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Abstract

Tremendous advances in computing power have allowed the size of datasets to grow

massively. Many machine learning approaches have been developed to deal with massive

data by reducing the number of features, observations, or both. Instance selection (IS) is

a data mining process that relies on scaling down the number of observations of a dataset.

In this research, we focus on IS methods that rely on clustering algorithms, particularly,

on threshold clustering (TC). TC is a recent efficient clustering method. Given a fixed size

threshold t∗, TC forms clusters of t∗ or more units while ensuring that the maximum within-

cluster dissimilarity is small. Unlike most traditional clustering methods, TC is designed to

form many small clusters of units, making it ideal for IS.

Support vector machines (SVM) is a powerful method for classification. However, train-

ing SVM may be computationally infeasible for large datasets—training SVM requires

O(N3) runtime, where N is size of the training data. In this dissertation, we propose a

method for IS for training SVM under big data settings called support vector machines

with threshold clustering (SVMTC). Our proposed method begins by clustering each class

in the training set separately using TC. Then, centroids of all clusters are formed the re-

duced set. If the data reduction is insufficient, TC may be repeated. SVM is then applied on

the reduced dataset. In this way, our proposed method can reduce the training set for SVM

by factor (t∗)r or more, where r is the number of iterations of TC, dramatically reducing

the runtime required to train SVM. Furthermore, we prove under the Gaussian radial basis

kernel, that the maximum distance between the Gram matrix for the original data—which

is used to find support vectors—and the Gram matrix for the reduced data is bounded by

a function of the maximum within-cluster distance for TC. Then, we show, via simulation



and application to datasets, that SVMTC efficiently reduces the size of training sets with-

out sacrificing the prediction accuracy of SVM. Moreover, it often outperforms competing

methods for IS in terms of the runtime, memory usage, and prediction accuracy.

Next, we explore best practices for applying feature reduction methods for SVMTC

when the number of features is large. We investigate the usefulness of various feature

selection and feature extraction methods, including principal component analysis (PCA),

linear discriminant analysis (LDA), LASSO, and Fisher Scores, as an initial step of SVMTC.

For feature reduction methods that select a linear combination of the original features—

for example, PCA—we also investigate forming prototypes using the original features or

the transformed features. We compare, via application to datasets, the performance of

SVMTC under feature reduction methods. We find that LASSO tends to be an effective

feature selection method, and overall, show that SVMTC is improved significantly under

the proposed methods.

Finally, we perform a comparative study of iterative threshold instance selection (ITIS)

and other IS methods. ITIS is a recent extension method of TC that is used as IS. We use

simulation to compare between ITIS and competing methods. The results illustrate that

ITIS is effective in massive data settings when compared against other instance selection

methods like k-means and its variations. In addition, we demonstrate the efficacy of hybrid

clustering algorithms that utilize ITIS as an initial step, and show via simulation study that

these methods outperform other hybrid clustering methods in terms of runtime and memory

without sacrificing performance.
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Chapter 1

Introduction

1.1 Introduction

Advances in computing power have allowed the size of datasets to grow exponentially. Bil-

lions of people use the internet for many reasons: making purchases, contacting each other,

or sharing files or photos, for example, Beaver et al. (2010) showed that approximately 1

million photos per second are posted on Facebook. Data mining (Fayyad et al., 1996) is

essential to deal with such a large amount of data. It is based on extracting valid and

understandable patterns of data. Data selection and preprocessing are the core of data

mining process. Scaling down the data by selecting relevant and useful patterns of data and

eliminating redundant ones is an important data mining process (Liu and Motoda, 2002).

Classification—a supervised learning technique—aims to obtain a function that is an

optimal approximation of the class label for any unseen data point. The classification

algorithm is trained on a training set to obtain the optimal classifier. The training set is

usually massive and consists of superfluous instances that may be removed to improve the

performance of classification methods.

In general, data can be reduced by feature selection methods, which depend on reducing

the number of columns by eliminating ineffective variables from a dataset. On the other

1



hand, instance selection (IS) methods rely on scaling down the data size by reducing the

number of observations. The goal of IS is that the performance of the machine learning

algorithm when using the selected data should to be as close as possible to the performance

of the original data, but with less runtime, and memory usage. Methods for IS include

sampling, classification, and clustering algorithms. The main idea of sampling is to draw a

subset of data randomly in which each instance has the probability to be selected. Simple

random sampling, stratified random sampling, and adaptive sampling are examples of IS

by sampling. When data is labeled, IS methods that are associated with classification can

be used. In contrast, IS methods related to clustering are used when labels of data are

unknown.

Support vector machines (SVM) is a most popular classification method. The goal of

SVM is to minimize the empirical classification error and simultaneously maximize the mar-

gins in which the support vectors of each class are placed on the margins. SVM obtains a

hyperplane that forms the maximum margins between classes. A soft margin is used to over-

come class overlapping issues. By introducing slack variables and a regularized parameter,

soft margin SVM results in misclassification of some instances.

SVM is limited for small data settings because of its complex computations for opti-

mization, requiring O(N3) runtime, where N is the number of units. Hence, many methods

have been proposed to accelerate the computations of SVM in massive data. Some methods

are developed by changing the model, such as twin SVM (TSVM) (Khemchandani et al.,

2007) and least squares SVM (LSSVM) (Suykens and Vandewalle, 1999). Other methods

work directly on the optimization problem, such as chunking (Cortes and Vapnik, 1995),

decomposition (Osuna et al., 1997a), and sequential minimal optimization (SMO) (Platt,

1998) methods. The last type of method to accelerate SVM is IS that is applied to a select

subset of data from the training set that are more likely to be support vectors; or to extract

pseudo instances as a subset of data to reduce runtime and memory usage.

Many clustering methods for IS have been developed. Threshold clustering (TC) is a

2



recent clustering method that works efficiently in big data settings (Higgins et al., 2016).

It aims to minimize the maximum within-cluster dissimilarity. Unlike most traditional

clustering methods, TC is designed to form many small clusters of units, making it ideal for

IS. In this research, we use TC as IS to accelerate training SVM in big data settings. Our

proposed methods improve training SVM and outperform other IS methods that based on

traditional clustering methods.

1.2 Instance Selection

Data have been grown rapidly with development of technology. Working with original data

directly cannot keep up with this rapid growth. Data mining (Fayyad et al., 1996) becomes

important to work with this huge data. Instance selection (IS) is a preprocessing method

that is used to reduce the size of data by extracting a subset that contains only relevant

instances from the training set. IS enables state-of-the-art algorithms to work effectively in

massive datasets. In addition, IS reduces the execution time and memory of training data

by scaling down the size of the data. Evaluation of IS methods are based on the performance

of machine learning algorithms under the selected set. The IS method is accurate when the

performance of the algorithm of the reduced set under IS method is approximately the same

as the performance of the algorithm using the original data.

IS methods are associated with sampling, classification, or clustering approaches(Liu and

Motoda, 2002). IS methods are classified in many ways, including wrapper and filter meth-

ods. Instances in wrapper methods are selected if they impact the classification accuracy;

otherwise, they are removed. Filter methods only consider selection functions (Olvera-López

et al., 2010a). Others classify IS methods into noise filters, condensation algorithms, and

prototypes selection methods (Grochowski and Jankowski, 2004). In this research, we focus

on prototypes selection methods under clustering approach.
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1.2.1 Literature Review on Instance Selection

Several instance selection (IS) methods that are associated with classification methods have

been developed. The earliest one was based on the nearest neighbor (NN) rule, proposed by

Cover and Hart (1967). This type of classification uses large storage space especially with

enormous data, and it is unable to manage noisy instances. Hart (1968) proposed condensed

nearest neighbor (CNN) that overcomes the storage limitation in the NN rule. The algorithm

begins by randomly choosing one instance for each class from training set T . The initial

instances are stored in the reduced set T
′
. All instances in T are classified based on instances

in T
′
. Misclassified instances are added to the reduced set T

′
. Generalized condensed nearest

neighbor (GCNN)—similar to CNN— is proposed in Chou et al. (2006). However, GCNN

improves the way of obtaining prototypes by using robust criteria of absorption. For an

instance x, the distance between x and its nearest neighbor, and the distance between x

and its nearest instance from different class are computed. Instances with strong absorption

are the selected data. In Ritter et al. (1975), CNN is enhanced based on the selective

nearest neighbor (SNN) rule. SNN is carried out by obtaining a selective subset in which

each instance in original dataset T is closer to an instance in the same class in the selective

set than any instance in T . On the other hand, Wilson (1972) proposed the edited nearest

neighbor (ENN) method, which overcomes the limitation of CNN by getting rid of noisy

instances to improve classification accuracy. The K nearest neighbors (KNN) are obtained

for each instance in the preclassified samples. A class label with largest number of instances

through KNN is found. Any instance that does not agree with majority label of its KNN

is discarded. However, this method retains interior instances while removing border ones.

