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INTRODUCTION



Electromagnetic phenomena in rigid conductors have been studied ever

since the time of Faraday. Until recently the study of the interaction of

electromagnetic fields and electrically conducting fluids has not attracted

much attention. Probably the recent incentive to study these phenomena

came from the field of astrophysics. It has long been suspected that most

of the matter in the universe is in the plasma or highly ionized gaseous

state. Much of the basic knowledge in the area of electromagnetic field

dynamics evolved from these studies 1 1 |.

The field of plasma physics has now grown from these scholarly beginnings

to include problems in such widely diverse areas as geophysics and controlled

nuclear fusion. As a branch of plasma physics the field of magnetohydro-

dynamics (MUD) consists of the study of a continuous, electrically conducting

fluid under the influence of electromagnetic fields. KHD originally included

only the study of strictly incompressible fluids, but today the terminology

is applied to studies of partially ionized gases as well. The essential

requirement for problems to be analyzed under the laws of MBS is that the

continuum approach be applicable.

With the advent of hypersonic flight the field of KHD as defined above,

which has previously been associated largely with liquid-metal pumping and

flow control and measurement, attracted the interest of the aerodynamicists.

As a result many of the classical problems of fluid mechanics were rein-

vestigated.

The study of channel-flow heat transfer has applications in the fields

of propulsion and power-generation in such devices as a MSD power generator

and pump. For obtaining a high thermal efficiency in the generation of power,

the MHD generator is ideal. However, the extremely high temperature at which



a MHD generator must operate has been a major problem in developing such a

generator, and this problem can only be solved with a delicate blend of

physics and engineering I 2 I. Therefore, the study of heat transfer associated

with MHD channel flow is of considerable importance.

For the study of heat transfer in MHD flow, the published literature

on the subject is limited |_2, 3, k, 5. 6, 7. 8, 9, 10. 11, 12, 13, M-, 15_|.

All of these papers with the exception of the last three I 3, k, 5, 6, ?, 8,

9, 10, 11, 12] deal only with the cases for the fully developed velocity

profile 1 16J.
Three references, 1 13, V*,

15J
are the only ones, to the

authors knowledge, that treat the entrance effects in a MHD channel. That

is the simultaneous development of the velocity and temperature profiles

in the entrance region of some chosen channel geometry. Reference 1 13

J

considers only the case of constant wall temperature for a flat duct.

Reference 1

14
J investigated the same geometric configuration for insulated

walls. Reference 1

15J
investigated the entrance region of an annular

channel for the case of insulated walls.

In this thesis the author investigates the simultaneous development

of the velocity and temperature profiles in the entrance region of a flat

duct for electrically conducting fluid flow in the presence of a transverse

magnetic field considering the case of constant heat flux at the wall. The

fluid properties are assumed to be constant, and the velocity and temperature

profiles are both uniform at the entrance of the duct. The flat duct is formed

by semi-infinite parallel plates, and the magnetic field is applied perpen-

dicular to the plates. There can be a net electrical current flowing parallel

to the walls and perpendicular to the flow direction with a variable external

resistance connecting the two end plates which are displaced at infinity.



The basic governing equations are the Maxwell equations for the inter-

action of current flow and magnetic field, the continuity and momentum

equations for the conservation of mass and momentum, and the energy equation

for the conservation of energy.

Part 1 of the thesis is concerned with the effects of viscous dissipation

on the temperature profile in the thermal entrance region between parallel

plates. The flow is laminar and the velocity profile is fully developed. The

heat flux at the walls is considered constant. This study made it possible

to ascertain under what conditions the viscous dissipation effects may be

considered negligible in non-MHD flow. Also the results for certain cases

considered could be compared with others to provide a basis for checking the

numerical method used to solve the desired equations.

Part 2 of the thesis presents the results for the investigation of heat

transfer in an electrically conducting fluid flowing through a magnetic field

within a flat duct for the case of a fully developed velocity profile (Hartmann

profile) and constant heat flux at the wall. This study was prepared so that

a comparison could be made between the results obtained in this study and

other reported results to check the method of solution of the derived equations.

Part 3 of the thesis is the investigation of the simultaneous development

of temperature and velocity profiles in the entrance region of a flat duct

under the conditions previously described.

The three parts of this thesis may be considered as a demonstration of

the use of a powerful mathematical method in combination with high speed

digital computers for the solution of transport equations.

A finite difference analysis technique is employed throughout this

thesis. A mesh network is superimposed on the flow field and the backward



finite difference method IjL?,
18

J is used to produce n linear simultaneous

equations in n unknowns. The equations are solved by using the method of

Thomas 1 1? i. Because of computer capacity limitations and a desire to

minimize computing time, the selection of the proper mesh sizes of the co-

ordinates in order to achieve convergence to the true solution of the dif-

ferential equations is one of the most important factors for solving this

type of problem. A semi-theoretical and semi-empirical method was employed

in the determination of the mesh size ratio for the solution of the energy

equation 1 19j.
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Part 1

EFFECTS OF VISCOUS DISSIPATION ON HEAT TRANSFER

PARAMETERS FOR FLOW BETWEEN PARALLEL PLATES
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SUMMARY

The effects of viscous dissipation on tenperature profiles and heat

transfer parameters in the thermal entrance region are investigated

numerically for flow between two parallel plates. The flow is considered

laminar and fully developed, and the heat flux at the walls is considered

constant. The heat generation parameter is Introduced. The relation

between this parameter and the Sckert number and the Brinkman number is

discussed. The developing temperature profiles as well as the local Nusselt

number are presented graphically for heat generation parameters of -1.0,

-0.5, 0, 0.5, and 1.0.
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NOMENCLATURE

A surface area through which heat is transferred

a one-half of the duct height

2

Br . / Tu . v Brinkman number

C specific heat

C constant reported by Cess and Shaffer

D equivalent diameter of the duct, 4a

u
2

-
, Eckert number

h heat transfer coefficient

\ Cpttj, -t
Q )

k thermal conductivity

L duct length

Nu
x

h
x
D
e

Pr -r*- , Prandtl number

q rate of heat transfer

a" - % • negative rate of heat transfer per unit arean A

q* & , rate of heat transfer per unit area

pu a

Re —— , Reynolds number

t temperature

u velocity in x-direction

U ~ , dimensionless velocity in x-direction
u
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x variable distance along length of duct

X —"2L- dimensionless variable distance along length of duct
pauQfY

T 2
t dimensionless variable distance across height of duct

Y (1) constant reported by Cess and Shaffer
n

y variable distance across height of duct

z variable distance along width of duct

Eigenvalue reported by Cess and Shaffer

2

It
—-j,- , heat generation parameter
aq

p density

H viscosity

t-t
Q

6 —r^ , dimensionless temperature

ty
— , pseudo-local Kusselt number

Subscripts

b bulk

j at jth position along x axis

k at kth position across y axis

w at the walls or plates

x local

at initial position along x axis
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mTROKJCTION

The effects of viscous dissipation are often assumed to be small and

thus they are often neglected in heat transfer computations. There are

many applications where this assumption is questionable. Some of these

are high speed flow through small conduits, extrusion of viscous materials

at high speeds, flow through very small ducts (capillary flow), and flow at

high speeds. Recognizing the conditions under which the viscous dissipation

affects can be neglected is of practical significance.

Brinkman 111 obtained the temperature distribution in a capillary due

to the energy dissipation of viscous flow for the cases of constant wall

temperature and insulated walls. The dependence of kinematic viscosity

upon temperature was assumed to have only a small effect on the temperature

distribution and was neglected. A further simplification was introduced

by neglecting the heat conduction in the axial direction which is small

compared to the convection in the radial direction.

Gerrard, Appeldorn and Philippoff
[_2J

experimentally verified Brinkman'

s

results for capillary heating due to viscous dissipation. The experiments

also proved that the flow in a capillary is essentially adiabatic which was

in contradiction to the widespread belief that the "isothermal wall" condition

existed.

Bird I 3 I extended Brinkman* s work to describe the heat effects for the

flow of non-newtonian fluids which obey a power-law relation between the

coefficient of viscosity and the shear stress. Results are presented for

the power law corresponding to the flow of a general purpose polyethylene

melt for two cases: (1) the capillary walls are maintained at the temperature

of the feed, and (2) the capillary walls are thermally insulated.
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Novotny and Eokert I k experimentally studied heat transfer in free

oonveotive flow of a heat-generating fluid in a vertical parallel-plate

channel through the use of an interferometer. The study includes the range

of time from an initial state of uniform temperature in the whole system

(no flow) to a quasi-steady state when a step change in heat generation is

applied to the fluid initially between the walls of the channel. The results

obtained are for neither the constant wall temperature boundary condition

nor the constant heat flux at the wall boundary condition, but rather describe

a condition between the two cases.

In this investigation the effects of viscous dissipation on the temper-

ature profile in the thermal entrance region between parallel plates are

presented. The flow is laminar and the velocity profile is fully developed.

The heat flux at the walls is considered constant.

The heat generation parameter is introduced and its relation to the

Eckert and Brinkman numbers is discussed.

The derivation of the boundary condition that the constant of the heat

flux at the wall is equivalent to unity in dimensionless form, is presented

in detail because such an expression has never been presented in the literature.

The finite difference analysis and numerical method are presented in

detail to show the application of Thomas' method to the solution of the

linear simultaneous equations derived from the energy equation. This presen-

tation will be referred to in latter parts of the thesis. An advantage of

Thomas' method as compared with the usual matrix inversion method of Gaussian

elimination method is the significant reduction in computer storage require-

ment and computing time.

The developing temperature profiles and the local Nusselt numbers for
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the heat generation parameters, -1.0, -0.5, 0, 0.5, and 1.0 are presented.

BASIC EQUATIONS

The geometry under consideration, illustrated in Figure 1, consists of

two semi-infinite parallel plates extending in the x and z directions. The

folly developed laminar velocity profile, a parabolic profile in the x-

direction, used in this work is expressed as I 5\.

where A? is the average pressure drop over the length, L, of the duct. The

average velocity between the two plates is

1 / APx 2 ;,\
u
o = 3

(" 3? a
*

(2)

Then, the dimensionless velocity profile is

^=U =
l Ll-(f)

2

J. (3)

The general form of the energy equation for unidirectional steady flow

of an incompressible fluid with constant properties and with negligible heat

conduction in the fluid flow direction can be simplified to I

5

J

U cx-pCp3y
2
+

pCp V- .
W

Introducing the dimensionless parameters

Pr = -n*- , Prandtl number

T _ toe :*/a=

paVp
=R8

a
Pr

Tf = y/a
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'-=£?

equation (^) becomes

, heat generation parameter

The boundary conditions are

1. 8 = at X = and < Y < 1 ,

2. || = at Y = and < X , (6)

3. ||=1 at 1=1 and < X .

The third boundary condition can be developed from the assumption of constant

heat flux at the walls. As stated by Kays I 6 I, the slope of the temperature

profile at the wall is maintained constant along the duct when the heat flux

is constant. Although the constant slope in Kays' solution was specified as

1, the definition of dimensionless temperature was of the form t/t
Q

in this

paper; hence, it limited the solution to the special case in which the entrance

fluid temperature is t. = q"a/k. In the present work the dimensionless

temperature is redefined so that the conditions, (38/&Y) , = 1, holds
X—

x

universally when the heat flux is constant as shown below:

According to Fourier's law, one has

q = - kA | . (?)

Equation (7) can be rewritten, for constant heat flux at the walls, as

| =g=^= constant.

y=a
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where q" = - q/A. Therefore, one obtains

t
i» ^I^W

a

21
k

q" 5^0

y=a

Since

a(iJ7k)

3Y
SrfL

ag"
k

constant, it can be seen that

ao
aq"/k

" ag"/k

BY r=i

Defining the dimensionless temperature as

t-tA
e

one obtains

ao_
k

Therefore, the results presented in this work hold for all cases of constant

heat flux and are not limited to any specific application except for the case

in which q = 0. This investigation will not be applicable to this case.

SOLUTION OF THE ENERGY EQUATION

In order to solve the energy equation, the velocity profile is first

determined from equation (3) and the energy equation is solved by employing
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a finite difference analysis. The approximate finite difference equations

are (see Figure 2 for the mesh network)

56
6
.i,k+l

" 6
,T,k-l

Si 2AY

S9 Vl.k " e
j,k

' SX " AX '

s
2
e _

<e .n-i.icH-i-
2e

.n-i.k-
te
.na,k-i>

,

(e .i.k+r
28

.i.k-*i,k-i>
^

ail
2 "

2 (AY)
2

2 (AY)
2

(8)

3D (J,1+l,k+l ~ Pj+l,k-l^
3Y " 2AY

The boundary conditions in finite difference form become

1. e
Q

. = at X = and < Y < 1 ,

2. e
J+lf2

= e
j+1>0

at X > and Y = .

3- Vl,n+1 = 8
Jfl.n

+ AY *tX> ° "* Y " X
*

Substituting the difference equations, equation (8), into the energy equation,

equation (5), one can obtain the following equation in which the 6's with

j+1 subscript are the unknowns and the 6's with J subscript are the known

variables.

L
c
kJW« +

IaJ V.* +
iAJ Vi.k-i

=
L^J •

(10)

where

l^} = l\}-
2ilY)

z

U^ +IaJ- -

_T"^
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+^ (UJ+1 'k+1
" uj+1

' k-
1)2 *

Substituting k = 1, 2 n into equation (10) with the boundary conditions

given by equation (9), n unknowns and n simultaneous equations are obtained.

Such.equations are given in matrix form as

C

C
l
+B
l °

A
2

B2 °

3
j+l,l

3
j+1.2

- ^

A
3

B
3 °- °

I

1*0+1,3

I

Cn-lVl B
n-1

C
n *n

Vl.n-1

3
j+l.n J

(11)

J
n-3J

where

Vt

D
'i

= 2
L
c
iJV +

<"ir
+ 2 L^ e

j.i
(12)

The last equation of equation (11), k = n, is

L
C
nJ Vl,n-1

+
L'nj

8
j+l,n

+
L
C
nJ

S
j+l.n+l

= L
D
nJ

•

Since the third boundary condition is 6j+i jI1+i = e j+l,n
+ AY at the wal1,

one has

Kl = L^ +
L
CnJ •

Ki = L
DnJ - AY

L
CnJ

'

Equation (11) is solved using Thomas' method j_7_|.
Advantages of Thomas'

method are the reduction in computer storage required and computing time.

(13)



22

The unknowns are eliminated starting from the top by letting

\~ h

Wr
= Aj, - (C

r ) Q^ , r = 2, 3 n 0*)

B
r-1

and

Vi Vi

Gi-v^ '

D - C _,
= £ J r'1

, r = 2, 3...
r W,.

These transform equation (11) into

•j*.n = G
n '

Vl.r = Gr " °r Vl.r+1 ' r = ^ 2 ** &5)

By calculating W, Q, and G in the order of increasing r, equation (15) can

be used to calculate 6<+1>r
in ^s order of decreasing r, that is, 6j+1>n •

e> ... 8 j o> 9 -
i t ^ actual numerical computations were carried

j+l,n-l* ' j+l»2 3+1,1

out on computers. See the Appendix for the computer program and sample

results

.

It is important to achieve convergence to the true solution of the

differential equations within the available computer storage capacity. If

the values of AX and AT are chosen so that the value of U(AY)2/l2(AX) is of

an order smaller than i, the truncation error becomes [8, 9J

H.
e
exactJ = °L<

AX >

2

J
+

°L
(iY)M

In order to obtain the truncation errors of the above order, the value of

U(AY)
2
/12(AX) is kept less than 0.05. Although the velocity U is in the
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range of < < 1.5. it is taken as 1.0 in calculating the value of

U(AY)
2
/l2(AX). The mesh sizes employed in the calculation are shown in

Table 1.

HEAT TRANSFER PARAMETERS

The bulk temperature (or mixing mean temperature) is evaluated after

the temperature profiles have been determined. The defining equation

1

f
U(Y) e(X.Y) dY

°b.x = '°—l •
(16)

f D(Y) dl

for the bulk temperature in finite difference form at X = (j+1) AX becomes

°b,x =^ • (17)

S IK, , AY
tea J+1 -k

Since

equation (16) becomes

e
b.x = j, Vi.k <W Ar

.

(18)

In evaluating the wall temperature, the gradient of the temperature

profiles at the walls in the finite difference scheme is approximated as

follows [lOj:

+ ft h>6 + "^B

M |
_ .1+1.n-l "

.1+1,11
3

.i+l.n+1 + 0(AyZ)

9Y l y=1
~ 2AY
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TABLE I

Mesh Sizes for Finite Difference Solution of the Energy Equation

U(AY)
2

X AX ftl K
L.;.-.:

o.ooi
-*

0.0005 0.00625 160 0.0065

o.oi -1

0.001 0.0125 80 0.013

».,

0.005 0.025 w 0.01

« J
0.01 0.05 20 0.02
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Substituting the boundary condition, 36/3Y
Y=l

1, in the above equation

and solving for the wall temperature, 6

.

