A SPECTROSCOPIC STUDY OE THE SELF ASSOCIATION OF SOME ALKYL PHENOLS
by

ROBERT ALLEN ADAMS

B. A. Kansas State Teachers College, 1965

A MASTER ${ }^{\text {'S }}$ S THESIS
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Chemistry

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1969

Approved by:

TABLE OF CONTENTS

LIST OF TABLES iii
LIST OF FIGURES v
INTRODUCTION 1
EXPERIMENTAL 8
a) Materials 8
b) Solutions 8
c) Spectrophotometers 9
d) Temperature Control. 10
e) Density Measurements. 14
f) Recording Spectra 16
RESULTS AND DISCUSSION 24
a) Stoichiometry Determinations, 24
b) Determination of the Absorption Coefficients 38
c) Masschelein Calculation 47
d) Thermodynamics 54
e) Peak Intensity Ratios 71
f) Conclusions 73
APPENDIX A 74
ACKNOWLEDGMENTS* 77
LITERATURE CITED 78
VITA 79

LIST OF TABLES

I. Temperature Control Setting for the Fundamental Spectra 13
II. Density of Solutions at 25° Celsius 15
III. Absorbances per cm Cell Length for Fundamental Transitions. 22
IV. Absorbances per cm Cell Length for Overtone Transitions 23
V. Ratio of $A_{f} / A_{\bar{o}}^{n}$ for 2,6-diisopropylphenol 26
VI. Ratio of $A_{f} / A \frac{n}{0}$ for 2 -methyl-6-tert-butylphenol 27
VII. Ratio of $A_{f} / A \frac{n}{o}$ for 2-isopropylphenol 28
VIII. Ratio of $A_{f} / A_{o}^{\frac{n}{n}}$ for 2-tert-butylphenol 30
IX. Average Values, Probable Errors in Average Values and Percent Probable Errors in Average Values of A_{f} / A_{0}^{n} for 2-methyl-6- tert-butylphenol 32
X. Average Values, Probable Errors in Average Values and Percent Probable Errors in Average Values of $A_{f} / A \frac{n}{0}$ for 2,6-diisopropyl- phenol 33
XI. Average Values, Probable Errors in Average Values and Percent Probable Errors in Average Values of A_{f} / A_{o}^{n} for 2-isopropyl- phenol 34
XII. Average Values, Probable Errors in Average Values and Percent Probable Error in Average Values of $A_{f} / A_{o}^{\text {L }}$ for 2-tert- butylphenol 35
XIII. Least Square Treatment of $\operatorname{Ln} A_{f}$ vs. $\operatorname{Ln} A_{o}$ 36
XIV. Monomer Absorption Coefficient (cm^{-1} moles ${ }^{-1}$ liters) from $7100 \mathrm{~cm}^{-1}$ Band 48
XV. ($\mathrm{R} \times 10^{3}$) Change in Absorption Coefficient 48
XVI. Absorption Coefficient of the Complex ($\mathrm{cm}^{-1} \mathrm{moles}^{-1}$ liters) from $3500 \mathrm{~cm}^{-1}$ Band 49
XVII. Results for \underline{n} from the Masschelein Plots 50
XVIII. $\triangle H$ Values (k cal/mole) from Linear Least Squares Slopes of Quantities Proportional to Ln K vs. $1 / \mathrm{T}$ ธ6
XIX. $-\Delta H$ Values (kcal/mole) from the Linear Least Squares Slopes of Quantities Proportional to Ln K vs. $1 / \mathrm{T}$ for 2-isopropylphenol 68
$X X$. Thermodynamics from Plots of $\left[\operatorname{Ln}\left(A_{f} / A_{0}^{2}\right)+\operatorname{Ln}\left(a_{m}^{2} / a_{f}\right)\right]$ vs. $1 / T 69$ XXI. Thermodynamics from Plots of $\left[\operatorname{Ln}\left(A_{f} / A_{0}^{2}\right)+\operatorname{Ln}\left(a_{\text {m }}^{2} / a_{f}\right)\right]$ vs... .70 XXIX. Ratio of Small Band Absorbance to the Large Band
Absorbance per cm Cell Length .. 72

LIST OF FIGURES

Figure 1. Fundamental Spectra A: 2-tert-butylphenol B: 2-isopropylphenol 18
Figure 2. Fundamental Spectra A: 2,6-diisopropylphenol
B: 2-methyl-6-tert-butylphenol 19
Figure 3. Overtone Spectra
A: 2-tert-butylphenol
B: 2-isopropylphenol 20
Figure 4. Overtone Spectra A: 2,6-diisopropylphenol
B: 2-methyl-6-tert-butylphenol 21
Figure 5. Plot of Absorbance of $7100 \mathrm{~cm}^{-1}$ band vs. Concentration for 2,6-diisopropylphenol 40
Figure 6. Plot of Absorbance of $7100 \mathrm{~cm}^{-1}$ band vs. Concentration for 2-methyl-6-tert-butylphenol 42
Figure 7. Plot of Absorbance of $7100 \mathrm{~cm}^{-1}$ band vs. Concentration for 2-isopropylphenol. 44
Figure 8. Plot of Absorbance of $7100 \mathrm{~cm}^{-1}$ band vs. Concentration for 2-tert-butylphenol. 46
Figure 9. Plots to Obtain ΔH for 2,6-diisopropylphenol 54
Figure 10. Plots to Obtain ΔH for 2 -methy 1-6-tert-butylphenol 56
Figure 11. Plots to Obtain $\Delta \mathrm{H}$ from Band I for 2 -isopropy1phenol 58
Figure 12. Plots to Obtain $\Delta \mathrm{H}$ from Band II for 2-isopropylphenol. 60
Figure 13. Plots to Obtain $\Delta \mathrm{H}$ from Band I for 2-tert-butylphenol 62
Figure 14. Plots to Obtain ΔH from Band II for 2-tert-butylphenol 64

INTRODUCTION

The study of the hydrogen bond has been in the past and probably will be in the near future almost entirely an experimental effort since present theory, even at best, can give only qualitative information about the equilibrium processes. Since the association processes taking place considerably affect most physical properties many classical physical techniques have been used to study these processes. Some exampies are dielectric measurements, gas imperfections, cryoscopic and solubility investigations (1). The major difficulty with most classical physical measurements is that they give information associated with bulk or macroscopic changes in a material and not information associated directly with the molecular associations. Spectroscopic studies showed great promise for quantitative study of these equilibrium processes since the intensity variations of bands with temperature and concentration could be correlated with the equilibrium species of the association processes. In general the equilibrium process may be thought of as an acid (electron deficient hydrogen atom in a molecule) associated with a base (electron abundent portion of a molecule) or $A+: B \leftrightarrows A \cdots: B$. Self association as used here is defined as intermolecular association as opposed to intramolecular association. The association of alcohols and phenols takes place between the hydroxyl hydrogen of one alcohol molecule and the oxygen of another alcohol molecule. Consequently, the self association of alcohols can be realized in four ways:

1) linear dimer

ii) cyclic dimer
iii) linear polymer

iv) cyclic polymer

or any combination of these in equilibrium with monomer.
In the past it was generally believed that, if the concentrations were kept sufficiently low the alcohol would be present in monomerdimer equilibrium making the quantitative study easy since each species could be characterized from infrared spectra. The free OH stretching mode of alcohols and phenols occurs above $3600 \mathrm{~cm}^{-1}$. The band appearing in the infrared spectrum near $3500 \mathrm{~cm}^{-1}$ at low alcohol or phenol concerntration, being temperature dependent at constant concentration (intensity increases as temperature decreases) was assigned to the dimer. Fletcher and Heller (2) have recently questioned the assignment of the $3500 \mathrm{~cm}^{-1}$ band to dimers in alcohol systems. They cautioned against the a prior selection of a certain self association model and fitting the mathematical treatment to the selected equilibrium. The results of their work which was done on 1-octanol and 1-butanol in n-decane could be explained satisfactorily by monomer in equilibrium with linear and cyclic tetramers without the presence of dimers.

The assignment of the $3500 \mathrm{~cm}^{-1}$ band to dimer for the three alcohols methanol, t-butanol and di-t-butyl carbinol in carbon tetrachloride has been confirmed by Hammaker, et al. (3). The assignment of this band to
dimer for methanol in carbon tetrachloride has also been confirmed by Fletcher and Heller (4).

Prior to the appearance of the work of Fletcher and Heller (2) an investigation was carried out on 2-alkyl and 2,6-dialkylphenols using nuclear magnetic resonance spectroscopy employing a technique of date analysis which required the assumption of only monomer-dimer association (5). The investigators in this study had taken the appearance of the bonded absorption band near $3500 \mathrm{~cm}^{-1}$, whose shape was concentration independent over the concentration range used in the nuclear magnetic resonance experiments, as satisfactory evidence that only dimerization was occuring in these substituted phenol carbon tetrachloride systems (5).

At the onset of the present study it seemed mandatory to attempt to determine unequivocally the stoichiometry of association and to either confirm or deny the presence of dimers for the alkyl phenols in carbon tetrachloride solutions. The compounds selected for this study was 2-isop ropylphenol, 2-tert-butylpheno1, 2,6-diisopropylphenol and 2-methyl-6-tert-butylphenol. These were selected to give a variation in the sterical hindrance to hydrogen bond fornation. The method used was that of Hammaker et al. (3), which employs the ratio of the absorbance per cm . path length of the f.nfrared band at $3500 \mathrm{~cm}^{-1}\left(\mathrm{~A}_{\mathrm{f}}\right)$ to the absorbance per cm . path length of the first OH stretching overtone near $7100 \mathrm{~cm}^{-1}\left(\mathrm{~A}_{\mathrm{o}}\right)$ raised to the $\underline{n}^{\text {th }}$ power. The near infrared band near $7100 \mathrm{~cm}^{-1}$ has been shown to be a measure of the uncomplexed or free OH concentration in alcohol systems $(2,5)$. If A_{f} is taken as a measure of the complex concentration and A_{O} is taken as a measure of the monomer concentration, then A_{f} / A_{0} is proportional to the equilibrium constant for a monomer $¥$ n-mer equilibrium.

The \underline{n} giving the most constant value of this ratio over a range of concentrations at constant temperature is selected as the correct number of molecules combining to form the complex. Alternatively, if A_{f} / A_{o}^{n} is a constant over a concentration range at constant temperature a plot of $\operatorname{Ln} A_{f}$ vs. In A_{0} should take the form of $\operatorname{Ln} A_{f}=\operatorname{nLn} A_{0}+\operatorname{Ln}$ constant where n, the slope, is the number of molecules in the complex.

An investigation of the change in the absorption coefficient with temperature in concentration ranges where Beer's Law is obeyed for the near infrared absorption spectra (ranges where no perceivable association is taking place) was also desired. Prior to the present study, Swenson (6) had reported a decrease in the absorption coefficient of the water, methanol and ethanol free of fundamental with increasing temperature in carbon tetrachloride. His explanation was that as the temperature increased the vapor wolume above the solution became enriched in the volatile solute, thus decreasing the concentration of the solute and causing the absorbance to decrease. The phenols used in this study are not as volatile so this affect should not be as great. For standard cells Hammaker (7) has shown that this explanation may not be adaquate, even for the volatile solutes in Swenson's study, since the vapor volume is usually very small and does not contain enough solute to decrease the concentration to the extent necessary to show the changes reported (6).