Also, it is unable to reduce several instances in the training set compared with other IS

methods.

In Aha et al. (1991), instance-based (IB) methods were developed. The simple algorithm

is IB1, which works as NN rule; however, IB1 normalizes the variables. IB1 is used as a

starting point for IB2 and IB3 algorithms. The IB2 algorithm starts by saving instances in
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the original set T that are misclassified by instances in the reduced set T
′
. Border datapoints

in reduced set T
′
are saved whereas instances in the middle of dataset of the same class are

discarded. IB3 was developed to overcome noise sensitivity of IB2.

Decremental reduction optimization procedure (DROP1-DROP5) are proposed as IS

methods in Wilson and Martinez (2000). These procedures rely on associates of an instance

x in which x is one of their k-nearest neighbors (KNNs). For an instance x, DROP1 begins

by obtaining the KNNs of associates of x. Then, the accuracy of KNN of x’s associates

is checked after removing x. If the accuracy was not affected, x is removed. DROP1 can

remove noisy instances; however, a noisy instance may not be removed if its neighbors are

first removed. DROP2 overcomes the drawback of DROP1: the instance is removed only if

its associates in training set T are classified correctly. DROP3 and DROP4 use filtering to

remove noisy instances first, then they apply DROP2. DROP5 is relied on DROP2, but it

begins by deleting nearest instances of different class.

Brighton and Mellish (2002) introduced the iterative case filtering (ICF) algorithm. This

method is based on removing superfluous instances with two properties: reachability and

coverage. The reachable set of instance x contains instances that are from the same class

of x in the largest hypersphere centered in x. In contrast, the coverage set of x includes all

instances that x is adapted to, practically, the instances in which x is in their reachable sets.

The algorithm begins by performing Wilson Editing (Wilson and Martinez, 1997) to remove

noisy instances. The rule of ICF is that if reachable set (x) size is larger than coverage set

(x) size, x is flagged to removal. At the end, all flagged instances are removed.

On the other hand, clustering is a machine learning method that works with unlabeled

data. Liu and Motoda (2002) and Spillmann et al. (2006) suggested IS methods associated

with clustering. The general idea is about generating pseudo points from clusters called

prototypes; the prototypes are used as selected data. K-means (Lloyd, 1982) is a well-

known clustering method that splits the data into k clusters. A set of k data points is

selected randomly to be initial centers and nearest units to each center are specified to

5



form the initial clusters. The nearest points are usually assigned by squared Euclidean

distance. The mean of each cluster is computed, then the k centers are replaced with each

mean. The process is repeated until the convergence is obtained. From the IS perspective,

k means can be used and the rest of data ignored. For N sample size, m variables for

each instance, and i iterations of algorithm to be converged, time and space complexities of

k-means are O(Nkmi) and O((k+N)m), respectively. On the other hand, scalable k-means

is an extension of the k-means algorithm in which clustering can be constructed in one scan

of data (Bradley et al., 1998). The idea of scalability is to retain some parts of dataset and

summarize the others. In big data settings, the algorithm can be applied effectively because

it requires a small space of memory to save small sub-samples. IS by Clustering (CLU) is

proposed in Lumini and Nanni (2006), which was based on the same idea. This method

applies fuzzy C-means to partition templates into clusters, then centers of clusters are used

as prototypes.

Another method that depends on clustering is established in Olvera-López et al. (2010b).

This method selects both border and interior data points. It relies on splitting T into clusters

based on clustering algorithm so that searching on border data points in small clusters is

more effective than searching on the whole T . For a cluster that consists of data points

of the same class, the mean of the cluster is calculated, and the cluster is replaced by the

nearest prototype to that mean. On the other hand, if a cluster contains data points from

different classes, finding the border data points should be done by searching on the majority

class in the cluster. In this type of cluster, the nearest data points that belong to each non-

majority class are border data points in the majority class. Likewise, border data points of

non-majority classes are the nearest data points that are belonged to the majority class.

Squashing is another technique based on clustering that compresses original data without

losing any statistical information. The process passes through grouping, momentizing, and

generating (GMG) sequentially (DuMouchel et al., 1999). Data is grouped into pins based

on the type of variables. For qualitative variables, pins can be assigned directly; however,
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for continuous ones, the regions are created by obtaining quantiles of each variable or by

inducing categorical values on such set of variables. Within each region, moments of the

datapoints in that region are computed. Based on the degree of Taylor series approximations,

the number of moments in each region is determined. For each region, squashed data

consisting of pseudo datapoints is generated.

Gong et al. (2021) proposed an IS method for KNN rules in which neighbors of each

instance are determined at the beginning. Then, for each instance, neighbors determine a

piece of evidence of estimation label of this instance. The pieces are merged to compute the

conflicts, so that the instance is considered to be near boundary if its conflict is high. At

the end, the optimal problem is solved to select boundary instances.

1.3 Threshold Clustering

Threshold clustering (TC) (Higgins et al., 2016) is a recent clustering method which was

developed at first for making statistical blocking of big data. This method aims to minimize

the maximum distances between any two instances within the same cluster by requiring

the minimum number of instances t∗ in each cluster. Outside of (t∗ − 1)-nearest neighbor

formulation, and N is data size, the TC algorithm requires O(t∗N) time to be executed in

low dimensional settings, which is smaller than other traditional clustering methods such

as k-means. This property of the algorithm allows TC to work efficiently in massive data.

In general, K-nearest neighbor (KNN) construction is computationally expensive for high-

dimensional data. Hence, TC may work better in low-dimensional data because KNN could

be executed in O(KN logN) time (Friedman et al., 1977). Additionally, according to a

bottleneck objective (Hochbaum and Shmoys, 1986), TC ensures obtaining approximately

optimal clustering. Consider a set that contains all threshold clusterings B(t∗) where the

clusterings are v such that, for each cluster Vl ∈ v, then |Vl| ≥ t∗. Bottleneck threshold

partitioning problem (BTPP) is obtaining the optimal clustering that minimizes the maxi-
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mum dissimilarity within a cluster. That is, the objective of BTPP is to obtain an optimal

clustering v∗ ∈ B(t∗) such that

max
ij∈E(v∗)

dij = min
v∈B(t∗)

max
ij∈E(v)

dij ≡ λ (1.1)

where λ is the optimal value of the maximum dissimilarity of units within a cluster, and

dij is dissimilarity between units i and j. The most common dissimilarities are Euclidean

distance and Manhattan distance which are defined as follows. For a p-dimensional vector

xi = (xi1, . . . , xip), Euclidean distance of each pair of data points i and j is

dij =
√

(xi1 − xj1)2 + . . .+ (xip − xjp)2 = ∥xi − xj∥2 (1.2)

and Manhattan distance of each pair of data points i and j is

dij = |xi1 − xj1|+ . . .+ |xip − xjp| = ∥xi − xj∥1 (1.3)

Given a prespecified threshold parameter t∗ and graph G = (V,E) - where V is the set of

instances, and E is the set of edges that connect pairs of instances, TC process is shown in

Algorithm I.

Algorithm I:

1. According to dij, construct (t
∗−1)-nearest neighbor (t∗NN) subgraphGt∗NN = (V,Et∗NN).

2. From G2
t∗NN , the second power of the (t∗ − 1)-nearest neighbor subgraph, obtain a

maximal independent set of vertices (seeds), M.

3. For each seed l ∈ M, construct a cluster Vl that includes all instances in Gt∗NN that

are neighboring to the seed l.

4. If there is any unassigned instance, assign it to a cluster that contains at least one of

its neighbor instances in Gt∗NN .
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At the end, TC is formed by the set of clusters v = {Vl}, l ∈ M. An illustration of per-

forming TC is shown in Figure 1.1.

Figure 1.1: An explanation of threshold clustering as shown in Algorithm I with data of

size N = 23, and threshold parameter t∗ = 2. Each datapoint is shown as a black vertex

in (a). A 1-nearest neighbors subgraph is found in (b). In (c), seeds which are represented

by blue circles are shown. In (d), each seed is grouped with its adjacent vertices making a

cluster. In (e), each unassigned vertex is assigned to a cluster that have its nearest seed.

