
2>> ^

/A GRAPHIC TOOL FOR GENERATING
ADA LANGUAGE SPECIFICATIONS/

by

DONALD E. BODLE, JR.

B.S., Kansas State University, 1984

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Approved by:

Major Professor

A Graphic Tool for Generating Ada Language Specifications

2.M A11502 1453Dt,
,T<f- by Don Bodle

ML

Abstract

Methods for specifying software systems have gained

increasing attention as the size and complexity of computer

applications has grown. The purpose of this paper is to

present the current state of software specification

technigues and to propose improvements in one component of

these techniques, the user interface.

The use of automated tools for specification is described,

with particular emphasis on their user interfaces. Many

features of these tools are highlighted. From this study, a

proposal for a graphic interface for software system

specification is developed, describing the desirable

features of such an interface. Finally, a prototype of the

proposal is examined.

TABLE OF CONTENTS

Section

1. OVERVIEW

page

4

1.1 REQUIREMENTS SPECIFICATIONS 5
1.2 LEVELS OF SPECIFICATION 7
1.3 GRAPHIC INTERFACES 8
1.4 THE PROBLEM WITH TOOLS 9
1.5 A MODEL FOR A GRAPHIC TOOL 11

2. SPECIFICATIONS 14

2.1 TYPES OF REQUIREMENTS SPECIFICATIONS 14
2.1.1 FUNCTIONAL 14
2.1.2 NON-FUNCTIONAL 15
2.2 CHARACTERISTICS OF SPECIFICATIONS 15
2.3 AREAS FOR ANALYSIS 17
2.3.1 FORMAL MODEL 17
2.3.2 SCOPE 17
2.3.3 LEVEL OF FORMALITY 17
2.3.4 DEGREE OF SPECIALIZATION 18
2.3.5 SPECIALIZATION AREA 18
2.3.6 DEVELOPMENT METHOD 18
2.4 FORMAL MODELS OF SPECIFICATIONS 19
2.4.1 ACCESS-GRAPH MODEL 19
2.4.2 COMMUNICATING CONCURRENT PROCESSES 20
2.4.3 DATA FLOW 21
2.4.4 ENTITY-RELATIONSHIP MODEL 22
2.4.5 FINITE-STATE MACHINES 22
2.4.6 FUNCTIONAL COMPOSITION 23
2.4.7 PETRI NETS 2 4
2.4.8 STIMULUS RESPONSE PATHS 25
2.5 SPECIFICATION LANGUAGES 25

3. AUTOMATED TOOLS FOR SPECIFICATION 27

3.1 GAMBIT 27
3.1.1 FORMAL MODEL - EXTENDED 2 8

ENTITY-RELATIONSHIP MODEL
3.1.2 USER INTERFACE 28
3.1.3 OUTPUT 3
3.1.4 OBSERVATIONS 31
3.2 HOS - HIGHER ORDER SOFTWARE 31
3.2.1 FORMAL MODEL - FUNCTIONAL COMPOSITION 32
3.2.2 USER INTERFACE 32
3.2.3 OUTPUT 33
3.2.4 OBSERVATIONS 34
3.3 PSL/PSA 34
3.3.1 FORMAL MODEL - A GENERAL SYSTEM MODEL 3 4
3.3.2 USER INTERFACE 35

3 .3,.3 OUTPUT
3 .3,.4 OBSERVATIONS
3 .4 SREM - SOFTWARE REQUIREMENTS ENGINEERING

METHODOLOGY
3 .4, , 1 FORMAL MODEL - FINITE STATE MACHINE
3 .4,.2 USER INTERFACE
3 .4.,3 OUTPUT
3 .4.,4 OBSERVATIONS
3 .5 TAGS - TECHNOLOGY FOR THE AUTOMATED

GENERATION OF SYSTEMS
3 .5.,1 FORMAL MODEL - COMMUNICATING CONCURRENT

PROCESSES
3 .5. 2 USER INTERFACE
3,,5. 3 OUTPUT
3..5. 4 OBSERVATIONS
3..6 SUMMARY

35

35

36

36
37

39
39

4

41

41
4 6

4 6

47

4. GRAPHIC TOOLS FOR GENERATING SOFTWARE 49
SPECIFICATIONS

4.1 A FORMAL MODEL 4 9
4.2 USER INTERFACE 51
4.2.1 GRAPHIC ISSUES 52
4.2.2 ADA LANGUAGE ISSUES 56
4.3 OUTPUT 59
4.4 SUMMARY 6

5. GTGALS - THE PROTOTYPE 62

5.1 FORMAL MODEL - ACCESS-GRAPH 63
5.2 USER INTERFACE 63
5.2.1 GRAPHIC DESIGN AND SPECIFICATION 64
5.2.2 SPECIFICATION VIEWING 66
5.2.3 GRAPHIC EDITING 66
5.2.4 SPECIFICATION EDITING 67
5.2.5 DEVELOPMENT 6 7
5.3 OUTPUT 70

6. CONCLUSIONS 72

6.1 USEFULNESS 72
6.1.1 I MPLEMENTAT I ON 72
6.1.2 ADA LANGUAGE SPECIFICATIONS 73
6.1.3 AUTOMATIC CODE GENERATION 73
6.2 APPROPRIATENESS OF THE DESIGN 74
6.2.1 FORMAL MODEL 74
6.2.2 USER INTERFACE 75
6.2.3 OUTPUT 75
6.3 RECOMMENDED EXTENSIONS AND MODIFICATIONS 76
6.3.1 SPECIFICATION ANALYSIS 76
6.3.2 FRONT-END TO OTHER TOOLS 7 7

6.4 THE NEEDS 77

REFERENCES 78

APPENDICES

A GTGALS PROCEDURE DESCRIPTIONS 80
B TURBO GRAPHIX TOOLBOX MODIFICATIONS 85
C DISPLAY FILE FOR MAIN2 86
D SOURCE CODE FOR A GRAPHIC TOOL FOR GENERATING 89

ADA LANGAUGE SPECIFICATIONS

LIST OF FIGURES

figure # page

1.6.1 - GTGALS Access-graph 11
1.6.2 - Ada Language specification 12

of figure 1.6.1
2.4.1 - An Access-graph 20
2.4.2 - A Data flow diagram 21
2.4.3 - An E-R diagram 22
2.4.4 - A Finite-state machine 23
2.4.5 - A Petri net graph 24
3.1.1 - An Entity Block Diagram 29
3.1.2 - Defining relations with Gambit 30
3.4.1 - An R-net graph and text 3 8
3.5.1 - A Schematic Block Diagram 42
3.5.2 - An IORTD 43
3.5.3 - A Predefined Process Diagram 44
3.5.4 - An I/O Parameter Table 45
3.5.5 - An Internal Parameter Table 45
5.2.1 - The GTGALS Help Window 64
5.2.2 - GTGALS screen 65
5.2.3 - GTGALS View Mode 6 6
5.2.4 - GTGALS Specification Edit mode 68
5.2.5 - Decomposition of INPUT from MAIN2 69
5.2.6 - Specification Entry for an object 69
5.2.7 - Ada Language specification of MAIN2 71

CHAPTER 1. OVERVIEW

Methods for specifying software systems have gained

increasing attention as the size and complexity of computer

applications has grown. The purpose of this paper is to

review the current state of software specification

techniques and to propose improvements in one component of

these techniques, the user interface.

Basic background information on requirements specifications

is provided in Chapter 2. It presents a summary of

characteristics of specifications and then focuses on some

of the formal models used as a basis for requirements

specifications. The chapter also discusses the varieties of

requirements specification languages.

In chapter 3, methodologies such as Higher Order Software

(HOS) (Hamilton, 1976; Hamilton, 1983), Program Statement

Language/ Program Statement Analyzer (PSL/PSA) (Teichroew,

1977) , Technology for Automated Generation of Systems (TAGS)

(Sievert, 1985) , and Software Requirements Engineering

Methodology (SREM) (Alford, 1985) are reviewed for their

contributions to automated requirements specifications.

Additionally the tool Gambit (Braegger, 1985), though 1 not a

specification tool, is reviewed for its graphic interface

features

.

The main contribution of this paper, a model for a graphic

tool for generating Ada language specifications, is

described in Chapter 4. This model draws on some of the

concepts of the tools described in Chapter 3 and adds ideas

such as "direct manipulation" and "spatial management"

(Schneiderman, 1983).

Chapter 5 presents a prototype of the interface model. The

prototype is written in Turbo Pascal using the Turbo Graphix

Toolbox. This implementation is a limited demonstration of

the ideas in the developed model. The program allows

drawing and deleting of objects and directed arcs and naming

and specifying procedures and their inputs and outputs for

each object. It automatically modifies the underlying data

structure corresponding to graphic actions. The program

will create Ada language specifications from the graphic

specification, and allows saving a display file on disk

which can be retrieved and further edited.

Chapter 6 is used to evaluate the model and the

implementation. It also presents recommendations for

extensions to the model and further work in the area of

graphic interfaces.

1.1 Requirements Specifications

One of the many steps in software engineering between

problem recognition and problem solution is describing the

problem. As software systems became more complex, more

formal steps were defined between recognition and solution.

In the "traditional" life-cycle, the steps include

requirements analysis and definition, specification, design,

programming, verification and testing, performance,

operation and maintenance, and configuration management

(Myers, 1978). Requirements specifications consisted of

hand-drawn data flow diagrams, hierarchy diagrams, control

structure diagrams, or data structure diagrams (or any

combination of these) . Added to these were text

specifications, usually functional in nature, and data

dictionaries to precisely describe the structure and usage

of data.

More recently a life-cycle model called the functional

life-cycle has been offered, with four phases: define,

analyze, resource allocate, and execute (Hamilton, 1983).

Again, a combination of graphic and textual components are

used to define the system to be developed. The major

difference with this model has to do with the steps between

requirements specification ("define") and an executable

software system.

With the Department of Defense-sponsored development of the

Ada programming language, some concept of specifications has

entered directly into a high level language (DOD, 1983)

(Booch, 1983) . Functional components in the Ada language

consist of two separate parts, a specification part and a

body. The specification part describes the interface to the

component but none of the implementation details. This

follows the basic idea accomplished in other specification

methods, describing the "what" rather than the "how" of

system components. The implementation or the "how" of the

components can be developed at a later time. Therefore, the

entire software system can be described using these

specification parts and these specifications handed out to

many different implementors to be coded.

1.2 Levels of Specification

The purpose of a requirements specification is to describe

as accurately as possible the elements of the problem to be

solved. These elements include the information to be

processed, the functions which are to be accomplished, and

the operating constraints under which the processing is to

take place. Most often the requirements are stated at

different levels of refinement. Each successive level is a

refinement or decomposition of the components of the

previous level.

One example of such refinement is seen in Yourdon ' s analysis

of a data flow diagram for a system. The diagram is divided

into the afferent, transform, and efferent components

8

(Pressman, 1982). This is the first level of refinement and

is more readily understood as input, process, and output.

These three components are then each refined into their

logical components, and this process is repeated until a

component is a single-function, coherent, easily understood

unit.

1.3 Graphic Interfaces

Requirements specifications gained importance as software

systems became larger and more complex. Initially they

existed as flowcharts, data flow diagrams, or other

individually-styled picture representations of the software

system. These were drawn by hand, and required text

specifications to correspond to them. Since these pictures

were non-standard, much confusion arose when someone

different than their creator was required to code the

system. Text specifications were helpful, but often

incomplete or ambiguous. This resulted in software systems

that did what the specifications required but not what was

really wanted.

In efforts to more formally and accurately describe system

requirements, new methodologies and formal languages have

been developed. These require designers to learn the

language syntax and then try to express the system in that

language. Since "a picture is worth a thousand words" and

managers don't have time for a thousand words, various

styles of printed graphic representations are generated from

the specification.

As interactive graphics hardware and software have improved,

tools to use these capabilities are being developed. At

least one automated tool allows interactive, graphically

developed system specification.

Requirements specification has moved from manual graphic

representations with details textual ly specified, to

computer analyzable formal specification languages with

graphic diagrams produced after the formal specification, to

interactive graphic specification with a corresponding text

specification.

1.4 The Problem with Tools

Commonly used specification methods begin with diagrams and

then add the details. Typically, the first diagram pictures

the entire software system as a few major components, often

the interfaces to the external environment. This diagram is

decomposed into its components, and each resulting diagram

is similarly decomposed until the components become

cohesive, single-process untis. During or after the

decomposition, the details about inputs, outputs, and other

information required for the specification are added. The

various earlier automated tools either did not allow

10

designers to work from a graphic representation to detailed

specification, or did not allow easy transition from one

form to the other.

Of the five automated tools presented in Chapter 3, SREM,

TAGS, AND PSL/PSA provide a graphic representation of the

software specification once the text specification has been

entered. Since designers often like to pictorially define

the problem to be solved before adding details, these tools

don't help in this area. Many designers are likely to draw

by hand the initial breakdown of the problem and then

specify it in the requirements statement language of the

tool they are using.

HOS now provides interactive, graphic decomposition of the

system specification through its USE. IT tools (Hamilton,

1983; Martin, 1985). The recent addition of these tools

moves HOS into the arena of "direct manipulation" and

addresses many of the issues of graphic user interfaces.

Gambit implements many of the graphic interface features

recommended in the model presented in Chapter 4.

Unfortunately, this is a database design tool and is not

useful in non-database applications.

11

1.5 A Model for a Graphic Tool

The desire to "physically" manipulate a software system

model (graph) and at the same time correspondingly

manipulate the text specification of the system has

motivated the design of a Graphic Tool for Generating Ada

Language Specifications (GTGALS) . GTGALS allows the user to

create or modify a graphic representation of a software

system (see figure 1.6.1) and its corresponding text

specification, (see figure 1.6.2)

na 1

nam

'-. Ei -> h ! i :i . H -7!

! _

IHFUT

*——

'

l

GUTfUT

PSCKSSE P»«»«

feocEss

MEKI&

Figure 1.6.1 - GTGALS Access-graph

12

This is th» controller
with process,

input,
output}

procedure main<in_msg i in msg_packet

|

out_msg s out msg_packet
)

;

—This package handles all data modificationpackage process is
—This procedure breaks the incoming messagepacket into its components

procedure split.msg (in.msg , in msg.packet ,•

out_char i out character;
out_int i out integer]
out_string i out string

|

out_float i out float)i—returns the base ten ascil equivalent—of the character it is applied to
function ascii(any i in character)

return integer:end process}

—This packages interfaces to the "outside world"package input is
out. ice world

—for reading entire message packets

end
P
rnpu*tT

e r"d-"" !' ">° <: -""'» ' <»«•* m.g.packet),

paIkan„
h
r?

lB
?

OUt ""* 1"*»f«i"S to environmentpackage output is
—Writes the message to the standard output file,

.nd^utT "-"•-"•<'"•'-••<
' '" -Q-Pack.t»;

Figure 1.6.2 - Ada language specification of 1.6.1

Direct creation and manipulation of a graph and its related

data structure is a primary feature of GTGALS. Drawing and

deleting objects, specifying their procedures, inputs and

outputs, designating relations between objects using

directed arrows, viewing and modifying component

13

specifications from the graph, and receiving both a graphic

and text representation of the software system specification

are the key functions of GTGALS. The GTGALS model is

presented in detail in Chapter 4, with a prototype

implementation presented in Chapter 5.

14

CHAPTER 2. SPECIFICATIONS

Specifying software systems is a current topic of software

engineering courses, publications, and textbooks. This

chapter summarizes answers to many questions about software

specifications. These questions include : what should be

specified?; what characterizes good specifications?; what

areas are used for comparing specification techniques?; what

formal bases are used in specifications?; and how are

specifications expressed?

The majority of this information comes from a survey by

Roman (1985) . The subject is also covered in textbooks such

as Pressman (1982) and chapter two of Gilbert (1983), and a

paper by Balzer (1979).

2.1 Types of requirements specifications:

2.1.1 Functional

Functional requirements describe what the software system is

supposed to do based on the interaction between the system

and its environment. The model of description has been

called a conceptual model. These requirements are an

abstraction of the problem to be solved.

15

2.1.2 Non-functional

Non-functional requirements describe under what constraints

the software system is required to operate. Some of these

constraints include interface constraints, performance

constraints, operating constraints, life-cycle

constraints, economic constraints, and political

constraints

.

2.2 Characteristics of specifications

Several characteristics of specifications have been

identified in the attempt to define what comprises a good

specification. One such collection of these characteristics

is summarized here. (Roman, 1985)

Adaptability - can it represent many classes of

problems

Analyzability - how well can the specification be

analyzed for the characteristics described here

Appropriateness - how accurately can the model

represent the problem domain

Completeness - are all relevant aspects of the problem

domain covered

16

Conceptual Cleanliness - how readily understandable is

the resulting specification

Consistency - are none of its parts contradictory

Constructability - what (if any) systematic approach

for developing the specification is provided

Easy raodif iability - how can it be changed, and with

what results

Economy of expression - what are its storage

requirements

Executability - can the specification be machine

processed for simulation of design

Formality - to what extent is machine processing

possible

Lack of ambiguity - can the specification be

interpreted in only one way

Precision - can it be determined that the design meets

the specification

Testability - can the design be verified as meeting the

specification

Tolerance to temporary incompleteness - can the

technique handle incompleteness in the specification

17

Traceability - can the requirements specification be

cross-referenced with the design specification

2.3 Areas for analysis

Along with characteristics of specifications, certain areas

have been used as a basis for analyzing and comparing

different specification methodologies.

2.3.1 Formal model

The formal model is the conceptual model on which the

specification methodology is based. A description of many

of these models follows in 2.4.

2.3.2 Scope

Scope describes the type of requirements the methodology

attempts to express. This could be functional only, non-

functional only, or a combination of functional and non-

functional requirements.

2.3.3 Level of formality

The level of formality of a methodology determines the

machine processability of the information. The more formal

and well defined the language of specification, the greater

the opportunities for automated analysis of the

specification.

18

2.3.4 Degree of specialization

The degree of specialization describes the size of the

problem domain that can be expressed in the methodology.

2.3.5 Specialization area

The specialization area defines the type of requirements

that the methodology can express. This could include

database models, sequential process models, or concurrent

process models. From a different view, this could also

describe whether the methodology can be used for

hardware, software, organizations, or some combination

thereof.

2.3.6 Development method

This area includes both how the information is collected and

managed, as well as under what basic life-cycle model it

fits.

Traditional - state requirements completely

before proceeding with design

Rapid-prototyping - build incrementally, simulate, and

redesign "on the fly"

Mixed - combination of stating requirements and

prototyping

19

Human-interface - how the information is made accessible

to the tool and the user.