The method of A. Ens and F. E. Murray (8) can also be used to

 determine the number of molecules combining to form the complex. This method is analogous to the Ln A_{f} vs. Ln A_{o} plots described above in that $\operatorname{Ln}\left(c-c_{1}\right)$ is plotted against $\operatorname{Ln} c_{1}$, where c is the total concentration and c_{1} is the monomer concentration. Here it is necessary to know the monomer absorptioncoefficient, a_{m}, in order to calculate $c_{1}=A_{0} / a_{m}$ from measured A_{0} values. It is seen that $\left(c-c_{1}\right)$ is proportional to the concentration of the complex. A possible source of error in this type of calculation is that often in sterically hindered alcohol systems the value of the monomer concentration is very nearly equal to the total concentration. The difference between total and monomer concentration especially for the lower concentrations of alcohols used in the study is small, which gives rise to large subtraction errors. Another possible source of error in this scalculation may result from the free $O H$ end group of a linear complex (seee structures i and iii on page 2) contributing to the free OH band absorbance and making the observed value larger than it would be iff onily free OH from alcohol monomers contributed to this Land. Therefare, the calculated concentration of alcohol monomers, $c_{1}=A_{0} / a_{m}$, would be larger than it should be and the difference between total concentration and the calculated monomer alcohol concentration will be too small thus giving a systematic error to the number of molecules in the complex determined from the slope of the $\operatorname{Ln}\left(c-c_{1}\right)$ vs. $\operatorname{In} c_{1}$ plot. The former error can be alleviated by using high enough concentration so that appreciable association will take place making a significant difference between the total concentration and the monomer concentration. However, then if the complex has a free end group the monomer concentration determined ifrom the free OH band may be in error due to the large concentration of complex. If one knows the stoichionetry of the association process then the end group contribution can be determined by using the technique of Masschelein (9). This method utilizes a plot of $\operatorname{Ln}\left(c-\alpha_{x} c\right)$ vs. $\operatorname{Ln}\left(\alpha_{x} c\right)$ where α_{x} is
equal to the ratio of the observed absorption coefficient of the $7100 \mathrm{~cm}^{-1}$ band to the monomer absorption coefficient of the $7100 \mathrm{~cm}^{-1}$ multiplied by x where x is the fraction of the free $O H$ band contributed by monomer. This plot will give decreasing slopes as x decreases. The value of x which gives the slope of the a priori selected or experimently determined number of molecules combined to form the complex is selected as the fraction of the $7100 \mathrm{~cm}^{-1}$ band intensity contributed by monomer.

If A_{f} / A_{0} is constant over a concentration range at a constant temperature, if the extent of association is low enough so that A_{0} has very little or no end group contribution, and if A_{f} is due to complexes of a single stoichiometry A_{f} / A_{0} is proportional to the equilibrium constant. The proportionality constant is a function of the absorption coefficients for both the fundamental and the overtone bands. If neither of the absorption coefficients are functions of temperature, a plot of $\operatorname{Ln}\left(A_{f} / A_{0}\right)$ vs. $1 / T$ gives a correct enthalpy of complex formation. However, since it is believed that the absorption coefficients change with temperature the $\operatorname{Ln}\left(A_{f} / A_{0}\right)$ term must be corrected to give the correct temperature dependence of $\operatorname{Ln} \mathrm{K}$.

The intercepts from the $\ln A_{f}$ vs. Ln A_{0} plots described above are also proportional to the equilibrium constant where the proportionality constant is again a function of the absorption coefficients. The derviation of the results is in Appendix A.

In this study the $\operatorname{Ln}\left(A_{f} / A_{0}^{2}\right)$ values were corrected for changes in absorption coefficients to give an equilibrium constant. It is seen in Appendix A that if the complex is a dimer, the concentration of complex and monomer can be represented by A_{f} / a_{f} and A_{D} / a_{m}, respectively, and
$\operatorname{Ln} K=\left[\operatorname{Ln}\left(A_{f} / A_{o}^{2}\right)+\operatorname{Ln}\left(a_{m}^{2} / a_{f}\right)\right]$ where a_{m} and a_{f} are absorption coefficients for the monomer at $7100 \mathrm{~cm}^{-1}$ and the species causing the $3500 \mathrm{~cm}^{-1}$. band, respectively. From this equilibriun constant and the enthalpy determined from plots of $\operatorname{Ln} \mathrm{K}$ vs. $1 / T$, the thermodynamics of these association processes was investigated.

EXPERIMENTAL

The experimental work consisted of preparing solutions and running their spectra at different temperatures in the fundamental and first overtone regions of the OH stretching vibration. From the fundamental OH stretching vibration the absorbance of the band for the bonded OH complex was obtained and from the first overtone the absorbance of the band for the free OH was obtained.

Materials

The substituted phenols (2-isopropy1, 2-tert-buty1, 2,6-diisopropyl and 2-methyl-6-tert-butylphenol) were obtained from Aldrich Chemical Company Inc. and were purified by vacuum distillation through a 30 cm . Vigreaux column collecting the second constant boiling portion. The pressure was held constant using a manostat for each between 16 and 22 torr where the pure phenols distilled over in the 100 to $120^{\circ} \mathrm{C}$ range. The purified phenols were then stored in a desiccator, with $\mathrm{P}_{2} \mathrm{O}_{5}$ as the dessicant, in screw cap bottles covered with aluminum foil since it was found that light caused the clear liquid to become yellow then dark brown over long periods of time. The carbon tetrach1oride was spectranalyzed grade obtained from Fisher Scientific Co.. It was dried by placing a filled beaker covered with a watch glass in a desiccator with $\mathrm{P}_{2} \mathrm{O}_{5}$ as the desiccant for at least twenty-four hours.

Solutions

All solutions were prepared in a custom built dry box which had been purged for approximately five minutes with oil pumped nitrogen, which had been passed through a drying train filled with Linde type 13 X molecular sieve prior to entering the dry box. After purging of the dry box
was completed, the atmosphere of the dry box was circulated for thirty minutes before the solutions were prepared. The nitrogen in the dry box was circulated with an Air Control Co. Inc. Hydrovoid System consisting of a circulating pump (Dis-pump model EF-EFC-EFA) and an anodized aluminum train containing Linde type 13 X molecular sieve.

The solutions were prepared by weighing both of the components in the dry box. The weighings were made on a Mettler H6 Digital Analytical Balance. The cells used for both spectral regions were Cary cylindrical type cells with near infrared quartz windows. The cells were filled in the dry box for the spectra taken in the infrared region and in a plastic glove bag purged with oil pumped nitrogen for the spectra taken in the near infrared region.

Spectrophotometers

The instruments used in this study were Perkin-Elmer 337 and Cary model 14 R recording spectrophotometers. The Perkin-Elmer 337 double beam spectrophotometer was used to study effects of temperature and concentration on the fundamental OH stretching vibrational spectra. This is a grating instrument recording linearly in cm^{-1} giving a continuous spectrum of the infrared transmittance of a sample as a function of the frequency. The resolution of this instrument is $\sim 7 \mathrm{~cm}^{-1}$ near $3500 \mathrm{~cm}^{-1}$. The instrument was turned on and allowed to warm up for about 15 minutes. Then with the slit width normal, and the recorder on, the one hundred and zero percent transmittance was set and checked. The high frequency range (4000 to $1200 \mathrm{~cm}^{-1}$) and fast scan were employed to obtain the spectra of the fundamental oH stretching vibration.

The Cary 14R double beam spectrophotometer, recording linearly in wavelength, was used to obtain the first overtone spectra of the OH stretching vibration as a function of temperature and concentration. The spectra in both regions were run at the same temperature using solutions of very nearly the same concentration, if not actually the same solution. The source used for the Cary 14 R near infrared region was a tungsten lamp. The instrument was operated in the mode where monochromic light was incident on the cells. A scan speed of 5 Angstroms per second was used in recording spectra on chart paper which had a speed of 1 inch per minute.

Temperature Control

The temperature for the fundamental spectra was controlled through the use of a Barnes Engineering Company variable temperature chamber (VTC-104). The chamber is a cubical box designed to mount directly in the sample beam of all Perkin-Elmer and Beckman spectrophotometers. It is constructed of rigid polyurethane foam in an outer aluminum casing. It was suppled with KBr thermopane windows; however, at low temperatures water condensed between the original windows supplied by the manufacturer causing considerable absorption in the OH stretching region. These windows had been cracked and apparently water vapor had leaked in between the windows. New thermopane windorvs were made by epoxy glueing (Torr Seal low vapor pressure resin obtained from Varian Associates) two polished calcium fluoride windows to each side of a plastic washer leaving a "dead" air space between the windows; this was done for each end of the chamber. The unpolished calcium fluoride windows obtained from Optovac Inc. were polished using 3 micron polising grit, on a

Politex Pad, (Geoscience Instruments Co.). The solvent was dilute HC1. They were polished until each single window would transmit 90 percent of the incident radiation versus air at $4000 \mathrm{~cm}^{-1}$ as determined by the Perkin-Elmer 337 spectrophotometer. It was also necessary to design and build a cell holder inside of the chamber to accomodate the Cary cylinderical cells. (This was accomplished by attaching a curved piece of metal about 1 inch long, to support the cells in the beam, to a second piece of metal which fits the standard mount. The metal portions of the holder which would come in contact with the cells were covered with felt.)

The temperature was regulated inside of the chamber by supplying direct current to "heat pumps" that utilize the Peltier effect, that is when a direct current is applied to the junction of two dissimilar metals, such as a thermocouple, one junction will become cooled and the other heated. In this chamber a bank of bismuth-telluride junctions are mounted in direct contact with the walls of the inner chamber. A circulating stream of tap water is used to transport the heat from the chamber.

The chamber was equipped with a copper constantan thermocouple to measure the temperature inside of the chamber. Since the Perkin-Elmer 337 is constructed so that non-monochromatic light is passed through the sample the temperature of the sample was found to be higher than that of the inner chamber. It was, therefore, necessary to determine the cell temperature in relation to that of the inner chamber. This was accomplished by placing a cell filled with carbon tetrachloride in the beam and simultaneously measuring the temperature of the inner chamber with the thermocouple and the cell temperature with a Yellow Springs Instrument Co. thermistor at approximately 5 minute intervals for 30 minutes. It
was found that after about 20 minutes time the cell temperature became fairly constant. The proper setting for the desired temperature of the input voltage and the coolant flow rate of the water was determined and used in the experiments. By this method the cell temperature could be monitored to $\pm 1^{\circ} \mathrm{C}$. These values are shown in Table I.

At 0 and $15^{\circ} \mathrm{C}$ water condensation on the windows was alleviated by passing oil pumped nitrogen around the outside of the chamber following passage through a Linde 13 X molecular sieve column. The entire sample and reference area of the Perkin-Elmer 337 was covered with a piece of polyethylene taped to the instrument housing so that the nitrogen would flush the instrument.

The temperatures for the near infrared spectra were controlled in an entirely different manner. The Cary 14 R cell holders are constructed so that either a cooling or heating fluid can be circulated through them. For temperatures higher than room temperature, a Haake Circulator model F was employed. It has a built-in heater that is thermostated so it can be set at a desired circulator fluid temperature. The circulator fluid used in this circulator was water. For temperatures below room temperature a second circulator containing 45% ethanol for the circulator fluid was used. The circulator fluid was cooled by equipment designed and built by P. E. Rider (10) which employs the use of an auxiliary coil submerged in a dry ice isopropanol mixture in a large Dewar flask. The ethanol was circulated until the desired temperature was attained in the cell compartment. The temperature was held constant for about ten minutes before the spectra were run so the contents of the cell had time to come to thermal equilibrium. The temperature in the cell compartment was measured with a Yellow Springs Instrument Co. thermistor

Table I: Temperature Control Settings for the Fundamental Spectra

Power Switch	Dial Setting	Input Voltage	Inner chamber Temperature	Cell Content Temperature	Flow Rate of Coolant
Heat or cool	Variable transformer	Volts $0-150 \mathrm{~V} \mathrm{AC}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	$\mathrm{ml} / \mathrm{min}$.
cool	65	73	-14.0	0.0	600
cool	25	28	1.0	15.0	600
heat	5	6	14.3	26.0	600
heat	10	12	23.5	34.7	600
heat	20	25	36.8	45.2	600

and could be held to $\pm 1^{\circ} \mathrm{C}$ at 0 and $15^{\circ} \mathrm{C}$ and $\pm 0.1^{\circ} \mathrm{C}$ at the other temperatures while the spectra were being recorded. Here again the water condensation problem was alleviated by purging the cell compartment with dryed (by passage through a molecular sieve column), oil pumped nitrogen.

