HEAT TRANSEER TO A MBD FLUID IN
a flat duct with constant heat fidx at the wails
by
465

PHILIP J. KNIEPER
B.S., Tulane University, 1963

A MASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SGTENCE

Department of Chemical imgineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1965

Approved by:

LD
INTRODUCTION1
Part 1 - EFFECTS OF VISCOUS DISSIPATION ON HEAT TRANSFER PARAMETERS FOR FLON BETWEEN PARALLEL PLATES 9
SUMMARY 10
NOMENCLATURE 11
INTRODUCTION 13
BASIC EQUATIONS 15
SOLUTION OF THE ENERGY EQUATION 18
HEAT TRANSFER PARAMETERS 23
RESULTS AND DISCUSSION 26
REFERENCES 35
Part 2 - AN INVESTIGATION OR HEAT TRANSFER FOR MHD FLOW IN THE THERMAL ENTRANCE REGION OF A FLAT DUCT 37
SUMAPY 38
NOMENCLATJRE 39
INTRODUCTION 42
BASIC EQUATIONS 44
SOLUTION OF THE ENEROY EQUATION 47
HEAT TRANSFER PARAMETERS 51
RESULTS AND DISCUSSION 52
REFERENCES 81
Part 3 - AN INVESTIGATION OF HEAT TRANSFER FOR MHD FLOW IN THE ENTRANCE REGION OF A FLAT DUCT 84
SUMMARY 85
NOMENCLATURE 86
INTRODUCTION 89
BASIC EQUATTONS 90
SOLUITON OF EQUATIONS 96
heat transfer parameters 99
resulis and discussion 100
REFERENCES 128
OUTLINE OF FUYURE RESEARCH WORK 130
APPENDIX 134
COMPUTER PROCRANS 135
dISCUSSION OF THE PHYSICAL SIGNIFICANCE OF THE CURVES WAICH DESCRIBE THE DEVELOPING TEMPERATUPE PROFILES 164
relationship berween results of Perliutter and stesel AND THOSE PRESENTED IN THIS ITESIS 167
ACKNOWLEDGEMENTS 170

Electromagnetic phenomena in rigid conductors have been studied ever since the time of Faraday. Until recently the study of the interaction of electromagnetic fields and electrically conducting fluids has not attracted much attention. Probably the recent incentive to study these phenomena came from the field of astrophysics. It has long been suspected that most of the matter in the universe is in the plasma or highly ionized gaseous state. Much of the basic knowledge in the area of electromagnetic field dynamics evolved from these studies [1].

The field of plasma physics has now grow from these scholarly beginnings to include problems in such widely diverse areas as geophysics and controlled muclear fusion. As a branch of plasma physics the field of magnetohydrodynamics (MHD) consists of the study of a continuous, electrically conducting fluid under the influence of electromagnetic fields. MFD originally included only the stuoy of stricily incompressible fluids, but today the terminology is applied to studies of partially ionized gases as well. The essential requirement for problens to be analyzed under the laws of $\mathbb{M D}$ is that the continuum approach be applicable.

With the advent of hypersonic flight the field of MiD as defined above, which has previously been associated largely with liquid-metal purping and flow control and measurement, attracted the interest of the aerodynamicists. As a result many of the classical problems of fluid mechanics were reinvestigated.

The study of channel-flow heat transfer has applications in the fields of propulsion and power-generation in such devices as a MHD power generator and pump. For obtaining a high thermal efficicncy in the generation of power, the MHD generator is ideal. However, the extremely high temperature at which
a MHD generator must operate has been a major problem in developing such a generator，and this problem can only be solved with a delicate blend of physics and engineering $\lfloor 2\rfloor$ ．Therefore，the study of heat transfer associated with MHD channel flow is of considerable importance．

For the study of heat transfer in MHD Fl （ FW ，the published interature on the subject is 11 mited $\lfloor 2,3,4,5,6,7,8,9,10,11,12,13,14,15\rfloor$ ． AII of these papers with the exception of the last three $\lfloor 3,4,5,6,7,8$ ， 9，10，11， 12 deal only with the cases for the fully developed velocity profile 【16〕．Three references，【13，14，15」 are the only ones，to the authors knowledge，that treat the entrance effects in a MHD channel．That is the simnltaneous development of the velocity and temperature profilles in the entrance region of some chosen channel geometry．Reference 【13」 considers only the case of constant wall temperature for a flat duct． Reference［14］investigated the same geometric configuration for insulated walls．Reference $\lfloor 15\rfloor$ investigated the entrance region of an annular channel for the case of insulated walls．

In this thesis the author investigates the simplaneous development of the velocity and temperature profiles in the entrance region of a flat duct for electrically conducting fluid flow in the presence of a transverse magnetic field considering the case of constant heat flux at the wall．The fluid properties are assumed to be constant，and the velocity and temperature profiles are both uniform at the entrance of the duct．The flat duct is formed by semi－infinite parallel plates，and the magnetic field is applied perpen－ dicular to the plates．There can be a net electrical current flowing parallel to the wails and perpendicular to the flow direction with a variable external resistance connecting the two end plates wich are displaced at infinity．

The basic governing equations are the Naxwell equations for the interaction of current flow and magnetic field, the continuity and momentum equations for the conservation of mass and momentum, and the energy equation for the conservation of energy.

Part I of the thesis is concermed with the effects of viscous dissipation on the temperature proifle in the thermal entrance region between parallel plates. The Now is laminar and the velocity profile is fully developed. The heat Ilux'at the walls is considered constant. This study made it possible to ascertain under wat conditions the Viscous dissipation effects may bo considered negligible in non-MD flow. Also the results for certain cases considered could be compared with others to provide a basis for checking the numerical method used to solve the desired equations.

Part 2 of the thesis presents the results for the investigation of heat transfer in an electrically conducting fluid Mowing through a ragnetic field within a slat duct for the case of a fully developed velocity profile (Hartmann profile) and constant heat flux at the wall. This study was prepared so that a comparison could be made between the results ootained in this study and other reported results to check the method of solution of the derived equations.

Part 3 of the thesis is the investigation of the simultaneous develogment of temperature and velocity profiles in the entrance region of a flat duct under the conditions previously described.

The three parts of this thesis may be considered as a demonstration of the use of a powerful mathematical method in combination with high speed digital computers for the solution of transport equations.

A finite difference analysis technique is employed throughout this thesis. A mesh retwork is superimposed on the flow field and the backward
finite difference method $[17,18]$ is used to produce n Iinear similtaneous equations in n unknows. The equations are solved by using the method of Thomas [17]. Because of computer capacity limitations and a desire to minimize computing time, the selection of the proper mesh sizes of the coordinates in order to achieve convergence to the true solution of the differential equations is one of the most important factors for solving this type of problem. A semi-theoretical and semi-empirical method was employed in the determination of the mesh size ratio for the solution of the energy equation [19].

RETERENCES

1. Romig, M.F., "The Influence of Electric and Magnetic Flelds on Heat Transfer to Electrically Conducting Fluids," in Advances in Heat Transfer, Vol. 1, edited by T.F. Frvine, Jr. and J.P. Hartnett, Academic Press (1964), pp. 268-353.
2. Rosa, R., and A. Kantrawitz, "MHD Power," International Science and Technology, (Sept., 1964). pp. 80-92.
3. Alpher, R.A., "Heat Thansfer in Magnetohydrodynaric Flow between Parallel Plates," Intermational Journal of Heat and Mass Transfer, Vol. 3, (1961), pp. 109-113.
4. Gershuni, G.E., and E.M. Zkukhovitskii, "Stationary Convective Flow of an Electrically Conducting Liquid between Parallel Plates in a Magnetic Field," Soviet Pinysies, JETP, Vol. 34 (7), NO. 3. (Sept., 1958).
5. Mori, Y., "On Combined Free and Foreed Convective Laminar Nagnetohydrodynanic Flow and Heat Treansfer in Channels with Transverse Magnetic Field," International Developnents in Heat Treansfer, 1961 International Heat Transfer Conference, (Aug.-Sept., 1961), Part V, pp. 1031-1037.
6. Nigam, S.D., and S.M. Singh, HYeat Transfor by Laminar Flow between Parallel Plates under the Action of a Transverse Magnetic Field," Quarterly Journal, Mechanics and Applied Mathematics, Vol. XIII, Part 1, (1960), pp. 85-96.
7. Perimutter, M., and R. Siegel, "Heat Transfer to an Electrically Conducting Fluid Floving in a Channel with a Transverse Magnetic Field," NASA Technical Note D-875, (Aug., 1961).
8. Regirer, S.A., "On Convective Kotion of a Conducting Fluid between Parallel Plates in a Magnetic Field," Soviet Physics, JEPP, Vol. 37 (10), No. 1, (Jan., 1960).
9. Siegel, R., "Effects of Nagnetic Field Convection Heat Transfer in a Parajlel Plate Channels," Trans. ASVE, Journal of Applied Mechanics, (Sept., 1958), pp. 415-416.
10. Yen, J.T., "Effects of Wall mectrical conductance on Magnetohydrodymamic Heat Transfer in a Channel," Trans. ASNX, Journal of Heat Transfer, (Nov., 1963), pp. 371-377.
11. Erickson, L.E., C.S. Wang, C.I. Hwang, and L. I. Fan, "Heat Transfer to Magnetohydrodymanic Flow in a Flat Duct," Journal of Apolied Mathematics and Physies (ZAMP), Vol. 15, Fasc. 4 (1954), pp. 408-418.
12. Michiyoshi, H., and R. Matsumoto, "Heat Transfer by Fartmann Flow in the Thermal Entrance Region," Intemational Journal of Heat and Vass Transfer, Vol. 17, (1964), pp. 101-112.
13. Hiwang, C.I., "A Finite Difierence Analysis or Naznetohycrodynamic Flow with Forced Convection Eeat Transfer in the Entrance Region of a Flat Rectangular Duct," Ph. D. Thesis, Mech. Figgr., Kansas Stato University (Juiy, 1962).
14. Shohet, J.I., J.F. Osterle, and F.J. Young, "Vglocity and Temperature Profiles for Iaminar Magnetohydrodynanne Flow in the Entrance Region of a Plane Channel," The Physics of Fluids, Vol. 5, No. 5. (May, 1962), pp. 545-549.
15. Shonet; J.L., "Velocity and Temperature Profiles for Laminar Magnetohydrodynamic Flow in the Entrance Region of an Annular Chanel, "The Physics of Fluids, Vol. 5, No. 8, (Aug., 1962), pp. 879-884.
16. Cowling, T.G., Magnetohydrodynamics, New York, Interscience Publications, Inc., (1957), pp. 2-15.
17. Iapidus, L., Digital Computation for Chemical Engineering, New York, McGraw-Hill Book Company, (1962), Pp. 254-255.
18. Richtruyer, R.D. Difference Methods for Initial Value Problems, New York, Interscience Pablishers, (1957), pp. 91-101.
19. Hwang, C. L., and I.T. Fan, Winite Difference Analysis of Forced Convection Heat Transfer in the Entrance Region of a Hat Rectangular Duct," Applied Scientific Research, Vol. 13. Sec. A (1965). pp. 401-422.

Part 1

EFFECTS OF VISCOUS DISSIPATION ON HEAT TRANSFER PARANETERS FOR FLON BETVEEN PARALLEL PLATES

SUMMARY

The effects of viscous dissipation on terperature profiles and heat transfer parameters in the thermal entrance region are investigated numerically for flow between two parallel plates. The flow is considered larinar and fully developed, and the heat flux at the walls is considered constant. The heat generation parameter is introduced. The relation between this parameter and the Eckert number and the Brinkman number is discussed. The developing temperature profiles as well as the local Nusselt number are presented graphically for heat generation parameters of $\mathbf{- 1 . 0}$, $-0.5,0,0.5$, and 1.0.

NOMENCLATURE

A surface area through which heat is transferred
a one-half of the duct height
Br $\frac{\mu u^{2}}{k\left(t_{b}-t_{0}\right)}$, Brinkman nurber
cp specific heat
c_{n} constant reported by Cess and Shafier
D_{e} equivalent diameter of the duct, 4a
$E_{c} \frac{u^{2}}{c_{p}\left(t_{b}-t_{0}\right)}$. Eckert number
h heat transfor coefficient
k themal conductivity
I duct length
$\operatorname{Mn}_{x} \frac{h_{x} D_{e}}{k}$
Is $\frac{\mu C_{p}}{k}$, Prandtl number
q rate of heat transfer
$q^{\prime \prime}-\frac{q}{A}$, negative rate of heat transfer per unit area
$q^{*} \quad \frac{q}{A}$, rate of heat transfer per unit area
$\operatorname{Re}_{a} \frac{\frac{\rho u_{0}}{}}{\mu}$, Reynolds number

* temperature
u velocity in x-direction
J $\frac{u}{u_{0}}$, dimensionless velocity in x-direction
x
variable distance along length of duct
$x \quad \frac{\mu x}{\rho a 0_{0}{ }^{2-r}}$, dimensionless variable distance along length of duct
Y $\quad \frac{Y}{a}$, dimensionless variable distance across height of duct
$Y_{n}(1)$ constant reported by Cess and Shaffer
y Variable distance across height of duct
z Variable distance along widh of duct
β_{n} Eigenvalue reported by Cess and Shaffer
$7 \frac{u_{0}^{2} \mu}{2 q_{1}^{11}}$, heat generation parameter
p density
μ Viscosity
- $\frac{t-t_{0}}{\frac{2 q^{11}}{k}}$, dinensioniess tomperature
* $\frac{4}{\Delta \theta}$, pseudo-local Nusselt number

Subscripts
b bulk
j at j th position along x axis
$k \quad a t$ kth position across y axis
w at the walls or plates
$x \quad$ local
0 at initial position along x axis

INTRODJCTION

The effects of viscous dissipation are often assuned to be small and thus they are often neglected in heat transfer computations．There are many applications where this assumption is questionable．Some of these are high speed flow through small conduits，extrusion of viscous materials at high speeds，flow through very small ducts（capillary flow），and flow at high speeds．Recognizing the conditions under wich the viscous dissipation effects can be neglected is of practical significance．

Brinkman \I〕obtained the temperature distribution in a capillary due to the energy dissipation of viscous flow for the cases of constant wall temperature and insulated walls．The dependence of kinomatic viscosity upon temperature was assumed to have only a small effect on the temperature distribution and was neglected．A Aurther simplification was introduced by neglecting the heat conduction in the axial direction which is small compared to the convection in the radial direction．

Gemard，Appeldorn and Philippoff 〔2〕experimentally verified Brinkman＇s results for capillary hcating due to viscous dissipation．The experinents also proved that the flow in a capillary is essentially adiabatic which was in contradiction to the widespread belief that the＂isothermal wall＂condition existed．

Bird $\lfloor 3\rfloor$ extended Briniman＇s work to describe the heat effects for the flow of non－newtonian muids which obey a power－law relation between the coefficient of viscosity and the shear stress．Results are presented for the power law corresponding to the flow of a general purpose polyethylene melt for two cases：（1）the capillary walls are maintained at the temperature of the feed，and（2）the capillary walls are thermally insulated．

Novotny and Eckert [4] experimentally studied heat transfer in free convective flow of a heat-generating fluid in a vertical parallel-plate channel through the use of an interferometer. The study incluces the range of time from an initial state of uniform temperature in the whole system (no flow) to a quasi-steady state when a step change in heat generation is applied to the fluid initially between the walls of the channel. The results obtained are for neither the constant wall temperature boundary condition nor the constant heat flux at the wall boundary condition, but rather describe a condition between the two cases.

In this investigation the effects of viscous dissigation on the temperature profile in the therral entrance region betreen parallel plates are presented. The flow is laminar and the velocity profile is fully developed. The heat flux at the walls is considered constant.

The heat generation parameter is introduced and its relation to the Eckert and Brinkman numbers is discussed.

The derivation of the boundary condition that the constant of the heat flux at the wall is equivalent to unity in dimensionless form, is presented in detail because such an expression has never been presented in the literature.

The finite difference analysis and numerical method are presented in detail to show the application of Thomas' rethod to the solution of the linear simultaneous equations derived from the energy equation. This presentation will be referred to in latter parts of the thesis. An advantage of Thomas' method as compared with the usual matrix inversion mathod of Gaussiam Qlimination method is the significant reduction in computer storage requirement and computing time.

The developing temperature profiles and the local Nusselt numbers for
the heat generation parameters，$-1.0,-0.5,0,0.5$ ，and 1.0 are presented．

BASIC EQUATIONS

The geometry under consideration，illustrated in Figure 1，consists of two semi－infinite parallel plates extending in the x and z directions．The fully developed laminar velocity profile，a parabolic profile in the x－ direction，used in this work is expressed as 【5」．

$$
\begin{equation*}
u=\frac{(-\Delta P)_{a}^{2}}{2 \mu I}\left[1-\left(\frac{Y}{a}\right)^{2}\right] \tag{1}
\end{equation*}
$$

位ere ΔP is the average pressure drop over the length．I，of the duct．The average velocity between the two plates is

$$
\begin{equation*}
u_{0}=\frac{1}{3}\left(-\frac{\Delta P}{\mu L}\right) a^{2} \tag{2}
\end{equation*}
$$

Then，the dimensioniess velocity profile is

$$
\begin{equation*}
\frac{u}{u_{0}}=U=\frac{3}{2}\left\lfloor 1-\left(\frac{U}{a}\right)^{2}\right\rfloor . \tag{3}
\end{equation*}
$$

The general form of the energy equation for unidirectional steady flow of an incompressible fluid with constant properties and with negligible heat conduction in the fluid flow direction can be simplified to $\lfloor 5\rfloor$

$$
\begin{equation*}
u \frac{\partial t}{\partial x}=\frac{k}{\rho C_{p}} \frac{\partial^{2} t}{\partial y^{2}}+\frac{\mu}{\rho C_{p}}\left(\frac{\partial u}{\partial y}\right)^{2} . \tag{4}
\end{equation*}
$$

Introducing the dimensionless parameters

$$
\begin{aligned}
& P_{r}=\frac{\mu C_{p}}{k}, \text { Prandtl number } \\
& X=\frac{k \sigma}{\rho a^{2} u_{0} C_{p}}=\frac{z / a}{R e_{a} P r} \\
& Y=y / a
\end{aligned}
$$

$$
\begin{aligned}
& \theta=\frac{t-t_{0}}{\frac{2 q^{\prime \prime}}{k}} \\
& \eta=\frac{u_{0}^{2} \mu}{a q^{\prime \prime}}, \text { heat generation parameter }
\end{aligned}
$$

equation (4) becormes

$$
\begin{equation*}
U \frac{\partial \theta}{\partial X}=\frac{\partial^{2} \theta}{\partial Y^{2}}+\eta\left(\frac{\partial U}{\partial Y}\right)^{2} \tag{5}
\end{equation*}
$$

The boundary conditions are

$$
\begin{align*}
& \text { 1. } \theta=0 \text { at } X=0 \text { and } 0 \leq \Psi \leq I \text {. } \\
& \text { 2. } \frac{\partial \theta}{\partial Y}=0 \text { at } Y=0 \text { and } 0 \leq X \text {. } \tag{6}\\
& \text { 3. } \frac{\partial \theta}{\partial Y}=1 \text { at } Y=1 \text { and } 0<K \text {. }
\end{align*}
$$

The third boundary condition can be developed from the assumption of constant heat Ilux at the walls. As stated by Kays [6], the slope of the temperature profile at the wall is maintained constant along the duct when the heat flux is constant. AIthough the constant slope in Kays' solution was specified as 1, the definition of dimensionless temperature was of the form t / t_{0} in this paper; hence, it limited the solution to the special case in wisch the entrance fluid temperature is $t_{0}=q^{n} a / k$. In the present work the dimensionless temperature is redefined so that the conditions, $(\partial 0 / \partial Y)_{Y=1}=1$, holds universally wen the heat flux is constant as shown below:

According to Fourien's law, one has

$$
\begin{equation*}
q=-L \mathbb{L} \frac{\partial t}{\partial y} . \tag{7}
\end{equation*}
$$

Fquation (7) can be remritten, for constant heat flux at the walls, as

$$
\frac{\partial t}{\partial y}_{y=a}=\frac{-q}{k A}=\frac{q^{n}}{k}=\text { constant, }
$$

where $q^{\prime \prime}=-q /$ A. Therefore, one obtains

$$
\left.\frac{q^{n}}{k} \frac{\partial\left(\frac{t}{2 q^{11} / k}\right)}{\partial\left(\frac{7}{a}\right)}\right|_{y=a}=\frac{q^{11}}{k}, \quad q^{\prime \prime} \neq 0
$$

or

$$
\left.\frac{\partial\left(\frac{t}{\partial q^{\prime \prime} / k}\right)}{\partial Y}\right|_{Y=1}=1 .
$$

Since

$$
-\frac{t_{0}}{\frac{2 a^{n}}{k}}
$$

is constant, it can be seen that

$$
\left.\frac{\partial\left(\frac{t}{a q^{n / k}}-\frac{t_{0}}{2 q^{n / k}}\right)}{\partial Y}\right|_{Y=1}=1
$$

Defining the dimensioniess temperature as

$$
\theta=\frac{t-t_{0}}{\frac{a t^{\prime \prime}}{k}}
$$

one obtains

$$
\left.\frac{\partial \theta}{\partial Y}\right|_{Y=1}=1
$$

Therefore, the results presented in this work hold for all cases of constant heat flux and are not limited to any specific application except for the case in wich $q=0$. This investigation will not be applicable to this case.