Threshold clustering is formed with 9 clusters in which each cluster contains at least t∗ = 2

datapoints.

Lemma 1. There is no distance between two data points in Gt∗NN that is greater than the
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maximum distance in the optimal clustering (Higgins et al., 2016),

dij ≤ λ,∀ij ∈ Et∗NN , (1.4)

where Gt∗NN = (V,Et∗NN) is a subgraph of graph G such that ij ∈ Et∗NN only if i and j are

in the same cluster.

Theorem 1. Algorithm I is a 4-approximation algorithm, (Higgins et al., 2016).

max
ij∈E(ctc)

dij ≤ 4λ (1.5)

Proof. Assume the clustering obtained from TC algorithm is ctc in which any within-cluster

ij ∈ E(ctc).

First, from Lemma 1, for any ij ∈ Et∗NN , there exist k in which ik, kj ∈ Et∗NN so dij ≤ λ,

where Et∗NN obtained from step 1 of TC algorithm.

Now, consider ij /∈ Et∗NN in which i is not a seed, but j is the seed, then dij ≤ dik + dkj ≤

λ+ λ = 2λ.

Last, consider ij /∈ Et∗NN , but not i nor j is a seed, let the seed in the cluster includes i and

j is k. From above, it is shown that dik, dkj ≤ 2λ, then dij ≤ dik + dkj ≤ 2λ+ 2λ = 4λ.

1.3.1 Iterative Threshold Instance Selection

Luo et al. (2019) introduced a novel IS method based on threshold clustering (TC) (Higgins

et al., 2016) called iterative threshold instance selection (ITIS). The main point of ITIS is

its ability to scale down the size of data by factor of α. The process of ITIS passes through

three main steps.

1. With respect to a prespecified threshold t∗, implement TC on data of size N to perform

N∗ clusters, where each cluster contains at least t∗ of instances.
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2. Compute the prototype (centroid or medoid) for each of N∗ clusters, so there are N∗

prototypes.

3. The process is terminated if the data is sufficiently scaled down by a factor of α,

otherwise, the data of size N is replaced with N∗, then go to the first step.

ITIS works effectively in a massive data with runtimeO(t∗mN logN) where,m is the number

of iterations. However, it has a limitation when sample size is small in which the similarity

between each prototype and its data points becomes small.

1.4 Support Vector Machines

Support vector machines (SVM) (Cortes and Vapnik, 1995; Vapnik, 1998) is a well-known

supervised learning method that is used for classification. Because of its efficiency, several

researchers have been concerned by SVM in many areas such as text recognition (Joachims,

1998), pattern recognition such as face detection (Osuna et al., 1997b), and diseases diagnosis

(Bhatia et al., 2008). SVM can classify unseen instances by first obtaining the optimal

hyperplane among many potential hyperplanes that split the training data based on class

label. The optimal hyperplane maximizes the distance between the closest instances of each

class. Based on class label, training data can be separated by a hyperplane linearly or

non-linearly.

Consider anN d-dimensional training set (x1, y1), (x2, y2), . . . , (xN , yN), in which xi ∈ Rd

is an input vector, and yi ∈ {−1,+1} is an output variable where the joint distribution of

xi and yi is unknown. The support vector classifier aims to obtain the following optimal

decision hyperplane that separates data into two classes to predict a class of new unseen

instance y given the input x.

f(x) : w · x+ b = 0 (1.6)

11



Figure 1.2: An example of data in a two-dimension space is linearly separated by the
optimal hyperplane using SVM.

where w ∈ Rd is a weight vector orthogonal on the hyperplane and b ∈ R is a scalar

parameter. The training data is supposed to satisfy the following conditions


w · x+ b ≥ 1, if y = +1.

w · x+ b ≤ 1, if y = −1.

(1.7)

Equivalently,

y(w · x+ b) ≥ 1 (1.8)

The margin, which is the distance between the hyperplane and the closest instance of each

class, can be computed by 2
∥w∥ . There are infinite hyperplanes that separate the data; how-

ever, we need to obtain the optimal separating hyperplane —the maximal margin classifier—

by minimizing ∥w∥. By transforming ∥w∥ to quadratic optimization problem, the maximal

margin classifier is a solution from minimizing the following quadratic programming (QP)
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problem

min
w,b

1

2
∥w∥2 (1.9)

subject to

yi(w · xi + b) ≥ 1, i = 1, 2, . . . , N (1.10)

The optimization problem in equation (1.9) is a QP problem because the optimization

objective is quadratic and its constraints are linear. To simplify the computations, equation

(1.9) is transformed from constrained problem into an unconstrained problem by using a

Lagrangian problem as follows

L(w, b, α) =
1

2
∥w∥2 −

N∑
i=1

αi[yi(w · xi + b)− 1] (1.11)

where (α1, . . . , αN) ≥ 0 are the Lagrange multipliers. To transform the optimization problem

from primal form into dual form, Karush-Kuhn-Tucker (KKT) conditions (Kuhn and Tucker,

2014) are applied into in (1.11), the minimization over w is

w =
N∑
i=1

αiyixi (1.12)

and minimization over b is

N∑
i=1

αiyi = 0 (1.13)
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According to KKT conditions of optimization, αi, the following condition should be satisfied

αi(yi(w · x+ b)− 1) = 0, i = 1, 2, . . . , N (1.14)

By substituting equation (1.12) in equation (1.11) and based on (1.13), the optimization

problem in equation (1.11) can be transformed into a dual form by maximizing the following

objective function with respect to αi

Q(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi · xj, (1.15)

subject to

N∑
i=1

αiyi = 0

αi ≥ 0, i = 1, 2, . . . , N

Instance xi corresponds to non-zero Lagrange multipliers that satisfy yi(w · xi + b) = 1 and

are called support vectors. Hence, the decision function can be written as

f(x∗) = sign

(
n∑

j=1

αjyjxj · x∗ + b

)
(1.16)

where xj, j = 1, 2, . . . , n are the support vectors and n is the cardinality of support vectors

set, and the sign function takes the values −1, 0 or 1 if the variable is (< 0,= 0 or > 0)

respectively.

Because not all data can be linearly separated by a hyperplane, Cortes and Vapnik (1995)

proposed modifications in the optimization problem to obtain the hyperplane that separate

the data in this case. A soft margin classifier is used to relax the constraints in (1.10), in

which some instances are allowed to be violated under a control (regularized) parameter.
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Thus, by introducing slack variables ξi ≥ 0, i = 1, 2, . . . , N , the optimization problem can

be rewritten as

min
w,b,ξi

1

2
∥w∥2 + C

N∑
i=1

ξi, (1.17)

subject to

yi(w · xi + b) ≥ 1− ξi, i = 1, 2, . . . , N (1.18)

ξi ≥ 0, i = 1, 2, . . . , N (1.19)

where ξi > 0 hold for misclassified instances, hence the penalty term
∑N

i=1 ξi can compute

the total misclassifications of the model which is called training error (or empirical error),

and C is the penalty parameter of soft margin to control the balance between the empirical

error and margin. Thus, the goal of the objective function (1.17) is maximizing the margin

and minimizing the training error. As in the separable case, the quadratic optimization

problem (1.17) can be solved by Lagrangian problem as follows.

L(w, b, α, ν, ξ) =
1

2
∥w∥2 −

N∑
i=1

αi[yi(w · xi + b)− 1 + ξi] + C
N∑
i=1

ξi −
N∑
i=1

νiξi (1.20)

where αi ≥ 0 and νi ≥ 0 are the Lagrange multipliers in which (1.20) maximizes with respect

to αi and νi, and minimizes with respect to w, b and ξi. Now, minimization over w and b

provides the same conditions in (1.12) and (1.13), and the minimization over ξi yields the

new condition

αi + νi = C (1.21)
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Hence, according to νi ≥ 0, we have

0 ≤ αi ≤ C (1.22)

Thus, the dual form of problem (1.20) is

max
αi

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi · xj (1.23)

subject to

N∑
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , N

where αi are Lagrange multipliers. Now, there are three types of data points. Instances

that correspond to αi = 0 are ignored from the decision function. When 0 < αi < C, the

corresponding instances are support vectors located on the margins, with zero slack variables.

When αi = C, support vectors are located inside the side that could be misclassified.