Density Measurements

Due to the inaccuracy of filling the volumetric flasks in the dry box only the weights of each of the components of the solutions were accurately obtainable. The molarity which was needed to study:the effects of temperature on the absorption coefficient, was therefore-not directly calculable since the volume of the solution was not known. Consequently, the density was needed for each solution at each temperature to calculate the volume occupied by the solution at that temperature. The molarity was then calculated at each temperature.

The density of each solution was measured at room temperature. by using a ten milliter volumetric flask and weighing the contents by difference on an alytical balance. The results are shown in Table-II. The densities for the solutions at all other temperatures were obtained by applying a density unit change per degree of 1.75×10^{-3} for this type of solution. This value was determined by averaging the change in density per degree for several solutions. Knowing the density at each temperature the molar concentration at each temperature was obtained:by taking the molar concentration at $25^{\circ} \mathrm{C}$ times the ratio of the density at the new temperature to the density at $25^{\circ} \mathrm{C}$. Typical corrections for changes in molarity with temperature would result by multiplying the

Table II: Density of Alkyl Phenol-Carbon tetrachloride solutions at $25^{\circ} \mathrm{C}$

conc. moles/liter	density grams/ml.	conc. moles/liter	density grams/ml.
2-tert-butylphenol			

2,6-diisopropylphenol
0.0556
0.1158
0.2423
0.4309
0.5307
0.6523
0.8430
1.2758
1.4688
1.5727
0.0707
1.5715

2-methyl-6-tert-butylphenol
$1.5703 \quad 1.5651$
1.5538
0.1830
1.5592
$1.5266 \quad 0.3906$
1.5401
1.5199
0.4928
1.5259
1.5010
0.9667
1.4800
1.4687
1.2841
1.4575
1.4347
1.4570
1.4276
1.4064
1.4771
1.4146
molar concentration at $25^{\circ} \mathrm{C}$ by the following density ratios:

${ }^{\circ} \mathrm{C}$	
0	1.0278
15	1.0111
25	1.0000
35	0.9889
45	0.9777
	Recording Spectra

Representative spectra for each of the compounds are shown in Figures 1 through 4. Figures 1 and 2 are the fundamental spectra and Figures 3 and 4 are the overtone spectra of the corresponding compound. The fundamental spectra were taken in a 0.1 mm cell for the 2,6 -dialkyl phenols and in 1.0 mm and 1.0 cm cesls for the $2-a l k y l$ phenols. The overtone spectra were taken in a 1.0 cm cell for the 2-alkyl phenols and in 1.0 mm and 1.0 cm cells for the 2,6 -dialkyl phenols.

The fundamental spectra were taken using the Perkin-E1mer 337 with the sample cell run vs. air. The baseline was found to be temperature independent when run on CCl_{4} vs. air. Consequently, the spectrum of CCl_{4} at $25^{\circ} \mathrm{C}$ in the Cary quartz cell vs. air was drawn on each sample spectrum vs. air as the baseline. The absorbances for the OH stretching band near $3500 \mathrm{~cm}^{-1}$ are shown in Table III.

The overtone spectra were taken using the Cary 14R as a double beam spectrophotometer. However the peak height absorbances recorded by the Cary 14 R had to be corrected since the optics of the Cary 14 R using these cells with CCl_{4} in both beams have some absorbance in this region. It was found that 0.015 absorbance units should be subtracted from the recorded peak maximum to give the correct overtone absorbances which are shown in Table IV.

The absorbances per cm cell length for the fundamental and the overtone of the OH stretching vibration are shown in Tables III and IV, respectively. For 2-tert-buty 1 phenol and 2-isopropylphenol two bands occur in the fundamental below the free or uncomplexed band (band near $3600 \mathrm{~cm}^{-1}$) and both are believed to be due to complex. These are designated as band I and II where band I is nearer the free OH band. Tables III and IV contain the concentration at $25^{\circ} \mathrm{C}$ with the absorbances at all experimental temperatures. These tables, therefore, contain all of the primary experimental data.

The intensity of the fundamental bands due to complex were used as a measure of complex concentration. The intensity of the first OH stretching overtone band was used as a measure of the free OH concentration.

[^0]A: 2,6-difopropylphenol($1.4688 \mathrm{M} \mathrm{CC1}_{4}$ Solution: 0.1 mm ce11)
B: 2-methy1-6-tert-butylpheno1 (1.4771 M CC1 4 Solution: 0.1 mm
0.4
0.3
0.2
WAVELENGTH nm
A: 2-tert-butylpheno1 $\left(0.0719 \mathrm{M} \mathrm{CCl}_{4}\right.$ solution: $1.0 \mathrm{~cm} \mathrm{ce11)}$
B: 2-isopropylpheno1 $\left(0.0994 \mathrm{M} \mathrm{CC1}_{4}\right.$ solution: $1.0 \mathrm{~cm} \mathrm{cell)}$
Figure 3 Overtone Spectra
A
0.4
-0.3
0.1
आวNFGYOSay
0.4

$\left[\begin{array}{r}0.3 \\ 0.2 \\ 0.1\end{array}\right.$
Gonvaqosay

Table III: Absorbance Per cm Cell Length for Fundamental Transition

conc. at 25° moles/liter	0°	15°	25°	35°	45°

2,6-Diisopropylphenol

0.6523	13.7	12.7	10.7	8.6	8.3
0.8430	21.1	21.5	21.6	21.4	21.2
1.2758	25.2	26.1	26.1	26.7	26.5
1.4688	27.8	28.8	29.0	29.6	29.6

0.9667	27.6	25.5
1.2841	43.3	38.7
1.4570	52.8	47.7
1.4771	53.4	49.0

2-isopropylphenol
0.0808
0.1330
0.2416
0.2920
0.3820

0.645	0.544
$\cdots .$.	1.258
4.87	4.23
7.15	6.27
10.00	8.70

23.0
22.3
22.8
37.3
45.5
46.5
34.6
42.5
34.6
41.5
42.5
band I

0.483	0.447	$\ldots .$.
0.985	$\ldots .$.	0.970
3.67	3.50	3.07
5.44	5.13	4.65
7.87	7.48	6.84

band II
0.0808
0.1330
0.2416
0.2920
0.3820

0.754	0.556
.. .0	1.331
5.90	4.56
8.48	6.72
12.01	9.25

2-tert-butylphenol
0.413
1.062
3.10
4.90
7.57
0.362
0.897
.....
1.062
2.99
0.816
3.10
4.44
2.53
7.57
3.78
band I

0.0675	0.465	0.326
0.1207	$\cdots .$.	0.693
0.2231	4.082	3.345
0.3623	7.521	6.181

0.305	0.270	0.260
0.670	0.636	0.562
2.856	2.604	2.355
5.502	5.024	4.742

band II

0.0675	0.339	0.225	0.170	0.130	0.090
0.1207	$\ldots .$.	0.465	0.369	0.303	0.253
0.2231	1.523	1.206	1.072	0.0864	0.076
0.3623	$\ldots .$.	2.305	1.818	1.703	1.430

Table IV: Absorbance Per cm Cell Length for Overtone Transition

conc. at 25° moles/liter	0°	15°	25°	35°	-45°

2,6-Diisopropylphenol

0.0556	0.152	0.150	0.148	0.145	0.145
0.1158	0.330	0.325	0.317	0.312	0.307
0.2423	0.598	0.595	0.590	0.590	0.573
0.4309	1.07	1.05	1.05	1.05	1.005
0.5307	1.28	1.27	1.27	1.26	1.26
0.6523	1.53	1.53	1.55	1.55	1.50
0.8430	1.97	2.00	2.00	2.00	2.00
1.2758	2.42	2.45	2.47	2.50	2.550
1.4688	2.65	2.70	2.75	2.80	2.80

2-methy1-6-tert-butylphenol

0.0707	0.208	0.200	0.195	0.185	0.184
0.1458	0.398	0.384	0.373	0.360	0.350
0.1830	0.545	0.515	0.500	0.486	0.466
0.3906	1.08	1.00	1.02	1.00	-0.950
0.4928	1.30	1.25	1.28	1.23	1.17
0.9667	2.27	2.18	2.18	2.14	2.10
1.2841	2.82	2.77	2.72	2.68	-2.65
1.4570	3.11	3.10	3.03	2.95	-2.295
1.4771	3.16	3.09	3.06	3.05	-3.03

2-isopropylpheno1

0.0477	0.147	0.147	0.147	0.146	0.144
0.0919	0.267	0.275	0.274	0.266	0.266
0.0994	0.266	0.274	0.275	0.279	0.278
0.1451	0.384	0.400	0.404	0.404	0.404
0.1767	0.455	0.427	0.475	0.481	0.481
0.2471	0.525	0.576	0.600	0.614	0.623
0.2920	0.577	0.638	0.676	0.696	0.715
0.3904	0.695	0.776	0.835	0.897	0.890

2-tert-butylpheno1

0.0412	0.136	0.136	0.134	0.132	0.130
0.0460	0.158	0.155	0.150	0.148	0.145
0.0719	0.235	0.228	0.226	0.222	0.220
0.1438	0.458	0.445	0.443	0.440	0.435
0.2190	0.656	0.646	0.640	0.641	0.637
0.2470	0.745	0.747	0.738	0.740	0.743
0.3613	0.925	0.936	0.942	0.951	0.948
0.4719	1.24	1.25	1.25	1.22	1.22

RESULTS AND DISCUSSION
Stoichiometry Determinations

The values of A_{f} / A_{0} for $\underline{n}=1,2,3$ for all concentrations at all temperatures as well as the average values over the concentrations at each temperature are presented in Tables V - VII. As stated in the fntroduction the value of n which gives the most nearly constant A_{f} / A_{o} ratio is selected as the number of alcohol molecules associating to form the complex. Note that if \underline{n} is too small the value of this ratio increases as concentration increases and if \underline{n} is too large the ratio decreases as concentration increases. The probable error in these averages was calculated at the ninty percent confidence level. The criterion used to select the n giving the most constant value of the $A_{f} / A_{o}^{\frac{n}{o}}$ ratio was the smallest per cent probable error in averages, (probable error/average) $\times 100$, at a given temperature for a given compound. These averages, probable error in averages and percent probable errors in averages, (probable error/averages) x 100, are shown in Tables IX-XII.

Table XIII shows the values of n as determined by the slope of $\operatorname{Ln} A_{f}$ vs. Ln A_{0} plots. The 2-tert-buty1phenol and the 2-methy1-6-tertbutylphenol systems have a slope (n) equal to 2 within the 90 percent confidence probable error limits. The value of n for 2,6 -diisopropy1phenol is around 2.5. The slope is near 3 for 2-isopropylphenol at $0^{\circ} \mathrm{C}$ and near 2.5 at $45^{\circ} \mathrm{C}$.

