised dimensionality reduction technique that

25

hashes a high-dimensional input feature space into low-dimensional feature vectors of pre-

defined size b. The feature hashing technique by Caragea et al. [2012] was used in this work.

This section, presents background details and working of the feature hashing technique used

to reduce the dimensionality of k -mers [Caragea et al., 2012].

Let K denote the total set of k -mers of desired length and h and ξ be two hash functions

such that h : K → {0, ..., b− 1} and ξ : K → {±1}, respectively. Each k -mer corresponding

to a biological sequence is directly mapped to one of the b bins using the hash function,

h. The hash key obtained for each k -mer is a number between 0 and b-1 that refers to the

index of the target bin. The frequency count of the current k -mer in the current sequence is

then added to the total count of the resulting bin. Therefore, entry i in the vector records

frequency counts of all k -mers that generated the hash key, i.

The function h can be any hash function; this work used the hashCode() function of the

Java String class, which uses a product sum algorithm over the complete string. If s is the

target string of length n, then the Java hashCode() for s is given by Equation 2.10, where

sum (
∑

) refers to the Java 32-bit int addition and s[i] is the ith term in the string s:

h(s) =
n−1∑
i=0

s[i] · 31n−1−i (2.10)

The hash function ξ, which returns either +1 or −1, determines whether to increment or

decrement the target bin. Use of this function can reduce the bias (several strings with the

same hash key) created by the hash function(see [Weinberger et al., 2009] for more details).

Feature hashing allows multiple k -mers to be hashed to a single bin, i, based on the

resulting hash key. Therefore, a very small value of b can be problematic as the number

of collisions increases by a large extent, resulting in significant loss of information [Caragea

et al., 2012].

26

Chapter 3

Related Work

This chapter reviews previous work on the applications of Burrows Wheeler Transform and

community detection approaches in bioinformatics in Sections 3.1 and 3.2, respectively. Sec-

tion 3.3 reviews previous work that used features constructed using the sliding window-based

approach and Section 3.4 details various feature selection techniques. Finally, Section 3.5

outlines approaches designed to construct or identify patterns and motifs from biological

sequences.

3.1 Burrows Wheeler Transform in Bioinformatics

BWT was first introduced by Burrows and Wheeler [1994] to address the problem of data

compression. The ability of BWT to efficiently identify multiple occurrences of a particular

subsequence within a sequence generated significant interest in this approach, especially in

the field of bioinformatics. Several applications on BWT have been developed for various

biological problems.

Ferragina and Manzini [2000] proposed an approach called FM-index that uses the BWT

along with the suffix array data structure to efficiently find the number of pattern occur-

rences within a text. In addition to determining the count, the FM-index also identifies the

27

location of all patterns in the original sequence. The authors proposed an algorithm whose

running time and storage space are sub-linear with respect to size of the data. BWT has

been used to facilitate alignment of short oligonucleotides. For example, Li et al. [2009]

developed SOAP2, a tool that replaced the original seed strategy of SOAP [Li et al., 2008b]

with BWT indexing, thereby reducing memory usage and increasing alignment speed.

Li et al. [2009] also aligned short reads to a longer sequence (specifically genome) using

BWT. The approach [Li et al., 2009] used the backward search with BWT and performed

top-down traversal on the prefix trie of the genome. The authors computed the number

of exact matches of a sequence of length m in O(m) time independent of the genome size.

The authors compared the performance of their approach (called BWA) with MAQ [Li

et al., 2008a], SOAP2 [Li et al., 2009], and Bowtie [Langmead et al., 2009]; in most cases,

BWA outperformed MAQ, SOAP2 and Bowtie in terms of computational time. Kulekci

et al. [2012] developed a BWT-based approach for finding maximal repeats in a given input

sequence. The approach used Wavelet Trees along with BWT and suffix arrays to initially

identify candidate repeats. The authors also sought to determine if candidate repeats could

be extended to the left of the sequence. The approach [Kulekci et al., 2012] improved the

efficiency of repeat finding for a large sequence compared to state-of-the-art suffix array-

based implementation [Becher et al., 2009]. Other approaches such as [Danek et al., 2012;

Rafal and Andrzej, 2010] also use BWT to find repeats in a set of sequences. To the best

of the author’s knowledge, BWT has never been used to generate features for biological

sequence classification.

3.2 Community Detection in Bioinformatics

In modern sciences, many complex systems can be represented using a network, with nodes

as the elementary components of the system and links as the relationships between compo-

nents. A community is a subnetwork with nodes that are strongly connected compared to

28

other network nodes. Identification of communities in a complex system can uncover struc-

tural, topographical, and/or relational properties of the system. Several approaches have

recently been proposed to identify communities in networks. Girvan and Newman [2002]

and Newman and Girvan [2004] proposed a hierarchical divisive algorithm, which is believed

to be the first algorithm of modern day community detection algorithms. The algorithm

iteratively removed edges between the nodes based on their “betweenness,” thereby defining

the number of shortest paths between nodes that pass through the edge. The process of

removing edges stops when the modularity of the partition reaches the maximum. The au-

thors used a modularity function (Newman-Girvan modularity) that defined the quality of

the partition by comparing it with a null model (random graph). Clauset et al. [2004] defined

a fast approach that begins with a set of isolated nodes in which edges are iteratively added

based on modularity (Newman-Girvan modularity) gain. Some techniques use exhaustive

optimization in order to better estimate the final maximum modularity at the expense of

computational cost [Guimera, 2004; Massen and Doye, 2005; Medus et al., 2005; Guimera

and Amaral, 2005]. Blondel et al. [2008] defined a fast multi-step technique that identi-

fied near optimal communities (locally optimal). At each iteration, the authors replaced

communities with super-nodes, thereby producing a smaller network for the next iteration.

This process was repeated until modularity no longer increased. Several other techniques

have been proposed to identify communities within large complex networks [Raghavan et al.,

2007; Rosvall and Bergstrom, 2008; Radicchi et al., 2004; Donetti and Muñoz, 2005]. The

community detection algorithm proposed by Blondel et al. [2008] was used in this work to

identify motifs or groups of related sequences and use the sequences belonging to motifs to

classify biological sequences.

In bioinformatics, community detection has been used primarily in the context of protein-

protein interaction networks and prediction of functional families [Dongfang and Xiaolong,

2013; Mahmoud et al., 2014; Mallek et al., 2015; van Laarhoven and Marchiori, 2012]. Jia

et al. [2013] used community detection to identify transcription factor binding sites in a

29

small set of nucleotide sequences in an approach referred to as TFBSGroup. To the best of

the author’s knowledge, community detection algorithms have not been used to construct

sequential features for biological sequence classification problems in a machine learning

framework.

3.3 Sliding Window Approach in Bioinformatics

K -mers generated using the sliding window-based approach are used when biologically in-

formative sets of motifs are not available. K -mers have been used to represent sequences for

several sequence classification problems. Spectrum and mismatch kernels, used primarily

for protein sequence classification, require sequences to be represented using k -mers [Leslie

et al., 2004, 2002]. Caragea et al. [2012] used feature hashing with k -mers in order to reduce

dimensionality for protein sequence classification. Sun et al. [2013] distinguished protein-

coding and non-coding transcripts using sequence composition models (based on k -mers).

K -mers have also been used in genome and transcriptome assembly, error correction of

reads, and metagenomic sequencing [Melsted and Pritchard, 2011].

3.4 Feature Selection

In sequence-based classification problems and more importantly when we are working with

k -mers, several features might act as outliers. In such cases, using all the features can mislead

the classifier, thereby affecting the performance of the classifier. Feature selection addresses

the problem of removing features that are not sufficiently informative by computing, for

example, mutual information between each feature and the class variable. Feature selection

can be essential in improving the performance of the classifier, in addition to reducing the

dimensionality of the input feature space, which affects efficiency. Various feature selection

techniques have been proposed [Ng et al., 1997; Wiener et al., 1995; Battiti, 1994].

Because of the dependency between adjacent characters of a sequence, many Markov

30

models have been developed to select features from biological sequences. Salzberg et al.

[1998] used interpolation between different orders of Markov models, known as interpolated

Markov model (IMM), and a filter (χ2 test) to select a subset of features. Saeys et al. [2007]

used the Markov blanket multivariate approach (MBF) on top of a combination of different

measures of coding potential prediction in order to retain informative features. Chuzhanova

et al. [1998] combined a genetic algorithm with a Gamma test to obtain scores for feature

subsets. The optimal subset was then selected based on the resulting scores. Zavaljevski

et al. [2002] used selective kernel scaling for SVMs to compute weights of the features.

Features with low weights were subsequently ignored. Degroeve et al. [2002] addressed

the problem of splice site prediction through feature selection, using a sequential backward

method and an embedded evaluation criterion based on SVM. However, these approaches

are computationally expensive and require a lot of time to select informative sequential

features.

Alternatively, when sequences are represented using frequency distribution of various

subsequences (features), feature selection techniques that estimate feature-class dependen-

cies using frequency distribution of instances containing a feature (a.k.a., document fre-

quency, or df , in text classification) are used [Ng et al., 1997; Galavotti et al., 2000; Caropreso

et al., 2001; Hanchuan et al., 2005]. However, these approaches do not take into account

the frequency of occurrence of a feature value within an instance (a.k.a., term frequency, or

tf , in text classification). Largeron et al. [2011] introduced Entropy-based Category Cover-

age Difference (ECCD) that makes use of tf in place of df to compute the entropy based

dependency between features and classes.

3.5 Sequential Pattern Mining Algorithms

Motif discovery has recently attracted researchers, resulting in development of several ap-

proaches and tools to identify motifs in biological sequences [Kjetil Sandve and Drabls, 2006;

31

Das and Dai, 2007; Zambelli et al., 2012]. Some approaches use probabilistic/statistical mod-

els to identify motfis, primarily represented in the form of position-specific scoring matrices

(PSSM) [Bucher, 1990], such as Multiple EM for Motif Elicitation (MEME) [Bailey and

Elkan, 1995], NMica [Down and Hubbard, 2005], AlignACE [Roth et al., 1998], MDscan [Liu

et al., 2002], Yeast Motif Finder (YMF) [Sinha and Tompa, 2003], Gibbs Sampler [Lawrence

et al., 1993], PROJECTIONS [Buhler and Tompa, 2001], DRIMust [Leibovich et al., 2013]

and CRMD [Li et al., 2010]. Although these approaches can have a fast run time, attain-

ing global optimum when identifying motifs with these approaches is sometimes difficult,

especially when the motif length is small. Other approaches such as MITRA-count [Eskin

and Pevzner, 2002], TFBSGroup [Jia et al., 2013], WEEDER [Pavesi et al., 2001, 2004],

L. SPELLER [Sagot, 1998], Voting approach [Xu et al., 2013], WINNOWER [Pevzner and

Sze, 2000], Stemming [Kuksa and Pavlovic, 2010], RecMotif [Sun et al., 2010], and sMCL-

WMR [Boucher and King, 2010] typically search for (l, d) motifs based on the consensus

model using various heuristic methods.

Several sequential mining algorithms have also been proposed to generate patterns and

motifs from biological sequences. Exarchos et al. [2006, 2008] and Fotiadis et al. [2007]

used sequential pattern mining (SPM) [Agrawal and Srikant, 1995] to generate patterns

for protein sequence classification. Liao and Chen [2013, 2014] used a recursive depth-first

approach to identify sequential patterns with and without gaps. Exarchos et al. [2008]

used cSpade [Zaki, 2001], an efficient SPM algorithm, to identify patterns for protein fold

recognition. Wang et al. [2004] introduced a tree-based SPM approach that first identifies

small patterns, known as segments, and then searches for long patterns that contain multiple

segments. Vens et al. [2011] used a combination of directed acyclic graphs and segment trees

to identify patterns from sequences belonging to the positive class. Several other approaches

have also successfully identified or generated patterns from sequential data [Zhu et al., 2007;

Kang et al., 2007; He et al., 2007; Wu et al., 2013; Chen and Liu, 2013; Liao and Chen,

2012].

32

Although these approaches effectively identify motifs (e.g., transcription factor binding

sites) within a small set of sequences, they cannot be used to construct sequential features

for machine learning algorithms (because of the large data set size). Alternatively, in this

dissertation, scalable approaches (in terms of dataset size) to construct sequential features,

specifically for biological sequence classification problems were proposed.

33

Chapter 4

Proposed Feature Construction

Approaches

As discussed in Section 2.2.2 (sliding window-based approach), for large datasets, the dimen-

sionality of the set of k -mers increases exponentially with k, thereby increasing the learning

and classification time of the learning algorithms. Therefore, feature selection techniques

are commonly used to reduce dimensionality of the input feature space, while retaining a

majority of the informative features. However, as feature selection techniques use the avail-

able labeled data in the process of selecting informative features, such techniques may not

be accurate in semi-supervised and domain adaptation algorithms, because the amount of

available label data is small.

This work, however, proposes three novel unsupervised (class labels are not required)

approaches to generate low-dimensional informative sequential features (a subset of vari-

able length k -mers) to represent biological sequences. Section 4.1 details the BWT-based

approach to generate a reduced set of sequential features. Section 4.2 describes the process

of using the CDA-based approach to generate a reduced set of k -mers, and Section 4.3 de-

scribes the process of combining the BWT-based approach with the CDA-based approach

to obtain BWT-based features with certain mismatches.

34

4.1 Burrows Wheeler Transform Approach

This section describes the process of using BWT to generate features from biological se-

quence data, specifically nucleotide and protein sequences. Section 4.1.1 explains the pro-

cess of generating BWT of a given sequence, while Section 4.1.2 describes the process of

using BWT to generate sequential features.

4.1.1 Burrows Wheeler Transform Preliminaries

BWT is a context-dependent permutation of the input sequence, such that characters ad-

joining similar suffixes (a sequence of characters or patterns occurring multiple times) are

grouped together. In what follows, a sequence S is denoted with a set of consecutive char-

acters c1c2c3...cn−1cn. BWT of S can be obtained as described below.

Generating BWT of a sequence: If c1c2c3...cn−1cn is a sequence, then cnc1c2c3...cn−1

is called a rotation R of the sequence, obtained by removing the last character of the

sequence and appending it at the beginning. A sequence of length n can have a maximum

of n rotations, denoted by an array of rotations, R[1..n]. The rotations R[1..n] are sorted

alpha-numerically and the last column of the sorted rotations (sort(R[1..n])) is the BWT

of the input sequence.

Figure 4.1 (a) shows the process of generating BWT for an example sequence ragtlagtgytlag.

A special character $ was appended to mark the end of the sequence. The last column of

the sorted rotations, gllraaattt$gygg, is the BWT of the input sequence.

4.1.2 Feature Construction based on Burrows Wheeler Transform

Characters in BWT (S), the last column of sorted rotations, sort(R[1..n]), are grouped

based on similarities among the prefixes of corresponding rotations; the array R[1..n] is

sorted alpha-numerically. Let i denote the index of a rotation in sort(R[1..n]), where 1 ≤

i ≤ n. As shown in Figure 4.1, for i = 2 and 3, the character l has two occurrences in the

35

Figure 4.1: Constructing features with Burrows Wheeler Transform. (a) For a given input
protein sequence, ragtlagtgytlag, generate all possible rotations for ragtlagtgytlag$ and
sort the rotations. The last column of sorted rotations matrix is the Burrows Wheeler
Transform of the input sequence. (b) In the transformed string, search for repetitions and
generate features associated with repetitions by extracting common prefixes associated with
each repetition from the sorted rotations.

36

last column (grouped together as rotations at indices 2 and 3) that have the same prefix

ag. The prefix of a rotation, sort(R[i]), is the suffix to the corresponding last character in

the original sequence S because each rotation is a transformation of the original sequence,

in which the last character is removed and appended at the beginning. Therefore, the

characters in BWT (S) are grouped based on similarities among corresponding suffixes in

the original sequence, S. This work exploits this property of BWT to group prefixes based

on lexicographically similar suffixes in order to generate variable length features that occur

multiple times in a given sequence.

Consecutive occurrences of a character x in BWT (S), referred to as a repetition, were

sought out in order to generate features (subsequences). Let start and end be the starting

and ending indices of a repetition in BWT (S). Rotations at indices i (where start ≤ i

≤ end) were selected from sort(R[1..n]), and a common prefix (γ) was sought among the

selected rotations. The common prefix, γ, was then appended to the repeated character,

x, and x + γ was returned as a feature. A repetition of length r is associated with a

corresponding feature occurring at least r times in the original sequence (r = end−start+1).

In this work, features and/or subsequences that occurred at least twice in the original

sequence, i.e., r ≥ 2, were selected.

Features returned by the BWT-based approach were of variable length, specifically | γ |

+ 1. From the set of all features returned by the approach, the features that match the

desired length were selected. The resulting set of features was referred to as b-mers.

Although features that occurred at least twice in at least one sequence were returned,

not all subsequences that occurred at least twice were returned as features because, in

addition to frequency, the proposed approach also considered other properties based on

possible suffixes and lengths of each feature. The properties are described in what follows.

These properties are verified implicitly when using the procedure described above (BWT-

basd approach), so they need not be checked explicitly. The following notations were used

to make the presentation precise:

37

For a sequence S, let α be a subsequence of S. For a sequence, a subsequence on the left

side of the sequence was referred to as a left segment, denoted by leftSeg, and a subsequence

on the right side of the sequence was referred to as a right segment, denoted by rightSeg.

For example, for the sequence “tgct,” “t,” “tg,” “tgc,” etc., can be leftSeg, while “t,” “ct,”

“gct,” etc., can be rightSeg. Let |α| be the length of the subsequence α. Features generated

with the BWT-based approach should satisfy all of the following properties:

1. A feature occurs at least two times in the original sequence, S.

2. If different subsequences with identical leftSeg have same frequency of occurrences,

then the BWT-based approach returns only the subsequence of maximum length that

satisfies all other properties, as a feature.

3. If a subsequence α of S has a leftSeg with frequency of occurrence in S greater than the

frequency of α in S, then the BWT-based approach returns that leftSeg as a feature

if either start or end indices associated with leftSeg are adjacent or between the start

and end indices associated with α. Otherwise, BWT returns α as a feature if all other

properties are satisfied by α.

4. If α occurs multiple times in S, the BWT-based approach returns α as a feature if no

other subsequence of S, β, exists, such that α and β have identical leftSeg. If α and β

have identical leftSeg, BWT returns the leftSeg that is common to both α and β as a

feature.

5. If α and β are two subsequences of S with identical rightSeg, preceded by two different

characters, then the BWT-based approach returns α if and only if at least two rotations

corresponding to α are grouped together in the sorted rotations (i.e., they are not inter

spread with rotations corresponding to β) and if no other subsequence(s) of S, δ, with

length greater than α is associated with the same set of grouped rotations (i.e., if

rightSeg of δ, with length |δ|-1 is a common prefix of all grouped rotations). If such

38

subsequence (s) exists, BWT returns the subsequence of maximum length (longest of

all δs) associated with grouped rotations as feature, ignoring α.

Example: Figure 4.1-(b) shows the process of generating b-mers for an example se-

quence. Let the minimum length of the repetitions, r, be 2 and the minimum length of the

features be 2 (indicating that length of γ ≥ 1). In BWT (S), which is gllraaattt$gyaa, four

repetitions can be observed: ll, aaa, ttt, and gg. Consider the first repetition, ll (x = l),

with the starting index in BWT (S), start = 2, and the ending index, end = 3. As r ≥ 2

(r = 3− 2 + 1), rotations at indices 2 and 3 were selected from sort(R[1..n]). The selected

rotations had a common prefix, γ= ag. As the length of γ was greater than or equal to 1, γ

was appended to x and lag was returned as a feature. Similarly, for repetition aaa, ag was

returned as a feature. However, for repetitions ttt and gg, length of the common prefix, γ,

was zero, which is less than the desired length. Therefore, no features associated with these

repetitions were returned. As a result, b-mers associated with sequence S = ragtlagtgytlag

were lag and ag. In addition to lag and ag, several other subsequences occurred at least

twice in the original sequence (agt, gt, tl, la) but were not returned by the proposed ap-

proach because the BWT-based approach also considered possible suffixes and lengths of

each features as follows:

• agt: agt had a leftSeg, ag with frequency greater than the frequency of agt, and the

start and end indices of ag (5 and 7) were adjacent to indices corresponding to agt (6

and 7). Therefore, based on the third property of the BWT-based approach, leftSeg,

ag was returned as a feature, instead of agt.

• gt: In addition to gt, subsequence yt that also appeared in the sequence, had identical

rightSeg, t, preceded by different characters. Therefore, based on the fifth property

of the BWT-based approach, at least two rotations of gt should not be interleaved by

rotations corresponding to yt. However, the index of the rotation corresponding to

yt, 13, was in between the two indices corresponding to gt, 12 and 14. Therefore, the

39

BWT-based approach did not return gt as a feature.

• tl: Both tl and tg had identical leftSeg, t. Therefore, based on the fourth property

of the BWT-based approach, leftSeg should be returned as the feature. However,

the length of the common leftSeg was 1, and did not satisfy the minimum length

constraint (minimum length = 2).

• la: lag had the same leftSeg, la as la; the frequency of occurrence of lag and la

was 2. Therefore, based on the second property of the BWT-based approach, lag was

returned as as a feature, ignoring la because lag satisfied all other properties.

In conclusion, b-mers can be considered as a reduced set of k -mers, selecting k -mers that

occur at least twice in at least one sequence, in addition to satisfying other properties based

on length, frequency, and suffix information.

4.2 Community Detection Approach

4.2.1 Community Detection Preliminaries

Network analysis has generated increased attention among researchers interested in identi-

fying hidden structural and relational properties within a large complex system. Similar to

a graph, a network is comprised of a set of V nodes {n1, n2, · · · , nV } and a set of E edges

{(ni, nj) | 1 ≤ i 6= j ≤ V }. Many complex systems can be represented using a network, with

nodes as elementary components of the system and the relationship between components as

links.

A community (as shown in Figure 4.2) is a subnetwork whose nodes are highly con-

nected with each other, when compared to other nodes. A community within a network

reflects a group of closely associated nodes. Many methods have been developed to identify

communities among a network [Harenberg et al., 2014; Fortunato and Lancichinetti, 2009;

40

Fortunato, 2010]. In this work, a modularity gain-based, multi-step technique was used to

identify communities [Blondel et al., 2008].

Figure 4.2: A network and its associated communities.

Identifying Communities by Optimizing Modularity [Blondel et al., 2008]:

The algorithm proposed by Blondel et al. [2008] identifies communities by optimizing mod-

ularity. This algorithm is a fast and efficient approach to identify high modularity partitions

in a large network.

