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I, INTRODUCTION

The problem that is considered in this report is the
determination of the maximum amount of end moment that a member
can sustain when it 1s subjected to a given axial thrust, The
purpose of the report is to calculate the exact interaction
curves for a stecl wide-flange beam~column, to compare the .
results with the interaction formulas used in the AISC Specifi-
cation, and to illustrate the use of the interaction curves.

It is assumed that the plane of the applied moment is that of
the web of the section and that failure is the result of
excessive bending in this plane. Meanwhile, residual stresses
and strain-hardening are not considered in the report,

There are a variety of methods available for the determina-
tion of the ultimate strength of wide-flange beam-columns, such
as Newmark's integration method (Ref. 1), the stepwise inte-
gration method (Ref. 1) and the nomographic method (Ref. 2).
The interaction curves in this report were calculated using
Newmark's numerical integration method., The investigation is
limited in scope to the case of axial thrust plus moment applied
at only one end of the member, although the method '.zed is
appliczhle to other loading conditions,

The idealized stress-stralin relationship of Fig. 1=-1 is
assumed to apply to steel wicde-flange members. The cocrrespond=-
stress and strain distributions due to the presence of

ing

o

zxizl force and moment are shown in Fig. 1=-2,
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will be restricted to structural steel wide-Iilianze beam-columns

bent by end moment(s) -about their major axic. T

o

iluze may be

caused by one of the following instability phenomena:

1. Lateral-torsional buckling.

2, Loczl buckling.

3. Excessiva bending in the plane of the applied

momentc(s).

}..l

Figt 2—

shows the theoretically determined relaticzship exist-

ing between the end-moment Mo and the end-slope @ for most

wide-flange beam-columns., The solid line curve in Fig, 2-1

M
0

(kip-in)

Fig. 2-1.

0 {(radians)

End moment vs. end slope curve for
wide-flange beam-columns



represents the optimal behavior of the wide-flange beam-coclumn;
no lateral-torsional or local buckling effects influence the
situation in this case, This means that all deformations take
place in the plane of bending and that the only weakening effect
is due to yilelding. The MO-G curve consists of the following
two parts:

1. The ascending stable part, where an increase of deflec~
tion is accompanied by an increase in the mcment,

2., The descending unstable part, where an increase of
deformation results in a decrease in Mo.
The peak point corresponds to the ultimate moment, and the attain-
ment of this moment constitutes fallure, The ﬂ;—e cﬁrve is a
straight line if the axial thrust is maintained constant and the
material is elastic.

Failure in the plane of bending is possible only if the
member is bent about its weak axis or if it is adequately
hraced against lateral=-torsional buckling when bent about its
strong axis, In the absence of adequate bracing an initially
straight member will start to deflect laterally, as well as to
twist, at a certain "eritical" moment M, which is lower than the
ultimazte moment Mu. (See dashed line in Fig. 2=1) In addition
to lateral-torsional buckling, the M-8 relationship, and thus
the ultimate strength,is also influenced by local buckling.
In the design routine one must check that the flange width-
thickness ratic does mot exceed a certain maeximum value
specified in the appropriate specification (Ref. 3) to eliminate

the possibility of local buckling.



III. MOMENT-THRUST-CURVATURE DIAGRAM

The results of an analytical study of the elastic-plastic
deformation of wide-flange heam-columns are presented in this
article, In the analysis, the influence of residual stresses
is ignored; thus, the moment=-curvature relationship is developed
as a function of axial thrust only.

l. Elastic and Plastic Deformation

2
For flexure in the elastic range, = g% = §—§ in
x

which ¢ is the curvature, M denotes the bending moment, E 1s
the Modulus of Elasticity, I represents the moment of inerti:z
of the cross section about an axis perpendicular to the plane
of the applied moment; x 1s the distance along the member and y
denotes deflection in the plane of the applied moment. Above
the elastic limit, however, an easy solution does not exist
because stress is no longer a linear functiom of strain, and
therefore ¢ does not vary linearly with M, An important
assumption made in the following derivaticn is that the bend-
ing strain is proportional to the distance from the neutral
axis, 1If strain-hardening is considered, it is once again
necessary tc make an assumption with regard tc strain distribu-
tion in the inelastic range. Strain-hardening, however, is not
considered herein,

2, Analysis of Elastic-Plastic Bending (Ref. 4)

A Case I = elastic
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The derivations of the above expressions are given in Appendix
A,
3. Procedure for Finding M-P-¢ Curves for a Given Member
Material: ASTM A36 steel, Fy=36ksi, E=30000ksi
No strain—hardening, bending about its strong axis
No residual stresses
Section: 10 W29 (Compact section for‘A36 steel) *
Procedure: From the above-mentioned three cases, we can
observe that there are three equations (Axial thrust, moment,
curvature) and only two unknowns in any one of them. There-
fore, we are able to solve for these two unknowns using two
assumed values of axial thrust and curvature. Substituting
these two unknowns into the moment equation, we can obtain M,
Axial thrust is considered to range from 0 to P in increments

Yy
of 0.2P .
y

a. set f— = 0 first, =
y i

= 0.

b. Compute moment by Case I for cicy.