These calculations seem to indicate that the \underline{n} determined from the A_{f} / A_{0} ratio was 2 within the probable error limits in every case except for the 2-isopropylphenol where for bands I and II it was found to be 3 .

The slopes in Table XIII for 2-isopropylphenol therefore suggest that trimers are probably the major contributor to the band at $0^{\circ} \mathrm{C}$ and that trimers and dimers are probably both contributing at the higher temperatures. These data seem to indicate that for 2-isopropylphenol in carbon tetrachloride no single stoichiometry occurs and that probably monomer is in equilibrium with dimers and trimers.

Table V: Ratio of $A_{f} / A \frac{n}{o}$ for 2,6-disopropylphenol

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	C(M)	A_{f}	A_{0}	$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{0}$	A_{f} / A_{o}^{2}	$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{0}^{3}$
0	0.6713	13.7	1.53	8.95	5.85	3.82
	0.8681	26.0	1.97	13.20	6.70	3.40
	1.3147	39.4	2.43	16.21	6.67	2.74
	1.5146	54.4	2.65	20.53	7.75	2.92
			ave.	14.72	6.74	3.22
15	0.6599	12.7	1.53	8.30	5.43	3.55
	0.8530	23.0	2.00	11.50	5.75	2.88
	1.2914	37.3	2.45	15.22	6.21	2.53
	1.4870	49.8	2.70	18.44	6.83	2.52
			ave.	13.37	6.06	2.87
25	0.6523	10.7	1.55	6.90	4.45	2.87
	0.8430	21.2	2.00	10.60	5.30	2.65
	1.2757	34.0	2.47	13.77	5.58	2.26
	1.4688	45.6	2.75	16.58	6.03	2.19
			ave.	11.96	5.34	2.49
35	0.6447	8.6	1.55	5.55	3.58	2.31
	0.8380	19.3	2.00	9.65	4.83	2.41
	1.2602	31.8	2.50	12.72	5.09	2.04
	1.4506	43.6	2.80	15.57	5.56	1.99
			ave.	10.87	4.77	2.19
45	0.6371	8.3	1.50	5.53	3.69	2.46
	0.8229	17.9	2.00	8.95	4.48	2.24
	1.2448	31.0	2.50	12.40	4.96	1.98
	1.4322	41.5	2.80	14.82	5.92	2.11
			ave.	10.43	4.76	2.19

Table VI: Ratio of $\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{\mathrm{o}}^{\mathrm{M}}$ for 2-methyl-6-tert-butylphenol

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	C(M)	Af_{f}	A	$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{0}$	$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{0}^{2}$	$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{\mathrm{o}}^{3}$
0	0.9895	27.6	2.27	12.16	5.36	2.36
	1.3228	43.3	2.82	15.35	5.44	1.93
	1.5017	52.8	3.11	16.98	5.46	1.76
	1.5149	53.4	3.16	16.90	5.35	1.69
15			ave.	15.35	5.40	1.94
	0.9781	25.5	2.18	11.70	5.37	2.46
	1.2995	38.7	2.77	13.97	5.04	1.82
	1.4749	47.7	3.10	15.39	4.96	1.60
	1.4954	49.0	3.09	15.86	5.13	1.66
25			ave.	14.23	5.12	1.89
	0.9667	23.0	2.18	10.23	4.85	2.22
	1.2841	37.3	2.72	12.91	5.04	1.85
	1.4570	45.5	3.03	14.41	4.96	1.64
	1.4771	46.5	3.06	14.46	4.97	1.62
35		46.5	ave.	13.62	4.95	1.83
	0.9553	22.3	2.14	10.23	4.69	2.15
	1.2687	34.6	2.68	12.91	4.82	1.80
	1.4391	42.5	2.95	14.41	4.88	1.65
	1.4588	44.1	3.05	14.46	4.74	1.55
45			ave.	13.00	4.78	1.79
	0.9438	22.8	2.10	10.86	5.17	2.46
	1.2533	34.6	2.65	13.06	4.93	1.86
	1.4213	41.5	2.95	14.07	4.77	1.62
	1.4406	42.5	3.03	14.03	4.63	1.53
			ave.	13.00	4.88	1.88

Table VII: Ratio of $A_{f} / A \frac{n}{0}$ for 2-isopropy1phenol band I

$T\left({ }^{\circ} \mathrm{C}\right)$	C(M)	A_{f}	A_{0}	$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{0}$	A_{f} / A_{o}^{2}	A_{f} / A_{0}^{3}
0	0.1022	0.645	0.266	2.43	9.12	34.3
	0.1492	0.384
	0.2533	4.87	0.525	9.276	17.66	33.6
	0.3004	7.15	0.577	12.39	21.47	37.2
	0.4018	10.00	0.695	14.39	20.71	29.8
			ave.	9.62	17.24	33.7
15	0.1011	0.544	0.274	1.985	7.25	26.44
	0.1476	1.258	0.400	3.145	7.86	19.65
	0.2505	4.23	0.576	7.344	12.75	22.14
	0.2971	6.27	0.638	9.828	15.40	24.14
	0.3972	8.70	0.776	11.21	14.45	18.62
			ave.	6.70	11.54	22.20
25	0.0994	0.483	0.275	1.756	6.38	23.22
	0.1451	0.985	0.404	2.438	6.04	14.94
	0.2471	3.67	0.600	6.117	10.20	17.00
	0.2920	5.44	0.676	8.047	11.90	17.60
	0.3904	7.87	0.835	9.425	11.29	13.52
			ave.	5.557	9.16	17.26
35	0.0976	0.447	0.279	1.602	5.74	20.57
	0.1434	0.404
	0.2434	3.50	0.614	5.70	9.28	15.11
	0.2886	5.13	0.696	7.37	10.59	15.21
	0.3859	7.48	0.897	8.34	9.30	10.36
			ave.	5.75	8.73	15.31
45	0.0972	...	0.278	..		
	0.1418	0.970	0.404	2.40	5.94	14.71
	0.2415	3.07	0.623	4.93	7.91	12.70
	0.2852	4.65	0.715	6.50	9.09	12.71
	0.3813	6.84	0.890	7.69	8.63	9.70
			ave.	5.38	7.90	12.46

Table VIII: Ratio of $A_{f} / A \frac{\pi}{O}$ for 2-tert-butylphenol

band I

T $\left({ }^{\circ} \mathrm{C}\right)$	C (M)	A_{f}	A_{0}	$\mathrm{A}_{f} / \mathrm{A}_{0}$	$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{\mathrm{o}}{ }^{2}$	$\mathrm{A}_{\mathrm{f}} / \mathrm{A}^{3}{ }_{0}$
0	0.0739	0.465	0.235	1.978	8.417	35.82
	0.1479	0.458
	0.2253	4.08	0.656	6.220	9.48	14.45
	0.3719	7.52	0.925	8.130	8.79	9.50
			ave.	5.443	8.90	19.92
15	0.0731	0.326	0.228	1.430	6.272	28.41
	0.1462	0.693	0.445	1.557	3.499	7.86
	0.2228	3.35	0.646	5.186	8.028	12.43
	0.3677	6.18	0.936	6.603	7.05	7.53
			ave.	3.694	6.21	14.06
25	0.0719	0.305	0.226	1.350	5.97	26.42
	0.1438	0.670	0.443	1.512	3.41	7.70
	0.2190	2.788	0.640	4.36	6.81	10.64
	0.3613	5.502	0.942	5.84	6.20	6.58
			ave.	3.27	5.59	12.84
35	0.0710	0.270	0.222	1.216	5.48	24.68
	0.1421	0.636	0.440	1.445	3.28	7.46
	0.2165	2.601	0.641	4.058	6.33	9.88
	0.3570	5.024	0.951	5.283	5.55	5.84
			ave.	3.00	5.16	11.97
45	0.0702	0.260	0.220	1.182	5.37	24.42
	0.1405	0.562	0.435	1.292	2.97	6.83
	0.2139	2.36	0.637	3.742	5.87	9.22
	0.3528	4.74	0.948	5.000	5.27	5.56
			ave.	2.80	4.86	11.51

Table VIII Ratio of $A_{f} / A \frac{n}{o}$ for 2-tert-butylphenol con't

T ${ }^{\circ} \mathrm{C}$)	C (M)	A_{f}	A_{0}	band II		$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{0}^{3}$
				$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{0}$	$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{0}^{2}$	
0	0.0739	0.339	0.235	1.443	6.140	26.1
	0.1479	0.458	
	0.2253	1.52	0.656	2.317	3.532	5.38
	0.3719	0.925
			ave.	1.88	4.83	15.76
15	0.0731	0.225	0.228	0.987	4.33	18.99
	0.1462	0.465	0.445	1.045	2.35	5.28
	0.2228	1.21	0.646	1.873	2.90	4.49
	0.3677	2.31	0.936	2.468	2.63	2.81
			ave.	1.59	3.05	7.89
25	0.0719	0.170	0.226	0.752	3.33	14.73
	0.1438	0.369	0.443	0.833	1.88	4.24
	0.2190	1.072	0.640	1.675	2.62	4.09
	0.3613	1.818	0.942	1.932	2.05	2.18
			ave.	1.30	2.47	6.31
35	0.0710	0.130	0.222	0.586	2.64	11.88
	0.1421	0.330	0.440	0.750	1.71	3.88
	0.2165	0.864	0.641	1.320	2.06	3.21
	0.3570	1.704	0.951	1.792	1.88	1.98
			ave.	1.11	2.07	5.23
45	0.0702	0.090	0.220	0.409	1.86	8.45
	0.1405	0.253	0.435	0.582	1.34	3.07
	0.2139	0.756	0.637	1.187	1.86	2.92
	0.3528	1.430	0.948	1.508	1.59	1.68
			ave.	0.922	1.76	4.03

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{0}$	A_{f} / A_{0}^{2}	A_{f} / A_{0}^{3}	$\begin{gathered} \text { Probable } \\ \underline{\mathbf{n}} \end{gathered}$
0	ave. *P.E. in ave. P.E./ave. x 100	$\begin{gathered} 15.35 \\ 2.79 \\ 18.2 \end{gathered}$	$\begin{aligned} & 5.40 \\ & 0.0647 \\ & 1.20 \end{aligned}$	$\begin{gathered} 1.94 \\ 0.353 \\ 18.2 \end{gathered}$	2
15		$\begin{gathered} 14.23 \\ 2.153 \\ 15.1 \end{gathered}$	5.12 0.213 4.16	$\begin{gathered} 1.89 \\ 0.454 \\ 24.0 \end{gathered}$	2
25		$\begin{gathered} 13.62 \\ 2.34 \\ 17.2 \end{gathered}$	$\begin{aligned} & 4.95 \\ & 0.092 \\ & 1.87 \end{aligned}$	$\begin{aligned} & 1.83 \\ & 0.287 \\ & 15.7 \end{aligned}$	2
35		$\begin{aligned} & 13.00 \\ & 2.330 \\ & 17.9 \end{aligned}$	$\begin{aligned} & 4.78 \\ & 0.099 \\ & 2.07 \end{aligned}$	$\begin{gathered} 1.79 \\ 0.307 \\ 17.2 \end{gathered}$	2
45		$\begin{aligned} & 13.01 \\ & 1.753 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 4.88 \\ & 0.264 \\ & 5.40 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 0.485 \\ & 25.8 \end{aligned}$	2

* Probable error calculated at 90% confidence
\# Table VI

Table X: Average Values, \#robable Errors in Average Values, and Percent Probable Errors in Average Values of $A_{f} / A_{\overline{0}}^{n}$ for 2,6-diisopropylphenol