Modularity, Q, measures network structure by defining network strength when divided

into modules (subnetworks or communities). High modularity of a network suggests that

nodes within each community are densely connected compared to other nodes. Equation

(4.1) can be used to compute modularity, where Aij is the weight of the edge (ni, nj):

Modularity = Q =
1

2E

∑
0≤i,j≤V

[
Aij −

kikj
2m

]
δ(Ci, Cj) (4.1)

For an unweighted network, the default weight of the edge was chosen to be 1; ki is the

sum of the weights of all edges corresponding to node ni, given by ki =
∑n

j=1Aij; Ci is the

community to which ni is assigned, δ(., .) is the Kronecker function (Equation 4.2), and m

= 1
2

∑
ij Aij.

41

δCi,Cj
=

0 if Ci 6= Cj

1 if Ci = Cj,

(4.2)

This approach [Blondel et al., 2008] is a two-phase iterative process. In the first phase,

each node is assigned to a different community. Then, for each node, ni, the algorithm

computes gain in modularity, ∆Q, achieved by removing ni from its community and placing

it in the community of nj, where nj is a neighboring node of ni. Node ni is then assigned

to the community of nj for which maximum modularity gain is obtained based on the

Equation 4.3.

∆Q =

[∑
in +2ki,in

2m
−
(∑

tot +ki
2m

)2
]
−

[∑
in

2m
−
(∑

tot

2m

)2

−
(
ki

2m

)2
]

(4.3)

where
∑

in is sum of the weights of the edges within community Cu,
∑

tot is the sum of

weights of all edges associated with the nodes in Cu, ki is the sum of weights of all edges

from node i, ki,in is the sum of weights of all edges from node i to all nodes in Cu, and m

= 1
2

∑
ij Aij.

In the second phase, a new network is constructed with nodes being the communities

identified in the first phase. Weights of edges between the new nodes are computed as the

sum of weights of edges between nodes of the corresponding two communities. Edges among

nodes of the same community form self-loops in the new network. These two phases are

iterated until no further improvement is observed in the modularity gain and the final set

of communities is returned.

Resulting communities can be used to determine several properties of the network. Jia

et al. [2013] used this community detection algorithm to identify transcription factor binding

sites in nucleotide sequences. Section 4.2.2 presents details of the approach proposed by Jia

et al. [2013], referred to as TFBSGroup.

42

4.2.2 Identifying Motifs Using Community Detection - TFBS-

Group

Jia et al. [2013] proposed the approach of using a community detection algorithm to identify

transcription factor binding sites (a.k.a., motifs) in a set of nucleotide sequences. A motif is

a widespread pattern across various sequences with potential biological significance. A motif

can be obtained by aligning a set of highly correlated subsequences that occur across various

sequences (called motif instances). The motif is also referred to as the consensus of its motif

instances. TFBSGroup, the approach proposed by Jia et al. [2013], attempts to identify

motifs under the ZOMOPS constraint (Zero, One, or Multiple Occurrences of a Motif Per

Sequence). Identified motifs have length k, and a maximum of d mismatches between motif

instances and motif consensus is allowed. For a set of N sequences of maximum length L,

the TFBSGroup approach works in three phases:

1. Network construction: The first phase involves construction of an N -partite graph.

Network nodes represent all possible l-mers (subsequences of length l) of input se-

quences. Therefore, for a set of N sequences, each of length L, (N ∗ (L− l+ 1)) nodes

exist.

A pair of nodes are connected by an edge only if the Hamming distance between l-

mers corresponding to the two nodes is no more than x. If the maximum Hamming

distance between a motif instance and motif consensus is d, the maximum number of

mismatches between any two motif instances is 2d. Therefore, x is given a maximum

value of 2d while the network is constructed, and the minimum value of x is chosen

to be d (i.e., d ≤ x ≤ 2d) to avoid spurious edges. Two nodes (l-mers) from the same

sequence are not connected by an edge; therefore, a set of N sequences generates an

N -partite graph/network. Figure 4.3 shows a 2-partite network for 2 sequences, with

l = 4, d = 1, and x = 2.

2. Community detection: After constructing the network, all possible communities of

43

Figure 4.3: Construction of N-partite graph for two sequences with subsequence length, l
= 4, maximum hamming distance, d = 1.

size at least q are identified in the N -partite network using the community detection

algorithm, described in Section 4.2.1.

3. Identifying motifs: For each community identified in the previous phase, a motif

consensus is generated by aligning all l-mers from that particular community. Each

motif consensus is greedily refined towards the true motif as follows:

(a) For each node in the community, its neighbors (i.e., set of nodes, with l-mers of

the original sequence that are surrounded by l-mer corresponding to the current

node) are considered. For each node in the neighbor set, if the Hamming distance

between the corresponding l-mer and the motif consensus is less than or equal to

d, the node is added to a new community.

(b) The l-mers corresponding to nodes of the new community are further aligned to

form a new candidate motif consensus. These two steps are iterated until the

new candidate motif consensus remains unchanged.

(c) The l-mers of nodes corresponding to the final community are shifted to the left

and right because the true motif consensus and its instances may be near the

final candidate motif consensus and their associated instances.

For each community, the refined motif consensus and associated motif instances are

44

returned together with a significance score [Pavesi et al., 2001, 2004]. The top t motifs

(default value of t was chosen to be 10) are then selected based on the significance

score (additional details regarding the TFBSGroup approach are presented in [Jia

et al., 2013]).

Time and space complexity: Let p(l, x) be the probability of two l-mers with a

maximum Hamming distance of x, where p(l, x) is defined as shown in Equation (4.4):

p(l, x) =
x∑

i=0

(
i

l

)
3

4

i

· 1

4

(l−i)
. (4.4)

According to Jia et al. [2013], the worst-case time complexity of TFBSGroup algorithm

is O (p(l, x)2 ×N4 × L4). However, since the probability term, p(l, x), is bounded above by

1.0, O (p(l, x)2 ×N4 × L4) ⊆ O (N4 × L4); that is, it is also in the Big-O class O (N4 × L4).

Although TFBSGroup can successfully identify transcription factor binding sites in a

small set of sequences, it cannot be applied to generate features for classification problems

due to the large number of sequences involved in classification. Therefore, an approach for

scaling up TFBSGroup was proposed in this work. Section 4.2.3 describes the proposed

approach, referred to as the CDA-based approach, to extend TFBSGroup to generate low-

dimensional informative sequential features for nucleotide sequence classification problems.

4.2.3 Feature Construction for Large Nucleotide Sequence Datasets

In order to extend TFBSGroup to generate features for sequence classification problems,

TFBSGroup was invoked on randomly selected R samples, each of S sequences, from avail-

able data consisting of N sequences, where S � N , as shown in Figure 4.4. As a result, the

time complexity of running TFBSGroup on a sample was reduced to

O(p(l, x)2 × S4 × L4) � O(p(l, x)2 ×N4 × L4), as S4 � N4.

For a set of R samples, the time complexity was

O(p(l, x)2 × S4 × L4 ×R) � O(p(l, x)2 ×N4 × L4), when (R× S4)� N4.

45

Figure 4.4: Using community detection algorithm to construct sequential features for bio-
logical sequences. Available training data containing N sequences was split into R samples,
each containing S sequences. TFBSGroup was then invoked on each of the samples, and
outputs of all the samples were grouped to form the final set of motifs.

46

In this work, R and S were chosen to achieve scalability. When generating R samples,

overlap between samples was allowed, but not overlap between sequences within a sample,

because the objective of the CDA-based approach was to find frequent patterns or motif

instances across sequences, but not necessarily within a sequence.

TFBSGroup was invoked on each individual sample and the top t motifs from each

sample were selected. All resulting motifs were merged to form the final set of motifs. As

a result, the final set of motifs contained a total of t × R motifs (for a particular length

of the motif, l). Figure 4.5 presents an example motif for nucleotide sequences, with motif

consensus, a score that specifies motif quality, and a set of motif instances with their position

(sequence#, startingposition) in the set of S sequences. A motif is a set of l-mers with

a maximum of 2d mismatches among themselves that span various sequences of a sample.

The set of unique motif instances and the motif consensus were referred to as the set of

c-mers (because they were identified based on community detection).

Figure 4.5: A sample motif identified using the CDA-based approach. Motif instances,
motif consensus, and the significance score of the consensus are shown.

47

Although this approach can be used to construct features for learning classifiers from

large sets of nucleotide sequences, it cannot be directly used to construct features for learning

protein sequence classifiers because the Hamming distance is not an accurate similarity

measure when determining differences between short protein l-mers.

4.2.4 Feature Construction for Protein Sequence Datasets

For protein sequences, short motifs (up to length 4) carry better information than long

motifs [Cheng et al., 2005; Yang et al., 2008; Caragea et al., 2012]. When the length of the

motif is short (e.g., l = 1, 2, or 3), the probability of two protein l-mers having Hamming

distance less than a particular threshold, x, is high because x ≈ l; therefore the resulting

network is very dense. For long motifs (e.g., l = 6, 7, or 8), the desired threshold x is

typically smaller than l. Therefore, given the large alphabet size of protein sequences, the

probability of having an edge between two nodes is very low, resulting in a very sparse

network. When Hamming distance is used to construct a network of protein subsequences,

the resulting network is either too sparse or too dense. In order to address this problem,

a novel idea of using substitution scores in the process of constructing sequential features

for protein sequences was proposed in this work. Substitution scores were computed using

substitution matrices for amino acids which take into account divergence time as well as the

substitution rate for each possible alignment of amino acids. Based on default parameters

for BLAST, PAM30 substitution matrix [Dayhoff et al., 1978; Henikoff and Henikoff, 1992],

shown in Figure 4.6, was used in this work to compute the substitution score between two

protein motifs as an attempt to capture similarities between short subsequences.

Similar to Hamming distance, the substitution score for a pair of l -mers was computed

based on alignment of amino acids at respective positions of the l -mers. However, contrary

to using Hamming distance, when using substitution matrices, the score of alignment at a

particular position is affected by the match/mismatch of the respective amino acids and by

the degree of match/mismatch as captured by the substitution matrix. For example, con-

48

sider two pairs of 3 -mers: {NQM,DHM} and {PGD,RGD}. For pair 1, the Hamming

distance is 2 and the substitution score is 14, and for pair 2, the Hamming distance is 1 and

the substitution score is 10. Substitution scores were computed using PAM30 matrix [Day-

hoff et al., 1978] and the scores represent similarity as opposed to distance. The higher the

substitution score values, the more similar the sequences. Therefore, based on Hamming

distance, l -mers of pair 2 are more similar than l -mers of pair 1. Contrarily, based on sub-

stitution scores, l -mers of pair 1 are more similar compared to pair 2. Because substitution

scores capture the degree of match/mismatch, they are preferable to the Hamming distance

when the objective is to identify similar protein sequences.

Figure 4.6: PAM30 substitution matrix used in the CDA-based approach to find the simi-
larity between two protein subsequences.

49

In this work, the substitution score between any motif instance and motif consensus was

chosen to be at least s. Similar to nucleotide sequences, when constructing the subsequence

network, a pair of nodes (protein subsequences of length l) were connected by an edge only

if the substitution score of the two l -mers was greater than a particular threshold s/2 (to

avoid spurious edges). After constructing the network, all possible communities of size at

least q were identified in the network using the community detection algorithm, and l -mers

corresponding to each community were aligned to form the motif consensus. Subsequently,

each motif consensus was greedily refined towards the true motif using substitution scores

as described in Section 4.2.2. The refined motif and motif instances were returned with

a normalized substitution score. This process of refining community to identify motif was

repeated for all communities identified by the algorithm. The top t motifs (default value of

t was chosen to be 10) among all resulting motifs were then selected based on normalized

substitution scores.

4.3 Hybrid Approach

4.3.1 Motivation

The BWT-based approach constructs features that occur at least twice in at least one

sequence. In addition to frequency, b-mers also satisfy properties based on length and

the associated suffix, as described in Section 4.1.2. Contrarily, the CDA-based approach

constructs features that occur multiple times in various sequences with certain mismatches.

These approaches capture different information in terms of constructing features. While

the BWT-based approach does not take into account variations (possible mismatches) of

the features and primarily generates non-overlapping features, the CDA-based approach

generates overlapping features. A combination of the two proposed approaches, the CDA-

based approach guided by BWT features, is believed to be better than the BWT and

CDA-based approaches because the resulting set would include b-mers with mismatches,

50

thereby including features that are not limited to but similar to b-mers.

Section 4.3.2 describes the process of combining the BWT-based approach with the

CDA-based approach to construct a hybrid set of features.

4.3.2 Feature Construction Using the Hybrid Approach

To combine the BWT-based approach with the CDA-based approach, b-mers (features con-

structed using the BWT-based approach) were provided as priors/inputs to the CDA-based

approach (as shown in Figure 4.7). The only difference between the HBA approach and

the CDA-based approach is the process of network construction. The process of identifying

communities and motifs is identical to the CDA-based approach (Section 4.2.3).

Figure 4.7: Using the hybrid approach to construct sequential features for biological se-
quences. Available training data containing N sequences was split into R samples, each
containing S sequences. TFBSGroup was then invoked on each of the samples (with the
c-mers guided by with the associated b-mers of each sample), and outputs of all the samples
were grouped to form the final set of motifs.

51

Details of constructing a network of l-mers using knowledge obtained from b-mers are

provided below:

Network Construction with BWT-based Features as Input: As described in

Section 4.2.3, R samples were generated in which each sample consisted of S sequences.

To construct the newtork, for each sample, instead of using all possible l-mers, l-mers were

initially filtered as described below:

Figure 4.8: HBA approach: The process of using b-mers as input to the CDA-based ap-
proach to identify BWT-based features with certain mismatches. The total set of l-mers in
a sample were initially filtered based on similarity with any of the b-mers in that sample.
Filtered l-mers were then sent as input to TFBSGroup to identify motifs.

1. All possible b-mers within a sample were generated by providing sequences of the

current sample as an input to the BWT-based approach (Section 4.1.2).

2. Each sequence in the sample was parsed to generate l-mers and retained only the

l-mers that satisfied the following condition:

• For nucleotide sequences, l -mers with a maximum Hamming distance, dh, to at

least one of the b-mers are retained. If the value of dh is closer to d, then the

52

CDA-based approach is largely biased by the BWT-based approach, resulting in

a similar set of features restricted to b-mers. Therefore, to avoid spurious edges

and capture sufficient information from the BWT and CDA-based approaches,

the value of dh was chosen to be sufficiently larger than d (which is further used

by CDA-based approach to join nodes and refine motifs).

• For protein sequences, the set of l -mers with a minimum substitution score, sh,

to at least one of the b-mers are retained. Similar to nucleotide sequences, the

value of sh was chosen to be significantly smaller than s/2 (where s/2 is used by

the CDA-based approach to join nodes and s is used to refine motifs).

3. Two nodes were then joined in the resulting set, as described below:

• For nucleotide sequences, a pair of nodes (nucleotide subsequences of length l) are

connected by an edge only if the Hamming distance between l-mers corresponding

to the two nodes is no more than x (where d ≤ x ≤ 2d), and if they belong to

different sequences.

• For protein sequences, a pair of nodes (protein subsequences of length l) are

connected by an edge only if the substitution score of the two l -mers is greater

than a particular threshold, s/2, and if they belong to different sequences.

After constructing the network, all possible communities having at least q nodes were

identified, and the set of l -mers corresponding to each community was further refined to

generate the final set of motifs (similar to the process of generating motifs from communities

using the CDA-based approach). The resulting set of sequential features were referred to as

h-mers.

53

Chapter 5

Experimental Setup

Section 5.1 describes the datasets used to evaluate features generated using the proposed

approaches (BWT, CDA, and HBA). Section 5.2 lists high level research questions addressed

throughout this work. Finally, Section 5.3, describes the experimental setup used to conduct

the experiments.

5.1 Datasets

Features generated using the proposed approaches were evaluated on nucleotide and pro-

tein sequence datasets. Specific details corresponding to the datasets are provided in the

following sections.

5.1.1 Alternative Splicing Datasets

For nucleotide sequences, this work focused on the problem of classifying exons as alter-

natively spliced or constitutive for two organisms: C. elegans (referred as CE) and D.

melanogaster (referred to as DM).

54

• C. elegans :

– Class distribution: The dataset consisted of 3018 sequences belonging to one

of two classes: alternatively spliced (487) and constitutive (2531) exons.

– Generation: The dataset was originally generated by Rätsch et al. [2005]. The

authors collected ESTs and cDNAs corresponding to C. elegans from Wormbase,

dbEST and UniGene. ESTs were aligned to genomic DNA using BLAT, which

was used to confirm exons and introns. Alignments were further refined, and

all the alignments that agreed and shared at least one complete exon or intron

were merged. The authors then identified pairs of sequences that shared the

same 3’ and 5’ boundaries of the upstream and downstream exons, confirming

that both sequences of each pair belonged to one gene. If the identified pair had

one sequence that contained an internal exon and the other did not, then that

particular exon is skipped, exhibiting alternative exon usage. The authors thus

identified a total of 487 exons that exhibited alternative splicing. For constitutive

exons, the authors considered exons that did not show evidence of alternative

splicing, when internal exons and flanking introns were confirmed by ESTs at least

twice. The authors thus extracted 2,531 exons likely to be consitutively spliced.

The final dataset consisted of 487 alternatively spliced and 2531 constitutive

exons along with their associated flanking introns, accounting for a total of 3018

exon triples.

• D. melanogaster :

– Class distribution: The dataset consisted of 1409 sequences belonging to one

of two classes: alternatively spliced (164) and constitutive (1245) exons.

– Generation: This dataset was constructed in our lab using ALEXA [Griffith

et al., 2008]. Using the precomputed dataset (various isoforms for several genes

corresponding to D. melanogaster) obtained from ALEXA, a particular exon was

55

classified as alternatively spliced if it was skipped in at least one of the isoforms

and constitutive otherwise.

Informative motifs that may be responsible for alternative splicing are believed to occur

close to the acceptor and donor regions. Therefore, in this work, a ±100 window around

the acceptor and donor regions was used for every example in the dataset. The two regions

were separated by a delimiter “&” to ignore features that span across the two regions. The

process of generating each instance from the original sequence is shown in Figure 5.1. The

resulting sequences of length 402 nucleotides, labeled with the class (spliced or constitutive)

to which they belong were used to evaluate the features constructed using the proposed

approaches.

Figure 5.1: Preprocessing of alternative splicing data. Regions of 100 bp long around the
acceptor and donor regions, separated by a delimiter &, were selected.

5.1.2 Protein Localization Datasets

For protein sequences, this work focused on classifying protein sequences based on their

respective localization. Four different protein sequence datasets were used to conduct ex-

periments: PSORTb v.2.0: Gram-negative (referred to as gNeg) and Gram-positive (referred

to as gPos) datasets [Gardy et al., 2005], available online at

56

http : //www.psort.org/dataset/datasetv2.html, and TargetP: plant and non-plant (re-

ferred to as nonPlant) datasets [Emanuelsson et al., 2000], available online at

http : //www.cbs.dtu.dk/services/TargetP/datasets/datasets.php.

• PSORTb datasets:

– Class distribution: The gNeg dataset consisted of 1444 sequences belonging

to one of five classes: cytoplasm (278), cytoplasmic membrane (309), periplasm

(276), outer membrane (391), and extracellular (190). The gPos dataset con-

sisted of 541 sequences belonging to one of the four classes: cytoplasm (194),

cytoplasmic membrane (103), cellwall (61), and extracellular (183).

– Generation: PSORT uses knowledge obtained from signal sequences in N-

terminus, transmembrane segments, cleavable signals, lipoproteins, and amino

acid composition to discriminate proteins based on their localizations. PSORT

uses several methods to identify signals in protein sequences [Nakai and Kane-

hisa, 1991; Yamaguchi et al., 1988]. PSORT then applies a set of rules based on

identified signal information to label protein sequences.

• TargetP datasets:

– Class distribution: The plant dataset consisted of 940 sequences belonging

to one of four classes: chloroplast (141), mitochondrial (368), secretory path-

way/signal peptide (269), and other (consisting of 54 proteins labeled nuclear

and 108 examples labeled cytosolic). The nonPlant dataset consisted of 2738

sequences belonging to one of three classes: mitochondrial (361), secretory path-

way/signal peptide (715), and other (consisting of 1224 proteins labeled as nuclear

and 438 proteins labeled as cytosolic).

– Generation: Protein sequences were classified based on their respective local-

izations using TargetP 1.1 server. TargetP predicts the subcellular location of eu-

karyotic protein based on the predicted presence of any N-terminal presequences:

57

chloroplast transit peptide (cTP), mitochondrial targeting peptide (mTP), or

secretory pathway signal peptide (SP). Potential cleavage sites were also pre-

dicted for sequences predicted to contain an N-terminal presequence. TargetP

uses ChloroP and SignalP to predict cleavage sites cTP and SP.

5.2 Research Questions

The primary objective of the experiments in this work was to evaluate the predictive power of

features generated using the proposed approaches (b-mers, c-mers, and h-mers) compared to

features generated using the sliding window-based approach (k -mers) and hashing features

(referred to as r-mers) in three different scenarios: supervised, semi-supervised, and domain

adaptation. Experiments were specifically motivated by the following research questions:

1. How does the number of b-mers, c-mers, and h-mers compare to the number of all

possible k-mers? Features constructed using the proposed approaches satisfy several

properties, as opposed to generating all possible subsequences of a particular length

(k-mers). Therefore, dimensionality of b-mers, c-mers, and h-mers was expected to be

very small compared to dimensionality of the set of all k -mers.

2. How does the predictive power of each proposed feature set, b-mers, c-mers, and h-mers,

compare to the predictive power of k-mers? In order to investigate the predictive power

of features generated using the proposed approaches (b-mers, c-mers, and h-mers),

the performance of classifiers learned from sequences represented using the respective

feature set was compared to the performance of classifiers learned from sequences

represented using an equal number of k -mers (obtained via feature selection from the

total number of k-mers). Because the proposed approaches are not supervised (i.e.,

do not make use of sequence labels), experiments were conducted in three learning

scenarios: supervised, semi-supervised, and domain adaptation.

58

3. How does the predictive power of b-mers, c-mers and h-mers compare to each other

and to feature hashing? In order to compare the predictive power of the proposed

feature sets to each other as well as to another dimensionality reduction technique,

specifically feature hashing, as described in Section 2.2.2, experiments were conducted

in supervised, semi-supervised, and domain adaptation scenarios.

5.3 Experimental Setup: 5-fold Cross-Validation

The 5-fold cross-validation procedure was used to run all the experiments. This section

details the 5-fold cross-validation scheme.