+1 n+1>
one obtains

..(X)
,1+1, n ,j+l,n-l

w" j+l,n+l 3

The mean Nusselt number, Nvl, for the case of constant heat flux at

the wall is of secondary importance, and the local Nusselt number, Nu
x>

is

desired. The local Nusselt number may be used to evaluate the wall temperature

at any position along the duct; whereas, the primary usefulness of the mean

Nusselt number is in evaluating the temperature of the fluid leaving the

system. The local Nusselt number is defined as

NUX
:

h
xDe (20)

Since the local heat transfer coefficient, h
x>

is given by

ITAtJ

and q is given by

TXJWiW)

(Ax) (1)
y=a

the local Nusselt number, Nux , in dimensionless variables can be written as

Nux
=

Ae L - #Jr=1

The constant heat flux is equivalent to maintaining (SG/3Y)y=1 = 1.0, as

given in the last boundary condition of equation (7). Therefore, the local

Nusselt number is

*x-jd| -
(21)

where A6 is defined as

<h6h = 8
w,X " 6

b,X
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RESULTS AMD DISCUSSION

The temperature distributions between the parallel plates at various

positions in the thermal entrance region are presented in Figures 3a and Jo.

The shape of these curves are similar to those presented by Brinkman 111

for flow in a capillary with insulated walls (q = 0), which is a special

case of constant heat flux at the wall, and by Novotny and Eokert
(_*J

for

the quasi-steady conditions of free convective flow of a heat-generating

fluid in a vertical parallel plate channel. Novotny and Eckert
j_^J

considered

a case which was neither constant wall temperature nor constant heat flux at

the wall, thus, the results presented vary between these extreme cases.

When the distance between plates is small the quasi-steady state curves

presented have a shape which looks similar to the results in Figures 3a and

3b. As the channel width increases the curves presented "oy Novotny and

Eckert take on a shape similar to those reported by Brinkman ill for the

constant wall temperature case.

The heat generation parameter, lj , is defined as u
Q

u./q"a, where q" is

-q/A and q is - kA |^ (equation 7) . When q" is positive /j is positive, and

the heat flux is into the system through the walls. When q" is negative

so is T] and heat is transfered away from the fluid through the walls. Since

the dimensionless temperature, 9, is defined as k(t-t )/aq", the slope of

the temperature profile at the wall is given as unity. For the case in

which q" is greater than zero, it can be clearly shown that 9 +, > 6 , where

6 +1 is the dimensionless wall temperature, hence tn+1 > tn as would be

expected when heat is being added to the system through the wall. If q"

is less than zero 9 ., > 9 , but the dimensional wall temperature is less

than the temperature of the fluid by the wall, that is tn+̂
< tn

- This
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would be expected since heat is being transfered away from the fluid through

the walls. Also the temperature increase as the walls are approached is in

part due to the higher rate of shear near the walls, ^en 71
is greater

than zero the dimensionless fluid temperature increases as the flow distance

increases and vice versa for toe cases in which „ is negative. A more

detailed derivation of the physical significance of these curves is presented

in the Appendix.

The two dimensionless numbers, the Eckert and Brinkman numbers, which

are the criteria of negligibility of viscous dissipation, are related as

follows:

Since the Brinkman number is defined as
[^5j

Br
::

2
a U

and the Eckert number as j_HJ

2

Ec =
tyVV

one can see that

2 jj.C

The heat generation parameter, . defined in this work is

2

'l - aq"

Since q» is dimensional^ equivalent to h(t
D
-t ) and k/a to h, q"a can

be considered equivalent to (^-t^k. Thus, there is a similarity between

the Brinkman number and the heat generation parameter.
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In Figure t variations of wall and bulk temperatures along the parallel

plates are shown for various heat transfer parameters. Ihe results shown

in Figures 3a, 3b and k indicate the fact that the heat generation parameter

can be considered as a criterion for the negligibility of viscous dissipation.

In Figure 5 the results of the variation of the local Nusselt number with

dimensionless distance is presented for various values of the heat generation

parameter, 1}. Actually, instead of Nu , the pseudo-local Nusselt number

defined as

_ »
~ 9

w,X " 8
b,X

is plotted. This quantity is identical to Nu„ except that it changes in

sign depending upon the relative magnitudes of 6W>X and 8b>x , and thus the

use of \|i reveals the behavior of the system better than use of Nu . Referring

to Figure 4 for the case of 1 = - 1.0, the wall temperature, ew, becomes

more negative than the bulk temperature at the position x/l6 « 9 x 10"^.

Before this point is reached from the inlet of the duct, the temperature

difference A6X
= 6 „ - t , approaches zero positively. One can see that

the pseudo-local Nusselt number, iji, should approach infinity positively.

Then at the position where the wall temperature becomes greater than the

bulk temperature, the sign of the pseudo-local Nusselt number is reversed

and becomes negative.

A comparison of the results of the present work on the local Nusselt

number along the parallel plates with the results obtained by Siegel and

Sparrow I

12J,
Kichiyoshi and Matsumoto 1 13j. and Cess and Shaffer [jlAJ for

the case in which the viscous dissipation is neglected (J\ = 0) is presented
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in Figure 6. The results of Cess and Shaffer I

14
J were obtained by a numerical

calculation of the following equation

Nu
x
= *

. (22)

g t^yi) «•<-§£)

The constants and 2^(1) as well as the eigenvalues, Pn , were reported

for the first three values, and asymptotic expressions were given which

would augment the initial values presented. The series in the denominator

of equation (22) was truncated at n = 20. The present work is in excellent

agreement with the results of Cess and Shaffer in the range where X/l6 >

3 x lO"*
1'. When X/l6 < 3 x 10"^ the results of Cess and Shaffer are lower

than those of the present work. This deviation is due to the truncation

error incurred in limiting the series in equation (22) to n = 20. If only

the first three terms of the series are considered, the results obtained

approximate those presented by Siegel and Sparrow
112

J in the range X/l6 >

4 x 10"^. Since Siegel and Sparrow I

12
J and MLchiyoshi and Matsumoto 1

13

J

used approximation methods their results are not necessarily completely

reliable.

The excellent agreement of the results of this x«ork with those of

Cess and Shaffer gives a considerable measure of confidence in the numerical

method employed in this work. It is worth noting that the method employed

in this work was also used to obtain the correct results for the case of

constant wall temperature
|
8 I, and for forced convection heat transfer in

the entrance region of a duct where both the velocity and temperature

profiles are developing simultaneously under the condition of negligible

viscous dissipation I 9j«
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IN THE THERMAL ENTRANCE REGION OF A FLAT DUCT
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SUMMARY

Heat transfer to an MHD fluid in the thermal entrance region of a

flat duct is investigated numerically. The flow is considered to be laminar,

the velocity profile is considered to be fully developed, and the heat flux

at the wall is considered to be constant. The developing temperature

profiles as well as the local Nusselt number are presented graphically for

the heat transfer parameters of -1.0, -0.5, 0, 0.5, and 1.0; for Hartmann

numbers of 4 and 10; and for electrical field factors 0.5, 0.8, and 1.0.

The results presented are applicable for the cases with any Prandtl number.

Comparisons are presented for certain cases with previous work.
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NOMENCLATURE

A surface area of channel walls through which heat is

being transferred

a one-half of duct height

A., R, Ck , IV. constants defined by equation (19)

B
Q

magnetic field induction

C_ specific heat

D equivalent diameter of the duct, ^a

E electric field strength

e —§s~ , electric field magnitude factor
u B

H magnetic field intensity

Hn magnetic field imposed perpendicular to bounding walls

h heat transfer coefficient

J electric current density

k thermal conductivity

M u. H ajo-
e
/u. , Hartmann number

h D
Nu —^ , local Nusselt number

p fluid pressure

Pr -r-E . Prandtl number

q rate of heat transfer

q" -q/a. negative rate of heat transfer per unit area

pu a
Re —— , Reynolds number

a v-



40

t temperature

tn temperature of fluid at entrance of channel

U — , dimensionless velocity

u velocity in x-direction

uQ average fluid velocity

V fluid velocity vector

r _JS = JSL&. dimensionless variable distance along lengthA
2 „ Re n

Pa u C
p

a of duct

x variable distance along length of duct

Y 2 dimensionless variable distance across height of duct
a

y variable distance across height of duct

z variable distance along width of duct

2

T| —±z , heat generation parameter
ao^

p density

H viscosity

He
electric conductivity

T time

t-t.
6 —£- , dimensionless temperature

aq"/k

i^ ' Pseudo-local Nusselt number

Subscripts

b bulk property or mean fluid property

i at jth position along X axis

k at kth position along Y axis
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v at walls or plates

x local property at position x
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INTRODUCTION

The study of heat transfer in a eleotrioally conducting fluid flowing

within a magnetic field has. within the last few years, become quite important.

These efforts have been due to the development of such devices as magneto-

hydrodynamic accelerators, generators, and pumps. A flat duct is considered

S

in this work because it has applications in such devices.

The general literature on magnetohydrodynamic heat transfer before

1962 is summarized by Romig [lj. Siegel |_2j
investigated heat transfer

to the region where the temperature distribution is folly developed and the

heat flux at the wall is uniform. Alpher
[_3_J.

Yen [k\, and Snyder
\_5J

investigated the same problem, but assumed that the duct walls were electri-

cally conducting. Regirer
|6J

and Gershuni and Zkuhovitskii ^7j neglected

the Joule heating in the fluid.

The case considering constant wall temperature with viscous and

electrical dissipation in the thermal entrance region was investigated by

Nigam and Singh
|8J.

However, the Joule's heating term in this investigation

was incorrectly represented
j 9j, rendering the results invalid. Srickson,

et. al., llOJ using a finite difference analysis, presented the results for

this case. Jain and Srinivasan [llj extended this problem to include the

effects of electrically conducting walls.

Michiyoshi and Matsumoto
j 12J

studied both the case of constant wall

temperature and the case of uniform heat flux at the wall, but neglected

the heat produced by viscous dissipation. These authors considered only the

open circuit case, i.e., e = 1.0.

The problem investigated in this part is the study of heat transfer for

MHD flow in the thermal entrance region of a flat duct with constant heat flux
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at the wall. Neither the viscous dissipation nor the Joule heating are

neglected, and there can be a net electric current flow parallel to the

walls and perpendicular to the flow direction. This same problem has been

studied by Perlmutter and Siegel I

9J.
These authors separated the problem

into two parts: the first deals with a specified uniform heat flux at the

walls, but no internal heat generation in the fluid, and the second considers

internal heat generation within the fluid, but no heat transfer at the

channel walls. By the superposition of these two solutions, a general

solution was obtained. The solution for each part of the problem was presented

in graphical form for certain cases and in general the solution was presented

by equations containing infinite series. It is rather tedious and difficult

to complete the superposition and obtain a temperature distribution at any

position for any desired case. Also, the overall effects are not obvious

in this type of presentation.

The purpose of this part of the thesis is to present the results

obtained in the investigation of this problem in an easily interpretable

manner such that the effects of the various parameters can be easily verified.

Also, the results presented by Siegel and Perlmutter give an excellent

opportunity to check the finite difference method used in the thesis for a

case in which the differential equations are not reduced by various assump-

tions to a simple form.

The developing temperature profiles and the local Nusselt numbers for

heat generation parameters of -1.0, -0.5, 0, 0.5, and 1.0 are presented for

Hartmann numbers of 4 and 10. Three cases; open circuit, maximum power

generation, and maximum efficiency are considered.
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BASIC EQUATIONS

The geometry under consideration, which is illustrated in Figure 1,

consists of two semi-infinite parallel plates extending in the x and z

directions- The fluid flows in the x direction; the magnetic field is

imposed in the y direction; and the electric current flows in the z direction.

Furthermore, the following assumptions are made:

1. The flow is laminar

2. All the fluid properties, p, C , k and (i are constant

3. The magnetic permeability, p,e , and the electrical conductivity,

o , are constant scalar quantities
e

b. Rapid oscillations do not exist; therefore, the displacement

current is negligible

5. The gravitational force is negligible.

Under the assumptions, the basic equations of magnetohydrodynamics in

KKS units may be written as follows
JJL3J

curl H = J ,
(1)

curl --*.». «

div J = ,
(3)

div H = . (W

Ohm's law for a moving fluid is

J = o (! +Vl|i.H). (5)
— e ~— — e ~

The continuity equation is

div V = . (6 )

The modified Kavier-Stokes equation is

|£ + (7 . grad) V = -
| grad p + ^ v

2
^ + i (J x ligH) . (7)
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The fully developed velocity profile used in this work was originally

obtained by Hartmann I 14|. Cowling 1 13J
gives the Hartmann velocity profile

as follows:

c::
a =

CT
e^e

H

cosh M - cosh M ^

« L iisn
—

~J
(8)

with the boundary conditions

1) u = at y = + a (9)

2) |=0 at y=0

The average value of u between y = + a is

a

J"
udy

u
Q
= =S^_ = _!»

LM cosh M - l] . (10)

J dy <W'0
-a

Then the ditnensionless velocity profile is

cosh M - cosh M ^
,

u^
= U = M

LM cosh M - sinh MJ ^
The general form of the energy equation for unidirectional steady flow of

an incompressible fluid with constant properties and with negligible heat

conduction in the fluid flow direction can be simplified to ! 10J.

5t k 3 t p, /Su\ , !i

Bx -
pCp

5y
2 p Cp V PC

p
a
e

'

It can be shown 1 10
j
that equation (5) simplifies to

(12)

J = WoL-e+ uy- CL3)

With this value for J, the energy equation becomes

3t k 5 t , u /5u\ ,

a*
=

P°P ay
2 pC

p V pc
p

»* . A -n
2 u~o B

2 2M _ _k_ 3t + _u_
(

Su
} + e

(
_e + u_j

(li(
,

.
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Introducing the dimensionless parameters

\i.C

Pr = -ijE , Prandtl number ,

kx
2 " Re Pr •

pa u C
p

a

*-5

6 ~ q^E '

2

i -s- . heat generation parameter;
q"a

equation (14) becomes

The boundary conditions are

1. 6 = at X = and < I<

z.
aY

- at Y= and < X

3 21-1 at X = l and < X

U||=J + Tl
(||)

2
+ ^(e-U)2 . (15)

(16)

The third boundary condition can be developed from the assumption of constant

heat flux at the walls. (See same section in Part 1 of the thesis)

SOLUTIONS OF THE EMEEGT EQUATION

In order to solve the energy equation, the velocity profile is first

determined from equation (11) and the energy equation is solved by employing

a finite difference analysis. The approximate finite difference equations

are (see Figure 2 for the mesh network)
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u = u
j,k '

36 ",j,k+l ~ "3,k-l
31 2AI

38 _ 3+1.k j.k-l
Sf Sic

3
2
6 _ (Vl,k+l " 2e

.1+l.k * 9
3-Kl,k-l )

2 (AY)
2

3Y
2

(17)

,

< 6
.i,k+l - 29

,j,k
+ 6

,j,k-l>

2 '

2(AY)

3U _ (Pj-KL,k+l " U
,1+I,k-l)

3Y
"

2AY

The boundary conditions in finite difference fora become

V e
0ik

= o

2 ) WW
3) e

j+l,n+l = 9
3+l,n

at X = and < Y < 1

at X > and Y = \ (

AY at X > and Y = 1

Substituting the difference equations into the energy equation, equation (5).

the following equation in which the 9's with the j+l subscript are the

unknown variables and the 9's with the j subscript are the known variables

is obtained.

KJ Vi.k+i +
L
A
kJw + IaJ e

j+i (k-i = IaJ : (19)

where

L
c
kJ = L

B
kJ - - ^2 •

L\J =¥
(AY)'



50

L\J
= _

[
CJ e

j,k+i - tJsV - Kl e
j.k-i

+ -i^ 8
j.

(AT)

4(AY)
2 Cja.ica " Vi.k-/ + >ft ^e-uj.k>

2

Substituting k = 1, 2,..., n into equation (19) with the boundary conditions

given by equation (18), n unknowns and n simultaneous equations are obtained.

These equations are solved by Thomas ' method 15 I as shown in Part 1 of the

thesis. It is important to achieve convergence to the true solution of the

differential equations within the available computer storage capacity. In

it (ay)
order to obtain sufficiently small truncation errors, ^h3 value of ^

.
'

is kept less than 0.05
1
10,

16J
(Refer to first part of the Thesis).

Although the velocity, U, is in the range, < U < 1.5. it is taken as 1.0

TI (AVj
in calculating the values of " ^

/t.,\ - The mesh sizes employed are shown in

Table 1. It was necessary to keep N as large as shown in order to insure

stable results and to prevent discontinuities which at times appeared in

the local Nusselt number, Nu
x , due to a change in AY. These discontinuities

were not evident in the computations for Part 1 of the thesis.