T (${ }^{\circ} \mathrm{C}$)		$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{0}$	$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{0}^{2}$	$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{0}^{3}$	Probable n
0	ave.	14.72	6.74	3.22	
	*P.E. in Ave.	4.98	0.912	0.563	
	$\begin{aligned} & \text { P.E./ave. } \\ & \times 100 \end{aligned}$	33.8	13.5	17.5	2
15		13.37	6.06	2.87	
		5.17	0.713	0.563	
		38.7	11.8	19.6	2
25		11.96	5.34	2.49	
		4.894	0.777	0.372	
		40.9	14.6	14.9	2
35		10.87	4.77	2.19	
		5.03	0.993	0.236	
		46.3	20.8	10.8	3
45		10.43	4.76	2.09	
		4.56	1.10	0.236	
		43.7	23.0	10.8	3

* Probable error calculated at 90% confidence level
\# Table V

Table XI: Average Values", Probable Errors in Average Values, and Percent Probable Error in Average Values of $A_{f} / A \frac{n}{0}$ for 2-isopropylphenol

Table XII: Average Values, \# Probable Errors in Average Values, and Percent Probable Errors in Average Values of $\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{\mathrm{o}}$ for 2-tert-butylphenol

T(${ }^{\circ} \mathrm{C}$)		$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{0}$	$\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{0}^{2}$	A_{f} / A_{0}^{3}	$\begin{gathered} \text { Probable } \\ \underline{n} \end{gathered}$	
		band I				
0	ave.		5.443	8.90		
	*P.E. in ave.	5.294	0.892	23.44		
	P.E.lave.	97.3	10.02	117.7	2	
	$\times 100$					
15		3.694	6.21	14.06		
		3.031	2.294	11.51		
		82.1	36.9	81.9	2	
25		3.27	5.59	12.84		
		2.59	1.765	10.77		
		79.1	31.6	83.9	2	
35		3.00	5.16	11.97		
		2.34	1.671	10.12		
		78.0	32.4	84.5	2	
45		2.80	4.86	11.51		
		2.20	1.518	10.26		
		78.5	4.86	89.1	2	
		band II				
0	Ave.	1.88	4.83	15.76		
	*P.E. in ave.	2.75	8.26	65.19		
	$\begin{aligned} & \text { P.E./ave. } \\ & \times 100 \end{aligned}$	146.3	171.0	414.0	2	
1.5		1.59	3.05	7.89		
		0.833	1.03	8.77		
		52.1	33.8	111.2	2	
25		1.30	2.47	6.31		
		0.697	. 78	6.68		
		53.7	31.2	105.6	2	
35		1.11	2.07	5.23		
		0.647	0.475	5.29		
		57.8	22.9	101.1	2	
45		0.922	1.76	4.03		
		0.809	0.322	3.59		
		87.7	18.3	89.1	2	

[^1]Table XIII: Least Squares Treatment of $\operatorname{Ln} A_{f}$ vs. Ln A_{o}

> 2,6-diisopropylphenol
$T\left({ }^{\circ} \mathrm{C}\right)$
0
15
25
35
45
all
2
2-methy1-6-tert-buty1phenol

0
15
25
35
45
all

$$
\begin{aligned}
& 2.0248 \pm 0.1366 \\
& 1.8237 \pm 0.2089 \\
& 2.0738 \pm 0.1606 \\
& 1.9585 \pm 0.1511 \\
& 1.7253 \pm 0.1457 \\
& 1.9249 \pm 0.1382
\end{aligned}
$$

2-isopropylphenol

band I

$$
\begin{aligned}
& 2.9292 \pm 0.4289 \\
& 2.8021 \pm 0.3897 \\
& 2.6610 \pm 0.4281 \\
& 2.4876 \pm 0.4547 \\
& 2.5265 \pm 0.4500 \\
& 2.4461 \pm 0.2362
\end{aligned}
$$

band II

0	2.9547 ± 0.4179	3.6601 ± 0.3371
15	2.8441 ± 0.3903	3.0405 ± 0.3066
25	2.6736 ± 0.1951	2.5381 ± 0.1491
35	2.5883 ± 0.2964	2.2963 ± 0.2230
45	2.5034 ± 0.3738	2.0946 ± 0.2023
a11	2.4040 ± 0.3282	2.3741 ± 0.2518

1.5901 ± 0.3195
1.5119 ± 0.1923
1.2896 ± 0.1574
1.0084 ± 0.3418
1.0834 ± 0.7585
1.6860 ± 0.1385
1.6610 ± 0.1426
1.8130 ± 0.2140
1.5254 ± 0.1624
1.6153 ± 0.1504
1.8514 ± 0.1439
1.6860 ± 0.1335

Table KIII: Cont.
2-tert-butylphenol

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Slope*	Intercept*
	band I	
15	2.1864 ± 1.1946	1.9112 ± 1.0409
25	2.1088 ± 1.0382	1.7657 ± 0.9107
35	2.0921 ± 0.9466	1.6775 ± 0.8386
45	2.0684 ± 1.0163	1.5966 ± 0.9078
all	band II	1.7636 ± 0.2089
15	1.6763 ± 0.6238	0.8613 ± 0.5435
25	1.8095 ± 0.6591	0.6825 ± 0.5782
35	1.9459 ± 0.6118	0.5643 ± 0.5420
45	1.8815 ± 0.2133	0.4608 ± 0.4570
a11		0.7025 ± 0.1762

* Probable errors calculated at 90% confidence level

Determination of the Absorption Coefficients

Figures 5 through 8 are plots of overtone absorbance per cm path length vs. molar concentration of the phenols at 0,25 , and $45^{\circ} \mathrm{C}$. Note that deviation from Beer's law due to association occurs at lower concentration for the 2-isopropylphenol and 2-tert-buty1phenol (Figures 7-8) than for 2,6-diisopropylphenol and 2-methy1-6-tert-butylphenol (Figures 5-6). In the least squares analysis of plots of absorbance vs. concentration to determine the monomer absorption coefficient, a_{m}, the three lowest concentration in Table IV were used with their corresponding absorbances for 2-tert-butylphenol while the lowest five concentrations were used for 2,6-diisopropylphenol and 2-methy1-6-tert-butylphenol. For 2-isopropylphenol the lowest concentration data were used to calculate the monomer absorption coefficient. The monomer absorption coefficient, a_{m}, for the $7100 \mathrm{~cm}^{-1}$ band was used in the calculation of apparent monomer concentration, $c_{1}=A_{0} / a_{m}$ for use in $\operatorname{Ln}\left(c-c_{1}\right)$ vs. Ln c_{1} plots and the Masschelein calculation to be discussed in the following section of the thesis.

The monomer absorption coefficients, obtained from the least squares analysis of absorbance vs. concentration plots, are shown in Table XIV for each temperature. Also included in Table XIV for each compound are the absorption coefficient obtained using all data at all temperatures, $a_{m I}$, and the average value of the temperature dependent absorption coefficients.

Note that for 2-tert-butylphenol and for 2-methyl-6-tert-butylphenol the value of the absorption coefficient decreases as the temperature

Figure 5 Plot of Absorbance of $7100 \mathrm{~cm}^{-1}$ band vs. concentration for 2,6-diisopropylphenol

Figure 6 Plot of Absorbance of $7100 \mathrm{~cm}^{-1}$ band vs. concentration for 2-methyl-6-tert-butylphenol

- $0{ }^{\circ} \mathrm{C}$
- $25^{\circ} \mathrm{C}$
- $45^{\circ} \mathrm{C}$
-3.6

Figure $7 \quad \begin{aligned} & \text { Plot of Absorbance of } 7100 \mathrm{~cm}^{-1} \text { band vs. concentration } \\ & \text { for 2-isopropylphenol }\end{aligned}$

$\begin{array}{ll}\text { Figure } 8 & \begin{array}{l}\text { Plot of Absorbance of } 7100 \mathrm{~cm}^{-1} \text { band vs. concentration } \\ \text { for 2-tert-butylphenol }\end{array}\end{array}$

CONCENTRATION (molar)
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
increases while it increases for 2-isopropy1phenol and 2,6-diisopropy1phenol. There is no apparent explanation for this abnormality.

Table XV shows the values of $\mathrm{R} \times 10^{3}$ defined by Swenson (6) as $R=$ (fraction change in absorption coefficient)/(temperature change in ${ }^{\circ} \mathrm{C}$).

Table XVI shows the absorption coefficients of the complex, a_{f}, calculated from the absorbance per unit path length of the fundamental band divided by the concentration of the complex which was determined by substracting the monomer concentration c_{1} from the total concentration . The values listed are averages over the concentration ranges shown for each compound. The results of this calculation may be in error due to the OH end groups of the complex which may contribute to the absorbance used to calculate cl. This causes c_{1} to be too large and thus makes ($c-c_{1}$) too small and \underline{a}_{f}, the absorption coefficient of the complex too large. The concentration of monomer c_{1} was calculated two ways: one was with the temperature dependent monomer absorption coefficient (a_{m}) and the other was with the temperature independent monomer absorption coefficient ($a_{m I}$). In addition Table XVI contains a_{f} values calculated using the results of the Masschelein calculation described in the next section to correct for errors in $\left(c-c_{1}\right)$ caused by contributions to the $7100 \mathrm{~cm}^{-1}$ band absorbance from the OH end group of the complex.

Masschelein Calculation

To gain an estimate of the magnitude of the OH end group contribution of the complex to the overtone band intensity the technique of Masschelein (9) was used. The results are shown in Table XVII along with the slopes from the $\operatorname{Ln} A_{f} \underline{\text { vs. }} \operatorname{Ln} A_{0}$ and $\operatorname{Ln}\left(c-c_{1}\right)$ vs. Ln c_{1} plots. It is seen that the free $O H$ end groups of the complex may cause spurious results for \underline{n} determined from $\mathrm{Ln}\left(\mathrm{c}-\mathrm{c}_{1}\right)$ vs. Ln c_{1} plots. The OH end groups of the complex

Table XIV: Monomer Absorption Coefficients (cm^{-1} mole e^{-1} liter) from $7100 \mathrm{~cm}^{-1}$ band

	2-isopropylphenol*\#	2-tert-butylphenol*
T $\left({ }^{\circ} \mathrm{C}\right)$		
0	2.9982	$3.2250+0.1388$
15	3.0478	$3.1903+0.1741$
25	3.0817	$3.1931+0.1149$
35	3.0953	3.1774 ± 0.1253
45	3.0877	3.1722 ± 0.0952
$a_{m i}$ I	3.0621	3.1842 ± 0.0299
ave.	3.0621	3.1896 ± 0.0592
	2,6-diisopropylphenol*	2-methyl-6-tert-butylphenol*
$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$		
0	2.3965 ± 0.0344	2.6428 ± 0.1056
15	2.3892 ± 0.0444	2.5246 ± 0.0503
25	2.4146 ± 0.0389	2.5918 ± 0.0512
35	2.4390 ± 0.0612	2.5576 ± 0.0513
45	2.4587 ± 0.0572	2.4663 ± 0.0555
$\mathrm{a}_{\mathrm{m}} \mathrm{I}$	2.4191 ± 0.0196	2.5602 ± 0.0248
ave.	2.4196 ± 0.0215	2.5566 ± 0.0656
*Probable errors calculated at 90% confidence level \#based on lowest concentration only		
Table XV: ($\mathrm{R} \times 10^{3}$) Change in absorption Coefficient		
	2-isopropylphenol	2-tert-butylphenol
	-0.66 0.36	
2,6-diisopropylphenol 2-methyl-6-tert-butylphenol		
	-0.58	1.48