The total data was divided into five splits. Each algorithm was run five times. One

of the five splits was considered for test and the remaining four splits were considered for

training each time. By the end of all five runs, all the splits were used as test data one time.

Performance was reported by taking the average of the predictions obtained in each of the

five runs. Figure 5.2 shows the splits of the total data and the corresponding train and test

data. The cross-validation procedure was used to reduce the bias in data sampling.

Supervised learning scenario: In the supervised learning scenario, we used all train

data (four folds) as labeled in order to train the classifier. The trained classifier was then

used to predict the test data (fifth fold). Figure 5.3 shows the split of train and test data

for one of the five iterations.

Semi-supervised learning scenario: SSL is mainly used when the amount of available

labeled data is small, but large amounts of unlabeled data are available. To ensure the data

assumption of SSL, the data was split as follows:

• One of the five folds, 20% of the total data, was used to test the classifier (T).

• Data from the remaining four folds was split into:

– 10% as labeled data used for training (L)

59

Figure 5.2: The 5-fold cross-validation setting for experiments. On each run, four folds
were used for training and one fold was used for testing.

Figure 5.3: One of the five runs of the 5-fold cross-validation setting in a supervised learning
scenario. Total data was divided into four folds for training and one fold for testing. All
train data was used as labeled to learn a supervised classifier, which was later used to predict
the test data.

60

– 90% as unlabeled data for training (U):

∗ In order to study variation of the performance with unlabeled data, the

amount of unlabeled data was varied from 20% to 90% with increments of

10% (while maintaining the amount of labeled data fixed to 10%)

The amount of labeled data was chosen to be smaller than the amount of unlabeled data.

On each of the five iterations corresponding to the cross-validation setting, an SSL classifier

(ST or CT, as described in Section 2.2.1) was learned using labeled and unlabeled data (L

+ U) and further used to predict respective test data (T), as shown in Figure 5.4.

Figure 5.4: One of the five runs of the 5-fold cross-validation setting in an SSL scenario.
Total data was split into four folds for training and one fold for testing, and the train data
was further split into labeled and unlabeled data and sent as input to the SSL classifier.

Domain adaptation scenario: As discussed in Section 2.2.1, in order to evaluate

features in the domain adaptation framework, data was required from two different domains,

source and target. As shown in Figure 5.5, on each iteration, all the data from source domain

was used for training (referred to as sL), while data from the target domain was split into

three subsets:

• One of the five folds, 20% of the total target data, was used to test the classifier

(referred to as tT).

• Data from the remaining four folds of target data was further split into:

61

– 20% as labeled for training (referred to as tL):

– 80% as unlabeled for training (referred to as tU)

∗ The amount of unlabeled data was varied from 20% to 80% with increments

of 20%, i.e., 20%, 40%, 60% and 80%

Figure 5.5: One of the five folds of the 5-fold cross-validation setting in a domain adapta-
tion scenario, containing data from two domains (source and target). Complete data from
the source domain was treated as labeled, while target data was further split into labeled and
unlabeled (four folds) and test data (one fold).

5.4 Learning Algorithms and Other Experimental De-

tails

As discussed, experiments were conducted in three learning scenarios. The following default

learning algorithms were used for various scenarios:

• Supervised learning scenario: NBM (Section 2.2.1).

• Semi-supervised learning scenario: ST and CT, with NBM as the base classifier (Sec-

tion 2.2.1). CT is a two-view learning process in which each view corresponds to a

62

subset of features. To generate views, the features were randomly split into two sub-

sets. The number of iterations of both ST and CT were fixed to 100, and sample size

was fixed to 50.

• Domain adaptation scenario: Multinomial Näıve Bayes for domain adaptation (Sec-

tion 2.2.1).

Experiments were conducted on all six datasets (CE, DM, gPos, gNeg, plant, and non-

Plant) in supervised, SSL and domain adaptation scenarios. For the domain adaptation

scenario, a source domain with labeled data was assumed to be available in addition to the

target domain labeled and unlabeled data. Experiments were conducted with the follow-

ing pairs of source→target domains: CE → DM , DM → CE, GP → GN , GN → GP ,

P → NP , and NP → P , respectively. Only overlapping classes within a pair of domains

were used in the domain adaptation scenario (i.e., cytoplasm, cytoplasmic membrane, and

extracellular for the GP/GN pairs, and mitochondrial, secretory pathway/signal peptide,

and others for P/NP pairs). For each run, all data from the source domain was used as

labeled (sL), and the four target train data folds were split into labeled (tL) and unla-

beled (tU). In all the experiments conducted, area under ROC curve (AUC) was used as a

performance metric.

63

Chapter 6

Burrows Wheeler Transform

Approach: Experiments and Results

Section 6.1 of this chapter lists the set of more specific research questions related to the

BWT-based approach proposed in this work. Section 6.2 details the default parameters

used and experiments performed to address research questions. Finally, Section 6.3 includes

discussion and analysis of results.

6.1 Research Questions

1. How does the number of b-mers compare to the number of k-mers for various biological

sequence data sets?

The BWT-based approach only returns a subset of k -mers that occur at least twice in

at least one sequence. However, not all k -mers that occur at least twice are returned by

the BWT-based approach because, in addition to frequency, b-mers satisfy additional

properties based on suffix and length (Section 4.1). Therefore, dimensionality of the

set of b-mers was expected to be very small compared to dimensionality of the set

of k -mers, thereby making the BWT-based approach an attractive dimensionality

64

reduction technique.

2. When feature selection is used in the case of supervised learning, which set,the set of

b-mers or the set of k-mers, is more informative?

In the supervised scenario, availability of labeled data can be sufficient to accurately

estimate feature-class dependencies. Therefore, good performance may be attained

with a small number of highly informative features obtained from the feature selec-

tion technique. In order to evaluate features in the b-mers and k -mers sets, feature

selection was applied to select the same number of features from both feature sets.

Classifiers were then learned from each subset, respectively, and their performances

were compared.

Ideally, good performance should be achieved with a sufficiently small number of

informative features. Therefore, the number of selected features from b-mers and

k -mers was varied and the respective performance of the classifiers was recorded.

3. How does the predictive power of b-mers compare to the predictive power of k-mers in

a semi-supervised learning scenario?

In SSL, feature selection techniques may not accurately capture feature-class depen-

dencies, thereby selecting uninformative features. Because the dimensionality of b-

mers is much smaller than dimensionality of k -mers, and considering the unsupervised

nature of the proposed approach in generating features, the predictive power of b-mers

was investigated in an SSL scenario.

4. How does the predictive power of b-mers compare to the predictive power of k-mers in

the domain adaptation scenario?

For domain adaptation, as discussed in Section 5.3, data was obtained from two differ-

ent domains: source domain and target domain. The predictive power of b-mers was

investigated in a domain adaptation learning scenario when the amount of available

labeled data from target domain is small.

65

5. How do results vary with amounts of unlabeled data in semi-supervised and domain

adaptation scenarios?

The total data (labeled, unlabeled and test for SSL scenario; target labeled, target un-

labeled, target test and source labeled for domain adaptation scenario) was represented

using b-mers and k -mers. Intuitively, for the same amount of labeled data, increas-

ing the amount of unlabeled data is expected to benefit the classifier. To study this

behavior, the amount of labeled data (target labeled in domain adaptation scenario)

was fixed in the experiments and the amount of unlabeled data (target unlabeled in

domain adaptation scenario) was varied to observe variation in the performance of

respective classifiers (SSL and domain adaptation).

6.2 Parameters and Experiments

6.2.1 Default Parameters

The following default values were used for parameters of the BWT-based approach when

conducting experiments:

• Length of features: Feature length in the BWT-based approach was controlled by

parameter l. From the total set of variable length features obtained from the BWT-

based approach, features with length l where filtered, where l can be of variable length.

In this work, the following values of l were used for nucleotide and protein sequences.

– Nucleotide sequences: 6, 7, and 8.

– Protein sequences: 2, 3, and 4.

• Minimum number of occurrences, r: This parameter controlled the minimum number

of times resulting b-mers occurred in at least one sequence. In this work, r was

chosen to be 2, indicating that resulting features occurred at least twice in at least

one sequence.

66

6.2.2 Experiments

This section, describes the set of experiments conducted to address research questions cor-

responding to BWT-based features discussed in Section 6.1.

Supervised scenario: As discussed in Section 5.3, total data was divided into train

and test data (5-fold cross-validation setting). In each iteration (run), train data was used

to generate the set of features (b-mers and k-mers) as described below:

• Generating b-mers: To generate b-mers, the BWT-based approach (described in

Section 4.1.2) was invoked with train sequences, length of features (l) and minimum

number of occurrences of the motif in the original sequence (r) as input. The BWT-

based approach returned the set of b-mers. The number of b-mers was denoted by

Db−mers.

• Generating k-mers: The sliding window-based approach (Section 4) was used, with

k = l in order to perform a fair comparison with the proposed approach. The number

of k-mers was denoted by Dk−mers.

In order to generate features of variable length, the above process was repeated for

multiple values of l. The first question from Section 6.1 was addressed by comparing Db−mers

to Dk−mers.

In order to address the second question from Section 6.1, feature selection was applied

on the labeled data (all the train data in supervised scenario), represented using b-mers

(referred to as Labb−mers) and k-mers (referred to as Labk−mers), separately, to select top

f features. Let fb−mers be top f features selected from Labb−mers, and fk−mers be top f

features selected from Labk−mers. The performance of the classifiers learned from the data

represented using fb−mers and fk−mers was compared. Although dimensionality was reduced

to f for both b-mers and k -mers, obviously, the features in fb−mers differed from the features

in fk−mers. f was varied from 50 to 1500 (specifically, 50, 100, 150, 200, 250, 500, 1000, or

1500).

67

Semi-supervised scenario: The unsupervised nature of the BWT-based approach

to generate features motivated use of b-mers in an SSL scenario. In the semi-supervised

scenario, as discussed in Section 5.3 the total data was split into labeled, unlabeled, and

test, such that the amount of unlabeled data was larger than the amount of labeled data.

As class labels are not taken into account when generating b-mers and k-mers, all the

train data (labeled and unlabeled) was used to generate b-mers (as described in Section 4.1.2)

and k -mers. In order to perform a fair comparison, feature selection was used on labeled data

only, represented using k-mers in order to select top Db−mers features. Labeled, unlabeled,

and test data were represented using b-mers and k-mers (reduced to the dimensionality of

Db−mers). The transformed labeled and unlabeled data were used to learn semi-supervised

classifiers which were further used to predict corresponding test data for both feature sets;

performance of the classifiers was recorded. In order to understand the predictive power of

features in a semi-supervised scenario, the amount of labeled data was fixed to 10% and the

amount of unlabeled data was varied from 20% to 90%, thereby addressing the third and

fifth questions from Section 6.1.

Domain adaptation scenario: Because class labels were not taken into account, all

the train data (labeled and unlabeled) from target domain was used to generate b-mers

(as described in Section 4.1.2) and k-mers. Similar to the experimental setup for the SSL

scenario, feature selection was used on target labeled data (tL) represented using k-mers to

select top Db−mers features. Source labeled (sL), target labeled (tL), target unlabeled (tU),

and target test (tT) data were then represented using both b-mers and k-mers (reduced to

the dimensionality of Db−mers). Domain adaptation classifier (described in Section 2.2.1)

was trained using source labeled, target labeled, and target unlabeled data, represented

using b-mers and the reduced set of k-mers. The classifier was then used to predict target

test data (T), and AUC was recorded. The amount of target labeled data was varied from

5% to 20% and target unlabeled data was varied from 20% to 80%, thereby addressing the

fourth and fifth questions from Section 6.1.

68

Table 6.1: Comparison of the number of features generated using b-mers and k-mers for
the six datasets used, averaged over 5 folds.

Dataset b-mers k -mers

CE 9276 84158
DM 6669 84513
gPos 4696 86319
gNeg 6354 117935
plant 4498 103611

nonPlant 13008 151261

6.3 Results

6.3.1 Dimensionality Comparison

Table 6.1 presents the number of features generated using the sliding window-based approach

(k -mers) and BWT-based approach (b-mers), averaged over five folds. This experiment was

performed in a supervised learning scenario in which all available data (labeled data) was

used for generating features. As shown in Table 6.1, the number of features in the set of

k -mers was significantly greater than the number of features in the set of b-mers.

6.3.2 Supervised Scenario: b-mers versus k-mers

This section, evaluates the predictive power of b-mers in a supervised learning scenario. As

discussed in Section 6.2.2, feature selection using all available labeled data was used to select

top f features (from b-mers and k -mers, respectively) that were further used to represent

the sequences. NBM classifiers (Section 2.2.1) were then learned using all available labeled

(train) data. The resulting classifiers were used to predict test data, and performances on

each fold were recorded and averaged. This process was repeated for different values of f

(varied from 50 to 1500), and corresponding AUC values (averaged over five folds) were

reported.

Table 6.2 reports AUC values of the NBM classifier learned using the two sets of features,

b-mers and k -mers, for the two nucleotide (CE and DM), and four protein (gPos, gNeg, plant,

69

and nonPlant) datasets. For each dataset, maximum AUC between b-mers and k-mers for

each variation of the number of features selected was reported in the bold font. Besides using

the reduced number of features, to get an estimate of the best AUC that can be achieved

using k-mers, AUC values of the NBM classifier learned using all the k-mers are also reported

in Table 6.2, referred to as k-mersAll (italicized). To better understand the behavior, results

are also plotted in Figure 6.1. As shown in Table 6.2, in 46 out of 48 experiments, the NBM

classifier learned from b-mers performed better than the classifier learned from k -mers. The

remaining 2 experiments corresponded to nonPlant dataset, for which class distribution was

14:26:60 (mitochondrial:secretory pathway/signal peptide:nuclear+cytosolic). The data was

skewed to the third class (nuclear+cytosolic) as opposed to other datasets. Because the

BWT-based approach constructs features from each sequence individually, total features

constructed from the train sequences (skewed to one class) are also believed to be biased

to capture information corresponding to the skewed class. As a result, a majority of b-mers

probably capture information corresponding to the third class for the nonPlant dataset.

Furthermore, as shown in Figure 6.1, for nucleotide sequences, the classifiers learned

from b-mers outperformed the classifiers learned from all k-mers. Although b-mers are a

subset of k-mers, and yet the predictive power of b-mers is better than that of k-mers,

suggesting that the BWT-based approach successfully filtered uninformative k-mers that

are acting as outliers. For protein sequences, it can be observed that the performance of

the classifier learned using b-mers is comparable to the performance of the classifier learned

using all k-mers for large values of f . This suggests that a considerable (or even better, in

case of nucleotide sequences) performance is achieved with a relatively small set of features.

For small f , the set of k -mers includes features that are most informative for the class

according to feature selection criterion; but probably many of these features are variants of

each other (i.e., features with overlaps). Consequently, although most informative features

were included, not all informative features were included (meaning that variations of an

informative feature covered much of the set and other informative features were not selected).

70

Table 6.2: Variation of the performance of NBM classifier with the number of b-mers and
k-mers features selected in supervised learning scenario. Table includes AUC values for CE,
DM, gPos, gNeg, plant and nonPlant datasets. For each dataset, maximum AUC between
b-mers and k-mers for each variation of the number of features selected is reported in bold
font. Besides using the reduced number of features, to get an estimate of the best AUC that
can be achieved using k-mers, AUC values of the NBM classifier learned using all the k-mers
(denoted by k-mersAll) are also presented with italic font.

Index 1 2 3 4 5 6 7 8

Number of features 50 100 150 200 250 500 1000 1500

CE(b-mers) 0.579 0.676 0.722 0.735 0.741 0.797 0.821 0.825

CE(k-mers) 0.554 0.566 0.576 0.578 0.584 0.668 0.684 0.684

CE(k-mersAll) 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76

DM(b-mers) 0.536 0.667 0.704 0.699 0.701 0.71 0.72 0.719

DM(k-mers) 0.41 0.398 0.398 0.387 0.386 0.393 0.46 0.526

DM(k-mersAll) 0.566 0.566 0.566 0.566 0.566 0.566 0.566 0.566

gPos(b-mers) 0.664 0.714 0.75 0.784 0.801 0.849 0.884 0.902

gPos(k-mers) 0.649 0.698 0.736 0.77 0.786 0.838 0.86 0.87

gPos(k-mersAll) 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951

gNeg(b-mers) 0.691 0.753 0.797 0.829 0.861 0.91 0.932 0.939

gNeg(k-mers) 0.623 0.667 0.697 0.711 0.742 0.81 0.883 0.893

gNeg(k-mersAll) 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942

plant(b-mers) 0.65 0.73 0.757 0.765 0.775 0.824 0.846 0.86

plant(k-mers) 0.533 0.569 0.577 0.595 0.599 0.652 0.721 0.755

plant(k-mersAll) 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829

nonPlant(b-mers) 0.663 0.701 0.744 0.793 0.802 0.838 0.853 0.861

nonPlant(k-mers) 0.655 0.7 0.734 0.759 0.783 0.827 0.856 0.867

nonPlant(k-mersAll) 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841

Contrarily, the set of b-mers consisted of more informative features compared to k-mers, as

some variants may be excluded, and thus potentially cause the set of b-mers to result in

better performance as compared to k-mers for relatively small number of features (50 to

1500).

Based on all observations, the BWT-based approach successfully reduced the initial

number of features by retaining most of the informative features, thereby representing an

effective dimensionality reduction technique, even for supervised learning when sufficient

labeled data is available.

71

Figure 6.1: Variation of the performance of NBM classifier with the number of b-mers and
k-mers selected in supervised learning scenario is shown in the following graphs. Besides
these, the performance of NBM classifier when all the k-mers are used as features is also
shown in the graphs (k-mersAll). In each graph, x-axis represents the number of features se-
lected from each feature set, f , which is varied from 50 to 1500 specifically. y-axis represents
the AUC values of NBM classifier learned from the respective feature sets. See Table 6.2 for
the numbers shown on x-axis and the corresponding number of features selected, f .

72

6.3.3 Semi-supervised Scenario: b-mers versus k-mers

As discussed in Section 5.3, available train data was split into various combinations of labeled

and unlabeled data. For each combination, ST and CT classifiers were learned for nucleotide

(CE and DM) and protein (gPos, gNeg, plant, and nonPlant) sequences represented using

b-mers and k -mers (reduced to the number of b-mers using feature selection). Besides using

the reduced number of k-mers, to get an estimate of the best AUC that can be achieved

using k-mers, AUC values of ST and CT classifiers learned using all the k-mers are also

reported in Table 6.2, referred to as k-mersAll (italicized).

In order to specifically address the fifth question from Section 6.1, the amount of labeled

data, L, was fixed to 10% and the amount of unlabeled data, U , was varied as follows: {

20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%}.

Table 6.3 reports AUC values of the set of experiments conducted in SSL scenario. For

each dataset, maximum AUC between b-mers and k-mers for each variation of the amount

of unlabeled data is reported in bold font. To better understand the behavior, results are

also plotted in Figures 6.2 and 6.3. Results in the table indicate that b-mers outperformed

k -mers in 41 out of 48 cases with ST and 48 out of 48 cases with CT, suggesting that

with small amounts of labeled data, feature selection was unable to accurately capture the

feature-class dependency scores, thus selecting a set of uninformative features (k -mers).

Furthermore, as shown in Figures 6.2 and 6.3, in majority of the cases, the classifier

learned from b-mers outperformed the classifier learned from all k-mers. When the amount

of available labeled data is small, using large set of features can mislead the classifier, as

there is no sufficient information to capture the knowledge from all the features (especially,

when some of them act as outliers).

When the amount of unlabeled data increased, intuitively, the performance of any SSL

classifier could be expected to improve because the more the unlabeled data, the better is the

classifier trained at each iteration. However, additional unlabeled data can occasionally re-

sult in mislabeled data being used for training, thereby degrading the classifier performance.

73

Therefore, performance may initially increase but decrease with the increased amounts of

unlabeled data, as observed in most cases when CT was used as the semi-supervised classi-

fier. However, in most of the cases with ST, the performance decreased even with a small

increase in the amount of unlabeled data, with the exception of DM. Furthermore, when

CT was used, a maximum AUC for four out of the six datasets (DM, gPos, gNeg, and plant

datasets) was obtained, and values for the other two datasets were also comparable to ST,

suggesting that CT more efficiently used available unlabeled data as compared to ST.

6.3.4 Domain Adaptation Scenario: b-mers versus k-mers

Table 6.4 and Figure 6.4 shows AUC values over the 5-fold cross-validation for domain

adaptation algorithm described in Section 2.2.1 in six source and target configurations using

varying amounts of target unlabeled data (table columns) and b-mers or k-mers as features

(table rows). For each comparison, the largest AUC value (between b-mers and k-mers) is

highlighted with bold font. For example, the row CE → DM with 20% target unlabeled

data reports AUC values when using b-mers, 0.7088, and k-mers, 0.5778, with 0.7088 in bold

font because it is greater than 0.5778 when training the algorithm on the CE source domain

and DM target domain. Besides using the reduced number of k-mers, to get an estimate

of the best AUC that can be achieved using k-mers, AUC values of domain adaptation

classifier learned using all the k-mers are also reported in Table 6.4, referred to as k-mersAll

(italicized).

The classifier had higher AUC in 22 out of 24 cases when using b-mer features compared

to when using k-mer features.

However, the more target unlabeled data, the lower the classifier’s accuracy. This behav-

ior seems using unlabeled data helps the classifier, but too much unlabeled data misleads

the classifier. For the distance between source and target domains, the intuition is that the

more closely related domains, are the higher the classifier’s accuracy, as evidenced by the

results from this study that showed higher AUC values for bacteria organisms, which are

74

Table 6.3: Variation of the performance with the amount of unlabeled data used with ST
and CT classifiers, learned using b-mers and k-mers (reduced to the number of b-mers),
respectively. Table includes AUC values for CE, DM, gPos, gNeg, plant, and nonPlant
datasets when the amount of labeled data was fixed to 10%, while the amount of unlabeled
data was varied from 20% to 90%. For each dataset, maximum AUC between b-mers and
k-mers for each variation of the amount of unlabeled data is reported in bold font. Besides
using the reduced number of features, to get an estimate of the best AUC that can be achieved
using k-mers, AUC values of the ST and CT classifiers learned using all the k-mers (denoted
by k-mersAll) are also presented with italic font.