Table 1

Mesh Sizes for Finite Difference Solution of the Energy Equation.

X ±r Ay H
g (AY)

2

j
0.001

J
0.0005 0.00625 160 0.0065

0.01
,

0.001 0.0125 80 0.013

« 0.005 0.0125 80 0.0026

,5 J
0.01 0.0125 30 0.0013



HEAT TRANSFER PARAMETERS

The bulk temperature (or mixing mean temperature) is evaluated after

the temperature profiles have been determined by the following finite

difference equation at X = (j+l)AX

v=4wvu AY - (21)

The wall temperature is approximated in finite difference form as

follows:

e =6 «_lS*S i^^i (22)
w,X j+l.n+1 3

The mean Nusselt number, Ha,_, for the case of constant heat flux at

the wall, is of secondary importance, and the local Nusselt number, Nu
x>

is

desired. The local Nusselt number may be used to evaluate the wall temperature

at any position along the duct; whereas, the primary usefulness of the mean

Nusselt number is x.i evaluating the temperature of the _"luid leaving the

system. The local Nusselt number is defined as

h D
Nu
x
= ^e. (23)

For the case of constant heat flux at the wall, the local Nusselt number

reduces to

Ku
x = A9

(24)

where A6 is defined as

<AS >X = 9
w,X " S

b,X
•

For a more detailed discussion of the heat transfer parameters refer to the

same section in Part 1 of the Thesis.
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RESULTS AND DISCUSSION

The results are presented for the following parameters: Hartmann numbers

of k and 10; electrical field factors of 0.5, 0.8, and 1.0; and heat

generation parameters of -1.0, -0.5, 0, 0.5, and 1.0. The results presented

are applicable for any Prandtl number.

The electric field factor, e, is equivalent to the efficiency of an

MED generator and may be defined as the ratio of the electrical power

developed to the power necessary to produce the flow of the fluid. The value

of e for the maximum power generation is 0.5. The generally accepted value

of e, for the compromise which must be made between the conflicting require-

ment for maximum power and maximum efficiency in MED generators, is 0.8
|_17_J-

The open circuit case, or no net electrical current flow in the channel,

occurs when the electrical field factor is 1.0.

The heat generation parameter, "H, is similar to the Brinkman number,

which is a criterion for the negligibility of viscous dissipation. Hhen 7] is

positive heat is transferred into the system through the walls. If ^1 is

negative, heat is transferred from the fluid through the walls to the

surroundings I see Results and Discussion, Part Ij.

The dimensionless temperature distributions between the parallel plates

at various positions in the thermal entrance region are presented in Figures

3a, 3b, 3c and ha., iJ-b, 4c. In Figures 5a, 5b, 5c and 6a, 6b, 6c the variations

of dimensionless wall temperature, 6
W>

and bulk temperature, 6^, with

distance along the flow direction are presented. The pseudo local Nusselt

number, •!;, defined as

*
=

ew,x-
e
b,x'
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is plotted in Fisures 7a, 7b, 7c and 8a, 8b, 8c. The quantity $ is identical

to the local Husselt number except it changes cign depending upon the relative

magnitudes of 6 x and e^ x ; thus, the use of ^ reveals the behavior of ths

system better than the use of Ku .

The shape of the dimensionless temperature distribution presented in

Figures 3a, 3b, 3c and 4a, 4b, 4c for positive values of the heat generation

paramter, T), is similar to those presented by Brinkman 1

18
J for flow in a

capillary with insulated rails (q=0) which is a special case of constant heat

flux at the Trail. The shape of these curves as well as those for 1 less

than zero is also similar to those of Novotny and Sckert |_19_j,
for free

convection flow between parallel plates with uniform heat sources in the fluid.

Neither of the above two references considered flow in a KHD channel.

The diir.ensionless temperature is uniform and- equal to zero at the entry

(X = 0). Two effects which would tend to increase the temperature as the

flow distance increases are internal heat generation by both viscous dis-

sipation and Joule's heating and external heat generation, heat transfer

through the walls. Since 7) is greater than zero whan heat is added to the

fluid through the walls, the combined effect of both external and internal

heating is to increase the temperature of the fluid. 'When 7) is less than

zero heat is transferred away from the fluid through the walls, hence there

is a competitive action between the internal heat generation and the external

loss of heat. In this case the dimensionless temperature increasing negatively

is equivalent to the dimensional temperature increasing positively due to

the definitions of the dimensionless temperature, 9, and the heat generation

parameter, 7). For a more detailed discussion on the physical significance

of the shape of the curves which describe the developing temperature profiles
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see the Appendix.

to increase in the electric field factor is equivalent to a decrease

of electric current flow through the field, and is also proportional to a

decrease of Joule's heating in the fluid. Comparison among Figures 3a, Jo,

and 3c for a Hartmann number of 4 and among Figures 4a, 4b, and 4c for a

Eartnana number of 10 shows that the rcto of increase of temperature is

reduced by increasing e. However, the temper; ture difference between the

conterline temperature and the nail temperature increases as e increases.

Eiis phenomena is due to the increasing significance of the viscous dis-

sipation, which is higher near the walls, as the Joule heat effect becomes

smaller.

lie effects of the electric field factor, e, car. also be noticed when

a comparison is Bade among Figures 5a, 5b, and 5c and among Figures 6a,

6b, and 6c. Again the reduction of trail and bulk temperature with increasing

e can be observed, for there is a reduction in the Joule heating. Because

of the increase in the difference between wall and bulk temperature as e

increases, there si cold be a decrease in the local Hosselt number, or the

absolute value of the pseudo local I/as-clt number, t, hould decrease as e

increases. 2iis occurs in Figures 7a, 7Di 7c and 8a, So, 8o.

Comparing Figures 3a with 4a, 3"o with 4b, and 3c with 4c; the effects of

changir. - the Hartmarji number can readily be seen. She increase in the

Hartman.- number significantly increases the temperature. Similar effects

can also be observed by comparing Figures 5a with 6a, 5b with 6b, and 5c

with 6c.

. > effects c . tton parameter, 1J, can be easily studied by

flY«ni

i

-'

- j Figures 5a, 5b. 5- and 6a., 6b, co. Increasing the heat generation
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parameter when it is greater than zero causes an increase in the difference

between wall and bulk temperature, therefore, a decrease in the pseudo local

Nusselt number as shown in Figures 7a, 7b. 7c and 8a, 8b, 8c. A similar

trend can be seen when 7] is negative.

Referring to Figure 5a for the case of 1 = - 0.5, the vail temperature,

9 , becomes more negative thin the bulk temperature, 6-„, at the position

X/K> w 9-8 x KT2. Before this point is reached from the inlet of the duct,

the temperature difference, ::~

y
= er x

" 6
b,X*

£?Proao!lss Z3r0 Positively.

Thus, the pseudo local Susselt number,
,

.
-. . approach infinity positively,

lhen at the position where the Kail temperature becomes mere legative than

the bulk temperature, the sign of </ is reversed and becomes negative (see

Figure 7a). A similar trend can be c. served for the case in which M « 4,

e = 0.8, Tj = - 0.5 in Figures 5b and 7c.

Figure 9 presents a comparison of the pseudo-local Nusselt number, $,

for various Hartfflann . H. She dimensionless 'c JL: temperature increases

more rapidly th - Lonless sail temperature as the Hartaann number

increases. Bierefore, for t ;ses in which V > 0, 6 x
> 9.

Q x , and the

differor.ee beti i .. s i. 1 11 t m .'ature, 8 -.- - P. ,.-, decreases; hence,

the pseudo local Nusselt number, y, sill increase (see equation (15)) as the

Hartaann number increases. For the cases in which 5] < &.-A 8 < 6 , an
tl,JL D,A

increase in the Hartaaia Q mber causes a corresponding increase in ®v y-

9. y ; thus, the magnitude of th ; seudo local Nusselt number, t or B°x»

will decrease.

Figure 10 she .-.'. c_ temperature with position along the

duet. The distance from the ceuteriiae is the parameter. Only one case is

presented to exemplify the trend which occurs in all cases.
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Figures 11a and lib show the comparison of the present work to that of

Kichiyoshi and Matsumoto 1 12 j. Eiese authors assumed the viscous dissipation

term to be negligible, thus, for the case of 1 « o, for both Hartmann numbers

of b and 8, the results reported b„ Kichiyoshi and Matsumoto and those

iv-^l ._: _. ... •;'. -. .- .
--" be ider Lcs -. - i fac ; that the former set

of results are lover thi . tl - .. of he present work for small X is expected

(Refer to cho H^suloi ....... -ion iection ar.d Figure 6 in Part 1 of this

Ihesis). For the cases in which "l .= 0, the results of HLchlyoshi and

Matsumoto differ greatly from those reported in this :rork. This difference

is not surprising for the viscous dissipation was assumed to be negligible

tn the former presentation. .s the Eartxann number Increases the viscous

term becomes less crucial and the results presented by Mlchiyoshi and

vjnoto approach those i portec 1 this work which can be seen in Figure

lib. 3he comparison of results given in these figures offers an excellent

opportunity to observe the effects of viscous dissipation. She comparison

of results was made for the open Circuit case (e = 1.0) because this was the

only case investigate . - Mlchiyoshi and Katsunoto.

Perlaitter and Siegel I

9
J studied the same problem that is investigated

in this work, and reported the results in the form of equations containing

infinite series and for ceL-cain special cases graphical solutions are

presented. In Table 2 a comps .son of the Icc^ ttosselt number for the case

in which X approaches infinity and no internal heat generation in the fluid,

1 = 0, is presented for '.. umbers of kr and 10. Figure 12 shows a

comparison of the local Sa fflber Calculated from Perlautter and Siegel 's

presented re i ts wi .alts of the present work throughout the thermal

entrance region for the case 1 = 0.09, e = 1.0, and M = 10.0. Kie method
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used to calculate the local ffossolt number tvm t Its I »]
- ;ed by

PerLiutter and Siegel is presented in the Appendix. >ent work is in

fair agreement with the results of Perlmutte • l£ X is greater than

0.3. The deviation in the results for X is less than 0-3 perhaps due to the

trunc-tion error incurred when lifting the infinite series fcund in Perlmutter

and Siegel's results. These authors reported els' values for only seven terms

in the infinite serle - '

. ::"ore, the series ware probably truncated after

the sevsnth tern. (A similar problem was encountered in the earlier part of

this Thesis in which the present work gives the e::act solution, whereas, the

eigenvalue solution is not exact because the infinite series is truncated too

earlv. Refer to Figure 6 and the Result Discussion Section in Part 1.

From this previous discussion it - - that even truncating an infinite

series after the -/" caused a ? • riation. For K = and

i) = 0, Poiseville flow. Perlnutter and Siegel's results reduce to those

presented by Cess and Shaffer {_2oJ, hence the truncation effect would be

quite similar.)

Table 2.

Local Eurrelt :-;:~>3r at X > =

Hartnann Number Local Husselt Number

Perlmutter and Siegel Present Work

M
4 9.1013 9.0530

10 10.2585 10.2016
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Part 3

AN INVESTIGATION OF KSAT TRANSFER

FOP. KHD FLOW IN THE ENTRANCE

REGION OF A FLAT DUCT
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SUMMARY

Hie heat transfer to a MID fluid in the entrance region of a flat

duct is investigated numerically. The velocity profile is initially flat

and is considered to be developing simultaneously with the initially flat

temperature profile, the cases considered are for constant heat flux at

the wall with a Prandtl number of unity. The developing temperature profiles

as well as the local Kusselt number are presented graphically for viscous

criterion factors of -1.0, -0.5, 0, 0.5, and 1.0; for Eartmann numbers of

0, k, and 10; and for the electrical field factors of 0.5, 0.8, and 1.0.
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NOMENCLATURE

A surface area of channel walla through which heat is being transferred

a one-half of duct height

A., R, Cj-i \ constants defined by equation (26)

Bq magnetic field induction

2

Br w+ U—r—r . Brinkman number

C specific heat
P

D_ equivalent diameter of the duct, ka.

E electric field strength

E
e -

—

b~ , electric field magnitude factor
u a

u2
Ec n

—n +t , Eckert number
C
p

lt
b " V

H , magnetic field intensity

H
Q

magnetic field imposed perpendicular to bounding walls

h heat transfer coefficient

J electric current density

k thermal conductivity

M UgHQa/j/og/ii , Hartmann number

Nu —n— , local Kusselt number

P-P

g , dimensionless fluid pressure

"U

fluid pressure
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Pr -r^ . Prandtl number
k

q rate of heat transfer

q" ^ , negative rate of heat transfer per unit area

Rea

pu a
——

, Reynolds number

t temperature

*0 temperature of fluid at entrance of channel

~
, dimensionless velocity in x-direction

u velocity in x-direction

u average fluid velocity

V 2^
, dimensionless velocity in y-direction

V velocity in y-direction

X
J-*

1" j • __rtv, „.! n*0 ai.ii <r«'y»4 nV\T a /$$ «?+ *\Y\f*a *» 1 ftntr T ^riff+Vi rtf /llli^ta '

t CLXCI6iiSX0iu.es S vaTXaoxe exstance axung j-wig wi uj. um* i*

pa u

X variable distance along length of duct

I 2
, dimensionless variable distance across height of duct

y variable distance across height of duct

z variable distance along width of duct

e —nrr- i viscous criterion factor
aq"C

p

i)

2

—
rr , heat generation parameter

aq

p density
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\i viscosity

|i electrical conductivity

er magnetic permeability

T time

t-t
6 —-7- , dimensionless temperature

aq"/k

Tjr , pseudo-local Nusselt number

Subscripts

b bulk

J at jth position along x axis

k at kth position along y axis

w at walls or plates

x local property at position x
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INTRODUCTION

The study of heat transfer in an electrically conducting fluid within

a magnetic field is quite important in the design of magnetohydrodynamic

accelerators, generators, pumps, and flow control and measurement equipment.

The flat duct is especially important in the first three devices mentioned.

The literature on the study of the simultaneous development of velocity

and temperature profiles in the entrance region of a given geometry for non-

MHD flow is well summarized by Hwang and Fan 111. In this reference, the

cases of constant heat flux and constant wall temperature were investigated

for non-MHD flow. A finite difference analysis was used to obtain the results

and a comparison of these results with those obtained by several approximate

method is presented.

Shohet, Osterle, and Young I 2j studied the simultaneous development of

velocity and temperature profiles for MED flow in a plane channel assuming

constant wall temperature. A finite difference technique was used to obtain

the results. The same type of numerical method was used by Shohet
I 3 I to

obtain the velocity and temperature profiles for laminar MKD flow in the

entrance region of an annular channel. The assumption of constant wall

temperature was used again to provide the third necessary boundary condition.

Hwang ^4j also investigated the simultaneous development of velocity

and temperature in the entrance region of a flat rectangular duct for MHD

fluid flow with the assumption of constant wall temperature. The results

were obtained by using a finite difference technique similar to the one employed

in the previous reference j_lj. Dhanak j_5j also investigated this identical

problem using a procedure based on the Karman-Pohlhausen method and the

associated iterative procedures.
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Each of the above five references assume that the velocity and temperature

profiles are uniform at the duct entry.

In Part 2 of this Thesis heat transfer in a HBO fluid with a fully

developed velocity profile (Hartmann flow) in the thermal entrance region

of a flat duct is investigated for the case of constant heat flux at the wall.

In the following part, the above investigation is repeated for the case where

both the temperature and velocity profiles are developing simultaneously; that

is, the effects of laminar forced convection heat transfer to an electrically

conducting fluid in the entrance region of a flat duct with a transverse

magnetic field are studied for the case where the heat flux at the wall is

considered to be constant in the entrance region of the duct and where both

the temperature and velocity profiles are developing simultaneously. The

governing energy equation is expressed in finite difference form and solved

numerically using an ISM 1410 digital computer with a mesh network super-

imposed on the flow field. The numerical method used is modeled after that

used by Hwang and Fan [jLJ.

The developing velocity profile has previously been evaluated by Hwang

and Fan |6J,
and these results were used in obtaining the solution of the

energy equation for the above boundary conditions. Results are presented for

Hartmann numbers of 0, 4, and 10 with the viscous criterion factor and the

electrical field factor as parameters.

BASIC EQUATIONS

The development of the basic equations closely parallels that of Hwang

I k\. The geometry under consideration is illustrated in Figure 1. The

flow of the fluid is in the x-direction; the magnetic field is in the y-
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direction; and the electric current flow is in the z-direction.

Consider the flow of a conducting fluid in a magnetic field with the

following assumptions!

a) flow is laminar

b) all fluid properties; p, C , k, p.; are constant
ir

c) magnetic permeability, ft , and electrical conductivity, a
& , are

constant scalar quantities

d) rapid oscillations do not exist, therefore, the displacement

current is negligible

e) the effect of gravitational force is negligible.