Table XVI: Absorption Coefficient of the Complex (cm^{-1} moles ${ }^{-1}$ liters) from
$3500 \mathrm{~cm}^{-1}$ band

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right) \quad$| Conc. |
| :---: |
| Range |(M)

$$
A_{f} /\left(c-c_{1}\right)=a_{f}
$$

$\left.\begin{array}{ll} & \begin{array}{c}\text { Using Temp. } \\ \text { Independent } \\ a_{\text {mI }}\end{array} \\ \text { 2-methyl-6-tert-buty1phenol }\end{array}\right]$
Using Temp.
Dependent
a_{m}

UsingMasschelein Results*
165.3
188.3
158.1
157.2
192.7
119.0
125.0
111.0
110.0
122.0

2,6-diisopropylphenol

0		129.3
15		135.2
25	$1.2758-1.4688$	136.7
35		146.0
45		151.3

132.0
82.4
$139.9 \quad 82.3$
$144.5 \quad 80.2$
139.7
138.7
77.2
75.7

2-isopropylpheno1	band I	band II	band I	band II	band I	band II
0						
15		60.52	72.21	62.5	74.7	62.5
25	$0.2920-0.3904$	71.64	70.04	67.7	72.3	67.7
35		82.05	66.55	70.8	65.8	70.8
45		82.67	67.92	79.5	69.5	79.5

2-tert-butylphenoi

0		92.4	-	83.37	-	65.9
15		83.87	31.48	83.18	31.1	59.5
25	0.3613	84.00	27.76	82.99	27.3	57.2
35		86.17	29.23	87.07	29.5	57.1
45		86.1	26.0	87.78	26.5	56.4
				19.2		

*See page 47 for discussion of Masschelein results
Table XVII: Results for n from the Masschelein Plots

	$\operatorname{Ln} \mathrm{A}_{\underline{\mathrm{f}}} \underline{\text { vs }} \cdot \operatorname{Ln}$	$\operatorname{Ln}\left({\mathrm{c}-\mathrm{c}_{1}}^{\underline{\mathbf{n}}} \underline{\mathrm{vs}} \cdot \mathrm{Lr}\right.$	$\begin{gathered} x=1.0 \\ \underline{n} \end{gathered}$	$\begin{array}{r} 0.9 \\ \underline{\mathrm{n}} \end{array}$	$\begin{gathered} 0.8 \\ \underline{\mathrm{n}} \end{gathered}$	$\begin{gathered} 0.7 \\ \underline{n} \end{gathered}$
2,6-diisopropylpheno1*						
0	2.423 ± 0.414	. 4.732 ± 3.357	4.956 ± 3.530	3.242 ± 2.049	2.609 ± 1.478	2.263 ± 1.163
15	2.379 ± 0.246	5.209 ± 5.581	5.759 ± 6.680	3.278 ± 2.662	2.568 ± 1.778	2.206 ± 1.348
25	2.498 ± 0.199	6.811 ± 5.437	6.155 ± 2.087	3.160 ± 2.087	2.444 ± 1.380	2.093 ± 1.039
35	2.701 ± 0.426	9.144 ± 6.935	6.634 ± 5.151	3.223 ± 2.059	2.475 ± 1.361	2.114 ± 1.024
45	2.571 ± 0.098	7.976 ± 1.766	4.588 ± 8.156	2.702 ± 2.575	2.161 ± 1.645	1.887 ± 1.220
2-methyl-6-tert-butylpheno1*						
0	2.025 ± 0.137	3.147 ± 0.666	2.819 ± 0.491	2.218 ± 0.297	1.918 ± 0.212	1.737 ± 0.165
15	1.824 ± 0.209	2.223 ± 0.491	3.211 ± 0.941	2.316 ± 0.542	1.941 ± 0.385	1.733 ± 0.299
25	2.074 ± 0.161	2.632 ± 0.473	2.526 ± 0.432	2.004 ± 0.253	1.749 ± 0.177	1.598 ± 0.136
35	1.959 ± 0.151	----- -----	3.035 ± 1.290	2.274 ± 0.811	1.931 ± 0.595	1.734 ± 0.471
45	1.725 ± 0.146		2.417 ± 0.858	1.825 ± 0.503	1.584 ± 0.357	1.452 ± 0.277
2-tert-buty1pheno1*						
0	---- ---	4.138 ± 1.090	3.194 ± 0.708	1.861 ± 0.739	1.574 ± 0.563	1.434 ± 0.452
15	2.186 ± 1.195	2.584 ± 0.434	2.675 ± 0.692	1.711 ± 0.592	1.473 ± 0.445	1.356 ± 0.354
25	2.109 ± 1.038	2.898 ± 0.739	2.861 ± 0.669	1.699 ± 0.563	1.454 ± 0.411	1.338 ± 0.322
35	2.002 ± 0.947	2.706 ± 1.021	1.733 ± 0.257	1.236 ± 1.021	1.149 ± 0.666	1.110 ± 0.497
45	2.068 ± 1.016	2.262 ± 1.808	2.835 ± 0.890	1.597 ± 0.578	1.376 ± 0.398	1.276 ± 0.304

Table XVII continued

may cause the $\operatorname{Ln}\left(c-c_{1}\right)$ vs. $\ln c_{1}$ results for \underline{n} to be larger than the slope of $\operatorname{Ln} A_{f}$ vs. Ln A_{o} and the \underline{n} determined from the A_{f} / A_{0}^{n} results. The three methods of evaluating \underline{n} for 2-tert-butylphenol and 2-methy1-6-tertbutylphenol are in satisfactory agreement if a Masschelein calculation using $X=0.9$ is employed in the $\operatorname{Ln}\left(c-c_{1}\right)$ vs. Ln c_{1} calculation where X is the fraction of the $7100 \mathrm{~cm}^{-1}$ band intensity contributed by monomer. The X value needed to bring $\ln \left(c-c_{1}\right)$ vs. $\operatorname{Ln} c_{1}$ plots into agreement with the results of $\operatorname{Ln} A_{f}$ vs. Ln A_{o} plots is approximately 0.8 for 2,6-diisopropylphenol and the X value needed to bring this plot into agreement for 2isopropylphenol is 1.0 . It, therefore, appears that in all of these systems except 2-isopropy1phenol the overtone absorbances are affected by some complex OH end group contribution. In all calculations where the free OH absorbance near $7100 \mathrm{~cm}^{-1}$ is used to represent monomer concentration this complex OH end group concentration should be considered. Therefore, the absorption coefficient of the complex, a_{f}, was also calculated using the best value of the Masschelein calculation to correct the monomer concentration obtained from the intensity of the $7100 \mathrm{~cm}^{-1}$ band (Table XVI).

Thermodynamics

Sigures 9 through 14 are plots of quantities that are proportional to the logarithm of the equilibrium constant vs. $1 / T$ for each of the systems. These quantities are the intercept from the $\operatorname{Ln} A_{f}$ vs. $\operatorname{Ln} A_{o}$ plots, the logarithm of A_{f} / A_{o}^{2} for all concentrations and for the concentrations giving the best average value of A_{f} / A_{o}^{2}, and the logarithm of A_{f} / A_{o}^{2} corrected for changes in the absorption coefficients using a_{f} values calculated using both a_{m} and $a_{m I}$ without Masschelein X values

Figure 9. Plots to Obtain ΔH for 2,6-diisopropylphenol

1) Intercept from $\operatorname{Ln} A_{f}$ vs. Ln A_{o} plots (Table XIII).
2) Logarithm of A_{f} / A_{o}^{2} average value for all concentrations.
3) Logarithm of $A_{f} / \varepsilon_{0}^{2}$ best average value.
4) Logarithm of A_{f} / A_{o}^{2} average values for all concentrations corrected for changes in the absorption coefficients using temperature dependent a_{m} values and a_{f} values calculated not using Masschelein X values.
5) Logarithm of A_{f} / A_{0}^{2} average value for all concentrations corrected for changes in the absorption coefficients using temperature independent $a_{\mathrm{mI}} \mathrm{I}$ values and a_{f} values calculated not using Masschelein X values.
6) Logarithm of A_{f} / A_{0}^{2} average value for all concentrations corrected for changes in the absorption coefficients using temperature dependent a_{m} values and a_{f} values calculated using Masschelein X values.

Figure 10. Plots to Obtain ΔH for 2-methy1-6-tert-butylphenol

1) Intercept from $\operatorname{Ln} A_{f}$ vs. Ln $A_{0} p$ lots (Table XIII).
2) Logarithm of A_{f} / A_{o}^{2} average value for all concentrations.
3) Logarithm of A_{f} / A_{0}^{2} best average value.
4) Logarithm of A_{f} / A_{o}^{2} average values for all concentrations corrected for changes in the absorption coefficients using temperature dependent a_{m} values and a_{f} values calculated not using Masschelein X values.
5) Logarithm of A_{f} / A_{o}^{2} average values for all concentrations corrected for changes in the absorption coefficients using temperature independent $a_{m I}$ values and a_{f} values calculated not using Masschelein X values.
6) Logarithm of A_{f} / A_{o}^{2} average value for all concentrations corrected for changes in the absorption coefficients using temperature dependent a_{m} values and a_{f} values calculated using Masschelein X values.

Figure 11. Plots to Obtain ΔH from Band I for 2-isopropylphenol

1) Intercept from $\operatorname{Ln} A_{f}$ vs. Ln A_{o} plots (Table XIII).
2) Logarithm of A_{f} / A_{0}^{2} average value for all concentrations.
3) Logarithm of A_{f} / A_{o}^{2} best average value.
4) Logarithm of A_{f} / A_{o}^{2} average values for all concentrations corrected for changes in the absorption coefficients using temperature dependent a_{m} values and a_{f} values calculated not using Masschelein X values.
5) Logarithm of A_{f} / A_{0}^{2} average value for all concentrations corrected for changes in the absorption coefficients using temperature independent $a_{m I}$ values and a_{f} values calculated not using Masschelein X values.
6) Logarithm of A_{f} / A_{o}^{2} average value for all concentrations corrected for changes in the absorption coefficients using temperature dependent a_{m} values and a_{f} values calculated using Masschelein X values.
7) Logarithm of A_{f} / A_{0}^{3} average for all concentrations.

Figure 12. Plots to Obtain $\Delta \mathrm{H}$ from Band II for 2-isopropylphenol

1) Intercept from Ln A_{f} vs. Ln A_{o} plots (Table XIII).
2) Logarithm of A_{f} / A_{o}^{2} average value for all concentrations.
3) Logarithm of A_{f} / A_{o}^{2} best average value.
4) Logarithm of A_{f} / A_{o}^{2} average values for all concentrations corrected for changes in the absorption coefficients using temperature dependent a_{m} values and a_{f} values calculated not using Masschelein X values.
5) Logarithm of A_{f} / A_{o}^{2} average value for all concentrations corrected for changes in the absorption coefficients using temperature independent $a_{m I}$ values and a_{f} values calculated not using Masschelein X values.
6) Logarithm of A_{f} / A_{o}^{2} average value for all concentrations corrected for changes in the absorption coefficients using temperature dependent a_{m} values and a_{f} values calculated using Masschelein X values.
7) Logarithm of A_{f} / A_{0}^{3} average value for all concentrations.