Self-training

Index 1 2 3 4 5 6 7 8

Unlabeled 20% 30% 40% 50% 60% 70% 80% 90%

CE(b-mers) 0.673 0.663 0.661 0.659 0.665 0.664 0.663 0.658

CE(k-mers) 0.508 0.576 0.603 0.622 0.609 0.606 0.601 0.587

CE(k-mersAll) 0.548 0.547 0.545 0.547 0.548 0.545 0.545 0.548

DM(b-mers) 0.621 0.606 0.596 0.623 0.636 0.621 0.635 0.63

DM(k-mers) 0.457 0.452 0.447 0.444 0.457 0.424 0.531 0.524

DM(k-mersAll) 0.517 0.516 0.516 0.516 0.516 0.516 0.516 0.516

gPos(b-mers) 0.864 0.858 0.825 0.825 0.808 0.792 0.782 0.768

gPos(k-mers) 0.627 0.622 0.62 0.632 0.622 0.626 0.619 0.627

gPos(k-mersAll) 0.723 0.684 0.703 0.673 0.673 0.674 0.685 0.666

gNeg(b-mers) 0.875 0.857 0.825 0.828 0.833 0.798 0.791 0.826

gNeg(k-mers) 0.84 0.841 0.842 0.853 0.843 0.848 0.839 0.762

gNeg(k-mersAll) 0.734 0.728 0.724 0.722 0.721 0.719 0.719 0.716

plant(b-mers) 0.727 0.712 0.695 0.712 0.712 0.715 0.709 0.71

plant(k-mers) 0.607 0.61 0.63 0.639 0.643 0.645 0.642 0.641

plant(k-mersAll) 0.613 0.606 0.602 0.6 0.599 0.597 0.596 0.595

nonPlant(b-mers) 0.803 0.778 0.752 0.724 0.717 0.684 0.639 0.65

nonPlant(k-mers) 0.691 0.686 0.681 0.671 0.668 0.667 0.666 0.663

nonPlant(k-mersAll) 0.582 0.579 0.576 0.575 0.573 0.573 0.572 0.571

Co-training

Index 1 2 3 4 5 6 7 8

Unlabeled 20% 30% 40% 50% 60% 70% 80% 90%

CE(b-mers) 0.671 0.656 0.658 0.658 0.65 0.644 0.666 0.668

CE(k-mers) 0.497 0.573 0.614 0.654 0.621 0.62 0.628 0.64

CE(k-mersAll) 0.549 0.545 0.545 0.545 0.546 0.546 0.545 0.544

DM(b-mers) 0.607 0.608 0.605 0.609 0.631 0.622 0.637 0.624

DM(k-mers) 0.429 0.436 0.455 0.45 0.44 0.413 0.536 0.526

DM(k-mersAll) 0.517 0.516 0.516 0.516 0.516 0.516 0.516 0.516

gPos(b-mers) 0.849 0.859 0.876 0.866 0.85 0.863 0.866 0.838

gPos(k-mers) 0.623 0.62 0.619 0.616 0.625 0.622 0.627 0.62

gPos(k-mersAll) 0.705 0.707 0.697 0.666 0.687 0.68 0.668 0.681

gNeg(b-mers) 0.886 0.903 0.873 0.868 0.859 0.856 0.855 0.877

gNeg(k-mers) 0.846 0.844 0.844 0.846 0.849 0.838 0.819 0.752

gNeg(k-mersAll) 0.734 0.728 0.724 0.722 0.722 0.719 0.717 0.717

plant(b-mers) 0.746 0.72 0.719 0.705 0.715 0.713 0.716 0.687

plant(k-mers) 0.604 0.606 0.634 0.637 0.647 0.642 0.643 0.647

plant(k-mersAll) 0.613 0.606 0.602 0.601 0.599 0.598 0.596 0.595

nonPlant(b-mers) 0.801 0.792 0.785 0.78 0.772 0.755 0.744 0.726

nonPlant(k-mers) 0.691 0.687 0.681 0.672 0.666 0.664 0.664 0.662

nonPlant(k-mersAll) 0.582 0.579 0.576 0.574 0.573 0.573 0.572 0.571

75

Figure 6.2: Variation of the performance with the amount of unlabeled data used with ST
classifier, learned using b-mers, k-mers (reduced to the number of b-mers), and all k-mers
(k-mersAll), respectively. Each graph plots the AUC values (on y-axis) for CE, DM, gPos,
gNeg, plant, and nonPlant datasets when the amount of labeled data was fixed to 10%, while
the amount of unlabeled data was varied from 20% to 90% (on x-axis). See Table 6.3 for
the numbers shown on x-axis and the corresponding percentage of unlabeled data used to
conduct experiments.

76

Figure 6.3: Variation of the performance with the amount of unlabeled data used with CT
classifier, learned using b-mers, k-mers (reduced to the number of b-mers), and all k-mers
(k-mersAll), respectively. Each graph plots the AUC values (on y-axis) for CE, DM, gPos,
gNeg, plant, and nonPlant datasets when the amount of labeled data was fixed to 10%, while
the amount of unlabeled data was varied from 20% to 90% (on x-axis). See Table 6.3 for
the numbers shown on x-axis and the corresponding percentage of unlabeled data used to
conduct experiments.

77

Figure 6.4: Variation of the performance with the amount of unlabeled data used with NBM
for domain adaptation classifier, learned using b-mers, k-mers (reduced to the number of b-
mers), and all k-mers (k-mersAll), respectively. Each graph plots the AUC values (on y-axis)
for CE→DM, DM→CE, gPos→gNeg, gNeg→gPos, plant→nonPlant, and nonPlant→plant
combinations of source→target datasets when the amount of labeled data was fixed to 20%,
while the amount of unlabeled data was varied from 20% to 80% (on x-axis). See Table 6.4
for the numbers shown on x-axis and the corresponding percentage of unlabeled data used to
conduct experiments.

78

Table 6.4: Variation of the performance with the amount of unlabeled data used with NBM
for domain adaptation classifier, learned using b-mers and k-mers (reduced to the number
of b-mers), respectively. Table includes AUC values for the following combinations of source
and target datasets: CE→DM, DM→CE, gPos→gNeg, gNeg→gPos, plant→nonPlant, and
nonPlant→plant. For each combination of the dataset, the amount of labeled and unlabeled
data used and the largest AUC value (between b-mers and k-mers) is highlighted with bold
font. For all experiments, the amount of labeled data is fixed to 20%. Besides using the
reduced number of features, to get an estimate of the best AUC that can be achieved using k-
mers, AUC values of the NBM for domain adaptation classifier learned using all the k-mers
(denoted by k-mersAll) are also presented with italic font.

Source→Target
Unlabeled

Data
20% 40% 60% 80%

CE→DM

b-mers 0.6466 0.6404 0.6346 0.639

k-mers 0.4098 0.4898 0.4786 0.472

k-mersAll 0.5236 0.5314 0.5182 0.5392

DM→CE

b-mers 0.7088 0.7044 0.6954 0.6966

k-mers 0.5778 0.648 0.6544 0.6498

k-mersAll 0.6096 0.609 0.5942 0.5854

gNeg→gPos

b-mers 0.9284 0.9208 0.918 0.9078

k-mers 0.7806 0.7116 0.7104 0.7038

k-mersAll 0.9076 0.8804 0.8848 0.8528

gPos→gNeg

b-mers 0.9378 0.9322 0.9188 0.8952

k-mers 0.8952 0.9014 0.9064 0.912

k-mersAll 0.88 0.8568 0.8436 0.7896

nonPlant→plant

c-mers 0.8604 0.7952 0.7742 0.7598

k-mers 0.7558 0.716 0.7138 0.7112

k-mersAll 0.7294 0.7202 0.7182 0.7236

plant→nonPlant

c-mers 0.8392 0.8332 0.803 0.7284

k-mers 0.7894 0.7684 0.7478 0.7506

k-mersAll 0.682 0.6242 0.6216 0.6168

more closely related than plant/non-plant or CE/DM organisms.

79

Chapter 7

Community Detection Approach:

Experiments and Results

Section 7.1 of this chapter lists the set of more specific research questions related to the

CDA-based approach addressed in this work. Section 7.2 provides details regarding default

parameters and experiments performed to address research questions. Finally, Section 7.3

includes discussion and analysis of results.

7.1 Research Questions

1. How does the number of c-mers compare to the number of k-mers?

Features constructed using the CDA-based approach satisfy the ZOMOPS constraint

(Section 4.2); therefore, dimensionality of the set of c-mers is expected to be very

small compared to dimensionality of the set of k -mers. To investigate this property,

the total number of c-mers was compared to the total number of k -mers in a supervised

learning scenario in which all available data was assumed to be labeled.

2. When feature selection is used in supervised learning, will c-mers or k-mers result in

more informative features?

80

Similar to b-mers in Section 6.1, in order to evaluate top features from c-mers and

k -mers, feature selection was applied to select the same number of features from both

feature sets. Classifiers were then learned from each subset and their performances

were compared by varying the number of selected features.

3. How does the predictive power of c-mers compare to the predictive power of k-mers

in an SSL scenario?

In SSL, feature selection techniques may not accurately capture feature-class depen-

dencies, thereby misleading the classifier. Because dimensionality of c-mers is much

smaller than dimensionality of k -mers and considering the unsupervised nature of

the CDA-based approach, the predictive power of c-mers was investigated in an SSL

scenario.

4. How does the performance of c-mers compare to the performance of k-mers in the

domain adaptation scenario for various amounts of target unlabeled data?

For domain adaptation, as discussed in Section 5.3, data from two domains was made

available: source domain and target domain. The predictive power of c-mers was

investigated in a domain adaptation learning scenario when the amount of available

labeled data from target domain is small.

5. How do results vary with amounts of unlabeled data?

Intuitively, for the same amount of labeled data (target labeled data in domain adap-

tation scenario), increasing the amount of unlabeled data (target unlabeled data in do-

main adaptation scenario) may result in increased performance; therefore, the amounts

of unlabeled data was varied and variation in the performance of the classifiers in semi-

supervised and domain adaptation learning scenarios was observed.

6. How does the the number of top motifs selected, t, affect the performance of the super-

vised learning classifier?

81

Each motif obtained from the CDA-based approach is associated with a set of l -mers.

The total number of features (c-mers) generated increase with the number of motifs

selected from each of the R samples. Classifier performance, in general, increases with

the number of features. However, the motifs were sorted based on significance score

for nucleotide sequences, and substitution score for protein sequences. Therefore, as t

is increased, less significant motifs are added to the feature set, potentially adversely

affecting classifier performance. Therefore, performance of the classifier learned from

top t motifs, where t is varied, should be investigated. Performance of the classifiers

are expected to initially increase and then possibly decrease with an increase in the

value of t.

7. What is the effect of the number of samples, R, and sample size, S, on the performance

of the classifier in a supervised learning scenario?

In supervised learning scenario, what combination of R and S among (a) (large R,

large S), (b) (relatively small R, small S), and (c) (relatively small R, large S) yields

the best results? Combination (b) is faster than the other two combinations. Ideally,

(b) should give the best feature set.

8. How does the Hamming distance threshold, x, used to construct the network, and

maximum allowed mismatches, d, affect the predictive power of c-mers in classifying

nucleotide sequences in a supervised learning scenario?

In nucleotide sequences, varying x affects network size and density of the network,

thereby affecting identified communities. Alternatively, varying d affects community

size. In order to understand this behavior, x and d were varied and the corresponding

performance of the final supervised learning classifier was recorded.

9. For protein sequences, how does the threshold on the substitution score, s, affect the

performance of the classifier in a supervised learning scenario?

82

Varying the threshold s affects the number of edges in the network, thereby affecting

communities obtained from the community detection algorithm. Specifically, use of

extreme values of s creates a very dense network (small s) or sparse network (large

s), potentially misleading the community detection algorithm. In order to study this

behavior, the threshold, s, was varied and the performance of the supervised learning

classifier was recorded.

7.2 Parameters and Experiments

7.2.1 Default Parameters

• Length of features: Feature length in the CDA-based approach is controlled by the

parameter l. In order to generate variable length c-mers, parameter l was varied

accordingly. Following values of l for nucleotide and protein sequences were chosen:

– Nucleotide sequences: 6, 7, and 8

– Protein sequences: 2, 3, and 4

• Total number of sequences in the dataset was denoted by N , and it varies for each

dataset .

• Maximum number of mismatches allowed when filtering motif instances from identified

communities for nucleotide sequences, d = 1

• Minimum substitution score threshold allowed in filtering motif instances from iden-

tified communities for protein sequences, s = 15

• Maximum Hamming distance between two nodes while constructing the initial network

for nucleotide sequences, x = 2

• Minimum size of the community, q = 5

83

• Number of top motifs selected based on the associated score, t = 10

• Number of samples, R = 50

• Number of sequences per sample, S = 10

Based on the type of experiment conducted, to evaluate a particular parameter, we vary

it and fix the remaining parameters accordingly.

7.2.2 Experiments

This section describes the set of experiments conducted to address research questions corre-

sponding to the CDA-based approach discussed in Section 7.1. In order to generate c-mers,

R samples were randomly selected with each sample containing S sequences, from the total

available train sequences. As a result, the total number of sequences used to generate c-mers

might be smaller than the total number of train sequences. Let NRS be the set of unique

sequences obtained from R samples.

Supervised learning: Similar to b-mers, 5-fold cross-validation was used to evaluate

c-mers, as described in Section 5.3, and compared the predictive power of c-mers to k -mers.

• Generating c-mers: To generate c-mers, the CDA-based approach was invoked with

length of motif (l), minimum community size (q), number of samples (R), and sample

size (S) as parameters. To construct the network and extract motifs, maximum num-

ber of mismatches between the motif consensus and motif instance (d) and maximum

Hamming distance to construct the network (x) were used for nucleotide sequences;

the minimum substitution score (s) was used for protein sequences. The CDA-based

aproach returned the set of c-mers, and the number of c-mers were denoted by Dc−mers.

• Generating k-mers: In order to perform a fair comparison with the proposed CDA-

based approach, the sliding window-based approach (Section 4) with k = l was invoked

84

on the reduced set of train sequences (NRS) in the process of generating k-mers. The

resulting number of k-mers was denoted by Dk−mers.

In order to generate features of variable length, the above process was repeated for

various values of l. A comparison of Dc−mers with Dk−mers addressed the first question from

Section 7.1.

To answer the second question from Section 7.1, feature selection on labeled data repre-

sented using both c-mers (referred to as Labc−mers) and k-mers (referred to as Labk−mers) was

applied separately to select top f features, similar to evaluation of b-mers. Let fc−mers be top

f features selected from Labc−mers, and fk−mers be top f features selected from Labk−mers.

In these experiments, f was varied from 50 to 1500. In order to evaluate resulting sets of

features, train and test data were represented using fc−mers and fk−mers, respectively. Two

classifiers were then learned for the two feature sets fc−mers and fk−mers from corresponding

train data; test data was then predicted using the two classifiers. Similar to the behavior

of b-mers as described in Section 6.2.2, if c-mers contain most informative features, perfor-

mance of the classifier learned from fc−mers should be better than the performance of the

classifier learned from fk−mers.

Semi-supervised scenario: Because the CDA-based approach is unsupervised, both

labeled and unlabeled data were used in the process of generating c-mers and k -mers.

Similar to the supervised setting, k-mers were generated from the set of NRS sequences.

To evaluate c-mers in an SSL framework, similar to b-mers, feature selection was used on

labeled data represented using k-mers in order to select top Dc−mers number of features.

Labeled, unlabeled, and test data were then represented using c-mers and reduced set of k-

mers. Encoded labeled and unlabeled data were further used to learn SSL classifiers, which

were used to predict corresponding test data. In order to understand the predictive power

of features in a semi-supervised scenario, the amount of labeled data was fixed to 10% and

the amount of unlabeled data was varied from 20% to 90%, thereby answering the third and

fifth questions from Section 7.1.

85

Domain adaptation scenario: Because class labels were not taken into account, all

train data (labeled and unlabeled) from target domain was used to generate c-mers as

described in Section 4.1.2. To generate k-mers, the sliding window-based approach was

invoked with NRS sequences. Similar to experimental setup for semi-supervised learning

scenario, feature selection was used on target labeled data represented using k-mers in

order to select top Dc−mers features. Source labeled, target labeled, target unlabeled and

target test data were then represented using c-mers and k-mers (reduced to dimensionality of

Dc−mers). Domain adaptation classifier (described in Section 2.2.1) was trained using source

labeled, target labeled, and target unlabeled data (represented using c-mers and reduced set

of k-mers). The classifier was then used to predict target test data, and AUC was recorded.

The amount of target labeled data was fixed to 20% and target unlabeled data was varied

from 20% to 80%, thereby addressing the fourth and fifth questions from Section 6.1.

In order to investigate the effect of the number of top motifs selected, t (to address the

sixth question from Section 7.1), default values for parameters {l, (nucleotide sequences:

d, x; protein sequences: s), q, R, S} were used and t was varied from 1 to 50. For each

value of t, performance of the classifier learned from the corresponding set of c-mers was

recorded. This experiment was conducted in a supervised learning scenario and all c-mers

(as opposed to selecting top f features) were used to represent train and test sequences.

The seventh question was addressed by fixing parameters {l, (nucleotide sequences: d, x;

protein sequences: s), q, t} and varying the number of samples, R, from 10 to 100, as well

as sample size, S, from 10 to 50, respectively, in a supervised learning scenario. Finally, for

eight and ninth questions, the parameters {l, q, t, R, S} were fixed, and d and x were varied

for nucleotide sequences, and s was varied for protein sequences in a supervised learning

scenario.

86

Table 7.1: Comparison of the number of features generated using c-mers and k-mers for
the six datasets used, averaged over 5 folds.

Dataset c-mers k -mers

CE 4700 67167
DM 7076 75371
gPos 1976 74203
gNeg 1823 83060
plant 1684 77091

nonPlant 1751 102815

7.3 Results

7.3.1 Dimensionality Comparison

In order to compare the number of features generated using the proposed approach with

default parameters (c-mers) to the total number of k -mers, the count of the total number of

features for each of the two feature sets were reported in Table 7.1. Similar to the experiment

that compared dimensionality of b-mers to k -mers (Section 6.3.1), this experiment was

conducted in a supervised learning scenario. All the unique sequences obtained from R

samples were used to generate k -mers. As shown in Table 7.1, the total number of c-mers

was significantly smaller than the total number of k -mers. The remainder of the experiments

focused on evaluating the predictive power of c-mers compared to k -mers, and understanding

the behavior of the CDA-based approach with different parameters.

7.3.2 Supervised Scenario: c-mers versus k-mers

This section evaluates the predictive power of c-mers in a supervised learning scenario. As

discussed in Section 7.2, feature selection was used using all available labeled data in order

to select top f features (from c-mers and k -mers, respectively) that were further used to

represent sequences. From each representation, NBM classifiers (Section 2.2.1) using all

available labeled (train) data were learned, and the classifiers were used to predict test

data.

87

Table 7.2: Variation of the performance with the number of c-mers and k-mers features
selected for NBM classifier in supervised learning scenario. Table includes AUC values for
CE, DM, gPos, gNeg, plant, and nonPlant datasets. For each dataset, maximum AUC
between b-mers and k-mers for each variation of the number of features selected is reported
in bold font. Besides using the reduced number of features, to get an estimate of the best
AUC that can be achieved using k-mers, AUC values of the NBM classifier learned using all
the k-mers (denoted by k-mersAll) are also presented with italic font.

Index 1 2 3 4 5 6 7 8

f 50 100 150 200 250 500 1000 1500

CE(c-mers) 0.681 0.715 0.731 0.745 0.757 0.776 0.781 0.782

CE(k-mers) 0.558 0.577 0.57 0.586 0.588 0.683 0.694 0.729

CE(k-mersAll) 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773

DM(c-mers) 0.443 0.675 0.717 0.709 0.719 0.711 0.729 0.727

DM(k-mers) 0.411 0.399 0.407 0.387 0.388 0.398 0.466 0.539

DM(k-mersAll) 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568

gPos(c-mers) 0.746 0.792 0.812 0.824 0.826 0.876 0.912 0.923

gPos(k-mers) 0.649 0.698 0.736 0.77 0.786 0.838 0.86 0.87

gPos(k-mersAll) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

gNeg(c-mers) 0.77 0.841 0.857 0.869 0.876 0.904 0.918 0.925

gNeg(k-mers) 0.625 0.667 0.698 0.711 0.744 0.809 0.884 0.9

gNeg(k-mersAll) 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955

plant(c-mers) 0.65 0.707 0.737 0.743 0.748 0.784 0.823 0.836

plant(k-mers) 0.536 0.566 0.578 0.594 0.598 0.651 0.723 0.757

plant(k-mersAll) 0.843 0.843 0.843 0.843 0.843 0.843 0.843 0.843

nonPlant(c-mers) 0.707 0.759 0.775 0.787 0.793 0.807 0.825 0.833

nonPlant(k-mers) 0.655 0.7 0.734 0.759 0.788 0.829 0.856 0.871

nonPlant(k-mersAll) 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868

In order to address the second question from Section 7.1, the performance of classifiers

learned from c-mers was compared to the performance of classifiers learned from k -mers,

while varying the number of features, f . f was varied as {50, 100, 150, 200, 250, 500, 1000,

1500}.

AUC values of NBM classifiers learned for various number of features, f , for c-mers

and k -mers were reported in Table 7.2. For each dataset, maximum AUC between c-mers

and k-mers for each variation of the number of features selected is reported in bold font.

Besides using the reduced number of features, to get an estimate of the best AUC that can

be achieved using k-mers, AUC values of the NBM classifier learned using all the k-mers

are also reported in Table 6.2, referred to as k-mersAll (italicized). To better understand

88

Figure 7.1: Variation of the performance of NBM classifier with the number of c-mers and
k-mers features selected in supervised learning scenario is shown in the following graphs.
Besides these, the performance of NBM classifier when all the k-mers are used as features
is also shown in the graphs (k-mersAll). In each graph, x-axis represents the number of
features selected from each feature set, f , which is varied from 50 to 1500. y-axis represents
the AUC values of NBM classifier learned from the respective feature set. See Table 7.2 for
the numbers shown on x-axis and the corresponding number of features selected, f .

89

the behavior, results are also plotted in Figure 6.1. The observation was made that c-mers

outperformed k -mers in 45 out of 48 experiments (bold in Table 7.2). The remaining three

experiments corresponded to nonPlant dataset. As discussed in Section 6.3.2, the nonPlant

data was skewed to the third class (nuclear+cytosolic) as opposed to other datasets. There-

fore, the hypothesis was made that for nonPlant dataset, most of the R samples potentially

had more than half of the sequences belonging to the third class, possibly resulting in mo-

tifs that were biased to the third class. As a result, c-mers primarily captured information

corresponding to the third class, thereby explaining why k-mers were better than c-mers for

nonPlant dataset.

Furthermore, as shown in Figure 7.1, similar to the BWT-based approach, for nucleotide

sequences, the classifier learned from c-mers outperformed the classifier learned from all k-

mers, suggesting that the CDA-based approach successfully filtered uninformative k-mers.