For a non-linear hyperplane in which data can not be separated linearly, a non-linear

mapping of data is carried out from the input space Rd into a high dimensional feature space

F (Φ : Rd → F) to obtain the optimal hyperplane linearly in a higher feature space, which

could be infinite space. SVM utilizes the kernel trick (Cortes and Vapnik, 1995) to obtain

the similarity between two instances by computing the dot product using kernel functions

instead of mapping the data explicitly. The kernel trick uses kernel functions to obtain the

similarity of the transformed data implicitly. A symmetric kernel function K(x1,x2) can be

written as dot product expression K(x1,x2) = ϕ(x1) · ϕ(x2) if the kernel function K(x1,x2)

is positive semi-definite (Mercer’s theorem). Thus, kernel function can be used without

obtaining the explicit form of ϕ. The optimization problem in the dual form is modified as
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follows

max
αi

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi,xj) (1.24)

subject to

N∑
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , N

The decision function will be as follows

f(x∗) = sign

(
n∑

j=1

αjyjK(x∗,xj) + b

)
(1.25)

where K(, ) is kernel function. The most popular kernels are Gaussian radial basis function

K(xi,xj) = exp
(
−γ∥xi − xj∥2

)
, where γ = 1

2σ2 , and Polynomial function K(xi,xj) =

(xi · xj + 1)d, where d is a polynomial degree. Kernel with a linear function leads to the

linear case.

SVM for classification is originally created for binary classification problems. However,

the class label in most real datasets is a multiclass. Many approaches to solve multi-

class problems from binary problems have been developed. The most common methods for

SVM are one-against-rest and one-against-one. For a dataset where class label includes C

classes, one-against-rest (Vapnik, 1999) is based on making C binary classifiers in which

each classifier is trained to discriminate one class from C − 1 rest classes. Instances are

classified by obtaining the margin of hyperplane, then the predicted class is the one with

the largest margin. On the other hand, one-against-one method (Knerr et al., 1990) is based

on obtaining all possible binary problems of SVM classifiers. For C class labels, C(C−1)/2

binary classifiers are obtained. By voting approach, the method determines the class that
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occurs the most.

Solving the QP problem for SVM optimization problem requires O(N3) time complexity

and O(N2) space complexity, where N is the size of the training set (Platt, 1999). Hence,

for massive data, applying SVM requires complex computations that require expensive time

and space. To accelerate training SVM, many techniques have been developed to accelerate

the high computations. Methods like chunking work directly on the optimization problem.

Chunking (Cortes and Vapnik, 1995) is one of the most popular solutions to train SVM

classifiers by solving a set of small optimization problems. Decomposition (Osuna et al.,

1997a) is another well-known solution to solve QP problems by partitioning the problem

into smaller sub-problems. Then, smaller sub-problems are solved analytically. Sequential

Minimal Optimization (SMO) is the most common solution (Platt, 1998). The idea is similar

to decomposition by solving QP sub-problems analytically but of size two. Experiments

illustrate that SMO can train SVM faster than chunking. The other methods to accelerate

SVM depend on selecting the most important vectors to train the SVM classifier under IS

approaches. The following section covers some methods of training set selection for SVM in

detail.

1.4.1 Training Set Selection for SVM

To train SVM for classification, only support vectors that are setting on margins are used;

others are kept in memory needlessly. To reduce overload storage and computational time,

approaches that construct refined sets from massive training sets for SVM have been de-

veloped. Some methods rely on selecting support vectors candidates that are then used

to construct reduced training sets. These approaches have been developed based on clus-

tering or analyzing the geometry of data. This method can easily discard useless vectors

from training sets and can be generalized to multi-class data (Lyhyaoui et al., 1999). Other

methods are associated with clustering to construct prototypes, then the prototypes are

used as a reduced training set.
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De Almeida et al. (2000) proposed IS method that applied k-means clustering to con-

struct the reduced set. The entire dataset is clustered into k clusters. Then, for clusters

with the same class, only centers are added to the reduced set. In contrast, all instances

in clusters include different classes are added to reduced set. Koggalage and Halgamuge

(2004) suggested a simple method based on clustering that improves the proposed method

in De Almeida et al. (2000).

Songfeng et al. (2003) improved the reduced SVM (RSVM) (Lee and Mangasarian, 2001)

by using the idea of clustering training data. An unsupervised clustering algorithm (Li et al.,

2001) is implemented to each class separately. After obtaining centers of each class, these

centers are utilized as support vectors to solve QP problem.

Tran et al. (2003) used k-means to reduce the training set. The algorithm begins by

partitioning each class in training data into clusters using k-means, then centroids of each

cluster are combined and used as a reduced training set to train SVM. Wang and Xu (2004)

suggested a heuristic SVM (HSVM). This method begins by initializing a similarity threshold

and computing a similarity measure between every two instances. Thus, the instance with a

similarity that is larger than a threshold is removed. Then, remaining instances are grouped

into prespecified k groups. For each group, the closest one to the mean of the group and

other instances in that group are computed. Again, any instance with a similarity to the

center point that is larger than the threshold is removed. The remaining instances are used

as a reduced training set to train SVM.

In Cao and Boley (2006), an approximate SVM approach based on prototypes was intro-

duced. The idea relies on clustering data by kernel k-means, then extracting representatives

from clusters to be utilized as a reduced set. Training SVM on this reduced set is faster

than using the original dataset while still preserving accuracy.

Zeng et al. (2008) proposed a method called small enclosing ball SVM (SebSVM) to

reduce time computations of solving QP problem. Unlike the previous methods, it extracts

candidates in the feature space to avoid overload computations in the input space. Therefore,
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training data should be mapped into the feature space at the beginning. Then, for each

class, a ball with the smallest radius enclosing the training data is formed in the feature

space. For each ball, convex hull (CH) instances that are in boundary are determined. At

the end, the reduced training set involves these CH instances.

In Chau et al. (2013), the convex-concave hull idea is explored to reduce the training set

for SVM. The process begins by obtaining a CH for each class separately. For each edge of

CH, concave hulls are obtained based on computing the angle and number of KNN of each

vertices of each edge to finally form a convex-concave hull (CCH). Instances positioned in

the boundary of CCH are selected in the reduced training set.

K-means clustering is used in Shen et al. (2016) to reduce a training set. The entire

training data is clustered using k-means with a prespecified k. Clusters are categorized as

homogeneous clusters and heterogeneous clusters. Some of homogeneous ones are removed

by using a max-min cluster distance algorithm. Heterogeneous ones are subclustered to be

used along with non-removed homogeneous clusters. The distance density of each remaining

cluster is computed by using Fisher’s discriminant analysis (FDA) to construct a boundary

between two types of data: dense (instances positioned near the centroid of cluster) and

sparse ( instances positioned far from the centroid). Finally, dense vectors are removed, and

sparse ones form the refined set.

On the other hand, some IS methods do not rely on clustering. Zhang et al. (2008)

applied the KNN method to extract support vectors. It explored instances positioned on

a boundary that are more likely to be support vectors. The process begins by computing

KNN (linear case) or Euclidean distance in kernel space (non-linear case) for all instances

in the training set. For each instance, if at least one of its KNN is from different class, this

instance is supposed to be support vector.

Guo and Boukir (2015) proposed IS method which is based on the ensemble margin.

They improved their previous work (Guo et al., 2010; Guo and Boukir, 2013) by replacing

the classic bagging with random forests and small votes instance selection (SVIS) to work
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more effectively in big data settings. The margins of the entire training data are computed

in which the lower the value of instance’s margin, the more likely the instance is in decision

boundary. Then, the first K instances with smallest margins are selected, where K is a

prespecified parameter.

Recently, a novel IS method for SVM was proposed in Aslani and Seipel (2021). In

this method, border instances are determined based on one of the following cases. First,

an instance is retained if its class is identical to its neighbors, whereas its neighbors are

removed if the similarity index is at least two. An instance also is saved if its class and

its neighbors are non identical, but its nearest neighbors from other classes are near to it.

In this case, the nearest neighbors from other classes are retained. The last case, when an

instance and its neighbor have different classes, but nearest neighbors from other classes are

not near to it, nearest neighbors from other classes are retained, but the neighbors that are

near to the instance are removed.

1.5 Feature Reduction

Datasets with large number of features have grown rapidly with development of technology.

Dealing with raw data might lead to overfitting and poor performance of learning algorithms.