&y If c>cy, it belongs to Case II. Compute moment by Case

II for R _<1.
gt

d. If Ra>l, it belongs to Case III. Compute moment by
Case III.
5}
e. Repeat the process for many other values of —— until
¥

the complete M-0 curve is determined for zerc _.axial

thrust (P=0). Repeat the whole process for other



axial thrust wvalues until enough information is ob-
tained for a complete set of M-P-¢ curves.

f. The M-P-¢ curves are plotted in Fig. 3-1.
A flow diagram and the Fortran program for finding

the M-P-¢ curves are given in Appendix B.
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IV, DETERMINATION OF THE ULTIMATE MOMENT
CARRYING CAPACITY OF A GIVEN MEMBER

Procedure for Determination of the Ultimate Strength

by Newmark's Numerical Integration Method

The steps used in determining each of the interaction

curves are as follows:

Given loading condition, slenderness ratio and constan't

axial thrust value for the 10 W 39 section.

de

Ce

Assume an end monent, Mo which is greater than the
initial yield value,

Assume a possible deflection configuration as a
first approximation.

Compute the moment values at ten equally spaced
statlions along the length of the member (MX=MO+P-y}
and obtain the curvature values from the M=P=¢
diagram. (Fig. 3=-1)

Correct the assumed deflections based on the values
obtained from this numerical integration and repeat
step cC.

Repeat step d until desired accuracy is obtained,
(0.001 in. is used In the following example.)
Determine the end rotation for the final deflection
values of step e, If it is assumed that the deflec-
tion curve o0f the member within the three end segments
cen be represented by a parabola, then the end slope

can be expressed in terms of the known deflection as



1z

4]),)—D3
@ = ——————"— in which D, is the deflection at the

2 X 2
first station away from the zpplied moment end of
the member, D3 is the deflection at the second
station away from the applied moment end of the member,
and X is the grid spacing. (Assumed to be L/10 for
the case considered,) '
g+ Assume greater values of the end nmoment “o and repeéat
the same process as outlined previously, If a Ho

greater than or equal to M is assumed, the

critical
numerical integration process diverges,
h Plot Mo versus O from step g and determine the

naximum value of Mo from the resulting curve, (Sce

Fig. 4=-1)
MM 8
6.400 | 0.00590
0.50 [ M) y1e, |o0.410 | 0.00605
0.420 | 0.00620
0.430 | 0.00638
s 0.440 | 0.00671
M 0.450 | 0.00706
Y 0.460 | 0.00750
0.470 | 0.00814
0.480 | 0.00909
0.490 | 0.01061
0.492 | 0.01116
0.40 F
I I | L o

0.006 0.0068 0.610 0.012

Fig. 4-1, Typical moment-end slope curve
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An example illustrating the determination of moments and
end-slopes is given in Appendix C., A typical moment versus
end rotation curve is given in Fig, 4-1, A flow diagram and
the Fortran program for finding moment and end=slope curves

are presented in Appendix D.

M
o .
From the zbove diagranm, (E;)critical 0.4%2, Therefore,

.

the ultimate moment carrying capacity Hu is 745.4 kip-in.

2% M=3 curves for él = 0,6
¥

The above mentioned Newmark's numerical integration
procedure is well suited for determining the ultimate moment
of a beam-column, but it furnishes only the stable branch of
the M=0 curves., In many applications, it is imﬁortant to know
also the descending (unstable) branch of this curves, However,
this problem is beyond the scope of this report, By repeating
Newmark's numerical integration procedure for different values

of slenderness ratios, the M-8 curves can be constructed as

shown in Fig. 4=2. L "
= e = —
M b \\\
— 0.4 -
M . 40
4 5 y N\ \
8.3 ~
\ 80
0.2 Solution obtazined by nu-
" merical integration
————— Predicted strength
N10
0.1 \ 9

| [ ! S, i i
0.01L ©0.02 0.03 0.04 0.0S 0.06 0.07

@

Fig. 4-2. Family of M-C curves for P/Py=0.6
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3., Ultimate Strength Interaction Curves (M-P-L curves)
The results of the-ultimate strength calculations

for beam-columns are represented best in the form of P-M-L
interaction curves. A set of these is given in Fig. 4-3.
These particular interaction curves are for the case of axial
thrust plus an end-moment applied at cne end of the member
causing single-curvature deformation about the strong axis of
an 10 W 39 member, Each curve in Fig. 4-3 shows the relation-
ship between P (nondimensionalized by Py) and ¥ (nondimension-
alized by Mp) for a given slenderness ratio L/r. The particu-
lar curves in Fig., 4=3 do not include the effect of residual
stress.