SOLUTION OF THE ENGMGY EOUATION

In order to solve the energy equation, the velocity profile is first determined from equation (3) and the enerey equation is solved by employing
a finite difference analysis. The approximate finite difference equations are (see Figure 2 for the mesh network)

$$
\begin{align*}
& U=U_{j, k}, \\
& \frac{\partial \theta}{\partial Y}=\frac{\theta_{j, k+1}-\theta_{j, k-1}}{2 \Delta Y}, \\
& \frac{\partial \theta}{\partial X}=\frac{\theta_{j+1, k}-\theta_{j, k}}{\Delta X}, \\
& \frac{\partial^{2} \theta}{\partial Y^{2}}=\frac{\left(\theta_{j+1, k+1}-2 \theta_{j+1, k^{+\theta} j+1, k-1}\right)}{2(\Delta Y)^{2}}+\frac{\left(\theta_{j, k+1}-2 \theta_{j, k}+\theta_{j, k-1}\right)}{2(\Delta Y)^{2}} \tag{8}\\
& \frac{\partial U}{\partial Y}=\frac{\left(U_{j+1, k+1}-U_{j+1, k-1}\right)}{2 \Delta Y}
\end{align*}
$$

The boundary conditions in finite difference form become

$$
\begin{array}{ll}
\text { 1. } \theta_{0, K}=0 & \text { at } X=0 \text { and } 0 \leq Y \leq 1, \\
\text { 2. } \theta_{j+1,2}=\theta_{j+1,0} & \text { at } X \geq 0 \text { and } Y=0 . \tag{9}\\
\text { 3. } \theta_{j+1, n+1}=\theta_{j+1, n}+\Delta Y & \text { at } X>0 \text { and } Y=1 .
\end{array}
$$

Substituting the difference equations, equation (8), Into the energy equation, equation (5), one can obtain the following equation in wiaich the θ 's with $j+1$ subscript are the unknowns and the θ^{\prime} s with j subscript are the know variables.

$$
\begin{equation*}
\left\lfloor C_{k}\right\rfloor \theta_{j+1, k+1}+\left\lfloor A_{k}\right\rfloor \theta_{j+1, k}+\left\lfloor B_{k}\right\rfloor \theta_{j+1, k-1}=\left\lfloor D_{k}\right\rfloor \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left\lfloor c_{k}\right\rfloor=\left\lfloor B_{k}\right\rfloor=-\frac{I}{2(\Delta Y)^{2}} \\
& \left\lfloor A_{k}\right\rfloor=\frac{J_{j} k}{\Delta X}+\frac{I}{(\Delta Y)^{2}}
\end{aligned}
$$

Fig.2. Moen nemork to: blucumso represenations.

$$
\begin{aligned}
\left\lfloor D_{k}\right\rfloor= & -\left\lfloor C_{k}\right\rfloor \theta_{j, k+1}-\frac{1}{(\Delta Y)^{2}} \theta_{j, k}-\left\lfloor c_{k}\right\rfloor \theta_{j, k-1}+\frac{U_{j, k}}{\Delta X} \theta_{j, k} \\
& +\frac{\eta}{4(\Delta Y)^{2}}\left(U_{j+1, k+1}-U_{j+1, k-1}\right)^{2}
\end{aligned}
$$

Substituting $k=1,2, \ldots, n$ into equation (10) with the boundary conditions given by equation (9), n unknowhs and n simultaneous equations are obtained. Such equations are given in matrix form as

where

$$
\begin{equation*}
D_{1}^{\prime}=-2\left\lfloor C_{1}\right\rfloor_{j, 2}+\left(\frac{U_{j, 1}}{\Delta X}+2\left\lfloor C_{1}\right\rfloor\right) \theta_{j, 1} . \tag{12}
\end{equation*}
$$

The last equation of equation (11), $k=n$, is

$$
\begin{equation*}
\left\lfloor c_{n}\right\rfloor \theta_{j+1, n-1}+\left\lfloor A_{n}\right\rfloor \theta_{j+1, n}+\left\lfloor c_{n}\right\rfloor \theta_{j+1, n+1}=\left\lfloor D_{n}\right\rfloor . \tag{13}
\end{equation*}
$$

Since the third boundary condition is $\theta_{j+1, n+1}=\theta_{j \div 1, n}+\Delta Y$ at the wall, one has

$$
\begin{aligned}
& \left\lfloor A_{n}^{\prime}\right\rfloor=\left\lfloor A_{n}\right\rfloor+\left\lfloor C_{n}\right\rfloor \\
& \left\lfloor D_{n}^{\prime}\right\rfloor=\left\lfloor D_{n}\right\rfloor-\Delta Y\left\lfloor C_{n}\right\rfloor
\end{aligned}
$$

Fquation (II) is solved using Thonas' method [7]. Advantages of Inomas' method are the reduction in computer storage required and computing time.

The unknows are eliminated starting from the top by letting

$$
\begin{align*}
& W_{1}=A_{1}, \\
& W_{r}=A_{r}-\left(C_{r}\right) Q_{r-1}, \quad r=2,3, \ldots, n \tag{14}\\
& Q_{r-1}=\frac{B_{r-1}}{W_{r-1}},
\end{align*}
$$

and

$$
\begin{aligned}
& G_{1}=\frac{D_{1}}{D_{1}}, \\
& G_{r}=\frac{D_{r}-C_{r} G_{r-1}}{W_{r}}, \quad r=2,3, \ldots, n .
\end{aligned}
$$

These transform equation (11) into

$$
\begin{align*}
& \theta_{j+1, n}=G_{n}, \\
& \theta_{j+1, r}=G_{r}-Q_{r} \theta_{j+1, r+1}, \quad r=1,2, \ldots, n-1 \tag{15}
\end{align*}
$$

By calculating W, Q, and G in the order of increasing r, equation (15) can be used to calculate $\theta_{j+1, r}$ in the order of decreasing r, that is, $\theta_{j+1, n}$. $\theta_{j+1, n-1}, \ldots, \theta_{j+1,2}, \theta_{j+1,1}$. The actual numerical computations were carried out on computers. See the Appendis for the computer program and sample results.

It is important to achieve convergence to the true solution of the differential equations within the available computer storage capacity. If the values of ΔX and ΔY are chosen so that the value of $U(\Delta Y) 2 / 12(\Delta X)$ is of an order smaller than $\frac{1}{2}$, the truncation emor becomes $[8,9]$

$$
e\left\lfloor\theta_{\text {exact }}\right\rfloor=0\left[(\Delta X)^{2}\right\rfloor+O\left[(\Delta Y)^{4}\right\rfloor
$$

In order to obtain the truncation errors of the above order, the value of $U(\Delta Y)^{2} / 12(\Delta X)$ is kept less than 0.05 . Although the velocity U is in the
range of $0 \leq U \leq 1$. 5 , it is taken as 1.0 in calculating the value of $U(\Delta Y)^{2} / 12(\Delta X)$. The mesh sizes employed in the calculation are shown in Table 1.

HEAT TRANSFER PARAMETERS

The bulk temperature (or mixing mean temperature) is evaluated after the temperature profiles have been determined. The defining equation

$$
\begin{equation*}
\theta_{b, X}=\frac{\int_{0}^{I} U(Y) \theta(X, Y) d Y}{\int_{0}^{I} U(Y) d Y} \tag{16}
\end{equation*}
$$

for the bulk temperature in finite difference form at $X=(j+1)$ Δx becomes

$$
\begin{equation*}
\theta_{b, X}=\frac{\sum_{k=1}^{n} \theta_{j+1, k} U_{j+1, k} \Delta Y}{\sum_{k=1}^{n} U_{j+1, k} \Delta Y} \tag{17}
\end{equation*}
$$

Since

$$
\sum_{k=1}^{n} U_{j+1, k} \Delta Y=1
$$

equation (16) becomes

$$
\begin{equation*}
\theta_{b, X}=\sum_{k=1}^{n} \theta_{j+1, k,} U_{j+1, k} \Delta Y \tag{18}
\end{equation*}
$$

In evaluating the wail temperature, the gradient of the temperature profiles at the walls in the finite difference scheme is approximated as follows $[10]$:

$$
\left.\frac{\partial \theta}{\partial Y}\right|_{Y=1}=\frac{+\theta_{j+1, n-1}-4 \theta_{j+1, n}+3 \theta_{j+1, n+1}}{2 \Delta Y}+0\left(\Delta Y^{2}\right)
$$

TABLE I

Mesh Sizes for Finite Difference Solution of the Energy Enuation。

X				
0	ΔX	ΔY	\mathbb{N}	$\frac{U(\Delta Y)^{2}}{12 \Delta X}$
0.001				
0.01	0.0005	0.00625	160	0.0065
0.1	0.001	0.0125	80	0.013
2.5	0.005	0.025	40	0.01

Substituting the boundary condition, $\partial \theta /\left.\partial Y\right|_{Y=1}=1$, in the above equation and solving for the wall temperature, $\theta_{j+1, n+1}$, one obtains

$$
\theta_{w}(x)=\theta_{j+1, n+1}=\frac{4 \theta_{j+1, n}-\theta_{j+1, n-1}+2 \Delta Y}{3}
$$

The mean Nusselt number, $N u_{m}$, for the case of constant heat flux at the wall is of secondery importance, and the local Nusselt number, Nu x_{x}, is desired. The local Nusselt nurber may be used to evaluate the wall temperature at any position along the duct; wereas, the primary usefulness of the mean Nusselt number is in evaluating the temperature of the fluid leaving the system. The local Nusselt number is defined as

$$
\begin{equation*}
N u_{x}=\frac{h_{x} D_{e}}{k} \tag{20}
\end{equation*}
$$

Since the local heat transeer cocfficient, h_{x}, is given by

$$
n_{x}=\left|\frac{q_{x}}{A(\Delta t)}\right|=\left|\frac{q_{x}}{(I)(\Delta X)(\Delta t)}\right|
$$

and q_{x} is given by

$$
q_{x}=-k\left(\frac{\partial t}{\partial y}\right)_{y=a}(\Delta x)(I)
$$

the local Nusselt number, Nux, in dimensioniess variables can be written as

$$
\left.N_{X}=\left|\frac{4}{\Delta \theta} L-\left(\frac{\partial \partial}{\partial Y}\right)\right|_{Y=1} \right\rvert\,
$$

The constent heat flux is equivalent to maintaining ($\partial 0 / \partial Y)_{Y=1}=1.0$, as given in tia last bowndary condition of equation (7). Pherefore, the local Nusselt number is

$$
\begin{equation*}
\max _{X}=\left|\frac{4}{\Delta \theta}\right| \tag{21}
\end{equation*}
$$

where $\Delta \theta$ is defined as

$$
(\Delta \theta)_{X}=\theta_{W, X}-\theta_{O, X}
$$

RESULIS AND DISCUSSION

The temperature distributions between the parallel plates at various positions in the thermal entrance region are presented in Figures $3 a$ and $3 b$. The shape of these curves are similar to those presented by Brinkenan $\lfloor 1\rfloor$ for flow in a capillary with insulated walls ($q=0$), wich is a special case of constant heat flux at the wall, and by Novotnyr and Eckert $\lfloor 4\}$ for the quasi-steady conditions of free convective flow on a heat-generating fluid in'a vertical parallel plate channel. Novotny and Eakert 44 considered a case wich was nexther constant wall temperature nor constant heat flux at the wall, thus, the results presented vary between these exireme cases. When the distance between plates is small the quasimsteady state curves presented have a shape which looks similan to the resuits in Figures $3 a$ and 3b. As the channel widith increases the curves presented oy Novotny and Eckert take cn a shape similar to those reported by Brinknan $\lfloor 1\rfloor$ for tho constant wall temperature case.

The heat generation parameter, η. is defined as $u_{0}^{2} \mu / q^{\prime \prime} a$, were $q^{\prime \prime}$ is $-q / A$ and q is - $k A \frac{\partial t}{\partial y}$ (equation 7). Wen $q^{\prime \prime}$ is positive Jis positive, and the heat flux is into the system through the walls. Wen $q^{\prime \prime}$ is negative so is η and heat is transfered away from the fluid through the walls. Since the dimensionless temperature, θ, is defined as $k\left(t_{-t_{0}}\right) / a q^{n}$, the slope of the temperature profile at the wall is given as unity. For the case in Which q" is greater than zero, it can be clearly shom that $\theta_{n+1}>\theta_{n}$, were θ_{n+1} is the dimensionless wall temperature, hence $t_{n+1}>t_{n}$ as would be expected when heat is being added to the systen through the wall. If q^{11} is less than zero $\theta_{n+1}>\theta_{n}$, but the dimensional wall temperature is less than the temperature of the fluid by the wall, that is $t_{n+1}<t_{n}$. This

ㅇ.

would be expected since heat is being transfered away from the fluid through the walls. Also the temperature increase as the walls are approached is in part due to the higher rate of shear near the walls. When η is greater than zero the dimensionless'fluid temperature increases as the flow distance increases and vice versa for the cases in which η is negative. A more detailed derivation of the physical significance of these curves is presented in the Appendix.

The two dimensionless numbers, the Eckert and Brinkman numbers, winh are the criteria of negligibility of viscous dissipation, are related as follows:

Since the Brinknan number is defined as $\lfloor 5\rfloor$

$$
B r=\frac{\mu u^{2}}{k\left(t_{0}-t_{0}\right)}
$$

and the Eckert number as $\lfloor 7]$

$$
E c=\frac{u^{2}}{c_{p}\left(t_{b}-t_{0}\right)}
$$

one can see that

$$
\left.B r=\left\lvert\, \frac{u^{2}}{C_{p}\left(t_{b}-t_{0}\right)}\right.\right\rfloor^{\left.\frac{\mu C_{p}}{k}\right)=\operatorname{EcFr}}
$$

The heat generation parameter, , defined in this work is

$$
\eta=\frac{u_{0}^{2} \mu}{2 q^{n}}
$$

Since $q^{\prime \prime}$ is dimensionally equivalent to $h\left(t_{b}-t_{0}\right)$ and k / a to h, $q^{\text {la }}$ can be considered equivalent to $\left(t_{0}-t_{0}\right) k$. Thus, there is a similarity between the Brinkman number and the heat generation parameter.

In Flgure 4 variations of wall and bulk temperatures along the parallel plates are show for various heat transfer parameters．The results shown in Figures 3a，3b and 4 indicate the fact that the heat generation parameter can be considered as a criterion for the negligibility of viscous dissipation．

In Figure 5 the results of the variation of the local Nusselt nurber with dimensionless distance is presented for various values of the heat generation parameter，7．Actually，instead of Nu X ，the pseudo－local Nusselt number defined as

$$
\psi=\frac{4}{\theta_{W, X}-\theta_{b, X}}
$$

is plotted．This quantity is identical to Nu_{X} except that it changes in sign depending upon the relative megnitudes of $\theta_{W_{p}} X$ and $\theta_{b, X}$ ，and thus the use of ψ reveals the behavior of the system better than use of Nu X^{*} Referring to Figure 4 for the case of $\pi=-1.0$ ，the wall temperature，θ_{w} ，becomes more negative than the builk temperature at the position $X / 16 \approx 9 \times 10^{-4}$ ． Before this point is reached from the inlet of the duct，the temperature difference $\Delta \theta_{X}=\theta_{W, X}-\theta_{b, X}$ approaches zero positively．One can see that the pseudo－local Nusselt number，ψ ，should approach infinity positively． Then at the position where the wall temperature becomes greater than the bulk temperature，the sign of the pseudo－local Nusselt number is reversed and becomes negative．

A comparison of the results of the present work on the local Nusselt number along the parallel plates with the results obtained by Siegel and Sparrow［12〕，Michiyoshi and Matsumoto［13〕，and Cess and Shaffer 【14」 for the case in which the viscous dissipation is neglected（ $7=0$ ）is presented

in Figure 6. The results of Cess and Shaffer $\lfloor 14\rfloor$ were obtained by a numerical calculation of the following equation

$$
\begin{equation*}
N u_{X}=\frac{4}{\frac{17}{35}+\sum_{n=1}^{\infty} C_{n} Y_{n}(1) \exp \left(-\frac{2}{3} g_{n}^{2} X\right)} \tag{22}
\end{equation*}
$$

The constants C_{n} and $Y_{n}(I)$ as well as the eigenvalues, B_{n}, were reported for the first three values, and asymptotic expressions were given wich would augment the initial values presented. The series in the denominator of equation (22) was truncated at $n=20$. The present work is in excellent agreement with the results of Cess and Shaffer in the range where $\mathrm{X} / 16>$ 3×10^{-4}. When $X / 16<3 \times 10^{-4}$ the results of Cess and Sinaffer are lower than those of the present work. This deviation is due to the truncation error incurred in limiting the series in equation (22) to $n=20$. If only the first three terms of the series are considered, the results obtained approximate those presented by Siegel and Sparrow $\lfloor 12\}$ in the range $X / 16>$ 4×10^{-4}. Since Siegel and Sparrow $\lfloor 12\rfloor$ and Michiyoshi and Matsunnoto $\lfloor 13\rfloor$ used approximation methods their results are not necessarily completely rellable.

The excellent agreement of the results of this work with those of Cess and Shaffer gives a considerable measure of confidence in the numerical method employed in this work. It is worth noting that the method employed in this work was also used to obtain the correct results for the case of constant wall temperature [8], and for forced convection heat transfer in the entrance region of a duct were both the velocity and temperature profiles are developing simultaneously under the condition of negligible Viscous dissipation \9].