Dimensionality reduction becomes important to improve the performance of algorithms and

reduces the running time of algorithms. Feature selection and feature extraction approaches

are the most popular techniques of dimensionality reduction. Feature selection aims to select

the most relevant features. Feature extraction transforms that data onto low-dimensional

subspace that saves most relevant information. Feature selection preserves the nature of

the data, but some information can be lost when some features are discarded. Feature

extraction reduces the feature space without losing a lot of information; however, the new

features are not usually interpretable. In this dissertation, we focus on the feature reduction

that is specified for classification problems.
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Feature selection is usually classified into filters, wrappers, embedded, and hybrid meth-

ods. Filters methods extract the subset of features based on the performance measures.

wrappers extracts based on the performance of modeling algorithm. Hybrid techniques com-

bine filters and wrappers methods to improve the performance of the learning algorithm.

Embedded methods extract the subset features within the learning algorithm process. Some

feature selection methods determine the importance of features based on the ability of fea-

tures to maintain data similarity such as Relief (Robnik-Šikonja and Kononenko, 2003),

Laplacian score (He et al., 2005), trace ratio criterion (Nie et al., 2008), and Fisher score

(Duda et al., 2012). Some other feature selection methods use sparse regularization to

minimize the errors by making some feature coefficients to be too small (or zero), then cor-

responding features are removed. Least absolute shrinkage and selection operator (LASSO)

(Tibshirani, 1996) is one of the most popular ℓp-norm regularize method. Other methods are

based on statistical measures, such as T-scores (Davis and Sampson, 1986) and chi-square

scores (Liu and Setiono, 1995), in which the features with high scores are most important.

On the other hand, many studies have demonstrated feature extraction methods. Prin-

cipal components analysis (PCA) and linear discriminant analysis (LDA) are the most pop-

ular. Pearson (1901) introduced PCA; however, several variants have risen. They include

dual PCA (Ghodsi, 2006), which is based on singular-value decomposition (SVD) instead

of eigenvalue decomposition, and kernel PCA (Schölkopf et al., 1997), which is used for

nonlinear data. LDA or Fisher discriminate analysis (FDA) was proposed by Fisher (1936).

Kernel LDA (Mika et al., 1999) is one of variant of LDA that uses kernel function to work

in nonlinear data. More details of feature reduction methods that are used in this work are

presented.

1.5.1 Principal Components Analysis

Principal components analysis (PCA) is an unsupervised feature extraction method that

was proposed by Karl Pearson in 1901. PCA aims to transform the correlated features into
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uncorrelated features called principal components that represent data with the least loss of

information. PCA aims to preserve the variation of the data.

PCA extracts the first principal component that represents the highest variance of data.

The following component is orthogonal on the first one, and so forth. Consequently, the

new components are uncorrelated.

Consider a dataset with d features, x1,x2, . . . ,xd, principal components are defined by

the linear combination of all features as follows

x∗
1 = a11x1 + a12x2 + . . .+ a1dxd

x∗
2 = a21x1 + a22x2 + . . .+ a2dxd
...

x∗
d = ad1x1 + ad2x2 + . . .+ addxd

where a′s are principal components coefficients. The first linear combination (x∗
1) represents

the first principal component that maximizes the variance of x∗
1, subject to

a211 + a212 + . . .+ a21d = 1

The second principal component is defined by the second linear combination (x∗
2) that

maximizes the variance of (x∗
2), subject to

a221 + a222 + . . .+ a22d = 1

and (x∗
1) is orthogonal to (x∗

2). The remaining principal components are derived by the

same manner in which a2j1 + a2j2 + . . .+ a2jd = 1, j = 3, 4, . . . , d, and for i ̸= j, x∗
i and x∗

j are

orthogonal.

Principal components (x∗
j), j = 1, 2, . . . , d are extracted in which x∗

j is the eigenvector

of the sample covariance matrix Σ with the largest eigenvalue λj. To determine which of
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the most important principal components should be used, the components that explain the

large ratio of variance are selected. Also, scree plot can be used to identify the principal

components that can be used.

1.5.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a supervised feature extraction approach that aims

to extract lower dimensions of the original data. The general process of LDA goes through

three steps. First, for each class, the distance between the center of the class and instances

is computed. The second step is computing the distance between centers of all classes, called

between-class variance. Then, the lower dimension is obtained by minimizing the ratio of

within-class variance to between-class variance.

Consider a training dataset x1,x2, . . . ,xn ∈ Rd consisting of two classes C1 and C2, and

let a unit vector w ∈ Rd, the optimization problem to obtain the best w that discriminates

the two classes is

max
w

w⊤Sbw

w⊤Sww

where, Sb = (µ1 − µ2)(µ1 − µ2)
⊤ is the between-class scatter matrix, whereas within-class

scatter matrix is

Sw =
∑
xi∈C1

(xi − µ1)(xi − µ1)
⊤ +

∑
xi∈C2

(xi − µ2)(xi − µ2)
⊤

and µj =
1
Nj

∑
xi∈Cj

xi, j = 1, 2.

If Sw is non-singular, the solution is obtained by finding the largest eigenvector of S−1
w Sb,

then, the new data reduction is extracted that contains at most c− 1 features as follows

1. Compute Sw and Sb.

2. Solve the eigenvalue problem Sbv = λSww to obtain all non-zero eigenvectors W =
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[w1,w2, . . . ,wk], where k ≤ c− 1.

3. Obtain the projection coordinates.

1.5.3 Least Absolute Shrinkage and Selection Operator

Least absolute shrinkage and selection operator (LASSO) is a regression analysis approach

designed by Tibshirani (1996). It is a robust method that is used for regularization and

feature selection tasks. The main goal of LASSO is to reduce the prediction error by keeping

only the features correspond to non-zero coefficients. The process is penalizing coefficients of

features and shrinking some to zero. One tuning parameter of LASSO controls regularization

process.

Consider a response variable y ∈ RN and a matrix of predictor variables X ∈ RN×d+1,

to estimate LASSO parameters (β), the optimization problem is

min
β0,β∈Rd+1

∥y − β0 −Xβ∥22 + λ∥β∥1

where λ > 0 is a tuning parameter. The L1 penalty, λ∥β∥1, generates sparse solutions of

the previous optimization problem. Thus, the selected features are the ones that correspond

to non-zero coefficients.

When a response variable y ∈ {0, 1} is binary, logistic regression is commonly used.

Consider yi = I(hi = 0), i = 1, 2, . . . , N , the logistic regression can be written

log
P (H = 1|X = x)

P (H = 0|X = x)
= β0 +Xβ

The corresponding optimization problem is

min
β0,β∈Rd+1

−

{
1

N

N∑
i=1

yi(β0 + x⊤
i β)− log

(
1 + exp(β0 + x⊤

i β)
)}

+
λ

2

{
2α∥β∥1 + (1− α)∥β∥22

}
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where 0 ≤ α ≤ 1, α = 1 for LASSO.

When a response variable y has C classes in which y ∈ {1, 2, . . . , c}, logistic regression

is commonly used. Consider yi = I(hi = 1), i = 1, 2, . . . , N , the model is extended to a

multinomial model as

P (H = c|X = x) =
exp

(
β
(c)
0 + β(c)Tx

)
∑c

j=1 exp
(
β
(j)
0 + β(j)Tx

)
The corresponding optimization problem is

−

{
1

N

N∑
i=1

[
c∑

k=1

yi

(
β
(k)
0 + x⊤

i β
(k)
)
− log

c∑
j=1

exp
(
β
(j)
0 + x⊤

i β
(j)
)]}

+
λ

2

{
2α

d∑
l=1

∥βl∥q + (1− α)∥β∥2F

}

Where β is d× C matrix of coefficients.

1.5.4 Fisher Scores

Fisher scores (F-scores) is a statistical feature selection technique that computes the impor-

tance of each feature in the dataset. The discriminative power of each feature is measured.

F-scores measure how features can assign values that minimize the distance of instances

in the same class and maximize the distance of instances from different classes. Based on

F-scores, the features are ranked. The higher the F-scores, the more important the features

are.

To define the F-score of a feature, suppose a training dataset X ∈ RN×d with a class

variable of c categories, F-score of jth feature (xj) is defined as

FS(xj) =

∑c
k=1Nk(µj(k) − µj)

2∑c
k=1

∑Nk

i=1 (xij(k) − µij(k))2
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where Nk denotes the sample size of class k = 1, 2, . . . , c, µj is the mean of feature j, µj(k)

is the mean of feature j in class k, xij(k) is the sample i in feature j of the class k.

1.6 Organization of the Dissertation

This chapter has introduced instance selection (IS) and reviewed most common methods;

explored support vector machines (SVM); and training set selection methods to acceler-

ate SVM; discussed threshold clustering (TC); reviewed of feature selection (FS) methods.