The following ﬁbservations can be made about these inter-
action curves:

1. VWhen P=0, the member is a beam and can support a
moment ecqual to Hp.

2. When M=0, the member is a column which is able to
carry a lcad egual to its own critical load,

3. The situations when P=0 and ¥M=0 are two extreme
cases, Between these extremes, beam~-column action tzkes place,

4, TFor a given value of P, the member having L/r=0 can
carry'considerably more moment than the member having L/r=100,
Thus, short members are stronger than long members,

5. Up to L/r=60 the interaction curves are nearly

stralight lines, For higher slenderness ratios the curves sag
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downward, thus showing the larger influence of secondary moments

due to deflection.

Fig. 4-3. Ultimate strength interaction curves
' for one end-moment only
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V. APPRbXIMATE ULTIMATE STRENGTH INTER-
ACTION CURVES - AISC SPECIFICATION

In the AISC Specification (Ref., 3) three formulas refer-
ring to three distinct loading cases are given for the plastic
design of beam—-columns., These formulas were developed by
fitting the curves into cubic and gquadratic equations. All of
the limitations of the original curves are, therefore, pre-'
sented Iin these approximations. In general, the range of
application was chosen as 0<L/r<120 and OiPoleip.6. It was con=-
sidered that these covered the major range of pratical appli=-
cations, The details of these foramulas, togethe; with their
range- - of épplicability, are given in Appendix E;

Pin-ended column subject to axial thrust plus an end-
moment applied only a2t one end of the member will be discussed
in this chapter. Assume an equation of the form

Mo/Hp=B—G(?o/Py)
in which B and G are assumed to be functions of the slender-
ness ratio only; the coefficients for an A7 steel wide-flange
member are found from the specification (Ref. 3) to be
G=1,11+(L/7) /180-(L/x) > /9000+(L/x) > /720000
B=1.133+(L/r)/3080+(L/r)2/185000
For A36 steel, the values of L/r which are used in the above
mentioned eqﬁations are modified by the corrective term
Y36/33 (the square root of the ratio of the yleld strengths
of A36 and A7 steels). It should be noted that when the AISC

beam-column formulas predict a value of HOIMP greater than 1.0
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(that is, for small values of PO/Py)B Mo/Mpﬂl.O ghould be used,
Meanwhile, these formulas are based on failure due to excessive
bending in the plane of the applied moment. -In plastic design
failure due to local and lateral-=torsional buckling is not
permitted, because the member must deliver a considerable in=-
elastic rotation in addition to being strong enough to Qupport
the loads. Both local and lateral-torsional buckling tend tbo
reduce rotation capacity. For this reason, the geometry of the
cross section of the member must fulfill certain minimum thick-
ness provisiens to prevent local buckling, and lateral bracing
must also be provided,

A flow diagram and the Fortran progran for finding ultimate
strength interaction curves are provided in Appendix F, Approxi-
mate ultimate strength interaction curves are given in the next

page, (Seze Fig. 5-1)



mw,’c’

18

Ultimate strength interaction curves
from the AISC Specification
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VI. DISCUSSION

1., Comparison between "Exact" and "Approximate" Interaction Curves
The agreement between the approximate interaction curves
(Fig. 5-1) and the relationship determined numerically (Fig. 4-3)

is shown in Fig. 6-1. The solid lines of Fig. 6-1 are obtained
from Newmark's numerical integration procedure and the dashed
lines are predicted by the AISC plastic design formulas.
2. Application of M-0 Curves

A simple application of M-0 curves is given in the following
example where a restrained beam-column is analyzed. The
structural system consists of a beam-column which is pinned at
one end and restrained by a beam at the other end. An axial
force of O.6Py (248 Kips) is applied to the beam-column and the
upper joint is subjected to an external moment MD. Equilibrium
at this joint requires that the sum of the end-moments resisted
by the beam and the beam-column be equal to MO, and compatibility
requires that the end slopes of the two members be equal to each
other.r The M-8 curve of the beam-column is taken from Fig. 4-2,
and the M-0 curve for the beam is assumed to be ideally elastic-
plastic.