2.4 Formal Models of Specifications

Formal models of specification are models by which various

individuals have described software systems. (These models

have been used to describe much more than just software

systems. However, the emphasis of this paper is on software

applications of the models.) Either sufficient study and

formalization, sufficient publication, or sufficient

application of a model establishes it as a "formal" model.

Each model attempts to describe a problem in such a way as

to make it easy to visualize the components and structure of

the problem. The formal models discussed below are various

perspectives on how to describe a software system and its

environment.

2.4.1. Access-graph model

An access graph shows the various components within a

software system and their "access rights". Each component

will have directed arcs connected to those system components

which it is allowed to use. This model easily relates the

concept of composition, building a software system by giving

20

new control modules access to already constructed library

modules. In the Ada programming language, this model would

graphically describe the with clauses of the components. In

C-Pascal, access graphs describe the access parameters of

processes, classes, and monitors (Hansen, 1977). Figure

2.4.1 shows a simple access-graph diagram.

T£KMX/^AL BuFFeR PRr/vreR

TER/*irry/A_ pKocess prtnteR PRccess

Figure 2.4.1 - An Access-graph

2.4.2. Communicating concurrent processes

This model describes a system as a collection of components

which run concurrently. Each component is seen as an

independent object and is described by its interaction with

the environment and the processing done based on the

interaction. Interaction occurs through communication

"ports" as data input from the environment and data output

to the environment.

21

2.4.3. Data flow

Data flow diagrams, or similarly requirements diagrams,

describe a system as a collection of processes

(transformations) and their connections (data) . A top level

diagram shows the entire system as one process, and its

interaction with the environment as arcs representing data

flow in and out of the system. Each level is decomposed

until a process represents a logical functional unit. Each

process and arc is labeled, and further detailed in detailed

specifications, data dictionaries, and other documentation.

Figure 2.4.2 provides an example of a simple data flow

diagram.

Account file

Figure 2.4.2 - A Data flow diagram

22

2.4.4 Entity relationship model

The entity-relationship model describes a system by its data

entities and the relationships between those entities

(Ullman, 1982). Rather than looking at processes and

sequences of processing, the E-R model is data oriented.

Since it is a model for database applications, it is assumed

that all necessary processing can be accomplished if the

data is properly related. Therefore, an E-R diagram will

show nothing of the processes accomplished. However, it is

a useful model for conceptualizing a database design.

Figure 2.4.3 shows a sample E-R diagram.

^EPT^ QlAME^ QsAN^

Figure 2.4.3 - An E-R diagram

2.4.5. Finite-state machines

A finite-state machine expresses a software system as a

finite number of states and a set of transition functions.

In general, the machine will begin in some known state. A

23

change in states (a transition) is caused by some input,

and can produce some output. The new state is determined

by the old state and the input. Finite-state

machines are readily represented graphically. Figure 2.4.4

shows a sample finite-state machine.

Mo
Znuelo/o

Figure 2.4.4 - A finite-state machine

2.4.6. Functional composition

In functional composition, a system is a composition of

hierarchically subordinate functions. Graphically a tree

structure, each parent is a function which is a composition

of its children (also functions) . Procedurally, each parent

uses its children to accomplish its task. This is

recursive, so that all of the functionality of the system is

accomplished at the leaf nodes of the tree.

24

2.4.7. Petri nets

A Petri net describes a software system as a collection of

places and transitions (Peterson, 1981) . Petri net graphs

include directed arcs connecting the places and transitions,

indicating inputs and outputs of the places and transitions.

The sequence of processing from inputs to outputs is defined

by the "enabling" and "firing" of transitions within the

net. A transition fires when it has available to it all of

its inputs. This model is similar to a finite-state machine

model, describing a system's current state and a next-state

function to describe the results of inputs into the system.

Figure 2.4.5 is a sample Petri net graph.

Figure 2.4.5 - A Petri net graph

25

2.4.8 Stimulus response paths

This model is almost indistinguishable from the finite state

machine model. In fact, Roman (1985) attributes its success

to SREM, whereas Alford (1985) writes that "The model of

software requirements on which SREM is based is that of a

highly structured finite state machine."

Many different methods have been used to express the various

formal models for human and/or computer consumption. These

methods, or languages, have included requirements diagrams,

requirements statement languages, requirements specification

documents, and many other methodology-specific languages.

2.5 Specification Languages

Though the term language causes one to think of letters,

words, and sentences, the language of specification includes

drawings as suggested by the formal model of the

specification methodology. Requirements diagrams, data flow

diagrams, state-machine diagrams, and so on exist for each

model and more. Probably the earliest, albeit low-level,

specification language was the flowchart. In general,

designers like graphic representations of problems and their

solutions

.

Prior to computer generated graphics, and even with the

availability of such graphics, diagrams have been created by

26

hand. As computer graphics capabilities have increased

significantly both in hardware and software, the use of

computer generated diagrams has slowly moved into the area

of software engineering and analysis (Grafton, 1985; Jacob,

1985; Brown, 1985; Schneiderman, 1983) .

27

CHAPTER 3. AUTOMATED TOOLS FOR SPECIFICATION

Many methodologies have been developed to help formalize,

visualize, analyze, and process software specifications.

Five sample systems are detailed in this chapter.

Four methods designed specifically for describing software

systems are examined for their features, focusing primarily

on their formal models, user interfaces, and outputs. These

are HOS, PSL/PSA, SREM, and TAGS. A fifth tool, Gambit, is

used for data base design. It is examined especially for its

graphic interface features. These systems are presented

here in alphabetic order.

3.1 Gambit - (Braegger, 1985)

Though Gambit is not specifically a requirements

specification tool, it provides many features which are

significant for this paper. Among these features are graphic

model design of entities and relationships; interactive

entry of data attributes; logical, automatic manipulation of

data from actions taken to the graphic model; and access to

data from the graphs.

The purpose of Gambit is to aid in the design of a database

schema. This process requires analysis of the enterprise's

data, discovering the requirements of the database (both

functional and non-functional), and organizing the

information into a logical structure.

28

3.1.1 Formal model - extended entity relationship model

A database model is largely concerned with the data to be

manipulated and the relationships between data groups (or

entities) . The functional aspect of the system is more a

peripheral issue and the data organization and accessibility

is expected to support any reasonable application program.

The entity-relationship model groups data items as

attributes of entities, and then describes the relationships

between the entities.

3.1.2 User Interface

The user interface for Gambit has many useful features.

Designed for use on a single-user Lilith personal computer,

it offers graphic design of entity block diagrams, mouse

movement of a marker for object selection and placement,

windowing for data retrieval, a "dialogue" section on the

screen for interactive entry of necessary information for

the design, and menu selection of different steps in the

design process.

Entity block diagrams consist of rectangles to represent

entities, lines to represent relationships, and text labels

to indicate names, associative cardinalities, and other

descriptive information, (see figure 3.1.1)

29

paraor

1

P»~n |

_r~
Kind

k-w.
|

•mptoy»o
]

visitor | |
adorns |

1
J

function 1 IsddmsTvp*

I 1 1

1
studam | |

assataru protassor
|
compadr | lprivataadr

|

1

Q..mM»

MM |

'
I'-'

-J

Figure 3.1.1 - An Entity Block Diagram
(Braegger, 1985 - IEEE TOSE)

After menu-selecting the operation to define an entity set,

the system provides the designer with a triangular marker.

Moving the mouse to position the marker, the designer types

in the name of the entity set at its desired location.

Gambit then draws the rectangle around the name and

initiates a uniqueness check on the name. The designer then

steps through a dialogue, providing information about the

entity set as requested (data entry may be temporarily

bypassed)
. Menu-selecting the operation to define a

relationship starts a dialogue to describe the entities

involved, and other information. Gambit then does the

appropriate line drawing and labeling. (see figure 3.1.2)

At any point in the design process, the designer "may see a

global entity block diagram with all entity sets and

relationships defined, or the verbal specification of one

entity set with all details,..." In defining global

30

>» university 00 «<

Relationship* Dofme
2 indicate the first ennty set

3 Intlcute an edge point or Ine second entity set
4 Select number of lecture that ore associated

to one professor
5 Select number of professor that are associated

to one lecture

8 Type lower bound > 1 <

Type upper bound > 4 <

7 Th« relationship cannot be represented directly
B Define an intermediate entity set
9 indicate lower left comer of the entity set box
10 Type name of the entity set

Figure 3.1.2 - Defining relationships with Gambit
(Braegger, 1985 - IEEE TOSE)

attributes, the designer points at an entity set. Gambit

then provides a window for the description of the entity

set. It automatically retrieves identification attributes

from other entities related to the chosen set, and

interactively allows attribute renaming or maintaining the

same name for local use in the entity set being specified.

3.1.3 - Output

Once a design session has been completed, Gambit generates

an entity block diagram and the Modula/R database module

containing the details concerning the entity sets. Further

interaction allows defining of data constraints,

transactions
, some transaction pre-assertions , and

31

transaction propagation. This information is used to build

database access modules through which interactive users and

application programs must access the database.

3.1.4 - Observations

Key concepts of graphic interfacing to design tools are

applied in Gambit. The ability to start with a graphic

model and add details later is a major step in the natural

design direction. Use of a mouse to touch entities for data

retrieval, to position a marker for graphic object

placement, and for menu selection is a very "user-friendly"

feature. Easy movement from graphic representation to

textual description and back is another desirable feature of

Gambit.

The limitation of Gambit to design of Modula/R databases is

an unfortunate one. Databases are not the answer to all

software reguirements , and the availability of a software

design tool such as Gambit would be an aid to other software

design. Also, the limited documentation provided by Gambit

may not be considered sufficient for a system specification.

3.2 HOS - Higher Order Software - (Hamilton, 1976)

Higher Order Software is a methodology based on mathematical

functions. A set of tools called USE. IT has been developed

to automate much of the HOS methodology (Hamilton, 1983;

32

Martin, 1985) . These tools operate with the HOS design

"laws" enforced so that the resulting design obeys HOS

methodology axioms.

3.2.1 Formal model - functional decomposition

HOS is based on a hierarchical decomposition of functions,

in particular mathematical functions. One function

represents the entire software system, with input as the

domain of the function and output as the range of the

function. This function is decomposed into subfunctions

.

This decomposition is iterated until each leaf of the

functional tree provides "one and only one element of the

output set for a particular element of the input set."

(Hamilton, 1977)

3.2.2 User Interface

The HOS methodology is supported by USE. IT, a set of tools

developed to support the functional model of the software

life-cycle. The first phase of that life-cycle model is

definition, roughly equivalent to specification in the

traditional life-cycle.

The tool most significant for this paper is the graphic

editor and its use of the specification language AXES

(Martin, 1985) . The graphic editor operates on three

different images. The "display tree" mode provides an

33

overview of an HOS tree. From this mode, one can move to a

detailed representation of a selected node in the "edit"

mode. At this point the user can edit any of up to six

nodes centered on the selected node. Moving off-screen

results in a new screen with the node moved to as the center

of the diagram. The user can also move to a "display

documentation" mode which shows details and allows editing

of a textual description of the selected node.

The graphic images are annotated with the language AXES,

which details control structure and data for each node.

Data named on the left of a node is output data, that on the

right is input data. Abbreviated control structures are

displayed at the bottom of each node. An un-connected

vertical line going out of the bottom of a node indicates

that more of the HOS tree exists beneath that node.

The user interface is currently under improvement to include

mouse control, windows, pop-up menus, and other similar

"user friendly" features.

3.2.3 Output

The HOS methodology develops sufficiently formal output that

automatic generation of program code is possible. This is a

result of the strict design laws enforced by the methodology

and decomposition to the levels of detail necessary for code

generation.

34

3.2.4 Observations

The addition of the USE. IT tools to the HOS methodology may

increase its popularity. No longer restricted to manual

drawing of HOS trees of mathematical functions, the USE. IT

tools are rapidly moving in the direction of a natural,

relatively easily used method for rapidly specifying

software systems.

3.3 PSL/PSA (Teichroew, 1977)

PSL/PSA combines a Problem Statement Language (PSL) with a

Problem Statement Analyzer (PSA) to develop and analyze

systems specifications. Its purpose is to record in machine

readable form the data collected or developed during the

entire software life-cycle. These activities are grouped

into data collection, analysis, logical design, evaluation,

and improvements. PSL is the language used to describe a

proposed system, and may be used in batch or interactive

environments

.

3.3.1 Formal model - "a general system" model

The general system model is very similar to the entity-

relationship model, and is specialized for information

system processing applications. It contains objects

(entities and processes) , properties (attributes) , and

relationships between objects.

35

3.3.2 User Interface

The Problem Statement Language is the form into which

specifications are developed. The designer translates the

data collected through personal contact, interviews, forms

analysis, and other standard methods of collection into the

Problem Statement Language. This can be done either

interactively or with batch processing in text format only.

3.3.3 Output

The Problem Statement Analyzer produces four basic

classifications of reports. Database modification reports

record changes made in the database and any resulting

diagnostics or warnings. Reference reports provide various

ways of formatting the database information into human-

consumable products. Summary reports provide similar

information only in summary form. Analysis reports do I/O

comparisons, process interactions, and a hypergraphic

process flow chart.

3.3.4 Observations

Though any automation is a great improvement over manual

specification, more could be done with PSL/PSA. Its major

benefits are providing automated means of maintaining

documentation throughout the software life-cycle. This is

done by recognizing that most documents are simply different

36

ways of expressing all the available information or

different levels of abstracting summaries of the available

information. That graphic representation of the information

is useful is reinforced by the presence of a tool to provide

such a representation, even if it is a rather crude

printer-character graphics method. Unfortunately, this

comes at the end of the specification process, showing what

has been accomplished. It is likely that many, if not most,

users of PSL/PSA manually produce an E-R diagram, or some

similar diagram, of the system to aid them in developing the

PSL representation of the system.

3.4 SREM (Software Requirements Engineering Methodology)

(Alford, 1985)

SREM was sponsored by the Ballistic Missile Defense Advanced

Technology Center in 1973 to formalize and automate

development of software requirements specifications. It

consists of a Requirements Statement Language (RSL) , the

Requirements Engineering Validation System (REVS) (a set of

tools to manipulate RSL and analyze the resulting system)

,

and the SREM methodology.

3.4.1 Formal model - finite state machine

The developers of SREM felt that the hierarchy of functions

37

model of specifications was a primary cause of inadequate

requirements specifications. They chose to use a finite

state machine model to base SREM on. "The state-machine

model is used to define processing requirements by

specifying a set of inputs and outputs, a set of states, and

a function that maps inputs plus current state onto outputs

plus updated state." To overcome some of the limitations of

a finite state machine, particularly the size of the diagram

of large systems, SREM structures its inputs, outputs,

state, and processing.

Inputs and outputs are structured as message packets which

contain the data that passes between subsystems. States are

defined by sets of information about objects in the system.

The processing is described by Requirements networks (R-

nets) . An R-net "specifies the transformation of a single

input message plus current state into some number of output

messages plus an updated state."

3.4.2 User Interface

The requirements specification is developed in RSL, SREM's

Requirements Statement Language. It consists of elements

(nouns) , attributes (adjectives) , relationships (verbs) , and

structures (processing graphs). All of these items are

maintained within a database.

The specification is described by its elements, each of

38

which have attributes (such as name) . The elements are

connected by different types of relationships. The

processing sequences are expressed through its R-net and

subnet structures.

This information is currently entered using simple text-

editing methods. The graphic portions (R-nets and subnets)

have language counter-parts, (see figure 3.4.1) which are

then translated into graphic representations by one of the

tools in the REVS.

INPUT INTERFACE , .

VALIDATION POINT

(NOTREAOT)

:
R_NET: SAMPLE
STRUCTURE: " •'., ... -.. I

INPUT_INTBIFACE II - '

VAUOATKHLJOWT VI •
*

-J

. ALPHAA V- . j

SELECT ENT1TY_CLASS IMAGE SUCH '

. THAT(y-Z)
j

00

>,,

u'i

Figure 3.4.1 - An R-ne
(Alford, 1985 - IE

ALPHA B . 1

TOR EACH FILE HISTORY HEC0R0" i

00 SUBNET C END
AND
ALPHA « .

CONSIDER DATA STATUS"'
IF (READY)

ALPHAS.
. .

OR |NOT_REA0Y| '
i

' '

ALPHA F

END

END ""'
'

IF (X 1 5.0)

' ALPHA

VALIDATIONJOINT V2 '"

0UTPUT_INTERFACE 01
OR IX . S.0)

00 •

ALPHA H

0UTPUT_INTERFACE 0?
AN0
ALPWJ I

TERMINATE
OTHERWISE

EVENT

TERMINATE

EN0
END.

... . , v .-. :...
j

t graph and text
EE Computer)

39

3.4.3 Output

Among the outputs of REVS (the SREM support tools) are:

The automated database from the RSL

Consistency and completeness reports

Query type output of the data

Functional or analytical simulator of required processing

Graphical descriptions of the R-nets and subnets

3.4.4 Observations

SREM provides a method for formally describing requirements

specifications. Its formality allows many diagnostics to be

computer generated, and allows for concise expression of the

requirements. Also, it maintains information in a database,

allowing relatively easy retrieval.

As one of the older software engineering tools, SREM depends

heavily on text-editing input. This input is then

translated into graphic representations once complete.

Although an interactive forms-entry capability is under

development, the system still progresses from textual

details to graphic descriptions. Going from a graphic,

conceptual model of a system to later filling in the details

seems a more natural method of development.

40

3.5 TAGS (Technology for the Automated Generation of

Systems) (Sievert, 1985)

Software specification is just part of TAGS, a complete

software development methodology that covers the entire

software life-cycle. The specification phase is accomplished

through use of its Input/Output Requirements Language

(IORL) , which consists of graphs and data tables. Using a

graphics workstation, the designer expresses the user-

supplied requirements in IORL. Four tools are available for

use to aid the designer.

The Storage and Retrieval tool is used for data management,

placing the design into disk files and accessing the data as

required. A Diagnostic Analyzer checks for static errors

such as syntax errors, range errors, input/output

inconsistencies, and some 200 other types of errors. Once

past the Diagnostic Analyzer, the Simulation Compiler finds

any dynamic errors. When successfully compiled, the

designer can interactively describe a system state on which

the compiled system prototype can execute. Any errors

detected along any step of the process can be corrected

using the Storage and Retrieval tool, and the process

continued. Finally, a configuration manager helps keep the

various releases, test versions, and associated diagnostic

outputs under control.

41

3.5.1 Formal model - communicating concurrent processes

The formal model on which this system is designed is

communicating concurrent processes. This model allows the

specification to naturally handle systems that require

concurrent processing as well as sequential processing. The

"end product of the design effort manifests the basic

components of a system or a group of parts that interact

through data links, a controlling mechanism that directs

how information passes among the parts of the system, and an

identified hierarchy within the system."