The basic equations may be written as follows I

7J:

Maxwell's equations in MKS units are

Curl H = J (1)

' SH
Curl E = - p.e ^p , (2 )

div J = , (3)

div K = . (*)

Chm's law for a moving fluid is

J = o (E + V x |i H) . (5)
e — — e "

The continuity equation is

div V = . (6)

The modified Kavier-Stokos equation is

|f
+ (V.grad)V = - | grad P + j* v

2
^ + 1 (J x ne

H) . (7)

The developing velocity profile used in this work was obtained by

Hwang and Fan I 6 I. For steady two dimensional flow considering the usual

Prandtl boundary layer assumptions, with the additional assumptions:
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a) Variations in the z-direction are assumed to be zero

b) The electrical field term, E. measured across the electrically

(but not thermally) insulated duct walls is zero, but small local

values may exist in the midstream region; however, these will be

considered negligible, and E is taken as zero. This implies J
y

is also zero.

c) The magnetic field induced by J
z
is negligible in comparison with

the applied field, B
Q

, in the y-direction.

These assumptions reduce the number of equations to two

ou . ov n
3x-

T
Sy--° '

(8)

a & + v fa = - 1 & + v A - JL& (3 + UB ) .

ox Sy p dx Sy2 p o
(9)

The greatest limiting value for E
Q

is obtained by assuming that the

duct sides are open-circuited. This permits maximum build-up of the electric

field and is equivalent to no net current in the z-direction, or

J"* J
a<fr = ° •

-a

(10)

Since the current density is

Jj = CTe <E + "V '
(11)

Equation (1) becomes

a a

J c
a

(E
Q
+ uB )dy = a

e
E 2a + c

e
B
Q J udy = .

-a "a

(12)

Since the flow is steady the continuity equation can be written as

a

/ udy = 2u
Q
a .

-a

(13)

The combination of equations (12) and (13) results in



9*

0/ \
(max)

(a*)

In this Thesis S
fi

is taken as -eu.BQ, where e is the electric field factor

which varies between zero and one, with the external resistance varying from

zero to infinity. Equation (9) becomes

, ou . „ ou 1 dp. S
2
u .

a
e
3

, v

(15)

Introducing the following dimensionless parameters:

v UX x/a
A

2 "Re *

pa u
Q

a

r = y/a .

= u/u
Q

.

p"po
p - 2 '

pu
Q

M = HgK-a «/|i , Hartmann number.

Equations (15). (8), and (13) become, respectively

T8+vS--8*gK*~>. (16)

3U , 3V .

sx
+ 3y=° • (17)

1
1 « f UdY . (18)

The boundary conditions for the momentum and continuity equations (16), (17),

and (18) are as follows:

1) X = and < Y < i : u = 1, V = 0, P = P
Q

2)X>0 and Y=0 : ~=0, V =
OIL

=

(19)
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3) X > and Y=l I U = 0, V=0 (19)

The general form of the magnetohydrodynamic energy equation was derived

by Pai I
8 I. For the case of two-dimensional steady-state flow of an in-

compressible, constant property fluid with negligible heat conduction in the

fluid flow direction, the energy equation can be simplified to

u *k + zt = A_ijL + j±_&L) + _J_ . (20)U
3x

V
By PCp Sy2

pc
p V pC

p
o
e

The current density, J
z , as given by equation (11) is

J
2 = CT

e
(E +^

and E is presented as E
Q
= - eS

Q
u , therefore, the current density becomes

J = VeBoL-e+ u^J-

With this equation for J, the energy equation, equation (20), becomes

2 2

at . at k a
2
t ,

a ,su.,
2

,

u
o

B
o _ /_, + «.> /2iiu

ax
+ v

a7 =^ i/
+^ (^ +^T a

e
<e+V .'

(a>

Introducing the additional dimsnsionless parameters:

p,C

Pr = -j* , Prandtl number

t-t
Q

aq"7k

2
u
o .....

, viscous criterion iaccor.
ao" -

k
C
P

Equation (21) becomes, in dimensionless form, as follows!

a || +v || = l 3!| + g (|2)

2
+A(-e + U)

2
. (22)

3X oY Pr gj2 3Y

The boundary conditions are:

1. 8 = at X = and < I < 1 , (23)
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2.
3Y

u at r- o and < X ,

3.
38 -

3Y" x at Y= 1 and < X .

(23)

The third boundary condition can be developed from the assumption of constant

heat flux at the wall. A detailed derivation is presented in Part 1 of the

Thesis.

SOLUTION OF EQUATIONS

The two dimensional velocity components were obtained from equations

(16), (17), and (18) with the boundary conditions (19) by Hwang and Fan
J_6j.

These results are then substituted into the energy equation (22) in order

to solve for the temperature profile. The finite difference analysis of

equations (16), (17), and (18) is presented in detail by Hwang and Fan [^6j.

The energy equation (22) is used to obtain the temperature profiles,

and this equation is approximated by the following finite difference

equations (see the mesh network in Figure 2):

u =
2

v =
v
.i.k

+ »*a.k
2

38

3Y"

S
.i,k+1

" 6
.i,k-l

2AI

38

3X"

6
,i+l,k

" 9 j,k

AX

3
2
8

^ 9 j+l,k+l " 26
.i+l,k

+
Vi.k-i)

, V* - 28. .

3.k
+ 8.

,7
k-l>

3Y
2

2 (AY)
2

2 (AY)
2

3U ..
<U

J+l,k+l
" V.k-l)

+ (n
j,k+l %*4?

(*)

SY MAY)



Y

Y=i-e»n+H Ar
I

n-l

.
>

'--:-! 6

Hi!

0—

Y=0-= o-
C fWi

.-: g. 2. Mesh natfwoirli vcr civferencG

representations.
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The boundary conditions (23) in finite difference form become

1) e
Q

. = at X = and o' < Y < 1

2) e
j+1(2

= e
J+1 _

atX>0 and Y=0 ^
^8 , .- - 8 . ., , + 2AY

3) 6
j+l,n+l = -Ja"B

^f
2̂ at X > and 1=1

Substituting the difference equations (2^) into the energy equation

(22) the following equation in which the 6's with the j+1 subscript are the

unknowns and the S's with the j subscript are known variables is obtained.

L°kJ Vi.k+i - IaJ
e
3+i,k

+
L
B
kJ

e
J+i.k-i

= l\j (26 >

where

1 1

W-W.-L-AsJjd
u\ .

. + u.

lAJ " l> 2AX ; H
j,k 2 l 2AY ;

, 6 .
, ,, - 29 . , + 6 .

, , „ U ,., ,
+ U . , 2

+ 1 (Jifefl Ig USA) + jft (-a + V*-\ J'k
)"

2 (Air

+ a {..friy^ J*1 .*-1 ii^S $•*-!)
i

Substituting k = 1, 2,..., n into equation (26) with the boundary

conditions given by equation (25), n unknowns and n simultaneous equations

are obtained. These equations are solved by Thomas ' Method as shown in

Part 1 of the Thesis.

The mesh sizes employed are shown in Table 1. These resulted from an
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evaluation of the time and computer storage capacity available. A detailed

presentation of this evaluat ion may be found in Part 1 of the Thesis.

Table 1

Kesh Sizes for Finite Difference Solution of the Energy Equation

X AX AY K
PrTJ(AY)

2

i2(AX)

0.0005
0.001

J

i C.001
0.01

J

0.005
0.1

J

0.01
2.5

J

0.00625

0.0125

0.025

0.025

160

80

1*0

40

0.0065

0.013

0.01

0.0052

HEAT TRANSFER PARAMETERS

The bulk temperature is evaluated after the temperature profiles have

been determined, and is given in finite difference form by the following

equation at X = (j+1) AX.

n

^l, V = £ ^ 4.1.1 l> '

' k=l
J+1,k Vi AY (27)

The wall temperature is approximated by the following finite difference

equation (Refer to the first part of the Thesis)

J

9 6
w,X ~ j+l,n+l

.1+1,n .1+1, n-.1
+ 2AY

(28)
3

The local Uusselt number is defined as
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h D
Nu
x

= -^-£ (29)

For the case of constant heat flux at the wall, the local Nusselt number

reduces to

Nu
x
= ^ (30)

where A3 is defined as

<A6 >X = 6
w,X " 6

b,X

For more detailed discussion of the heat transfer parameters see the

same section in Part 1.

RESULTS AHD DISCUSSION

The results presented are for the case with a unit Prandtl number.

This is the case for most fluids I 9J
especially gases. However, it is worth

emphasizing that the equations presented and the method used in the computa-

tion of the results are applicable to cases with any Prandtl number. The

cases considered are: Hartmann numbers of 0, 4, and 10; electrical field

factors of 0.5, 0.8, and 1.0; and viscous criterion factors of -1.0, -0.5,

0, 0.5, and 1.0.

The viscous criterion factor, g, is similar to the Eckert number which

is a criterion for the negligibility of viscous dissipation. These numbers

are related as follows:

The Eckert number is defined as 19 I

2

VVV '

The viscous criterion factor, g, defined in this part of the Thesis is

EC - --»-

2
U

C
p
aq"A
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Since both terms contain a velocity squared and a specific heat, the only

terms remaining are the (th-tf,) and aq"/k. These terms are related, or at

least have equivalent dimensions, since q" is dimensionally equivalent to

h(t. -t
Q ) and k/a to h. Thus, aq"/k can be considered dimensionally equivalent

to (t,-t ). Also, the same type of relationship exists between the heat

generation parameter, H, and viscous criterion factor, B, as was shown to

exist between the Eckert number, 2c, and the Brinkman number, Br, (refer to

Results and Discussion Section, Part 1 of the Thesis). That is

5] = gPr as Br = Ec Pr .

The viscous criterion factor behaves in the same manner as the heat genera-

tion factor. That is, when 8 is positive heat is transferred into the system

through the walls. If 3 is less than zero, heat is transferred from the

fluid through the walls to the surroundings.

The electric field factor is described along with the reasons for choosing

the values used in the study in detail in the Results and Discussion Section

of Part 2 of the Thesis. An increase in the electric field factor, e, is

equivalent to a decrease of electric current flow through the field, and is

proportional to a decrease of Joule's heating in the fluid.

The dimensionless temperature profiles between the parallel plates at

various positions in the thermal entrance region are presented in Figures y,

4a, 4b, 4c; and 5a, 5°. 5c In Figures 6; 7a, 7b, 7c; and 8a, 8b, 8c the

variations of dimensionless wall temperature, 6 , and bulk temperature, 6v,

with distance along the flow direction are presented. The pseudo local

Nusselt number, ty, defined as

,
4

v =
e ..-a. Y

•

W,.-- D,X

is plotted in Figures 9: 10a, 10b, 10c; and 11a, lib, lie.
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The dimensionless temperature is uniform and equal to zero at the entry.

Z:.o effects which would tend to increase the temperature as the flow distance

is increased are the internal heat generation by both viscous dissipation

and Joule's heating and eternal heat generation, heat transfer through the

walls. Since 3 must be greater than zero when heat is added to the fluid

through the walls, the combined effect of both external and internal heating

is to increase the temperature of the fluid. VJien B is negative heat is

transferred away from the fluid, hence there is a compotative action bet

internal heat generation and external heat loss. Cue to the definition of

and 6, the decrease of the dimensionless temperature to large negative values

actually corresponds to an increase in the dimensional temperature, t. For

a discussion on the significance of the shape of the temperature profiles

refer to th« .ix.

A comparison among Figures 4a, k'o, and 4c for a Eartaann number of k and

among Figures 5a, 5b. and 5c for a Hartmann number of 10 shovj, as expec^e_,

that the rate of increase of temperature is reduced by increasing e. However,

the temperature difference (as in Part 2) between the centerline temperature

and the wall temperature increases as e increases due to the increasing

significance of the viscous dissipation effects which are especially great

near the walls. Ihese effects can also be noted when comparing Figures 7a,

7b, and 7c or Figures 8a, 8b, and 8c. Again the reduction of wall and bulk

temperature can be observed. Because of the increase in the difference between

wail and centerline temperature, a corresponding increase in wall and bulk

temperature occurs. Therefore, there should also be a decrease in the local

.Xusselt number, or in the magnitude of the pseudo local Nusselt number. This

latter effect can be observed in Figures 10a, 10b, 10c or 11a, lib, lie.
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A comparison among Figures 3> 4a, and 5a; 4b and 5b; and 4c and 5c will

present the effects of changing the Hartmann number. Similar effects can also

be observed by comparing Figures 6, 7a, and 8a; 7b with 8b; and 7c with 8c.

The effects of the viscous criterion factor, 3. can be noted by examining

Figures 6; 7a, 7b, 7c; and 8a, 8b, 8c. Increasing 3 when it is positive

causes an increase in the difference between wall and bulk temperature, thus,

a decrease in the pseudo local Nusselt number as shown in Figures 9; 10a, 10b,

10c; and 11a, lib, lie. A similar trend can be seen when g is negative.

Notice in Figure 10a that the curve for g = - 0-5 is not presented, yet

the curves for 3 = - 0.4 and - 0.6 are. The curves are shown in this manner

because the case in which 3 = - 0.5 is not stable, i.e., the pseudo local

Nusselt number oscillates from large negative to large positive numbers as

X increases. Shis is due to the exceptionally small difference between the

bull: and wall temperature, 8 - 0. (Figure 7a).

As the Hartmann number increases the entire dimensionless profile in-

creases if all other parameters describing the system are constant. We can

observe this result by again comparing the temperature profiles for M = 0,

4, and 10. Figure 12 presents a comparison of the pseudo local Nusselt number

for various Hartmann numbers. Although this figure contains only two eases,

it represents the trend for all the other cases. The pseudo local Nusselt

number increases as M increases, for the bulk temperature increases more

rapidly than the wall temperature. (Refer to the discussion of Figure 9 in

Part 2 of the Thesis)

.

In Figure 13 the results obtained by Siegel and Sparrow 1 10 I and Hwang

and Fan |l| are compared with those evaluated in this study. Hwang and Fan

present a comparison of the velocity profile used in their investigation
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and that used in Siegel and Sparrow's with the velocity profile presented by

Sehliehting jlll. It was noted that the velocity profile used by Siegel and

Sparrow did not approximate that of Sehliehting or Hwang and Fan very well.

In fact, the results of Siegel and Sparrow were not asymptotic to the fully

developed velocity, §- = 1.5.

The result obtained in the present work differ from those presented

by Hwang and Fan due to the finite difference scheme used to evaluate the

wall temperature. Hwang and -Tcr. used a linear equations, that is

6w = Vl = 8n + «
while the author used equation (28).
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In the previous -work of the thesis, treatment was confined to laminar

flow, constant fluid properties, uniform profiles on entry, and a fixed flat

duct geometry. In this chapter some other problems of considerable importance

which should be investigated are summarized.

1. Consideration of a Parabolic Approach to the Sht:.~anc3 of the

Geometric Channel . Since the assumption of laminar flew is used to describe

the flow within the JED entrance region it would be advantageous to consider,

instead of uniform velocity and temperature profiles, a parabolic velocity

profile and a corresponding temperature profile at the entry. It would be

quite interesting to have the fully developed temperature profile for Poiseuille

flow develop simultaneously with the velocity profile upon entry into a

magnetic field for both the cases of constant heat flux at the wall and

constant wall temperature.

2. Consideration of Other types of Fluids . In most of the work consid-

ered the only type of flow studied is that of Newtonian fluids. Cne of the

major applications for the study of heat transfer in an electrically conducting

fluid flowing within a magnetic field, is in the measurement ana flow of

molted metals. This type of flow is certainly not Newtonian. Bird 111

investigated the case of a non-Newtonian fluid flowing in a capillary with

constant wall temperature and the case considering insulated walls. It would

be interesting to extend the investigation of non-Newtonian flow to flow

within magnetic fields for various cases.

3- Consideration of Turbulent Flows . Although hydromagnetic channel

flows are usually turbulent rather than laminar, little is known about the

structure of turbulent flows in which hydromagnetic effects are significant
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[_2J.
Therefore, it is suggested that perhaps semi-empirical techniques of

fluid mechanics could be used to represent the internal structure of turbulent

flow and thus apply such representation to problems such as those solved in

, thesis. Most of the work done to date in KHD turbulent flow has been

confined to the studies of skin-friction drag and the transition from laminar

to turbulent flow in insulated channels. As a result, the heat transfer

portion of the theory remains a relatively virgin field I 3
J.