Example 7-1 Determine the ultimate moment Mo for the
restrained colunn. Bending is about the strong axis of the

members.
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Lo %
-
i
Exact solution obtained 10
from Fig. 4-3 Q\
B ———-Approximate solution
’ obtained from Fig. 5-1
—
l | E
0.0 0.2 0.4 0.6 Q.
M
M
P
Fig. €-1. Comparison between "Exact" and

"Approximate" interaction curves
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10 W 39
A36 Steel

o
|
i
I

A36 Steel_ll'~[
|

|
L =256 in.=60r
c ' =%

il

L. =180 4n.
b

Solution:

M

i

In the elastic range: b

M,

At the plastic limit: a2

__i

Ecuilibrium Condit:’ =:

M =
LM =N

Compatibility Condition:

relationship:

Assumed ideal elastic-

plastic relationship; that is,
beam is elastic until Mb=H , and
in the plastic range Mb=Mp, for

any value of @b.

3EI. &

b b
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For A36 steel, 10 W 39 2=47.0 in.j; Fy=36 ksi§ E=30000ksi

Mp=ZFy=47x36=l692JOkip-in.

_ 4

I,=209.7 in.
3EI, 6 3X30000X209.853,

1) - b b o 2}

belastic Lb 180

= 1049000, .
M L

_ _pb _ _ 1692X180

°p T 3ET, T 3X30000x209.7 - 0-0161 rad.

M - Gc relationship:

For L/rx=60 and P/Py=0.6, the M;-GC relationship is given in

curve form in Fig. 4-2.

In Fig. ©6-2, the curves for the beam and the beam-column are

shown separately. The upper curve in this sketch is the M-8
curve c¢f the complete restrained structure; each point on this
curve 1s constructed by adding the moments cérried by the beam
and the beam-column a2t the corresponding rotation €. It seems
that in the beginning of the locad application, the major share of
the moment is resistéd by the beam-column. However, as the
externai moment is increased beyond the capacity of the beam-
column, more and more of the moment is resisted by the beam.
The above-mentioned example illustrates how members in a
structure assist each other in carrying the load, and it also
shows that not only the ultimate strength but alsc the deforma-
tion behavior of each element is of importance in determining

the ultimate strength of the whole structure.



P
M(kip-in.)
: M (‘———:L

o

2500 |-
{M)max=2365 kip-in.
—_— by /
~
2000 |—
(,)=1692 kip-in. :
1500 (2
?
10060 —
IIM
c
(H2=673 kip-in.
—
™~
500 L
Max.(Ho)=2365 kip-in,
0 1 | { [
0 0.01 0.02 0.03 0.04 ® (radians)
Fig., 6-2, The curves for the beam and the beam-coclumn

3. Factors in Determining the Ultimate Strength of Wide-

Flange Beam-Columns

The uvultimate strength of wide-flange beam-columns will be

affected by any one of the following factors:



a. Material of the section. (Yielding stress, stress and
strain relationship.)

b. PFProperties of section.

C. Loéal buckling.

d. Lateral-torsional buckling. (Failure is in the plane
of the applied moment{s) and that of the web of the
beam—ceclumn.)

e. Slendermness ratio. (L/r)

f. Axial thrust.

g. End restraints of the beam-columns.

h. Residual stress (Not comsidered in this report.)

According to the previous chapters we know that each one of the

factors listed above plays an important role in determining the

ultimate moment carrying capacity of wide-flange beam-columns.
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VII. COKCLUSIONS

Solutions to the problem of the determinaticn of the mazizuzm
moment carrying capacity of a simply supported wide-flange beam-
column (10 W 39) loaded by axial force and a single end moment
applied in the plane of the web have been presented. In cobtain-

s N

has been assumed that the member in
question will fail by excessive bending in the plane of the applied

moment. Failure due to lateral-torsional or local buckling

has not been comsidered. The resulting interaction curves

P
ﬁfj
’—l

3
s

1

L)

Ly
(o]
@]

not include the influence of z typical cooling-
type residual stress pattern. Another set of elastic-nlastic

bendi-; eguations including residual stresses are given in Ref.