Fig. 6. Comparison oi local Nusseli number for tho ease of negligible
viscous dissipation.

1. Brinkman, H.C., HHeat Effects in Capillary How I," Appl. Sci. Res., Sect. A, Vol. 2, (1951), pp. 120-124.
2. Gerrard, J.E., J.K. Appeldoorn, and W. Philipporf, meating in Capillary Flow," NATURE, Vol. 194, June (1962), pp. 1067-1063.
3. Bird, R.B., "Viscous Heat Effects in Extmision of Molten Plastics," Soc. Plastics Eng. J., 11, 35-40, (1955).
4. Novotny, J.L., and E.R.G. Eckert, "axperimental Study of Laminar Convection in the Channel Between Parallel Plates with Uniform Heat Sources in the Fluid," Int. J. Heat Mass Transfer, Vol. 7, (1964) pp. 955-968.
5. Bird, R.B., W.S. Steward, and E.N. Lightfoot, Trensport Phenomena, New York: John Wiley and Sons, Inc., (1963), pp. 62, p. 278.
6. Kays, W.M., "Numerical Solutions for Laminar Flow Heat Transfer in Circular Tubes," Technical Report No. 20, Dept. of Mech. Engr., Stanford University, (Oct. 1953), and Trans. ASME (1955). pp. 1265-1274.
7. Lapidus, L., Dipital Computation for Chemical Engineers, New York: McGraw-Hill Book Company, Inc. (1962), p. 254, p. 137.
8. Erickson, L.E., C.S. Wang, C.I. Ewang and L.T. Fan, "Heat Transfer to Magnetonydrodynamic Flow in a Flat Duct," J. of Applied Math. and Physics, (2AMP), VOI. 15, No. 4, (1964), pp. 408 ml 18.
9. Fwang, C. L., and L.T. Fan, "Finite Difference Analysis of Forced Convection Heat Transfer in Entrance Region of a Flat Rectangular Duct," Applied Scientific Research, Sec. A, Vol. 13, (1965), pp. 401-422.
10. Salvadori, M.G., and M.L. Baxon, Mumerical Methods in Engineering, New Jersey, Prentice Hall, Inc., 2nd ed. (1961), pp. 73-75.
11. Eckert, E.R.G., and R.N. Drake, Jr., Heat and Mass Pransfer, New York, McGraw-Hill Book Company, Inc., 2nd ed. (1959), pp. 171-173.
12. Siegel, R., and E.M. Sparrow, "Simultaneous Development of Velocity and Temperature Distributions in a Mat Duct with Uniform Wall Heating, " A.I.Ch.E. Joumal, Vol. 5, No. 1, (March, 1959), pp. 73-75.
13. Michiyoshi, I., and R. Natsumoto, "Heat Pransfer by Hartman's Flow in Thermal Entrance Region," Int. J. Heat and Nass Pransier, Vol. 7, (1964), pp. 101-112.
14. Cess, R.D., and E.C. Shaffer, MHeat Transfer to Laminar Flow between Parallel Plates with a Prescribed Wall Heat Flux." Appl. Sci. Res., Sec. A: Vol. 8, (1959), pp. 339-344.

Part 2

AN INVESTIGATION OF HEAT TRANSFER FOR MHD FLOW IN THE THERMSL ENTRANCE PBOION OF A FLAT DUCT

SUMMAY

Heat transfer to an MHD fluid in the thermal entrance region of a flat duct is investigated numerically. The flow is considered to be laminar, the velocity profile is considered to be fully developed, and the heat flux at the wall is considered to be constant. The developing temperature profiles as well as the local Nusselt number are presented graphically for the heat transfer parameters of $-1.0,-0.5,0,0.5$ and 1.0 ; for Hartmann numbers of 4 and 10; and for electrical field factors 0.5, 0.8, and 1.0. The results presented are applicable for the cases with any Prandtl number. Comparisons are presented for certain cases with previous work.

NOMENCLATURE

A surface area of channel walls through wich heat is being transferred
a one-half of duct height
$A_{k s}, B_{k}, C_{k}, D_{k} \quad$ constants defined by equation (19)
B_{0} magnetic field induction
Cp specific heat
De equivalent diamoter of the duct, 4 a
E electric field strength
e $\quad \frac{E}{u_{0} B_{0}}$. electric field magnitude factor
H magnetic field intensity
$H_{0} \quad$ magnetic field imposed perpendicular to bounding walls
h heat transfer coefincient
J electric current density
$k \quad$ themal conductivity
$M \quad \mu_{e} H_{0} a \sqrt{\sigma_{e} / \mu}$, Hartmann number
$\mathrm{Nu}_{x} \quad \frac{h_{x} D_{e}}{k}$, local Nusselt number
p fluid pressure
Is $\quad \frac{\mu C_{p}}{k}$, Prandtl number
9 rate of heat transfer
$q^{\prime \prime} \quad-q / a$, negative rate of heat transfer per unit area
$R e_{a} \quad \frac{\rho u_{0}{ }^{2}}{H}$, Reynolds number
t
t_{0}
U
u
u_{0}
V
x
x
Y
y
z

7
ρ
μ
μ_{e}
τ
$\theta \quad \frac{t-t_{0}}{2 q^{11} / k}$, dimensionless temperature
市 $\quad \frac{4}{\Delta \theta}$, pseudo-local Nusselt number Subscripts
b bulk property or mean fluid property
j at jth position along X axis
k at kth position along Y axis
at walls or plates
local property at position x

InTRODOCTION

The study of heat transfer in a electrically conducting fluid flowing within a magnetic field has，within the last few years，become quite important． These efforts have been due to the development of such devices as magneto－ hydrodynamic accelerators，generators，and pumps．A flat duct is considered in this work because it has applications in such devices．

The general literature on magnetohydrodynamic heat transfer before 1962 is summarized by Romig $\lfloor 1\rfloor$ ．Siegel $\lfloor 2\rfloor$ investigated heat transier to the region where the temperature distribution is fully developed and the heat flux at the wall is uniform．Alpher $\lfloor 3\rfloor$ ，Yen 44\rfloor ，and Snyder $\lfloor 5\rfloor$ investigated the same problem，but assumed that the duct walls were electri－ cally conducting．Regirer $\lfloor 6\rfloor$ and Gershuni and Zkuhovitskii $[7]$ neglected the Joule heating in the fluid．

The case considering constant wall terperature with viscous and electrical dissipation in the thermal entrance region was investigated by Nigam and Singh［8］．However，the Joule＇s heating term in this investigation was incorrectly represented［9］，rendering the results invalid．Erickson， et．al．，【10〕using a finite difference analysis，presented the results for this case．Jain and Srinivasan 〔11〕extended this problem to include the effects of electrically conducting walls．

Michiyoshi and Matsumoto［12」studied both the case of constant wall temperature and the case of uniform heat flux at the wall，but neglected the heat produced by viscous dissipation．These authors considered only the open circuit case，i．e．，e $=1.0$ ．

The problem investigatad in this part is the study of heat transier for MHD flow in the thermal entrance region of a flat duct with constant heat flux
at the wall. Neither the viscous dissipation nor the Joule heating are neglected, and there can be a net electric current flow parallel to the walls and perpendicular to the Flow direction. This same problem has been studied by Perlmutter and Siegel [9]. These authors separated the problem into two parts: the first deals with a specified uniform heat flux at the walls, but no internal heat generation in the fluid, and the second considers internal heat generation within the fluid, but no heat transfer at the channel walls. By the superposition of these two solutions, a general solution was obtained. The solution for each part of the problem was presented in graphical form for certain cases and in general the solution was presented by equations containing infinite series. It is rather tedious and difficult to complete the superposition and obtain a temperature distribution at any position for any desired case. Also, the overall effects are not obvious in this type of presentation.

The purpose of this part of the thesis is to present the results obtained in the investigation of this problem in an easily interpretable manner such that the effects of the various parameters can be easily verified. Also, the results presented by Siegel and Perlmutter give an excellent opportunity to check the finite difference method used in the thesis for a case in which the differential equations are not reduced by various assumptions to a simple fom.

The developing temperature profiles and the local Nusselt numbers for heat generation parameters of $-1.0,-0.5,0,0.5$, and 1.0 are presented for Hartmann numbers of 4 and 10. Three cases; open circuit, maximum power generation, and maximum efficiency are considered.

The geometry under consideration, which is illustrated in Figure 1 , consists of two semi-infinite parallel plates extending in the x and 2 directions. The fluid flows in the x direction; the magnetic field is imposed in the y direction; and the electric current flows in the z direction. Nurthemore, the following assumptions are made:

1. The flow is laminar
2. All the fluid properties, $0, C, k$ and μ are constant
3. The magnetic permeability, μ_{e}, and the electrical conductivity, σ_{e}, are constant scalar quantities
4. Rapid oscillations do not exist; therefore, the displacement current is negligible
5. The gravitational force is negligible.

Under the assumptions, the basic equations of magnetohydrodynamics in MKS units may be written as follows $[13\rfloor$

$$
\begin{align*}
& \text { curl } \underline{H}=\underline{J}, \tag{I}\\
& \operatorname{curl} \quad \underline{E}=-\mu_{e} \frac{\partial H}{\partial T}, \tag{2}\\
& \operatorname{div} \quad \underline{J}=0, \tag{3}\\
& \operatorname{div} \quad \underline{H}=0 . \tag{4}
\end{align*}
$$

Ohm's law for a moving sluid is

$$
\begin{equation*}
\underline{J}=\sigma_{e}\left(\underline{E}+\underline{V} \times \mu_{e} \underline{H}\right) \tag{5}
\end{equation*}
$$

The continuity equation is

$$
\begin{equation*}
\operatorname{div} \quad \underline{V}=0 \tag{6}
\end{equation*}
$$

The modified Navier-Stokes equation is

$$
\begin{equation*}
\frac{\partial V}{\partial r}+(\underline{V} \cdot \operatorname{grad}) \underline{V}=-\frac{1}{\rho} \operatorname{grad} p \div \frac{\mu}{\rho} \nabla^{2} \underline{V} \div \frac{1}{\rho}\left(\underline{J} \times \mu_{e} H\right) \tag{7}
\end{equation*}
$$

The illly developed velocity profile used in this work was originally obtainod by Hartman [I4]. Cowling [13] gives the Harimann velocity profile as Sollows:

$$
\begin{equation*}
u=\frac{p M}{\sigma_{e^{\mu} e^{H} 2}^{2} 0}\left[\frac{\cosh M-\cosh M \frac{X}{a}}{\sinh M}\right] \tag{8}
\end{equation*}
$$

With the boundary conditions

$$
\begin{array}{lll}
\text { 1) } u=0 & \text { at } & y= \pm a \tag{9}\\
\text { 2) } \frac{\partial u}{\partial y}=0 & \text { at } & y=0
\end{array}
$$

The average value of u between $y= \pm a$ is

$$
\begin{equation*}
u_{0}=\frac{\int_{-a}^{a} u d y}{\int_{-a}^{a} d y}=\frac{p}{\sigma_{e} \mu^{2} e^{2} 0}[M \cosh M-I] \tag{10}
\end{equation*}
$$

Then the dimensionless velocity profile is

$$
\begin{equation*}
\frac{u}{u_{0}}=U=M \left\lvert\, \frac{\cosh M-\cosh M \frac{\pi}{a}}{M \cosh M-\sinh M}\right. \tag{II}
\end{equation*}
$$

The general form of the energy equation for unidirectional steady flow of an incompressible fluid with constant properties and with negligible heat conduction in the fluid flow direction can be simplisied to [10].

$$
\begin{equation*}
u \frac{\partial t}{\partial x}=\frac{k}{\rho C_{p}} \frac{\partial^{2} t}{\partial y^{2}}+\frac{\mu}{\rho C_{p}}\left(\frac{\partial u}{\partial y}\right)^{2}+\frac{J^{2}}{\rho C_{p} \sigma_{\theta}} \tag{12}
\end{equation*}
$$

It can be shown $\lfloor 10\rfloor$ that equation (5) simplifies to

$$
\begin{equation*}
J=u_{0} \sigma_{e} B_{0}\left[-e+\frac{u}{u_{0}}\right] \tag{13}
\end{equation*}
$$

With this value for J, the energy equation becomes

$$
\begin{equation*}
u \frac{\partial t}{\partial x}=\frac{k}{p C_{p}} \frac{\partial^{2} t}{\partial y^{2}}+\frac{u}{\rho C_{p}}\left(\frac{\partial u}{\partial y}\right)^{2}+\frac{u_{0}^{2} \sigma_{e} B_{0}^{2}}{\rho C_{p}}\left(-\theta+\frac{u}{u_{0}}\right)^{2} \tag{I4}
\end{equation*}
$$

Introducing the dimensionless paramoters

$$
\begin{aligned}
& \operatorname{Pr}=\frac{\mu C_{p}}{k} \text {, PrandtI number , } \\
& X=\frac{k x}{p a^{2} u_{0} c_{p}}=\frac{x / a}{\operatorname{ra}_{a} T}, \\
& X=\frac{Z}{a}, \\
& \theta=\frac{t-t_{0}}{q^{12} 2 / k}, \\
& \eta=\frac{u_{0}^{2}}{q^{11}} \text {, heat generaition paramoter: }
\end{aligned}
$$

equation (14) becomes

$$
\begin{equation*}
U \frac{\partial \theta}{\partial X}=\frac{\partial^{2} \theta}{\partial Y^{2}} \div \eta\left(\frac{\partial U}{\partial Y}\right)^{2}+M^{2} \eta(e-v)^{2} \tag{15}
\end{equation*}
$$

The boundary conditions are

$$
\begin{array}{lllll}
\text { I. } \theta=0 & \text { at } & X=0 & \text { and } & 0 \leq Y \leq I \\
\text { 2. } \frac{\partial Q}{\partial Y}=0 & \text { at } & Y=0 & \text { and } & 0 \leq X \\
\text { 3. } \frac{\partial Q}{\partial Y}=I & \text { at } & Y=I & \text { and } & 0<X
\end{array}
$$

The third boundary condition can be developed from the assumption of constant heat flux at the walls. (See same section in Part 1 of the thesis)

SOLJTIONS OF THE ENEROY EQUATION

In onder to solve the energy equation, the velocity propile is first determined from equation (11) and the energy equation is solved by employing a finite difference analysis. The approximate inite difference equations are (see Figure 2 for the mesh network)

Fig.2. Mosh retwork for chmounco repesonarions.

$$
\begin{align*}
& \mathbb{U}=\mathbb{U}_{j, k}, \\
& \frac{\partial \theta}{\partial Y}=\frac{\theta_{j, k+1}-\theta_{j, k-1}}{2 \Delta Y} . \\
& \frac{\partial \theta}{\partial X}=\frac{\theta_{j+1, k}-\theta_{j, k-1}}{\Delta X}, \\
& \frac{\partial^{2} \theta}{\partial Y^{2}}=\frac{\left(\theta_{j+1, k+1}-2 \theta_{j+1, k}+\theta_{j+1, k-1}\right)}{2(\Delta Y)^{2}} \tag{17}\\
& +\frac{\left(\theta_{j, k+1}-2 \theta_{j, k}+\theta_{j, k-1}\right)}{2(\Delta Y)^{2}} . \\
& \left.\frac{\partial U}{\partial Y}=\frac{\left(v_{j+1}, k+1\right.}{}-U_{j+1}, k-1\right) .
\end{align*}
$$

The boundary conditions in finite difference form become

1) $0_{0, k}=0$
at $X=0$ and
$\left.\begin{array}{l}0 \leq Y \leq 1 \\ Y=0 \\ Y=1\end{array}\right\}$
2) $\theta_{j \div 1,2}=\theta_{j \div 1,0}$
at $X \geq 0$ and $Y=0$
3) $\theta_{j \div 1, n+1}=\theta_{j \div 1, n}+\Delta I$
at $X>0$ and $Y=1$

$$
\begin{aligned}
\left\lfloor Z_{k}\right\rfloor= & -\left[C_{k}\right] \theta_{j, k+1}-\frac{1}{(\Delta Y)^{2}} \theta_{j, k}-\left\lfloor C_{k}\right] \theta_{j, k-1}+\frac{U_{j, k}}{\Delta X} \theta_{j, k} \\
& +\frac{\eta}{4(\Delta Y)^{2}}\left(U_{j+1, k+1}-U_{j+1, k-1}\right)^{2}+M^{2} \eta\left(e-U_{j, k}\right)^{2}
\end{aligned}
$$

Substituting $k=1,2, \ldots, n$ into equation (19) with the boundary conditions given by equation (18), n unknows and n simultaneous equations are obtained. These equations are solved by Thomas' method [15] as show in Part 1 of the thesis. It is important to achieve convergence to the true solution of the differential equations within the available computer storage capacity. In order to obtain suficiciently small immention errors, the value of $\frac{U(\Delta Y)^{2}}{12(\Delta X)}$ is kept less than 0.05 [10, 16) (Refer to first part of the Thesis). Although the velocity, U, is in the range, $0 \leq U \leq 1.5$, it is talen as 1.0 in calculating the values of $\frac{U(\Delta Y)^{2}}{12(\Delta X)}$. The mesh sizes employed are shom in Table 1. It was necessary to keep N as large as shom in order to insure stable results and to prevent discontinuities wich at tines appeered in the local Nusselt number, Nư, due to a chance in ΔY. These discontinuities were not evident in the computations for Part 1 of the thesis.

Table 1

Nesh Sizes for Finite Difference Solution of the Energy Equation.

X	ΔX	ΔY	N	$\frac{U(\Delta Y)^{2}}{12(\Delta 1)}$
0	0.0005	0.00625	160	0.0065
0.01				
0.1	0.001	0.0125	80	0.013
2.5	0.005	0.0125	80	0.0026

HEAT TRANSFER PARAMETERS

The bulk temperature (on mixing mean temperature) is evaluated after the temperature profiles have been determined by the following finite difference equation at $X=(j+1) \Delta X$

$$
\begin{equation*}
\theta_{b, X}=\sum_{k=1}^{n} \theta_{j+1, k} U_{j+1, k} \Delta Y \tag{21}
\end{equation*}
$$

The wall temperature is approximated in finito difference form as follows:

$$
\begin{equation*}
\theta_{W_{1} X}=\theta_{j+1, n+1}=\frac{4 \theta_{j+1, n}-\theta_{j+1, n-1}+2 \Delta Y}{3} \tag{22}
\end{equation*}
$$

The mean Nusseit number, Nu for the case or constant hat flux at the wall, is of secondary importance, and the local Nusselt number, Nux, is desired. The local Nusselt number may be used to evaluate the woll temperature at any position along the duct; wereas, the primary userviness of the mean Nusselt number is in evaluating the temperature of the muid leaving the system. The local Nusselt number is defined as

$$
\begin{equation*}
N_{z}=\frac{h_{x} D_{e}}{k} . \tag{23}
\end{equation*}
$$

For the case of constant heat flux at tho wall, the local Nusselt number recuaces to

$$
\begin{equation*}
\operatorname{Nu}_{x}=\left|\frac{4}{\Delta \theta}\right| \tag{24}
\end{equation*}
$$

where $\Delta \theta$ is defined as

$$
(\Delta \theta)_{X}=\theta_{W, \mathbb{X}}-\theta_{b, X}
$$

For a more detailed discussion of the heat transfer parameters refer to the same section in Part 1 of the Thesis.