**• Consideration of Compressible Slow. Most research effort has been

directed toward one-dimensional incompressible laminar flows with transverse

magnetic and normal electric fields. Die popularity of this model is due

primarily to its mathematical simplicity, since in ac t .tion the flow

will most likely be turbulent, two dimensional, and, if the working fluid is

a gas, compressible I

3J.
Since most of the work will be accomplished using

a gas as the flow medium, it would be interesting to consider the investigation

of heat transfer to compressible flow. A finite difference technique similar

to the one used in the thesis could be used to study such a system. Obtaining

the velocity profile for compressible flow would be the first major problem.

It may also be worthwhile to study the effects of varying other physical

parameters, such as viscosity, with temperature.

5. A more Realistic Geometry . A more realistic geometry which may be

investigated using the finite difference approach and perhaps a larger and

:.'—t ar computer, is a rectangular duct. This problem ^-ould certainly be

interesting and it would present quite a challenge. The finite difference

mesh would be a rectangular consideration (two dimensional) for each given

position X along the duet. Thus, many interesting stability problems must be

encountered and at least empirically solved for such a finite difference scheme.
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- - ITER PROGRAMS

List of the Variable Names for the Computer Program

Used in Parts 1 and 2 of the Thesis.

A(l), C(I), D(l) the constants defined in the finite difference form

of the energy equation, (10) in Part 1 and (19) in Part 2. In

the latter part of the program these variables are redefined as

the variables introduced in the discussion of the Thomas Method

by equation (14) in Part 1.

Br the heat generation parameter, ~l

DX AX

DY AY

EE the electrical field factor, e

H the Hartmann number, M

T.T.T.
, LL1 integer counters used to change certain operating conditions

M the number of divisions along the duct in the X direction that the

program will calculate before changing operating conditions or

mesh size

IT the number of divisions across the duet in the Y direction;

determines mesh size

PR Prandtl number

PI the frequency at -which the program prints the results

T(I,J) the dimensionless temperature, 6, at the Ith position along

the duct and the Jth position across the duct

T30LK the bulk temperature, 6. ,

TT the wall : luated by a slightly different finite

difference sche;:o
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U(I,J) the dimensionless velocity in the X direction at the Ith

position along the duct and the Jth position across the duct.

X the dimensionless distance along the duct and it differs from the

X defined in Parts 1 and 2; X = -IS—
pau

XNUS the pseudo local Nusselt number, |

XZEHO the initial value of X for a phase of the computer program

X2 the pseudo local Nusselt number evaluated using TT
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Flow Diagram for Computer Program Used in Parts 1 and 2 of the Thesis

CALCULATE
CONSTANTS

A(J>,C(J),D(J0

AP?LY TllO.i 3
i

METHOD
CALCULATE

1(2, J)
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MON*S JCB MIC CONST HEAT FLUX FUL DEV VJL PRO
MOnI? COKT 30,09,PAGESi .KNIEPER CHEM EN6R
HO N $ S A SGiM K J B , 1

2

• MONSi ASGrl ,'-,GC,16
MC.M-JS MODE GG.TEST _ „
MON*$ EXEO FORTRAN., ,07,03,,, FOUR. „ ,„ ..„..„

C MHO -PROJECT 23M i/12/6'e XNU2 ( + ) X.NUS PJK PROGRAM FOUR
DIMENSION A( 160) ,Cl 160) ,D( 160)
DIMENSION U( 1, 162),T<2, 162)

953 FCKi-.AT (E14.8)
1 FORMATU0X,E11..5)
3 F0R('.ATU0X,5E11.5.»I3)
4 FCRhAT(10X,Eli.5,I3 )

85 FORMAT! 10X, 213) „ _„
6 READU.953) PR.H.EE , BR .

120 EXi=EX?!H)
£X2=1 ./CXI
HC0SH=.5*(EX1+EX2)
HSINH=.5«IEX1-EX2)
HO=H/(H* HCOSH -HSINH)
BErA=H*H*8R/PR
HKITE (3,3) ?.N,B«,ri,Ec
LL1 =
LLu=0
Dx=.cooa
DY=. 00625
M=2
N»160
XZEKC=0,0
PT=1.0
Nl=N+l
DO 13 K=l,N

13 T! l,!;)=0.0 ,

T(1,N1)=0.0
99 NMl=f:-l

WRITE 13,6:) . LLL.LL1
N010-N/10
ND105=( D
ND104= .-..'. ---'.-

N0103= !C u0»3
ND102=.MD10»2
XPRIN=XZ£RO+PT«OX
IF [H) 122,300,122

300 DO 325 K-ltN
E=K-l
Y = E'-<0Y

325 Utl,K)=1.5*Il,-Y*Y)
GO TC 326

122 DO 125 K*1,N
E = K-1
WW=H*E*DY
EX3=£XP{WW)
EX4-1./EX3

125 U( l,X)=h0e(HC0SH-{EX3+EX4)/2.)
326 U( 1,N1)»0.
67 UTOTA=0.

63 UT0TA=0T5TA DY*{UU,K)+4.0«UUi K+l)+U(l.»K+2) J/3.0
ALPHA=l.O/ { 2.0 »PR »OY*DY)
RDX=l.O/OX
R0Y02*1.0/IDY»2-0)

210 OG 100 L-l.K
31 DO 32 :>?,r.
32 CIK)=-ALPH

DO ^-i K"= 1 i .

34 A(K)*2.0« .. HJH,K)«R0X
35 C<1)=-2.0*AIPHA

,

39 0(1 )=U( l»l)*Ti L,l)»F DX+2.0«ALPHA*(Ttl,2)-1 (lil))
Dtl! = • _7.\ • .-_. s-U(l»l))»(U{l»l)-E£)
DG -.1 K»2,N
D(X)=U(1,K)«T{1,K),*R0X ^,
D{X)«D(K)+ALPHA*(n 1|K+1 }-2.0»T< 1, K ) +T( 1 ,!<-!) 1

D(K)*D(K>+BETA*(^£E+U( 1,K) )*(-EE+Ul 1,K)

)
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.41

52

56
51
59

60

626
63
64

65
71

72

77 2
775
776

73
100
82

550
551

549

34

552

90

D(K)=C t K)+BR« ALPHA* tU( I ,K+1 )-U { 1, K-l > J*(Ul 1,K+1)-UU,K-1) ) /2.0
D(,\I)=D(N)-DY»C(N)
A(N)»A(N)*C(N)
DO 54 K=2,N
SUB=C(K)
C(K-1)= C(KrlJ/A(K-l)
A(Kt=A<K)-C(K)«C(K-ll
D(1)»D(1)/A( 1)
D!;;) = (0(K)-SU8 *DU-1) )/A(!<)
T(2,N)=D(N)
DO 60 ;<=l,i\Ml
J = ;\-:<

J1=N-K+1
T(2,J)=0(J!-C( J)*T(2,Jl)
TI2,Nl)={4.«T(2,N)-Tl2.NMXJ+2.»0Y)/3.
UL»L
X=XZERO+UL*DX
00 626 K3 1 t Nl
T{ l,K)«sT(2,K)
IF tX-XPRI.N) 100,64-, 100
WRITE (3,1) X
OU 65 I=l,N,ND105
J1=I+ND10
J2=r+N0l02
J3=I+ND103
J4=I+.\IU04
WRITC (3.-31 T(2tI)iT(2iJl),Tt2,v,2;,T(2,J3),T{2,J4]
T8 = C.
DC 72 K=l,N,2
Ta=T8+0Y«(ui l,X)*T(2iX)+4.«U(l,K+ll*Tt2,K+l)* U( It K+2 )«Tr2tK+2)

)

TB=TR/3.0
TBULK=TB/UTCTA
XNUS=4./1T{2,N1)-TBULK)
XX=X/16.
GR \CT=16.*PR/X
WRI rS (3,3)
TT=T(2,N)+DY
X2=4.0/(7T-TBULK)
WRITE<3,3)TT,X2
XP UN=XPRIN+PT»OX
CONTINUE .

DO i.'J K=i,.., 10
'.-:: ~ 13t3)
WR! .: (3; li
ND2*N/2
LL1=LCL+1
G0TC549, 550,550,550 ) ,LL1
00 551 .', = 1,..
T(1,X)=T(2,K)
T( l,N+l)=TC2,N+ll
GC't 0552
DO 84 K«1,ND2
j=2*K-i
T( 1,K)=T(2,JJ
JJ=i\D2*l
T( l,JJ!=T{2,Nl)
LLO^LLL+1
GC TO ( 90,91,92,93),LLL
ox=.oo:
DY=.0125
M»9
N=ao
XZER0=.001
PT=1.0
GO TO 98

Tt 1 f Nl ) i TBULK , XNUS. GRAET , XX ,

M

:(2 t K),T(2|X+2), T(2,K + ';

TI2iNl5
,Ti2,.'<+6),T(2,K+ei

91 0».005
0Y=.C125
f/ - *» P1*.— L *.. .

N=fiO
XZER0=.01
pr-i.o
GO ..: 98

92 OX=.Oi
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DY=.0i25
M=90
N=PO '

xze,u)=o.i
PT=10.
GC TC 93

93 N1=N+1
•FiX-1. 0)99, 900, 900

1?8 3Rl?i°l3Tii
N * S

T(2,K),T(2,K+ 1), T; 2l K+2),
WRITE Oil) TC1.N1)

194 CG TO 6
END
MONSt EXEQ LINKLCAD

C4LL FOUR
MONSS EXEQ FOURtMJB . .

1(2, K+3. ,T(2»K+4>

i

.

-

.

.

•
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Results

The following results represent the typical output of the proceeding

program. The case presented is for a Hartmann number of 10, electrical

field factor of 0.5 and a heat generation parameter of 0. :The program was

intentionally written so that the Prandtl number could be varied. It was

later decided that the Prandtl number could be included in the dimensionless

distance along the duct, thus making the results more general. These results

are only presented as far as X = 0.8 because this adequately shows the

calculation procedure of the program.
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1

; U2 OEV V2L P.40
.100002 01

.5000GE-03

.465262-28

.000002-99 .100002 02 .500002 00

. 174292-25 .130532-22 .976622-20 .723 48 2-17
.5445 26-03
.312502-04 2.53899 E-14

.40422E-01
.390042-11
.251462-03

.26563.--08

.995742 02
.152946-05
.320002 05

.405422-01 .992772 02

.10001 E-02

.293292-26

. 1643 5 E- 12

.67S89E-01

.937732-24

.939822-10

.747622-03

.6545SC-21

.469302-07

.593422 02

.426012-13

.174542-04

.160002 05

.270262-15

.308242-02

.625 002-04 2

.67604 £-01

.29329E-26

.56'' 30E—25

.-..93292 02

.397042-26

.
i 94242-24

.773142-26

.4 330 5 2-74
.170392-25
.987732-24

.382202-25

.222672-23 ..

. ',29 202-21

.744 85 2-20

.426.; 12-18 .:

.241266-16 -

. I3491E-14

.741656-13

.391 06E-11

.2062 38-09

.101146-07

.455-172-06

. 17454E-04

.510 156-03
.

-. 55fip-02
.551482-01

.50186E-23

.290866-21

.16743E-19

.9 5589 2-13

. 113032-22

.654532-21

.3762 42-19

.214392-17

.25^762-22

.147272-20

.84516E-19

.480672-17

.573312-2?

.331252-20
' S97 8 6—1

8

Il0771E-16
.S4012E-16
.301122-14

. 120552-15

.671632-14
• 27026:--15
.149682-13

.604022-15

.333322-13
.164352-12
.379572-11

.366072-12

.1940 52-10
.812012-12
.427442-10

.179902-11

.939322-10
.451592-09 .986502-09 .21494 2-03 .467002-03
.2 18292-07
.955482-06

.469502-07

. 19994E-05
. 10046.:-06
.415302-05

.214032-06

.-,55422-35
.352372-04 .702332-04 .153302-03 . 26797E-03

.531075-02.951372-03 . 173562-02 .305242-02
.141222-01 .21556E-01 .312382-01 .427502-21
.675392-01

.200002-02

.77039 2-19 .402155-17 .41968 2-15 .43768E-13 .455:> ;:"-.'.

.471122-09 .47812E-07 .455935-05 .351652-03 . 132926-01
.125005-03 9.336822-01 .174832-...;: .460112 02 .300002 04

.839532-01 .453662 u2

.300002-02

.29793 2-17

.772352-03

.105372 00

.l5S532-:5

.572176-04

.27396E-02

.125592-13

.354435-0.4

.309722 02

.111195-11

. 1475 ' 2-02
. 5"_*_.:>32 04

.95X56E-10

.2 ,2012-01

.18751 £-03 9

.105412-00 •33956E 02

.400002-02

.56776E-16 .2^ :-...?E-14 .1350 52-1.2 .139172-10 .581565-09

.629342-07'

.117242 00
.346036-05
. 373976-02

.144752-03

.352412 02
.355552-02
.400002 04

. 335466-01

.250006-03 9

.117372 00 .351992 02

.500002-02

.71G742-15 .261742-13 .173892-11 .114252-09 .664 732-03

.337732-06

.12821E 00
. 139022-04
.473582-'??

.40245E-03

.323942 02
.633852—02
.320002 C4

.4 22 8 42-01

.312 51.2-03 9

.123272 CO .323792 02

.60000E-02

.657542-14 .215272-12 .127642-10 .692242-09 .332452-07

. 134266-05 .41777E-04 .801892-03 .951372-02 . .015! 6-01

.13733E 00 •57349E-02 .303952 02 .266662 04 .875002-03 9

.137422 00 .303756 02

.700002-02

.47963 2-13 . 139536-11 .717422-10 .330412-03 .13 1 .7 2-0 6
. 37 "22-01
.43750E-03 9.42308E-05 . L0084E-03 .163982-02 2 2-01

.145912 00 .673262-02 .237392 02 .22857E 84

.14597 2 00 .28727E 02

.800002-0?

.237562-12 .742912-11 .3 31212-09 .129642-07 .426 3,' 2-25

.110602-.,'.

._53512 00
.20577E-03
.

- ..42-02
.242666-02
.274332 02

.... - 2-0 ,1

• 20000L; 04
. 648082-01
.500002-03 9

. 15357- 00 .27425E 02

.9000." .- :

' 582 -
. 334546-10 .129382-08 .43110E-07 .1180 '.'2-05

..'43 79 2-04 . 3; 50< E-03 .350172-02 .201162-01 .707 3 82-01

.160742 35 .8729- :-02 .233122 02 .177772 04 .562502-03 9

.1603.-2 00 .263022 02

.100002-0 1

. 639 07 2- ; 1 .130242-09 .437415-08 .124392—06 .285272-05

.494496-04 .599456-03 .4 74192-02 .237722-01 .7681' '2-01

.167352 00 .972852-02 .253752 02 .160002 04 .625006-03 9
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FUL 05V VEL PRO
.167411: OO .253676 02
.639076-11 .98666E-U • 21B543--10 .531036-10 . 130245-09
.31768E-09 .76856E-09 .134243--OS .43741E-08 . L0277E-07
.23882E-07 . 548486-07 .124395--06 .273393-06 .6141-" F-06
.13345E-05 .235276-05 .5 992 9 3--05 -.123373-34 .249*25-04
.49449E-04 .957125-04 .180936--03 .333636-03 .599455-03
.10484E-02 . 178376-02 .295025--02 .474196-02 .740535-02
.112386-01 . 165766-01 .237725--0

1

.331645-01 .450355-01
.595746-01 .768276-01 .966493--01 .113796-00 .142573 00
.167335 00
2 2
.150006-01
.34850E-07 . 144555-06 • 11585E--05 .927106-05 .709243-04
.489946-03 .232135-02 .125713--01 .417465-01 . 10355E-00
.19617E 00 .147226-01 .220443 02 .106666 04 .937505-03 18
.196212 00 •22039E 02
.20000E-01
.42965E-06 . 150055-03 .960385--05 .590175-04 .331135-03
. 16261 £-0?. .667235-02 .221303--01 .537455-0 1 .125753 00
.21942E 00 . 197163-0 1 .2.00295 02 .300006 03 . 12500E-02 18
•21945E 00 .200255 02
.25000 E-:G1
.265266-05 .794896-05 .41860

£

-04 .203053-03 .926046-03
.35819E-02 ;11751£-01 • 3 2 318 -0

1

.74545E-0! . 14513E 3

•23961E 00 .247123-01 . 1 86 1 3

E

02 .640006 03 . L5625E-02 13
.239646 00 .186106 -2
.300006-01
.109426-04 ,285603-.', .123295--03 .524886-0 1 . 194 3" 5-02
.62952E-02 . 176396-01 , .. ' :. -01 . 892943-,; 1 . L62556 00
.257496 -00 .29708E-01 . 1 7^333 02 .533335 03 .187506-02 18
.25751E 00 .17553c o2
.350006-01.
.34092E-04 . 786836-04 .297735 -03 . L 06436-02 . 5-: 143 3-:'

2

.96364E-02 •24C43E-01 .32 J?9<5 -01 .103145-00 •17845E "5

.273385 00 .34705S-01 .16724 5 02 .35/. 45 03 .213756-02 18

.27390E CO .•16722E 02

.400006-0 .