For protein sequences, it can be observed that the performance of the classifiers learned

using b-mers is comparable to the performance of the classifiers learned for relatively larger

number of features. This suggests that a comparable (or even better, in case of nucleotide

sequences) performance is achieved with a small set of features.

Overall, results suggested that the proposed approach successfully retained informative

features while reducing dimensionality to a large extent. Although the set of k -mers included

the set of c-mers, when feature selection was applied, k -mers did not return features that

were as informative as the ones obtained from c-mers. Subsequences responsible for a

particular biological problem are believed to possibly span different sequences belonging

to the same class of problems, with possible mismatches. The CDA-based approach was

used to primarily identify subsequences that occurred among various sequences with certain

mismatches, for nucleotide sequences, or subsequences that were similar to each other based

on substitution score, for protein sequences. Therefore, c-mers contained a small set of

highly informative features, and when feature selection was applied on top of this set of

features, feature class dependency scores were computed more precisely because all feature

90

class dependency scores were normalized by maximum Shannon Entropy of all features,

which, in the case of c-mers, is limited to only informative feature variations.

7.3.3 Semi-supervised Scenario: c-mers versus k-mers

As discussed in Section 7.2, the available train data was split into various combinations of

labeled and unlabeled data. For each combination of labeled and unlabeled data, ST and

CT classifiers were learned for all the six datasets (two nucleotide sequence and four protein

sequence datasets) represented using c-mers and k -mers; k -mers were reduced to the number

of c-mers using feature selection. In order to address the fifth question from Section 7.1,

parameters {l, d, x, q, t, R, S} were fixed to their default values, the amount of labeled data

was fixed to 10%, and the amount of unlabeled data was varied as follows: {20%, 30%, 40%,

60%, 80%, 90%}. Besides using the reduced number of k-mers, to get an estimate of the

best AUC that can be achieved using k-mers, AUC values of ST and CT classifiers learned

using all the k-mers are also reported in Table 6.2, referred to as k-mersAll (italicized).

Table 7.3 reports AUC values of the set of experiments conducted in an SSL scenario.

For each dataset, maximum AUC between c-mers and k-mers for each variation of the

amount of unlabeled data is reported in bold font. To better understand the behavior,

results are also plotted in Figures 7.2 and 7.3 for ST and CT, respectively. Results showed

that c-mers outperformed k -mers in 44 out of 48 cases with ST, and 45 out of 48 cases

with CT, suggesting that, with small amounts of labeled data, feature selection was unable

to accurately capture feature-class dependencies, thereby selecting a set of uninformative

features (selected features from k -mers). Furthermore, similar to the BWT-based approach,

based on the plots from Figures 7.2 and 7.3, in majority of the cases, the classifier learned

from c-mers outperformed the classifier learned from all k-mers in SSL scenario.

Ideally, when the amount of unlabeled data is increased, the performance of any SSL

classifier should improve because the more the unlabeled data, the better is the classifier

trained at each iteration. However, additional unlabeled data can occasionally result in

91

mislabeled data being used for training, thereby degrading classifier performance. Therefore,

the performance may initially increase and then decrease with increased amount of unlabeled

data, as observed in 8 out of 12 possible combinations (ST: CE, DM, gPos, plant; CT:

DM, gPos, plant, nonPlant). With sequences represented using c-mers, ST and CT had

comparable performances on all datasets, and for each dataset, maximum AUC was obtained

when CT was used with c-mers, suggesting that CT used the available unlabeled data more

efficiently compared to ST.

7.3.4 Domain Adaptation Scenario: c-mers vs k-mers

Similar to the evaluation of b-mers in the domain adaptation scenario in Table 6.4, Table

7.4 shows AUC values of domain adaptation algorithm described in Section 2.2.1 learned

using six source and target configurations, using varying amount of target unlabeled data

(table columns) and c-mers or k-mers as features (table rows). For each comparison, the

largest AUC value (between c-mers and k-mers) is highlighted with bold font.

In 23 out of 24 cases, the classifier had higher AUC when using c-mer features as com-

pared to using k-mer features, suggesting that c-mers, by themselves, capture informative

knowledge than k-mers, in order to predict data from the target domain.

7.3.5 Varying the Number of Motifs

Increasing the number of motifs selected, t, adds more motifs with less significant score,

potentially affecting classifier performance. However, for very small t, the total number of

l-mers obtained from the selected motifs might not be sufficient to carry enough information

required to learn a good classifier. Therefore, classifier performance is expected to initially

increase with t and later decrease, as observed for DM, with results shown in Table 7.5

and the variation of AUC values with the number of motifs selected t, was also plotted

in Figure 7.5. For all other datasets, no decrease in the performance of the classifier was

observed with increased t. However, the rate of increase was very small for larger values of t,

92

Table 7.3: Variation of the performance with the amount of unlabeled data used with ST
and CT classifiers, learned using c-mers and k-mers (reduced to the number of c-mers),
respectively. Table includes AUC values for CE, DM, gPos, gNeg, plant, and nonPlant
datasets when the amount of labeled data was fixed to 10%, and the amount of unlabeled
data was varied from 20% to 90%. For each dataset, maximum AUC between c-mers and
k-mers for each variation of the amount of unlabeled data is reported in bold font. Besides
using the reduced number of features, to get an estimate of the best AUC that can be achieved
using k-mers, AUC values of the ST and CT classifiers learned using all the k-mers (denoted
by k-mersAll) are also presented with italic font.

Self-training

Index 1 2 3 4 5 6 7 8

Unlab 20% 30% 40% 50% 60% 70% 80% 90%

CE(c-mers) 0.653 0.638 0.646 0.632 0.652 0.658 0.613 0.655

CE(k-mers) 0.584 0.602 0.574 0.588 0.645 0.641 0.645 0.651

CE(k-mersAll) 0.556 0.557 0.551 0.554 0.562 0.559 0.559 0.561

DM(c-mers) 0.582 0.572 0.575 0.553 0.566 0.606 0.595 0.574

DM(k-mers) 0.527 0.524 0.532 0.532 0.53 0.534 0.53 0.534

DM(k-mersAll) 0.517 0.517 0.516 0.517 0.516 0.516 0.517 0.516

gPos(c-mers) 0.774 0.781 0.744 0.78 0.741 0.74 0.768 0.733

gPos(k-mers) 0.636 0.637 0.663 0.675 0.654 0.676 0.687 0.693

gPos(k-mersAll) 0.722 0.708 0.702 0.708 0.676 0.671 0.691 0.663

gNeg(c-mers) 0.844 0.833 0.841 0.826 0.835 0.834 0.819 0.834

gNeg(k-mers) 0.842 0.84 0.836 0.836 0.833 0.833 0.829 0.762

gNeg(k-mersAll) 0.74 0.737 0.734 0.731 0.729 0.729 0.732 0.728

plant(c-mers) 0.681 0.673 0.689 0.671 0.671 0.654 0.666 0.666

plant(k-mers) 0.608 0.616 0.61 0.609 0.609 0.613 0.606 0.604

plant(k-mersAll) 0.616 0.614 0.604 0.606 0.601 0.602 0.602 0.601

nonPlant(c-mers) 0.791 0.779 0.781 0.77 0.786 0.769 0.776 0.725

nonPlant(k-mers) 0.748 0.752 0.75 0.749 0.753 0.752 0.746 0.751

nonPlant(k-mersAll) 0.59 0.589 0.589 0.585 0.586 0.586 0.586 0.584

Co-training

Index 1 2 3 4 5 6 7 8

Unlab 20% 30% 40% 50% 60% 70% 80% 90%

CE(c-mers) 0.648 0.65 0.668 0.649 0.614 0.632 0.66 0.642

CE(k-mers) 0.584 0.6 0.572 0.576 0.625 0.61 0.592 0.597

CE(k-mersAll) 0.554 0.553 0.552 0.55 0.556 0.564 0.558 0.553

DM(c-mers) 0.563 0.579 0.589 0.569 0.582 0.592 0.624 0.601

DM(k-mers) 0.521 0.515 0.522 0.527 0.527 0.531 0.525 0.528

DM(k-mersAll) 0.517 0.517 0.516 0.517 0.516 0.516 0.517 0.516

gPos(c-mers) 0.78 0.807 0.785 0.778 0.785 0.773 0.766 0.786

gPos(k-mers) 0.629 0.632 0.631 0.63 0.628 0.642 0.647 0.65

gPos(k-mersAll) 0.717 0.707 0.7 0.681 0.685 0.659 0.677 0.68

gNeg(c-mers) 0.847 0.842 0.847 0.846 0.841 0.832 0.828 0.832

gNeg(k-mers) 0.84 0.839 0.837 0.844 0.836 0.842 0.845 0.76

gNeg(k-mersAll) 0.74 0.737 0.734 0.733 0.733 0.729 0.731 0.729

plant(c-mers) 0.686 0.69 0.688 0.676 0.681 0.663 0.681 0.673

plant(k-mers) 0.604 0.607 0.606 0.612 0.606 0.613 0.604 0.608

plant(k-mersAll) 0.616 0.614 0.605 0.606 0.601 0.602 0.602 0.601

nonPlant(c-mers) 0.792 0.783 0.79 0.799 0.795 0.771 0.782 0.735

nonPlant(k-mers) 0.745 0.745 0.746 0.748 0.737 0.746 0.739 0.745

nonPlant(k-mersAll) 0.59 0.589 0.588 0.585 0.586 0.585 0.586 0.585

93

Figure 7.2: Variation of the performance with the amount of unlabeled data used with ST
classifier, learned using c-mers, k-mers (reduced to the number of b-mers), and all k-mers
(k-mersAll), respectively. Each graph plots the AUC values (on y-axis) for CE, DM, gPos,
gNeg, plant, and nonPlant datasets when the amount of labeled data was fixed to 10%, while
the amount of unlabeled data was varied from 20% to 90% (on x-axis). See Table 7.3 for
the numbers shown on x-axis and the corresponding percentage of unlabeled data used to
conduct experiments.

94

Figure 7.3: Variation of the performance with the amount of unlabeled data used with CT
classifier, learned using c-mers, k-mers (reduced to the number of b-mers), and all k-mers
(k-mersAll), respectively. Each graph plots the AUC values (on y-axis) for CE, DM, gPos,
gNeg, plant, and nonPlant datasets when the amount of labeled data was fixed to 10%, while
the amount of unlabeled data was varied from 20% to 90% (on x-axis). See Table 7.3 for
the numbers shown on x-axis and the corresponding percentage of unlabeled data used to
conduct experiments.

95

Figure 7.4: Variation of the performance with the amount of unlabeled data used with NBM
for domain adaptation classifier, learned using c-mers, k-mers (reduced to the number of b-
mers), and all k-mers (k-mersAll), respectively. Each graph plots the AUC values (on y-axis)
for CE→DM, DM→CE, gPos→gNeg, gNeg→gPos, plant→nonPlant, and nonPlant→plant
combinations of source→target datasets when the amount of labeled data was fixed to 20%,
while the amount of unlabeled data was varied from 20% to 80% (on x-axis). See Table 7.4
for the numbers shown on x-axis and the corresponding percentage of unlabeled data used to
conduct experiments.

96

Table 7.4: Variation of the performance with the amount of unlabeled data used with NBM
for domain adaptation classifier, learned using c-mers and k-mers (reduced to the number
of c-mers), respectively. Table includes AUC values for the following combinations of source
and target datasets: CE→DM, DM→CE, gPos→gNeg, gNeg→gPos, plant→nonPlant, and
nonPlant→plant. For each combination of the dataset, the amount of unlabeled data used
and the largest AUC value (between c-mers and k-mers) is highlighted with bold font. For all
experiments, the amount of labeled data is fixed to 20%. Besides using the reduced number
of features, to get an estimate of the best AUC that can be achieved using k-mers, AUC
values of the NBM for domain adaptation classifier learned using all the k-mers (denoted
by k-mersAll) are also presented with italic font.

Source→Target
Unlabeled

Data
20% 40% 60% 80%

CE→DM

c-mers 0.6248 0.6332 0.6378 0.6222

k-mers 0.4996 0.5368 0.5078 0.4888

k-mersAll 0.5222 0.5228 0.5184 0.5248

DM→CE

c-mers 0.69 0.692 0.6828 0.658

k-mers 0.622 0.624 0.6272 0.6282

k-mersAll 0.6082 0.605 0.6096 0.605

gNeg→gPos

c-mers 0.8766 0.8564 0.852 0.8394

k-mers 0.7846 0.7546 0.7314 0.741

k-mersAll 0.894 0.88 0.8836 0.8748

gPos→gNeg

c-mers 0.911 0.9104 0.902 0.8918

k-mers 0.8986 0.893 0.896 0.895

k-mersAll 0.8722 0.8558 0.8644 0.8244

nonPlant→plant

c-mers 0.802 0.7476 0.7394 0.7338

k-mers 0.7804 0.7284 0.7284 0.7266

k-mersAll 0.7192 0.747 0.7314 0.722

plant→nonPlant

c-mers 0.8286 0.821 0.7766 0.8034

k-mers 0.763 0.7774 0.73 0.7444

k-mersAll 0.6932 0.6754 0.6792 0.6772

suggesting that increasing t may maintain or decrease the performance, thereby answering

the sixth question from Section 7.1.

7.3.6 Varying the Number of Samples and Sample Size

In order to address the seventh question of Section 7.1, the parameters: {l, d, x, p, f , S}

were fixed and R was varied as {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} in a supervised

learning scenario, as discussed in Section 7.2. Although parameters {l, d, x, p, f} were

assigned to their default values, parameter S was chosen to have different values: 10, 20,

97

Table 7.5: AUC values obtained with NBM classifiers learned in the supervised scenario,
when top t motifs are used as features. The number of motifs, t, was varied from 1 to 50,
and the performance was recorded for each value of t. In addition to performance, we also
show the total number of c-mers obtained for a set of t motifs (#c-mers), averaged over
five folds.

CE DM gPos

t #c-mers AUC #c-mers AUC #c-mers AUC

1 1078 0.716 1114 0.652 152 0.824

5 3144 0.769 4203 0.704 867 0.905

10 4700 0.786 7075 0.717 1976 0.925

15 5901 0.796 9370 0.719 3158 0.936

25 8143 0.805 12986 0.717 5506 0.944

35 10386 0.808 15876 0.714 7700 0.945

50 13052 0.81 19471 0.698 10522 0.948

gNeg plant nonPlant

t #c-mers AUC #c-mers AUC #c-mers AUC

1 147 0.789 145 0.691 146 0.704

5 805 0.901 800 0.792 765 0.797

10 1822 0.929 1684 0.837 1750 0.834

15 2936 0.939 2593 0.854 2888 0.857

25 5139 0.951 4361 0.868 5357 0.88

35 7237 0.955 6097 0.876 7884 0.892

50 9800 0.956 8444 0.875 11323 0.898

Figure 7.5: Variation of AUC values (y-axis) with CDA-based approach, when the number
of top motifs selected, t, was varied from 1 to 50 (x-axis).

98

30, 40, 50. Figure 7.6 plots R (x-axis) versus AUC values (y-axis) for various values of S

(curves in each plot) on all six datasets.

Varying the number of samples, R: Plots in Figure 7.6, show that for most values

of S and datasets (except for S={40, 50} with DM), AUC values increased with an increase

in R, suggesting that increasing the number of samples resulted in more informative motifs.

However, the slope of the plots obtained for a particular value of S tends to 0 for larger

values of R (specifically for R greater than 50), suggesting that performance does not rapidly

increase with larger values of R. Therefore, in most cases, a good performance can be

attained with a relatively small value of R (e.g., 50).

Varying the number of sequences per sample, S: As shown in the plots in Fig-

ure 7.6, for almost all datasets (except nonPlant dataset), AUC values of the classifiers

learned from samples of 10 sequences (S = 10) outperformed the rest of the classifiers learned

from larger samples in most cases, suggesting that the best performance was achieved for

a smaller value of S. Because increasing S significantly increases the running time of the

proposed approach, the best performance had very small running time compared to other

sub-optimal performances.

Graphs corresponding to various values of S converged for large values of R in most cases,

suggesting that the best performance was achieved for a relatively small value of R and a

small value of S combination, thereby answering the seventh question from Section 7.1.

As a result, features generated using the proposed approach were effective (in terms of

performance) and efficient (in terms of running time) compared to TFBSGroup applied on

a larger set of sequences.

7.3.7 Varying the Number of Mismatches and Hamming Distance

For nucleotide sequences, network construction and motif identification was affected by the

maximum number of mismatches, d, and the Hamming distance, x. In order to understand

the effect of these two parameters, one of them was fixed and the other was varied, thereby

99

Figure 7.6: Variation of AUC values with CDA-based approach, when sample size, S, was
varied from 10 to 50 with increments of 10, and number of samples, R, was varied from
10 to 100 (with increments of 10), on all six datasets (CE, DM, gPos, gNeg, plant, and
nonPlant). The number of features used to represent sequences, f , was set to 2000.

100

Table 7.6: AUC values obtained with NBM classifiers learned in a supervised scenario, for
nucleotide sequences when varying the maximum number of mismatches allowed, d = {1,
2}, while maximum Hamming distance considered when constructing the network, x, was
fixed to 2. Each column corresponds to a particular (d, x) combination.

CE DM

(d, x) (1, 2) (2, 2) (1, 2) (2, 2)

{6, 7, 8} 0.782 0.831 0.727 0.731

Table 7.7: AUC values obtained with NBM classifiers learned in a supervised scenario, for
nucleotide sequences, when varying the Hamming distance considered when constructing the
network, x = {1, 2} by fixing the maximum number of mismatches allowed, d = 1. Each
column corresponds to a particular (d, x) combination.

CE DM

(d, x) (1, 1) (1, 2) (1, 1) (1, 2)

{6, 7, 8} 0.796 0.782 0.705 0.727

addressing the sixth question from Section 7.1. Tables 7.6 and 7.7 show AUC values obtained

when classifiers were trained using respective c-mers with various values of d by fixing x and

various values of x by fixing d.

As shown in Table 7.6, performance of the classifier generally increased with d, sug-

gesting that motifs with relatively larger number of mismatches capture better information

compared to motifs with smaller number of mismatches. Results from Table 7.7 suggest

that a relatively large value of x helped the CDA-based approach generate informative fea-

tures. However, increasing the value of x (which is not possible in this scenario because the

maximum value of x is 2d) is expected to significantly increase the network size, thereby

adversely affecting the outcome of the CDA-based approach.

7.3.8 Varying the Substitution Score Threshold

Varying threshold s will affect the number of edges in the network, potentially affecting

communities obtained from the community detection algorithm. For very small values of s,

the network may be too sparse resulting in very small set of c-mers that may not be infor-

mative. Contrarily, for a very large value of s, network density may be very high, resulting

101

in a very large set of c-mers. As the dimensionality of c-mers increases, the probability

of outliers in the resulting set of c-mers also increases. Therefore, when the threshold s

increased, the performance of the classifier learned from the resulting set of c-mers was ex-

pected to initially increase and then decrease. From Table 7.8, this behavior was observed

for plant and nonPlant datasets. For gNeg and gPos datasets, the performance decreased

right from the beginning, suggesting that the optimal performance for these datasets might

be obtained with a much smaller value of s (s < 1).

Table 7.8: AUC values obtained with NBM classifiers learned in a supervised scenario,
for protein motifs of lengths {2, 3, 4}, when varying the substitution score considered when
constructing the network from 1:5:10:15 (shown on columns).

s 1 5 10 15

gPos 0.882 0.888 0.913 0.925

gNeg 0.937 0.941 0.938 0.929

plant 0.833 0.841 0.84 0.837

nonPlant 0.871 0.872 0.868 0.834

102

Chapter 8

Hybrid Approach: Experiments and

Results

Section 8.1 outlines the set of specific research questions related to the HBA approach,

followed by the description of the set of default parameters and experiments in Section 8.2.

Finally, results of the experiments are discussed in Section 8.3. This chapter evaluates the

performance of all three proposed approaches by comparing them with two other feature

representations:

• Feature hashing (referred to as r-mers from randomly generated hash bins)

• Union of b-mers and c-mers (referred to as u-mers).

8.1 Research Questions

1. In the supervised learning scenario, how does the predictive power of features con-

structed using the HBA approach compare to that of b-mers, c-mers, u-mers, and

r-mers?

The HBA approach is a hybrid approach that combines features generated using the

103

BWT-based approach with the CDA-based approach to generate BWT-based features

with certain mismatches (h-mers). The set of u-mers, as opposed to the set of h-

mers, is obtained by taking an union of b-mers and c-mers. While h-mers specifically

target b-mers with mismatches, u-mers combine two feature sets that capture different

types of information. In order to identify whether h-mers or u-mers perform better,

experiments were conducted in supervised, semi-supervised, and domain adaptation

learning scenarios. Furthermore, because h-mers include the entire set of b-mers and

other subsequences close to the set of b-mers (obtained from the CDA-based approach),

the predictive power of h-mers was expected to be better than that of b-mers and c-

mers. The predictive power of features constructed using proposed approaches were

also compared with feature hashing (r-mers).

2. In the semi-supervised and domain adaptation learning scenarios, how does the predic-

tive power of features constructed using the HBA approach compare to that of b-mers,

c-mers, u-mers, and r-mers?

Similar to supervised learning scenario, the predictive power of b-mers, c-mers, h-

mers, and feature hashing (r-mers) were compared in an SSL and domain adaptation

learning scenarios, with a varied amount of unlabeled data (in an SSL scenario) and

target labeled and target unlabeled data (in domain adaptation scenario).

8.2 Parameters and Experiments

8.2.1 Default Parameters

The following default values were used to conduct experiments:

• Length of features: Feature length in the HBA approach was controlled by the param-

eter l. From the total set of variable length features obtained from the BWT-based

approach, the features with length l were retained, and the CDA-based approach was

104

invoked with the same values of l; l can be of variable length and, in this work, the

following values of l were used for nucleotide and protein sequences:

– Nucleotide sequences: 6, 7, and 8

– Protein sequences: 2, 3, and 4.

• Total number of sequences in the dataset, N

• Maximum number of mismatches allowed when filtering motif instances from identified

communities for nucleotide sequences, d = 1

• Maximum Hamming distance to filter the initial set of l-mers (based on similarity with

b-mers) for nucleotide sequences, dh = l/2

• Minimum substitution score threshold allowed in filtering motif instances from iden-

tified communities for protein sequences, s = 15

• Minimum substitution score to filter the initial set of l-mers (based on similarity with

b-mers) for protein sequences, sh = 0

• Maximum Hamming distance between two nodes while constructing the initial network

for nucleotide sequences, x = 2

• Minimum size of the community, q = 5

• Number of top motifs selected based on the associated score, t = 10

• Number of samples, R = 50

• Number of sequences per sample, S = 10

105

8.2.2 Experiments

This section describes the experiments conducted to address research questions correspond-

ing to HBA-based features discussed in Section 8.1. The HBA approach uses the CDA-based

approach on top of features constructed using the BWT-based approach. Therefore, exper-

imental setup of the HBA approach is similar to that of the CDA-based approach, in which

R samples with each sample containing S number of sequences were randomly selected from

the total available training sequences. Let NRS be the set of unique sequences obtained

from the R samples.