RESULTS AND DISCUSSION

The results are presented for the following parameters: Hartmann numbers of 4 and 10; electrical field factors of $0.5,0.8$, and 2.0; and heat generation parameters of $-1.0,-0.5,0,0.5$, and 1.0 . The results presented are applicable for any Prandtl number.

The electric field factor, e, is equivalent to the efficiency of an NED generator and may be cofined as the ratio of the electrical power developed to the power necessary to procure the flow of the fluid. The value of e for the maximum power generation is 0.5 . The generally accepted value of e, for the compromise which must be made between the conflicting requirement for maximun yower and maximum efficiency in MHD generators, is 0.8 [17 $]$. The open circuit case, or no net electrical current flow in the channel, occurs when the electrical field factor is 1.0 .

The heat generation parameter, 7 , is similar to the Brinkman numer, which is a criterion for the negitgibility of viscous dissipation. When in is positive heat is transferred into the system through the walls. If if is negative, heat is transferred from the fiuid through the walls to the surroundings [see Results and Discussion, Part l].

The dimensionless temperature distributions between the parallel plates at various positions in the themal entrance region are presented in Figures 3a, 3b, $3 c$ and $4 a, 4 b, 4 c$. In Figures $5 a, 50,50$ and $6 a, 60,6 c$ the variations of dimensionless wall temperature, θ_{w}, and buik temperature, θ_{b}, with distance along the flow direction are presented. The pseudo local Nusselt number, 出, defined as

$$
\psi=\frac{4}{\theta_{W, X}-\theta_{b, X}}
$$

is plotted in Fisures 7a, 7b, 7c and 8a, 8b, 8c. Tre quantity ψ is identical to the local Nusselt number except it changes aign cepending upon the relative magnitudes of $\theta_{W, X}$ and $\theta_{b, X}$; thus, the use of $\%$ revcals the beinavior of the system better than the use of $\mathrm{Nin}_{\mathrm{x}} \mathrm{x}$

Tho shape of the dimonsionless temperature distribution presented in Figures $3 \mathrm{a}, 30,3 \mathrm{c}$ and $4 \mathrm{a}, 4 \mathrm{~b}$, 4 c for positive values of the heat generation paranter, π, is sinilar to those presented by Brinkmen [18] for flow in a capinlary with insulated wells ($\mathrm{O}=0$) wizich is a special case of constent heat Slux at the wall. The shape of these curves as well as those for 77 less than zero is also similar to those of Novotny and Eckert 19\rfloor, for fres convection flow between parallel plates with uniform heat sources in the fluid. Neither of the above two references considered flowin a Mid channel.

The dimensionless temperature is uniform and equal to zero at the entry ($\mathrm{X}=0$). Two effects which would tend to increase the temperature as the flow distance increases are internai heat generation by both viscous dissipation and Joulo's heating and external heat generation, heat transfer through the meils. Since η is greater than zero wen heat is added to the fiuid through the wails, the combined effect of botin extemal and internel heating is to increase the terporature of the fluid. When η is less than zero heat is trensferred away from the fluid through the wells, hence there is a competitite, action between the intemal heat generation and the external loss of heat. In this case the dimensionless temperature increasing negatively is equivalent to the dimensionel temperature increasing positively due to the definitions of the dimensionless temperature, θ, and the heat generation parameter, 7. For a more detailed discussion on the physical significance of the shape of the curves which describe the developing temperature profiles

see the Appondix.
An increase in tho electric field factor is equivaleat to a decrease of electione cument flow through the field, and is also proportional to a decrease of Joule's heating in tinc IIuid. Comparison anong praures 3a, 3b, and 30 for a Viamman munoer of 4 and amone Pigures 4a, 4b, and $4 c$ for a Eartman rumber of 10 shons that tha rato of increase of tomperature is reduced by increasirg e. Fowever, the tempewture difference betwoen the conterinc temperaturo and the meil tomperature inc:oases as o increases. This phenorena is chu to the increasing signiticance of the viscous dissipation, wich is highe: rean the valls, as the Jonlo heat effect becomes smaller.

The efiects of the electric fineld factor, e, car also be noticed then a comparison is mado arong Figures 5a, 50, and 5 c and aracng Pigures 6a, 6b, and 6c. Lgein the reduction of wan and oulk temperature with increasing e can be observel, for thore is a reduction in the joule heating. Because of the increase in the dinnerenee botwecn wail zia oulk temporature as e increases, there sionld bo a courease in the local Nousselt number, or the absolute vana of the pseño local lixsucIt rumion, fo houlc decrease as e increases. Thas occurs in Figwres 7a, 70,7c and 8a, 80, 8e.

Comparing Fistres 3a with $4 a, 30$ with 40 , and 30 ratth 40; the effects of changine tho Hartrarn nunve: can rendily be soen. Tre fromease in the
 can also te observer by companigg Figures Sa witi 6a, 50 with 6b, and 50 mith 6c.
 examining Fisures 52, 50, 5u wd 62, 63, Ex. Increasing the heat generation
parameter simen it is groater tinan zeno causes an increase in the cifference betireen whll and bulk temporature, thererore, a cecrease in the yscudo local Nusselt sumber as shorm in Figures 7a, 7b, 7c and 8a, 8b, 8c. \& similar trend can be seen then Th is negzeivo.

Reicrring to Figure 5a for the case of $7=-0.5$, the wall temperature, θ_{w} becomas more nezativa than the bulk tuperaturo, θ_{b}, at the position

 the buik temporiture, tion sign of tis reversca and becomos netative (see Figure (a). A simitar trond con be cisuerved for the case in which $\mathrm{N}=4$, $e=0.8, T=-0.5 \mathrm{in}$? 2 zanes 50 and T.

Fizure 9 presents a couparison of the pseudo-local Musselt muber, 中,

 Fartrimn number ircreases. For tho cases in thich $0<0$ and $\theta_{\text {Tr, }}<\theta_{b, X}$ an increase in the Hurman number causes a correspunding increase in $\theta_{w, ~} X^{-}$
 rifl docroase.

Figure 10 末icis the ∇ ritition car temperature with position along tho Cuct. The distanco frocer tino onterino is the parameter. Only ono case is peeserted to exornizity tho trend wizh cccurs in all cascs.

Figures IIa and IIb show the comparison ci the pressnt work to that of Winchyochi ari Watsumoto $\lfloor 12$, These authon's assumed the viscous dissipation term to be nogligible, trows, for tia case of $\eta=0$, fom both Hartmann nurbers of 4 and 8, the results reportce b, Meniyosin and Matsumoto and those evaluated in uhis theris soound bo iticnici?. The fact that the fomer set
 (Renem to the Rosulits and ILucunsicn Section and Figure 6 in Part 1 of this Nesis). Fon the cases in wioh if of the resuits cirnchiyoshi and Matsumoto differ greatly from those reporied in this rovk. This difierence Is rot sumpising for tho viscous tiessipetion ras assumed to be negligible in the Fomer presentation. As the Fartann number increases the viscous tem becomes iess crncial and the results presented by hichiyoshi and
 IIb. The craparison of rostints Eiven in triece sigu*es offers an excellent cportuntiy to observe the einects of viscous dissipation. The comparison cin rosults was wie fow tha ouen cincuit case ($0=1.0$) becouse this was the

Perlmuter and Siczel [9] stinich the samo probleu that is investigated in this wosi, and reported the results in the form on equations containing ininito series and icn cortain soeutal cases z゙aphical soluticrs are Freserted. "n rable 2 a ccmor won on the lecal lussait rumber nor the case in mich X apmoaches inzinnty and no internel heat gereration in tho fluzd,
 companiscn of the local Niusselit numuc: calcilated from Perlmiter and Siegel's
 ertrance rusion or the asc $\eta=0.09, e=1.0$, and $M=10.0$. The rethod

 Perlmutter and Siegel is presented in the Appandix. Tas gneaent work is in
 0.3. The cianition in the results for x is less tian 0.3 perinap tue to the truncetion orfor incumed then limiting the infinito series found in Prolmitcr
 in tha infintte sorion; thnnefore, the series were grobeb Trmeatec after the seventh tom. (A sinilan probion was enocutered in the oariticr pert of this Thesis in wivich tine present roric gives the eract solution, taerean, the Cigenvenue sombion is not oxact becauce the inninite series is tmuncticc too early. Fofen to Figure 6 and the Demit anc Ziscuscion Section in Part 1. From this prerious discussion it was shom shat oron iruncating an infinite
 $\eta=0$, Poisevilile ncrt, Perimuter and Sierelta rectits reciuce to those presented by Cess end onaffer [20], hence the tmmestion oftect would be quite similer.)

Table 2.

Perlmutter and Siezel Present Wow โ. 1

4
20

9.1013	9.0530
10.2585	10.2016

REPERENCES

1. Romiz, M. F., "The Influence of Blectric and Magnetic Eields on Heat Transfer to Eleotrically Conducting Fluids," in Advances in Heat Tpansfer, Vol. I, edited by To I. Irvine, Jr. and JoP. Hartnett, Acaderic Press, New York (1964), 2p. 268-353.
2. Siegel. … ${ }^{n}$ Effects or Magnetic Fiald on Foreod Convection Heat Transfer in a Parallel Plate Channel," Trans. AS:I, Joumal of Applied Mechanics, (Septemer, 1958), pp. 415-4́6.
3. Aloher, R.A., "Heat Transfer in Magnetohydrodynmic Fow betwecn Parallel Plates, " Int. J. Feat Nass Mransies, Vol. 3. (1961), 2p. 109-113.
4. Yen, J.T., "rifect of Wall Electrical corductance on Magnetohyoirodymamic Heat Transfon in a Channel, " Trans. ASt式, J. Of Heat Transfer, Nov., (1963), pp. 371-377.
5. Snyder, WoTo, WThe Influence of Wall Conductance on Vagnetonydrodynamic Channei-nlow Heat Transfer, "Mrancactions of the Ashes, J. of Heat Trensfier, (1964), 2p. 552-558.
6. Regirer, S.A., "On Convective Motion of a Conducting Fluid between Parallel Vericai Plates in a Magnetic Field, "Soviet Physics, JETP, Vol. 37, (1.0), NO. I, (January, 1950).
7. Cershuni, C.E., and E.M. 2kukhovitskij, "Stationary Convective FIon of an Mectrically Conducting Liquid betroen Parallel Plates in a Ragnetic Ficid, "Soviet Physies, JEPP, Vol. 24 (?), NO. 3, (Soptember, 1958).
8. Nagam, S.D., and S.K. Singh, पHeat Transtier by Iarinar Flow between Parallel Plates untion the Action of a Transverse Nagnetic Zield," Quarterly Joumal, Nechantes and Apolied Wathematics, Vol. XIII, Part 1, (1960), pp. 85-96.
9. Perimutter, M., and R. Siegel, "Heat Transfer to an Plectrically Conducting Fluid Flowing in a Channel with a Transverse Magnetic Field," NASA Technical Note D-875, (August, 1961).
10. Erickson, L.E., C.S. Wang, C.I. Hwang, and I.T. Fen, "Feat Transfer to Magnetohydrodynamic Flow in a Flat Duct," J. of Applied Mathematics and Physics (ZAM), Vol. 15, Fasc. 4 (1964), pp. 408-418.
11. Jain, N. K., and J. Sxinivasan, whydromagnetic Heat moansfer in the Thermal Entrance Region of a Channel with Electrically Conducting Wells," AIAA Joumal, VoI. 2, No. 11 (1954), pp. 1886-1892.
12. Michiyoshi, H., and R. Matsumoto, wheat Transfes by Martmann How in Thermal Entrance Region," Int. J. Heat and Mass Trensfer, Vol. 7. (1964), pp. 101-112.
13. Cowing, T.G., Kagnetohydrodynamics, New York: Interscience Publications, Inc., (1957), po. 2-15.
14. Hartmann, J., and F. Lazarms, Kgl. Danske Videnskab, Selskab, Mat-fys., Medd. 15, Vol. 6, (1937).
15. Lapidus, L., Digital Computation for Cherical Enginearing, New York: NcGraw-inll Book Company, New York (1962), pp. 254-255.
16. Hwang, CoI。, and I。T. Fan, "Finite Difference Analysis of Forced Convection Heat Transfer in the Entrance Region of a Flat Rectangular Duct," Applied Scientific Research, Vol. 13, Sec. A, (1965), pp. $401-422$.
17. Noffatt, W.C. MMagnetohydrodynamics Power Generaition -- Its Principles and Problems," Tech, Report MIT-29-P, Project SQUID, Dept. of Aerospace Engr., University of Virginia, (Jan., 1963).
18. Brinkman, H.C., "Heat Effects in Capillary Flow I, Appl. Sci. Res., Sec. A, Vol. 2, (1951), pp. 120-124.
19. Novotny, J.L., and R.E.C. Eckert, "Experinental Study of Laminar Convection in the Channel between Parallel Plates with Uniform Heat Sources in the Fluid," Int. J. Heat Mass Transfer, Vol. 7. (1964), pp. 955-968.
20. Cess, R.D., and E.C. Shaffer, "Heat mansfer to Ieminar FON between Parallel Plates with a Prescribed Wall Heat F2ux," Appl. Sci. Res., Sec. A, Vol. 8, (1959), pp. 339-344.

Part 3

AN INVESTIGATION OT HEAT TRANSEER
FOO N.D FION IN TEE ENTRMYOE
REGION OF A FLAT DJCT

SUMSBY

The heat transfer to a MHD filuid in the entrance region of a Nlat duct is investigated numerically. The velocity profile is initialyy flat and is considered to be developing simultancously with the initielly flat temperature profile. The cases considered are for constant heat flux at the wall with a Prandtl number of unity. The developing temperature profiles as well as the local Nisselt nurber are presented graphically for visccus criterion factors of $-1.0,-0.5,0,0.5$, and 1.0 ; for yartmann numbers of 0,4, and 10; and for the electrical field fiactors 0if $0.5,0.8$, and 1.0.

NONENCLATURE

A surface area of channel walls through mich heat is being transferred
a one-half of duct height
$A_{k}, B_{k}, C_{k}, D_{k}$ constants defined by equation (26)
$\mathrm{B}_{0} \quad$ magnetic field induction
$\mathrm{Br} \quad \frac{\mu u^{2}}{k\left(t_{b}-t_{0}\right)}$, Brinkman number
C_{p} specific heat
$\mathrm{D}_{\mathrm{e}} \quad$ Quivalent dimeter of the duct, 4 a
E electric field strength

- $\frac{E}{u_{0} B_{0}}$, electric field magnitude factor

Ec $\frac{u^{2}}{c_{p}\left(t_{b}-t_{0}\right)}$, Eckert numior
H. magnetic field intensity
$H_{0} \quad$ ragnetic field imposed perpendicular to bounding walls
h heat transfer coefficient
$J \quad$ electric current density
k thermal conductivity
$\mathrm{M} \mu_{e} \mathrm{H}_{0} \mathrm{a} \sqrt{\sigma_{\mathrm{e}} / \mu}$, Hartmann number
Nux $\frac{h_{x} D_{e}}{k}$, local Nusselt nuniber
P $\quad \frac{p-p_{0}}{\rho u_{0}^{2}}$, dimensionless fluid pressure
p fluid pressure

$$
\begin{aligned}
& \operatorname{Pr} \quad \frac{\mu C_{p}}{k}, \text { Prandil number } \\
& q \text { rate of heat transfer } \\
& \text { q" } \frac{-q}{A} \text {, negative rate of heat transfer per unit area } \\
& R e_{a} \quad \frac{\rho u_{0}{ }^{2}}{\mu} \text {, Reynolds number } \\
& \text { t temperature } \\
& t_{0} \text { temperature of fluid at entrance of channel } \\
& \text { U } \quad \frac{u}{u_{0}}, \text { dimensionless velocity in x-direction } \\
& \text { u. velocity in } x \text {-direction } \\
& u_{0} \quad \text { average fluid velocity } \\
& \text { V } \frac{\text { avp }}{\mu} \text {, dimensionless velocity in } y \text {-direction } \\
& \text { v velocity in } y \text {-direction } \\
& X \quad \frac{\mu x}{\rho a^{2} u_{0}} \text {, dimensionless variable distance along length of duct } \\
& \text { variable distance along length of duct } \\
& \frac{y}{a} \text {, dimensionless variable distance across height of duct } \\
& \text { variable distance across height of duct } \\
& \text { variable distance along width of duct } \\
& \beta \quad \frac{u_{0}^{2}}{\mathrm{aq}^{4} \mathrm{C}_{\mathrm{p}}} \text {, viscous criterion factor } \\
& 7 \quad \frac{u_{0}^{2}}{a q^{\prime \prime}} \text {, heat generation parameter } \\
& \rho \quad \text { density }
\end{aligned}
$$

Subscripts
b bulk
$\$$
at 3 th position along x exis
k
at kth position along y axis
w at walls or plates
x local property at position x

InTRODUCTION

The study of heat transfer in an electrically conducting fluid within a magnetic field is quite important in the design of magnetohydrodynamic accelerators, generators, pumps, and flow control and moasurement equipment. The flat duct is especially important in the first three devices mentioned.

The literature on the study of the simulaneous development of velocity and temperature profiles in the entrance region of a given geometry for nonMHD flow is woll sumarized by Hwang and Fan [1]. In this reference, the cases of constant heat flux and constant wall temperature were investigated for non-MID fllow. A finite difference analysis was used to obtain the results and a comparison of these results with those obtained by several approximate method is presented.

Shohet, Osterle, and Young $\lfloor 2\rfloor$ studied the simultaneous development of velocity and temperature profiles for MHD flow in a plane channel assuming constant wall terperature. A finite difference technique was used to obtain the results. The same type of numerical method was used by Shohet $[3]$ to obtain the velocity and terperature profiles for laminar Mid flow in the entrance region of an annular channel. The assumption of constant wall temperature was used again to provide the third necessary bourdary condition.

Hwang 44 also investigated the simultaneous development of velocity and temperature in the entrance region of a flat rectangular duct for MHD fluid flow with the assumption of constant wall temperature. The results were obtained by using a finite difference technique similar to the one erployed in the previous reference $\lfloor 1\rfloor$. manak $\lfloor 5\rfloor$ also investigated this identical problem using a procedure based on the Karman-Pohlhausen method and the associated iterative procedures.

Each of the above five references assume that the velocity and temperature profiles are uniform at the duct entry.

In Part 2 of this Thesis heat transfer in a MWD fluid with a fully developed velocity proifile (Hartman flow) in the thermal entrance region of a flat duct is investigated for the case of constant heat flux at the wall. In the following part, the above investigation is repeated for the case winere both the temperature and velocity profiles are developing simultaneously; that is, the effects of leminar forced convection heat transfer to an electrically conducting fluid in the entrance region of a flat duct with a transverse magnetic field are studied for the case where the heat flux at the wall is considered to be constant in the entrance region of the duct and where both the temperature and velocity profiles are developing simultaneously. The governing energy cquation is expressed in finite difference form and solved numerically using an IBM 1410 digital computer with a mesh network superimposed on the flow field. The numerical method used is modeled after that used by Hwang and Fan [1].

The devaloping velocity proifile has previously been evaluated by Hwang and $\operatorname{Fan}\lfloor 6\rfloor$, and these results were used in obtaining the solution of the energy equation for the above boundary conditions. Results are presented for Hartman numbers of 0,4 , and 10 with the viscous criterion factor and the olectrical field factor as parameters.