&,

An important assumption made in the derivatioms of Appendix
A is that the Rermoulli-Navier hypothesis (bending strain is Dro-
portional to the distance from the neutral axis) can be extcended
to include the case of plastic deformations. Actually this
assumption is an idezlization for steel members. As has been

Hs

described previcusly, the only requirements are that the strain
be proportional to the distance from the neutral axis in the
elastic range and the stress be equal to the yield-point stress
lastic range. Thus, the curvature at any section is a
fuaction of the part of the cross section which remains elastic.
If the strain-hardening range is considered, it would be

necessary tc make another assumprion with regard to srrain

distribution in the dimelastic ran

¥}
[{1]



The solution to the problem considered in this report was

e

obtained using Newmark's numerical integration method, which can
casily be applied to loading conditiomrs other than the one
considered. The determination of the descending (unstable)
branch of the ¥-C Curves (Fig. 4-2) is beyond the scope cf this

repor®. liowever, it can be obtainel by either the stepwise

integraticn method (Ref. 1) or the nomographical method (Ref.

Fig. 95-1 shows the agreecment between the "exact interaction
curves ané "approximate" interaction curves. The approximate

formulas (AISC Specification, Rei, 3) are guite conservative

I

for L/r=2C and L/r=40. Agreement for other slenderness ratios
is gquite clese when P/P}r ics less than 0.5, Otherwise, the

approximate solutions are conservative. VWhen P/Py is smaller

than $.15, the AISC Specification formulas for any slendern

m

ss
ratio gives azlso provide a good approximate solution.

A set of charts (M-P-¢ Curves, M-0 Curves and ¥-P-L Curves)
is recuired for each type of material and cross-sectional shape.
Therefore, the results obtazined for a 10 W 39 section of A36 steel
are only apprbximately applicable to other sections and materials.

urther work is currently underway by other investigators

]
et

to include the influence of lateral-torsional instability in

iminary results oI these

r
[
(&)
W

the strength calculations, and p

a1

studies indicate that good correlation can be achieved when this

type of faiiure is considered.
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NOMEXCLATURE

& i Y
A Area of cross-section (in };
3,G,J,K Non-dimensional constants;
D Deflection (in.);:
D? Deflection at the first stztion away from the
“ acppliied moment end ofi the member;
D3 Deflection at the second station away f£rom the
applied moment end of the member;
E Young's Modulus of Elasticity (30000ksi);
Est Strain-hardening modulus;
Fl Resultant of stress diagram 1 (kips};
Fz Resultant of stress dizgra=m 2
s = = r - 4\
B Moment of imnertia {(in )
L Length of member (in.);
Ljrx Slenderness ratio;
M Bending moment (kip-in.);
HG Applied moment at the end of menber;
LP Fully plastic moment value under pu¥e morment;
M Ultimate moment carrying capacity;
My Initial yield moment value under pure monent;
? Axisl thrust (kips);
PO Axial thrust at maximum load capacity for beam-columns;
Py - Axial load corresponding to compressive yield stress

over entire sectiocn;

R Non-dimensional ratio (R =g /cj);

n
M
W

o



5 Section modulus about the strong azis (in7):
ch Yield penctration in top of member (in.);
Ytt Yield pcvetration in bottom of member;

Z Plastic modulus about the strong axis (in3);
b Flange width (in.);

d Depth of section (in.);

+n

Shape factor (f=Z/S);

H

Radius of gyration about the strong zaxis;

t Thickness of flange;

w Thickness of web;

x Distance along the member;

¥ ’ Lateral deflection

¥a Distance between centroidal axis of =zection and

the force F7;

2

Non-dimensional ratio (a=Y [d);

ce
) Non~-dimensional ractio (BzYtt/d);
5, ¥ocified factor;
€ Strain (in./in.):
SC Strain in compreszsion flange;
Et Strain in tension flange;
e End rotation {(radians);
A Length of equally spaced segments of total
member length;
v L4 AN
c Stress {(kips/in");
o] Bottom Iiber stress of section;

f

a Yield stress ( y=36ksi);
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W

‘g

LY

Curvature (radians per inch)

Curvature corresponding to first yield

Wide-flanpge;

in

Lo

flexure;

.
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APPENDIX A
Derivation of Elastic and Plastic Bending Equations

Wide-Fiange Bending - Strong Axis { No residual scresgses )

Case I - Elastic g G . G_ .G
: H ,___}"_T_a_ S —
i [ i ‘

| | |

o
Limits a
- < <g
y=a—"y
T CC /1
-3 :

(RN IR
~
o
|
]
N’

(g +o0 )
_=Gy{2bt+w(d—-2t)) -—2-2,———"*——(2bt+w(d-2t))

a

{(Zbt+w(d=-2t))

]
Do fr
Fan
Q
+
Q
o
S’
~~
o
(=
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O
1
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~
Q
1
Q
S’



(agte) 3 3
=——E§E~—(bd -(d-2t) " (b-w))

y  (IFR)

2 2
E—ﬁﬁ_ffg—(Ebt(3d -?dt+4t )+w(d—2t)3)