3.5.2 User interface

The specifications are represented through the use of IORL,

the Input/Output Requirements language. This language

combines graphic diagrams to show the systems structure

and tables to detail the data. Graphic workstations are

used to develop the elements of the language, which are

described below.

DIAGRAMS - each diagram has the system name, date, id,

section, and page

SBD - the Schematic Block Diagram is the highest

level diagram. It shows the major components of

the software system, with the first level SBD

usually diagraming the system with its

42

environment. If necessary, the top level SBD

can be decomposed into lower level SBD's. The

primary function of the SBD is to give a

conceptual view of the system, and is useful for

seeing a quick synopsis of the design. It

describes the major structures of the system and

its major data flow.

- see figure 3.5.1

AT0P-LEV& SBD

^REFERENCED S» I0PT IN FIGURE 5

SrS:SAMPU DATE: 18JANUARY 1984 SEC: SBD PAGE 1 CL

m

SAMPLE 2

"I A FROM COMPONENTS

1

COMPONENT D

COMPONENT A-1

„ COMPONENT A-2

^ SECONO-LEVa SBD

a REFERS TO COMPONENT A
ON THE TOP-LEVEL SBO
SHOWN ABOVE

i
ATOCOMPONENTC

I a TO COMPONENTS
I ^

SAMPLE 1

STSJAMPLE 0ATE:18JANDA8Y1384 I0:C0MP0NENTA SEClSBD PAGE1CL

Figure 3.5.1 - A Schematic Block Diagram
(Sievert, 1985 - IEEE Computer)

IORTD - each component of an SBD has an associated

Input/Output relationships and timing diagram to

show control flow within that SBD component.

- see figure 3.5.2

4 3

A THIS IORTD REFERS TO
COMPONENT B ON THE
TOP-LEVEL SBD IN

FIGURE 2

A REFERENCED RV IPT

IN FIGURE S

J A FAN-OUTAND

30

PROCESS

S»S: SAMPLE DATE: 18JANUARY 19M ID:SAMPLE SEC: IORTD 2 PAGE1CL

Figure 3.5.2 - An IORTD
(Sievert, 1985 - IEEE Computer)

PPD - Predefined Process Diagrams show detailed

logic flow of a single predefined process

referenced in an IORTD or another ppd

- see figure 3.5.3

DSD - Data Structure Diagrams were not described in

the article.

44

J
(E ENTRY

)

1

<
INPUT

>

9
|
ASSIGNMENT

ASSIGNMENT
ASSIGNMENT
ASSIGNMENT

J
ASSIGNMENT

4 ASSIGNMENT

1
70

PROCESS
80

PHOCESS

A THIS PPO KEFIRS TO
PROCESS 10 ON THE
IORTO SHOWN IN FIGURE 3

A REFERENCED BY PPT

IN FIGURE 7

[OUTPUT)

(EgT I)

10

PROCESS

DEFINITION

STSiSAMPLE DATE: 18JANUARY 1984 ID: SAMPLE SEC:PPD-10 PAGE I CI

TABLES

IPT-0

Figure 3.5.3 - A Predefined Process Diagram
(Sievert, 1985 - IEEE Computerl

- Internal parameter table defines the data

that is global to the entire system.

IOPT - an Input/Output table defines interface

variable parameters. Variables in this table are

defined for both components involved in the

interface.

- see figure 3.5.4

45

X3RP PARAMETER DESCRIPTION (DM)

< DATA GROUP

>

SCAUR •.'"••

SCALER

<OATAGROUP>
SCALER

VALUE RANGE

(0 60)

(1.2

12)

(0 »)

UNITS/VALUE MEANING

SECONDS

JAN - OEC

SYS: SAMPLE DATE: 18-JAN-84 ID: SAMPLE SEC:IOPT-3 PAGE 4 CI

IPT-n

Figure 3.5.4 - An I/O Parameter Table
(Sievert, 1985 - IEEE Computer)

- an internal parameter table of level n (n>0)

defines data that is global to component n.

IPT - an internal parameter table. Data defined for

an individual PPD.

- see figure 3.5.5

Figure 3.5.5 - An Internal Parameter Table
(Sievert, 1985 - IEEE Computer)

PPT Pre-defined process parameter table. "Defines

46

parameters that are local to one PPD." May

include references to variables in other

sections used by the PPD.

3.5.3 Output

The Diagnostic Analyzer emits Ada templates to be used

in simulating the software system. The Simulation Compiler

creates Ada source code that links the templates into an Ada

simulation package. This package is then executed on data

and constraints interactively supplied during the process of

the Simulation Compiler. The desire is to allow the

designer to test the performance of different algorithms and

system configurations.

3.5.4 Observations

The graphic and tabular language of IORL is a step forward

from hand-drawn requirements diagrams and pages of data

dictionaries. As a recently available tool (commercially

available in 1979), TAGS is displaying the increasing

usefulness of graphic interfaces to software engineering

tools. The designer is able to build a graphic model of the

software system at a graphics workstation, have the

information saved on disk, and modify or add to it as

necessary during the development of the system. The

traditional data dictionary is represented by data tables,

with data entered into tabular form from the terminal.

47

Also, the methodology greatly aids the early detection of

errors and design performance weaknesses. The Diagnostic

Analyzer and Simulation Compiler are able to detect static

and dynamic errors early in the design. Additionally, the

ability of TAGS to create executable prototypes is

significant. This allows fine-tuning to be accomplished

early in the development stage, helping to reduce

modification costs later.

No indication is given of any natural link from the various

diagrams to their associated data tables. It would be

useful to be able to easily move from one representation to

the other. When developing a large system made of hundreds

of components, it would be helpful to be able to move

through the various levels of the Schematic Block Diagrams

and, when information is needed about a certain component,

to simply bring it up on the screen right then. Once the

designer learns what is needed, moving back to the SBD

screen should be egually simple.

3.6 Summary

From Gambit we see an example of "direct manipulation" and

development from graphic representations to detailing text

specifications. Gambit also moves easily from graphic

specification, to data entry and review, and back to

graphics. In HOS ' s USE. IT tools we see the use of different

48

modes such as the display-tree mode, the graphic edit mode,

and the documentation mode. Again, easy movement between

modes is provided. SREM, HOS , and PSL/PSA show the ability

to analyze specifications for inconsistencies, and PSL/PSA

gives an example of pre-graphic-workstation hypergraphic

output. SREM adds some handling of non-functional

requirements, though not graphically. TAGS adds the

dimension of generating Ada language templates. Each of

these features has a part in a good automated graphic

specification tool.

49

CHAPTER 4.

GRAPHIC TOOLS FOR GENERATING SOFTWARE SPECIFICATIONS

This chapter discusses general desirable characteristics of

tools for software specifications. It focuses on the formal

models, user interfaces, and resulting output of such tools.

Because the desire has been to develop specifications for

Ada language software systems, the discussion of the user

interface covers general graphic oriented issues and then

Ada language oriented issues. Types of output from such a

tool are examined for their use either by themselves or as

input to other tools.

This chapter presents concepts developed from integration of

information from the literature cited in the previous three

chapters and insights acguired through development of the

prototype detailed in chapter five.

4.1 A Formal Model

Choosing a specific formal model for specifying systems is

mostly a matter of personal taste. Each model deals with

the same basic information. Functional descriptions take

the form of mathematical formulas, state transitions, text

descriptions, processes, or others. Graphically these may

be boxes, rectangles, circles, tree-nodes, ovals, or some

other geometric shape. Data takes the form of entities,

50

BNF-like descriptions, text descriptions, high-level-

language user-defined types, or data dictionary entries.

Graphically data may be bubbles, rectangles, labeled arcs,

or simply text names beside processes. Control information

takes the form of text cross-referencing, "uses" clauses, or

procedural calling hierarchies. Graphically control is

normally shown through some connections between components.

Two graphic representation methods are well known for use

with Ada language software systems (Booch, 1983; Buhr

,

1984) . Though they take a little work to understand, they

are quite rich in information. Both methods combine control

flow and data flow, as well as more detailed interface

information. However, they go much closer to design

specification as opposed to requirements specification than

is desired for this paper. However, a good example of a

graphic software development tool based on the design of

Buhr (1984) can be found in Buhr (1985) .

An access-graph model represents very well the concept of

building software systems from existing components.

Specifically with the Ada language in mind, although other

languages offer similar concepts, building systems from a

program library of general purpose generic and non-generic

packages is one way of rapidly developing a software system.

The access-graph model pictures such development in a

conceptually clean way.

51

Top-down, step-wise refinement is a method found to some

extent in almost any problem solving technique. The

functional decomposition of HOS (Hamilton, 1976), the

refinement of Schematic Block Diagrams in TAGS (Sievert,

1985) , and the hierarchical decomposition of SADT (Ross,

1985) all show use of some version of step-wise refinement.

Therefore, such a development methodology seems to be

popular and useful.

Though top-down development and composition appear to be

contradictory development methods, this is not necessarily

the case. As a designer refines a system he/she may

discover that the next step in the refinement requires

previously designed components. Simply naming the library

package and giving a component access to it completes that

refinement step.

4.2 User Interface

Two main issues face the user interface described here.

These are the graphic issues such as methods of drawing,

moving, deleting, viewing details, or otherwise manipulating

the graphic representation, and the issues dealing with the

specification language of choice, the Ada language

specification.

52

4.2.1 Graphic Issues

Interactive, graphic development of a system specification

is the theme of this paper. The main areas of interest are

how to draw objects, how to connect objects, how to move

objects, how to delete objects, and how to enter, view, and

edit the specification details.

Interactive drawing of diagrams can be accomplished using

many methods. One method requires the user to place a marker

(cursor) at the location of the desired object, and then

enter a one-key or one-word command for drawing the object.

This works fairly well when there are a limited number of

commands to remember. Two methods make use of a menu of

graphic objects. One has the user move a marker to the

desired object on the menu. Pressing a key highlights or

otherwise indicates which object has been selected. The

user then moves the marker to a chosen position on the

screen and again presses a key. The selected object is

drawn at the marker location. The second method is similar,

except that when an object is selected from the menu, a copy

of it replaces the marker and moves just like the marker

would until a "release" command is given in the form of a

command or a mouse button. (This is known as "dragging" the

object.) The latter of these methods would appear to

provide the better visual feeling desired of a graphic

interface. A third method requires the user to actually

53

draw an object physically using a mouse, "pen and pad", or

touch sensitive screen. Though this is great for drawing

pictures, it would detract from the formality of predesigned

objects with predefined meanings. Probably the least

desirable method is having a command line which provides the

name of the object and the x,y coordinates of the desired

location for the object.

For the application involved, each symbol has a specific

meaning. Therefore, selecting a symbol from a menu,

dragging it to the desired location, and releasing it

appears to be the most useful method. This does not reguire

knowledge of any commands, but only the buttons on the mouse

or the keys needed to move, pick up, and set down.

Connecting the objects on the screen also offers a variety

of options. In the Gambit tool (Braegger, 1985), a dialogue

is used to name the objects involved in a relationship.

Once the information has been provided, the tool decides

what kind of connection should be used, where to draw it,

and then draws it. The command-line option is available for

any graphic action. In this case the user could enter

something like "connect f rom_object_name to to_object_name"

.

Another method is to enter a command indicating the first,

intermediate, and end points for an arrow. The line could

be drawn all at once after the end point is indicated, or

section by section as each intermediate point is indicated.

54

Drawing arrows could reasonably be done using a mouse or a

drawing pad, which would allow for greater flexibility in

object placement and provide neater diagrams.

Side issues on line-drawing include using or not using

"rubber-band" lines, lines which follow the cursor wherever

it's moved, and allowing different line styles to provide

different meanings. Rubber-band lines are user-friendly in

that as the line is being drawn, the user doesn't have to

guess if it is going to inappropriately cross other objects.

Different line styles are useful for providing greater

semantic meaning to the graph.

Once several objects have been placed on the screen, the

need for rearrangement may become evident. Simply erasing

and redrawing objects is possible, but brings up problems of

whether or not all the text specification details would have

to be re-entered. A more elegant method is to select an

object and "drag" it to its new position. Similar but not

quite as visual is to select an object, move a cursor to the

desired position, and command the move. The object is then

erased from its current position and redrawn at the cursor

location. Other types of moves are possible. If the chosen

model is tree-like, the user might desire to move an entire

sub-tree, connecting it to a different leaf or even

inserting it between two nodes. All of these moves may have

great effects on the underlying data structure which must be

taken into account.

55

Deleting objects is relatively simple, but again the effects

on the specification must be consistent with the action.

Issues such as the status of a sub-tree of a deleted node

arise with such actions. It would be useful to be able to

get to such a disconnected subtree through some means other

than the non-existent node. In this area especially, but in

other areas also, the ability to undo an action becomes very

important.

Viewing comes in two different areas. These are viewing the

graphic representation and viewing the specification

details. For viewing the graphic representation, one method

would break the graph into several diagrams hierarchically

such as in SADT (Ross, 1985). The user could move from

diagram to diagram through the logical contacts between the

diagrams. A more powerful method would define the

specification as a single graph through which the user could

scan. The tool would provide a moving window on the entire

graph to show a selected part of the graph. Added to this

would be the ability to change the scale of the information,

so that the entire graph could be viewed on the screen. Of

course, the components of a large graph would be very small

when viewed all at once.

Finally, the need to enter, view, and edit the detailed

56

information required such as inputs, outputs, functional

specifications, non-functional specifications, and interface

information must be satisfied. It is possible to allow all

of this in one setting, much like the now-familiar full

screen editors. However, this method could allow making

changes that could disrupt the graph-text consistency.

Another solution is to have separate modes for each action.

When an object is first drawn, an initial window would

appear allowing the interactive entry of the data needed by

the chosen specification model. At any later point in time,

the data could be viewed or edited. Data could be displayed

in the viewing mode either in "raw" form such as VAR

var_name, or in some other syntax such as a high-level-

language template. Editing of data could be done in the

same way, but would best be done in raw form so the user

knows precisely what variable is being changed. An

important concept is to ensure either that the user cannot

textual ly modify data that affects the graph, or that any

modifications to such data automatically modifies the graph

also.

4.2.2 Ada Language Issues

At least three issues confront the individual or tool that

would specify system requirements using the Ada language.

First is whether or not the use of only the Ada language

57

specification is sufficient to describe a software system.

Second is the ability to handle all the possible variations

of a specification declaration, which is not a small task.

Third is the development of non-procedural packages - i.e.

packages of user-defined data types.

The unfortunate answer to the first issue is no, an Ada

language specification is not sufficient in itself to

describe a system. This is born out by the work of Wolf

(1985) and Rudmik (1982). The Ada language specification

describes the interface of the specified component, but

neither the functional or the non-functional requirements

for the implementation are described in Ada language syntax.

This makes it necessary to either revert to a text

description in comment form, or add to the language as in

Wolf (1985). An ideal response would be to add a menu-

selectable choice of specification languages to be used in a

design session for functional and non-functional

requirements statements. The appropriate sequence of

specification data collection could then take place in the

same window as the Ada language data collection. The non-

Ada information would be maintained in the same manner as

Ada information. This would add the flexibility of using

the data collected for further analysis by tools which use

the specified data.

The complexity of the Ada language adds another dimension of

58

difficult issues. Nesting of packages, procedures, tasks,

and functions to theoretically unlimited depth creates many

headaches for designing a graphic representation and

handling the data collection for every possible option. The

most realistic, though somehow displeasing, response is to

make certain "stylistic" limitations on the design of Ada

language systems. The most effective of these limitations

is eliminating the nesting of packages (Clark, 1980) .

Personal preferences of applying or not applying "use"

clauses is another, less complex issue. Should a tool

assume that all accessed packages be included in a use-

clause, that none should, or that some combination should be

allowed? A useful solution is to define for each user a

"user profile", which would allow personal preferences to be

maintained. When activating the tool, it would

automatically set certain decision parameters based on the

user's profile, or use defaults for those parameters

unspecified. Interactively setting or resetting of these

parameters should be available during the session as the

situation requires.

An important use of Ada packages is development of a common

pool of user-defined types. A specification tool needs to

be able to develop such packages. Once developed, the user

ought to be able to bring up a window concurrently with the

specification entry window so that he or she can be reminded

of what types have already been defined.

59

4.3 Output

The purpose of the design is to provide a graphic tool

whereby a user can graphically decompose a problem,

specifying details about the procedures, inputs, outputs,

and accesses in such a way as to allow generation of Ada

language specifications. As has been pointed out, this is

insufficient to completely describe the intent of or

requirements for the underlying implementations. Even if

the designer makes excellent use of data naming, package

naming, and procedure naming, added comments are required to

describe the function of the designed system.

Many output possibilities exist including code generation,

output produced for use as input to other specification

analysis tools, or creation of program templates for various

high-level languages. This depends on how much information

is acquired and in what format during the actual

specification process.

As current program-generation technology increases, the

output possibilities of automated tools have already been

improving. The HOS methodology, along with its support tool

family called USE. IT, already does some automatic code

generation directly from its specifications (Hamilton,

60

1983). Many formal specification languages and accompanying

graphic documentations are created, as in the TAGS

methodology (Sievert, 1985) . Using the proposed graphic

interface as a front-end to these or other methodologies

would add the capability of beginning with a graphic

specification instead of waiting for one to be generated

from the text specification.

Not only could an implementation produce output suitable for

other specification tools, it could be used to produce

various program templates. The original implementation

which instigated this research, although much less powerful

than that suggested here, created C-Pascal templates from

access-graphs of small programming assignments for an

Operating Systems graduate-level class. The current

implementation creates Ada language specifications from an

access-graph model of specifications. This could also be

used to gather more information or re-arrange the available

information to produce Ada language package body templates.

4.4 Summary

The ideal tool would be something like the description that

follows. It should have interactive editing of a graphic

representation that closely corresponds to the application

being specified (or the language to be used for coding)

.

For example, an access-graph might be used to represent an

61

Ada language specification. A menu of available symbols

pertinent to the model should be available from which the

user would select and drag symbols to their desired

location. At that point a window should appear, allowing a

query-response dialogue which provides gathering of the

detailed data required by the model in use. (The system

should handle incompleteness in a satisfactory way when all

details are not yet available.) The user should be able to

navigate through the graphic model in a way that is logical

to the model being used (down, up, and across trees; from

diagram to diagram in refinement models, etc.). The user

should be able to retrieve to a window the detailed

information related to the symbol that the marker is at,

edit or view the information as desired, and return to the

graph at the point it was left. All modifications that take

place in either graphic editing or text editing should cause

the corresponding modifications in the other. Finally, the

output created by the tool should be oriented toward the

application being developed. A display file should be

created which would allow retrieval and further editing at a

later time. If other tools exist in the current

environment, this tool should create output of use to those

other tools.