BASIC EQUATIONS

The development of the basic equations closely parallels that of Nwang [4]. The geometry under consideration is illustrated in Figure 1. The now of the fluid is in the x-direction; the magnetic field is in the y -

0
0
0
0
0
0
0
0
ynia puludyo
$\because 04$

direction; and the electric current flow is in the z-direction.
Consider the flow of a conducting fluid in a magnetic field with the following assumptions:
a) flow is laminar
b) all fluid properties; p, C_{p}, k, μ; are constant
c) magnetic permeability, μ_{e}, and electrical conductivity, σ_{e}, are constant scalar quentities
d) rapid oscillations do not exist, therefore, the displacement current is negligible
e) the offect of gravitational force is negligible.

The basic equations may be written as follows [7]:
Maxwell's equations in NoS units are

$$
\begin{align*}
& \text { Curl } \underline{H}=\underline{J} \tag{1}\\
& \operatorname{Curl} \underline{E}=-\mu_{e} \frac{\partial H}{\partial T}, \tag{2}\\
& \operatorname{div} \quad \underline{J}=0, \tag{3}\\
& \operatorname{div} \quad \underline{H}=0 . \tag{4}
\end{align*}
$$

Ohm's law for a moving fluid is

$$
\begin{equation*}
I=\sigma_{e}\left(\underline{E}+\underline{V} x \mu_{e} \underline{I}\right) \tag{5}
\end{equation*}
$$

The continuity equation is

$$
\begin{equation*}
\operatorname{div} V=0 \tag{6}
\end{equation*}
$$

The modified Navier-Stokes equation is

$$
\begin{equation*}
\frac{\partial V}{\partial \tau}+(\underline{V} \cdot g r a d) V=-\frac{1}{\rho} \operatorname{grad} P+\frac{\mu}{\rho} \nabla^{2} \underline{V}+\frac{1}{\rho}\left(J \times \mu_{e} \underline{H}\right) . \tag{7}
\end{equation*}
$$

The developing velocity profile used in this work was obtained by Hwang and Fan [6]. For steady two dimensional flow considering the usual Prandtl boundary layer assumptions, with the additional assumptions:
a) Variations in the z-direction are assumed to be zero
b) The electrical field term, E_{y}, measured across the electrically (but not themally) insulated duct walls is zero, but small local values may exist in the midstream region; howevar, these will be considered negligible, and E_{y} is taken as zero. This implies J_{y} is also zero.
c) The magnetic field induced by J_{z} is negligible in comparison with the applied field, B_{0}, in the y-direction.
These assumptions Feduce the number of equations to two

$$
\begin{align*}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{8}\\
& u \frac{\partial u}{\partial x}+\nabla \frac{\partial u}{\partial y}=-\frac{2}{\rho} \frac{d p}{d x}+v \frac{\partial^{2} u}{\partial y^{2}}-\frac{\sigma_{e} B_{0}}{\rho}\left(m_{0}+u B_{0}\right) . \tag{9}
\end{align*}
$$

The greatest limiting value for E_{0} is obtained by assuming that the duct sides are open-circuited. This permits maxinnum build-up of the electric field and is equivalent to no net current in the z-direction, or

$$
\begin{equation*}
\int_{-a}^{a} J_{z} d y=0 \tag{10}
\end{equation*}
$$

Since the current density is

$$
\begin{equation*}
J_{z}=\sigma_{e}\left(E_{0}+u B_{0}\right) \tag{11}
\end{equation*}
$$

Equation (I) becomes

$$
\begin{equation*}
\int_{-a}^{a} \sigma_{e}\left(E_{0}+u B_{0}\right) d y=\sigma_{e} E_{0} 2_{a}+\sigma_{e} B_{0} \int_{-a}^{a} u d y=0 \tag{12}
\end{equation*}
$$

Since the Illow is steady the continuity equation can be witten as

$$
\begin{equation*}
\int_{-a}^{a} u d y=2 u_{0} a . \tag{13}
\end{equation*}
$$

The comioination of equations (12) and (13) results in

$$
\begin{equation*}
E_{(\max)}=-u_{0} B_{0} . \tag{14}
\end{equation*}
$$

In this Thesis E_{0} is taken as -eu B_{0}, were e is the electric field factor which varies between zero and one, with the external resistance varying from zero to infinity. Equation (9) becomes

$$
\begin{equation*}
u \frac{\partial u}{\partial x}+\nabla \frac{\partial u}{\partial y}=-\frac{I}{p} \frac{d p}{d x}+v \frac{\partial^{2} u}{\partial y^{2}}+\frac{\sigma_{0} B_{0}^{2}}{p}\left(e_{0}-u\right) . \tag{15}
\end{equation*}
$$

Introducing the following dimensionless parameters:

$$
\begin{aligned}
& X=\frac{\mu x}{\rho_{a}^{2} u_{0}}=\frac{x / a}{R e_{a}}, \\
& Y=y / a, \\
& U=u / u_{0}, \\
& V=\frac{a v \rho}{\mu} \\
& P=\frac{p-p_{0}}{\rho u_{0}^{2}}, \\
& M=\mu_{e} H_{0} a \sqrt{\sigma_{e} / 山}, \text { Harimann nuriber. }
\end{aligned}
$$

Equations (25), (8), and (13) become, respectively

$$
\begin{align*}
& U \frac{\partial U}{\partial X}+V \frac{\partial U}{\partial Y}=-\frac{\partial P}{\partial X}+\frac{\partial^{2} U}{\partial Y^{2}}+n^{2}(e-U), \tag{16}\\
& \frac{\partial U}{\partial X}+\frac{\partial V}{\partial Y}=0 . \tag{17}\\
& I=\int_{0}^{I} U d Y . \tag{18}
\end{align*}
$$

The boundary conditions for the momentum and continuity equations (16), (17), and (18) are as follows:

$$
\begin{array}{ll}
\text { 1) } X=0 \quad \text { and } \quad 0 \leq Y<1 & : U=1, \quad V=0, \quad P=P_{0}=0 \\
\text { 2) } X \geq 0 & \text { and } \quad Y=0 \tag{19}
\end{array} \quad \frac{\partial U}{\partial X}=0, V=0
$$

$$
\begin{equation*}
\text { 3) } X \geq 0 \text { and } Y=1 \quad \text { : } U=0, \quad V=0 \tag{19}
\end{equation*}
$$

The general form of the magnetohydrodynaric energy equation was derived by Pai [8]. For the case of two-dinensional steady-state flow of an incompressible, constant property fluid with negligible heat conduction in the fluid flow direction, the energy equation can be simplified to

$$
\begin{equation*}
u \frac{\partial t}{\partial x}+v \frac{\partial t}{\partial y}=\frac{k}{\rho C_{p}} \frac{\partial^{2} t}{\partial y^{2}}+\frac{\mu}{\rho C_{p}}\left(\frac{\partial u}{\partial y}\right)^{2}+\frac{J^{2}}{\rho C_{p} \sigma_{e}} \tag{20}
\end{equation*}
$$

The current density, J_{Z}, as given by equation (11) is

$$
J_{z}=\sigma_{e}\left(E_{0}+u B_{0}\right)
$$

and E_{0} is presented as $E_{0}=-e S_{0} u_{0}$, therefore, the current density becomes

$$
J=u_{0} \sigma_{e} B_{0}\left[-\theta+\frac{u}{u_{0}}\right\rfloor
$$

With this equation for J, the energy equation, equation (20), becomes

$$
\begin{equation*}
u \frac{\partial t}{\partial x}+v \frac{\partial t}{\partial y}=\frac{k}{\rho C_{p}} \frac{\partial^{2} t}{\partial y^{2}}+\frac{\mu}{\rho C_{p}}\left(\frac{\partial u}{\partial y}\right)^{2}+\frac{u_{0}^{2} B_{0}^{2}}{C_{p} p} \sigma_{e}\left(-\theta+\frac{u}{u_{0}}\right)^{2} . \tag{21}
\end{equation*}
$$

Introducing the additional dimensionless paramoters:

$$
\begin{aligned}
& B_{c}=\frac{\mu C_{p}}{k}, \text { Prandti nuriber } \\
& \theta=\frac{t-t_{0}}{2 q^{11 / k}} \\
& \beta=\frac{u_{0}^{2}}{\frac{2 a^{11}}{k} C_{p}}, \text { viscous criterion factor. }
\end{aligned}
$$

Equation (21) becomes, in dimensionless form, as follows:

$$
\begin{equation*}
U \frac{\partial \theta}{\partial X}+V \frac{\partial \theta}{\partial Y}=\frac{I}{P r} \frac{\partial^{2} \theta}{\partial Y^{2}}+B\left(\frac{\partial U}{\partial Y}\right)^{2}+M^{2} \beta(-\theta+U)^{2} \tag{22}
\end{equation*}
$$

The bowadary conditions are:

$$
\begin{equation*}
\text { I. } \theta=0 \quad \text { at } \quad X=0 \quad \text { and } \quad 0 \leq Y \leq I \text {. } \tag{23}
\end{equation*}
$$

$\begin{array}{lllll}\text { 2. } \frac{\partial \theta}{\partial Y}=0 & \text { at } & Y=0 & \text { and } & 0 \leq X, \\ \text { 3. } \frac{\partial \theta}{\partial Y}=I & \text { at } & Y=1 & \text { and } & 0<X .\end{array}$
The third boundary condition can be developed from the assumption of constant heat flux at the wall. A detailed derivation is presented in Part 1 of the Thesis.

SOLUTION OF EQUATIONS

The two dirensional velocity components were obtained from equations (16), (17), and (18) with the boundary conditions (19) by Hwang and Fan $\lfloor 6\rfloor$. These results are then substituted into the energy equation (22) in order to solve for the temperature profile. The finite difference analysis of equations (16), (17), and (18) is pesented in detail by Fivang and Fan [6〕.

The energy equation (22) is used to obtain the temperature profiles, and this equation is approximated by the folloring finite difierence equations (see the mesin network in Figure 2):

$$
\begin{align*}
& U=\frac{U_{j, k}+U_{j+1, k}}{2} \\
& V=\frac{V_{j, k}+V_{j+1, k}}{2} \\
& \frac{\partial \theta}{\partial Y}=\frac{\theta_{j, k+1}-\theta_{j, k-1}}{2 \Delta I} \\
& \frac{\partial \theta}{\partial X}=\frac{\theta_{j+1, k}-\theta_{j, k}}{\Delta X} \\
& \frac{\partial^{2} \theta}{\partial Y^{2}}=\frac{\left(\theta_{j+1, k+1}-2 \theta_{j+1, k}+\theta_{j+1, k-1}\right)}{2(\Delta Y)^{2}}+\frac{\left(\theta_{j, k+1}-2 \theta_{j, k}+\theta_{j, k-1}\right)}{2(\Delta Y)^{2}} \tag{24}\\
& \frac{\partial U}{\partial Y}=\frac{\left(U_{j+1, k+1}-U_{j+1, k-1}\right)+\left(U_{j, k+1}-U_{j, k-1}\right)}{4(\Delta Y)}
\end{align*}
$$

Fig.2. Mosh ratworn for diforone ropecom mions.

The boundary conditions (23) in finite difference form become

1) $\theta_{0, k}=0$
at $X=0$ and $0^{\circ} \leq Y \leq 1$
2) $\theta_{j+1,2}=\theta_{j+1,0}$
at $X \geq 0$ and $Y=0$
3) $\theta_{j+1, n+1}=\frac{4 \theta_{j+1, n}-\theta_{j+1, n-1}+2 \Delta I}{3}$ at $X>0$ and $Y=1$

Substituting the difference equations (24) into the energy equation (22) the following quation in which the θ^{\prime} s with the $j+1$ subscript are the unlenows and the θ^{\prime} s with the j subscript are known variables is obtained.

$$
\begin{equation*}
\left\lfloor C_{k}\right\rfloor \theta_{j+1, k+1}+\left\lfloor A_{k}\right\rfloor \theta_{j \div 1, k}+\left\lfloor B_{k}\right\rfloor \theta_{j+1, k-1}=\left\lfloor D_{k}\right\rfloor \tag{26}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left\lfloor B_{k}\right\rfloor=\left\lfloor C_{k}\right\rfloor=\left\lfloor-\frac{1}{\operatorname{Dr}} \frac{I}{2(\Delta Y)^{2}}\right\rfloor \\
& \left\lfloor A_{k}\right\rfloor=\left\lfloor\frac{U_{j, k}+U_{j}+1, k}{2 \Delta X} \div \frac{I}{\operatorname{Pr}(\Delta Y)^{2}}\right\rfloor \\
& {\left[D_{k}\right]=\left\lfloor\left(\frac{U_{j, k}+U_{j+1} I_{k} k}{2 \Delta X}\right) \theta_{j, k}-\frac{V_{j l_{2} k}+V_{j+I_{1} k}}{2}\left(\frac{\theta_{j_{2} k+1}-\theta_{j, k-I}}{2 \Delta Y}\right)\right.} \\
& +\frac{1}{\operatorname{Pr}}\left(\frac{\theta_{j, k+1}-2 \theta_{j, k}+\theta_{j, k-1}}{2(\Delta Y)^{2}}\right)+n^{2} \beta\left(-\theta+\frac{U_{j+1, k}+U_{j, k}}{2}\right)^{2} \\
& \left.+\beta\left(\frac{U_{j+1}, k+1-U U_{j+1}, k-1+U{ }_{j, k}+1-U j_{k} k-1}{4 \Delta Y}\right)^{2}\right]
\end{aligned}
$$

Substivuting $k=1,2, \ldots, n$ into equation (26) with the boundary conditions given by equation (25), n unknoms and n simultancous equations are obtained. These equations are solved by Thomas' Method as shown in Part 1 of the Thesis.

The mesh sizes employed are shom in Table l. These resulted from an
evaluation of the time and computer storage capacity available. A detailed presentation of this evaluation may be found in Part 1 of the Thesis.

Table 1

Nesh Sizes for Finite Difference Solution of the Energy Equation

X	ΔX	ΔY	N	$\frac{\operatorname{Prv(\Delta Y)^{2}}}{12(\Delta X)}$
0	0.0005	0.00625	160	0.0065
0.001	0.001	0.0125	80	0.013
0.01	0.005	0.025	40	0.01
2.5	0.01	0.025	40	0.0052

HEAT TRANSAER PARAMETES

The bulk temperature is evaluated arter the temperature profiles have been determined, and is given in finite dirierence fom by the following equation at $X=(j+1) \Delta X$.

$$
\begin{equation*}
\theta_{b, X}=\sum_{k=1}^{n} \theta_{j+1, k} U_{j+1} \Delta Y \tag{27}
\end{equation*}
$$

The wall temperature is appoximatod by the following finite difference equation (Refer to the first part of the mesis).

$$
\begin{equation*}
\theta_{w, X}=\theta_{j+1, n+1}=\frac{4 \theta_{j+1, n}-\theta_{j+1, n-1}+2 \Delta Y}{3} \tag{28}
\end{equation*}
$$

The local Nusselt number is defined as

$$
\begin{equation*}
N_{x}=\frac{h_{x} D_{e}}{k} \tag{29}
\end{equation*}
$$

For the case of constant heat flux at the wall，the local Nusselt number reduces to

$$
\begin{equation*}
N u_{x}=\frac{-4}{\Delta \theta} \tag{30}
\end{equation*}
$$

where $\Delta \theta$ is defined as

$$
(\Delta \theta)_{X}=\theta_{W, X}-\theta_{b, X}
$$

For more detailed discussion of the heat transfer parameters see the same section in Part 1.

RESULTS AND DISCUSSION

The results presented are for the case with a unit Prandil uunber． This is the case for nost Iluids 〈9」 espocially geses．However，it is worth emphasizing that the equations gresented and the method used in the computa－ tion of the results are applicable to cases with any Prandit nurber．The cases considered are：Harmann numbers of 0,4 ，and 10；electrical field factors of $0.5,0.8$ ，and 1.0 ；and viscous criterion factors of $-1.0,-0.5$ ， $0,0.5$ ，and 1.0 ．

The viscous criterion factor，B ，is similar to the Eckert number wich is a criterion for the negligibility of viscous dissipation．These numbers． are related as follows：

The Eckert number is deisined，as 【9」

$$
E c=\frac{u^{2}}{c_{p}\left(t_{0}-t_{0}\right)}
$$

The viscous criterion factor，β ，defined in this part of the Thesis is

$$
\beta=\frac{u_{0}^{2}}{C_{p} 2 q^{11 / k}}
$$

Since both terms contain a velocity squared and a specific heat, the only terms remaining are the ($t_{b}-t_{0}$) and $2 q / 1 / k$. These terms are related, or at least have equivalent dimensions, since $q^{\prime \prime}$ is dimensionally equivalent to $h\left(t_{b}-t_{0}\right)$ and k / a to h. Thus, aq $1 / k$ can be considered dinensionally equivalent to $\left(t_{\mathrm{b}}-t_{0}\right)$. Also, the same type of relationship exists between the heat generation parameter, η, and viscous criterion factor, β, as was shom to exist between the Eckert number, Ec, and the Brinkman number, Br, (refer to Results and Discussion Section, Part I of the Thesis). That is

$$
\pi=8 P_{r} \quad \text { as } \quad B r=E C P r
$$

The viscous criterion factor behaves in the same maner as the heat generation factor. That is, when β is positive heat is transferred into the system through the walls. If β is less than zero, heat is transfersed from the fluid through the walls to the surroundinge.

The electric field factor is described along with the reasons for choosing the values used in the stuay in detail in the Results and Discussion Section of Part 2 of the Thesis. An increase in the electric field factor, e, is equivalent to a decreaso of electric current flow through the field, and is proportional to a decrease of joule's heating in the fluid.

The dimensionless temperature profiles between the parallel plates at various positions in the thermal entrance region are presented in Figures 3; 4a, 4b, 4c; and 5a, 50, 5c. In Figures 6; 7a, 7b, 7c; and 8a, 8b, 8c the variations of dimensionless wall temperature, θ_{F} and bulk temperature, θ_{b}, With distance along the flow direction are presented. The pseudo local Nusselt muber, 中, derined as

$$
\dot{X}=\frac{4}{\theta_{W, X^{2}}^{-\theta_{b, X}}},
$$

is plotted in Figures 9; 10a, 10b, 10c: and 112, 116, 11c.
O.,

엉

 λ

(4)
12

20

2

The dimensionless temperature is uniform and equal to zoro at the entry. mo efiects which would tend to increase the temperature as tho flow distance is increased are the internal heat generation by both viscous dissipation and Joulc's heating and eaternal heat generation, heat transier through the wells. Since β must bo greater than zero when heat is added to the fluid through the ralls, the combined effect $0=$ both external and internal heating is to increase the tempenature of the furuid. Anen β is negative heat is transfierred away from the sluid, hence there is a come=iative action betreen intemal heat genemation and extemal heat loss. Due to the desinition of β and θ, the decrease of the dinensionless temperature to large negative values actually comesponds to an increase in the dimonsional temperaiure, to For a discussich on the signifiance of the shape of the temperature profiles raペer to the fppendir.