Figure 13 Plots to Cbtain ΔH from Band I for 2-tert-buty1phenol

1) Intercept from $\operatorname{Ln} A_{f}$ vs. In A_{o} plots (Table XIII).
2) Logarithm of A_{f} / A_{o}^{2} average value for all concentrations.
3) Logarithm of A_{f} / A_{o}^{2} best average value.
4) Logarithm of A_{f} / A_{o}^{2} average values for all concentrations corrected.
for changes in the absorption coefficients using temperature dependent a_{m} 'values and a_{f} values calculated not using Masschelein X values.
5) Logarithm of A_{f} / A_{o}^{2} average value for all concentrations corrected for changes in the absorption coefficients using temperature independent $a_{m I}$ values and a_{f} values calculated not using Masschelein X values.
6) Logarithm of A_{f} / A_{o}^{2} average value for all concentrations corrected for changes in the absorption coefficients using temperature cependent a_{m} values and a_{f} values calculated using Masschelein X values.

Figure 14. Plots to Obtain ΔH from Band II for 2-tert-butylphenol

1) Intercept from 化 A_{f} vs. Ln A_{o} plots (Table XIII).
2) Logarithm of A_{f} / A_{σ}^{2} average value for all concentrations.
3) Logarithm of A_{f} / A_{0}^{2} best average value.
4) Logarithm of $A_{f} / \mathbb{A}_{0}^{2}$ average values for all concentrations corrected for changes in the absorption coefficients using temperature dependent a_{m} values and a_{f} values calculated not using Masschelein \bar{X} values
5) Logarithm of A_{f} / A_{o}^{2} average value for all concentrations corrected for changes in the absorption coefficients using temperature independent $a_{m I}$ values and a_{f} values calculated not using Masschelein X values.
6) Logarithm of A_{f} / A_{0}^{2} average value for all concentrations corrected for changes in the absorption coefficients using temperature dependent a_{m} values and a_{f} values calculated using Masschelein X values.

as well as using a_{m} with Masschelein X values. The enthalpies determined from the slopes of these plots are shown in Table XVIII. Table XIX has the enthalpy determined from the logarithm of A_{f} / A_{0}^{3} compared to some of the values from Table XVIII for 2-isopropylphenol. The value of $\left[\ln \left(A_{f} / A_{o}^{2}\right)+\operatorname{Ln}\left(a_{m}^{2} / a_{f}\right)\right]$ where a_{m} was temperature dependent was selected as the best representation of $\operatorname{Ln} K$ (Appendix A) and from this equilibrium constant the thermodynamic functions $\Delta G, \Delta H, \Delta S$ for these processes were calculated and the results are in Tables XX and XXI.

The absolute values of the enthalpy of formation for all of these systems seem to be consistently smaller than the usual enthalpy of hydrogen bond formation which is considered to be on the order of $-5 \mathrm{kcal} / \mathrm{mole}$. K.B. Whetsel (11) has reported a value of $-5.03 \mathrm{kcal} / \mathrm{mole}$ for dimer formation of phenol and it is seen that the enthalpies determined in this stuay are in general smaller. It can be seen from Table $X X$ that the nigher the steric hinderance to hydrogen bond formation the less negative the enthalpy of formation. This is consistent with the interpretation that the more sterically hindered an alcohol is to hydrogen bond formation the longer (or weaker) the bond or the less stable the complex will be.

The elbow in the Ln K vs. $1 / \mathrm{T}$ plots for the 2-isopropylphenol occurs whether the intercept, $\operatorname{Ln} A_{f} / A_{o}^{2}, \operatorname{Ln} A_{f} / A_{o}^{3}$ or the corrected $\left[\operatorname{Ln}\left(A_{f} / A_{o}^{2}\right)\right.$ $\left.+\operatorname{Ln}\left(a_{m}^{2} / a_{f}\right)\right]$ is plotted vs. $1 / T$. This observation might be explained by the stoichiometry change observed in the $\operatorname{Ln} A_{f}$ vs.Ln A_{o} plots. The higher composite $-\Delta H$ occurs at the lower temperature where the calculation shows a higher value of the number of molecules in the complex. This elbow also appears in the NMR investigations (5) so it is probably not caused by inherent errors in the infrared analysis. It now appears

dependent \#
0.90 ± 0.5
e

SS'て
$0.45 \pm$
0.71 ± 0.9
4.6 ± 0.8
2.9 ± 0.2
$\begin{array}{ll}\infty & 1 \\ 0 & 0 \\ +1+1 \\ 0 & 9 \\ \dot{4} & \dot{1}\end{array}$

$$
\begin{gathered}
m 0 \\
00 \\
+1+1 \\
\text { ? } \\
\dot{4} \dot{n}
\end{gathered}
$$

Table XVIII continued:
No
best values
1.8 ± 0.4
3.7 ± 0.3

Table XIX: - $\Delta \mathrm{H}$ Values (kcal/mole) from the Linear Least Squares Slopes of Quantities Proportional To LnK vs. 1/T for 2-isopropylphenol
$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ $\operatorname{Ln}\left(A_{f} / A_{o}^{2}\right) \quad\left[\operatorname{Ln}\left(A_{f} / A_{o}^{2}+\operatorname{Ln}\left(a_{m}^{2} / a_{f}\right)\right] \quad \operatorname{Ln}\left(A_{f} / A_{o}^{3}\right) \quad \operatorname{Ln}\left(A_{f} / A_{o}^{2}\right)\right.$

Range
all values ${ }^{\#} \mathrm{a}_{\mathrm{m}}$ temperature dependent ${ }^{+}$ all values x best values* band I

$0-25$	4.1 ± 0.5	4.6 ± 0.8	4.3 ± 0.2	3.8 ± 1.0
$25-45$	1.4 ± 1.8	2.9 ± 0.2	3.1 ± 3.3	2.6 ± 0.5
$0-45$			3.3 ± 0.4	

band II
0-25
25-45
5.8 ± 2.0
4.7 ± 0.3
6.0 ± 1.9
4.0 ± 2.2
5.6 ± 4.4
3.2 ± 1.1
4.8 ± 0.9
0-45
3.5 ± 0.9
-
\# from Table XVIII

* for concentrations $0.2416,0.2990$, and 0.3820 M

Probable errors calculated at 90% confidence

+ Since Masschelein $X=1.0$ for 2-isopropylphenol this column is the same as both the 5th and 6th columns in Table XVIII
x Average shown in Tables IX to XII of all values from Table V to VIII.

Table XX: Thermodynamics from Plots of $\left[\operatorname{Ln}\left(A_{f} / A_{o}^{2}\right)+\operatorname{Ln}\left(a_{m}^{2} / a_{f}\right)\right]$ vs. $1 / T$

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	K	$\Delta \mathrm{G}^{\circ}$	$-\Delta \mathrm{H}^{\circ}$	$-\Delta \mathrm{S}^{\circ}$
	liters/	$\mathrm{cal/}$	$\mathrm{kcal/}$	$\mathrm{e} . \mathrm{u}$.
	mole	mole	mole	

2,6-diisopropylphenol

0	0.293	665.59		9.03
15	0.247	799.45		9.03
25	0.215	908.92	1.8 ± 0.4	9.09
35	0.203	974.92		9.01
45	0.208	992.67		9.41

2-methyl-6-tert-butylphenol

0	0.228	801.74		4.58
15	0.173	1005.46		5.05
25	0.211	922.54	0.45 ± 2.55	4.61
35	0.199	988.38		4.67

2-isopropy1phenol band I

0	2.49	-495		15.0	
15	1.58	-261	4.6 ± 0.8	15.1	
25	1.23	-122		15.0	9.34
35	1.05	-30	2.9 ± 0.2		9.34
45	0.90	+66			9.34
	band II				
0	2.48	-494		15.4	
15	1.57	-258	4.7 ± 0.3	15.4	
25	1.20	-108		15.4	11.4
35	1.02	-13	3.5 ± 0.9		11.3
45	0.83	+117			11.4

2-tert-butylphenol band I

0	0.952	-26.58		8.69
15	0.757	159.09		8.88
25	0.687	222.05	2.5 ± 0.5	8.80
35	0.599	313.96		8.81
45	0.559	367.75		8.70
	band II			
15			1.72	
25	0.997	-62.17	3.0 ± 3.9	10.42
35	1.11	9.86		
45	0.708	211.14		10.43
	0.668	254.64		10.23

* Probable errors calculated at 90% confidence level

Table XXI: Thermodynamics from Plots of $\left[\operatorname{Ln}\left(A_{f} / A_{0}^{2}\right)+\operatorname{Ln}\left(a_{m}^{2} / a_{f}\right)\right]$ $\frac{v s}{a_{f}} \quad 1 / T$ using Masschelein X values to calculate

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right) \quad \mathrm{a}_{\mathrm{f}}$	K	ΔG°	$-\Delta H^{*}$	$-\Delta S^{\circ}$
2,6-diisopropylphenol	1/mole	cal/mole	kcal/mole	e.u.
0	0.468	412.0		4.82
15	0.420	497.0		4.85
25	0.388	562.0	0.90 ± 0.5	4.90
35	0.367	613.0		4.92
45	0.380	613.0		4.67

2-methyl-6-tert-butylphenol

0	0.317	624.0		4.90
15	0.262	768.0		5.14
25	0.298	718.0	0.71 ± 0.9	4.80
35	0.284	760.0		4.77
45	0.244	894.0		5.05
2-isopropylpheno1	band I			
0	2.49	-495		15.0
15	1.58	-261	4.6 ± 0.8	15.1
25	1.23	-122		15.0
35	1.05	-30	2.9 ± 0.2	
45	0.90	+66		9.34

band II

0	2.48	-494		15.4	
15	1.57	-258	4.7 ± 0.3	15.4	
25	1.20	-108		15.4	11.4
35	1.02	-13	3.5 ± 0.9		11.3
45	0.83	+117			11.4
2-tert-buty1phenol	band I				
0	1.40	-182.0		7.29	
15	1.06	- 33.0		6.38	
25	0.995	+2.9	1.8 ± 0.5	6.03	
35	0.915	+54.4		5.68	
45	0.865	+91.6		5.37	
	band I				
15	1.40	-192.0		6.29	
25	1.33	-168.8		6.14	
35	1.09	-52.6	2.0 ± 1.1	6.30	
45	1.04	-24.6		6.22	

resonable to suspect a continous change in the average stoichiometry with changes in temperature or concentration for 2-isopropylphenol in carbon tetrachloride.

Peak Intensity Ratios

The overtone spectra of 2 -tert-butylphenol and 2-methyl-6-tertbuty1phenol have an absorbance peak at a slightly lower wavelength than the large absorbance. Table XXII shows that the ratio of this small peak to the large peak is constant within experimental error over both concentration and temperature. The absorbance of the higher frequency is about 7.5 percent of the lower frequency absorbance for 2-tertbutylphenol and about 12.0 percent for 2-methyl-6-tert-butylphenol. This observation is consistent with that of Sakano et. al. (i2) who observed that for the fundamental absorbance spectra of 2-tert-butylphenol and 2-methyl-6-tert-butylphenol the absorbances near $3645 \mathrm{~cm}^{-1}$ were 7.0 percent and 20 percent, respectively, of those near $3610 \mathrm{~cm}^{-1}$. They state "Apparently an ortho-tert-butyl group forces the OH group into a conformation having a higher OH stretching frequency than that customary for an alkyl phenol." It therefore appears that through these temperature ranges the monomers of these two phenols exists as two definite species as evidenced by the fundamental and overtone spectra with the band intensity ratio independent of concentration and temperature.