.861866-04 .1786 35-03 ... -,- 36 -03 .18573G-02 . ,->... 56-02

.13477E-01 .307723-01 .C3CB3 -01 .11621 :-0C . 9320E 00

.288836 00 . 397026-01 .160526 02 .400006 03 .250033-02 IS

.28890E 00 .160515 02

.45000E-01

.135536-03 . 35082E-03 .1023 5 1 -02 .291383-02 .75450E-02

. 17708 E-01 . J7695E-01 .72938C -01 .12362s 00 .206515 CO

.3030^6 00 .446996-01 .1S485E 02 .355556 03 .231256-02 IS

.30302E 00 .153343 02
•50000E-01

. .3 52711- 13 . 616956-03 .162675 -02 .422933--

2

.101 36E—01
.222433-01 .44728E-01 .326103 -01 .140455 3 219986 33
.31613,1 00 •49696E-01 .150115 02 .320005 03 .312506-02 13
.316176 CO .130105 02
.550006-01
.307726-03 ..996225-03 .240053 -0 2 .57932E-02 .130135-01
.270116-31 . 51810E-!- 31 .920506 -01 . 151773 00 ..252 295 00
.323726 00 . 546933-01 .145965 02 ,29090c 03 .3437 55-02 18
.32874E 00 .145955 02
.600006-01
.968756-03 . 150446-02 .355273 -02 .7553 :i

-
. S>: 3 23-01

.319576-01 .539026-01 . L0126E -00 .1623..: Oj .^2 00

.340566 00 .59693 :-01 -1424i5 02 •26666 3 3 .1335-02 13

.340586 00 .14240E 02

.650006-01

. 1451CE-02 .213, E-02 .448406 -02 .959743-52 . 194786-01

.370396-01 . 659 - E-0 . . : ) 2 5

:

-00 .13505: OO .25525E CO
.352006 00 . . ;-c i .1 ..225 02 .24613.1 03 .406256-02 13
.352026 00 .139215 G2
.700005-01
.206665-02 ." .-:-,.. :-l 2 .579256 -02 .118035-01 .22995E-01
.422236-0 1 .730096-01 . 1 . )0 ..

- -00 .18319E CO .266046 00
.36284E DO .69684E-01 .136443 02 .22-3575 03 ;43750£-02 18
.3628.63 00 .136435 u2
.750006-01
-2B2435-02 . 333:53-02 .727455 -02 .141915-01 • 263 6 56—0

1

.474835-01 •179991E-01 .127613 00 .192965 00 .276415
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5UL :5v s/LL PRO
.3734;.; Oo .746815- 01 .133905 02 .213335 03 .468755-02 I S

•37341E 00 .133895 2

.80000E-01

.37299E-02 • 50227E-•02 .8925 IE"-02 .167445--01 . 30468E-01

.52798E-01 .369135-01 .135995 00 .202435 00 •28643E 00

.38346E 00 .79677E-•01 .131675 02 .200CC5 03 .500005-02 18

.38347E CO . 131665 02

.85000E-01

.478705-02 .629695--02 .107335--01 .194495--01 .343035-01
•58151E-01 .93768E--01 .144205 00 .211625 00 ,29617:_ CO
.303305 00 .84673E- . L29605 02 .188235 03 .531250-02 IS
.39332E 00 . 129595 02
.900005-0:.
. 599665-02 .773025--0 2 .1270 8 5--01 .222945--01 .333975-01
.635305-01 . 100555--00 .152745 00 .220576 00 .305875 00
.402735 00 .896695--01 .127765 02 .17777E 05 .562505-02 IS
.402745 00 . 127765 02
.95000S-01
.735S4E-02 .932065--02 •14823E -01 .25 - 1 .424' ..5-0 '

.689255-01 . 1C7265--00 . 160 1

1

£ 00 .220275 .314 045 00
.41 '.90S 00 .046645--01 .1260 55 02 .163425 G 3 .55j7:.:-02 18
.-.120' 5 00 .126045 02
.100Q0E-00 -~

.88705E-02 .110045--01 .170935 -01 .:: ..:.:--01 :-o i

.743275-01 .113S --00 .167835 00 .23777E .
.

' . . 3 E 00
.420395 00* . 9 9658 E--01 .12452- 02 .160005 U5 .6250 .

:-02 13
.420905 00 . 1245:5 02
.387055-02 .92725E--

. -02 .11 -c

.

. U064E-01
.121545-01 . . 51 -01 .

- -01
.219745-01 .24965E-01 -01 -

: --c i

.413135-01 . -0 . SE-01 .
- 75-01

.743275-01 - -01 .92- -01 .102755--c 5-00

.125935 00 . 3 i
..: .

00 0< .''.= 00
.200715 00 . - L87 -- 00 .23777 = 00 ,. 779 . 00 .

.300735 00 .323535 00 . . 00 ..71305 . 39594E ^

.420895 00
3 3

.200005 OQ

.657545-0 1 .
' 76E--01 . -01 .1C&20E--00 .

.18031

£

- 00
'. 00 .378415 00 .46828E 00

.566405 . L9954E oo . L 09 o _.

;

02 .800005 02 .123005-01 50
.566415 02
.300005 00
. 14909 E 00 .15691 : 00 - 00 . )7E 00
.282515 00 . . - 00 . oc
.601545 00 .299265 00 .1046 3 5 02 . 53 333c 02 . I750E-01 90
.681555 00 •104o35 02
.400005 00
.241515 00 .251445 00 .260051 .00 .2 ' : '.

. 00 .3337 IE 00
'

• .3329^5 00 .443195 00 .! 00 .59638E ,

.7 1648 E ( .39.3775 CO .10316E 02 .400005 07 .250 90
;78649E 00 . LO 116E 02
.50000 5 00 —

—

.336855 00 .34 7?E vO .365S0E 00 . . 00 " 30

.432625 00 . . 00 .6 1526: 00 .69755 . oc . 5 00

.8073;. 5 00 .4 30 . : ^oo IE 02 .32 301 02 .31250E-0a 90

.8 3787 5 00 . 10261E o;

.600005 00

.43303 5 00 .446705 00 .4641 5 00 .49244E : o .05 00

.501905 00 .643055 00 .71 00 .79744E 00 i?.£ 00

.987035 00 .597H ! .10237E 02 .266665 02 . ,73^35-01 90

.987845 00 .102 375 02

.700005 00

.52933 . : .56254-" 00 .501035 00 .6303

.680895 00 : .8 14275 GO .89677E . .

•.10 87/5 01 . CO .102225 02 .228575 02 .-..7.. ?- . 90
. L02226 02

.SOOO! E

.62:i5?:i i

"
. 00 .660795 00 68946

E

GO .729
.779625 00 . - 33E .91319" 00 '30 57 56 . .

.118625 01 .79449E .102115 02 .200005 02 .; .... ooE-o

.

5

.113625 01 . L0211E 02

.9 00 5 00

.721535 CO .740S6E 00 .738345 00 .737705 00 .827465 CO
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List of the Variable Names for the Computer Programs

Used in Part 3 of the Thesis

Two programs were used, part of the output from the first program being

used as input to the second program. The first program was used when K = 160.

This program calculates none of the heat transfer parameters such as the

pseudo local Nusselt number, for with such a large N computer space was

lacking.

A(I), C(I), D(I) the constants defined in the finite difference form

of the energy equation. In the latter part of the program these

variables are redefined as the variables used by the Thomas Method.

Br the heat transfer parameter times the Prandtl number, gPr

DX AX

DY AY

EE the electric field factor, e

H the Hartmann number, M

LLL, LL1 integer counters used to change certain operation conditions

M the number of divisions along the duct in the X direction that

the program will evaluate before changing operating conditions

or mesh size

N the number of divisions across the duct in the Y direction;

determines the mesh size

PR Prandtl number

PT the frequency at which the programs print the results

T(I,J) the dimensionless temperature, 8, at the Ith position along

the duct and the Jth position across the duct

TB'JLX the bulk temperature, 6, „
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0(1, J) the dimensionless velocity in the X direction

V(I,J) the dimensionless velocity in the I direction

X the dimensionless distance along the duct

XNUS the pseudo local Nusselt number, f

XZERO the initial value of X for a phase of the computer program
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?low jjiagran fo: Computer Program used in Part 3 of the Thesis

. -.-i:

0P3RATISO
COHDITIOXS

CALC -_ S3
IK il

*(!,*), .:;:-.::

,*)
!

D(2,iT). 7(2,1
TC IT

DC ICO

CALCULATE

....

........

-

1

i J

i -'.j.-.rj

:•-



MCNsl JOB NHD CGNST HEAT FLUX DEVEUNC VEL PRO 148
monss comt 15,02, paces, .knieper chem engr
MON« ASGN iJ0,12
MON.SJ ASGN :\OC,16
MON$ ! MO l£ GO, TEST
.•;,..:.,, EX£Q FORTRAN,, ,07,03, t, SEVEN

c ENERGY EQUATION CONSTANT HEAT FLUX DEVELOPING VELOCITY PROFILE
c X=0.0 Tu X=0.001 M=2
c MHD PROJECT 2353 2/23/65 PJK

DIMENSION A(160),CI160),D(160)
DIMENSION U<2, 162), V(2, 162) ,T[2,162)

953 F0KnAT(£14.a)
i FORMAT (10X, Ell. 5)
3 F0RMAT(10X,5cll.-5, 13)

960F0RMAT15E14.8)
85 FORMAT! 10X.2I3)

961 F0RMATI2I3)
c READPR,BR,H,E£, Ti J,K)

6 REACH, 9531PR, BR, h,E£
HRITE12., 3JPR.BR, H,EE
0X=.0005
DY=.CG625
,:--?.

N=160
XZ£.<G=O.Q
N1*N+1
DG 13 K-1..MI
T( l,K)»0.0
U( 1, K)=l.

13 V! 1,KJ»0.0
Ut l',Nl)=0.0
NM1=.M-1
NM3=N-3
U(2,N1)=0.0
V(2,N1)=0.0
R0X=1./DX
AL»1./(2.«PR*DY»BY)
B£=H«H*SR/PR
WRITE (2, 85 INN
DO 103 .--_ ,.

c READ U(2 .. . .::..,. ...:. INTERPOLATE
REA0(1,961)NN

430 do 410 ;;=:
. :,.

410 REAOU ,96C )U(2»K] ,U(2,K+4) ,U(2,K+8) ,U{2,K+12 ) ,UI2,K+16)
READ! 1 v

: >5 - • P
DO 411 K=l

411 READ! 1,960] . rK),V{2,K+4) ,V(2,K+8) ,V<2,K+121 , /(2.K+16)
DO -,12 K=1,NM3,4

• U { 2 , ,<•;- 2 ) = ( U ( 2 , K ) *U { 2..K+4 > ) /2.0
412 V<2,K+2) = CV<2,K)+V{2,!<+4))/2.0
414 D0413 K=1,NM1,2

U<2. 2,K+2>)/2.0
4 1 3 V ( 2 , .

, > 1 ) = ; v : 2 , ,. ) +V ( 2 , K+2 ) ) /2.
WRIT [2,85! N

31 DC 722 K=1,N,20
722 WRITE (2..3: •-•'.-

, X) ,UC2,K+4) ,U(2,K+8 > .U(2,X+X2) U(2,iC+161
c FOR,-- .TlC-i OF f-:ATR;>;

..0 32 :»2 .-.

32 C(X)»(- ._;

C(>:j = 2.0»C(N;/3.G
DO 34 /.-: .

34 A(K)=2.0*AL+(UU,KH Ut 2,K) )/{2.0«0X)
341 A(N)=A(N !-4.0»Al/3.0
is C( L>=-2. 0*AL
39 D{1) = 2.0« ...:;; 1,21+TU, l)*( IUU, 1 )+U{2, 1 1) /< 2.0*DX)-2.0*A1 1

D< 11=0(11+ BE M-ct+tU(2,lH-U( 1,1) 1/2.1 *(-E£+(Ut 2, 1)*U( 1,1)1/2.)
D u 41 t\—2. t •'«

D(K)=T{] ;.: .., h(j(2,K))/<2. 0*0X1-2. 0»,
D(X)=0(K) -: .. K.-l)»< [V<i,K)+VI2,K ) )/<4.0*DYl+AL)
g K '-.

. +TU :<*l)*(-(V(i,K>+ V!2,K 1 )/{4.eOY)+AL )

D •'..- K* ..;..-•.: I2,K+l)-U(2,K-l)ni!l.KH)--Utl,K-i))*
1 fU(2,<vi L)-i [2,X-1)+U{ l,K+l)-U(l,K-l) i/( 16.0*DY»0Y1

41 D(K)=OfK)+ .. [-EE+J U(2,K)+U(l,Ki l/2.)*{-EE*{U(2,K)-HJU,K) 1/2.3
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64
59

THO;- \S METHOD APPLIED
DO 54 K=2,N

a ; ;<. ' -.- ( k )~c ; k i
"•<- 1 -\-» i

giii:? DU(-siB .DCK-11»/A(K>
T(2,N)»D(N)
DO -0 K=1,NM1
j = ;>.-:<

j : = ..-

60 fl2,Jl=DIJK(JI«T(|,jn uT(2,Nl)»C4.«Tl2,N)-T(2tNM l)-s-2.*DY)/3.

626
64

S2

100

X=XZERO+UL-»DX
DC 626 K=1.M

%

U(1»K)-U(2,K
Vi 1,K)=V(2,K)

T(l,K)=T(2,K)
WRITEI2.DX

8gl?ll2TUS r?2,K>,TC2,K*2 r,T<2,K+4i,T<2,K<
WRITE<2,9531T(2,N1)
CONTINUE
GC.700

MONSS EXEQ LINKLC

T(2fK*8)

MOXS; EXEQ !VEN»MJ 5



150

Results

The following results represent the typical output of the proceeding

program. The case presented is for a Hartmann number of 10, electrical

field factor of 1.0, and a heat transfer parameter of 1.0. These results

(last 17 lines) compose the initial temperature profile at X = 0.001 used

in the following program. The last line is the -wall temperature.
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.10396E 01 .103961 01 .}0396E Oi
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.103-56: 01 .:,.-. ',.- -r^^ "1 c 03^63 01 .10396E 01Ml ill I! iill &*« :MHUl
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Flow Diagram far Computer Program Used in fv 5 of the Ihesxs

!
0P2RiSI3«

i co; sj - - - -

- -

-©

V(a,K).V(2,K0

r
s

. '(2,K)

.1 .„.:--::

?AKTS
V

....
1 00

V^±L7
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MON*$ JOB MHO CONST HEAT FLUX DEVELING VEL PRO
MON$i COMT 90, 09, PAGES, .KNIEPER CHEM ENGR
MONSi ASGN MJfl.12
MONSi ASGN MG0.16
MON$$ MOOE GO, TEST

. M0N4S EXEO FORTRAN, , ,07,03, ..SIX _

c ENERGY EQUATION CONSTANT HEAT FLUX DEVELOPING VELOCITY PRGFILfc
c MHU PROJECT 2353 2/23/65 PJK

DIMENSION U(2,82),V(2,82), T ( 2 , 82

)

DIMENSION A(80 ),C( 801,0(80 )

85 FORMAT! I0X.2I3)
953 F0i<MAT(£14.8>

1 F0RMAT(10X,E11.5)
3 F0RMAT(10X,5£11.5,I3)

960 F0RMAT15E14.8)
5 FORMAT! 10X,2I3>

555 FaRMAT(10X,5E11.5)
FORMAT (213)961

c READPR,BR,H,EE, T(J,K)
6 READ(1,953)PR,BR,H,EE
WRITE(3,3)PR,BR,H,EE
LL1 = 1

LLL = 1

DX=.001
DY=.0125
M = 9
N = 80
XZCRO=.O01
PT=1.0
D0710 K=1,N,5

710 READ(1,960) TIl.K), Ttl.K+1), Tl l.K+2) ,T( l.K+3) ,T( l.K+4)
READ(1,953)T(1,N+1>
REACH, 9611NN
NM1=N-1
NM3=N-3

c READ U AND V (2)
U(1,N1)=0.0
U(2,N1)=0.0
V( 1,N1)=0.0
V(2,N1)=0.0
IFlNN-21400,400,401

400 DO 15 K=1,N.10
15 READ(l,960)U(l f K),U(l,K+2),U(l,K+4),U(ltK+6),U(l,K+8)

READ11.953) P
DO 16 K=1,N,10

16 READ ( 1,960 )V(l,K),V(l,K+2), VI l.K+4), VI l.K+6) , V ( 1, K4-8 >

c INTERPOLATION OF U AND V (2)
402 DO 403 K=1,NM1,2

U(l,K-H) = (Utl,K)+U( l.K+2) 1/2.0
403 V( l,K+i)=(V(l,K)+V(l,K+2))/2.0

WRITE(3,85)NN
GO TO 407

c READ U AND V (4)
401 DO 404 K=1,N,20
404 READ(1,960)U(1,K),U(1,K+4),U(1,K+8),U(1,K+12),U(1,K+16)

READ(I,9531P
DO 405 K=1,N,20

405 REAQ(l,960)V(l,K),V(l,K+4),Vtl,K+8),V(l,:s+12),VlliK+16)
c INTERPOLATION OF U AND V.(4)

DO 406 K=1,NM3,4
U( l,K+2) = (U(l,K)+U(l,K + 4) 1/2.0

'406 V( l,K+2)=(V(l,K)+V(l,K+4) 1/2.0
GO TO 402

407 WN = N
99 WRITE(3,85)LLL,LL1

ND10=N/10
ND10S=ND10»5
ND104=ND10*4
ND103=ND10*3
N0102=ND10»2
XPRIN=XZERO+PT*DX
N1=N+1
NM3=N-3
NM1=N-1
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RuX = l./DX „„ „„,AL=1./(2.°PR»DY«DY>
BE=H»H»BR/PR
WRITE(3,85)NN
DO 100 L=l,M
WRITE(3,555)T(1,N+1
WRITE<3,555)V(1,N+1

g|S5
E
&?iP?iptvl2UJ AND INTERPOLATE

V(2,N1)=0.0
U(2iNl)=0.0

.
REA0(l,96l)NN
IF(NN-2>408,408,409

409 IF(|\iN-4)430.430,431

410pAD(l,960Ju!l°K).U(2,K+4),U(2,K+8),Ut2,K+ 12),U12,K*l6)

411 iASii!i85^<2,K),V ( 2.K +4).V ( 2,K+ 8),V(2,K +12),V(2,K+16)

412 V(2lK+2)=(V(2,K)+Vl2,K+4))/2.0
*l*BbteiWJ:ftin«MaiKMi
413 V(2,K+l)=(V(2,K)+V(2,K+2))/2.0

WRITE13.85) N
GO TO 31

til ^AD(l,960Jul2?K),U(2,K,2),U(2,K+4),U(2,K+6),U(2,K+8)

416 St^3o)'v?2,K),V<2,K+2),V(2,K+4), V<2.K+6> , VC2,K*8>

GO TO 414

7liS^Tif 3^!'[J!i?K),U ( 2.K+4),U(2,K+8.).Ut2,K*12),U(2.K
+ 16 l

FORMATION OF MATRIX
DO 32 K=2,N .