CURVATURE

Case I1I ~ Top side gets yield penetration only

_..m
<

:
LIMITS —L 4 B 72
R =2a l-G_a_l‘ o, | — 9 3, !

y
% s ‘__J‘é
o T | T
t ¢ d E - l o -2t
giezls - ) S L
A CC—

|
|
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AXTIAL THRYUST

[~

*M

(d-¥ u)

5 ,l N L o
=g (2bt+w{d-2t))- + {=(d- Ybh -
'y( Wi )) (Gy cra)\Z((1 chjb 2(d-Ycc)

(b-w})

(g +a ) .
_ . _ .y "a’ . b B _—
—0y(2bt'rw(d 2t)) Z(d—-‘fcc)((q Yec)b=-(d=-Ycz~-_, {(b=w))

{(c +c ) 2 5
d=Yec)bt=-t b+ {(c-Yce-t)"w)

- b i _L?:.._._
cy(-bt+w {d Zt)}_2 Ta-Yee) (2(2

(c‘*a h]

2(d- ch)

Il

5, (2be+w(d-2e))- 2 (_1)+w(d-Yee) 24wt d)

- %(c +g ){2b-2w)t
v a

h o
g— = (l-Ra)(bt—wt}+ 1+Ra }(Duz-wa (1- a) -wt )*w
¥y
MOMENT
ClT 2¥ce (cl+ca) (d—ch—t)2 (d+2%¥cec-4t)
+ BB _ e - CC—§&§
(cr o} ) (d Yee)b( 3 T {dYee) {(b-w) Z
yZ'" T
2
a3
(o +o }

+

Ty (b (d- Boed ™ LI ca il ek ® Chs) (ENET b b )
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(o 40 )

— \ N 4 v i i
- Ty ey (((d-Yee-t) 2@ (d+2¥ce-4t) ) 4be (42 +4Yce b2 -BdYee

+8cht—86t+2d2+2chd—4ch2—dt—2YC;t})

(g +ag )

o 2 ]
=1§?§%§:§3&w(d(1-a-5)) (d(L+2a)—4t)+bt(6d(l-a)(d_t)_3dt+4t2})

2

M 142

ﬂy 12{1l~-a}d

(w(d(l—u—%))z(d(l+2a)—4t)+bt(ﬁd(l—a)(C—t)-3dt+4t i)

CURVATURE

Case III - Both sides have started to yield
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i
= ¥ + 1. i — - - -— - -_— — -
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- s _ P N N L . IEERE
oy(ut(d )+ = (6(B d,(1 o d}+(¢ a=-£) (1+2a-423))

wdz
6

=0 (br(d-t)+—(s (a—%} {l—e.--ta:-)+(l—u—8) (1+2a-42))

2
£ (6(8-2) (1-8-5)+(1-a-8) (1+2c-48))

bt

;‘—=bt (d-t)+Z
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APPENDIX B

Flow Diarsram and Tortran Program for Findinp M-P-4 Curwveas

E € PROGRAM FOR MOMENT-THRUST-CURVATZURE GURVES

1 FORMAT ( 6F10.0 )
READ 1,A,D,B,T,W,S
THRUS=0.
B0 10 I=1,5,1
CURVA=0,
o 11 J=1,51,1 | i
SIGMA=THRUS+CURVA
IF(1l.-SIGMA) 7,2,2

2 AMOME=CURVA
PUNCH 3, THRUS,CURVA,AMOME,SIGMA

3 FORMAT (9H CASE 1,5X,2F10,1,F10,4,F6.2)
GO TO 12

7 Q=14.5316*THRUS*CURVA-9.13%*CURVA-0,272*CURVA**2+1,
RA=(-(2.,+5.13*%CURVA)+((2.+5.13%CURVA) #%2-4,%Q)%%0,5) /2,
ALPHA=(2,*CURVA-1.-RA}/(2.*CURVA)
IF(l.-RA) 4,5,5

5 U=W*(D*(1.-ALPHA-T/D))**2
V=6.*D*(1,-ALPHA) *{D-T)
AYOME=(CURVA/(6.*3)%*U* D*(1,.+2,%ALPHA-4 ,*T/D))/S
AMOME=AMOME+ (CURVA/ {(6.%D)*B*T* (V-3 ,*D*T+4 *T*%2)) /S

PUNCH 6, THRUS,CURVA,AMOME,RA,ALPHA

on

FORMAT (9H CASE II,53X,2710.5,F10.4,6X,27€.2)
GO TO 12

4 ALPHA=(THRUS®A/(W*D)+1,-1,/CURVA} /2.



12

CURVA=CURVA+0.1

QW

Lo

BETA=(1.-1./CURVA-THRUS*A/(W*D)) /2.