The remaining of the dissertation is organized as follows. In Chapter 1.5, we discuss how

TC is used as IS for SVM. We propose a method to accelerate SVM. Experiments are

performed to compare the proposed method with other IS methods. We also derive a theo-

retical characteristic of our method. The development of our proposed method is considered

in Chapter 3. We offer two methods using feature extraction and feature selection meth-

ods to improve our method. Experiments are carried out to compare the performance of

our method under dimensionality reduction techniques. In Chapter 4, we review iterative

threshold instance selection (ITIS) and illustrate IS methods based on clustering. Then,

simulation study shows a comparison between ITIS and other IS methods. Additionally, it-

erative hybridized threshold clustering (IHTC) based on ITIS is compared with other hybrid

clustering methods. Chapter 5 reviews the entire work and explores future work.
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Chapter 2

Instance Selection with Threshold

Clustering for Support Vector

Machines

2.1 Introduction

Support vector machines (SVM) (Cortes and Vapnik, 1995; Vapnik, 1998) is a most popular

classification method. The main property of SVM classifier is its ability to predict a new

unseen instance based on small numbers of data points called support vectors; the remaining

instances are discarded. SVM has been shown to be an effective classification technique—

even in high dimensional settings—and has been implemented in many areas such as object

classification, pattern recognition, and disease diagnosis. For instance, the SVM classifier

provides effective results in classifying emails as spam or not from a given Gmail inbox (Singh

et al., 2018). However, training SVM requires significant computational time—a standard

implementation of SVM requires O(N3) runtime where N is the number of observations in

the training set—making it computationally infeasible to perform under large-to-massive

data settings (with respect to N).
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To reduce overload storage and computational time, instance selection (IS) methods

for SVM that construct reduced training sets have been developed. Some methods rely

on selecting support vector candidates that are then used to construct reduced training

sets. These approaches have been developed based on clustering such as SVM-KM method

(De Almeida et al., 2000) that is based on applying k-means on the training set, then for ho-

mogenous cluster only the centroid is added while for heterogenous one the entire datapoints

in that cluster are added. Yu et al. (2003) used hierarchical micro-clustering to extract the

candidate support vectors. Other approaches are based on analyzing the geometry of data,

(Abe and Inoue, 2001) used Mahalanobis distance to extract the datapoints that are in the

decision boundary. These methods can easily discard useless vectors from the training sets

and be generalized to multi-class data. However, these methods need large runtime and

memory usage. Zhang and King (2002) applied β-skeleton algorithm to obtain the valuable

datapoints. Some IS methods are based on constructing prototypes after clustering the

data, then prototypes are used as selected set. This type of method reduces data effectively

based on clustering method used for partitioning the data. However, traditional clustering

methods-such as fuzzy C-means and k-means are not efficient in big data settings. Deter-

mining the number of clusters k may lead to poor results if k is improperly selected. Also,

when the value of k in k-means is large, an algorithm to obtain the centroids may require

several iterations to converge, which requires significant runtime.

Threshold clustering (TC) (Higgins et al., 2016) is a recent clustering method that was

proposed originally for statistical blocking for massive data. The objective of TC is to

minimize the maximum distance between each of two instances within the same cluster

by only requiring the minimum number of instances t∗ in each cluster. For data size N

and threshold parameter t∗, the TC algorithm terminates in O(Nt∗ logN) times, which is

much smaller than other traditional clustering methods such as k-means when the number

of clusters is large; the time complexity for k-means is O(Nkmi), where k is the number of

clusters, m is number of attributes, and i is number of iterations. This property allows TC
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to work efficiently with massive data. Additionally, TC is designed to construct many small

clusters.

In this chapter, we exploit the efficiency of TC to propose an IS method for SVM

under massive data settings. Our proposed method, named support vector machines with

threshold clustering (SVMTC), is based on constructing prototypes—data points or pseudo-

data points that represent a group of units from original dataset. The process of SVMTC

is carried out as follows. TC is applied separately on a training set of each class, in which

each cluster consists at least t∗ instances. Then, prototypes for all clusters of each class are

constructed. Finally, SVM is trained on the prototypes. If the reduction is insufficient, TC

is iterated prior to fitting SVM.

We show that, via SVMTC, the maximum distance between kernel matrix in optimiza-

tion problem of SVM obtained by using the original data and approximate kernel matrix

after replacing each instance by its prototype can be bounded if prototypes are constructed

from TC. Then, using simulations and real data applications, we show that our proposed

method reduces the time of SVM training data while maintaining the performance. In big

data experiments, SVM may be impossible to be trained; however, SVMTC allows SVM to

be trained in a short time while maintaining its efficiency.

The rest of the chapter is organized as follows. In Section 2.2, we describe SVM, IS

methods, and TC as IS. A training set selection method by using TC is proposed in Section

2.3. Also, we provide theoretical framework and time complexity of the proposed method.

Simulation study and experiments are presented in Section 2.4. We present discussion about

the proposed method and the results in section 2.5.
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2.2 Preliminaries

2.2.1 Support Vector Machines

Support vector machines (SVM) (Cortes and Vapnik, 1995; Vapnik, 1998) is a common

supervised learning method that is used for classification. The SVM classifier can classify

unseen instances by first obtaining the optimal hyperplane among many potential hyper-

planes that splits the training data based on class label. The optimal hyperplane maximizes

the distance between the closest instances of each class. Based on class label, training data

can be separated by a hyperplane linearly or nonlinearly.

Consider anN d-dimensional training set (x1, y1), (x2, y2), . . . , (xN , yN), in which xi ∈ Rd

is an input vector, and yi ∈ {−1,+1} is an output variable. The goal of the support vector

classifier is to obtain the following decision hyperplane to predict a class of a new unseen

instance y given the input x.

f(x) : w · x+ b = 0 (2.1)

where w ∈ Rd is a weight vector orthogonal on the hyperplane and b ∈ R is a scalar

parameter. The training data is supposed to satisfy the following condition

y(w · x+ b) ≥ 1 (2.2)

The optimization problem in dual form of the objective function with respect to α is to

maximize

Q(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi · xj (2.3)

31



subject to

N∑
i=1

αiyi = 0

αi ≥ 0, i = 1, . . . , N

Instances xi that correspond to nonzero Lagrange multipliers that satisfy yi(w · xi + b) = 1

are called support vectors. Hence, the decision function can be written as follows

f(x∗) = sign

(
n∑

j=1

αjyjxj · x∗ + b

)
(2.4)

where xj are the support vectors and n is the cardinality of support vectors set.

For the nonseparable case, a soft margin classifier is used to relax the constraints in

which some instances are allowed to be violated. Thus, by introducing slack variables

ξi ≥ 0, i = 1, 2, . . . , N , the constraints of optimization problem (2.3) are modified as follows

N∑
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, . . . , N,

where αi are Lagrange multipliers and C is the penalty parameter of soft margin to control

the balance between the empirical error and margin.

For a nonlinear hyperplane in which the data cannot be separated linearly, a nonlinear

mapping of data is transformed from input space Rd into a high dimensional feature space

F to obtain the optimal hyperplane linearly in the feature space. The kernel trick (Cortes

and Vapnik, 1995) is utilized to obtain the similarity between two instances by computing

the dot product under a kernel function instead of mapping the data. The decision function
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is modified as follows

f(x∗) = sign

(
n∑

j=1

αjyjK(x∗,xj) + b

)
(2.5)

where K(, ) is the kernel function. The optimization problem in the dual form is as follows

max
αi

Q(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi,xj) (2.6)

Subject to

N∑
i=1

αiyi = 0 (2.7)

0 ≤ αi ≤ C, i = 1, . . . , N (2.8)

Solving the QP problem of the SVM optimization problem requires O(N3) time complexity

and O(N2) space complexity, where N is the number of training set.

2.2.2 Instance Selection Methods for Machine Learning

Data have been grown rapidly with development of technology, and methods to deal with

massive data have been developed. Instance selection (IS) is one of a preprocessing method

that is used to reduce the size of massive data by constructing a subset contains relevant

instances from a training set. IS reduces the execution time and memory of training data

when working with the reduced dataset. Hence, it makes state-of-the-art methods like SVM

is effective in massive data. Ideally, the performance of prediction of new instances based

on the SVM classifier, which is trained on a selected set, should be as accurate as if the

original data is used.