62

CHAPTER 5 . GTGALS - A PROTOTYPE

This chapter describes the prototype implementation of a

Graphic Tool for Generating Ada Language Specifications.

The prototype is written in Turbo Pascal using an

abbreviated version (see appendix E) of the Turbo Graphix

Toolbox. The prototype was developed and runs on a Zenith

Z-150 micro- computer. It has 4000 lines of source cede

(approximately 16S0 lines are Turbo Graphix Toolbox code)

,

compiling to 52K bytes of object code. At tha current limit

of 20 graphic objects and 100 access arro'./s , it requires 57K

bytes of data space. Some dynamic allocation of memory heap

space is done. Therefore a minimum of 320K bytes cf

internal memory is suggested to avoid some difficulties

experienced with Turbo Pascal's heap space management. The

output of the program, if the user decides to requost it, is

a filename. gph file and a filename. ada file. The .gph file

is the display file (see appendix C) , and the .ada file is

the Ada Language specification of the developed access-graph

(see figure 5.2.7 at the end cf this chapter). (The

filename is supplied interactively at the end of the GTGALS

session.

)

After briefly reviewing the choice of the access-graph model

for the formal model, the what's and how's of the actual

program are detailed. The program allows drawing and

63

deleting of objects and directed arcs and naming and

specifying procedures and their inputs and outputs for each

object. It automatically modifies the underlying data

structure corresponding to graphic actions. The program

will create Ada language specifications from the graphic

specification, and allows saving a display file on disk

which can be retrieved and further edited.

5.1 - Formal model

The access-graph model was used to better conceptualize the

building of software systems from existing programs such as

in an Ada program library (DOD, 1983) . It has been modified

for graphic reasons; fitting a large system on one diagram

would cause reading problems. Top-down, step-wise

refinement is the recommended method of development using

this implementation. However, a bottom-up, compositional

method could be used.

5.2 - User Interface

The key concepts of GTGALS lie in its graphic interface.

Its purpose is to allow the designer(s) to graphically lay

out the software system, interactively providing as much or

as little detail as available initially.

64

5.2.1 - Graphic Design and Specification

The user first moves a cursor to the location on the screen

for drawing an object. Objects include packages,

subprograms, generic packages, and generic subprograms.

Pressing "p", "s", "gp", or "gs" will, respectively, draw

the symbols for these objects. At any time that another

window is not on the screen, pressing "h" will bring up a

help window. This window contains the commands with a brief

description of what they do. (see figure 5.2.1)

DRAW COMMANDS
a - defines origin. and Midpoints of access arrows
e - defines end-point of access arrows
p - draws package; s - draws subprogran
gp - draws. generic package; gs - generic sutprogra»
zi- zooms in on object selected by cursor position

EDIT COMMANDS
5 Parent diagraM of object selected

enters coMponent specification editing Mode
deletes access arrow originating at the cursorJ 3~I~Z"" "l"^ 1-" o»»"« ui-iymai my dv in CU]

dispEVc M^p.°hJ8C sel8Cted ba— MSitlon™_*
n - "huLf" describes coMMands *
v - displays selected object specification \ ends pgM

Press any key to return to access graph

Figure 5.2.1 - The GTALS Help Window

Interactive prompt-response sequences then allow the

designer to indicate for each component its name, procedure

names, and the inputs and outputs for each procedure. The

user can provide comments for the entire component as well

as for each interface procedure or function. As little or

65

as much of this information as desired can be provided.

After specifying several objects, access of object "B" by

object "A" is accomplished by drawing an arrow from object A

to object B. This is done by placing the cursor at the edge

of object "A" and pressing "a" (for arrow). The cursor is

then moved to the edge of object "B" and "e" (for end arrow)

is pressed. If necessary, intermediate points can be

established to draw around objects by pressing "a" at each

intermediate point. Pressing "e" draws the last section of

the arrow, plus the arrowhead. This automatically includes

object B as an access parameter for object A. In fact,

access parameters can only be identified in this manner.

Therefore the data accurately reflects the graph, and the

graph accurately pictures the data. (see figure 5.2.2)

Hi in2 1

i

1

!

tin III;

.-
1 1 1- c c n ,7 C l, H

INPUT

« "

-

OUTPUT

?S«8SE
j

FlTfflH !

i

. . !

PROCESS

MCkM!

Figure 5.2.2 - GTGALS screen

66

5.2.2 - Specification Viewing

Another feature is that there is direct access to a

component's specification from the graph. By moving the

cursor to a component and pressing "v" (for view) , the

system creates a window and displays the data for that

component. The data is displayed in Ada language

specification syntax and is shown thirteen lines at a time.

Only forward movement through a specification is currently

supported. The designer can view the data and then return

to the access-graph. (see figure 5.2.3)

H5in2 <

BEHHIH
—This package handles all data Modification
package process is
—This procedure Ireaks the incoMing Messagepacket into its cospanents
—The components are used £y other processes

procedure spiit_«sg(in Msg ; in Msg_packet;
out char : out character;
out_mt : out integer;
out_string : out string;

* *, ,
outjloat : out float);

—returns the hase ten ascii equivalent—of the character sent to it
function asciKans : in character)

press escape key for More data

Figure 5.2.3 - GTGALS View Mode

5.2.3 - Graphic Editing

Deleting graphic objects or arrows results in an

appropriately modified graph and data structure. For

67

example, deleting a package will also delete all arrows

going to that package. Consequently, any component that has

the deleted package in its access parameters will have the

package's name removed. Deleting just an arrow ("da")

removes access in the "from" object for the "to" object, but

both objects remain in the structure and on the graph. The

command "do" when the cursor is within a selected object

will result in a verification request for deleting the

object. A reply of "y" will result in the object being

erased from the screen and its entire data structure re-

initialized. This means that any graphs decomposed from

that object will no longer be accessible.

5.2.4 - Specification Editing

Editing of component data is done on a simple basis. Each

item of data for an object is shown one at a time. The user

can either modify the item by typing "m" and then the new

item, move to the next item by typing "n", or exit the

editor by typing "e". As well as changing a comment,

additional comments may be entered at the end of the current

comment block. By typing "a" after the ? prompt at the end

of a comment, the editor will allow the user to enter more

comments. (see figure 5.2.4)

5.2.5 - Development Method

Based on a decompositional approach to design, GTGALS allows

Hi i n

£

68

Enter .a after --"cowwnt. .
." ? to'ADD a coHMent.

rrocenure or junction HAKE ; splitjusg ? n
—This procedure breaks the incoming Message ? n
—packet into its conponents ? a
—The conponents are used fcy other processes

(p)rocedure,
inpiji name :

input type :

input name :

input type :

input name :

(f)unction : p
in_«sg ? n
«sg_packet ? n
? n
? n
>

Figure 5.2.4 - GTGALS Specification Edit mode

multiple graphs. A typical example would be to divide a

system into INPUT, PROCESS, and OUTPUT components, all under

control of a main program. The next step would be to

decompose the INPUT component. In GTGALS, this is done by

"zooming in" on the INPUT component by moving the cursor to

the component and pressing "zi". This moves to a new

diagram. If INPUT has already been decomposed, the diagram

will reflect the current design. If not, the designer

chooses where to place the box representing INPUT. (see

figure 5.2.5)

The designer can then draw, specify (see figure 5.2.6), and

connect components as required. "Zooming out" by pressing

"zo" from a component will bring on screen the diagram on

which the component and its parent (the component from which

69

input 2

IMPUI

PflCKSSE

y
TEHT.IH / fosi.in/

/ PACKAGE /PfiCKHGE

-

Figure 5.2.5 - Decomposition of INPUT from MAIN2

inpU5

SPEfTFTrBTigH FHTBV

Specification entry for coMponent port_io

Enter up tp 58 characters of conwent after — (or return)—'.inis package handles all i/o thru CCH2
--Procedures are yet to be defined

Figure 5.2.6 - Specification Entry for an object

it was decomposed) are both drawn.

Though the zoom in and zoom out commands are conceptually

tied to functional decomposition, a bottom-up composition

70

could be accomplished by conceptually switching their roles.

For example, draw several objects on the bottom of the

screen and then one or more objects above them to represent

the composition of the lower components. Next, "zoom in" on

an upper level component. Place that component on the

bottom of the new diagram. Draw several "sibling"

components, and repeat the process of compose and zoom in.

5.3 Output

The implementation creates the Ada language specification

part of a component (see figure 5.2.7 on page 71). The file

would reside on disk as a filename. ada file, where filename

is supplied by the user during the GTGALS session. For each

component in the graph an Ada language specification part

will be created based on the data entered during that design

session. This will include the with-clause and the procedure

specifications. Currently the tool allows package and

generic package specification including their procedure

interfaces, and subprogram and generic subprogram

specification. Nesting of packages is not handled, and

tasks are not handled. Individual tasks could be easily

added to the implementation, but packages of tasks would be

somewhat more difficult.

71

—This is the controller
with process,

input,
output;

procedure main2(in_msg : in msg_packet;
out_msg : out msg_packet)

—This package handles all data modification
package process is
—This procedure breaks the incoming message—packet into its components—The components are used by other processes

procedure split_msg (in_msg : in msg_packet;
out_char : out character;
out_int : out integer;
out_string : out string;
out_f loat : out float)

;

—returns the base ten ascii eguivalent—of the character sent to it
function ascii (any : in character)

return integer;
end process;

—This packages interfaces to the "outside world"
with text_io;
package input is

package DUMMY is new port_io;—for reading entire message packets
procedure read_msg (got_msg : out msg_packet)

;

end input;

—This handles ouput interface to environment
package output is
—Writes the message to the standard output file

procedure write_msg (in_msg : in msg_packet)

;

end output;

—This is a predefined library program
package text_io is
end text_io;

—This package handles all i/o thru COM2
--Procedures are yet to be defined
generic
package port_io is
end port_io;

Figure 5.2.7 - Ada Language specification of MAIN2

72

CHAPTER 6. CONCLUSIONS

6.1 Usefulness

What has been learned from this research and design effort

falls into the categories of the implementation, Ada

language specifications, and tool output.

6.1.1 Implementation

Implementing a major project in Turbo Pascal, while it

offers many advantages, suffers from two serious

disadvantages. The advantages come from the language Pascal

and the availability of the Turbo Graphix Toolbox. The

structured nature of Pascal allowed procedural additions and

incremental development of the project. The Turbo Graphix

Toolbox eliminated the need to develop graphics and

windowing procedures. The unfortunate disadvantages were

the limitations on code space and data space. Though there

are tools to circumvent these limitations, they were not

accessible at the time of project development. The results

of these limitations contributed to various decisions that

detract from the usefulness of the final prototype. These

decisions were the elimination of package nesting, the

absence of handling packages of tasks, not handling generic

type specification, the rather crude specification editor,

and the number of objects which can be specified.

73

6.1.2 Ada language specifications

As research progressed, it became clear that Ada language

specifications were never intended to be requirements

specifications. Rather they are descriptions of the

interfaces to their respective package bodies. (Their

acceptability even for this is disputed by Wolf (1985)).

Therefore, to adequately specify a software system, either

additions to the language or use of some other specification

language is necessary. This does not detract from the

usefulness of this study. An access graph is still a good

model for graphically describing Ada language software

systems, and a graphic tool is by far the most enjoyable

method for developing such a specification. However, to

adequately and accurately specify the requirements for a

software system in such a way as to promote correct results

requires more than just the Ada language specification.

Section 6.3 continues this issue.

6.1.3 Automatic Code Generation

The question is likely to arise, "Why bother with just

specifying Ada language units instead of proceeding to

automatic code generation?". With most code generation

techniques now available, decomposition is required to a

very detailed level and this level must be functionally

primitive. It is the purpose of this paper to accomplish

74

the first level of this decomposition - specifying the

separately compilable Ada language units. The main issue of

this study has been the user interface to tools. What the

tools can do once they have the information is "beyond the

scope" of this paper. However, code generation systems

probably require much more substantial computing power than

is currently available on a 320K personal computer with one

disk drive, which is the system used for development and

running of the prototype.

6.2 Appropriateness of design

Does the formal model, user interface, and output of the

design adequately display the capabilities of such a graphic

tool as described in Chapter Four?

6.2.1 Formal Model

The access-graph model appears to accurately describe the

interface specification for an Ada language system. Since

the Ada language rules permit access to the whole component

which is accessed and not just particular entry points of

that package (DOD, 1983), the model clearly indicates this.

An access graph can easily support all of the interface

syntax inherent in Ada language specifications, even if the

implementation does not. The weakness would come in

graphically describing component bodies, since unfortunately

75

they can gain access to packages not already accessed in the

specification.

6.2.2 User Interface

Much more could have been done in the implementation in

regards to the interface design, given time and a tool to

circumvent the limitations described in 6.1.1. However,

even at its current level the prototype demonstrates the

usefulness and desirability of such a tool. The fact that

new tools are using such graphics, and older tools are

adding them (e.g. HOS and USE. IT), gives support to the

popularity of graphic interfaces.

6.2.3 Output

As already discussed, Ada language specifications are

inadequate for accurately describing a software system.

However, the output of the prototype does provide a

collection of interface descriptions which would be helpful

in designing the implementation of that system. If an

implementor could access the interface specification through

a workstation while developing the implementation, he or she

could determine the necessary parameters for interfacing

with the selected component. Additionally, the output from

this tool could be run through an Ada language compiler to

determine at least some amount of interface consistency.

76

6.3 Recommended extensions and modifications

At least two major areas require further development.

Little mention has been made of the analyzability of the

data produced by the design tool. This area needs to be

examined. Though mentioned earlier, the idea of using this

tool as a front end to other tools should be further

studied.

6.3.1 Specification Analysis

The amount of analysis that can be done on a specification

is a function of the amount and formality of the data

produced by the tool (see 2.3). Since this design creates

Ada language syntax specifications, the amount of

analyzability is determined by the number of analysis tools

present in the environment which use those specifications as

input. At the very least, this would be the compiler.

Unfortunately, the compiler will basically only tell you if

the packages you have attempted to access in a with clause

actually exist. Therefore, repeatedly recommended additions

to the specifications in either the form of comments or

additional language constructs and preprocessors are

necessary. (See Wolf (1985) for one such language

extension)

.

77

6.3.2 Front-end to Other Tools

Because of the inadequacy of the Ada language specification

as a requirements specification on its own, the use of this

design as a front end to other specification tools might be

possible. Since many methodologies are now moving toward

the addition of graphic interfaces to their tools, this is

an unlikely proposition. However, it would be nice to see

more of the tools being developed offer some version or

implementation with a bent toward the Ada language, since

like it or not Ada is going to be used in many areas.

6.4 The Needs

In attempting to develop this graphic interface, several

needs have become evident. A need for cheaper, more

accessible graphics workstations; more tools or additions to

high-level-languages to take advantage of such workstations;

and more emphasis in software design on graphic interfaces

to development tools. Whether or not this need is a result

of the environment under which this paper and project was

developed is unknown.

The ultimate purpose of this paper is to encourage an

increase in the number and varieties of graphic interfaces

to software engineering tools.

78

REFERENCES

Alford, M. (1985). "SREM at the Age of Eight; The
Distributed Computing Design System," IEEE Computer, April,
pp. 36-46.

Balzer, R. and Goldman, N. (1979). "Principles of Good
Software Specification and Their Implications for
Specification Language," Proc. Specifications of Reliable
Software Conf., September, pp. 58-67.

Booch, G. (1983). Software Engineering With Ada. Menlo Park,
CA: Benjamin/Cummings Publishing Co.

Braegger, R. p., Dudler, A.M., Rebsamen, J., and Zehnder,
CA. (1985). "Gambit: An Interactive Database Design Tool
for Data Structures, Integrity Constraints, and
Transactions," IEEE Transactions on Software Engineering,
July, pp. 574-582.

Brown, G.P. , Carling, R.T., Herot, C.F., Kramlich, D.A. , and
Souza, P. (1985). "Program Visualization: Graphical Support
for Software Development," IEEE Computer, August, pp. 27-35.

Buhr, R.J. A., Karam, G.M., and Woodside, CM. (1985). "An
Overview and Example of Application of CAEDE: A New,
Experimental Design Environment for Ada," ADA Letters
September, pp. 173-184.

Buhr, R.J. A. (1984). System Design with Ada, Englewood
Cliffs, N.J.: Prentice-Hall, Inc.

Clark, L.A., Wileden, J.C., and Wolf, A.L. (1980). "Nesting
in Ada Programs is for the Birds," Proc. ACM-Sigplan Symp.
Ada Programming Language, in Sigplan Notices, November.

DeRemer, F. and Kron, H.K. (1976). "Programming-in-the-Large
Versus Programming-in-the-Small," IEEE Transactions on
Software Engineering, June, pp. 80-86.

DOD (1983). Reference Manual for the Ada Programming
Language, ANSI/MIL-STD-1815A, Washington, D.C.: US Dept. of
Defense, January.

Gilbert, P. (1983). Software Design and Development,
Chicago, IL: Science Research Associates.

Grafton, R.B. and Ichikawa, T. (1985). "Visual Programming,"
IEEE Computer, August, pp. 6-9.

Hamilton, M., and Zeldin, S. (1983). "The Functional Life

79

Cycle Model and Its Automation: USE. IT," The Journal of
Systems and Software, March, pp. 25-62.

Hamilton, M., and Zeldin, S. (1976). "Higher Order Software
- A Methodology for Defining Software," IEEE Transactions on
Software Engineering, March, pp. 9-31.

Hansen, P.B. (1977) . The Architecture of Concurrent
Programs, Englewood Cliffs, N.J.: Prentice-Hall.

Jacob, R.J.K. (1985). "A State Transition Diagram Language
for Visual Programming," IEEE Computer, August, pp. 51-59.

Myers, W. (1978). "The Need for Software Engineering," IEEE
Computer, February, pp. 12-25.

Peterson, J.L. (1981). Petri Net Theory and the Modeling of
Systems, Englewood Cliffs, N.J.: Prentice- Hall.

Pressman, R.s. (1982). Software Engineering: A
Practitioner's Approach, New York, NY: McGraw-Hill, Inc.

Roman, G. (1985). "A Taxonomy of Current Issues in
Requirements Engineering," IEEE Computer, April, pp. 14-21.

Ross, D.T. (1985). "Applications and Extensions of SADT,"
IEEE Computer, April, pp. 25-34.

Rudmik, A. and Moore, B.G. (1982). "An Efficient Separate
Compilation Strategy for Very Large Programs," Proc . Sigplan
82 Symp. Compiler Construction, in Sigplan Notices, June,
pp. 301-307.