G={(BETA-T/D)*(1,-EETA-T/D)

AMOME= (B*T* (D-T)+W*D*%2%G) /S

" AMOME=AMOME+ (W*D*%2/(6.*CURVA)*(1,+2 ,*ALPHA-4 . *BETA)) /S

PUNCH 8,THRUS,CURVA,AMOME ,ALPHA,BETA

TERMAT {9H CASE ITI.5%.387F10.1,710.4,12% ,2F6,2)

CONTINUE

TARUS=THRUS+0,.2 -



A

ALPHA

AMOME

(w7}

Al

o4
=
+3
N

Notation of Program for Finding M-P-¢ Curves

Area of section;

a {Non-dimensional ratio)

ua

Moment;

Flange width;

8 (Non-dimensional ratio);
Curvature;

Depth of section;
Mathematical computztion terms;

Ra;

Section modulus about the strong axis;
05

Thickness of flange;

Thrust;

Thickness of web;

L

)



Flow Chart for Finding

START
|
if

I

M-P-¢ Lurves

‘ THRU

R

=0

T

]

i

CURVA=0

r

CURVA=CURVA 4+ 0.1

!

YES COMPUTE o

COMPUTE Ra
BY CASE TT

N

BY CASE II1I

COMPUTE ALPHA
BETA, MOMENT

COMPUTE
BY CASE

MOMENT;

II

1

THRUST + 0,2

= THRUS T

40
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APPENDIX D

Flow Diagram and Fortran Progran for Determining Meoment

and End-slcpe Curves

PROGRAM FOR DETERMINATION OF ULTIMATE STRENGTH CF A
FY=36 KSI, E=_ 300060 PSI,P/PY=0.6, L/RX=40,
SIMEXSION DEFLE(20) ,CURVA(2C),X(20),Y(20)
FORMAL { 7F10.5 )

READ 21, {(DEFLE(I),I=1,11 )

P=11.48%36,%0.6 ‘

YIELM=36.%42,2

SPAN=4,27%40,

FACT=0.4

B=DEFLE(5)

DO 26 K=1,12,1

ENDMO=FACT*YIELM

DO 25 M=1,20,1

S=10.

Do 22 I=1,11,1

APPMO=(ENDMO*S/10.+P*DEFLE(I))/YIELM

Fgl

IF(C,%4-APPMO) 1,2,2

CURVA(I)=APPMO

CURVA(I)=3.4+0.0291*V+0,0183*V*%2-0,00917*V**3+0,0016067*V*%4

GG TO 11



Led

[&5]

(=
I~

1"

22

&5

IF(C.45-APPMO) 5,6,6
V=100.*{APPM0-0,43)

CURVA(I)=0.54240,057*%V+0,01L6*v*%2

IF(APPMO-0,438) 13,13,14

v=1000.%(APPX0-0.48}/3.
CURVA{I)=1.74+0,171#V+0,3935%V*#*2-0,1487%V**3+0,04%V*%4
GO T0 11

IF{APP40-0.4956) 16,16,15

V=100G0.*(AM-0.49)/19,

CURVA(I)=6.3+2.9168*%V+0,6998*V*%2-0,1166%V*%*]3
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33

I3
(a8

[
[9]

PUNCH 21,(DEFLE(I),I=1,1i1)
ENDSL=(4,*DEFLE(2)-DEFLE(3))/(0.2%SPAN)
PUNCH 33, FACT,ENDSL

FORMAT (F8.4,5X,18HANGLE OF ROTATION=,F7.5)
FACT=FACT+0.01

CONTIXUE

PUNCH 9,FACT

FORMAT (47H

NUMERICAL INTEGRATION DIVERGES WHEN M/MY

44

,F6.4)



c<=szlope Curves

b
<]

Notation of Program for Determining Moment and

APPMO Totzl moment divided by My;

CURVA Curvature;

BEFLE Deflection;

ENDMO End moment;

ENDSL End slope; '
FACT ENDHO/YIELM

P Axial thrust;

5,V,2 Modified factors;

X Slope;

b4 Deflection in rad.;

YIELH Tnitial yield moment value under pure moment;

*Statenent 2 through stetement 16 consist of an aprcroximate
intersolatinz polynomial for -8 curves when P P?=O.6. The
polynomZal is obtained by Newton forward-difference formula.