A companison anong Figures $4 a, 40$, and $4 c$ for a Fiartmann rumbor of 4 and anong Figures 5a, 50, and 5c =0r a Farimann nurbor on 10 show, as expected, that the rate of increase of temperature is reduced by increasing e. However, the temperature difference (as in Part 2) oetwoer the centerine temperature and the wall temperaturo increases as e increases due to the increasing significance of tho viscous dissipation effects knich are especially great near the walls. Those effects can also be noted mon comparing Figures 7a, 7o, and 7c or Figures 82, 83, and 8c. Again the reduction of rall $2 n d$ bulk tempraturc can be observed. Bccause of the increase in the dimierence between whll and centerline temperature, a corresponding increase in wall ard bull tomperature occurs. Fherefore, there should also be a deorease in the local Musselt number, or in the magnitude of the pseudo local Nuscalt number. Tis Iatter efiect oan be observed in Figures 10a, 10b, 10c or 11a, 19b, 11c.

A corcparison among Figures 3,4a, and 5a; tho and 50; and to and 5c will present the effects of changing the Hartmenn number. Similar effects can also be obsorved by comparing Figurcs 6, 7a, and 8a; 7o with 8b; and 7c with 8c.

The eifects of the viscous criterion factor, β, can be notce by oramining Figures 6; 7a, 70, 7c; and 8a, 80, 8c. Increasing β men it is positive causes an increase in the difference bctween wall and bulls temperature, thus, a decrease in the pseudo local lussclt nurber as shom in Figures 9; 10a, 100, 10c; and 1la, 117b, Ille. A similar trend can be seen then β is negative.

Notice in Figure 10a that the curve for $\beta=-0.5$ is not presented, yet the curves for $\beta=-0.4$ and -0.6 are. The curves are shom in this manner because the case in thich $\beta=-0.5$ is not stable, i.e., the pseudo local Nusselt nurber oscillates from lerge negative to large positive numbers as X increases. This is due to the exceptionally small diffe:enoo between the bull: and wall temperature, $\theta_{W}-\theta_{b}$ (Figure 7a).

As the Hartmann numbor increases the entire dimensionless proille increases if all other parameters describing the system are constant. We can observe this result oy again comparing the temparature profiles for $\mathbb{K}=0$, 4. and 10. Figure 12 presents a comparison of the pseudo local Nusselt number for various Fartmann numbers. slithough this figure contains only two cases, it represents the trend for all the other cases. The pseudo local lusselt number increases as Mincreases, for the buik temperature increases more ravidy than the rail temperaturc. (Reier to the discussion of Figure 9 in Part 2 of the Thesis).

In Figure 13 the results ootzined by Siegel and Sparrow $\lfloor 10\rfloor$ and Fwang and Pan [I] are compared with those evaluated in this study. Treng and Fan present a comparison of the velocity profile used in their investigation

and that used in Siegel and Sparrow's with the velocity profile presented by Schlichting [11]. It was noted that the velocity profile used by Siesel and Sparow did not approximate that of Sohlichting or Frang and Fan very well. in Aact, the results of Siegel and Sparrow were not asympowic to the fully ceveloped velocity, $\frac{u_{0}}{u_{0}}=1.5$.

The result obtained in the oresent work differ from those prescnted. by Fwang and Fan due to the finite difference scheme used to evaluate the Wall temperature. Frang and Fan used a linear equetions, that is

$$
\theta_{W}=\theta_{n+1}=\theta_{n}+\Delta Y
$$

Winle the author used equation (28).

1. Huang, C.L., and L.T. Fan, "Finite Difference Analysîs of Forved Convection Heat Transfer in the Entrance Region of a Mat Rectangular Duct," Applicd Scientific Research, Sect. A, Vol. 13 (1965), pp. 401-422.
2. Shohet, J.I., J.F. Osterle, and F.J. Young, "Velocity and Temporature Profiles for Laminar Magnetohydrodynmic Mow in the Entrance Region of a Plane Channel, "The Physics oi Fluids, Vol. 5, No. 5 (May, 1962), pp. 545-549.
3. Shohet, J.I., "Velocity and Temperature Profiles for Iminar Magretohydrodynaric Flow in Entrance Region of an Annular Channel, "The Physics of Fluids, Vol. 5, No. 8 (August, 1962), pp. 879-88\%.
4. Ewthg, C.I., "A Finite Difierence inalysis of Hegnetohydrodynamic Flow With Forced Convection Heat Transfer in the Kitrance Region of a Flat Rectangular Duct," Ph. D. thesis, Mech. Engr., Kansas State University (uviy, 1962).
5. Dhanak, A.M., "Heat Transfer in Magnetohydrodynanic Flow in an Mirance Section," Transactions of the A.S.H.E., Joumal of Heat Mransfer, Vol. 87. Series C, No. 2 (Vizy, 1965), pp. 231-236.
6. Hrang, C.I., and I.T. Ean, "A Finite Drfference Analysis of Iaminar Wagnctohydrodynamic Flot: in the Antrance Region of a Blat Rectangular Duct." Applied Scientiric Research, Sec. B, Vol. 10 (1953), pp. 329-343.
7. Cowink, T.B., Marnetonvarodmamic, Net Yow: Intcrsctence Puolications, Inc. (1957), pp. 2-15.
8. Pai, S.I., "Thergy Equation of Magnetomas Dyazacs," Physical Revier, Vol. 105, No. 5 (Narch, 1957), pp. 1424-1426.
9. Eckert, E.R.G., and R.K. Drake, ur., Heat and Mass Transfor, New York: McGrawmill Book Company, Inc., 2nd ed. (1959), pp. 171-173.
10. Siegel, R., and E.M. Sparrow, "Simultancous Development of Velocity and Temperature Distributions in a Flat Dict with Uniform Wall Heating, " A.I.C3.I. Joumal, Vol. 5, NO. 1 (1959), 2p. 73-75.
11. Schlicheing, H., Z. angew Math. Nech., Bd. 14, heft 6 (Dec., 1934), pp. 368-373.

OUTLIE OT EUTURE RESEMRCZ FORZ

In the previous work of the thesis, treatment was confired to leminer flow, constant fluid properties, uniform proifiles on critry, and a fixed flat duct geometiry. In this chapter some other problems of considorable importance which should be investigated are summarized.

1. Consicoration on a Parabolic Approzch to the Entranco of the Geometric Channel. Since the assumption of laminar flow is used to describe the flow within the IHD entrance region it hould bc adrantagoous to consider, instead of uniform velocity and tempenature profiles, a parabolic velocity profile and a comesponding temperature profile at the entry. It would oe quite interesting to have the fully developed temperature profilc for Poiseuille flos develop simultanoously with the volocity prosile upon entry into a magnetic field for both the cases of constant heat flux at the wall and constant will temoerature.
2. Consideration of Other Types of Rluids. In most of the tork considerod the only type of flow studied is that of Nemtonian fluids. Ge of the inajor applications for the study of heat transfer in an eicotrically conducting sluid flowing within a magnctic field, is in the measurement and flow of rolted metals. This type of flow is certeinly not Newionsan。 Bird $\lfloor 1\rfloor$ investigated the case of a non-liewtonian fluid flowing in a cepillery with constant wail temperature and the case considering insulated walls. It would be interesting to axtend the investigation of non-wewtonian flow to flors mithin magnetic fields for various cases.
3. Consideration of curbulent Flows. Aithough hydroragnetic chamel nlorts aro usuaily turbuient rather than laninar, lititio is snow about the ctructure oin turbulent plows in thich hydromagnetic crfects are significant
[2]. Therofore, it is suggested that perhaps semi-mpirical techniques of fluid mechamios could be used to represent the irtemal stmeture of turbulent Ilow and thus apply such reptesentation to problems such as those solved in this thesis. Nost of the work done to date in ISD turbulent inck has been confined to the studies of skin-Iriction dras and the twanstticn from laminar to turbulent flow in insulated channels. As a result, the heat veansier portion of the theory remairs a rolatively virgin field $\lfloor 3\rfloor$.
4. Considcration of Compressible Inor. : Nost research effort has been cirected toward onc-cimensicral incompressible laminar flcw with transverse macnetic and nomal electric inelds. The pooularity of this model is due primarily to its mathenatical simplicity, since in actwal oporation the flow will most likely be turbulent, two dimensional, and, if the roricing fluid is a gas, comprescible [3]. Since most of the vomk wing be accomplished using a gas as the flcw medium, it would be interesting to consicior the investigation of hat transfer to compressible flow. A finite difiorence tecinique similar to the one used in the thesis cculd be used to study such a system. Obtaining the velocity profile for compressible morf would be the first major problem. It may also be worthinile to study the effocts of vazying other physical parameters, such as viscosity, with temperature.
5. A more Pealistic ceometry. A more realistic ecomotry mich may be investigated using the firite difference approach and porhzps a lerger and faster computer, is a rectangular duct. This problen would certainly be interesting and it would present quite a challenge. The finite dirference mesh would be a rectangular consiceration (two dirensional) for each given yosition X along the cuct. Thus, many intercsting stability problems rust be encountered and at least empirically solved for such a finite difference schere.

REREPECDS

I. Birot, R.E., "Viscous Heat Effects in the Etrusion of MoIten Plastics," Soc. Plastics Eng. J., No. II (1959), 2p. 35-40.
2. Harris, L.P., HyOromagnetic Channel Flows, New York: The Technolegy Press of K.I.T. and John :Riley and Sons, Inc. (1960).
3. Rorig, h.F., "The Influence or Plectric and Magnotic Fluids on Heat Transfer to \#lectrically Conducting Muids," in Advances in Heat Transîer, VOI. 1, edited by T.F. Irvine, Jr., and J.P. Harinett, Academic Press, New York (1964), pp. 268-353.

APPENDIX

Iist of the Variable Names for the Computer Progran

 Used in Parts 1 and 2 of the Thesis.$A(I), C(I), D(I)$ the constants desined in the rinite disference form of the energy equation, (10) in Paxt 1 and (79) in Parc 2. In the latter part of the program these varables are redefined as the variables introduced in the discussion of the Thomas Method by equation (14) in Part 1.

Br the heat generation parameter, f
DX ΔX
$D Y \quad \Delta Y$
EE the electrical field factor, e
H the Hartirann number, \mathbb{M}
III, ITI integer counters used to change certain operating conditions
M the number of divisions along the duct in the X direction that the program will calculate before charging operating conditicns or mesh size

N the number of divisions across the duct in the Y dinection; doremines mesh size

TR Prandtl number
Pry the frequency at which the proyrom paints the results
$T(I, J)$ the dimensionless iemperature, θ, at the Ith position along the duct and the jth position across the duct

PBULK the bulk temperature, θ_{b}, x
TT the wall temberiture evaluated by a slightly different finite difference scheme
$J(I, J)$ the dimensionless velocity in the X direction at the Ith position along the duct and the Jth position across the duct.
X the dimensionless distance along the duct and it differs from the X defined in Parts I and $2 ; \quad X=\frac{\mu x}{\rho a^{2} u_{0}}$
XNUS the pseudo local Nusselt number, \downarrow
X2ERO the initial value of X for a phase of the computer program X2 the pseudo local Nusselt number evaluated using TT

Flow Diagram for Compute: Program Used in Parts 1 and 2 of the Thesis


```
            MONSS JOE MO CGNSY HEAT ELUX FUL OEV VEL PRO
            MONE
            M0N5S
c MHOMOROLEC
c MHOMOROLEC
                    00
                    FURTKAN%
```



```
                                    PJK
                                    PROGRAM FOUR
953
                                U(4,8)62),T(2,162)
                                CONY 30,03,
                                ASGUG CO,PEST
    2 FORMNT(10x,E:B)
    4.ECN:4T
    65 FORMAT(10x,2I3)
    6 READ(1,953) PR,H,EE ,BR
120
    EX?=CXP(H)
    HCUS*=-5*(EXI*EXZ )
    HSINH=-5* (EXITHEXSSINH)
    BET仁H*H*BR/PR
    W\{c:(3,3)
    LL1=0
    LLL=0
    BX=.0005
    i}=\mathrm{ =?
    N=160
    XZEKC=0.0
    vi=-0
    N1=N:1
    DU 13,K=1,0N
    T11NN:1=0.0
    29 NMI=:
    WR[T:(3)方5) LLL.LLl
    NO10=N/10
    NO1C5=N010:5
    NOIO4=N-10:%
    NOIO
    !c;!, \22,300,122
    300
    E=:25 K=1%N
    Y=E&こり
325
    i22
    CO=125%=2,N
    WW=ん*し*&Y
    EXZ=EXP(1W)
    2) EX4=1./E:3
326
            U(1,K)=h0%:
            UT TA=0.
            DO o&K=INN,2
            AL H1=1:0/6
            R0YE2=1.01(0Y*2.0)
        Wんw NGNO
            OOn>0
            (i)=-2=2,
            (k)=2=0.<
                MOM(-,N)*RCx
```



```
                            kj=4{=2,
```



```
    4: D(K) =U(K)+BR:AL?HAE(U(1,K+1)-U(1,K-1))=(U(1,K+1)-U(1,K-1)) 12.0
    \(D(N)=D(N)-C Y C(N)\)
    \(A(: N)=A(i v)+C(M)\)
    52
    SUB=C(K)
    \(C(K-1)=C(K-1) / A(K-1)\)
    \(550(1)=0(1) / A 11\)
\(540(K)=(00(K)-5 U B\)
59
    \(A(Y)=A(K)-C(K)=C(K-1)\)
\(O(1)=O(1) / A(1)\)
    59 T(2,N)=D(N)
    ゴNース
```



```
    UL=:
    \(61 x=2 Z 8 R O \div U L=0 x\)
```



```
    \(\mathrm{J} 1=5+1010\)
\(\sqrt{2}=7+80\)
    \(3=1203\)
WR3 (32
    \(7143=-(3,2)\)
                                    \(T(2,1), T(2, j 1), T(2, v 2), T(2, d 3), T(2, J 4)\)
```



```
776 WRT \(=\{(2, N ; 3)\)
                                    T(1,NL),TBLLR, XNUS, GRAET, KX, M
```



```
    WRITE (3, 3) TT, X2
73
100
82
83
```



```
        10
```



```
    \(N 02=1 ?\)
            Wi K (3.
    GOTEj4?,550,550,550, 1,LL1
35000
    5
\(i, k=\)
\(k=1\)
\(k=2, k)\)
```



```
        6016532
549 OC \(84=1, N D 2\)
```



```
        \(\stackrel{1}{4}=: 22+1\)
    90
    \(D K=.002\)
\(D Y=.0225\)
    \(M=9\)
    WyO
\(\mathrm{X}=20=001\)
    \(x 2 E 50=.001\)
    \(\mathrm{P} T=\frac{1}{\mathrm{G}}: 0\)
        \(\begin{gathered}G C \\ 0 \\ 0\end{gathered}=.005\)
    2: \(0 \%\)
        \(\mathrm{p}=\mathrm{Y}=\)
```



```
        \(N=6 C\)
\(\times 2=R=.01\)
\(60=1508\)
        \begin{tabular}{l}
60 \\
60 \\
\hline 1
\end{tabular}
        \(2=1 L+1(2, N 1)\)
        GC ro ( \(90,91,92,20\) ),LLL
    55
                                98
        \(\dot{\gamma}=.205\)
\(=: 0125\)
\[
\begin{aligned}
& 0 Y=.0125 \\
& N=90 \\
& \mathrm{~N}=\mathrm{O} \\
& x 2 \text { F. A0 }=0.1 \\
& \text { GO } \mathrm{C}=10
\end{aligned}
\]

EXEQ LINRL
\(T(2, K), T(2, K+1), T(2, K+2), T(2, K+3), T(2, K+4)\)

EXEO
にむUK, MJ

\section*{Results}

The following results represent the typical output of the proceeding program. The case presented is for a Hartmann number of 10 , electrical field factor of 0.5 and a heat generation parameter of 0 . The program was intentionally written so that the Prandtl number could be varied. It was later decided that the Prandtl number could be included in the dimensionless distance along the duct, thus making the results more general. These results are only presented as far as \(X=0.8\) because this adequately shows the calculation procedure of the program.

. \(50000 \mathrm{CE}-03\)
\(.46520 E-2\) 2
\(.53819 \mathrm{E}-14\)
.\(<0542 E-01\)
\(.10000-02\)
- \(10000^{2} 9320=-26\)
- \(16435 \mathrm{E}=12\)
\(.67589=-01\) -293292025
\(.06130 E-25\)
.0104
-2?0 36
.26743 E - 50112 E .15485 E \(-45 \frac{159}{}\)

\section*{-95 -} - \(200005-02\)
.30000 E

\section*{\(: 7\)}

\(.72849 \mathrm{E}-17\)

2

\section*{ \\ 314
305
727
721
067
920
24
49
02
53
83
23 \\  \\ -24
-24
-22
-20
-19
-17
\(=13\)
-12
-10
-08
-05
-03
-02
-01}
\(.17039 E-24\)
\(.57381 E-22\)
-38220؟-75
\[
\begin{gathered}
0 \\
7 \\
7 \\
5
\end{gathered}
\]
\(.222675-23\)

\[
\begin{array}{r}
-13478 \\
-10771 \\
-1006=16
\end{array}
\]
\[
\begin{array}{r}
.33333 E-13 \\
.93990 \\
.46700=10 \\
.214030
\end{array}
\]
-920 E-0
\(-622 E-01\)
\[
\begin{array}{r}
0.53075-02 \\
.42750=-02
\end{array}
\]

\(-48682 E=01\)
\(.8995=01\)

\[
\begin{array}{r}
.60402=-15 \\
-333330-1 \\
-17990 \\
9390
\end{array}
\]
\[
\begin{align*}
& 40215 E-17  \tag{9}\\
& .4722=-42 \\
& .474 .40 \\
& .45300
\end{align*}
\]
\[
\begin{aligned}
& -235025=14 \\
& -343030 \\
& -35149002
\end{aligned}
\]
\[
\begin{aligned}
& 26174 E-13 \\
& -12020=02 \\
& -22379 E 02
\end{aligned}
\]
\[
\cdot 17880 E-11 \cdot 11425 E-09 \cdot 66473 E-03
\]
\[
\text { - } 21527 \mathrm{E}-12
\]
\[
.12764 E-10
\]
\[
\begin{array}{r}
.86189=03 \\
.30395 E 02
\end{array}
\]
\[
\begin{aligned}
& .592245-09 \\
& : 35137 E=02 \\
& .266065
\end{aligned}
\]
\[
. \because 32455-07
\]
\[
\begin{aligned}
& 2477=-04 \\
& -5739 E-02 \\
& -30375=02
\end{aligned}
\]
\[
.30375 E 02
\]
\[
\begin{aligned}
& .13953 E-11 \\
& .10084=-03 \\
& .53265-02
\end{aligned}
\]
\[
\begin{aligned}
& .71742=-10 \\
& .15398=02 \\
& .287345
\end{aligned}
\]
\[
\begin{array}{r}
330 \\
-1 \\
-1
\end{array}
\]
\[
\begin{array}{r}
.573265-02 \\
.28727 E
\end{array}
\]
\[
\begin{aligned}
& .742915-17 \\
& -20574=-02 \\
& .7
\end{aligned}
\]
\[
\begin{array}{r}
3 \\
-2418-09 \\
-27438 E-02
\end{array}
\]
\[
\begin{aligned}
& -12936-08 \\
& -3017-02 \\
& .2032 E 02
\end{aligned}
\]
\[
\begin{aligned}
& .43120 \mathrm{E}-07 \\
& : 20126 \mathrm{Cl} \\
& : 27777 \\
& \hline
\end{aligned}
\]
\[
\begin{array}{r}
11807 E-05 \\
: 70738=-03 \\
.54250=-03
\end{array}
\]
\[
\begin{aligned}
& 457410-08 \\
& .47419-02 \\
& .2535=02
\end{aligned}
\]9



\(-144555-06\)
\(.282135=07\)
.127239502
\(-11585=-05\)
.12571601
.2204402
 18
\(-15005 E-05\)
\(.66723-02\)
\(.207165-42\)
.2025
2:


\(.13024 E-09\)
-1027!E-07
-
\(24982 E-04\)
\(-5925 \mathrm{E}-03\)
\(.740505-02\)
.\(-4257 E 00\)
\[
\begin{aligned}
& : 9 \\
& : 2
\end{aligned}
\]
\(.79459 E-05\)
\(: 17712=01\)
\(: 10610=-2\)
\(: 4250-04\)

\[
18
\]
.30000

\section*{-1094}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { - } 29560 E- \\
& -17539 \\
& -297508 E-
\end{aligned}
\]} \\
\hline \\
\hline
\end{tabular}
\[
\begin{aligned}
& .35000 E-01 \\
& .34092 E-04
\end{aligned}
\]
\[
\begin{array}{r}
.96364 \\
.273802 \\
-200
\end{array}
\]
\[
.273885
\]
\[
\begin{aligned}
& .796 \pi 3 E-04 \\
& .2003 E-01 \\
& : .703 E-02
\end{aligned}
\]
\[
\begin{aligned}
& .29773-03 \\
& : 52925=-01 \\
& .572402
\end{aligned}
\]
\[
\begin{array}{r}
1053=-02 \\
: \frac{1}{4}+2=-00
\end{array}
\]
\[
.400001
\]
\[
: 851847
\]
\[
22855-03
\]
\[
\begin{aligned}
-28883 \\
: 28890 ~
\end{aligned}
\]
\[
\begin{aligned}
& 17363=-03 \\
& -36772=-01 \\
& -3702=-01
\end{aligned}
\]
\[
.16051 E \mathrm{U} 2
\]
\[
\begin{array}{r}
.5993-03 \\
.03038-01 \\
.2642502
\end{array}
\]
\[
\begin{aligned}
& 135735-02 \\
& : 16000 \mathrm{E} \\
& -03:
\end{aligned}
\]
\[
\begin{array}{r}
.28890 \\
.45000 \\
.25580
\end{array}
\]
\[
\begin{array}{r}
18550 \mathrm{E}-0 \\
-1700 \mathrm{E}-0
\end{array}
\]
\[
\begin{aligned}
& .35082=-03 \\
& -37695 \\
& -14698-02 \\
& .1548502
\end{aligned}
\]
\[
.10253=-02
\]
\[
\begin{array}{r}
30304 E \\
-30302 E
\end{array}
\]
\[
\begin{array}{r}
305020 \\
-50000
\end{array}
\]
\[
-35271
\]
\[
\text { : } 22015
\]
Giwi
\[
\begin{array}{r}
-55000 \\
-55000
\end{array}
\]
\[
\begin{aligned}
& .61695 E-03 \\
& : 628=-61 \\
& .25020 E \mathrm{U}
\end{aligned}
\]
\[
\begin{aligned}
& 27011 E-01 \\
& .2272 E 00 \\
& .32740
\end{aligned}
\]
\[
.32874500
\]
\[
\begin{array}{r}
\text { So00CE- } \\
-0685 E-03 \\
-065
\end{array}
\]
\[
\begin{array}{r}
31957 E-0 \\
-32056 \mathrm{~F}
\end{array}
\]
\[
-34056 \mathrm{E}
\]
-
- 15000 E 00 :
\(-1\) -352005
-252026
.700006
.20665
.
- 2223
- 320.
- 3028.
\(.75000 \mathrm{E}=1\)
\(.28243 E=0\)
\(.47483=-01\)
\[
-32622 E-03
\]
\(14106=02\)
\(: 14595 E-0 \frac{1}{2}\)
\(.24005 E-02\)
\(.92050=-01\)
\(.14595=02\)

18
\[
\begin{aligned}
& =15044_{4}-02 \\
& -50902=01 \\
& =59640=-4 \frac{1}{2} \\
& =142402
\end{aligned}
\]
\[
\begin{array}{r}
-55270-02 \\
-142410602 \\
-140
\end{array}
\]
\[
\begin{aligned}
& .75982 E-2 \\
& .16263 E \\
& .2060 \text { O }
\end{aligned}
\]
ie
\[
\begin{aligned}
& -2530-6 \frac{2}{2} \\
& 0
\end{aligned}
\]
\[
\begin{array}{r}
4.320-02 \\
-1025=00 \\
-1.22202
\end{array}
\]
\[
\begin{array}{r}
.950740^{-02} \\
.272095 \\
.2462502
\end{array}
\]
\[
\begin{aligned}
& -2065-c y \\
& -20205=-02
\end{aligned}
\]
\[
13
\]
\[
\begin{aligned}
& .2935=-52 \\
& : 73009=01 \\
& : 656420-22
\end{aligned}
\]
\[
\begin{array}{r}
.518 \\
: 130 \\
.727 \\
.127
\end{array}
\]


\section*{List of the Variable Names for the Computer Programs Used in Part 3 of the Thesis}

Two programs were used, part of the output from the first program being used as input to the second progran. The first program was used when \(N=160\). This program calculates none of the heat transfer parameters such as the pseudo local Nusselt number, for with such a large \(N\) computer space was lacking.
\(A(I), C(I), D(I)\) the constants defined in the finite difference form of the energy equation. In the latter pari of the progran these variables are redefined as the variables used by the Thomas liethod.

Br the heat transfer paraneter times the Prandtl number, ßPr
DX \(\Delta x\)
DY \(\Delta Y\)
IE the electric field factor, e
E the Nartmann nurber, M
LIL, IN integer counters used to change certain operation conditions
\(M\) the number of divisions along the duct in the \(X\) direction that the program will evaluate before changing operating conditions or mesh size

N the number of divisions across the duct in the \(Y\) direction; determines the mesh size

PR Prandil number
PT the frequency at wich the programs print the results
\(T(I, J)\) the dimensionless temperature, \(\theta\), at the Ith position along the duct and the Jth position across the duct

TBULK the bulk temperature, \(\theta_{b, X}\)
\(U(I, J)\) the dimensionless velocity in the \(X\) direction
\(V(I, J)\) the dimensionless velocity in the \(Y\) direction
X the dimensionless distance along the duct
yNUS the pseudo local Nusselt number, \(\psi\)
\(X 2\) EnO the initial value of \(X\) for a phase of the computer program

Flen Diagman for Commutom Erogram Usec in Payt 3 cI tho Thosis