Supervised scenario: In order to perform a fair comparison of all feature sets, b-mers

were also constructed from the total unique sequences (NRS) obtained from R samples, as

opposed to total training sequences. For feature hashing, no training data was necessary

because hashing encodes a particular sequence, as opposed to using the set of sequences to

construct features.

The process of generating b-mers, c-mers, h-mers, and r-mers is described below:

• Generating b-mers: In order to generate b-mers, as opposed to using all training

data, to obtain a fair comparison with other approaches, the BWT-based approach

(as described in Section 4.1.2) was invoked with the set of NRS sequences, length of

motif (l), and minimum number of occurrences of the motif in the original sequence

(r) as input. The BWT-based approach returned the set of b-mers, and the number

of b-mers was denoted by Db−mers.

• Generating c-mers: In order to generate c-mers, the CDA-based approach was

invoked with length of the motif (l), minimum community size (q), number of samples

(R), and sample size (S) as parameters. Furthermore, for nucleotide sequences, the

maximum number of mismatches between the motif consensus and motif instance (d),

and maximum Hamming distance was used to construct the network. For protein

sequences, the minimum substitution score (s) was used in the process of constructing

106

the network and refining the motif. However, contrary to selecting top t motifs, top tb

motifs were selected, where tb was chosen at run time in such a way that the number of

resulting c-mers were close to the number of b-mers in order to have a fair comparison.

The increased set of c-mers was referred to as cb-mers. In order to compare the

CDA-based approach to the BWT-based approach and the HBA approach, cb-mers,

as opposed to c-mers were used to learn the classifiers. The number of cb-mers is

denoted by Dcb−mers.

• Generating h-mers: In order to generate h-mers, the HBA approach was invoked

with length of the motif (l), maximum number of mismatches between the motif

consensus and motif instance (d), minimum community size (q), maximum Hamming

distance to construct the network (x), number of samples (R), sample size (S) and

BWT thresholds (dh and sh) as parameters. Similar to the process of generating c-

mers, maximum number of mismatches between the motif consensus and the motif

instance (d) and maximum Hamming distance were used to construct the network (x)

for nucleotide sequences, and minimum substitution score (s) for protein sequences,

in the process of refining the motif. The algorithm returned the set of h-mers, and

the number of h-mers was denoted by Dh−mers.

• Generating u-mers: In order to generate u-mers, all possible unique features were

selected from sets of b-mers and c-mers.

• Generating r-mers: In order to generate instances from sequences using feature

hashing, each sequence was sent as an input to feature hashing along with the number

of features, f , and lengths of the features. The input sequence was then transformed

to an instance with f number of features (obtained as described in Section 2.2.2). This

process was repeated for all the sequences from labeled and testing data.

In order to compare the predictive power of various feature sets in a supervised learning

scenario, feature selection was applied on the labeled data (all the training data in supervised

107

scenario) represented using b-mers, c-mers, cb-mers, h-mers, and u-mers, to select top f

features from each set. For feature hashing, labeled and test sequences with the same value

of f were sent as an input to feature hashing. f was varied from 50 to 1500 (specifically,

50, 100, 150, 200, 250, 500, 1000, 1500). Labeled and test sequences were then represented

using the reduced set of b-mers, c-mers, cb-mers, h-mers, u-mers, and r-mers. The NBM

classifiers were then learned from resulting labeled instances, and the classifiers were used

to predict corresponding test instances.

Semi-supervised scenario: Because class labels were not taken into account, all the

NRS sequences were used to generate b-mers, c-mers, cb-mers, h-mers and u-mers. To gener-

ate r-mers, as described earlier, each sequence from labeled, unlabeled, and test were sent as

an input to feature hashing algorithm, along with the number of features, f . Classification

accuracy is believed to increase with dimensionality of the feature set (assuming that fea-

tures do not act as noise); therefore, dimensionality of r-mers was reduced to the maximum

dimensionality of b-mers, c-mers, u-mers, cb-mers, and h-mers, which can be the maximum

performance achieved when comparing to the proposed feature sets. Therefore,

f = Max (|b-mers|, |c-mers|, |cb-mers|, |h-mers|, |u-mers|); where | | is the dimensionality of a

particular feature set

The labeled, unlabeled and testing data were then represented using b-mers, c-mers,

cb-mers, h-mers, u-mers, and r-mers (with f features). Encoded labeled and unlabeled

instances were then used to learn semi-supervised classifiers, which were further used to

predict corresponding testing data. This process was repeated for all available feature sets

and the performance of the classifiers was recorded. In order to understand the predictive

power of features in the semi-supervised scenario, the amount of labeled data was fixed to

10% and the amount of unlabeled data was varied from 20% to 90%, thereby addressing the

second question from Section 6.1.

Domain Adaptation scenario: Similar to semi-supervised setting, dimensionality of

r-mers was reduced to the maximum dimensionality of b-mers, c-mers, u-mers, cb-mers,

108

and h-mers, which can be the maximum performance achieved to compare to the proposed

feature sets. Therefore,

f = Max (|b-mers|,|cb-mers|, |h-mers|, |u-mers|); where | c | is the dimensionality of c

The target labeled, source labeled, target unlabeled and target test data were then

represented using b-mers, c-mers, h-mers, u-mers, and r-mers (with f features). Encoded

target labeled, source labeled and target unlabeled instances were then used to learn domain

adaptation classifier, which was further used to predict corresponding target test data. This

process was repeated for all available feature sets and the performance of the classifiers was

recorded. In order to understand the predictive power of features in the domain adaptation

scenario, the amount of labeled data was fixed to 20% and the amount of unlabeled data

was varied from 20% to 80%, thereby addressing the second question from Section 6.1.

8.3 Results

8.3.1 Dimensionality Comparison

Table 8.3.1 presents dimensionality information of b-mers, c-mers, h-mers, and u-mers when

generated using the same set of sequences (NRS). Although the HBA approach combines the

BWT and CDA-based approaches, it attempts to identify subsequences similar to b-mers,

as opposed to all possible similar subsequences (c-mers). Therefore, c-mers include a larger

set of feature, than those identified using the HBA approach (features present in h-mers but

not in b-mers). Because u-mers combine b-mers and c-mers by taking all possible unique

features, they have higher dimensionality as compared to other proposed feature sets.

8.3.2 Supervised Learning Scenario

Table 8.2 presents AUC values of predictions obtained from the NBM classifier on various

datasets, which are represented using b-mers, c-mers, cb-mers, h-mers, u-mers, and r-mers.

109

Table 8.1: Comparison of the number of features generated using b-mers, c-mers, h-mers,
and u-mers for six datasets, averaged over 5 folds.

b-mers c-mers h-mers u-mers

CE 3110 4700 5323 6262

DM 3426 7076 6006 8650

gPos 3766 1976 4695 5320

gNeg 3681 1823 4075 5105

plant 2970 1684 3114 4319

nonPlant 5296 1751 6231 6629

The number of features in each set of features was varied from 50 to 1500, and the respective

AUC values are reported. To better understand the behavior, results are also plotted in

Figure 8.1. The following observations were derived from the results:

• b-mers versus c-mers versus cb-mers: As shown in Table 8.2 and Figure 8.2, b-

mers outperformed c-mers in 27 out of 48 cases (and the AUC values are comparable in

remaining cases) for protein and nucleotide sequences, suggesting that the BWT-based

approach captured better information than the CDA-based approach. However, when

dimensionality of c-mers was varied to match the dimensionality of b-mers, (using cb-

mers) for nucleotide sequences, classifiers learned using b-mers outperformed classifiers

learned using cb-mers in majority of the cases (11 out of 16 cases). However, for protein

sequences, classifiers learned using cb-mers performed better than classifiers learned

using b-mers (22 out of 32 cases).

One reason cb-mers may perform better than b-mers with protein sequences could be

explained by the average number of unique subsequences per motif obtained using the

CDA-based approach. When top 10 motifs were selected from nucleotide and protein

sequences, the total number of c-mers was smaller than the number of b-mers for

protein sequences, while the number of c-mers was larger than the number of b-mers

for nucleotide sequences, possibly due to the large search space for nucleotide sequences

when compared to protein sequences (based on the note below). As a result, in order to

generate cb-mers, the number of selected motifs increased for protein sequences. Based

110

on observations from Section 7.3.5, classifier performance is believed to increase with

the number of motifs to a certain extent and then we start to notice the decrease fo

DNA, but we see an increase for protein sequences. Furthermore, based on the nature

of the problem, subsequences that are responsible for alternative splicing events might

occur multiple times in the same sequence, as opposed to subsequences responsible for

protein localization, which are expected to occur across different sequences.

Note: For nucleotide sequences, features of lengths 6, 7, 8 were selected, while for

protein sequences, features of lengths 2, 3, 4 were selected. For BWT and CDA-based

approaches, the number of features returned, decreases with an increase in the length

of the features, because, the probability of a subsequence occurring multiple times in

a given sequence decreases with length of the subsequence (captured using the BWT-

based approach), and the probability of two subsequences having a particular similarity

decreases with increased length of the subsequences (used to construct c-mers). There-

fore, most b-mers/c-mers/cb-mers were associated with smaller length features (e.g.,

6 or 7 for nucleotide sequences and 2 or 3 for protein sequences). Furthermore, when

used for constructing smaller length features, the total number of unique protein subse-

quences (maximum search space of protein subsequences for creating the network) was

very small compared to the number of nucleotide subsequences used for the CDA-based

approach. For example, there are a total of 400 unique protein subsequences of length

2, and 4096 unique subsequences of length 6 for nucleotide sequences.

• b-mers versus h-mers: As shown in Figure 8.3, for nucleotide sequneces, b-mers and

h-mers (b-mers with mismatches) demonstrated higher predictive power than other sets

of features. When the number of selected features, f , was small, b-mers outperformed

h-mers. For larger values of f , h-mers were better than b-mers for CE (f = 500, 1000,

1500) and were better (f=100, 150, 200, 250) / comparable (f=500, 1000, 1500) with

b-mers in DM. As discussed in Section 4.3, BWT-based features do not take into

account any mismatches. For small values of f , the effect of overlapping features was

111

negligible because highly informative non-overlapping features are included. However,

as f increases, the addition of some redundancy (by including mismatches to the b-

mers) may benefit the classifier, as opposed to including other non-overlapping features

(present in b-mers).

For protein sequences, performances of classifiers learned using b-mers and h-mers

were mostly comparable, with b-mers performing better than h-mers in 23 out of 36

cases. With a large alphabet size and small length of features, the addition of similar

features was not as helpful as for nucleotide sequences.

• cb-mers versus h-mers: h-mers are primarily derived from b-mers. Therefore, com-

parison of cb-mers to h-mers, was expected to be similar to the comparison of cb-mers

to b-mers (as described earlier). As shown in Figure 8.4, the performance of classifiers

learned using h-mers was better than the performance of the classifier learned using

c-mers for nucleotide sequences (10 out of 16 cases). For protein sequences, cb-mers

produced better AUC values than h-mers in 23 out of 32 cases.

• h-mers versus u-mers: As shown in Figure 8.5, and based on observations made

earlier in this section, for nucleotide sequences, b-mers performed better than c-mers.

Therefore, h-mers, including b-mers and other subsequences similar to b-mers, gave

better results in 34 out of 48 cases, compared to u-mers, which included b-mers and

c-mers.

• r-mers: The proposed approaches outperformed hashing in majority of the cases.

Hashing outperformed the proposed feature sets for two datasets (gPos and gNeg).

Especially, the difference is remarkable for gPos dataset. The reason for this could

be the dataset size of gPos. The total number of sequences in gPos dataset are 540,

which is relatively small compared to other datasets, thereby reducing the ability of

the proposed approaches to capture sufficient information corresponding to different

classes.

112

Figure 8.1: Variation of the performance of NBM classifier with the number of features
selected from b-mers, c-mers, cb-mers, h-mers and u-mers along with r-mers in supervised
learning scenario is shown in the following graphs. In each graph, x-axis reports the number
of features selected from each feature set, f , which is varied from 50 to 1500. y-axis reports
the AUC values of NBM classifier learned from the respective feature sets. See Table 8.2 for
the numbers shown on x-axis and the corresponding number of features selected, f .

113

Figure 8.2: Variation of the performance of NBM classifier with the number of features
selected from b-mers, c-mers and cb-mers in supervised learning scenario is shown in the
following graphs. In each graph, x-axis reports the number of features selected from each
feature set, f , which is varied from 50 to 1500. y-axis reports the AUC values of NBM
classifier learned from the respective feature sets. See Table 8.2 for the numbers shown on
x-axis and the corresponding number of features selected, f .

114

Figure 8.3: Variation of the performance of NBM classifier with the number of features
selected from b-mers and h-mers in supervised learning scenario is shown in the following
graphs. In each graph, x-axis reports the number of features selected from each feature set,
f , which is varied from 50 to 1500. y-axis reports the AUC values of NBM classifier learned
from the respective feature sets. See Table 8.2 for the numbers shown on x-axis and the
corresponding number of features selected, f .

115

Figure 8.4: Variation of the performance of NBM classifier with the number of features
selected from cb-mers and h-mers, in supervised learning scenario is shown in the following
graphs. In each graph, x-axis reports the number of features selected from each feature set,
f , which is varied from 50 to 1500. y-axis reports the AUC values of NBM classifier learned
from the respective feature sets. See Table 8.2 for the numbers shown on x-axis and the
corresponding number of features selected, f .

116

Figure 8.5: Variation of the performance of NBM classifier with the number of features
selected from h-mers and u-mers, in supervised learning scenario is shown in the following
graphs. In each graph, x-axis reports the number of features selected from each feature set,
f , which is varied from 50 to 1500. y-axis reports the AUC values of NBM classifier learned
from the respective feature sets. See Table 8.2 for the numbers shown on x-axis and the
corresponding number of features selected, f .

117

Table 8.2: Variation of the performance of NBM classifier with the number of features
selected from b-mers, c-mers, cb-mers, h-mers and u-mers along with r-mers, with different
number of features (selected using feature selection). For each dataset, maximum AUC
among b-mers, c-mers, cb-mers, u-mers, h-mers and r-mers for each variation of the amount
of unlabeled data is reported in bold font.

Index 1 2 3 4 5 6 7 8

Number of features 50 100 150 200 250 500 1000 1500

CE(b-mers) 0.701 0.74 0.755 0.776 0.78 0.802 0.808 0.81

CE(c-mers) 0.681 0.715 0.731 0.745 0.757 0.776 0.781 0.782

CE(cb-mers) 0.705 0.731 0.75 0.758 0.762 0.774 0.777 0.778

CE(u-mers) 0.58 0.702 0.73 0.74 0.76 0.789 0.806 0.809

CE(h-mers) 0.585 0.716 0.741 0.756 0.776 0.804 0.811 0.812

CE(r -mers) 0.571 0.574 0.609 0.632 0.64 0.681 0.718 0.742

DM(b-mers) 0.661 0.698 0.709 0.7 0.704 0.73 0.725 0.725

DM(c-mers) 0.443 0.675 0.717 0.709 0.719 0.711 0.729 0.727

DM(cb-mers) 0.654 0.705 0.713 0.712 0.717 0.721 0.723 0.718

DM(u-mers) 0.421 0.615 0.703 0.717 0.712 0.714 0.73 0.733

DM(h-mers) 0.547 0.7 0.71 0.72 0.707 0.71 0.722 0.725

DM(r -mers) 0.525 0.577 0.628 0.604 0.528 0.596 0.611 0.632

gPos(b-mers) 0.662 0.716 0.75 0.789 0.807 0.859 0.891 0.915

gPos(c-mers) 0.746 0.792 0.812 0.824 0.826 0.876 0.912 0.923

gPos(cb-mers) 0.647 0.725 0.756 0.785 0.808 0.861 0.897 0.924

gPos(u-mers) 0.658 0.717 0.751 0.786 0.805 0.853 0.887 0.9

gPos(h-mers) 0.66 0.713 0.745 0.783 0.798 0.848 0.881 0.896

gPos(r -mers) 0.798 0.884 0.894 0.915 0.888 0.924 0.942 0.948

gNeg(b-mers) 0.7 0.772 0.824 0.859 0.88 0.914 0.933 0.941

gNeg(c-mers) 0.77 0.841 0.857 0.869 0.876 0.904 0.918 0.925

gNeg(cb-mers) 0.703 0.815 0.864 0.876 0.891 0.911 0.927 0.936

gNeg(u-mers) 0.695 0.761 0.815 0.848 0.875 0.912 0.931 0.939

gNeg(h-mers) 0.699 0.773 0.821 0.853 0.878 0.913 0.932 0.94

gNeg(r -mers) 0.757 0.842 0.853 0.887 0.895 0.925 0.94 0.941

plant(b-mers) 0.669 0.735 0.755 0.772 0.794 0.822 0.854 0.871

plant(c-mers) 0.65 0.707 0.737 0.743 0.748 0.784 0.823 0.836

plant(cb-mers) 0.682 0.731 0.756 0.784 0.795 0.819 0.849 0.864

plant(u-mers) 0.627 0.706 0.746 0.763 0.77 0.811 0.845 0.857

plant(h-mers) 0.664 0.734 0.755 0.771 0.794 0.822 0.851 0.866

plant(r -mers) 0.631 0.724 0.743 0.77 0.783 0.835 0.86 0.871

nonPlant(b-mers) 0.663 0.702 0.746 0.791 0.798 0.835 0.85 0.856

nonPlant(c-mers) 0.707 0.759 0.775 0.787 0.793 0.807 0.825 0.833

nonPlant(cb-mers) 0.679 0.721 0.764 0.788 0.803 0.838 0.854 0.859

nonPlant(u-mers) 0.663 0.701 0.745 0.791 0.799 0.838 0.853 0.859

nonPlant(h-mers) 0.663 0.702 0.746 0.791 0.799 0.836 0.852 0.857

nonPlant(r -mers) 0.678 0.759 0.76 0.804 0.774 0.818 0.845 0.851

118

8.3.3 Semi-supervised Learning

In order to analyze the predictive power of feature sets in semi-supervised learning scenario,

Tables 8.3 and 8.4 present AUC values of ST and CT classifiers on all six datasets (CE,

DM, gPos, gNeg, plant, and nonPlant), when the amount of labeled data was fixed to 10%

and the amount of unlabeled data was varied from 20% to 90%. To better understand the

behavior, results are also plotted in Figures 8.6 and 8.7. Although the general behavior and

comparison among the feature sets remained the same as in the supervised learning scenario,

the following observations were made specifically in semi-supervised learning scenario:

• Nucleotide sequences:

– In most cases, h-mers outperformed other feature sets with ST and CT classi-

fiers. Furthermore, as opposed to supervised learning scenario, h-mers proved to

be better than b-mers in semi-supervised learning scenario in most cases. One

possible reason for this could be dimensionality of the features. h-mers, com-

prise of the entire set of b-mers and other similar subsequences. Therefore, the

dimensionality of h-mers was greater than the dimensionality of b-mers. In semi-

supervised learning scenario, the entire set of derived features (b-mers and h-mers,

respectively) was used in order to represent the data, as opposed to selecting same

number of features as in supervised learning experiments. If additional features

(features present in h-mers but not in b-mers) captured using the CDA-based

approach (on top of the BWT-based approach) were informative, and did not

mislead the classifier, the performance of h-mers should be better than that of

b-mers. The results confirmed this behavior, suggesting that the HBA approach

successfully identified informative subsequences similar to b-mers, especially for

nucleotide sequences.

– r-mers: Similar the performance in supervised learning scenario, r-mers in semi-

supervised learning scenario rarely outperformed features generated using the

119

proposed approaches with nucleotide sequences.

– ST versus CT: By analyzing results in Tables 8.3 and 8.4, the conclusion was

made that CT resulted in better AUC values compared to ST, in a majority of

cases.

• Protein sequences: The results were less consistent with protein sequence datasets:

– For various datasets and classifiers, different feature sets were informative.

– In 41 out of 64 cases, with ST and CT combined, features generated using indi-

vidual approaches (BWT and CDA-based approaches) outperformed the hybrid

features (h-mers and u-mers).

– As opposed to behavior in the supervised learning scenario, the proposed ap-

proaches outperformed feature hashing in a majority of cases corresponding to

all protein datasets. One reason for this behavior could be the lack of suffi-

cient data to capture knowledge hidden within each bin. In hashing, k-mers are

grouped together, and without sufficient amounts of labeled data, the classifier

may not accurately estimate the relation between feature values and classes.

8.3.4 Domain Adaptation Scenario

In order to analyze the predictive power of feature sets in the domain adaptation learning

scenario, Table 8.5 presents AUC values of the NBM for domain adaptation classifier on all

six combinations of source→target data (CE→DM, DM→CE, gNeg→gPos, gPos→gNeg,

nonPlant→plant, and plant→nonPlant) when the amount of target labeled data is fixed

to 20% and the amount of target unlabeled data was varied from 20% to 80%. To better

understand the behavior, results are also plotted in Figures 8.8. Although h-mers rarely

outperformed b-mers and c-mers, features generated using individual approaches (b-mers,

c-mers, and cb-mers) outperformed hybrid features (h-mers and u-mers) in majority of the

cases (22 out of 24).

120

Figure 8.6: Variation of the performance with the amount of unlabeled data used with ST
classifier, learned using b-mers, c-mers, cb-mers, h-mers, u-mers and r-mers. Each graph
plots the AUC values (on y-axis) for CE, DM, gPos, gNeg, plant, and nonPlant datasets
when the amount of labeled data was fixed to 10%, while the amount of unlabeled data was
varied from 20% to 90% (on x-axis). See Table 8.3 for the numbers shown on x-axis and
the corresponding percentage of unlabeled data used to conduct experiments.

121

Figure 8.7: Variation of the performance with the amount of unlabeled data used with CT
classifier, learned using b-mers, c-mers, cb-mers, h-mers, u-mers and r-mers. Each graph
plots the AUC values (on y-axis) for CE, DM, gPos, gNeg, plant, and nonPlant datasets
when the amount of labeled data was fixed to 10%, while the amount of unlabeled data was
varied from 20% to 90% (on x-axis). See Table 8.4 for the numbers shown on x-axis and
the corresponding percentage of unlabeled data used to conduct experiments.