Schneiderman, B. (1983). "Direct Manipulation: A Step Beyond
Programming Languages," IEEE Computer, July, pp. 57-69.

Sievert, G.E., and Mizell, T.A. (1985). "Specification-
Based Software Engineering with TAGS," IEEE Computer, April,
pp. 56-65.

Teichroew, D., and Hershey III, E.A. (1977). "PSL/PSA: A
Computer-Aided Technique for Structured Documentation and
Analysis of Information Processing Systems," IEEE
Transactions on Software Engineering, January, pp. 41-48.

Ullman, J.D. (1982). Principles of Database Systems,
Rockville, MD.: Computer Science Press.

Wolf, A., Clarke, L. , and Wileden, J. (1985). "Ada-Based
Support for Programming-in-the-Large, " IEEE Software, March,
pp. 58-71.

80

APPENDIX A - GTGALS Procedure Descriptions

Procedure Descriptions for GTGALS -

A Grap^ich Tool for Generating Ada Language Specifications

These are all the procedures within the Graphic Tool for
Generating Ada Language Specifications (GTGALS) system. Due
to Turbo Pascal editor limitations, these are broken up into
three files which, along with the type definition file, are
needed to run GTGALS.

Brief comments follow each procedure to further describe its
purpose

.

File GTGALS1.PAS

procedure Adjust_name (var short_name : short_obj_name; name
: object_name)

;

This procedure adjusts an incoming object name (of up to 20
characters) to a short name (up to 8 characters) for display
withing the object symbol.

procedure Move_cursor_out;

This procedure moves the cursor-window outside of the main
screen and turns it off so that when a save screen is done
the cursor is not permanently displayed on one position on
the screen.

procedure Move_cursor in;

This procedure moves the cursor-window back to its previous
position and turns it back on. It is used after
Move_cursor_out and a save screen.

File GTGALS2.PAS

procedure Init_arrow(i : integer);

This procedure initializes one arrow, setting all the values
of the indexed arrow to a known state. It is used on
program start-up and whenever an arrow is erased from the
graph.

procedure Init_object (i: integer)

81

This procedure initializes an object as above. (see
Init arrow)

procedure Init_structure;

This procedure is used to initialize all data structures at
the start of the program.

procedure Lef t_justify (var name : object_name)

;

This procedure corrects for occasional right-justification
of data being read in from a display file.

procedure Move cursor;

This procedure reads the arrow keys corresponding to cursor
movement on the main screen.

procedure New_screen (name : object_name; screen no :

integer)

;

This procedure sets up a new screen for further drawing,
labeling the screen with the diagram number and the name of
the object from which the screen was drawn. (If startup
from a file, name is the file name, if zoom-in or zoom-out,
name is the object name on which the command was given)

procedure Draw_arrow(xl ,yl ,x2 ,y2 :real)

;

These procedures handle drawing of the last section of an
access arrow and the appropriate arrow-point.

procedure DrawArrow45 (xl,yl ,x2,y2 :real)

;

procedure DrawArrowHor (xl ,yl ,x2 ,y2 : real);

procedure DrawArrowVer (xl ,yl ,x2 ,y2 : real);

procedure Draw_name (xl,yl :real ; name : object_name)

;

This procedure draws the object name in the object located
at xl, yl.

procedure Draw_object (which : char; x, y : real);

82

These procedures draw the object symbols based on an
approximate center of x,y.

procedure Draw_std_object (x,y : real);

procedure Draw_generic (x, y : real);

procedure Draw_diagram (diag_index : integer; name :

object_name)

;

This procedure selects the objects and arrows to be drawn on
the diagram requested by diag_index, and uses the Draw
procedures to draw them.

procedure Help;

Displays the system commands in a window. This window is
accessible only from the main screen, not from within other
windows.

procedure Remove_access (from_ind, to_ind : integer);

This procedure is used to remove access of the "to object"
from the "from object" when either the access arrow or the
accessed object has been deleted.

procedure Select_arrow(f indx,f indy : real; var found :

boolean;
var index : integer)

;

This procedure determines which, if any, arrow begins at or
near the given findx, findy coordinates.

procedure Select (findx, findy : real; var found : boolean;
var out_object : char; var index :

integer)

;

This procedure determines which, if any, object surrounds
the given findx, findy coordinates.

procedure Erase_arrow (object : char; index : integer);

This procedure erases the arrow indicated by index.

83

procedure Add_access (from_obj , to_obj : char; from_ind,
to_ind : integer)

;

This procedure is used to add access when an access arrow
has been drawn.

procedure Read_arrow;

This procedure allows the drawing of arrows and puts the
data into the arrow array.

procedure Delete;

This procedure begins the deletion of either arrows or
objects

.

procedure Read_object (obj_type : char);

These procedures read the initial information when an object
is drawn.

procedure get_comments (var in_ptr : comment_ptr)

;

procedure spec_entry;

procedure Zoom_in;

This procedure creates or accesses the screen on which the
selected object is decomposed.

procedure Zoom_out;

This procedure moves the user back to the diagram on which
the selected object is not decomposed.

File GTGALS.PAS

procedure Gen_Ada (index : integer; var head : spec_ptr)

;

These procedures build the Ada language specification from
the data in the object array for the selected object.

procedure build_comments (in_ptr : comment_ptr)

;

84

procedure build_parms (index , i : integer);

procedure View_text;

This procedure brings up the viewing window and callsGen_Ada for the selected object.

procedure Edit;

These procedures allow for editing a selected components
internal details such as name, procedures, inputs and
outputs, and comments.

procedure clear_window;

procedure edit_comments (var in_ptr : comment ptr);

procedure Read_display (filename : filenames);

This procedure reads a display file and puts the information
into the data structure for use by GTGALS.

procedure read_comments (var in_ptr : comment_ptr)

;

procedure Write_display;

This procedure writes out the data from the data structures
to a uniquely formatted .gph display file.

procedure write_comments (in_ptr : comment_ptr)

;

procedure Gen_specs;

This procedure uses Gen_Ada for each object in the data
structure and writes it out to a .ada file.

85

APPENDIX B - Turbo Graphix Toolbox Modifications

The following procedures were removed from the Turbo Graphix
Toolbox of Boreland International to make it possible to
increase the amount of code in the Graphic Tool for
Generating Ada Language Specifications (GTGALS)

.

The following were removed from Kernel. Sys

function GetErrorCode:byte;
procedure SetHeaderToBottom;
function GetWindow: integer

;

function GetColor :integer

;

procedure SetScreenAspect (aspect : real)

;

function GetScreenAspect :real

;

function GetAspect :real

;

procedure SetLinestyle (Is: integer)

;

function GetLinestyle: integer

;

procedure SetVStep (vs : integer)

;

function GetVStep: integer

;

function GetScreen:byte;
procedure DrawPoint (xr ,yr :real)

;

function PointDrawn (xr ,yr :real) :boolean;

The following were removed from Windows. Sys
»

procedure CopyWindow (from , tu : byte

;

xl,yl: integer)

;

procedure SaveWindow(n: integer

;

FileName:wrkstring)

;

procedure LoadWindow (n , xpos ,ypos : integer

;

FileName:wrkstring)

;

procedure SaveWindowStack (FileName :wrkstring)

;

procedure LoadWindowStack (FileName:wrkstring)

;

procedure ResetWindowStack;

86

APPENDIX C - Display file for MAIN2 (see fig. 5.2.7)

This file would reside on disk as MAIN2.GPH. This is an
annotated display file. The text in U is not in the actual
display file, but is used here to describe it. There would
be no blank lines in the display file.

[The first line of an object record is its type,
s-subprogram, p-package, g-generic package,
h-generic subprogram; its array index, and its
x,y coordinates on its original diagram and its
refinement (zeros if not refined))

s 1 500.0 320.0 0.0 0.0

[The second line is the diagram numbers on which
it is located, original then refinement)

1

{The next line is the object's name)

main2

CA line preceeded by c is a comment)

c—This is the controller

(A * indicates a procedure or function)
[If followed by the word KEY, this data
is for the subprogram rather than an
internally named procedure or function)
[Otherwise, it will be followed by the
procedure or function name)

*pKEY

[? indicates input. It is immediately
followed by the input name. The next
line will be the input type.)

?in_msg
msg_packet

[! is output. Same as input)
[If there were in out variables,
they would be indicated by a +

)

!out_msg
msg_packet

87

(@ indicates that the number following
is an index to an accessed object]

@ 2

@ 3

@ 4

(Only different information will be
noted}

p 2 500.0 660.0 0.0 0.0
1

process
c—This package handles all data modification
*psplit_msg
c—This procedure breaks the incoming message
c—packet into its components
c—The components are used by other processes
?in_msg
msg_packet
!out_char
character
! out_int
integer
!out_string
string
!out_float
float
*fascii

(if the * is a function, the next
line is the data type of the function)

integer
c—returns the base ten ascii equivalent
c—of the character sent to it
?any
character

(Notice that the following package
has been refined on diagram 2]

p 3 150.0 500.0 500.0 130.0
1 2

input
c—This packages interfaces to the "outside world"
*pread_msg
c—for reading entire message packets
!got_msg
msg_packet
@ 5

88

g 6

p 4 787.5 500.0 0.0 0.0
1

output
c—This handles ouput interface to environment
*pwrite_msg
c—Writes the message to the standard output file
?in_msg
msg_packet
p 5 275.0 480.0 0.0 0.0
2

text_io
c—This is a predefined library program
g 6 562.5 480.0 0.0 0.0
2

port_io
c—This package handles all i/o thru COM2
c—Procedures are yet to be defined

(The first encounter of an 'a'
in column one indicates the start
of the access arrow data.)
{The first a is the originating point,
subsequent a's are intermediate points,
and the e is the end point. This is
followed by the indices of the originating
object and then the accessed object)

a 500 .0 400 .0 1

e 500
1

.0

2

600 .0 1

a 450 .0 400 .0 1
e 200

1

.0

3

440 .0 1

a 550 .0 400 .0 1

e 737
1

,5

4

440,.0 1

a 450,.0 210,.0 2

e 325,
3

,0

5

420,,0 2

a 550..0 210. 2

a 575.,0 210. 2

e 575..0 420.,0 2

89

APPENDIX D - Source Code for A Graphic Tool for Generating
Ada Language Specifications

{This program is a modification of a project done for CS736
(Computer Graphics) in the summer semester of 1985. The
original program was written by :

Ernest G. Smith
Donald E. Bodle, Jr.

It's purpose was to demonstrate the use of a graphic
interface to an underlying data structure. The graphic
model chosen was the access graph as taught in CS720
(Operating Systems II) by Dr. Richard McBride for
documenting C-Pasoal programs.

The modifications that follow have been done by Donald E.

Bodle, Jr. as part of his master's thesis implementation.

The main data structure has been modified, multiple levels
of graphs have been added, the file format of the display
file has changed slightly, and the program template is now
for the Ada language rather than C-pascal. }

{These are the declarations necessary to the GTGALS
program}

const
ma^_accesses = 5;

max_arrows = 100; { max_objects * max^aceesses }

max_arrow_points = 5; { includes origin and end pt }

max_inputs = 5i
majt_inouts = 5;

max^objeets = 20;
max_outputs = 5j
max^procedures « 5;

type

data_name = string[10J;
filenames = string[1ll]j

object_name = string[20];
output_line = string[70];
procedure_name = string[20];
short_obj_name = string[8];
spec_ptr =

l
*spec_line_reeord;

comment_ptr = * comment_record;

access_record = record
index : integer; { array index of object accessed J

end;

90

comment_record = record
line : string[60];
next : comment_ptr;

end;

input_reoord = record
name : data_name;
in_type : data_namej

end;

inout_record = record
name : data_name;
inout_type : data_name;

end;

output_record = record
name : data_name;
out_type : data_name;

end;

point_label = record
object_type : char;
x : real;

y : real

;

end;

{ for arrows, a = origin or }

(mid_pt, e = end. for objects }

{ p, s, g, or h for pkg, subpgm }

{ generic pkg, generic subpgm }

spec_line_reeord = record
line : output_line;
next : speo_ptr;

end;

{ for linked list of lines }

arrow_reoord = record
diagram : integer;
point : array[1..raax_arrow_points] of point_label;
from_index : integer; (originating object }

to_index : integer; { accessed object }

end;

procedure_reeord = record
comment : comment_ptr

;

proc_type : char; { p s procedure, f function }

f_returns : data_name;
name : prooedure_name;
input : array [1..max_Inputs] of input_record;
output : array[1. ,max_outputs] of output_record;
inout : array [1. .max_inouts] of lnout_reeord;

end;

object_record = record
access : array[1. .max_acoesses] of access_record;
child_diag : integer; { if object decomposed)

91

child_pt : point_label;
comment : eomment_ptr

;

diagram : integer; (diagram where 1st drawn }

id : integer;
name : object_name;
point : point_label;
proo : array[1..ma3t_prooedures] of procedure_reoord;

end;

var arrow : array[1. .max^arrows] of arrow_reoord;
Ch: char; { for keyboard input)

filename : filenames;
temp_file : filenames;
i : integer; { loops }

in_file : text; (read in display file }

in_file_name : filenames;
long_file_name : object_name;
next_arrow, t next empty slot ptrs for }

next_dlagram, { arrays and diagram t }

next_object : integer;
object : array [1. .max^objects] of objeet_reoord;
screen_num : integer; { screen is now this diagram)

short_name : short_obj_name;
tempx : integer;
x, y : real; (track the cursor }

{ Adjust an incoming object name from up to 20 letters
to a short name of up to 8 letters for display within
the object symbol}

procedure Adj ust_name (var short_name : short_obj_name;
name : object_name);

begin
short_name : = name;
i := length(name);
case i of

7,6 : short_name := ' ' + short_name;

5,4 : short_name := ' ' + short_name;
3,2 : short_name := ' ' + short_name;

end;
for i := 1 to 8 do short_name[i] := upcase(short_name[i]);

end; (adjust name }

{ j

t Moves the cursor outside of the main screen and turns
it off so that when a save screen is done the cursor
is not permanently display at one position on the screen)

procedure Move_cursor_out

;

92

begin
SeleotWindow(2);
InvertWindow;
tempx := trunc(x/12.6);
MoveHor(-tempx, true)

;

SelectWorld(l);
Selectwindow(l);

end; { move cursor out }

{ j

{ Moves the cursor back to its previous position and turns
it back on. Used after Move_cursor_out)

procedure Move_oursor_in;

begin
Copy Screen;

SelectWorld(2);
SelectWindow(2);
MoveHor(tempx, true);

InvertWindow;
end; { move cursor in }

{ }

{ File gtgals2.pas }

^
{ Sets one arrow to a, know ^state. Used at program
start-up and when an arrow is erased from the
graph }

procedure Init_arrow(i : Integer);

var index : integer;

begin
with arrow[i] do
begin

diagram la 0;
for index := 1 to max_arrow_points do

begin
point [index], object_type := ' ';

point[index], x := 0; point [index]. y := 0;

end;
from_index := 0; to_index := 0;

end; { with and for }

end; { Init_arrow }

{ }

{ Initializes an object. U3ed as Init_arrow is }

procedure Init_object(i:integer);

var index, k : integer;

93

begin
with object [i] do

begin
diagram := Oj

ohild_diag := 0;
name : = "

;

id := 0;

point. objeot_type := ' ';

point. x := 0; point, y := 0;
child_pt.object_type := ' •

;

ohild_pt.x := 0; ohild_pt.y := 0;
comment : nil

;

for index := 1 to max_procedures do

begin
pro c[index].proc_type := ' ';

proc[index], f_returns := ";
proc[index], name := ";
proc[index] . comment : = nil

j

for k := 1 to max_inputs do

begin
proc[lndex].input[k].name := ";
proo[index].input[k].in_type := ";

end;
for k := 1 to max_outputs do

begin
proc[index].output[k].name := ";
proc[index].output[k].out_type := ";

end;
for k := 1 to max_inouts do

begin
proc[index]. inout[k]. name := ";
proc[index].inout[k].inout_type := ";

end;
end;
for index := 1 to max_accesaes do

access[index], index := 0;
end; { with and for J

end; { Init_^TassNj_^
a *ej<e_ci

{ Dses init_arrow and init_object at program
start-up }

procedure Init_structure;

var
i : integer;

begin
for i := 1 to max_objects do Init_objectCi)

;

for i := 1 to max_arrows do Init_arrow(i)

;

end; { Init_strueture)

94

{ j

{ Corrects for occasional right- Justification
of data that has been written to a text file
using the var_name : ft format)

procedure Left_ justify (var name : object_name);

var i, max : integer;

begin
if name[1] = • ' then
begin
max := length(name);
for 1 := 2 to max do

name[i-1] := name[i];
name[max] := ' ';

end; { if not left justified)

end; (procedure left_justify }

{ }

{ Heads the arrow keys corresponding to cursor
movement on the screen }

procedure Move_cursor;

begin
case ord(Ch) of

72 : if y >= 110 then
begin
MoveVer(-2,true); (up arrow?}

y := y - 10;
gotoxy(1,25);

end;

75 : if x >= 82.5 then
begin
MoveHor(-1 ,true); {left arrow?}
x := x - 12.5;
gotoxy(1,25);

end;

77 : if x <= 926.0 then
begin

MoveHor(1, true); {right arrow?}
x := x + 12.5;
gotoxy(1,25);

end;

80 : if y <= 820 then
begin

MoveVer(2, true); {down arrow?}
y := y + 10;

gotoxy(1,25);
end;

95

end; { case }

end; (move_cursor)

{ }

{ Sets uds_ new screen for further drawing,
labeling(hte^screen with the diagram number and the name of
the objectTrom which the screen was drawn. (If startup
from a file, name is the file name, if zoom- in or zoom-out,
name is the object name on which the command was given) }

procedure New_screen(name : object_name;
screen_no : integer);

var screen_char : char;

begin
screen_char := chart screen_no + 1|8);

ClearScreen;
SelectWorldd);
SelectWindowO); {select screen window)
SetBackground(O); (give it a black background)
DrawSquare(20, 55, 1000, 915, false); {draw the border}
DrawTextW(100, 12,2, name);
DrawTextW(800,12,2,screen_ehar);
Copy Screen;

SelectWindow(2); {select cursor)
SelectWorld(2); {select it's world)
SetBackground(O); {give it a black background)
InvertWindow; {turn the cursor on)

end; { New_screen)

{ j

{ Draws the access arrows)

procedure Draw_arrow(x1 ,y1 ,x2,y2:real)

;

var
slope : real

;

{ These procedures handle drawing of the last section of an
access arow and the appropriate arrow-point }

procedure DrawArrowH5(x1,y1 ,x2,y2:real)