```

 MONF
 MON
 NON5%
 CuGT ES,CZRSACES, KNAGEPER GHEMENGSL PRO
 95


``` \(Y=-00625\)
\(\mathrm{M}=2\)
\(N=160\)
シ2 \(20=0.0\)
NE \begin{tabular}{c}
\(\mathrm{N}+3\) \\
\hline 1
\end{tabular}
23
U61
```



``` \(13: 17\)
EQu？
256N MOH？
ASGN NGPRGT
\(c\)
\(c\)
\(c\)
```

```
5
DIn
E
```



``` 5 Y \(T\) E \(x=0 \quad 10 \%\) cu
0.006
，07：03．，2SEVEA \(1=\frac{2}{23 / 55 ~ D i K ~}\)
```



```
NHO \(=2-3\)
\(\mathrm{V}(2, N 1)=0.0\)
\(2 E K=: \% 0 \%\)
```



```
HR TE \((2,85)\) N
© REN URz，


\section*{410}
```

DE
411 DE A1 K K＝，

```


```

WRY $5=(265)$ k

```


32
```50
5
\(c\)
```

34
34
3
3
3 ..... runc

``` ？
T（12）
？又）H12？？ \(\square\) 2.0 \(00 \mathrm{O} \mid-200 \mathrm{AL}\)
\[
\therefore=2,
\]
\[
\left\{\begin{array}{c}
0 \\
0
\end{array}\right.
\]
\[
\begin{aligned}
& 14 \\
& 10 \\
& 0
\end{aligned}
\]
```

```
\(3)\)
6
6
0
\(i\)
\(u\)
ve
U
U
2
u
2
？？
V：
2
12
12
2
```



```
\(k\)
\(k\)
\(k\)
\(k+1\)
\(k\)
\(k\)
```



```
V？
6
\(-U!\)
\(-U ?\)
```







```
\(\square\)
 C=&!⿱
 {\mp@code{0.0%)}
```


$52 \underset{S U R}{5}=\%=2, N$
C $(\because-1\}=C(K-1)=(K A(K-1)$
$52 \quad D(x)=D(1) / A(1) \quad \approx 0(K-2)) / A(K)$
59 T $2, ~=D(N)$
OO $00 \quad K=1, \mathrm{Ni}:$ $\mathrm{J}=-\mathrm{K}$
60 T $(2,3)=0$
 いL三


V (1, K) $=V\left(22^{K}\right.$
E25 T(12 $54=T(2):$


GETLÓ
END
MONS

## Results

The following results represent the typical output of the proceeding program. The case presented is for a Hartmann number of 10 , electrical field factor of 1.0 , and a heat transfer parameter of 1.0 . These results (last 17 lines) compose the initial temperature profile at $X=0.001$ used in the following program. The last line is the wall temperature.

MON. SO3 JOS SAL CCNST HENT FLUX DEVELING VEL PRO - 10000 OL - 20000E 01 - 10000E 02 - 10000E 0:

150 - 103965
-103955
-10395
-103965
-103965
$-10376 E$
-1037
-50006

## 

## 73323205

92400
$9253700 \mathrm{E}-04$
$19255040=04$
19256370
192571 1.
 000000000
 $\qquad$

 -19254570E-OA




$$
\begin{aligned}
& -04 \\
& -04 \\
& 28
\end{aligned}
$$

$$
\begin{aligned}
-19 \\
-19
\end{aligned}
$$

$$
-12
$$

$$
\begin{aligned}
& -1925537=-0 \% \\
& -1925690-04
\end{aligned}
$$

$$
\begin{aligned}
& 404-04
\end{aligned}
$$ 16



## $-1 \frac{1}{2}$ $:-12$ $: 12$ -12 -12 $=12$ $=12$ $=12$ -12 -12 -15 -12 -25 -35

-. 000

?
-
$=-$
$=$
$=$
$=$
$=$
$=$
$=$
$=$ 33
33
03
03
03
03
03
03
03
03
03
03
00


 -19
-19
-19
-16
-19
-19
-19
-19
-19
-28
-24
-2
-2
-2 92
92
92
92
92
92
92
92
92
62
42
04 56
5
5
5
5
5
2
2
2
2 65
53
20
42
59
52
55
775
290
272
53
21
23 536
370
20
260
200
200
510
7050
2720
32
140






How Diacran for Computcr Procram Unca in Pant of the thesis

$1\}$


```
 MONS$ JOB MHO CONST HEAT FLUX OEVELING VEL PRO
 MONS$
 MON $ $
 MON:$
 MONTS
 MON$$
 EXEQ FGRTRAN,,,07,03.,:SIX
 GNFRGY EQUATION CGNSTANT HEAT FLUX OEVELOPING VELOCITY PROFILE
 MHU PROJECT 2353,2/23/65 PJK
 OIMENSIUN U(2,82),V(2,82), T}(2,82
 OIMENSION A(80,),C(80),O(80)
 85 FORMAT (1OX,2I3)
 953 FORNAT(E14.8)
 , FORMAT (10X,EL1,5)
 FORMAT(100X,5E1I:5,13)
 960 FORMAT (5E14.8)
 555 FORMAT(10X,5E11.5)
 961 FORMAT(213
C
 REAOPR, 8R,H,EE, T(J,K)
 6 REAO(1,953)PR,8R,H,EE
 WRITE(3,3)PR,BR,H,EE
 LLl=1
 LLL=1
 . OX=.001
 OY=.0125
 M=9
 N=80
 XZERO=.001
 PT=1.0
 710 READ(1;960),T(1,K),T(1,K+1),T(1,K+2),T(1,K+3),T(1,K+4)
 REND(1:953)T(1;N+1)
 REAU(1,961 INN
 NM1=N-1
 C
 REAO U ANO V
 U(1,N1)=0.0
 V(1,NL)=0.0
 V(2,N1)=0.0
 IF(NN-2)400,400,401
 400 00 15 K=1,N,10
 15 REAO(1,96O)U(1,K),U(1,K+2),U(1,K+4),U(1,K+6),U(1,K+8)
 RENO(1.953) P
 00 16 K=1,N,10
 16 REAU(1,96O)V(1,K),V(1,K+2),V(1,K+4),V(1,K+6),V(1,K+8)
 (NTERPOLATION OF U ANO V (2)
 40200 403 K=1,NML;2
 403V}V(1,K+1)=(V(1,K)+V(1;K+2))/2.
 WRITE(3,85)NN
 GO TO 407
 C REAO U ANO V (4)
 401 00 404 K=1,N,20
 404 REAO(1,960}U(1,K),U(1,K+4),U(1,K+8),U(1,K+12),U(1,K+16)
 REAO(1,953)P
 OO 405 K=1,N,20
 405 RENO(1,960}V(1,K),V(1,K+4),V(1,K+8),V(1,K+12),V(1,K+16)
C INTERPOLATION OF U ANO V.(4)
 00 406 K=1,NM3:4
 U(1,K+2)=(U(1,K)+U(1,K+4))/2.0
 406 V(2,K+2)=
 4 0 7 W N = N
 99 WR (TE(3,85)LLL &LLL
 NO1O=N/1O
 ND105=NO10-5
 NO104=NO1O*4
 NO103=NO1O*3
 XPRIN=XZERO&PT*OX
 N1=N+1
 NM3=N-3
```

RUX $=1 . / 0 X$
$\left.\begin{array}{ll}A L=1.12 \\ 8 E=H\end{array} \% P R * D Y * D Y\right)$
$8 E=H W H * 8 R / P R$
WRITE (3,85)NN
OD $100 L=1$, M
WRITE $(3,555) \cup(1, N+1)$
WRITE (3,555)U(1,N+1)
READ U( $2, K), P, V(2, K)$
AND INTERPOLATE
$V(2, N 1)=0.0$
$U(2, N 1)=0.0$
READ (1,961)NN
IF (NN-2)408,408,409
409 IF (NN-4)430,430,431
$43000410 \mathrm{~K}=1, \mathrm{~N}, 20$
410 REAO $(1,960) U(2, K), U(2, K+4), U(2, K+8), U(2, K+12), U(2, K+16)$
REAO
DO $411, ~$
$K=1, N, 20$
411 READ $(1,960)^{N} V(2, K), V(2, K+4), V(2, K+8), V(2, K+12), V(2, K+16)$
$00412 K=1, N M 3,4$
$U(2, K+2)=(U(2, K)+U(2, K+4)) / 2.0$
$V(2, K+2)=(V(2, K)+V(2, K+4)) / 2.0$
412
413
$V(2, K+2=(N M 1 ; 2$
$004, K=(3+K)+U(2, K+2)) / 2.0$
$U(2, K+1)=(U(2, K)+U(2, K+2)) / 2.0$

WRITE $(3,85) \mathrm{N}$
GO TO
1

408
DO $415 K=1, N, 10, K), U(2, K+2), U(2, K+4), U(2, K+6), U(2, K+8)$ READ $(1,953) P$
DO $416, K=1, N, 10$
REAU $(1,960) V(2, K), V(2, K+2), V(2, K+4), V(2, K+6), V(2, K+8)$
GO $7222^{4} \mathrm{~K}=1, \mathrm{~N}, 20$
c
$0032 K=2 N$
$C(K)=(-A L)^{N}$
$C(N)=2.0 * C(N) / 3.0$
$D(K)=2.0 * A L+(U(1, K)+U(2, K)) /(2.0 * D X)$
$A(K)$
34
60 TO 341
$E \times 1=E X P(H)$
$E X 2=1.1 E X 1$

- HSINH=.5 (EX1+EX2)
$H Q=H /(H=H C O S H-H S I N H)$
IF(H) $122,300,122$
$E=325 \mathrm{~K}=1, N$
$\bar{Y}=E$ है $Y$


## 325

$U(2, K)=1.5 *(1 .-Y * Y)$
GO TO $326^{\circ}$

## 122

DO $125 K=1, N$
$E=K-1$
$W W=H: E F O$
EX3=EXP (WW)
EX4=1: $1 E X_{3}$
$U(2, K)=H Q=(H C O S H-(E X 3+E X 4) / 2.1$

## 125

$\cup(2, N+1)=0.0$
$\vee(2, N+1)=0.0$
GO TO 31
341 A $(N)=A(N)-4 . O=A L / 3.0$
$35 C(1)=-2.0 * A L T(1,2)+T(1,1) *((U(1,1)+U(2,1)) /(2.0 * 0 X)-2.0 * A L)$

$0041 \mathrm{~K}=2, \mathrm{~N}$

$D(K)=D(K)+T(1, K+1))(-(V(1, K)+V(2, K)) /(4, * D Y)+A L)$
$D(K)=D(K)+[8 R / P R) *(U(2, K+1)-U(2 ; K-1)+U(1, K+1)-U(1, K-1)) \approx$.

C
 $\begin{aligned} 410(K) & =0(K)+B E *(-E E+(U(2, K) \\ D(N) & =0(N)+(200 \% Y H A L / 3.0)\end{aligned}$
$520054 \mathrm{~K}=2, \mathrm{~N}$
$S \cup B=C(K)$
$C(K-1)=C(K-1) / A(K-1)$
$A(K)=A(K)-C(K) * C(K-1)$
$56 \mathrm{D}(1)=0(1) / A 11)$

54	
59	$O(K)=(2, N)=D(N)$

DO $60 \mathrm{~K}=1$, NM1
$J=N-K$

$T(2, N 1)=(4 . * T(2, N)-T(2, N M 1)+2 . * D Y) / 3$.
UL =
61 X=XZERD+UL*OX
$00626 \mathrm{~K}=1, N 1$
$U(1, K)=U(2, K)$
$V(1, K)=V(2, K)$
$626 T(1, K)=T(2, K)$
63 1F(X-XPRIN) $100,64,100$
64 WRITE $(3,1) \times$
DO $65 \mathrm{I}=1, \mathrm{~N}, \mathrm{ND} 105$
$\mathrm{J} 1=\mathrm{I}+\mathrm{NO} 10$

- $\quad \mathrm{J} 2=1+\mathrm{ND} 102$
- $\quad \mathrm{J} 3=1+$ NO103

65 WRITE(3,3)T(2,I),T(2,J1),T(2,J2),T(2,J3),T(2, 14)
C CALCULATE BULK TEMP. ANO LDCAL NUSSELT NO.
$0068 \mathrm{~K}=1, \mathrm{~N}, 2$
68 UTUTA=UTUTA+DY* $(U(2, K)+4 . D * U(2, K+1)+U(2, K+2)) / 3.0$
$0072 K=1, N_{1} 2$
$T B=T K+D Y *(U, K) \# T(2, K)+4 ; W(2, K+1) w(2, K+1)) / 3 . D$
$72 \cdot T 8=T 3+D Y(U(2, K+2)=T(2, K+2)) / 3 . D$
TBULK=TB/UTDTA
$X N U S=4.0 /(T(2, N 1)-T B U L K)$
$772 \times X=x / 16$.
WR ITF $(3,3)$ T( $2, N 1)$, TBUL $X, X N U S, T B U L K, X X, M$
78 XPRIN=XPRIN+PT\&DX
100 CONTINUE
WRI PR $(3,3, N, T(2, K), T(2, K+2), T(2, K+4), T(2, K+6), T(2, K+8)$
82 WRITE $(3 ; 3) T(2 ; N 1)$
$L L 1=L L L+1$
$\mathrm{NO} 2=N / 2$
GO $\mathrm{TO}(549,549,550,550), \mathrm{LLI}$
550
$D(51) K=1, N$
$U(1, K)=U(2, k)$
$V(1, K)=V(2, K)$
551
$(1, K=1\}=U(2, N+1)$
$U(1, N+1)=V(2, N+1)$
$T(1, N+1)=T(2, N+1)$
$\begin{array}{lll}\text { GO TO } \\ 00 & 552 \\ \mathrm{~K}=1, & \text { ND2 }\end{array}$
$549 \begin{aligned} & 00 \\ & J=2 * K-1\end{aligned}$
$U(1, K)=U(2, J)$
$V(1, K)=V(2, j)$
$84 T(1, K)=T(2, J)$
$\mathrm{J} J=\mathrm{NO} 2+1$
$U(1, J J)=U(2, N 1)$
$T(1, j \jmath)=T(2, N 1)$
552
$90 \begin{aligned} & 0 X=.001 \\ & 0 Y \\ & M=9 \\ & M\end{aligned}=8125$
$N=8 D$