Some IS methods select instances directly from a training set. Others construct pseudo

instances that represent the training set. These methods are considered replacement ap-
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proaches because the selected instances do not belong directly to the dataset. Most replace-

ment approaches are based on clustering (Liu and Motoda, 2002; Spillmann et al., 2006).

The process begins by partitioning a dataset into clusters, then a prototype-centroid or

medoid of each cluster-is constructed. The selected datapoints are the computed prototypes

that represent the clusters.

Several methods for IS of SVM have been developed. Tran et al. (2003) and Yang et al.

(2003) cluster each class in training data by using k-means, then centroids of each cluster

are used as a reduced training set to train SVM. A prototype selection method based on

clustering (CLU) is proposed in Lumini and Nanni (2006). This method applies fuzzy C-

means to partition the templates into clusters, then centers of clusters are used as selected

prototypes. In Cao and Boley (2006), an approximate SVM approach based on prototypes is

proposed. The idea relies on clustering data, then constructing representatives from clusters

to be utilized as a reduced set. Training SVM on this reduced set is faster than using the

original dataset and preserves the accuracy. They argue that kernel k-means should be

used to get prototypes similar to original data, experimentally, principal direction divisive

partition (PDDP) (Boley, 1998) is used as approximation to kernel k-means because of its

speed. In addition, Li and Fang (2008) applied the same idea by using DBSCAN clustering.

This type of prototype selection method is simple and effective, however, using clus-

tering such as fuzzy C-means or k-means is not efficient, especially in big data settings.

Additionally, specifying the number of clusters k may lead to poor results if k is improper.

Also, when the value of k in k-means is large, the algorithm to obtain the centroids may

be converged after several iterations, which consumes time and space. In general, using an

effective clustering method for IS method can have some significant advantages, but current

methods for clustering require prohibitive computation to be applied under big-to-massive

data settings.
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2.3 Support Vector Machines with Threshold Cluster-

ing

Threshold clustering (TC) (Higgins et al., 2016) is a recently-developed clustering method

that is efficient in big data settings. In Luo et al. (2019), TC is used to propose a new

instance selection method called iterative threshold instance selection (ITIS). Then, ITIS is

used to create a novel clustering method for big data settings.

We propose a new instance selection (IS) method for SVM by using threshold clustering

(TC) which is named as support vector machines with threshold clustering (SVMTC). Using

TC as IS overcomes the limitation of using other clustering in selecting the number of clusters

as occurs in standard k-means and kernel k-means. In general, the proposed method is based

on constructing prototypes of TC from each class in a training dataset. TC can cluster big

data quickly and accurately. Thus, applying the prototypes constructed from TC in training

SVM can greatly accelerate the process while keeping classification accuracy as similar to

that of the original dataset. Also, TC is designed to form many small clusters of units,

making it ideal for IS.

Consider N d-dimensional training set T consists (x1, y1), (x2, y2), . . . , (xN , yN),xi ∈ Rd,

y = (y1, y2, . . . , yN) is a class label in which each element yi, (i = 1, 2, . . . , N) represents

only one class c∗j among j = 1, 2, . . . , C classes.

The process of support vector machines with threshold clustering (SVMTC) is as follows

1. (Clustering) Given threshold parameter t∗, cluster instances of the training set T in

each class c∗j , j = 1, 2, . . . , C, separately, by using TC.

2. (Create prototypes) For each class c∗j , compute centroids of all clusters, and add

them to the reduced set T
′
.

3. (Training SVM) Given T
′
from Step 2, the cost parameter, and the kernel function,

SVM is trained on T
′
.
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4. TC is iterated on the prototypes if data reduction after Step 1 is insufficient.

Several kernel functions can be used in training SVM. However, the most popular one

is Gaussian radial basis function (RBF) that works efficiently. SVMTC can train SVM

in a set that is reduced by factor at least (t∗)r in each class, where r ≥ 1 is the number

of implementations of Step 1 in SVMTC. The size of reduced set T
′
is approximated as

|T ′ | ≤
⌊

N
(t∗)r

⌋
, where ⌊ ⌋ is the floor function. The following example shows the results of

implementing the SVMTC procedure without repeating Step 1.

Example: We simulated a data of size 103 from a mixture distribution of weighted

combinations of two bivariate Gaussian distributions with µ1 = (−0.5, 1)⊤ and µ2 = (3, 4)⊤,

and Σ1 and Σ2 are 2 × 2 diagonal matrices where diagonal entries are (1, 0.5) and (2, 1),

respectively. The sizes of classes are 491 and 509 instances for class 1 and 2, respectively.

The reduced data after implementing SVMTC with t∗ = 4 is 189 with size 93 and 96 for

class 1 and 2, respectively. The original data in each class is approximately reduced by

factor 5 > t∗ = 4. Figure 2.1 visualizes Example 1 after training SVM on the original data

and on the reduced dataset.

Figure 2.1: Plot 1 shows the decision boundary after training SVM on the original data

and plot 2 the decision boundary of training SVM on reduced data (prototypes of threshold

clustering). Support vectors are surrounded by blue circles
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2.3.1 Theoretical Results of SVMTC

Evaluation of instance selection (IS) methods relies on minimizing the difference between

the performance of using original dataset and reduced set. Most IS methods are evaluated

by experimental study with lack of theory. However, Cao and Boley (2006) used the kernel

matrix, which is the part of optimization problem that contains the training data, to compare

between using the original data and the prototypes. It is proven that the difference between

the kernel matrix that is used to solve the optimization problem for exact SVM based on

the original data and kernel matrix for approximate SVM based on prototypes is minimized

if kernel k-means is used to obtain the representatives for approximate SVM.

In this research, we consider to bound the maximum difference problem. Under the

Gaussian radial basis kernel function, we prove that the maximum difference between ker-

nel matrices of SVM optimization based on original data and based on prototypes can be

bounded when threshold clustering (TC) is utilized to extract the prototypes. Equation 2.6

is rewritten as follows to facilitate the computations

max
α

Q(α) = α⊤1− 1

2
α⊤Y⊤KYα, (2.9)

where 1 is all-ones vector, K is the kernel matrix, also called Gram matrix in which Kij =

K(xi,xj) = ϕ(xi) · ϕ(xj), α = (α1, α2, . . . , αN), and Y is N ×N diagonal matrix in which

the diagonal entries are yi, i = 1, 2, . . . , N .

We argue that the maximum distance between the kernel matrix under the original

data K and the kernel matrix using the prototypes K̂ is bounded when the prototypes are

extracted from threshold clustering under the Gaussian radial basis kernel function. As

the objective for SVM (2.9) is a function of the kernel matrix K, this result suggests a

bound on the differences in support vectors when substituting the original data points with

prototypes. The following lemma assists to prove our argument.

Lemma 2. Suppose an N d-dimensional dataset, x1,x2, . . . ,xN . For any ϵ > 0, and under
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Gaussian radial basis kernel function, if there exists a clustering C such that each cluster

c ∈ C contains at least t∗ units and that

max
c∈C

max
ij∈c

∥xi − xj∥ ≤
√
2

4
σ

(
− log

(
1− ϵ2

2

)) 1
2

, (2.10)

then, threshold clustering with parameter t∗ produces a clustering such that

max
i

∥ϕ(xi)− ϕ(x̂i)∥ ≤ ϵ,

where x̂i is a prototype of the cluster that xi belongs to, and σ is the parameter of Gaussian

radial basis kernel function. The proof of Lemma 2 is in Appendix A.

Theorem 2. Suppose prototypes are x̂1, x̂2, . . . , x̂N extracted from a threshold clustering,

and suppose there is a clustering C such that each cluster c ∈ C contains at least t∗ units

and the clustering satisfies (2.10). Then, under the Gaussian radial basis kernel function,

the maximum distance between K and K̂ is bounded by h(ϵ) = 2ϵ
(
1 + 1

2
ϵ
)
:

∥K − K̂∥max ≤ 2ϵ

(
1 +

1

2
ϵ

)
,

if the prototypes are extracted from threshold clustering.