;

begin
if (xl > x2) and (yl > y2) then
begin

DrawLine (x1,y1 ,x2+5,y2+7.5);
DrawLine (x2,y2+1 5, x2,y2);
DrawLine(x2+10, y2,x2,y2)

;

DrawLine (x2,y2+1 5, x2+10,y2);

DrawLine (x2+5,y2+7. 5, x2,y2);
end else

if (x1 < x2) and (yl < y2) then
begin
DrawLine (x1 , y1 , x2-5 , y2-7 .5)

;

DrawLine (x2 , y2-1 5 ,x2 , y2)

;

DrawLine (x2-1
, y2 , x2 , y2)

;

DrawLine (x2 , y2-1 5 ,x2-1 , y2)

;

DrawLine (x2-5,y2-7. 5, x2,y2);
end else

if (x1 > x2) and (y1 < y2) then
begin

Dr awLine (x 1 , y1 , x2+5 , y2-7 . 5)

;

DrawLine (x2 , y2-1 5 , x2 , y2)

;

DrawLine (x2+1
, y2 , x2 , y2)

;

DrawLine (x2,y2-1 5, x2+10,y2);
DrawLine (x2+5,y2-7. 5, x2,y2);

end else

if (xl < x2) and (y1 > y2) then
begin
DrawLine (x1,y1 ,x2-5,y2+7.5);
DrawLine (x2 , y2+1 5 , x2 , y2)

;

DrawLine (x2-1
, y2 , x2 , y2)

;

DrawLine (x2,y2+1 5, x2-10,y2);
DrawLine(x2-5,y2+7.5,x2,y2);

end;
end; (DrawArrartS }

procedure DrawArrowHor(x1,y1 ,x2,y2 : real);

begin
if x2 > x1 then
begin

DrawLine (x1,y1 ,x2-10,y2);
DrawLine (x2-10,y2-10,x2,y2)

;

DrawLine (x2-1
, y2+1 , x2 , y2)

;

DrawLine (x2-10,y2-10,x2-10,y2+10);
DrawLine (x2-10,y2,x2,y2);

end
else

begin
DrawLine (x1,y1 ,x2+10,y2);
DrawLine (x2+10,y2-10,x2,y2);
DrawLine (x2+1 , y2+1 , x2 , y2)

;

DrawLine (x2+10,y2-10,x2+10,y2+10);
DrawLine (x2+1 , y2 , x2 , y2)

;

end;
end; { DrawArrowHor J

97

procedure DrawArrowVer(x1 ,y1 ,x2,y2 : real);

begin
if y2 > y1 then

begin
DrawLine (x1,y1 ,x2,y2-15);
DrawLine (x2-7,y2-1 5, x2,y2);
DrawLine (x2+7,y2-1 5 ,x2,y2);
DrawLine (x2-7 , y2-1 5 ,x2+7 , y2-1 5)

;

DrawLine (x2,y2-1 5 ,x2,y2);

end
else
begin

DrawLine (x1,y1 ,x2,y2+15);
DrawLine (x2-7 , y2+1 5 ,x2 , y2)

;

DrawLine (x2+7,y2+1 5, x2,y2);
DrawLine (x2-7 , y2+1 5 ,x2+7 , y2+1 5)

;

DrawLine(x2,y2+15,x2,y2)i
end;

end; (DrawArrowVer }

begin { Draw_arrow J

Hove_our3or_out

;

if x2 = x1 then slope := 10.0
else slope := abs((y2 - y1)/(x2 - x1));
if slope <= 0.5 then DrawArrowHor(x1,y1 ,x2,y2)
else if slope >= 2.0 then DrawArrowVer(x1 ,y1 ,x2,y2)
else DrawArrow45(x1,y1 ,x2,y2);
Move_cursor_in;

end; {Draw_arrow }

{ }

{ Draws the object name in the object located
at x1, yl }

procedure Draw_name(x1 ,y1 :real; name : object_name);

var
short_name : short_obj_name;

begin
x1 := x1 - 35;
y1 := y1 - 10;

adjust_name(short_name, name);
Move_cursor_out

;

DrawTextW(x1,y1 ,1 ,short_name);
Move_cursor_in;

end; t Draw name) ,

(}

{ Draws the object symbols based on an approximate
center of x, y)

98

procedure Draw_objeot(which : char; x, y : real);

procedure Draw_std_objeot(x, y : real);

begin
Mov e_cursor_out

;

DrawSquare(x-50 , y-60 ,x+50 , y+40 , false)

;

DrawSquare(x-50 , y+40 , x+50 , y+80 , false)

;

Move_cursor_in;
end; { Draw Std Object)

procedure Draw_generic(x, y : real);

begin
Hove_cursor_out

;

DrawLine(x-40,y-60,x+60,y-60);
Dr awLine (x+6 , y-60 , x+40 , y+40)

;

DrawLine(x+40, y+40, x-60, y+40);
DrawLine (x-60, y+40, x-40, y-60);
DrawLine (x-60 , y+40 , x-6 5 , y+80)

;

DrawLine (x-6 5, y+80, x+35, y+80);
DrawLine (x+35 , y+80 , x+40 , y+40)

;

Move_cursor_in;
end; (draw generic }

begin { draw object)

case which of
'g' ; begin { generic package }

Draw_generic(x, y)

;

Move_cursor_out

;

DrawTextW(x-38,y+53,
1

,
' PACKAGE')

;

Move_cursor_ln;
end;

'h' : begin (generic subprogram }

Draw_generic(x, y)

;

Hove_cursor_out

;

DrawTextW(x-58 ,y+53 , 1
,

' SOB PROG RAM')

;

Move_cursor_in;
end;

'p' : begin { package }

Draw_std_obj ect (x, y)

;

Move_cursor_out

;

DrawTextW(x-28
, y+53 , 1 ,' PACKAGE')

;

Move_cursor_in;
end;

's' : begin (subprogram }

Draw_std_object(x, y)

;

Move_cursor_out

;

DrawTextW(x-45, y+53, 1,' SOB PROG RAM');
Move_cursor_in;

end;

99

end; { case }

end; { draw object }

{ ,

{ Selects the objects and arrows to be drawn
on the diagram Indicated by diag_index and
uses Draw_object and Draw_arrow to draw them}

procedure Draw_diagram(diag_index : Integer;
name : object_name);

var

1, J : Integer;
x1, y1, x2, y2 : real;

begin
for 1 := 1 to next_object - 1 do
with object[l] do
If dlag_index = diagram then
begin
Draw_object(point.object_type, point. x, point. y);
Draw_name(point.x, point, y, name);

end
else if diag_index = child_diag then
begin
Draw_object(point.objeot_type, child_pt.x, child_pt.y);
draw_name(child_pt.x, child_pt.y, name);

end;

for 1 := 1 to next_arrow - 1 do
with arrow[i] do
if dlag_index = diagram then
begin

x1 ;= point[1].x;
yl := point[1].y;

J := 2;
Move_oursor_out

;

while point [j].object_type = 'a' do
begin

x2 ;= point[j].x;
y2 := point[j].y;
DrawLine(x1,y1 ,x2,y2);

J : 1* 1}
x1 := x2;

yl •= y2;
end; { while)

Move_cursor_in;
x2 := point[j].x;
y2 := point[j].y;
Draw_arrow(x1,y1 ,x2,y2);

end; (for with if }

100

end; { Draw_diagram }

{ j

{ Displays system commands in a window }

procedure Help;

begin
Move_cursor_out

;

StorewindowO);
SelectWorld(lt);

SelectWindow(t);
SetBaekground(O);
DefineHeader(l|,'HELP INFORMATION');
SetHeaderOn;
DrawBorder;
gotoxyC 10,7); writelnC 'DKAW COMMANDS');
gotoxyC 10,8);
writelnC a - defines origin and midpoints of,

' access arrows');
gotoxyC 10,9);
writelnC e - defines end-point of access arrows');
gotoxyC 10,10);
WritelnC p - draws package; s - draws subprogram');
gotoxyC 10,11);
writelnC gp - draws generic package;',

' gs - generic subprogram');
gotoxy(10,12);
writelnC zi- zooms in on object selected by',

' cursor position');
gotoxyC 10, 13);
writelnC zo- zooms out to parent diagram of,

' object selected');
gotoxyC 10,111);

writelnCEDIT COMMANDS');
gotoxyC 10,15);
writelnC e - enters component specification',

' editing mode');
gotoxy(10,16);
writelnC da - deletes access arrow originating at',

' the cursor');
gotoxyt 10, 17);
writelnC do - deletes object selected by',

' cursor position');
gotoxyC 10, 18);
writeln('DISPLAY COMMANDS ',

gotoxyC 10, 19);
writelnC h - "HELP" describes',

' commands »
')

;

gotoxyC 10,20);
writelnC v - displays selected object'

');

101

• specification • ends pgm')

;

gotoxy(10,24);
writeln('Press any key to return to access graph')i
repeat until keypressed;
gotoxy(1,2i|); writelnC ':80);
ClearScreen;
RestoreWindow(1,0,0);
Move_cursor_in;

end; { Help }

{
,

{ Removes access from object [from_ind] to
obJect[to_ind] when either an object[to_ind] is
deleted or the access arrow is deleted. }

procedure Remove_access(from_ind, to_ind : integer);

var i : integer;

begin
i := 0;
repeat

i := i + 1;

until object [from_ind].aecess[i]. index = to_ind;
objeet[from_ind].access[i]. index := 0;

end; [Remove_access)

j
,

(Determines which, if any, arrow begins at or
near coordinates findx, findy }

procedure Select_arrow(findx, findy : real;
var found : boolean;
var index : integer);

var i : integer;

begin
found := false;
i := 1;

repeat
with arrow[i] do
begin

if (point[1].x-10 <= findx) and
(point[1].x+10 >= findx) and
(point[1].y-10 <= findy) and
(point[1].y+10 >= findy) then

begin
found := true;
index := i;

end; { if)

end; { with)

i := i + 1;

102

until found or (1 >= next_arrow);

end; { Select_arrow }

(}

{ Determines which, If any, object begins at or

near coordinates findx, findy }

procedure Select(findx, findy : real; var found : boolean;
var out_objeot : char;
var index : integer);

var 1, j : integer;

begin
found := false;

i := 1;

repeat
with object[i] do
begin
if ((point, x-60 <= findx) and

(point. x+70 >= findx) and
(point, y-60 <= findy) and
(point, y+90 >= findy) and
(diagram = screen_num)) or

((child_pt.x-60 <= findx) and
(child_pt.x+70 >= findx) and
(child_pt. y-60 <= findy) and
(child_pt. y+90 >= findy) and
(child_diag = screen_num)) then

begin
found := true;

out_objeet := point. object_type;
index : i;

end; { if J

end; (with }

1 : i if
until found or (1 >= next_obj ect)

;

end; (procedure select)

{ j

(Erases the arrow indicated by index }

procedure Erase_arrow(object : char; index : integer);

var i, j : integer;
x1,y1,x2,y2 : real;

begin
for i := 1 to next_arrow do

begin
if ((arrow[i].from_index = index) and (object <> 'a'))

or ((arrow[i].to_index = index) and (object <> 'a'))

103

or ((object = 'a') and (index = i)) then
with arrow[i] do
begin
SetColorBlaek;
x1 := point[1].x;

y1 := point[1].y;

J := 2;

Move_cursor_out

;

while point [j].object_type = 'a' do
begin

x2 := point[j].x;
y2 := point[j].y;
DrawLine(x1,y1 ,x2,y2);

J := i + 1;

xl := x2;

yi := y2;
end; { while }

Move_cursor_in;
x2 := point[j].xj

y2 := point[J].y;
Draw_arrow(x1,y1 ,x2,y2);
if (to_index = index) or (object = 'a') then

Remove_aocess(from_index, to_index);
Init_arrow(i);

end; (with and if)

end;(for }

SetColorWhite;
end; { erase_arrow }

{
j

{ Adds access of object [to_ind] to object [froouind] }

procedure Add_access(fron_obj, to_obj : char;
from_ind, to_ind : integer);

var 1 : integer;
name : object_name;

begin
name := object[to_ind].name;
i := 0;
repeat

i := i + 1;

until object[from_ind].access[i]. index = 0;
object[from_ind].aceess[i]. index := to_ind;

end; (Add_aocess }

(j

{ Draws new arrows and puts data into arrow array,
calls Add_access }

procedure Read_arrow

;

104

xl, y1,
x2, y2 : real;
object : char;
found : boolean;
valid : boolean;
Index : Integer;
1 : Integer;
from_object : char;
from_index : Integer;

begin { Read_Arrow)

gotoxy(1,2i|); writelnC ':80); writelnC ':80);
x1: = x;

y1: = y;
i := 1;

valid := true;
seleot(x1,y1 .found, object, index);

if found then
begin
fron_objeet := object;
from_index := index;
arrow[next_arrow] .diagram := screen_num;
arrow[next_arrow] ,from_index := index;
arrow[next_arrow] ,point[i].object_type := 'a'j

arrow[next_arrow].point[i].x := xl;
arrow[next_arrow].point[i].y :s y1

;

i := 1 + 1;

repeat
read(Kbd, Ch); {read the keystroke}
case ord(Ch) of

97 : begin { a }

gotoxy(1,24);
writelnC ':80); writelnC ! :80);
if i = max_arrow_points then
begin
gotoxy(3,24);
writeCThis is the last point. 1

,

' Hove cursor to end of arrow');
writelnC and press e');

end else
begin

Mov e_cur 30r_out

;

x2 la x;

y2 := y;
arrow[next_arrow] . point [i].object_type
arrow[next_arrow].point[i].x := x2;
arrow[next_arrow] ,point[i].y := y2;
DrawLine(x1,y1 ,x2,y2);

105

x1 := x2;

yi := y2;
i := i + 1;

Move_oursor_in;
end;

end;

101 : begin { e }

gotoxy(1,24); writelnO ':80);
select (x, y, found, object, index);
if not found then
begin
gotoxy(3,24);
writeln('Arrow does not end at an object. ',

'Press a or move closer to object and press e');
Ch := • ';

end;
end;

72,

75,

77,
80 : Move_cursor;

end;
until Ch = 'e'; {e ends arrow}

x2 := x;

y2 := y;
Draw_arrow(x1,y1 ,x2,y2);
arrow[next_arrowj.to_index := index;
arrow[next_arrow].point[i].objeet_type := 'e';

arrow[next_arrow].point[i].x := x2;
arrow[next_arrow].point[i].y := y2;
Add_acce3s(froiii_object, object, from_index, index);
next_arrow : = next_arfow + 1

;

end else
begin

gotoxy(3,24);
writeln('Arrow does not start at an object.',

' Move closer to the object and press a');
end; { if object is found }

end; { Read_arrow }

(j

(Initiates deletion of an object or arrow)

procedure Delete;

var more : char;
choice : char;
x1,y1,x2,y2 : real;
j,i : integer;
found : boolean;

106

in_objeet : char;

index : integer;

begin { delete)

read(Kbd,more);
case more of

•o' : begin { delete object }

select(x, y, found, in_object, index);
if found then
begin { if found }

gotoxy(3,24);
write('Do you want to delete object ',

obj ect [index] . name,
' y/n ?•);

read(Kbd, choice);
gotoxy(1,24); writelnC ':80);
if choice = 'y' then
begin
SetColorBlack;
Draw_obj ect (in_obj ect,

obj ect [index], point, x,

obj ect[index], point, y)

;

Draw_name(obj ect [index] . point, x,

obj ect [index] . point, y,

obj ect [index] . name)

;

Erase_arrow(in_object, index);
SetColorWhite;
Init_object (index)

;

end;
SetColorWhite;

end; { if found }

end; { end delete object }

•a' : begin { delete arrow]

Select_arrow(x, y, found, index);
if found then with arrow[index] do
begin { if found }

gotoxy(3,2t);
wrlte('Do you want to delete this arrow',

' y/n ?•);
for i := 1 to 2 do
begin { for - blink arrow }

SetColorBlack;
xl := point[1].x;
y1 := point[1].y;

J := 2;

Move_cursor_out

;

while point[j].object_type = 'a' do
begin { while a }

x2 := point[j].x;
y2 := point [j].yj

107

DrawLine(x1,y1 ,x2,y2);

J := J + 1;

x1 := x2;

y1 := y2;
end; t while a, draw line segments }

Move_cursor_ln;
x2 := point[j].x;

y2 := point[j].y;
Draw_arrow(x1,y1 ,x2,y2);
SetColorWhite;
x1 := point[1].x;
y1 := point[1].y;

i •= 2;

Mov e_our sor_out

;

while point[j] ,object_type = 'a' do

begin (while a J

x2 := point[j].xj
y2 := point[j].y;
DrawLine(x1,y1 ,x2,y2);

j !» 3* M
x1 := x2;

yi := y2;
end; { while a, draw line segments }

Move_eursor_ln;
x2 := polnt[j].x;

y2 := point[j].y;
Draw_arrow(x1,y1 ,x2,y2);

end; { for - blink arrow }

read(Kbd, choice);
if choice = 'y' then

Erase_arrow(' a' , index)

;

gotoxy(1,24);
writelnC ':80); writelnC ':80);

end; { if found }

end; (case }

end;
end; { Delete }

{ ,

(Heads in initial specification when a new object
is drawn. (Does the drawing too.) }

procedure Read_objeot(obj_type : char);

var
name : object_name;
entry : procedure_name;
line_no : integer;
next_entry : integer;
type_proc : char;

procedure get_comments(var in_ptr : comment_ptr)

;

108

var current_com : eomraent_ptr

;

comment : comment_ptr

;

command : char;

in_comment : string[60];

begin
if line_no > 17 then
begin
for i := 11 to 20 do { blank out information }

begin
gotoxy(10,i); writelnC ':60);

end;
line_no := 11;

end;

gotoxy(10,line_no); writelnC >:60);
gotoxy(10, line_no)

;

in_comment := ";
writeln('Enter up to 58 characters of comment after',

i __ (or return)');
line_no := line_no + 1;

gotoxy(10,line_no); write('— '); readln(in_comment);
1 ine_no : line_no + 1

;

if in_comment <> ' ' then
begin
New (comment);
comment" . line := '— ' + in_oomment;
comment". next := nil;

current_com ;= comment;
in_ptr := comment;
repeat
if line_no > 17 then
begin
for i := 11 to 20 do { blank out information }

begin
gotoxyOO.i); writelnC ':60);

end;
1 ine_no : = 1 1

;

end;
gotoxy (10 , line_no)

;

writef— ');

in_comment := ";
readl n(in_comment)

;

line_no := line_no + 1;

if in_comment <> ' ' then
begin

New (comment);
ourrent_com*.next := comment;
comment". line := '--' + in_comment;
comment". next := nil;
current_com := comment;

end;