```
\(X Z E R O=.001\)
\(P T=1.0\)
G0 10 98
 \(91^{\circ} 0 X=.005\)
 \(Y=.02\)
 \(M=18\)
 \(\mathrm{N}=40\)
 XZERO \(=.01\)
 \(\mathrm{P} T=2.0\)
GO T0 98
92
 \(D Y=.025\)
 \(\mathrm{M}=140\)
 \(N=40\)
 \(X 7 E R O=0.1\)
 PT=10. 98
 \(98 \mathrm{~N}=\mathrm{N}+1\)
 NF \((X-1.5) 99,900.900\)
```



```
WRITE(3;1)T(2;NI)
GOTO 6
MONS EXEQ LINKLCAO
MON: \(5 \quad\) EXEQ SIX,MJB
```


## Results

The following results represent the typical output of the proceeding grogram. The case presented is for a Hartmann number of 10 , electrical field factor of 1.0 , and a heat transfer parameter of 1.0 . These results are only presented till $X=0.4$ because this adequetely presented the calculation procedure of the program.
-10643E 01

- $10643 E$
. 10643 E
.10621 E
. $20000 \mathrm{E}-02$
$.47201 \mathrm{E}-03$
$.18634 E 00$
- 18634 E 00
-00000E-99
$.00000 \mathrm{E}-99$


## 80

$10716 E 01$
$.10716 E ~ 01$
$.10716 E 01$
$.10631 E=01$
$.30000 \mathrm{E}-02$
$.75670 \mathrm{E}-03$
$.90525 \mathrm{E}-03$
.
.85295E 00
$.85295 E-90$
-00000E-99
80
$.10794 E$
.10794
01
$.10794 E 01$
$-40000 \mathrm{E}-02$
$-11872 \mathrm{E}-02$
$.14366 E-02$
.80974 E .00
-00000E-99
.00000E-99 80

$$
\begin{aligned}
& 10 \\
& 10 \\
& 10 \\
& -50 \\
& : 2 \\
& 10 \\
& 10 \\
& 10 \\
& 10 \\
& 80
\end{aligned}
$$

$$
\begin{aligned}
& 80000 \mathrm{E}- \\
& 80 \\
& .10890 \mathrm{E}
\end{aligned}
$$

$$
-1
$$

$$
\begin{aligned}
& -108989 \mathrm{E} \\
& -108900 \mathrm{E} \\
& .100000 \mathrm{E}
\end{aligned}
$$

.6
-27800E-0
$.10828 E$
.00000
.009
-00000E-99 80
. $10917 E 01$
-10917E 01
.10442 E 01
$.28271 E-02$
 $.47189 \mathrm{E}-03.47193 \mathrm{E}-03.47195 \mathrm{E}-03$. $47199 \mathrm{E}-03$ $.47254 \mathrm{E}-03 \cdot 52787 \mathrm{E}-03 \cdot 53778 \mathrm{E}-02 \mathrm{E} \cdot 12500 \mathrm{E}-03$


$-35718 \mathrm{E}-02$
$.12412 E O 1$
-12412E 01
. $00000 \mathrm{E}-99$
-C0000E-99
80

8
$.10957 E 01$
.10952 E 01

$$
.97668 \mathrm{E}-00
$$

$-90000 \mathrm{E}-02$
$.40645 \mathrm{E}-02$
-54809E-02
$.13946 E 01$
DEVELING VEL PRO

$$
\begin{aligned}
& 10315 E-01 \\
& .10236 \mathrm{E}-00
\end{aligned}
$$

$-13946 E-91$
$.00000 \mathrm{E}-99$
$.00000 \mathrm{E}-99$
80

$$
\begin{array}{r}
10972 \\
.10972 \\
.1096 \\
.1032 \\
.10008 \\
.1708
\end{array}
$$

.5 .783
.24
-


$$
\begin{array}{r}
.50522 \mathrm{E}-02 \\
.10315 \mathrm{E}-01 \\
.1023 \mathrm{E}-01
\end{array}
$$

$\qquad$

$24829 E-0$
.16438 E 00
$.64663 E 00$

DEVELING VEL PRO


OEVELING VEL PRO




## DISCUSSION OF TKE PHYSICAL SICNIFICANCE OF THE

 CURVES WHCH DESCRIBE THE DEVELOPING TEMPERATURE PROFILESThe dimensionless terperature is defined as

$$
\begin{equation*}
\theta=\frac{t-t_{0}}{2 q n / k}=-\frac{t-t_{0}}{a q / k A}, \tag{I}
\end{equation*}
$$

where $q^{\sharp}=-q / A$. The slope of the temperature proifile at the wall is derived as

$$
\begin{equation*}
\left.\frac{\partial \theta}{\partial Y}\right|_{Y=1}=1 . \tag{2}
\end{equation*}
$$

The rall temperature in finite dinference form is

$$
\begin{equation*}
\theta_{W}=\theta_{n+1}=\frac{4 \theta_{n}-\theta_{n-1}+2 \Delta Y}{3} \tag{3}
\end{equation*}
$$

Substituting equation (1) into equation (3) gives

$$
\begin{equation*}
t_{n+1}-t_{0}=\frac{4\left(t_{n}-t_{0}\right)-\left(t_{n-1}-t_{0}\right)-2 \Delta Y(2 q / \mathrm{kN})}{3} . \tag{4}
\end{equation*}
$$

Rearranging terns in equation (4) such that

$$
\begin{equation*}
3 t_{n+1}-4 t_{n}+t_{n-1}=-2 \Delta Y(2 a / \mathrm{ka}) . \tag{5}
\end{equation*}
$$

The heat transfer parameter, 7 , is defined as

$$
\begin{equation*}
\eta=\frac{u_{0}^{2}{ }_{0}^{u}}{2 q^{\prime \prime}}=-\frac{u_{0}^{2} \mu}{2 q / \&} \tag{6}
\end{equation*}
$$

When the heat transfer, $q$, is less than zero, heat is transferred into the channel. This case is represented by the curves for which $\eta$ is greater than zero. Enuation (5) can be remritten as the inequelity

$$
\begin{equation*}
3 t_{n+1}-4 t_{n} \div t_{n-1}>0 \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
3 t_{n+1}>4 t_{n}-t_{n-1} . \tag{8}
\end{equation*}
$$

If $t_{n} \geq t_{n-1}$, then equation (8) reduces to

$$
\begin{equation*}
t_{n+1}>t_{n} . \tag{9}
\end{equation*}
$$

Since $\theta$ is defined as the variable temperature, $t$, minus a constant, and that difference divided oy a positive constant the inequality presented by equation (9) will also hold for dimensionless temperature. Hence,

$$
\begin{equation*}
\theta_{n+1}>\theta_{n}, \tag{10}
\end{equation*}
$$

this can be seen in all cases :nore $7>0$. Since there is intemal heat generation and heat transfer into the channel at the wall, it was expected that the temperature near the wall would be greater than the temperature nemer the center. This also is evident for the cases in wimich I $>0$.

Instead of using a baclowerd finite difference scheme using three terms, a sirpler sonemo using o:2y tro terms to evaluate the well temperature will be used. This latter scheme will give equivalent results if the $\Delta Y$ distance is smail, and it will mose clearly confixn the results ootained above.

$$
\begin{equation*}
\theta_{\mathrm{V}}=\theta_{\mathrm{n}+1}=\theta_{\mathrm{n}}+\Delta Y \text {. } \tag{II}
\end{equation*}
$$

Substituting equation (I) Into (II) and rearranging gives

$$
\begin{equation*}
t_{n+1}=t_{n}-\Delta Y(2 q / k A) \tag{12}
\end{equation*}
$$

If $\mathrm{q}<0$, then

$$
\begin{equation*}
t_{n+1}>t_{n} \tag{I3}
\end{equation*}
$$

or

$$
\theta_{n+1}>\theta_{n} .
$$

This result is equivaient to that shown in equation (10).
In $q>0$, then equation (12) can be reduced to the following inequality:

$$
\begin{equation*}
t_{n+1}<t_{n} \tag{14}
\end{equation*}
$$

This would be the expected result, since heat is boing transferred arny from
the channel. Yet, the dinensionless temperature profiles will show the result

$$
\begin{equation*}
\theta_{n+1}>\theta_{n} \tag{15}
\end{equation*}
$$

minich can easily be derived from equadion (11).
This rosult can be verified using the three point finite difference scheme repmesented by equation (4). When o $>0, \eta>0$ and equation (5) can bo represented by the inequality

$$
3 t_{n+1}-4 t_{n}+t_{n-1}<0
$$

$0:$

$$
\begin{equation*}
3 t_{n+1}<4 t_{n}-t_{n-1} \tag{16}
\end{equation*}
$$

which is equivalent to equation (14). The results for the case, a greater than zero, are represented by the curves for wich $\eta$ is less than zero.

## reLationseip bewten resulis of perimutre and <br> SIMELL AND THOSE PRESENTED IN THIS THESIS

Perimutter and Siegel $\lfloor$ Reference 7 of Part 2$\rfloor$ define the dimensionless mean current flow in the $z$-direction as

$$
\begin{equation*}
J=\frac{3 a}{u_{m}\left(\sigma^{2}\right)^{\frac{t^{2}}{2}}} \tag{1}
\end{equation*}
$$

where $\bar{j}$ is the mean current flow in the $z$-direction. Substituting

$$
\begin{align*}
& \mathrm{N}=\mu_{\mathrm{e}} \mathrm{H}_{0} 2 \sqrt{\sigma / \mu},  \tag{2}\\
& H_{0}=\frac{\mathrm{K}}{\mu_{\mathrm{e}}{ }^{2} \sqrt{\sigma / \mu}}, \tag{3}
\end{align*}
$$

into (1) gives

$$
\begin{equation*}
J=\pi\left\lfloor\frac{z}{L_{e} V_{0} u_{n 1}}+1\right\rfloor \text {, } \tag{4}
\end{equation*}
$$

there $E$ is the electrical field in the z-direction. Defining the electrical field factor as

$$
\begin{equation*}
e=-\frac{Z}{\mu_{e}^{H} 0^{H}=}, \tag{5}
\end{equation*}
$$

and substituting into (4)

$$
\begin{equation*}
J=M\lfloor-e \div 1\rfloor \tag{6}
\end{equation*}
$$

Perlmutter and Siegel consider the temperature in tro parts. Can where there is a specified uniform wall heat Mlux, 0 , at the channel walls, but no intermal heat generation in the fluid; for these conditions the fluid temperature is called $t_{q}$. For the second, there is intermal heat generation Q within the fluid, but no heat transfer at the channel walls. The fluid temperature for this part is called $t_{Q^{\prime}}$. Ey superposition the temperature is given by

$$
\begin{equation*}
t=t_{q}+t_{Q} . \tag{7}
\end{equation*}
$$

The difference between the wall temperature and bulk temperature is reported as

$$
\begin{array}{r}
t_{W}-t_{D}=\left\lfloor\frac{t_{Q, W}-t_{Q, b}}{\left(t_{Q, W}-t_{Q, b}\right)_{Q}}\right\rfloor\left(t_{Q, W}-t_{Q, b}\right)_{d}+  \tag{8}\\
\left\lfloor\frac{t_{Q, W}-t_{a, b}}{\left\lfloor\left(t_{Q, v}-t_{q, b}\right)_{d}\right\rfloor\left(t_{q, W}-t_{q, b}\right)_{d,},}\right.
\end{array}
$$

where the subscripts w and b represent well and bulk respectively and $d$ represents the fully developed value, that is as $X \longrightarrow \infty$. Since we define the local Nusselt number as,

$$
\begin{equation*}
\operatorname{Nu}=\left|-\frac{4}{\left(\theta_{W}-\theta_{b}\right)}\right| \tag{9}
\end{equation*}
$$

it would be advantageous to be able to calculate the value of $\theta_{w}-\theta_{b}$ from equation (8). Therefore,

$$
\begin{align*}
& \theta_{W}-\theta_{b}= \frac{t_{W}-t_{0}}{2 Q^{11} / k}= \\
&\left\lfloor\frac{t_{Q, W}-t_{0, b}}{\left(t_{Q, W}-t_{Q, b}\right)_{d}}\right\rfloor \frac{\left(t_{0, W}-t_{0, b}\right)_{Q}}{2 q^{\prime \prime} / k}+  \tag{10}\\
&\left\lfloor\frac{t_{Q, W}-t_{0, b}}{\left(t_{q, W}-t_{Q, b}\right)_{d}}\right\rfloor \frac{\left(t_{Q, W}-t_{Q, b}\right)_{d}}{2 q^{H / R}} .
\end{align*}
$$

Graphical results are presented for $\left[t_{Q, W}-t_{Q, b} /\left(t_{Q, W}-t_{Q, b}\right)_{d}\right]$ $\left\lfloor t_{q, W}-t_{q, b} /\left(t_{q_{, V}}-t_{q, b}\right)_{d}\right\rfloor$, and $\left(t_{q, W}-t_{q, b}\right)_{d} /\left(a q^{\prime \prime} / k\right)$ with parameters of Martuann numbers and dimensionless mean current flow. The remzining term of the right hand side of equation (10) is not presented in exactiy the precise form necessary, but is presented in graohical form as

$$
\begin{equation*}
\frac{\left(t_{0, v}-t_{0, b}\right)_{d}}{\frac{v_{u}^{2}}{\pi}\left(d^{2}+\frac{2 \sin h}{A}\right)} \tag{21}
\end{equation*}
$$

neme $\Lambda=\cosh \because-\lfloor(\sinh M) / M]$. It is necessary to have the denominator of
(17) equivalent to $a q^{*} / \mathrm{k}$ ir those results are to be used in comparing with those of the present work, therefore,

$$
\begin{equation*}
\frac{v_{M}^{2}}{k}\left(v^{2}+\frac{M \sinh M}{A}\right)=\frac{a q^{*}}{k}=-\frac{a q^{\prime \prime}}{k} . \tag{12}
\end{equation*}
$$

Dividing (12) by aq" $/ k$ gives

$$
\begin{equation*}
\eta \operatorname{Pr}\left(J^{2}+\frac{M \sinh M}{A}\right)=-1 \tag{13}
\end{equation*}
$$

For a Farmann number of 10 , dimensionless mean current flow of 0 , and Prandil number of unity equations (4) and (10) give the following results respectively

$$
\begin{aligned}
& e=1.0 \\
& \eta=-.09
\end{aligned}
$$

Thus, the results obtained in the present work under the previously descrioed conditions can be compared with the values obtained by Perlmater and Siegel.

The case of the Eartmann nurber equal to 10 was the only case for wich general results wero reported by Perlmatice and Siegel. Results for other values of the liartmann number. were reported, but only for the special cases $J=0$ and $J \longrightarrow \omega_{0}$

The author expresses his sircere gratitude to Dr. L. T. Fan, for his constant advice and enthusiasm; Dr. C. L. Fwang, for his numerous consultations and many timely corrections; Dr. Wh. H. Fonsteed, Head of the Department of Chemicel Ingineoring for his help and encouragement; Dr. R. L. Yates, Associate Professor in the Departmont of Vathematics, for reading the manuscript; Di. H. Bates for reading the manuscript; and Dr. L. E. Erickson for reading the manuscript and giving valuable comments; and the K.S.U. Engineering Expariment Station and the Air Force Office of Scientific Research Grant AR-AFOSR-463-64 for supeorting this work.

The author aiso expresses his gratitude to the K.S.J. Computer Center
 for his assistenco in correcting the computer programs.

The author also expresses his thanks to his "office-mates", Y. C. Chen, W. S. Frang, and C. B. Fing for their help in seolling and choosing the correct vording, and a spocial thanks to lis. S. J. Chen for his painstaking checking of the derivations, M. E. A. Travnicek for his untiring help in "debugging" the computer prograns, and Mr. Y. K. Ahn for his proof-reading tho manuscript and advice on the correct form.

The author also thanks his parents and younger brother, I. H. Knieper, for their encouragement especially welcored in times of depression.

# HEAT TRANSFER TO A MHD FLUID IN A FLAT DOCT WITR CONSTANT HEAT FLUX AT THE WALLS 

by

PHIIIP J. KIIEPER
B.S., Tulane University, 2963

AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTGR OE SCIENCE

Department of Chemical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

The principal purpose of this work was to study heat transfer to a fluid flowing between parallel plates with constant heat flux at the wall and a transverse magnetic field. The equations were solved numericaliy using a finite difference analysis and an IBM 1410 digital computer.

In the first part of the thesis the effects of viscous dissipation on the heat transfer parameters and temperature profiles are investigated numerically. The flow is considered laminar and fully developed. The heat generation parameter is introduced. The relation between this parameter and the Eckert and the Briniman numbers is discussed. The developing temperature profiles as well as the local Nusselt number are presented graphically for heat generation parameters of $-1.0,-0.5,0,0.5$, and 1.0.

In the second part of the thesis heat transfer to a MHD fluid in the thermal entrance region of a flat duct is studied. The flow is considered laminar and fully developed. The results are again presented graphically in the form of developing temperature profiles and local Nusselt numbers for heat transfer parameters of $-1.0,-0.5,0,0.5$, and 1.0 ; Hartmann numbers of 4 and 10; and electrical field factors $0.5,0.8$, and 1.0 . Comparisons are presented for certain cases with the work of others.

The third part of the thesis is again concerned with heat transfer to a MiD fluid in the entrance region of a flat duct. However, in this part of the study the velocity proifile is initially flat and is considered to be developing simultaneously with the initially uniform temperature profile. The viscous criterion factor is introduced. The cases considered are for viscous criterion factors of $-1.0,-0.5,0,0.5$, and 1.0 ; Hartmann numbers of 0,4 , and 10 ; and electrical field factors $0.5,0.8$, and 1.0 . The results are presented in the same manner as those for the earlier two parts of the thesis and are limited
to the case of a Prandtl number equal to unity. Although this is true for the results, there is no such Iimitation on the equations expressed or the computation method presented.