32 C(K)=(-AL) /
C(N)=2.0»ClN)/3.0

34 MK) = 2^oIaL+(U(1,K) + U ( 2,K) ) / ( 2.0.DX)
GO TO 341

431 EX1=EXP(H)
EX2=1./EX1 „„„,
HC0SH=.5*(EX1+EX2

. HSINH=.5»<EX1-EX2>
Hq=H/(H*HCOSH-HSINH)

• IF(H)122,300,122
300 DO 32 5 K=1,N

E = K-1
Y=E»DY
U(2,K)=1.5«(1.-Y*Y)

325 V(2,K)=0.0
GO TO 326

122 DO 125 K=1,N
E = K-1
WW=H»E*DY
CX3=EXP(WW)

U(2"K)=HQ*(HC0SH-(EX3+EX4)/2.)
125 V(2,K)=0.0
326 U(2,N+1)=0.0

V(2»N+1)=0.0
GO TO 31 , „

341 A(N)=A(N)-4.0»AL/3.0

Rrf:sKH?!iTli5itVI!:IIIWii;8* H7f*?o%*»*/u.i
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52 00 54 K=2,N
sub

:
c(k)

A(K.n
MK) = MK)-C(K)»CtK-l)

61 X«XZERO+UL»DX
DO 626 K=1.N1
U(1,K)=U 2.K
V(1,K)=V(2,K)

J1=I+ND10
J2=I+ND102
J3=I+N0103
J4=I+ND104

, T (2,J2).T(2,J3),T(2.JA)

UTOTA=0.0

6aS?OTti}TO^Y»lU t 2,K) +'..0.U(2.K*l) +U(2.K+2))/3.0

Tl

82S^5l8«.B»sUW ,SSiWi
, 8*M#T

'

l,,,l*" ,/8#0

72 T8=Tn+DY*(U(2,K+2)*T(2,K+2))/3.U

JRHiKUWHinn-TBULiii
772 55Tte13;3)T(2,N1).TBULK.XNUS.TBULK.XX,H
78 XPRIN=XPRIN+PT«DX

1

82^^:3i¥!2?K,.T ( 2,K +2>.T<2.K+,».T.2.X
+6».T.2.K+8.

WRITC13.DT12.N1)
LL1=LLL+1

g§
2
T0

/
?549. 549.550,550),LL1

550 DO 551 K=1.N
U(1.K)=U(2,K)
V(i!k)=V(2,K)

551 T(

1

,K)=T(2»K)
U 1,N+1) =U(2,N+D
V 1 N+l)=yt2,N+l>

T( 1,N+D=T12.N+1)
' GO TO 552 ^_

549 DO 84 K=1.ND2
J
U
2
l,K)=U(2,J)

V(l,K)=y(2,J)
84 Tl 1,K)=T12,J)

Jd7ra=U(2.ND
Vl.JJ-VU.Nl)

T(1.JJ)=T(2,N1)
552

hh
L
Th^Si91.92.98 1 .LLL

90
8?::8$25
M = 9
N=80
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XZERO=.001
PT=l.O
GO TO 98

91 DX=.005
DY=.02i>
M=18

XZERO=.01
PT=2.0
GO TO 98

92 DX=.OL
DY=.025
M=140
N=40

• XZEKO=0.1
PT=L0.
GO TO 98

98
^U-1.5. 99,900,900

9
9?8^i

y
TE?3^H^K),T(2,K + l.,T(2,K+2,,T t 2,K +3».T(2,K+4)

URITE(3,1)T(2,N1)
GO TO 6

MON$$ EXEQ LINKLCAO

' KQIU4 EXEQ SIX.MJB
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Results

The following results represent the typical output of the proceeding

program. The case presented is for a Hartmann number of 10, electrical

field factor of 1.0, and a heat transfer parameter of 1.0. These results

are only presented till X = 0.4 because this adequetely presented the

calculation procedure of the program.
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.10000E
2
1 1

.35849E

.COOOOE

.OOOOOE
80
.10643

E

.10643E

.10643E

.10621E'

.20000E-

.40219E-

.47201E-

.18634E

.18634E

.OOOOOE

.OOOOOE
80
.10716E
.10716E
.10716E
.10631E
.30000E-
.7S670E-
.9052bE-
.85295E
.S529!>E
.OOOOOE-
.OOOOOE-
80
.1G794E
.10794E
.10794E
.10613E
.40000E
.11872E-
.14366E-
.80974E
.80974E
.OOOOOE-
.OOOOOE-
80
.10852E
.108S2E
.10852E
.10563E

• .50000E-
.16886E-
.20663E-
.10638E
.10638E
.OOOOOE-
.OOOOOE-

.10890E

.10890E

.10889E

.lObOOE

.60000E-

.22416E-

.27800E-

.10828E

.10828E

.OOOOGE-

. OOOOOE-
80
.10917E
.10917E
.10915E
.10442E
.70000E
.2827LE

01 ^O^OOeViVoO^OE 02 .10000E 01

00
00
00

01
01
01
01
-02
-03
-03
00
00

-99
99

01
01
01
01
-02
-03
-03
00
00
-99
-99

01
01
01
01
•02
•02
02
00
00
-99
-99

.10643E 01

.10643E 01

. 10643E 01
I10497E 01

.47189E-03

.47254E-03

. 17654E-01

.10643E 01

.'0643E 01

.10643G 01

.98317E-00

•47193E-03
.52787E-03
.23712E 02

.10643E 01

.10643E 01
10642E 01
.80072E-00

.47195E-03

. 53778E-02
:i7654E-01

. 10643E 01
10643E 01
.10640E 01
.53098E-00

.47199E-03

.18249E 00
Il2b00E-03 9

.10716E 01

.10716E 01

.10716E 01

. 10344E 01

.90443E-03

.91232E-03

.29333E-01

.10716E 01

.10716E 01

.10716t: 01

.9S085E-00

.90504C-03

.13858E-02

.48566E 01

.10716E 01

.10716E 01

.10714E 01

.78863E-00

.90509E-03

.21868E-01

.29333E-01

.10716E 01

.10716E 01

.10700E 01

.49787E-00

.gosi^E-os

.23771E 00
I18750E-03 9

.10794E 01

.10794E 01

. 10793E 01

.10212E 01

. 14330E-02

. 14835E-02

.41531E-01

.10794E 01

.107948 01

.10792E 01

.93043E-00

.14357E-02

.35220E-02

.52069c 01

.10794E 01

.10794E 01

.10783E 01

.75819E-00

.14358E-02

.49497E-01

.41531E-01

.10794E 01

. 10794E 01

. 10747E 01

.46134E-00

. 143"58E-02

.34601E 00

.25000E-03 9

01
01
01
01
02
02
-02
01 .

01
-99
-99

01
01
01
01

-02
-02
02
01
01
99
99

01
01
01
01
-02
-02

.10852E 01

.10852E 01

.10851E 01

. 10078E 01

. 20546E-02

.22661E-02

.53860E-01

.10890E 01

. 10890E 01
,10887c 01
.99593E-00

.27451E-02

.33870E-02

.66275E-01

.10852E 01

.10852E 01

.10846E 01

.90383E-00

.20619E-02

.79752E-02

.39603E 01

.10890E 01

.10890E 01

.10877E 01

.89378E-00

.27600E-02

.15151E-01

.39349E 01

.10852E 01

.1C852E 01

. I0828E 01

.73218E-00

.20621E-02

.83516E-01

.53860E-01

.10852E 01

. 10852E 01

.10761E 01

.^,4860E-00

.20&23E-02

.47290E 00
I31250E-03 9

.10917E 01

.10917E 01

.10910E 01

.98739E-00

.10917E 01

.10917E 01

.10895E 01

.88560E-00

.10890E 01

. 10H90E 01

.10845E 01

.72150E-00

.27608E-02

.12240E-00
I66275E-01

.10917E 01

.10916E 01

.10848E 01

.71684E-00

.10890E 01

.10890E 01

.10748E. 01

.44586fc-00

•27613E-02
.55778E 00
:37500E-03 9

.10917E 01

.10916E 01

.10725E 01

.44347E-00

34320E-02 .35080E-02 .35098E-02 .35116E-02
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.35718E-

.12412E
•12412E
.OOOOOE-
• OOOOOE-
CO
.10938E
.1093RE
.10935E
•10395E
.80000E-
.34364E-
.44603E-
.12797E
.12797E
.OOOOOE-
.OOOOOE-
ao
.10957E
.10957E
.10952E
•10356E
.90GC0E-
.40645E-
.54S09E-
.13946E
.13946E
.OOOOOE-
.OOOOOE-
80
•10972E
•10972E
•10965E
•10324E
.10000E
.47083E
.66765E
•14417E
.47083E-
.59112E-
. 59644 E-
.59858E-
.66765E-
.20132E-
.14586E-
•63836E
•14417E
2 2
4
.14417E
.OOOOOE-
.OOOOOE-
40
.11046E
.11019E
.17426E
.OOOOOE-
.OCOOOE-
40
.11086E
.U037E
.20000E
.13276E-
.36241

E

.19723E
•19723E
.OOOOOE
.OOOOOE
40
.11101E
.11035E
.2:
.OOOCOi
.OOOOOE

02
OL
01
99
99

3EVELING VEL PRO
50061E-02 .24829E-01
.78336E-01 .34395E 01

01 .

01 .

01 .

01 .

02
02 .

•02 ,

01 ,

01
-99
-99

01
01
01
01
-02
-02
-02
01
01
-99
-99

01
01
01
01

-01
-02
•02
01
•02
02
02
•02
•02
01
-00
00
01

.10938E 01 .10938c 01
10938E 01 -10938E 01
.10928E 01 .10905E 01
.98135E-00 .88016E-00

.42532E-02 .42940C-02
72766E-02 .36824E-01
;90388E-01 -33630E 01

.16438E 00 -64663E 00

.78336E-01 .43750E-03 9

.10938E 01 -10938E 01
10938E 01 .10937E 01
10345E 01 .10701E 01
;71292E-00 .44112E-00

.42976E-02 .43035E-02
20681E 00 .72172E 00 ;
190388E-01 .50000E-03 9

, 10957E 01
.10957E 01
.10941E 01
.97668E-00

.50522E-02

.10315E-01

. 10236E-00

.10972E 01

.10972E 01
10950E 01
.97292E-00

. 58744E-02

.14L96E-01

.11438E-00

.56004E-02

.59342E-02

. 59663E-02

.60077E-02

.73303E-02

.29674E-01

.20912E 00

.86450E 00

.10957E 01

.10956E 01

.10912E 01

.87581E-00

.51118E-02

.50962E-01

.30952E 01

.10972E 01

.10972E 01

.109146 01

.87235E-00

.59566E-02

.66924E-01

.30135E 01

.5730OE-02
,5v482C-02
.59681E-02
.60530E-02
.85188E-02
.44523E-01
.29269E 00
.10497E 01

.10957E 01

.10956E 01

.10839E 01

.70962E-00

.51184E-02

.24976E 00

.10236E-00

.10972E 01

.10971E 01

.10832E 01

.70710E-00

.59681E-02

.29289E 00

.11438E-00

.58171E-02

.59566E-02

.59706E-02

.61450E-02

.10613E-01

.66924E-01

.39988E 00

.12401E 01

.109S7E 01

.10955E 01

.10678E 01

.43941E-00

.51349E-02

.79613E 00

.56250E-03 9

.L0972E 01

. 10970E 01

.1065RE 01

.43815E-00

.60077E-02

.86450E 00

.62500E-03 9

.58744E-02

.59615E-02

.59755E-02

.63267E-02

. 14196E-01

.99621E-01

.53183E 00

.13731E 01

01
99
•99

01
01
01
99
99

01
01
-01
-01
-01
01
01
-99
-99

01
01
01
-99
-99

,
11046E 01
.10922E 01

,11086E 01
.10911E 01

.15456E-01

.98389E-01

. 22773E-00

,111015 01
, 10396E 01

.11046E 01

.10584E 01

.11086E 01

.10535E 01

.15758E-01

.28449E 00

.22927E 01

.11100E 01

.10510E 01

.11046E 01

.95894E-00

11083E 01
.95158E-00

. 16466E-01

.71257E 00

.22773E-00

.11096E 01

.94976E-00

.11041E 01

.69183E-00

.11074E 01

.68681E-00

. 19957E-01

.14325E 01

.12500E-02 18

.11082E 01

.68639E-00
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DEVELING VEL PRO
40
.1L107E
• U03LE
.300006
-22367E
.10253E
.240525
•24C52E
.000006-
.000005-
40
• 1 1 1 10E
.110286
.26121E
.000005-
.0G00G6-
40
.111126
.11027E
.40000E-
.32164E-
.19594E
•27602E
.27602E
.OOOOCE-
.OOOOOE-
40
.11113E
.110276
.29383E
.000006-
.000005-
40
•11114E
.110265

• .500005
.439206
.30606E
.30693E
.30693E
.OCCOOE-
.000005-
40
.111155
.11026E
.32276E
.OOOOOE-
.OOOOUE-
40
.111156
.1L026E
.600006-
.591596-
.42597E
.33467E
.33467E
.OOOOOE-
.OOOOOE-
40
.11115E
.11026E
.34903E
.OOOOOE'
. OOOOOE
40
•11115E
.11026E
.70000E
.790756
•55142E
.36005E
.360056
.OOOOCE

. .OOOOOE

01
01 .

01
01 .

00 .

01 .

01
99
•99

01
01
01
-99
-99

01
01
-01
-01
00
01
01
-99
-99

01
01
01

-99
-99

01
01
01
•01
00
01
01
•99
•99

01 ,

01 !