109

until (in_comment = ");
end; { if first comment <>

end; { get_comments }

procedure spee_entry;

temp_in : string[10];
i, j : integer;

begin
Move_cursor_out

;

StoreWindow(l);
Selectworld(4);
SelectWindow(lt);
SetBackground(O)

;

DefineHeader(«, • SPECIFICATION ENTRY') ;

SetHeaderOn;
DrawBorder;
gotoxy(10,7);
writeln('Specification entry for component '.name);
line_no := 8;

gotoxy(10,line_no); line_no := line_no + 1;
get_comment s(obj eot [next_obj eot] . comment) ;

repeat
for i := 8 to 20 do
begin

gotoxydO.i); writeln(' ':60);
end;

line_no := 8;
gotoxydO,line_no); line_no := line_no + 1;
gotoxy(10, line_no);
write('procedure or function (p or f) ?',

' (return to bypass) : ');

type_proc := ' ';

readln(type_proc);
line_no := line_no + 1;

if (type_proc = 'p') or (type_proc = 'f') then
begin

obj eot [next_obj ect] . proc[next_entry] . proc_ty pe
:= type_proc;

if (object[next_object], point. object_type = 'p') or
(objeot[next_object]. point. object_type = 'g') then

begin
gotoxy(10,line_no); write('Knter name : •);

readln(entry);
end else entry := 'KEY';

{ to indicate a subprogram so write }

{ and read display will access the }

{ data for the subprogram }

if type_proc = 'f then

110

begin
gotoxy(40,line_no); write('Returns ? : ');

readl n(obj eot [next_obj eet]

.

proc[next_entry] . f_returns)

;

end;

1 ine_no : = line_no + 1

;

object[next_object].proc[next_entry] .name := entry;

J := IS

get_comment s(obj eet [next_obj eot]

.

proc[next_entry] .comment);
repeat
tanp_in := ' ';

gotoxy(13, line_no); wrlte(' Input : ');

read(temp_in);
if (temp_in[1] <> ' •) or (temp_in[2] <> ' ') then
begin

obj eot [next_obj eet] . proc[next_entry]

.

input [j]. name := temp_in;
gotoxy(33, line_no);
wriLteC Type : '); temp_in := * ';

readln(temp_in);
obj ect[next_obj eet] . proe[next_entry]

.

input [j].in_type := temp_in;
end;
1 ine_no : line_no + 1 ; j : = j + 1

;

if line_no > 17 then
begin
for i := 11 to 20 do { blank out information }

begin
gotoxy(10,i); writelnC ':60);

end;
line_no := 11;

end;
until ((temp_in[1] = • •) and (temp_in[2] = ' ')) or

(j > max_lnputs);

j := 11

if type_proc <> 'f then
repeat

temp_in := ' ';

gotoxy(13, line_no); write('Output : ');

read(temp_in);
if (temp_in[1] <> • ') or (temp_in[2] <> • ') then
begin

obj eot [next_obj eet] . proc[next_entry]

.

output [j] .name := temp_in;
gotoxy(33, line_no);
wrlteC lype : '); temp_in := ' ';

readl n(t em p_in);
object[next_object].proc[next_entry]

.

output[j].out_type := temp_in;
end;
line_no := line_no + 1; j := j + 1;

if line_no > 17 then

111

begin
for i := 11 to 20 do { blank out information }

begin
gotoxy(10,i); writelnC ':60);

end;
line_no := 11

;

end;
until ((temp_in[1] = ' ') and (temR_ln[2] = ' ')) or

(j > max_outputs);

J := 1i

if type_proc <> 'f then
repeat

temp_in := ' ';

gotoxy(13, line_no); writeCln out : ');

read(temp_in);
if (temp_in[1] <> • ') or (terap_in[2J <> ' ') then
begin
object [next_object] .proc[next_entry]

.

inout[j] .name := temp_in;
gotoxy(33, line_no);
write(' Type : '); temp_ln := ' ';

readln(temp_in);
object[next_object].proc[next_entry].

inout[j].inout_type := temp_in;
end;

line_no : = line_no + 1; j := j + 1;
if line_no > 17 then
begin
for i := 11 to 20 do (blank out information }

begin
gotoxy(10,i); writelnC ':60)j

end;

1 ine_no : = 11;
end;

until ((temp_in[1] = ' ') and (temp_in[2] = ' •)) or
(j > raa*_inouts);

end; { if a valid procedure name }

next_entry : = next_entry + 1

;

until { procedures are bypassed }

((type_proc <> 'p') and (type_proc <> 'f'))

{ or maximum procedures have been specified }

or (next_entry > max_procedures) or
! or object is subprogram - (procs not specified) }

Cobject[next_object]. point. object_type = 's') or
(object[next_objectj. point. objeot_type = 'h'j;

ClearScreen;
RestoreWindow(1,0,0);
Move_cursor_in;

end; { procedure spec_entry }

begin

112

next_entry : - 1

;

SelectWorld(l);
SelectWindowC 1);

gotojy(1,211); writelnC ':80); writelnC ':80);
Draw_objeot(obj_type, x, y);
gotoxy(3,2il);

writef Enter name : ');

readln(name);
adjust_name(short_name, name)

;

Draw_name(x, y, short_name);
obJeot[next_objeot]. point. objeot_type := obj_type;
object[next_object]. point. x := x;
obj ect[next_object], point, y := y;
objeot[next_object].name := name;
objeet[next_object], diagram := soreen_num;
object[next_object].id := next_objeot;
gotoxy(1,21|); writelnC ':80); writelnC ':80);
{procedures and functions are only specified

for packages, not subprograms}
spec_entry;
next_object := succ(next_object);

end; { Read_object }

{ }

{ Creates or accesses the screen on which the
selected object is decomposed }

procedure Zoom_in;

var
found : boolean;
out_objeot : char;
index : integer;
new_diagram : boolean;

begin
Select(x, y, found, out_object, index);
if found then
with object[index] do
begin
new_diagram := false;
if child_diag = then
begin

new_diagram := true;
child_diag := next_diagram;
next_diagram := succ(next_diagram)

;

end;
screen_num := child_diag;
New_screen(name, screen_num);
if new_diagram then
begin

113

gotoxy(3,24);

writeln('Place cursor at location for '.name,
' and press h')

;

repeat
read(Kbd, Ch);

Move_cursor;
until Ch = 'h'j

Draw_object(point.objeet_type, x, y)

;

eblld_pt.object_type := point. object_type;
child_pt.x := x;

child_pt. y := y;
gotoxy(1,2t); writelnC ':80);

end;

if diagram = then
diagram := soreen_num;

Draw_diagram(child_diag, name);
end
else begin

gotoxy(3,21); writeln('Object not found');
repeat until keypressed;
gotoxy(1,2i|); writelnC ':80);

end;
end; { Zoom_in }

{ }

{ Draws the diagram on which the selected
object was 1st drawn }

procedure Zoom_out;

var
found : boolean;
out_object : char;
index : integer;
new_diagram : boolean;

begin
Select(x, y, found, out_objeot, index);
if found then

if object [index], diagram <> then
begin

soreen_num := object [index], diagram;
New_screen(object [index], name, object [index], diagram)

;

Draw_diagran(obj eot[index] .diagram, obj ect[index] . name)

;

end
else begin

gotoxy(3,24);
writeln(object[index].name, ' has no parent');
repeat until keypressed;
gotoxyCl,2t); writelnC ':80);

end
else begin

gotoxy(3,24); writeln('Object not found');

in

repeat until keypressed;
gotoxy(1,2i|); wrltelnC ':80);

end;
end; { Zoom_out }

program gtgalsgraph;

{$1 typedef. ays} {these files must be}
t$I graphix. sys} {included and in this order}
{$1 kernel, sys}

{$1 windows, sys}

{$1 gtgals.def}

Ul gtgalsl.pas}

{$1 gtgals2.pas}
var
heaptop : "integer;

{ ,

{ Builds the Ada language specification from
the data in the object array for the selected object. }

procedure Gen_Ada(index : integer; var head : spec_ptr);

const

gen_sub : string[26] = ' procedure DUMMY is new ';

gen_pkg : string[21»] = ' package DUMMY is new ';

var
count, i, j, k : integer;
current_line : spec_ptr;
spec_line : spec_ptr;
build_line : output_line;
gen_line : arrayi 1. .max_aceesaes] of output_line;

procedure build_commentsCin_ptr : comment_ptr);

var next : comment_ptr

;

begin
next := in_ptr;
repeat

spee_line",.line := next*. line;
New(spec_line);
spec_line".next := nil;
current_iine".next := spec_line;
current_line := spee_line;
next := next". next;

until next nil;
end; { build comments }

115

procedure build_parms(index, i : Integer);

var j : integer;
count : integer;

begin
count la 0;

with object [index] do

begin
for j := 1 to max_inputs do

if proc[i]. input [J], name <> " then
begin

count := count + 1

;

if count = 1 then build_line := build_line + '('

else begin
build_line := build_line +'; •;

spee_line",.line := build_line;
New(spec_iine);
spec_line".next := nil;

current_line",.next := spec_line;
current_line := spec_line;
build_line := ' •;

end;
build_line := build_line + proc[i]. input [j] .name;
build_line := build_line +' : in •

;

build_line := build_line + proc[i], input [j].in_type;
end;

for j := 1 to max_outputs do

if proc[i], out put [J], name <> " then
begin

count is count + 1

;

if count = 1 then build_line := build_llne + ('
else begin
build_llne := build_line +'; •;

spec_line",.line := build_line;
New(spec_line);
spec_line",.next := nil;
current_line"

!

.next := spec_line;
current_line := spec_line;
build_line := •;

end;
build_line := build_line + proc[i].output[j] .name;
build_line := build_line +' : out ';

build_line := build_line + proc[i].output[j].out_type;
end;

for J :z 1 to max_inouts do
if proc[i].inout[j].name <> " then
begin

count := count + 1

;

116

if count = 1 then build_line := builcLline + '('

else begin
buila_line := build_line +'; ';

spec_line".line : = build_line;
New(speo_line);
spec_line",.next : = nil;
eurrent_line*.next := 3peo_line;
ourrent_line := speo_line;
buila_line := ' <;

end;

build_line := build_line + proe[i].inout[j] .name;
build_line := build_line +' : in out ';

build_line := build_line + proo[i].inout[j] .inout_type;
end;

if (proc[i].proq_type <> 'f') then
if count > then build_line := build_line + ');'
el3e build_line := build_line +'; •

else begin
if count > then build_line := build_line + <)<;

spec_line"
]

.line := build_line;
New(spec_line);
speo_line'

N

,.next := nil;
current_line".next := speo_line;
ourrent_line := spec_line;
build_line := ' t;

build_line := build_line +• return ';

build_line := build_line + proc[i].f_returns;
build_line := build_line + •;';

end;
speo_line*.line := build_line;
New(spec_iine);
spec_line".next := nil;
current_line",.next := spec_line;
current_Hne := spec_line;

end; { with object [index] }

end; { build_parms)

begin
New(spec_line);
speo_line".next := nil;
head := spec_line;
current_line := spec_line;
build_line := 'with ';

with object [index] do
begin

count := 0;

j := 1;

if comment <> nil then build_eoniments(comment);
for 1 it 1 to max_accesses do

117

If aooes3[i]. index <> then { valid access)

begin
case obj ect[access[i]. index]. point, object_type of

'p' , 's' : begin { build with clause }

count I* count + 1

;

if count > 1 then
begin

build_line := build_line + ', ';

speq_line".line := build_line;
New(spec_line);
spec_line",.next := nil;
eurrent_line*

;
.next := spec_line;

current_line := spec_line;
build_line := ' ';

end;
build_line := build_li»s +

object[access[i] . index] .name;
end;

'g' : begin { build package instantiations }

gen_line[j] := gen_pkg;
gen_line[j] := gen_line[j] +

obj ect[access[i]. index], name;

gen_line[j] := gen_line[J] + ';';

J := J + 1;

end;
'h' : begin {build subprogram instantiations)

gen_line[j] := gen_sub;
gen_line[j] := gen_line[j] +

object [a ccess[i]. index], name;
gen_llne[j] := gen_line[j] + ';';

j := j + 1;

end;
end; { case }

end; { for accesses }

if length(build_line) > 5 then
begin (link "with" clause }

build_line := build_line + ';•;

3pec_line".line := build_line;
New(spec_line);
spec_line".next := nil;
current_line*.next := spec_line;
current_line := spec_line;

end;

build_line := ";
case point, obj ect_type of { build declaration line }

'p' : begin
bulld_line := 'package ';

build_line := build_line + name;
build_line := build_line + • is';

spec_llne",.line := build_line;
New(spec_line);

118

spec_line".next := nil;
current_line".next := 3pec_line;
ourrent_line := speo_line;

end;
's' : begin

bulld_Hne := 'procedure ';

build_llne := build_line + name;
build_parms(index, 1);
New(spec_line);
spee_Hne*.next := nil;
current_line".next := spec_line;
ourrent_line := speo_line;

end;
'g' : begin

spec_llne*,.line := 'generic ';

New(spec_line);
spec_line".next := nil;
current_line*.next := 3pec_line;
current_llne := spec_line;
build_line := 'package ';

build_line := build_line + name;
build_line := build_line + ' is';
apec_line".line := build_line;
New(spec_iine);
spec.line'.next : = nil;
eurrent_line".next := spec_line;
current_line : = spec_line;

end;
'h' : begin

spec_line'
>

..line := 'generic ';

New(spec_iine);
spec_line". next := nil;
current_line*'

1 .next := spec_line;
current_line := spec_line;
build_line := 'procedure ';

build_line := build_line + name;
bulld_parms(index, 1);
New(spec_line);
spec_line".next := nil;
current_line'

,

1
.next := spec_line;

ourrent_line := spec_line;
end;

end; { case } { end build declaration }

build_line :z ";
for i := 1 to j - 1 do
begin

{ link generic instantiations)

spec_line".line := gen_line[i];
New(speq^line);
apec.line'.next := nil;
current_line*.next := ape c_line;
current_line :z spee_line;

119

end;

if (point. object_type = 'p') or
(point. objeot_type = 'g') then

for i ;= 1 to max_proeedures do
if proc[i].name <> " then
begin { valid procedure }

if proe[i]. comment <> nil then
build_coinments(proo[i] . comment)

;

if proo[i].proc_type = 'p' then
build_line := ' procedure '

else build_line := ' function ';

build_line := build_line + proc[i].name;
bull d_parms(index, i)

;

end; { if valid procedure }

if (point. object,type = 'p*) or
(point, object.,type = 'g') then

begin
build_line := 'end '

;

build_line := build_line + name;
build_line := build_line + ';*;

spec_line*,.line := build_line;
end;

spec_line".next := nil;

end; { with object }

end; (procedure Gen_Ada }

{ ,

(Brings up the viewing window and cals Gen_ada
for the selected object }

procedure View_text;

const col = 10;

var
current : spec_ptr;
found : boolean;
in_object : char;
index, loop : integer;
line_no : integer;
head : spec_ptr;
more : char;

begin
line_no := 7;
select (x, y, found, in_obj ect, index);
if found then
begin
Gen_ada(index, head);
Move_oursor_out

;

120

StoreWindowCD;
SelectWindow(H);
DefineHeader (4 , obj eot [index] . name)

;

SetBackground(O);
SetHeaderOnj
DrawBorder;
gotoxy(ool, line_no);
current := head;
repeat
if line_no > 19 then
begin
writeln('press escape key for more data 1

);

repeat
read(Kbd, more);

until ord(more) a 27;
more := ' ';

for loop := 7 to 20 do
begin

gotoxy(col, loop);

writelnC ':60);
end;
line_no := 7;

gotoxyCcol, line_no);
end; { if information fills window }

wri teln(current", line)

;

line_no := line_no + 1;

gotoxy(col, line_no);

current := current". next

;

until current = nil

;

go toxy(10,24);
writeln('Press any key to return to access graph');
repeat until keypressed;
gotoxy(1,24); writelnC ':80);
more := ' ';

ClearScreen;
FestoreWindow(1,0,0);
Move_cursor_in;

end (if object found }

else begin
gotoxy(3,24);
writeln('Object not found.',

' Press any key to continue');
repeat until keypressed;
gotoxy(1,24); writelnC ':80);

end;
end; { view text }

{)

t Allows editing a selected components specification }

procedure Edit;

const

121

title_ool = 10;

var
command : char;
comment : comment_ptr;
exit : boolean;
found : boolean;
name_change : boolean;
out_object : char;
i, j, index : integer;
new_diagrara : boolean;
line_no : integer;

procedure clear_window;
var i : integer;
begin

for i := 10 to 20 do
begin

gotoxy(title_col, i)

;

writelnf ':60);

line_no : = 10 J

end;
end; { clear window }

procedure edit_eomments(v_r in_ptr : comment_ptr)

;

var comment : comment_ptr

;

cur_comment : comment_ptr

;

in_corament : string[60];
prev_comment : comment_ptr;

begin
cur_comment := in_ptr;
prev_comment : = in_ptr;
repeat

gotoxy(title_col, line_no);
if in_ptr = nil then
writef-- ?•)

else
write(cur_comment*.line, ' ?')j

repeat
read(Kbd, command);

until (command = 'm') or (command = 'n') or
(command = 'a') or (command = 'e');

writelnC ', command);
1 ine_.no : = line_.no + 1 ;

if (command = 'm') and (in_ptr <> nil) then
begin
in_comment := ";
gotoxy(title_col, line_no);
writef— »)}

122

readl n(in_comment) j

line_no := line_no + 1;

if ln_comment = '
' then

prev_oomment". next := eur_comment'' . next
else

cur_oomment" . line := '— ' + in_comment

;

end; { if command = 'm' }

if command = 'e' then exit := true;
if command = 'a' then
begin

if in_ptr <> nil then
while cur_comment*. next <> nil do

cur_comment := cur_comment", .next

;

repeat
in_comment := ";
gotoxy(tltle_col, line_no);
write('--•);

readl n(in_comment);
line_no := line_no + 1;

if in_comment <> ' then
begin

N ew (comment)

;

comment" . line := '--' + in_comment;
comment* .next : = nil

;

if in_ptr = nil then
begin
in_ptr := comment;
cur_comment := comment;

end
else begin

cur_comment"..next := comment;
cur_comment := comment;

end;
end;

until in_comment = "

;

end; (if command = 'a' for add }

prev_comment := cur_comment;
cur_comment := cur_comment*.next;

until (exit) or (cur_comment = nil);
end; { edit_oomment)

begin
name_change := false;
exit := false;
line_no := 10;

Select(x, y, found, out_object, index);
if found then
with object[index] do
begin