(Ref. 5)
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APPENDIX E
Formulas for Beam-Columns in Plastic Design-AISC Scecification
(Section 2.3, Ref. 3
Case I beam-colunns zre those for which ecual end-moments
czuse double-curvature deformation. The interaction
ecuztion is independent ¢ iength, and it is used .
whan 0.15P <P<0.,6P and L<100r .
y - v — X | P
[
T 8
Range of application: 0<=—x<100 T
“x TN ——
0<E—<0.6
<=—<{,
-—P —
¥ L
2
For G<0—<G.15, M=M
._.P — 3
v ¥
.. P e ? g
For 0.L3<'P—i0.6, Lz—l.lﬁ(l—g—)ﬂp :
¥y ¥ Y,
Case II bzam=-columns are members for which the smaller of the
twe end moments ranges in value from zero to just less
,thea the larger end-momesni (that is, -M<3,M<G, where 81
ieg the ratioc of end moments). The moments wouid, excent
at the l1limit wherz one end moment is zero, causa double-
curvature deformation. The interaction equation is an
approxicaticn of the case where one end-nomznt is zero.
Fcr moment racios between ~-1,0 znd O the formula
conservative,

oy
wn

47



47

. o . L -
Range oi application: 0<—<120

-1.0<8,<0

)

12
M=1,00 or M=M (B=G{ — )
F y

wiiichever is smaller

Case III loading is an anaiytical approximation -of the iater-

1

&)

ction curves for 81=+l.0 {equal end-moments causing
single-curvature deformation), but it is to be used for
all ratics between O (only one eand-moment) and +1.0.

Tor a1l but the case of 51=+1.0 where it is nearly exact,
the application of the formula is conservative.

.

i - ; L
Range of application: 0<—=<120
E =
x

<
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i
et
A
+
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slencderness raitio, the formulazs for Case II and Case I1Il are

a f

u

Unlike the Case I formulc which is independent of the

o

td

ficients

Hh

ncticn of the slenderness ratio. The coe

}4

¥

(]

K, and J are defined by the following formulas for A7 steel.

i} 2
IL/rx |(L/rx)
"3080 '185000

B=1.133

2 .3
Lir (L/:\:) (L/x )
G=1.11+755 5000 1720000

2 V3
L/r (L!rx} '(L/Lx,

el KD X w +
R=0.42+—5 595600 1160000

L/r, w/r)? @/’
60 8700 606000
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APPENDIX

o

T
zund FTortran Procgram for Finding Ultimate Strength
Interacticn Curves

PROGRAM FOR ULTIMATEL STRENGTH INTERACTION CURVES
D2UE TO AISC PLASTIC DESIGN FORMULAS

FORMAT (5X,F10.0,F10.1,F10.5)

SLEXND=20,

Do 9 I=1,5,1

THRUS=0.

po 10 J=1,11,1
B=1.133+SLEND/3080.+SLEND#%2/185000,
G=1,114+STLEND/190.-SLEND#**2/8000.+SLEKXD**3/720C000.

ENDMO=B-G*THRUS

PUNCH 8,SLEKD,
THRUS=TERUS+0.1
CONTINUE
SLEXD=SLEND+20,
CONTIXUE

S5TO?

s
Cur

in
ion ves

constants;

Ultimete Str

eagth



Flow Chart for Finding Ultima
Interaction Curves
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i
SLEND=20,
¥
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COMPUTE B, G
AXD EXNDMO
i
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The problem that 1s considered In thils report 1s the
determination of the maximum ﬁmount of end moment that a membert
can sustain when it 1is subjected to a given axial thzust.

The purpose of the report is to represent each step in
the determination of a Moment-Thrust—-Curvature dilagram and the
determination of the ultimate strength of a given wide-flange
beam-column (10 W 39) in detail, A comparison between the °
exact interaction curves obtained in the report and the approxi-
mate interaction curves used in the AISC Specification is also
presented, Finally, an example is provided to illustrate the
use of moment-curvature diagrams, to illustrate how members in
a structure assist each other in carrying the load, and to show
that not only the ultimate strength but also the deformation
behavior of each element is important in determining the ulti=-
mate strength of the whole structure,

The solution to the problem of this report was obtained
using Newmark's numerical integration method. The problem
was limited in scope to the loading case of axial thrust plus
moment applied at only one end of the member. Also, it was
assumed- that the plane of the applied moment is that of the web
of the section and that failure is the result of excessive
bendi;g in this plane. Residual stresses and strain-hardening
were not considered in the paper. Because a set - -of charts are
requi;ed for each type of material and cross-sectional shape

to sclve beam=column problems, the contents of this report



are of necessity limited to mild structural steel and to as=-
rolled wide-flange secticns with axial thrust plus moment
applied at one end of the memher. The results obtained for

3

a 10 W 39 section are only approximately applicable to other

sections.,