122

Table 8.3: AUC values obtained with ST classifier learned using b-mers, c-mers, cb-mers,
h-mers, u-mers and r-mers. The amount of labeled data was fixed to 10% and the amount
of unlabeled data was varied from 20% to 90%. For each dataset, maximum AUC among
b-mers, c-mers, cb-mers, u-mers, h-mers and r-mers for each variation of the amount of
unlabeled data is reported in bold font.

Index 1 2 3 4 5 6 7 8

Unlab 20% 30% 40% 50% 60% 70% 80% 90%

CE(b-mers) 0.647 0.623 0.645 0.658 0.653 0.669 0.665 0.673

CE(c-mers) 0.653 0.638 0.646 0.632 0.652 0.658 0.613 0.655

CE(cb-mers) 0.614 0.61 0.62 0.613 0.612 0.617 0.613 0.632

CE(u-mers) 0.646 0.651 0.657 0.667 0.658 0.664 0.674 0.665

CE(h-mers) 0.651 0.667 0.641 0.663 0.653 0.679 0.675 0.685

CE(r -mers) 0.569 0.569 0.566 0.561 0.567 0.553 0.554 0.559

DM(b-mers) 0.615 0.62 0.637 0.613 0.627 0.639 0.635 0.632

DM(c-mers) 0.582 0.572 0.575 0.553 0.566 0.606 0.595 0.574

DM(cb-mers) 0.63 0.631 0.644 0.614 0.61 0.622 0.625 0.624

DM(u-mers) 0.569 0.563 0.581 0.544 0.591 0.588 0.596 0.578

DM(h-mers) 0.613 0.618 0.62 0.648 0.637 0.629 0.642 0.639

DM(r -mers) 0.513 0.514 0.512 0.515 0.517 0.513 0.513 0.515

gPos(b-mers) 0.865 0.867 0.824 0.829 0.811 0.79 0.781 0.776

gPos(c-mers) 0.774 0.781 0.744 0.78 0.741 0.74 0.768 0.733

gPos(cb-mers) 0.824 0.838 0.814 0.819 0.794 0.785 0.793 0.798

gPos(u-mers) 0.828 0.839 0.814 0.806 0.822 0.777 0.772 0.785

gPos(h-mers) 0.825 0.849 0.826 0.82 0.821 0.795 0.779 0.779

gPos(r -mers) 0.81 0.789 0.791 0.771 0.761 0.768 0.777 0.766

gNeg(b-mers) 0.866 0.842 0.821 0.808 0.804 0.804 0.795 0.793

gNeg(c-mers) 0.844 0.833 0.841 0.826 0.835 0.834 0.819 0.834

gNeg(cb-mers) 0.882 0.861 0.839 0.818 0.812 0.801 0.791 0.812

gNeg(u-mers) 0.896 0.865 0.827 0.843 0.833 0.842 0.818 0.833

gNeg(h-mers) 0.872 0.839 0.826 0.819 0.799 0.799 0.799 0.797

gNeg(r -mers) 0.881 0.869 0.867 0.845 0.837 0.845 0.831 0.825

plant(b-mers) 0.731 0.701 0.7 0.715 0.718 0.71 0.712 0.715

plant(c-mers) 0.681 0.673 0.689 0.671 0.671 0.654 0.666 0.666

plant(cb-mers) 0.72 0.702 0.681 0.681 0.68 0.7 0.7 0.706

plant(u-mers) 0.709 0.696 0.705 0.708 0.713 0.709 0.703 0.688

plant(h-mers) 0.726 0.699 0.704 0.694 0.717 0.695 0.705 0.7

plant(r -mers) 0.706 0.686 0.658 0.67 0.686 0.687 0.682 0.696

nonPlant(b-mers) 0.799 0.761 0.689 0.685 0.67 0.659 0.652 0.642

nonPlant(c-mers) 0.791 0.779 0.781 0.77 0.786 0.769 0.776 0.725

nonPlant(cb-mers) 0.813 0.801 0.774 0.79 0.774 0.752 0.701 0.696

nonPlant(u-mers) 0.792 0.781 0.732 0.699 0.679 0.658 0.644 0.649

nonPlant(h-mers) 0.799 0.772 0.707 0.699 0.673 0.664 0.652 0.64

nonPlant(r -mers) 0.785 0.776 0.759 0.756 0.746 0.72 0.65 0.651

123

Table 8.4: AUC values obtained with CT classifier learned using b-mers, c-mers, cb-mers,
h-mers, u-mers and r-mers. The amount of labeled data was fixed to 10% and the amount
of unlabeled data was varied from 20% to 90%. For each dataset, maximum AUC among
b-mers, c-mers, cb-mers, u-mers, h-mers and r-mers for each variation of the amount of
unlabeled data is reported in bold font.

Index 1 2 3 4 5 6 7 8

Unlab 20% 30% 40% 50% 60% 70% 80% 90%

CE(b-mers) 0.657 0.649 0.644 0.641 0.64 0.653 0.644 0.658

CE(c-mers) 0.648 0.65 0.668 0.649 0.614 0.632 0.66 0.642

CE(cb-mers) 0.657 0.643 0.638 0.626 0.629 0.642 0.642 0.649

CE(u-mers) 0.649 0.658 0.654 0.657 0.648 0.649 0.671 0.663

CE(h-mers) 0.67 0.673 0.664 0.658 0.655 0.659 0.653 0.66

CE(r -mers) 0.571 0.566 0.557 0.573 0.569 0.571 0.579 0.576

DM(b-mers) 0.619 0.626 0.633 0.607 0.623 0.602 0.625 0.651

DM(c-mers) 0.563 0.579 0.589 0.569 0.582 0.592 0.624 0.601

DM(cb-mers) 0.626 0.611 0.628 0.624 0.634 0.638 0.62 0.619

DM(u-mers) 0.554 0.562 0.552 0.552 0.563 0.593 0.578 0.582

DM(h-mers) 0.604 0.617 0.61 0.635 0.63 0.645 0.631 0.635

DM(r -mers) 0.511 0.515 0.516 0.512 0.519 0.513 0.52 0.515

gPos(b-mers) 0.871 0.869 0.862 0.862 0.876 0.868 0.851 0.835

gPos(c-mers) 0.78 0.807 0.785 0.778 0.785 0.773 0.766 0.786

gPos(cb-mers) 0.849 0.86 0.857 0.871 0.857 0.842 0.847 0.845

gPos(u-mers) 0.853 0.854 0.857 0.82 0.853 0.855 0.831 0.826

gPos(h-mers) 0.838 0.852 0.845 0.832 0.866 0.855 0.85 0.833

gPos(r -mers) 0.812 0.829 0.813 0.841 0.811 0.833 0.835 0.832

gNeg(b-mers) 0.888 0.88 0.86 0.861 0.856 0.862 0.851 0.865

gNeg(c-mers) 0.847 0.842 0.847 0.846 0.841 0.832 0.828 0.832

gNeg(cb-mers) 0.891 0.874 0.872 0.851 0.855 0.85 0.841 0.85

gNeg(u-mers) 0.898 0.886 0.89 0.88 0.856 0.873 0.853 0.877

gNeg(h-mers) 0.893 0.876 0.871 0.861 0.854 0.854 0.838 0.87

gNeg(r -mers) 0.876 0.871 0.88 0.861 0.849 0.871 0.85 0.858

plant(b-mers) 0.741 0.741 0.723 0.697 0.717 0.708 0.703 0.708

plant(c-mers) 0.686 0.69 0.688 0.676 0.681 0.663 0.681 0.673

plant(cb-mers) 0.726 0.726 0.693 0.697 0.69 0.694 0.686 0.7

plant(u-mers) 0.718 0.724 0.715 0.707 0.708 0.698 0.698 0.7

plant(h-mers) 0.741 0.726 0.71 0.684 0.703 0.701 0.697 0.677

plant(r -mers) 0.723 0.683 0.674 0.681 0.664 0.689 0.681 0.682

nonPlant(b-mers) 0.813 0.81 0.793 0.797 0.784 0.778 0.756 0.761

nonPlant(c-mers) 0.792 0.783 0.79 0.799 0.795 0.771 0.782 0.735

nonPlant(cb-mers) 0.806 0.814 0.8 0.802 0.801 0.783 0.786 0.771

nonPlant(u-mers) 0.799 0.815 0.798 0.804 0.796 0.769 0.769 0.762

nonPlant(h-mers) 0.812 0.821 0.81 0.801 0.803 0.776 0.785 0.757

nonPlant(r -mers) 0.793 0.782 0.797 0.798 0.756 0.773 0.758 0.708

124

Figure 8.8: Variation of the performance with the amount of unlabeled data used with
NBM for domain adaptation classifier, learned usingb-mers, c-mers, cb-mers, h-mers, u-
mers and r-mers, respectively. Each graph plots the AUC values (on y-axis) for CE→DM,
DM→CE, gPos→gNeg, gNeg→gPos, plant→nonPlant, and nonPlant→plant combinations
of source→target datasets when the amount of labeled data was fixed to 20%, while the
amount of unlabeled data was varied from 20% to 80% (on x-axis). See Table 8.5 for the
numbers shown on x-axis and the corresponding percentage of unlabeled data used to conduct
experiments.

125

Table 8.5: Results for the variation of unlabeled data with NBM for domain adaptation
algorithm when learned using various feature sets: b-mers, c-mers, cb-mers, u-mers, h-mers,
r-mers and k-mers. Table includes AUC values for the following combinations of source
and target datasets: CE→DM, DM→CE, gPos→gNeg, gNeg→gPos, plant→nonPlant, and
nonPlant→plant. For all experiments, the amount of labeled data is fixed to 20%. For each
dataset, maximum AUC among b-mers, c-mers, cb-mers, u-mers, h-mers and r-mers for
each variation of the amount of unlabeled data is reported in bold font.

Source→Target
Unlabeled

Data
20% 40% 60% 80%

CE→DM

b-mers 0.6514 0.6528 0.6548 0.649

c-mers 0.6248 0.6332 0.6378 0.6222

cb-mers 0.6698 0.6394 0.6412 0.6234

u-mers 0.636 0.6304 0.638 0.6256

h-mers 0.6634 0.648 0.6256 0.63

r-mers 0.5228 0.499 0.5044 0.4804

DM→CE

b-mers 0.6996 0.6852 0.6892 0.6812

c-mers 0.69 0.692 0.6828 0.658

cb-mers 0.6948 0.6768 0.644 0.6462

u-mers 0.702 0.7066 0.6906 0.7028

h-mers 0.7072 0.701 0.6912 0.6916

r-mers 0.6144 0.611 0.5802 0.6072

gNeg→gPos

b-mers 0.9268 0.9202 0.917 0.9054

c-mers 0.9258 0.9246 0.91 0.9074

cb-mers 0.9252 0.922 0.9184 0.9234

u-mers 0.928 0.917 0.915 0.8988

h-mers 0.9266 0.9178 0.9098 0.8992

r-mers 0.6534 0.5886 0.5658 0.5786

gPos→gNeg

b-mers 0.9414 0.936 0.9202 0.8938

c-mers 0.9294 0.9206 0.9154 0.8884

cb-mers 0.9352 0.9232 0.9162 0.8918

u-mers 0.9362 0.9354 0.915 0.8858

h-mers 0.9424 0.9356 0.9132 0.886

r-mers 0.6476 0.664 0.6612 0.6696

nonPlant→plant

b-mers 0.8642 0.7808 0.7788 0.7662

c-mers 0.8412 0.7684 0.756 0.7636

cb-mers 0.8224 0.7672 0.7588 0.7594

u-mers 0.824 0.758 0.74 0.7364

h-mers 0.838 0.7736 0.7636 0.746

r-mers 0.6778 0.6226 0.6054 0.5958

plant→nonPlant

b-mers 0.8358 0.7856 0.7154 0.6844

c-mers 0.8574 0.8586 0.8242 0.8316

cb-mers 0.854 0.8568 0.839 0.8246

u-mers 0.84 0.7954 0.7256 0.7012

h-mers 0.8398 0.7774 0.7258 0.6964

r-mers 0.6334 0.6268 0.6282 0.631

126

Chapter 9

Conclusion and Future Work

Section 9.1 of this chapter draws conclusions for the work presented in this dissertation and

discuss limitations of the approaches proposed to construct sequential features. Improve-

ments and future directions for this work are proposed in Section 9.2.

9.1 Conclusion

This work proposed three novel unsupervised approaches to construct sequential features,

specifically for biological sequence classification problems. Section 9.1.1 outlines the con-

tributions of this dissertation. The merits of the proposed approaches are presented in

Section 9.1.2 and limitations are detailed in Section 9.1.3.

9.1.1 Contributions

• Burrows Wheeler Transform-based approach, which takes into account the length and

suffix information to construct sequential features (b-mers) that occur multiple times

in at least one sequence [Tangirala and Caragea, 2014b,c; Herndon et al., 2014].

• Community detection-based approach, that uses community detection algorithm to

identify communities. In this approach, communities are defined as a group of sim-

127

ilar subsequences of a particular length, further refined to form motifs. The unique

subsequences of the top motifs (c-mers) are used as features [Tangirala and Caragea,

2014a; Tangirala et al., 2015].

• Hybrid approach, that combines the BWT-based approach with the CDA-based ap-

proach to generate b-mers with certain mismatches that span various sequences. A

paper on HBA approach and its comparison with BWT and CDA-based approaches

is currently under preparation.

Experiments were conducted to evaluate parameters corresponding to each of the pro-

posed approach and to evaluate the predictive power of features generated using the pro-

posed approaches. Experiments were conducted in three learning scenarios: supervised,

semi-supervised, and domain adaptation learning scenarios.

9.1.2 Merits

• Burrows Wheeler Transform-based approach: This approach can be considered

as a dimensionality reduction technique because the features obtained through BWT

represent a subset of the set of k -mers, generated using a sliding window-based ap-

proach. To the best of the author’s knowledge, BWT has never been used to generate

features for biological sequence classification problems. The approach is scalable in

terms of the number of sequences because it constructs features from each sequence,

as opposed to a group of sequences. Results of experiments on nucleotide and pro-

tein datasets showed that the use of BWT to generate features reduced the size of

input feature space while retaining many informative features in all three learning sce-

narios. Furthermore, BWT-based approach does not have many notable/significant

parameters to be tuned.

• Community detection-based approach: Similar to the BWT-based approach, this

approach also constructs a reduced set of k-mers, generated using a sliding window-

128

based approach. Features constructed using the CDA-based approach satisfy the

ZOMOMPS constraint. Because the running time of the community detection ap-

proach is highly dependent on the total number of sequences and length of the se-

quences, a model that uses an existing community detection based approach on a

set of randomly selected samples of sequences was proposed. Experimental results

show that the proposed approach, when invoked using small samples (less sequences -

small running time) produced better results compared to invoking it on larger samples

(more sequences - large running time). Furthermore, as opposed to the original ap-

proach of using Hamming distance to construct the network and identify the motifs,

a novel idea of using substitution scores as a similarity metric to identify motifs for

protein sequences was proposed. Results of the experiments in three learning scenarios

showed that the proposed approach generated low-dimensional informative features in

supervised, semi-supervised, and domain adaptation scenarios.

• Hybrid approach: This approach was introduced in an attempt to improve the

performance of b-mers, especially for nucleotide sequences, and to generate b-mers

with certain mismatches that span various sequences. Experiments, similar to other

approaches, were conducted in all three learning scenarios on protein and nucleotide

sequence datasets. The results of the experiments showed that the HBA approach

outperformed BWT and CDA-based approaches in semi-supervised learning scenario,

for nucleotide sequences.

9.1.3 Limitations

The proposed approaches present the following limitations:

• Although the BWT-based approach is scalable in terms of the number of sequences,

the running time to construct b-mers is largely affected by the length of the sequences.

Sorting all possible permutations was performed for each sequence, requiring quadratic

129

time and space in the length of the sequence.

• All three proposed approaches are susceptible to skewed data. The BWT-based ap-

proach constructs features per sequence, and the other two approaches construct fea-

tures from samples of sequences. When the data is skewed, each sample is also likely

skewed. The use of most sequences (for BWT-based) or samples that contain a ma-

jority of sequences (for the CDA-based and HBA approaches) corresponding to one

specific class may result in features that are informative only to that class.

9.2 Future Work

• BWT has been successfully used with several tree data structures to efficiently identify

repeats from biological sequences. Exploration should be made to determine if such

data structures can be used to improve the run time of the BWT-based approach,

especially for very long sequences.

• Different community detection algorithms may discover different community structures

from the same network. Investigation should be made into understanding the effects of

various community detection algorithms in generating sequential features for biological

sequence classification problems using the CDA-based approach.

• Because proposed approaches are highly susceptible to skewed data, the addition of

a wrapper on top of the proposed approaches, that constructs a set of balanced data

samples and further construct features from those balanced samples, as opposed to

using all the sequences would be interesting.

• Furthermore, investigation should be made into evaluating the predictive power of the

proposed feature sets when generated using sequences corresponding to the positive

class alone. However, the resulting approach will not be unsupervised in nature.

130

• Furthermore, b-mers, c-mers, and h-mers should be compared to motifs generated

using existing tools such as MEME [Bailey et al., 2009].

• Also, investigation should be made into extending the proposed features to other

datasets and sequence classification problems such as identifying protein functions or

structures, identifying splice sites, etc.,.

• It would be interesting to extend proposed approaches to identify motifs related to

other biological problems. For example, identifying transcription factor binding sites

in a set of nucleotide sequences.

131

Bibliography

Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In Proceedings of the

Eleventh International Conference on Data Engineering, ICDE ’95, pages 3–14, Washing-

ton, DC, USA. IEEE Computer Society.

Allan, E. and Wren, B. (2003). Genes to genetic immunization: identification of bacterial

vaccine candidates. Methods, 31(3):193–198.

Bailey, T. and Elkan, C. (1995). Unsupervised learning of multiple motifs in biopolymers

using expectation maximization. Machine Learning, 21(1-2):51–80.

Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li,

W. W., and Noble, W. S. (2009). MEME Suite: tools for motif discovery and searching.

Nucleic Acids Research, 37(suppl 2):W202–W208.

Battiti, R. (1994). Using mutual information for selecting features in supervised neural net

learning. IEEE Transactions on Neural Networks, 5:537–550.

Becher, V., Deymonnaz, A., and Heiber, P. (2009). Efficient computation of all perfect

repeats in genomic sequences of up to half a gigabyte, with a case study on the human

genome. Bioinformatics, 25(14):1746–1753.

Bellier, B., Six, A., Thomas-Vaslin, V., and Klatzmann, D. (2013). Reverse vaccinology.

In Dubitzky, W., Wolkenhauer, O., Cho, K.-H., and Yokota, H., editors, Encyclopedia of

Systems Biology, pages 1856–1856. Springer New York.

Black, D. L. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annual Review

of Biochemistry, 72:291–336.

132

Blondel, V., Guillaume, J., Lambiotte, R., and Mech, E. (2008). Fast unfolding of commu-

nities in large networks. J. Stat. Mech, page P10008.

Blum, A. and Mitchell, T. (1998). Combining labeled and unlabeled data with co-training.

In Proceedings of the Eleventh Annual Conference on Computational Learning Theory,

COLT’ 98, pages 92–100, New York, NY, USA. ACM.

Boucher, C. and King, J. (2010). Fast motif recognition via application of statistical thresh-

olds. BMC Bioinformatics, 11(Suppl 1).

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Bucher, P. (1990). Weight matrix descriptions of 4 eukaryotic RNA polymerase-ii promoter

elements derived from 502 unrelated promoter sequences. Journal of Molecular Biology,

212:563–578.

Buhler, J. and Tompa, M. (2001). Finding motifs using random projections. In Proceedings

of the Fifth Annual International Conference on Computational Biology, RECOMB ’01,

pages 69–76, New York, NY, USA. ACM.

Burrows, M. and Wheeler, D. J. (1994). A block-sorting lossless data compression algorithm.

Technical Report 124.

Caragea, C., Silvescu, A., and Mitra, P. (2012). Protein sequence classification using feature

hashing. Proteome Science, 10(1):1–8.

Caropreso, M. F., Matwin, S., and Sebastiani, F. (2001). Text databases and document

management. chapter A Learner-independent Evaluation of the Usefulness of Statistical

Phrases for Automated Text Categorization, pages 78–102. IGI Global, Hershey, PA,

USA.

Cheeseman, P. and Stutz, J. (1996). Advances in knowledge discovery and data mining.

133

chapter In Bayesian Classification (AutoClass): Theory and Results, pages 153–180.

American Association for Artificial Intelligence, Menlo Park, CA, USA.

Chen, L. and Liu, W. (2013). Frequent patterns mining in multiple biological sequences.

Computers in Biology and Medicine, 43(10):1444 – 1452.

Cheng, B. Y. M., Carbonell, J. G., and Klein-Seetharaman, J. (2005). Protein classification

based on text document classification techniques. Proteins: Structure, Function, and

Bioinformatics, 58(4):955–970.

Chuzhanova, N. A., Jones, A. J., and Margetts, S. (1998). Feature selection for genetic

sequence classification. Bioinformatics, 14(2):139–143.

Clauset, A., Newman, M. E. J., , and Moore, C. (2004). Finding community structure in

very large networks. Physical Review E, pages 1– 6.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273–

297.

Danek, A., Pokrzywa, R., Makaowska, I., and Polaski, A. (2012). Application of the

Burrows-Wheeler transform for searching for approximate tandem repeats. In Shibuya,

T., Kashima, H., Sese, J., and Ahmad, S., editors, Pattern Recognition in Bioinformat-

ics, volume 7632 of Lecture Notes in Computer Science, pages 255–266. Springer Berlin

Heidelberg.

Das, M. and Dai, H.-K. (2007). A survey of DNA motif finding algorithms. BMC Bioinfor-

matics, 8(Suppl 7).

Dayhoff, M. O., Schwartz, R. M., and Orcutt, B. C. (1978). A model of evolutionary change

in proteins. Atlas of Protein Sequence and Structure, 5(suppl 3):345–351.

Degroeve, S., De Baets, B., Van de Peer, Y., and Rouzé, P. (2002). Feature subset selection

for splice site prediction. Bioinformatics, 18(suppl 2):S75–S83.

134

Donetti, L. and Muñoz, M. A. (2005). Improved spectral algorithm for the detection of

network communities. In Proceedings of the 8th Granada Seminar - Computational and

Statistical Physics, pages 1–2.

Dongfang, N. and Xiaolong, Z. (2013). Prediction of hot regions in protein-protein interac-

tions based on complex network and community detection. In Proceedings of the IEEE

International Conference on Bioinformatics and Biomedicine (BIBM), pages 17–23.