Mov e_cur sor_out

;

123

StoreWindowO);
SeleotWorld(lt);

SelectWindow(t);
SetBackground(O);
DefineHeader(H,' COMPONENT EDITOR');
SetHeaderOn;
DrawBorder;
gotoxy(10,7);
writeln('m to modify an item, n to go to next item.',

' e to exit.*);
gotoxy(10,8);
wri.teln('Enter m, n, or e after each ? prompt.');
gotoxy(10,9);
wrlteln('Enter a after —"comment. . ." ?',

' to ADD a comment. ')

;

gotoxy(title_col, line_no);

wrlte('OBJECT NAME : •);

write(name, ' ?');
repeat

read(Kbd, command);
until (command 'm') or

(command = 'n') or (command = 'e');

writelnC '.command);
line_no : = line_no + 1;

if command <> 'e' then
begin

if command = 'm' then
begin

name_change := true;

gotoxy(title_ool, line_no);
write('Enter new OBJECT NAME : ');

name := ";
readln(name);
line_no := line_no + 1;

end;
e di t_oomment s (comment)

;

for i := 1 to max_procedures do

if not exit then
with proc[i] do
begin

clear_window;
if (point. object_type = 'p') or

(point. object_type = 'g') then
begin

gotoxy(title_col, line_no);
write('Procedure or Function NAME : ');

write(name, ' ?');
repeat

read(Kbd, command);
until (command = 'm') or

(command = 'n') or (command = 'e');

124

writelnC ' , command)

;

line_no := line_no + 1;

if line_no > 20 then olear_window

;

if command = 'e' then exit := true;

if command = 'm' then
begin

gotoxy(title_col, line_no)j

write('Enter new NAME : ');

name := ";
readln(name)

;

1 ine_no : = line_no + 1

;

if line_no > 20 then cl ear_window

;

end;
e di t_comment s (comment)

;

end; (if package or generic package }

gotoxy(title_col, line_no);
if not exit then
begin
gotoxy(title_ool, line_no);
write('(p)rocedure, (f)unction : ');

write(proc_type, ' ?');
repeat

readfKbd, command);
until (command = 'm') or

(command 'n') or (command = 'e');

writelnC '.command);
1 ine_no : line_no + 1

;

if line_no > 20 then cl ear_window

;

if command = 'e' then exit := true;

if command = 'm' then
begin
gotoxy(tltle_ool, line_no);
write('Enter new choice (p)rocedure or',

• (fJunction : ');

proc_type : = ' '

;

readln(proc_type);
line_no := line_no + 1;

if line_no > 20 then cl ear_window

;

end;

if (proc_type = 'f') and (not exit) then
begin

gotoxy(title_col, line_no);
write('Function returna TYPE : ');

write(f_returns, ' ?');
repeat

read(Kbd, command);
until (command = 'm') or

(command = 'n') or (command = 'e');

writelnC ', command);
1 ine_no : = line_no + 1

;

if line_no > 20 then cl ear_window

;

125

if command = 'e' then exit := true;
if command = 'm' then
begin
gotoxy(title_eol, line_no);
wrtte('Function will return what TYPE : ');

f_returns := ";
readln(f_returns)

;

line_no := line_no + 1;

if line_no > 20 then cl ear_window

;

end;
end; { if function }

if not exit then
for J := 1 to max_inputs do

if not exit then
with input [j] do
begin

gotoxy(title_col, line_no);
write('INPUT NAME : ');

wrlte(name, ' ?');

repeat
read(Kbd, command);

until (command = 'm') or
(command = 'n') or (command = 'e');

writeln(' ',oommand);
1 ine_no : line_no + 1

;

if line_no > 20 then cl ear_window

;

if command = 'e' then exit := true;
if command = 'm' then
begin

gotoxy(title_ool, line_no);
wrlte('Enter new IN POT NAME : ');

name : = "
|

readln(name);
line_no : = line_no + 1;

if line_no > 20 then clear_window;
end;
if not exit then
begin

gotoxy(title_ool, line_no);
writet'INFOT TYPE : ');

write(in_type, ' ?');
repeat

read(Kbd, command);
until (command = 'm') or

(command = 'n') or (command = 'e');

writelnC ', command);
1 ine_no : = line_no + 1

;

if line_no > 20 then cl ear_window

;

if command = 'e' then exit := true;
if command 'm' then
begin

126

gotoxy(title_ool, line_no);
write('Enter new INFOT TYPE : ');

in_type := '•;

readln(in_type);
line_no := line_no + 1;

if line_no > 20 then ol ear_window

;

end;
end; { if not exit)

end; { for inputs }

if (not exit) and (proc_type <> 'f') then
for j := 1 to max_outputs do

if not exit then
with output[J] do

begin
gotoxy(title_ool, line_no);
write ('OUTPUT NAME : ');

write(name, ' ?');
repeat

read(Kbd, command);
until (command = 'm') or

(command = 'n') or (command = 'e')!

writeln(' ', command);
1 ine_no : = line_no + 1

;

if line_no > 20 then cl ear_window

;

if command = 'e' then exit := true;
if command = 'm' then
begin

gotoxy(title_col, line_no);
write('Enter new 00TP0T NAME : ');

name : = '
'

;

readln(name);
llne_no := line_no + 1;

if line_no > 20 then cl ear_window

;

end;
if not exit then
begin

gotoxy(title_col, llne_no);
write('00TP0T TYPE : ');

write(out_type, ' ?');
repeat

read(Kbd, command);
until (command = 'm') or

(command = 'n') or (command = 'e');

writelnC '.command);
line_no := line_no + 1;

if line_no > 20 then cl ear_window

;

if command 'e' then exit := true;
if command = 'm' then
begin
gotoxy(title_col, line_no);
write('Enter new OUTPUT TYPE : ');

127

out_type := ";
readln(out_type)

;

line_.no := line_.no + 1;

if line_.no > 20 then ol ear_window

;

end;
end; (if not exit }

end; (for outputs }

if (not exit) and (proq_type <> T) then

for j := 1 to max_lnout- do

if not exit then

with inout[J] do

begin
gotoxy(title_ool, line_.no);

write('IN OUT NAME : ');

write(name, ' ?');

repeat
read(Kbd, command);

until (command = 'm') or

(command = 'n*) or (command = 'e')i

writelnC ' , command);

line_.no := line_.no + 1;

if line_.no > 20 then cl ear_window

;

if command = 'e' then exit := true;

if command = 'm' then

begin
gotoxy(title_ool, line_.no)

;

write('Enter new IN COT NAME : ');

name : = "

;

readln(name);
1 ine_.no : = line_.no + 1

;

if line_.no > 20 then clear_wlndow;

end;
if not exit then

begin
gotoxy(title_eol, line_.no)

;

writeCBJ COT TYPE : ');

write(inout_type, ' ?');

repeat
read(Kbd, command);

until (command = 'm*) or

(command = 'n') or (command = 'e')i

writelnC '.command);

line_.no := line_.no + 1;

if line_.no > 20 then cl ear_window

;

if command 'e' then exit := true;

if command = 'm 1 then

begin
gotoxy(title_ool, line_no);

write('Enter new IN OUT TYPE : ');

inout_type := ";
readlnt inout_ty pe)

;

128

line_no := line_no + 1;

if line_no > 20 then d ear_window

;

end;
end; { if not exit)

end; (for inouts)

end; { if not exit after procedure name change }

if (point. object_type = 's') or
(point. object_type = 'h') then
exit := true;

end; { if not exit from procedures)

end; { if initial command not exit }

ClearScreen;
RestoreWindow(1,0,0);
Move_cursor_in;
if name_change then Zoom_out

;

{ to redraw screen with new names if any }

end { if object found }

else begin
gotoxy(3,2«);
writeln('Object not found. Press any key to continue');
repeat until keypressed;
gotoxy(1,24); writelnC >:80);

end;
end; { edit procedure }

{ }

{ Reads a display file and puts the information
into the data structure for use by GTGALS }

procedure Read_display(filename : filenames);

var
in_file : text;

code : char;

obj_ind, proc_lnd, aoeess_ind,

arrow_ind, pt_ind : integer;
i, j : integer;

procedure read_comments(var in_ptr : comment_ptr)

;

var current_comment : comment_ptr;
comment : comment_ptr

;

begin
new(in_ptr);
current_comment := in_ptr;
readl n(in_fil e, current_comment" . line)

;

current_comment". next := nil;
read(in_file, code);
while code = 'c' do

begin
new(comment);

129

current_comment",.next := comment;
current_comment := comment;
readln(in_fil e, current_comment" . line)

;

eurrent_comment",.next := nil;
read(in_file, code);

end;
end; (if comment }

begin
asslgn(in_file, filename);
reset(in_file);
read(in_file, code);

while (code 'p') or
(code = 's') or
(code = 'g') or
(code = 'h') do (read in objects)

begin
read(in_file, obj_ind);
with object[obj_ind] do

begin
point. objeot_type := code;

id := obj_ind;
readln(in_file, point, x, point, y,

child_pt.x, child_pt.y);
readl n(in_f11 e, diagram, child_dlag);
readl n(in_file, name);

if (diagram next_diagram) then
next_diagram := diagram + 1;

proc_ind := 1

;

read(in_file, code);

if code = 'c' then read_comment3(comment);
while code = '»' do (read in procedures)

begin
readl n(in_flie, proc[proc_ind].proc_type,

proc[proc_ind] . name)

;

if proc[proc_ind].proc_type = 'f then
readl n(in_file, proc[proc_ind].f_''eturns);

Left_justify(proc[proc_ind] .name);

read(in_file, code);
if code = 'c' then

read_comments(proc[proc_ind] . comment)

;

J := II

while code = '? ' do { read inputs }

begin
readln(in_file, proc[proc_ind]. input [j] .name);
readl n(in_flie, proc[proe_ind]. input [j] .in_type);
read(in_file, code);

J := j + 1;

end;

J := 1;

130

while code '!' do { read outputs }

begin
readln(in_file, proc[proc_ind]. out put [J], name);
readln(in_file, proc[proo_ind]. out put [j] .out_type);
read(in_file, oode);

J ! i+ II

end;

J := 11

while oode = '+' do (read lnouts)

begin
readln(in_file, proo[proq_ind].inout[j] .name);
readln(in_file, proo[proc_ind] . inout[j] .inout_ty pe)

;

read(in_file, oode);

J := j + 11

end;

proe_ind := suoe(proc_ind);
end; { while procedures)

aooess_ind := 1;

while oode = 'S' do { read in access parameters)

begin
readln(in_file, aceess[aoeess_ind], index);
read(in_file, code);
aocess_ind := succ(access_ind);

end; { while access parameters }

end; { with object }

end; (while objects)

next_obj ect : = obj_ind + 1

;

arrow_ind := 1

;

while not E0F(in_file) do { read in arrows }

with arrow[arrow_ind] do
begin

pt_ind : = 1

;

while (oode = 'a') or (code = 'e') do
begin

if (oode = 'e') then next_arrow := suoo(next_arrow);
point[pt_ind].objeot_type := code;
readln(in_file, point[pt_ind].x, point[pt_ind].y,

diagram)

;

read(in_file, oode);
pt_ind := suoc(pt_ind);

end;
readln(in_file, from_index, to_index);
arrow_ind := succ(arrow_ind);
if not E0F(in_file) then read(in_file, oode);

end; { while arrows)

next_arrow := arrow_ind;

131

gotoxy(1,24); wrltelnf ':80);

gotoxy(3,24); writeln(temp_file, ' retrieved 1
);

close(in_file);
end; t read_display }

(}

t Writes out the data from the data structures
to a uniquely formatted .gpb display file }

procedure Write_di splay;

var
filename : filenames;
i, j : integer;
index : integer;
display_file : text;
template_file : text;
open_paren : boolean;
pad_name, pad_type : integer;

procedure write_comments(in_ptr : comment_ptr)

;

var next : comment_ptr;

begin
next := in_ptr;
repeat
writeln(display_file, 'c' .next". line);
next := next*. next;

until next = nil

;

end;

begin
gotoxy(3,24);
writeC Enter file name to save display file',

' (or return) : ')!

temp_file := ";
readln(temp_file);
if temp_file <> " then
begin { write display file to disk J

filename := temp_file + '.gph';
assign(display_file, filename);
rewrite(display_file);

for i := 1 to next_object do
with object[i] do
if id <> then
begin
writeln(display_file, point. object_type :1,' ',

id:3,' ', point. x:6:1,' ' .point. y:6: 1
,'

child_pt.x:6:1,' ', ohild_pt.y:6: 1);
wiiteln(display_file, diagram:2,' ',

132

child_diag:2);
writeln(display_file, name);
if comment <> nil then write_comments(comment);
for index := 1 to max_proeedures do

if pro o[index]. name <> " then
begin
writeln(dlsplay_file, '*',proo[index]. proc_type,

proo[index] . name)

;

if proo[index]. proo_type = ' f then
writeln(dlsplay_file, proo[index], f_returns);

if proc[index]. comment <> nil then
write_commenta(proc[index] . comment)

;

for j := 1 to max_inputs do

if proc[index], input [j].name <> " then
begin
writeln(dlaplay_file, >?',

proc[index], input [j] .name);
w riteln(displ ay_flie,

proc[index]. input [j] . in_type);
end;
for j := 1 to max_outputs do

if proc[index]. output [j]. name <> " then
begin
writeln(display_file, »|

',

proc[index], out put [j] .name);
writeln(di3play_file,

proc[index] . out put [j] . out_ty pe)

;

end;
for j := 1 to max_inouts do

if proe[index], inout[j], name <> " then
begin
wrlteln(di3play_file, '+',

proo[index], inout[j] .name);
writeln(display_file,

proc[index] . inout [j] . inout_type)

;

end;
end;
for index := 1 to max_aooesses do

if access[index]. index <> then
writeln(display_file, '§ ',acoess[index], index);

end; { with and for }

for i := 1 to next_arrow do

with arrow[i] do
begin
for index := 1 to max_arrow_points do

if point [index], object_type <> ' ' then
writeln(di3play_file,

point [index], object_type: 1,
1

', point[index].x:6: 1,
' ', point[index].y:6: 1,
1

' , diagram);

133

if from_index <> then
wrlteln(display_file, from_index:l(, to_index : t)

;

end; { with and for }

gotoxy(1,24); writelnC ':80);

gotoxy(3,24);
writelnC Display file ' , temp_file, ' saved');
ol ose (di spl ay_f11 e)

;

Delay(600);
end; { if file name }

end; { Write_display }

(}

t Uses Gen_Ada for each object in the data
structure and writes it out to a .ada file }

procedure Gen_specs;

var
current : spec_ptr;
head : spec_ptr;
i : integer;
outfile : text;
response : char;

begin
gotoxy(3,24);
write(' Enter y to create Ada language specification',

' (or return) : ');

response := ' ';

readl n(response)

;

if response 'y' then
begin
if temp_file = " then
begin

gotoxy(1,24); writelnC ':80);
gotoxy(3,24);
write('Enter name of specification file : ');

readln(temp_file)

;

end;
temp_file := temp_file + '.ada';
assign(outfile, temp_file);
rewrite(outflie)

;

for i := 1 to max_objects do

if objeot[i].id <> then
begin
Gen_ada(i, head);
current := head;
repeat
writeln(outf ile, current*. line);
current := current* . next

;

until current = nil

;

131

writeln(outfile);
end;
olose(outfile);
gotoxy(1,2l|); writelnC' ':80);

gotoxy(10,21);
writelnCAda language specification written to file ',

temp_file);
delay(900);
gotoxy(1,2i|); writelnC ':80);

ClearScreen;
end; { if apecif ioation file requested }

end; { generating specification file J

{ }

begin { main program }

Init_structure;
InitGraphic; (initialize the graphics system}
x := 500;

y := 500;
next_arrow := 1;

next_diagram := 2;

next_object := 1;

screen_num := 1j

DefineWorld(1,0, 1000, 1000,0);
(give it a world coordinate system}

DefineWindow(2,trunc(XMaxGlb/2),trunc(YMaxGlb/2),
trunc(XMaxGlb/1. 995), trunc(YMarG lb/1. 995));

DefineHeader(2,'THIS IS THE CURSOR'); (give it a header}
DefineWorld(2, 0,1 000, 1000,0);

{give it a world coordinate system}
DefineWindow(3,trunc(XMaxGlb/10),trunc(YMaxGlb/1.8),

trunc(XmaxGlb»9.3/10),trune(YMaxGlb»9/10));
DefineWindow(4,trunc(XMaxGlb/10),trunc(YMaxGlb/6),

trunc(XMaxGlb»9.3/10) , trune(YMaxGlb«5/6))

;

DefineWorld(4, 0,80, 25,0);

temp_file := ";
write('Enter name of old specification or',

' return for new specification :');

readln(temp_file);
if temp_file <> " then
begin
in_file_name := temp_file + '.gph';
Read_displ ay (in_fil e_name)

;

long_file_name := temp_file;
New_screen(temp_file, 1)

;

Draw_diagram(1,long_file_name);
end
else New_screen('GIGALS' ,1);

135

repeat

read(Kbd,Ch);
case ord(Ch) of

97 : Read_arrow;
103 : begin

(read the keystroke}

112
115
118

122

{ 'a' for arrow }

t 'gp' for generic package)

('gs' for generic subprogram }

read(Kbd, Ch)

;

if Ch = 'p' then Read_object('g')

;

if Ch = <s< then Read_object('h');
end;

Head_object('p'); t 'p' for package)

Read_object('s'); (for subprogram }

100

101

104

72,

75,

77,
80

end;
until Ch = ";
Write_dl splay;
Gen_specs;
LeaveG raphic;
end.

View_text; {

begin
read(Kbd, Ch);

case Ch of
' i 1

: Zoom_in;
'o 1

: Zoom_out;
end; { case }

end; { Zoom }

Delete; { 'd'

Edit; { 'e'

Help; { 'h'

for view }

for delete }

for edit)

for help)

Move_cursor;

{ char exits program}

(leave the graphics system)

A GRAPHIC TOOL FOR GENERATING
ADA LANGUAGE SPECIFICATIONS

by

DONALD E. BODLE, JR.

B.S., Kansas State University, 1984

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

A Graphic Tool for Generating Ada Language Specifications

by Don Bodle

Abstract

Methods for specifying software systems have gained

increasing attention as the size and complexity of computer

applications has grown. The purpose of this paper is to

present the current state of software specification

techniques and to propose improvements in one component of

these techniques, the user interface.

The use of automated tools for specification is described,

with particular emphasis on their user interfaces. Many

features of these tools are highlighted. From this study, a

proposal for a graphic interface for software system

specification is developed, describing the desirable

features of such an interface. Finally, a prototype of the

proposal is examined.