01
-99
-99

01
01
-01
-01
00
01
01

-99
-99

01
01
01

-99
99

01
01
-01
-01
00
01
01
-99
-99

,11106E 01
.10887E 01

.11105E 01

.10502E 01

,263166-01 .279316-01
23703E 00 .52980E 00
34794E-00 .19443E 01

,111106 01
.10883E 01

.11112E 01
,108826 01

,386606-01
.39642E 00
.46749E-00

.11113E 01

.10881E 01

•11114E 01
,
10880E 01

.542556-01

.56361E 00

.587116-00

.111086 01

.10500E 01

.111096 01

.104996 01

.442866-01

.767926 00

.17446E 01

,111106 01
,104986 01

.111116 01

.10497E 01

.67165E-01

.99582E 00

.16114E 01

.11100E 01

.949756-00

.329856-01

.106486 01

.347946-00

.111016 01

.949746-00

,111026 01
,949636-00

.596826-01

.13725E 01

.46749E-00

.110836 01

.68725E-00

.50283E-01

.18483E 01

.187506-02 16

.110826 01

.68721E-00

,110826 01
68712E-00

. 10020E-00

.21938E 01

.25000E-02 18

.111036 01 .11082E 01
1949566-00 .687096-00

.111036 01 .110826 01
1949536-00 .687086-00

.980315-01 .166655 00
1164976 01 .24966E 01
:58711E-00 .31250E-02 18

.111146 01

.108805 01

,111145 01
,108806 01

.74809E-01

.73224E 00
,706705-00

,111146 01
,108805 01

,111146 01
,108805 01

,101446-00
,899456 00
,826225-00

.111116 01

.10497E 01

.111116 01
,104976 01

.976696-01

.121255 01

.151516 01

.111116 01

.104976 01

.111115 01

.104976 01

.135956-00

.141906 01

.144176 01

.111035 01

.94951E-00

.111036 01

.949516-00

.147196-00

.190366 01

.70670E-00

.11103E 01

.94950E-00

.110826 01

.687076-00

,110826 01
.68707E-00

.245516 00

.276936 01

.37500E-02 18

.110826 01

.687066-00

.111036 01 .110826 01

.949506-00 .68706E-00

.20562E 00 .333366 00

.213936 01 .301956 01
82622E-00 .437505-02 18
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OEVELING VEL PRO
.11110E 01 .1U09E 01 .11107E 01
:il03AE 01 !l0907E 01 .105576 01

.11100E 01
•96073E 00

.11083E 01

.70235E 00
• .372666 01

.OOOOOE-99

.OOOOOE-99
• 1U10E 01
.11036E 01

.11109E 01
10907E 01

•11107E 01
.105576 01

•11100E 01
•96073E 00

•11083E 01
•70235E 00

.80000E-01

.10^296 00
•67960E 00
•38106E 01

.134626-00

.10626E 01

.96476E-00

.181656 00

.16101E 01'

.14055E 01

.271796 00
•23377E 01
.96476E-00

•42768E 00
•319926 01
•50000E-02 18

.38106E 01
•OOOOOE-99
.OOOOOE-99
• 1U10E 01
.11036E 01

.11109E 01

. 10907E 01
.111076 01
•10557E 01

.11100E 01

.96073E 00
.110836 01
•70235E 00

.39051E 01

.00000E-99

.00000E-99
•llllOE 01
•11036E 01

.11109E 01

.109076 01
•11107E 01
•10557E 01

.111006 01

.96073E 00
.110836 01
.70235E 00

.9C000E-01
•13509E 00

. .807546 00
.39899E 01

.174456 00
•12178E 01
•10768E 01

.234226 00
•17834E 01
.13731E 01

.34429E 00
•25175E 01
•10768E 01

•52626E 00
•3380LE 01
•56250E-02 18

.39899E 01
•O0000E-99
•OOOOOE-99
. llllOE 01
.110366 01

•11109E 01
. 10907E 01

•11107E 01
•10557E 01

•11100E 01
•96073E 00

•11083E 01
•70235E 00

•40852E 01
.0000CE-99
.000006-99
•llllOE 01
.110366 01

•11109E 01
•10907E 01

.111076 01
•10557E 01

.111006 01

.96073E 00
•11083E 01
.70235E 00

.10000E-00

.17138E 00
•93326E 00
•41682E 01
.17138E 00
•34915E 00
•93326E 00
•22995E 01

•22067E 00
.13659E 01
.11886E 01
•20125E 00
.421756 00
.11322E 01
.269126 01

.292926 00

.194786 01

.134246 01

.220671: 00

.513406 00

.13659E 01

.31171E 01

•42175E 00
.269126 01
.118866 01
-.250746 00
.62708E 00
•16370E 01
.355796 01

•62708E 00
•35579E 01
.625006-02 18
.292926 00
.76595E 00
.19478E 01
•39625E 01

•41682E 01
3 3
6
•41682E 01
.00000 6-99
.00000E-99
•llllOE 01
.11036E 01

.11109E 01
•10907E 01

.11107E 01
•10557E 01

.11100E 01
•96073E 00

•11083E 01
•70235E 00

•43472E 01
•OOOOOE-99
.000006-99
•llllOE 01 •11109E 01 .111076 01 •11100E 01 •11083E 01

•11G36E 01 •10907E 01 •10557E 01 •96073E 00 •70235E 00

.451006 01
•OOOOOE-99
•OOOOOE-99
.UllOE 01 •11109E 01 •111076 01 • 1U00E 01 •11083E 01

•11036E 01 •10907E 01 •10557E 01 •96073E 00 •70235E 00

.46782E 01

.OOOOOE-99
•OOOOOE-99
.111106 01 •11109E 01 .11107E 01 • 1U0OE 01 •11083E 01

.110366 01 .10907E 01 •10557E 01 •96073E 00 •70235E 00

.483116 01

.000006-99
•C0000E-99
•llllOE 01 •11109E 01 •11107E 01 •11100E 01 .110836 01

•11036E 01 •10907E 01 •10557E 01 •96073E 00 •70235E 00
.493966 01
.00000E-99
.00000E-99
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DEVELING VEL PRO
.llllOE 01 .11109E 01 .11107E 01
I11036E 01 IlOgOVE 01 .10557E 01

.11100E 01 .

.96073E 00
11083E 01
70235E 00

.51342E 01

.OOOOOE-99

.OOOOOE-99

.llllOE 01 .

.I1036E 01 .

11109E 01
10907E 01

.11107E 01

.10557E 01
.11100E 01
•96073E 00

.11083E 01

.70235E 00

•52846E 01
.00000E-99
.OOOOOE-99
.IIUOE 01
•11036E 01 .

11109E 01
10907E 01

•11107E 01
•10557E 01

.11100E 01

.96073E 00
.11083E 01
.70235E 00 - •

•54224E 01
.OOOOOE-99
.OOOOOE-99
•llllOE 01
.11036E 01

.11109E 01

.10907E 01
•11107E 01
.10557E 01

•11100E 01
•96073E 00

•11083E 01
•70235E 00

.55661E 01

.OOOOOE-99

.OOOOOE-99

.llllOE 01

.11036E 01
•11109E 01
•10907E 01

.11107E 01

.10557E 01
.11100E 01
•96073E OC

.11083E 01

.70235E 00

.20000E 00

.85485E 00

.21226E 01
•56984E 01

•96454E 00
•26825E 01
•23091E 01

•11081E 01
.33675E 01
.U801E 01

•13441E 01
.41802E 01
.23091E 01

.16794E 01

.S080BE 01

.12500E-01140

*56934E 01 •

. 00000 E-99

.OOOOOE-99

.llllOE 01

.11036E 01
•11109E 01
. 10907E 01

.11107E 01

.10557E 01
.11100E 01
.96073E 00

.11083E 01
•70235E 00

.58367E 01
•OOOOOE-99
.0000CE-99
.llllOE 01
-11036E 01

•11109E 01
. 10907E 01

•11107E 01
•10557E 01

.11100E 01

.96073E 00
•11083E 01
•70235E 00

.59646E 01

.OOOOOE-99

.OOOOOE-99
•llllOE 01
.11036E 01

•11109E 01
•10907E 01

.11107E 01

.10557E 01
.U100E 01
.96073E 00

.11083= CI

.702 35E 00

•60983E 01
.00G00E-99
•OOOOOE-99
•llllOE 01
.11036E 01

•11109E 01
.10907E 01

.111070 01
•10557E 01

.11100E 01

.96073E 00
.11083E 01
•70235E 00

•62226E 01
.OOOOOE-99
.OOOCOE-99
.llllOE 01
.U036E 01

•11109E 01
•10907E 01

.11107E 01

.10557E 01
•11100E 01
•96073E 00

.11083E 01
•70235E 00

.63526E 01

.OOOOOE-99
' .OCOOOE-99

•llllOE 01
.U036E 01

.11109E 01
•10907E 01

•11107E 01
.105.57E 01

•11100E 01
.96073E 00

•11083E 01
.70235E 00

.64740E 01

.C0000E-99

.00000E-99
•llllOE 01
.11036E 01

•11109E 01
-10907E 01

•11107E 01
•10557E 01

.11100E 01

.96073E 00
.11083E 01
.70235E 00

.66009E 01

.00000E-99

.OOOOOE-99

.llllOE 01

.11036E 01
.11109E 01
•10907E 01

.11107E 01

.10557E 01
•11100E 01
.96073E 00

•11083E 01
.70235E 00

•67201E 01
.OOOOOE-99
.OOOOOE-99
.llllOE 01
•11036E 01

.11109E 01

.10907E 01
.11107E 01
.10557E 01

.11100E 01

.96073E 00
.11083E 01
.70235E 00

•68443E 01
.00000E-99
•00000E-99
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.HUGE 01

. L1036E 01 .

.30000E 00

.17351E 01 .

.32590E 01 .

.6961^E 01 .

.69611>E 01

.OOOO0E-99

.OOG0CE-99

.11110E 01 -

.11036E 01 .

.70837E 01

.0O0OOE-99

.OOO00E-99

.11110E 01 .

.11036E 01 •

.71991E 01

.00000E-99

.C0000E-99

.HUGE 01 .
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DISCUSSION OF THE PHYSICAL SIGNIFICANCE OF THE

CURVES WHICH DESCRIBE THE DEVELOPING TEMPERATURE PROFILES

The dimensionless temperature is defined as

t-t
Q

t-t
Q

(1)
aq"7iT aq/kA *

where q" = - q/A. The slope of the temperature profile at the wall is

derived as

= 1 . (2)
v.'

y=i

The wall temperature in finite difference forn is

49 - e - + 2AY
•
w-w-*—f—

•

(3)

Substituting equation (1) into equation (3) gives

4(t - tJ - (t , - tn ) - 2AY(aq/kA)

Vl - t
o
-

3
. W

Rearranging terms in equation (4) such that

3*a+l " ^n + Vl - " 2AY(aqM). (5)

The heat transfer parameter, 1, is defined as

2 2
UqU- Uq p

^^"-aajA- (6)

Tvhen the heat transfer, q, is less than zero, heat is transferred into

the channel. This case is represented by the curves for which 7] is greater

than zero. Equation (5) can be rewritten as the inequality

3t „ - 4t + t , > (7)
n+1 n n-1

3*n+l > Hi " Vl * <8>
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If t > t -, , then equation (8) reduces to
n — n-J.wv C9)

Since e is defined as the variable temperature, t, minus a constant, and

that difference divided by a positive constant the inequality presented by

equation (9) will also hold for dimensionless temperature. Hence,

this can be seen in all cases where T) > 0. since there is internal heat

generation and heat transfer into the channel at the wall, it was expected

that the temperature near the wall would be greater than the temperature

nearer the center. This also is evident for the cases in which V, > 0.

Instead of using a backward finite difference scheme using three terms,

a simpler scheme using only two terms to evaluate the wall temperature will

be used. This latter scheme will give equivalent results if the AY distance

is small, and it will more clearly confirm the results obtained above.

S = 6 ,, = 3 + AY . (H)
w n+1 n

Substituting equation (1) into (11) and rearranging gives

t
n+1

= t
n

- AY(aq/kA) . (12)

If q < 0, then

(13)

9
n+l > 6

n
•

This result is equivalent to that shown in equation (10).

If q > 0, then equation (12) can be reduced to the following inequality:

This xwuld be the expected result, since heat is being transferred away from
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the channel. Yet, the dimensionless temperature profiles will show the

result

e ^ > e (15)
n+l n

which can easily be derived frost equation (11)

.

This result can be verified using the three point finite difference

scheme represented by equation (4). Khen q > 0, 1 > and equation (5) can

bo represented by the inequality

»Wi " kt
n
+ Vl * °

or

3t ., < *t - t_ , (16)J n+l n n-1

If t < t , then equation (16) can be rewritten as

which is equivalent to equation (1*0. The results for the case, q greater

than zero, are represented by the curves for which 1} is less than zero.
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RELATIONSHIP BETWEEN RESULTS OF PERLMUTTER AMD

SI33SL AND THOSE PRESENTED IN THIS THESIS

Perlmutter and Siegel [Reference 7 of Part
2J

define the dimer.sionless

mean current flow in the 2-direction as

J = (1)

where j is the mean current flow in the z-direction. Substituting

H = ne
H a \lcfa ,

(2)

H« =

Pea '\jclv-

into (1) gives

(3)

LVO m J

where E is the electrical field in the z-direction. Defining the electrical

field factor as

E
p. H„u
e m

(5)

and substituting into (4)

J M [- e + lj . (6)

Perlmutter and Siegel consider the temperature in two parts. One where

there is a specified uniform wall heat flux, q, at the channel walls, but no

internal heat generation in the fluid; for these conditions the fluid

temperature is called t . For the second, there is internal heat generation

Q within the fluid, but no heat transfer at the channel walls. The fluid

temperature for this part is called t.. By superposition the temperature

is given by
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t = t
q

+ t
Q

(7)

The difference between the wall temperature and bulk temperature is

reported as

t _ _ .
/Q.v ~V

5lJ
(t
Q,w " *Q.b }d

+

t - t .

U
g.w q,b , /+

%W - tq,b)d-l
^

(3)

q,w q,b d ,

where the subscripts w and b represent vail and bulk respectively and d

represents the fully developed value, that is as X * =>. Since we define

the local Kusselt number as,

Ku = K^
it would be advantageous to be able to calculate the value of 6 - 8, from

equation (8). Therefore,

lajVk" " L(tn „ - tn K )J

q,w o.o (tq,w" "^.b^d

(10)

Graphical results are presented for t« - tA ^/(t^ - tA . ) , j,

K.W -
*<l,b

/(*q.l»
- Vb^dJ- and (t

q,w " \,b V<aq"/k) with parameters of

Hartmann numbers and dimensionless mean current flow. The remaining term

of the right hand side of equation (10) is not presented in exactly the

precise form necessary, but is presented, in graphicJ. form as

(t
Q,w " \bh

&
(11)

(j
2 + Hj^±^

= oosh . -
j

(sinh M)/HJ. It is necessary to h denominator of
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(11) equivalent to aq*/k if these results are to be used in comparing with

those of the present work, therefore,

2
"a^ / X .

H sinh iU _ aq* _ aq" /n 2 >

~k~
(J +

A
; " k " " k ' *•

;

Dividing (12) by aq"/k gives

Da, (j
2 + *j|aL3) = . i (13)

For a Eartmann number of 10, dimensionless mean current flow of 0, and

Prandtl number of unity equations (k) and (10) give the following results

. respectively

e = 1.0

1J m - .09

Jhus, the results obtained in the present work under the previously described

conditions can be compared with the values obtained by Perlmutter and Siegel.

Tne case of the Kartmann number equal to 10 was the only case for which

general results were reported by Perlmutter and Siegel. Results for other

values of the Kartmann number, were reported, but only for the special cases

J = and J *- °>.
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The principal purpose of this work was to study heat transfer to a fluid

flowing between parallel plates with constant heat flux at the wall and a

transverse magnetic field. The equations were solved numerically using a

finite difference analysis and an IBM 1410 digital computer.

In the first part of the thesis the effects of viscous dissipation on the

heat transfer parameters and temperature profiles are investigated numerically.

The flow is considered laminar and fully developed. The heat generation

parameter is introduced. The relation between this parameter and the Eckert

and the Brinkman numbers is discussed. The developing temperature profiles as

well as the local Kusselt number are presented graphically for heat generation

parameters of -1.0, -0.5, 0, 0.5, and 1.0.

In the second part of the thesis heat transfer to a HBO fluid in the

thermal entrance region of a flat duct is studied. Die flow is considered

laminar and fully developed. The results are again presented graphically in

the form of developing temperature profiles and local Nusselt numbers for

heat transfer parameters of -1.0, -0.5, 0, 0.5, and 1.0; Hartmann numbers of

4 and 10; and electrical field factors 0.5, 0.8, and 1.0. Comparisons are

presented for certain cases with the work of others.

The third part of the thesis is again concerned with heat transfer to a

KHD fluid in the entrance region of a flat duct. However, in this part of the

study the velocity profile is initially flat and is considered to be developing

simultaneously with the initially uniform temperature profile. The viscous

criterion factor is introduced. The cases considered are for viscous criterion

factors of -1.0, -0.5, 0, 0.5, and 1.0; Hartmann numbers of 0, 4, and 10; and

electrical field factors 0.5, 0.8, and 1.0. The results are presented in the

same manner as those for the earlier two parts of the thesis and are limited



to the case of a Prandtl number equal to unity. Although this is true for

the results, there is no such limitation on the equations expressed or the

computation method presented.