Table XXII Ratio of Small Band Absorbance to the Large Rand Absorbance Per Cm Cell Length
$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right) \quad \mathrm{C}(\mathrm{M}) \quad$ Small \quad Large \quad Sma11/

2-tert-buty1phenol

0	0.1479	0.035	0.458	0.076
15	0.1462	0.025	0.445	0.056
25	0.1438	0.030	0.443	0.068
35	0.1421	0.035	0.440	0.079
0				
15	0.2253	0.052	0.656	0.079
25	0.2228	0.048	0.646	0.074
35	0.2190	0.048	0.640	0.075
45	0.2165	0.054	0.641	0.084
	0.2139	0.055	0.637	0.086
0				
15	0.3719	0.075	0.925	0.081
25	0.3677	0.074	0.936	0.079
35	0.3613	0.075	0.942	0.079
45	0.3570	0.080	0.951	0.084
	0.3528	0.086	0.948	0.091

2-methyl-6-tert-butylphenol

0	0.9895	0.25	2.27	0.110
15	0.9781	0.27	2.18	0.123
25	0.9667	0.26	2.18	0.119
35	0.9553	0.27	2.14	0.126
45	0.9438	0.28	2.10	0.133
0	1.3228	0.28	2.82	0.132
15	1.2995	0.30	2.77	0.108
25	1.2841	0.35	2.72	0.128
35	1.2687	0.37	2.68	0.138
45	1.2533	0.40	2.65	0.151
0	1.5017	0.30	3.11	0.097
15	1.4749	0.37	3.10	0.119
25	1.4570	0.40	3.03	0.132
35	1.4391	0.40	2.95	0.135
45	1.4213	0.45	2.95	0.152
0	1.5149	0.47	3.16	0.149
15	1.4954	0.42	3.09	0.136
25	1.4771	0.40	3.06	0.130
35	1.4588	0.37	3.05	0.121
45	1.4406	0.37	3.03	0.122

CONCLUSIONS

The most important results of this study may be sumarized as

follows:

1) All of the phenols investigated associate with monomer dimer as the most probable process except 2 -isopropy 1 phenol where trimers along with dimers in equilibrium with monomer appear to best represent the association process over the concentration ranges investigated.
2) The absorption coefficient of both the fundamental and the overtone bands (a_{f} and a_{m} respectively) was found to be temperature dependent.
3) The free $O H$ overtone bands showed a contribution from the free OH end groups of the complex as determined by the Masschelein technique for all systems except 2-isopropylphenol.
4) The $|\Delta \mathrm{H}|$ determined from the Logarithm of [?uantities Proportional to K] vs. 1/T plots for these sterically hindered phenols were all anomalously low compared to the usual hydrogen bond energies of $4-5 \mathrm{kcal} / \mathrm{mole}$.

Appendix A

Some Relations between Thermodynamic Functions and Spectroscopically Measured Quantities

This appendix shows how the logarithm of the equilibrium constant can be obtained from the logarithm of the A_{f} / A_{o}^{2} ratios and how the intercepts from $\operatorname{Ln} A_{f}$ vs. $\operatorname{Ln} A_{o}$ are proportional to the equilibrium constant. The correction for the temperature dependent absorption coefficients made on A_{f} / A_{o}^{2} to obtain a correct expression for the equilibrium constant was accomplished as follows. The concentration of complex and monomer is given by:

$$
\begin{aligned}
& C_{\text {complex }}=A_{f} / a_{f} \\
& C_{\text {monomer }}=A_{o} / a_{m}
\end{aligned}
$$

where A_{f} and a_{f} are the absorbances per cm path length and the absorption coefficient for the complex absorbance of the $3500 \mathrm{~cm}^{-1}$ band, respectively, and A_{o} and a_{m} are the absorbance per cm path length of the $7100 \mathrm{~cm}^{-1}$ band, and the absorption coefficient for the monomer respectively.

The equilibrium constant expression takes the form:

$$
K=\left(A_{f} / a_{f}\right) /\left(A_{0} / a_{m}\right) \underline{n}=\left(C_{\text {complex }}\right) /\left(C_{\text {monomer }}\right) \underline{n}
$$

Taking the natural logarithm of this expression one obtains

$$
\operatorname{Ln} K=\operatorname{Ln}\left[\left(A_{f} / a_{f}\right) /\left(A_{0} / a_{m}\right) \underline{n}\right]=\operatorname{Ln} A_{f}-\operatorname{Ln} a_{f}+\underline{n} \operatorname{Ln} a_{m}-\underline{n} \operatorname{Ln} A_{0}
$$

Since the values of $\operatorname{Ln}\left(A_{f} / A_{0}^{n}\right)$ were available the correction for temperature dependent absorption coefficients was made on this function in the following manner: $\operatorname{Ln} K=\operatorname{Ln}\left[\left(A_{f} / A_{\sigma}^{n}\right)+\operatorname{Ln}\left(a_{m}^{n} / a_{f}\right)\right]$ where \underline{n} takes on the value of two for dimers. This $\operatorname{Ln} \mathrm{K}$ was plotted against $1 / T$ to determine the ΔH of complex formation.

The affect of temperature dependent absorption coefficients on the intercepts from the $\operatorname{Ln} A_{f}$ vs. In A_{0} may be shown in the following manner:

Assume 1) A_{f} due only to one complex species
2) A_{0} due only to monomer

If $A_{f} / A_{\bar{o}}$ is a constant, $\operatorname{Ln} A_{f}$ vs. In A_{o} should be a straight line with a slope equal to the number of molecules in the complex. The intercept, (B), is proportional to the logarithm of the equilibrium constant $K_{n}=C_{n} / C \frac{n}{\underline{m}}=\left(A_{f} / a_{f}\right) /\left(A_{0} / a_{m}\right)^{\underline{n}}$ since $\operatorname{Ln} K=\operatorname{Ln} A_{f}-\operatorname{Ln} a_{f}-\underline{n} \operatorname{Ln} A_{o}+\underline{n L n}$ a_{m} or arranging $\operatorname{Ln} A_{f}=\underline{n} \operatorname{Ln} A_{0}+\operatorname{Ln}\left(K a_{f} / a \frac{n}{m}\right)$ thus $B=\operatorname{Ln}\left(K a_{f} / a_{m}^{n}\right)$. If $\left(a_{f} / a_{m}\right.$) is temperature independent a plot of B vs. $1 / T$ will give a slope $-\Delta H / R$. Since $\Delta G \approx \Delta H-T \Delta S$ at constant temperature, assuming ΔH and ΔS are not functions of temperature, one obtains

$$
\Delta G=-R T \operatorname{Ln} K=\Delta H-T \Delta S
$$

and

$$
\operatorname{Ln} K=-(\Delta \mathrm{H} / R)(1 / T)-\Delta \mathrm{S} / \mathrm{R} .
$$

The plot of (B) vs. 1/T takes the following form

$$
\left[\operatorname{Ln} K+\ln \left(a_{f} / a_{m}^{n}\right)\right]=-\Delta H / R(1 / T)-\Delta S / R+\operatorname{Ln}\left(a_{f} / a_{\frac{n}{m}}\right) .
$$

Therefore, it appears that the absorption coefficient expression affects the intercept and not the slope if (B) is plotted against $1 / T$. This
(B) was plotted against $1 / T$ to determine ΔH of complex formation.

ACKNOWLEDGMENTS

The author wishes to express his deepest appreciation to Dr. R. H. Hammaker who conceived the idea and directed the progress of this study with acute insight.

Special acknowledgments are due to three of my colleagres P. Rider, J. Witt, and M. Constant for help with the computer aspects of this study and many fruitful discussions.

Further acknowledgment is extended to the Department of Chemistry, Kansas State University, the Petroleum Research Fund, and to my family for financial support.

LITERATURE CITED

1. G. C. Pimentel and A. L. McClellan, "The Hydrogen Bond", W. H. Freeman, San Franciso, 1960., p. 66.
2. A. N. Fletcher and C. Heller, J. Phys. Chem., 71, 3742 (1967).
3. R. M. Hamaker, R. M. Clegg, L. K. Patterson, P. E. Rider and S. L. Rock, J. Phys. Chem. 72, 1837 (1968).
4. A. N. Fletcher and C. Heller, J. Phys. Chem., 72, 1839 (1968).
5. L. K. Patterson, "Hydrogen Bonding: Some Infrared and NMR Studies of Hindered Alcohols", Doctoral Dissertation, Kansas State University, 1967; L. K. Patterson and R. M. Hammaker, Unpublished Studies.
6. C. A. Swenson, J. Phys. Chem., 72, 3108 (1967).
7. R. M. Hammaker, Private Communication.
8. A. Ens, and F. E. Murray, Can. J. Chem., 35, 170(1957).
9. W. Masschelein, Spectrochim Acta, 18, 1557 (1962).
10. P. E. Rider, Private Communication.
11. K. B. Whetsel and J. H. Lady, To be published in the Advances in Chemistry Series.
12. T. K. Sakano, S. L. Rock, and R. M. Hammaker, Spectrochim Acta, 26A, 0000 (1969).

VITA

The author was born on July 24, 1943 in Winfield; Kansas. He attended Independence Junior College for three semesters before receiving a B. A. in Chemistry from Kansas State Teachers College in 1965.

A SPECTROSCOPIC STUDY OF THE SELF ASSOCIATION OF SOME ALKYL PHENOLS
by

ROBERT ALLEN ADAMS
B.A. Kansas State Teachers College, 1965

AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Chemistry

KANSAS STATE UNIVERSITY
Manhattan, Kansas

The intermolecular self association of 2-isopropylphenol, 2-tertbutylphenol, 2,6-diisopropy1phenol and 2-methyl-6-tert-buty1phenol was investigated using infrared and near infrared spectroscopy. The infrared spectrum of each compound at several concentrations and at five temperatures was taken for the fundamental OH stretching region and the intensity of the band or bands appearing at frequencies lower than the free OH vibration was employed as a measure of the complex concentration. The near infrared spectrum of each compound at several concentrations and five temperatures was also taken in the region of the first overtone of the OH vibration and the intensity of this ba:rd was employed as a measure of the monomer concentration. The monomer absorption coefficient was determined for each compound from the intensity of this band at five temperatures in an attempt to determine if it was temperature dependent.

An attempt to determine the stoichiometry of the complex formation was carried out at each temperature. This calculation divided the intensity of the $3500 \mathrm{~cm}^{-1}$ band by the intensity of the $7100 \mathrm{~cm}^{-1}$ band raised to the $\underline{n}^{\text {th }}$ power where \underline{n} ranges from one to three for each concentration at constant temperature. The value of \underline{n} giving the most constant value of this ratio is selected as the number of molecules in the complex. If this ratio is constant for some n then a plot of $\operatorname{Ln} A_{f}$ vs. Ln A_{o} should be linear with a slope of n. These plots were prepared to determine if the \underline{n} was the same as that determined from the A_{f} / A_{0} calculation for each compound at each temperature. This enabled the determination of temperature dependence or independence of the number of molecules forming the complex.

Linear least squares plots of $\operatorname{Ln}\left(c-c_{1}\right)$ vs. $\operatorname{Ln} c_{1}$ were prepared where c is the total concentration and c_{1} is the monomer concentration with no correction for the complex OH end group contribution to the monomer absorbance. It was found that the slopes were in general larger than the slope for the $\operatorname{Ln} A_{f}$ vs. Ln $A_{o} p l o t s$. The technique of Masschelein (Spectrochim Acta 18, 1557 (1962)) was employed to determine the extent of the complex OH end group contribution to the free OH band.

The quantity $\operatorname{Ln}\left(A_{f} / A_{0}^{2}\right)$ was corrected for absorption coefficient change with temperature and this corrected quantity was employed as the best Ln K from which the thermodynamic functions $\Delta G, \Delta H, \Delta S$ were obtained.

[^0]: Solution: 1 mm cell)
 mm cell)

[^1]: * Probable error calculated at 90% confidence leve1
 \# Table VIII