Down, T. A. and Hubbard, T. J. P. (2005). NestedMICA: sensitive inference of over-

represented motifs in nucleic acid sequence. Nucleic Acids Research, 33(5):1445–1453.

Emanuelsson, O., Nielsen, H., Brunak, S., and Heijne, G. (2000). Predicting subcellular lo-

calization of proteins based on their n-terminal amino acid sequence. Journal of Molecular

Biology, 300(4):1005–1016.

Eskin, E. and Pevzner, P. A. (2002). Finding composite regulatory patterns in DNA se-

quences. Bioinformatics, 18(suppl 1):S354–S363.

Exarchos, T., Papaloukas, C., Lampros, C., and Fotiadis, D. (2006). Protein classification

using sequential pattern mining. In 28th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, EMBS ’06., pages 5814–5817.

Exarchos, T. P., Tsipouras, M. G., Papaloukas, C., and Fotiadis, D. I. (2008). A two-

stage methodology for sequence classification based on sequential pattern mining and

optimization. Data and Knowledge Engineering, 66(3):467 – 487.

Ferragina, P. and Manzini, G. (2000). Opportunistic data structures with applications. In

Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pages

390–398.

Forman, G. and Kirshenbaum, E. (2008). Extremely fast text feature extraction for classi-

135

fication and indexing. In Proceedings of the 17th ACM Conference on Information and

Knowledge Management, CIKM ’08, pages 1221–1230, New York, NY, USA. ACM.

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3):75 – 174.

Fortunato, S. and Lancichinetti, A. (2009). Community detection algorithms: A compara-

tive analysis: Invited presentation, extended abstract. In Proceedings of the Fourth In-

ternational ICST Conference on Performance Evaluation Methodologies and Tools, VAL-

UETOOLS ’09, pages 27:1–27:2, ICST, Brussels, Belgium, Belgium. ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering).

Fotiadis, D., Exarchos, T., Tsipouras, M., and Papaloukas, C. (2007). Biosequence classi-

fication using sequential pattern mining and optimization. In 6th International Special

Topic Conference on Information Technology Applications in Biomedicine, 2007. ITAB

2007., pages 58–61.

Galavotti, L., Sebastiani, F., and Simi, M. (2000). Experiments on the use of feature

selection and negative evidence in automated text categorization. In Proceedings of the

4th European Conference on Research and Advanced Technology for Digital Libraries,

ECDL ’00, pages 59–68, London, UK, UK. Springer-Verlag.

Gardy, J. L., Laird, M. R., Chen, F., Rey, S., Walsh, C. J., Ester, M., and Brinkman, F. S. L.

(2005). PSORTb v.2.0: Expanded prediction of bacterial protein subcellular localization

and insights gained from comparative proteome analysis. Bioinformatics, 21(5):617–623.

Gerstein, M. B., Bruce, C., Rozowsky, J. S., Zheng, D., Du, J., Korbel, J. O., Emanuelsson,

O., Zhang, Z. D., Weissman, S., and Snyder, M. (2007). What is a gene, post-ENCODE?

History and updated definition. Genome Research, 17(6):669–681.

Girvan, M. and Newman, M. E. J. (2002). Community structure in social and biological

networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826.

136

Griffith, M., Tang, M. J., Griffith, O. L., Morin, R. D., Chan, S. Y., Asano, J. K., Zeng, T.,

Flibotte, S., Ally, A., Baross, A., Hirst, M., Jones, S. J. M., Morin, G. B., Tai, I. T., and

Marra, M. A. (2008). ALEXA: a microarray design platform for alternative expression

analysis. Nature Methods, 5(2):118.

Guimera, R. and Amaral, L. A. N. (2005). Functional cartography of complex metabolic

networks. Nature, 433(7028):895–900.

Guimera, R, S.-P. M. A. L. (2004). Modularity from fluctuations in random graphs and

complex networks. Phys. Rev. E, 70:art. no. 025101.

Hanchuan, P., Fuhui, L., and Chris, D. (2005). Feature selection based on mutual informa-

tion: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 27:1226–1238.

Harenberg, S., Bello, G., Gjeltema, L., Ranshous, S., Harlalka, J., Seay, R., Padmanab-

han, K., and Samatova, N. (2014). Community detection in large-scale networks: a sur-

vey and empirical evaluation. Wiley Interdisciplinary Reviews: Computational Statistics,

6(6):426–439.

He, Y., Wu, X., Zhu, X., and Arslan, A. (2007). Mining frequent patterns with wildcards

from biological sequences. In Proceedings of the IEEE International Conference on Infor-

mation Reuse and Integration, IRI 2007., pages 329–334.

Henikoff, S. and Henikoff, J. G. (1992). Amino acid substitution matrices from protein

blocks. Proceedings of the National Academy of Sciences, 89(22):10915–10919.

Herndon, N., Tangirala, K., and Caragea, D. (2014). Predicting Protein Localization Using a

Domain Adaptation Naive Bayes Classifier with Burrows Wheeler Transform Features. In

Proceedings of the 6th IEEE International Conference on Bioinformatics and Biomedicine,

BIBM 2014, pages 501–504.

137

Huang, J., Lu, J., and Ling, L. C. X. (2003). Comparing Näıve Bayes, decision trees, and

SVM with AUC and accuracy. In Proceedings of the Third IEEE International Conference

on Data Mining, ICDM 2003, pages 553–556. IEEE Computer Society.

Jason, D. M. R., Lawrence, S., Jaime, T., and David, R. K. (2003). Tackling the Poor

Assumptions of Näıve Bayes Text Classifiers. In Proceedings of the Twentieth International

Conference on Machine Learning, pages 616–623.

Jia, C., Carson, M., and Yu, J. (2013). A fast weak motif-finding algorithm based on

community detection in graphs. BMC Bioinformatics, 14(1):1–14.

Kang, T. H., soo Yoo, J., and Kim, H. Y. (2007). Mining frequent contiguous sequence

patterns in biological sequences. In Proceedings of the 7th IEEE International Conference

on Bioinformatics and Bioengineering, 2007. BIBE 2007., pages 723–728.

Kibriya, A. M., Frank, E., Pfahringer, B., and Holmes, G. (2004). Multinomial Näıve Bayes

for Text Categorization Revisited. In Proceedings of the 17th Australian Joint Conference

on Advances in Artificial Intelligence, AI’04, pages 488–499, Berlin, Heidelberg. Springer-

Verlag.

Kjetil Sandve, G. and Drabls, F. (2006). A survey of motif discovery methods in an inte-

grated framework. Biology Direct, 1(1).

Kuksa, P. and Pavlovic, V. (2010). Efficient motif finding algorithms for large-alphabet

inputs. BMC Bioinformatics, 11(Suppl 8).

Kulekci, M. O., Vitter, J. S., and Xu, B. (2012). Efficient Maximal Repeat Finding Using

the Burrows-Wheeler Transform and Wavelet Tree. IEEE/ACM Trans. Comput. Biol.

Bioinformatics, 9(2):421–429.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. (2009). Ultrafast and memory-

138

efficient alignment of short DNA sequences to the human genome. Genome Biology,

10(3):1–10.

Largeron, C., Moulin, C., and Gèry, M. (2011). Entropy based feature selection for text

categorization. In Proceedings of the 2011 ACM Symp. on Applied Computing, SAC ’11,

pages 924–928, New York, NY, USA. ACM.

Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald, A. F., and Wootton,

J. C. (1993). Detecting subtle sequence signals: a Gibbs sampling strategy for multiple

alignment. Science (New York, N.Y.), 262(5131):208–214.

Leibovich, L., Paz, I., Yakhini, Z., and Mandel-Gutfreund, Y. (2013). DRIMust: a web

server for discovering rank imbalanced motifs using suffix trees. Nucleic Acids Research,

41(W1):W174–W179.

Leslie, C., Eskin, E., and Noble, W. S. S. (2002). The spectrum kernel: a string kernel

for SVM protein classification. In Pacific Symposium on Biocomputing, pages 564–575,

Department of Computer Science, Columbia University, New York, NY 10027, USA.

cleslie.noble@cs.columbia.edu.

Leslie, C. S., Eskin, E., Cohen, A., Weston, J., and Noble, W. S. (2004). Mismatch string

kernels for discriminative protein classification. Bioinformatics, 20(4):467–476.

Li, G., Chan, T.-M., Leung, K.-S., and Lee, K.-H. (2010). A cluster refinement algorithm

for motif discovery. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 7(4):654–668.

Li, H., Ruan, J., and Durbin, R. (2008a). Mapping short DNA sequencing reads and calling

variants using mapping quality scores. Genome Research, 18(11):1851–1858.

Li, R., Li, Y., Kristiansen, K., and Wang, J. (2008b). SOAP: short oligonucleotide alignment

program. Bioinformatics, 24(5):713–714.

139

Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., and Wang, J. (2009). SOAP2:

an improved ultrafast tool for short read alignment. Bioinformatics, 25(15):1966–1967.

Liao, V.-C. and Chen, M.-S. (2013). Efficient mining gapped sequential patterns for motifs

in biological sequences. BMC Systems Biology, 7(4):1–13.

Liao, V.-C. and Chen, M.-S. (2014). DFSP: a Depth-First SPelling algorithm for sequential

pattern mining of biological sequences. Knowledge and Information Systems, 38(3):623–

639.

Liao, V. C.-C. and Chen, M.-S. (2012). An efficient sequential pattern mining algorithm

for motifs with gap constraints. IEEE International Conference on Bioinformatics and

Biomedicine, 0:1.

Liu, X. S., Brutlag, D. L., and Liu, J. S. (2002). An algorithm for finding protein-DNA bind-

ing sites with applications to chromatin-immunoprecipitation microarray experiments.

Nat Biotech, 20:835–839.

Mahmoud, H., Masulli, F., Rovetta, S., and Russo, G. (2014). Community detection in

protein-protein interaction networks using spectral and graph approaches. In Formenti,

E., Tagliaferri, R., and Wit, E., editors, Computational Intelligence Methods for Bioin-

formatics and Biostatistics, Lecture Notes in Computer Science, pages 62–75. Springer

International Publishing.

Mallek, S., Boukhris, I., and Elouedi, Z. (2015). Predicting proteins functional family: A

graph-based similarity derived from community detection. In Proceedings of the Advances

in Intelligent Systems and Computing, volume 323, pages 629–639. Springer International

Publishing.

Massen, C. P. and Doye, J. P. K. (2005). Identifying communities within energy landscapes.

Phys. Rev. E, 71:046101.

140

Medus, A., Acuna, G., and Dorso, C. (2005). Detection of community structures in networks

via global optimization. Physica A: Statistical Mechanics and its Applications, 358(2):593–

604.

Melsted, P. and Pritchard, J. (2011). Efficient counting of k-mers in DNA sequences using

a Bloom filter. BMC Bioinformatics, 12(1):333+.

Mitchell, M. T. (1997). Machine learning. McGraw-Hill Companies Inc., international

edition.

Mora, M., Veggi, D., Santini, L., Pizza, M., and Rappuoli, R. (2003). Reverse vaccinology.

Drug Discov Today, 8(10):459–464.

Nakai, K. and Kanehisa, M. (1991). Expert system for predicting protein localization sites in

gram-negative bacteria. Proteins: Structure, Function, and Bioinformatics, 11(2):95–110.

Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure in

networks. Physical Review E, 69(026113).

Ng, H. T., Goh, W. B., and Low, K. L. (1997). Feature selection, perceptron learning, and

a usability case study for text categorization. In Proceedings of the 20th Annual Interna-

tional ACM SIGIR Conference on Research and Development in Information Retrieval,

SIGIR ’97, pages 67–73, New York, NY, USA. ACM.

Nigam, K. and Ghani, R. (2000). Analyzing the effectiveness and applicability of co-training.

In Proceedings of the Ninth International Conference on Information and Knowledge Man-

agement, CIKM ’00, pages 86–93, New York, NY, USA. ACM.

Pan, Q., Shai, O., Lee, L. J., Frey, B., and Blencowe, B. (2008). Deep surveying of alternative

splicing complexity in the human transcriptome by high-throughput sequencing. Nature

Genetics, 40:1413–1415.

141

Pavesi, G., Mauri, G., and Pesole, G. (2001). An algorithm for finding signals of unknown

length in DNA sequences. Bioinformatics (Oxford, England), 17 Suppl 1(suppl 1):S207–

S214.

Pavesi, G., Mereghetti, P., Mauri, G., and Pesole, G. (2004). Weeder web: discovery of

transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic

Acids Res, 32:199–203.

Pearson, H. (2006). Genetics: What is a gene? Nature, 441(7092):398–401.

Pennisi, E. (2007). DNA study forces rethink of what it means to be a gene. Science,

316(5831):1556–1557.

Pevzner, P. A. and Sze, S.-H. (2000). Combinatorial approaches to finding subtle signals

in DNA sequences. In Proceedings of the Eighth International Conference on Intelligent

Systems for Molecular Biology, pages 269–278. AAAI Press.

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., and Parisi, D. (2004). Defining and

identifying communities in networks. Proceedings of the National Academy of Sciences of

the United States of America, 101(9):2658–2663.

Rafal, P. and Andrzej, P. (2010). BWtrs: A tool for searching for tandem repeats in DNA

sequences based on the Burrows Wheeler transform. Genomics, 96(5):316 – 321.

Raghavan, U. N., Albert, R., and Kumara, S. (2007). Near linear time algorithm to detect

community structures in large-scale networks. Physical Review E, 76(3):036106+.

Rätsch, G., Sonnenburg, S., and Schölkopf, B. (2005). RASE: recognition of alternatively

spliced exons in C.elegans . Bioinformatics, 21(suppl 1):i369–i377.

Rey, S., Gardy, J., and Brinkman, F. (2005). Assessing the precision of high-throughput

computational and laboratory approaches for the genome-wide identification of protein

subcellular localization in bacteria. BMC Genomics, 6:162.

142

Rich, C. and Alexandru, N.-M. (2006). An empirical comparison of supervised learning

algorithms. In Proceedings of the Twenty Third International Conference on Machine

Learning (ICML06, pages 161–168.

Rish, I. (2001). An empirical study of the näıve Bayes classifier. In Workshop on Empirical

Methods in AI.

Rosvall, M. and Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal

community structure. Proceedings of the National Academy of Sciences, 105(4):1118–1123.

Roth, F. P., Hughes, J. D., Estep, P. W., and Church, G. M. (1998). Finding DNA reg-

ulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA

quantitation. Nat Biotech, 16:939–945.

Saeys, Y., Rouzè, P., and Van De Peer, Y. (2007). In search of the small ones: improved pre-

diction of short exons in vertebrates, plants, fungi and protists. Bioinformatics, 23(4):414–

420.

Sagot, M.-F. (1998). Spelling approximate repeated or common motifs using a suffix tree. In

Proceedings of the Third Latin American Symposium on Theoretical Informatics, LATIN

’98, pages 374–390, London, UK, UK. Springer-Verlag.

Sahami, M., Dumais, S., Heckerman, D., and Horvitz, E. (1998). A Bayesian approach

to filtering junk E-mail. In Learning for Text Categorization: Papers from the 1998

Workshop, Madison, Wisconsin. AAAI Technical Report WS-98-05.

Salzberg, S. L., Delcher, A. L., Kasif, S., and White, O. (1998). Microbial gene identification

using interpolated Markov models. Nucleic Acids Research, 26(2):544–548.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical

journal, 27.

143

Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A., and Vishwanathan, S. (2009).

Hash kernels for structured data. J. Mach. Learn. Res., 10:2615–2637.

Sinha, S. and Tompa, M. (2003). YMF: a program for discovery of novel transcription factor

binding sites by statistical over representation. Nucleic Acids Research, 31(13):3586–3588.

Sun, H., Low, M., Hsu, W., and Rajapakse, J. (2010). RecMotif: a novel fast algorithm for

weak motif discovery. BMC Bioinformatics, 11(Suppl 11).

Sun, L., Luo, H., Bu, D., Zhao, G., Yu, K., Zhang, C., Liu, Y., Chen, R., and Zhao,

Y. (2013). Utilizing sequence intrinsic composition to classify protein-coding and long

non-coding transcripts. Nucleic Acids Research.

Tangirala, K. and Caragea, D. (2014a). Community detection-based features for sequence

classification. In Proceedings of the 5th ACM Conference on Bioinformatics, Computa-

tional Biology, and Health Informatics, BCB ’14, pages 559–568, New York, NY, USA.

ACM.

Tangirala, K. and Caragea, D. (2014b). Generating features using Burrows Wheeler Trans-

formation for biological sequences. BIOINFORMATICS, pages 185–192.

Tangirala, K. and Caragea, D. (2014c). Semi-supervised classification of protein sequences

using burrows wheeler transformation-based features. 6th International Conference on

Bioinformatics and Computational Biology (BICoB).

Tangirala, K., Herndon, N., and Caragea, D. (2015). Community detection-based feature

construction for protein sequence classification. In Proceedings of the 11th International

Symposium on Bioinformatics Research and Application, ISBRA, 2015.

van Laarhoven, T. and Marchiori, E. (2012). Robust community detection methods with

resolution parameter for complex detection in protein-protein interaction networks. In

144

Shibuya, T., Kashima, H., Sese, J., and Ahmad, S., editors, Pattern Recognition in Bioin-

formatics, volume 7632 of Lecture Notes in Computer Science, pages 1–13. Springer Berlin

Heidelberg.

Vens, C., Rosso, M.-N., and Danchin, E. G. J. (2011). Identifying discriminative

classification-based motifs in biological sequences. Bioinformatics, 27(9):1231–1238.

Wang, K., Xu, Y., and Yu, J. X. (2004). Scalable sequential pattern mining for biological

sequences. In Proceedings of the Thirteenth ACM International Conference on Information

and Knowledge Management, CIKM ’04, pages 178–187, New York, NY, USA. ACM.

Weinberger, K., Dasgupta, A., Langford, J., Smola, A., and Attenberg, J. (2009). Feature

hashing for large scale multitask learning. In Proceedings of the 26th Annual International

Conference on Machine Learning, ICML ’09, pages 1113–1120, New York, NY, USA.

ACM.

Wiener, E. D., Pedersen, J. O., and Weigend, A. S. (1995). A neural network approach to

topic spotting. In Proceedings of SDAIR-95, pages 317–332, Las Vegas, US.

Wu, X., Zhu, X., He, Y., and Arslan, A. N. (2013). PMBC: Pattern Mining from Biological

Sequences with Wildcard Constraints. Comput. Biol. Med., 43(5):481–492.

Xu, Y., Yang, J., Zhao, Y., and Shang, Y. (2013). An improved voting algorithm for planted

(l,d) motif search. Inf. Sci., 237:305–312.

Yamaguchi, K., Yu, F., and Inoue, M. (1988). Expert system for predicting protein local-

ization sites in gram-negative bacteria. Cell, 53(423).

Yang, Y., Lu, B.-L., and Yang, W.-Y. (2008). Classification of protein sequences based on

word segmentation methods. In Brazma, A., Miyano, S., and Akutsu, T., editors, Pro-

ceedings of the Sixth Asia-Pacific Bioinformatics Conference, Kyoto, Japan, volume 6 of

145

Advances in Bioinformatics and Computational Biology, pages 177–186. Imperial College

Press.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods.

In Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics,

ACL ’95, pages 189–196, Stroudsburg, PA, USA. Association for Computational Linguis-

tics.

Zaki, M. (2001). SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine

Learning, 42(1-2):31–60.

Zambelli, F., Pesole, G., and Pavesi, G. (2012). Motif discovery and transcription factor

binding sites before and after the next-generation sequencing era. Briefings in Bioinfor-

matics.

Zavaljevski, N., Stevens, F. J., and Reifman, J. (2002). Support vector machines with selec-

tive kernel scaling for protein classification and identification of key amino acid positions.

Bioinformatics, 18(5):689–696.

Zhu, F., Yan, X., Han, J., and Yu, P. (2007). Efficient discovery of frequent approximate

sequential patterns. In Seventh IEEE International Conference on Data Mining, ICDM

2007., pages 751–756.

146

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Motivation
	Overview of Proposed Approaches
	Burrows Wheeler Transform Approach
	Community Detection Approach
	Hybrid Approach

	Biological Problems Addressed
	Research Questions
	Contributions
	Outline

	Background
	Biological Background
	Genes and Proteins
	Alternative Splicing and Protein Localization

	Machine Learning Background
	Learning Frameworks
	Feature Representation and Dimensionality Reduction

	Related Work
	Burrows Wheeler Transform in Bioinformatics
	Community Detection in Bioinformatics
	Sliding Window Approach in Bioinformatics
	Feature Selection
	Sequential Pattern Mining Algorithms

	Proposed Feature Construction Approaches
	Burrows Wheeler Transform Approach
	Burrows Wheeler Transform Preliminaries
	Feature Construction based on Burrows Wheeler Transform

	Community Detection Approach
	Community Detection Preliminaries
	Identifying Motifs Using Community Detection - TFBSGroup
	Feature Construction for Large Nucleotide Sequence Datasets
	Feature Construction for Protein Sequence Datasets

	Hybrid Approach
	Motivation
	Feature Construction Using the Hybrid Approach

	Experimental Setup
	Datasets
	Alternative Splicing Datasets
	Protein Localization Datasets

	Research Questions
	Experimental Setup: 5-fold Cross-Validation
	Learning Algorithms and Other Experimental Details

	Burrows Wheeler Transform Approach: Experiments and Results
	Research Questions
	Parameters and Experiments
	Default Parameters
	Experiments

	Results
	Dimensionality Comparison
	Supervised Scenario: b-mers versus k-mers
	Semi-supervised Scenario: b-mers versus k-mers
	Domain Adaptation Scenario: b-mers versus k-mers

	Community Detection Approach: Experiments and Results
	Research Questions
	Parameters and Experiments
	Default Parameters
	Experiments

	Results
	Dimensionality Comparison
	Supervised Scenario: c-mers versus k-mers
	Semi-supervised Scenario: c-mers versus k-mers
	Domain Adaptation Scenario: c-mers vs k-mers
	Varying the Number of Motifs
	Varying the Number of Samples and Sample Size
	Varying the Number of Mismatches and Hamming Distance
	Varying the Substitution Score Threshold

	Hybrid Approach: Experiments and Results
	Research Questions
	Parameters and Experiments
	Default Parameters
	Experiments

	Results
	Dimensionality Comparison
	Supervised Learning Scenario
	Semi-supervised Learning
	Domain Adaptation Scenario

	Conclusion and Future Work
	Conclusion
	Contributions
	Merits
	Limitations

	Future Work

	Bibliography