Proof. Under the Gaussian radial basis kernel function, K(xi,xj) = exp
(
− 1

2σ2∥xi − xj∥2
)
,

we have ∥ϕ(xi)∥ =
√
ϕ(xi) · ϕ(xi) =

√
K(xi,xi) = 1. Also, ∥K − K̂∥max can be written as
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max
ij

|Kij − K̂ij|. Then, |Kij − K̂ij| is simplified as follows

|Kij − K̂ij| = |ϕ(xi) · ϕ(xj)− ϕ(x̂i).ϕ(x̂j)|

= |ϕ(xi) · ϕ(xj)− ϕ(x̂i) · ϕ(xj) + ϕ(x̂i) · ϕ(xj)− ϕ(x̂i) · ϕ(x̂j)|

= |ϕ(xj) · (ϕ(xi)− ϕ(x̂i)) + ϕ(x̂i) · (ϕ(xj)− ϕ(x̂j))|

≤ |ϕ(xj).(ϕ(xi)− ϕ(x̂i))|+ |ϕ(x̂i) · (ϕ(xj)− ϕ(x̂j))|

≤ ∥ϕ(xj)∥∥ϕ(xi)− ϕ(x̂i)∥+ ∥ϕ(x̂i)∥∥ϕ(xj)− ϕ(x̂j)∥

≤ ∥ϕ(xj)∥∥ϕ(xi)− ϕ(x̂i)∥+ ∥ϕ(xi) + ϕ(x̂i)− ϕ(xi)∥∥ϕ(xj)− ϕ(x̂j)∥

≤ ∥ϕ(xj)∥∥ϕ(xi)− ϕ(x̂i)∥+ ∥ϕ(xi)∥∥ϕ(xj)− ϕ(x̂j)∥

+ ∥ϕ(x̂i)− ϕ(xi)∥∥ϕ(xj)− ϕ(x̂j)∥

= ∥ϕ(xi)− ϕ(x̂i)∥+ ∥ϕ(xj)− ϕ(x̂j)∥+ ∥ϕ(x̂i)− ϕ(xi)∥∥ϕ(xj)− ϕ(x̂j)∥

Now, we find the maximum, then apply Lemma 2 as follows

max
ij

∥ϕ(xi)− ϕ(x̂i)∥+max
ij

∥ϕ(xj)− ϕ(x̂j)∥+max
ij

∥ϕ(x̂i)− ϕ(xi)∥∥ϕ(xj)− ϕ(x̂j)∥ ≤ 2ϵ+ ϵ2

Hence, the maximum distance between the kernel matrix used for training SVM under

original data and the kernel matrix under prototypes is bounded when the prototypes are

extracted from threshold clustering under Gaussian radial basis kernel function.

2.3.2 Time Complexity of SVMTC

We obtain time complexity of our proposed IS method to compare with the time complexity

of training SVM by using the original training set. Time complexity of the SVMTC method

is computed as follows. The time complexity of TC with r repetitions is O(Nt∗r logN),
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where N is the training set size, t∗ is the least number of instances in each cluster. The

approximate complexity of SVM with the reduced dataset T
′
constructed from step 2 of

SVMTC method is O ((N ′)3), where N ′ is size of T
′
which is bounded as N

′ ≤
⌊

N
(t∗)r

⌋
.

Hence, the total time complexity of SVMTC method is as follows

O
(
Nt∗r logN + (N ′)3

)
where N

′
is the number of clusters. This is smaller than the time complexity of the regular

SVM, O(N3). When N
′ ≪ N , the time complexity of SVMTC is much smaller than the

time complexity of SVM by training the entire dataset.

2.4 Experimental Study

We evaluate SVMTC on real-world datasets in the UCI Machine Learning database (Merz,

1998) and on benchmark datasets. We compare our method to SVM-KM by clustering the

entire training set by k-means. Then, centroids of one-class clusters are combined with data

points of heterogenous clusters to form the reduced dataset. Also, we compare to CLU under

k-means in which the reduced dataset is the prototype obtained from k-means clustering.

Comparison between the proposed method and the other methods is carried out by several

measurements. First, runtime, which is divided into two parts. One part computes the

time (seconds) of reducing the data under IS methods and the other computes the time of

training SVM. Memory space also is split into two parts. One is to compute the capacity

(megabytes) of reducing the training set and the other is for the capacity of data training.

Additionally, testing accuracy is utilized for comparisons. The accuracy is simply defined

as proportion of correct predicted classes of a class label in a test set to all predictions.

Finally, the reduction rate is used to obtain how much the IS method can reduce the data.

The higher the value of reduction rate and testing classification, the more preferable the

instance selection method. The superior IS method is the one that uses less runtime and
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memory usage to reduce the data.

For an imbalanced dataset, it is more accurate to compare between methods using F1.

Recall and precision measures are required to obtain F1. Recall is defined as proportion of

correct classification of positive class to total of correct classification of positive class and

incorrect classification of negative class. Precision is a proportion of correct classification of

positive class to total of correct classification of positive class and incorrect classification of

positive class. Hence, F1 can be computed as

F1 = 2× precision× recall

precision + recall
.

The higher the value of F1, the more accurate classification.

All algorithms are implemented in the R programming language. The e1071 package

(Meyer et al., 2020) is used to perform SVM by using svm function which implements the

normal SMO algorithm. The e1071 package interfaces with libsvm in C++. The libsvm

supports the multiclass problems by using one-against-one approach. For all experiments,

the Gaussian radial basis function is used, K(xi,xj) = exp (−γ∥xi − xj∥2), where γ =

1/(2σ2). Threshold clustering is executed by using sc clustering function in scclust

package (Savje et al., 2018). Some important functions we made are shown in Appendix

C. Some experiments are implemented on Intel(R) Core(TM) i7-7500 CPU at 2.7 GHz

processor. For big data simulation, experiments are applied in Intel(R) Core(TM) i7-7700

CPU at 3.6 GHz processor.

2.4.1 Experimental Datasets

Datasets used in the experiments are described in detail:

• Simulated data is a two-dimensional data with binary-class variable. The training

set is sampled from a mixture distribution of weighted combinations of two bivariate
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Gaussian distributions with pdf as follows

f(x) = 0.5p(x|µ1,Σ1) + 0.5p(x|µ2,Σ2) (2.11)

for j = 1, 2, p(x|µj,Σj) is the pdf of Gaussian distribution with parameters µ1 =

(−0.5, 1)⊤, µ2 = (2.5, 4)⊤, Σ1 and Σ2 are 2 × 2 diagonal matrices with diagonal

entries (1, 0.5) and (2, 1), respectively. The category of the class variable is labeled

as 0, if the data point is sampled from p(x|µ1,Σ1) in equation 2.11, otherwise, it is

1. The test set is sampled in the same way as the training dataset. The sizes of the

training sets varied between 5× 104 and 106, while the test set is 5× 104.

• Checkerboard is two-dimensional 4× 4 checkerboard dataset and consists of 50, 000

data points, two attributes and one class variable, see Figure 2.2.

• Covertype dataset has 580, 012 instances, and 55 attributes. The class variable has

seven categories which are the types of forest cover. The dataset is preprocessed so

that the class variable becomes binary (Baker et al., 2019).

• Credit Card dataset has 30, 000 instances, and 24 attributes. The class label is to

determine if a customer uses a default payment or not.

• HTRU2 dataset has 17, 898 instances, and 9 attributes. The class label has two

categories; positive and negative.

• Magic dataset has 19, 020 instances, and 11 attributes. The class label has two

categories; gamma (signal) and hadron (background).

• Mnist handwritten (0-9) digits dataset contains 70, 000 gray scale images in which

each image is formed of 28 × 28 pixels of handwritten digits, totaling 784 attributes

besides the class label, which takes values 0, 1, . . . , 9. To facilitate the training process,

Cao and Boley (2006) transformed the class variable into two classes in which digits
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(1, 2, 3, 4, 5) belong to class 1, and digits (0, 6, 7, 8, 9) are transformed into class −1. In

the experiment, we implement our method in binary and multi-class MNIST dataset.

The original MNIST with 10 classes and the prototypes obtained from threshold clus-

tering with t∗ = 3 are shown in Figure 2.3.

• Shuttle dataset has 57, 999 instances, and 9 attributes. The class label has seven

categories; Rad Flow, Fpv Close, Fpv Open, High, Bypass, Bpv Close, and Bpv Open.

• Skin dataset has 245, 057 instances, and 4 attributes. The class label has two cat-

egories; skin and non-skin. All datasets used in the experiments are summarized in

Table 2.1.

Figure 2.2: A two-dimensional 4× 4 Checkerboard dataset: Plot 1 is the original dataset.
Plot 2 is prototypes obtained from step 2 in SVMTC method.
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Figure 2.3: Plot 1 illustrates 10 labels 0 − 9 in 10 images from original MNIST dataset.

Plot 2 shows the images of labels 0−9 from prototypes of threshold clustering extracted from

the original MNIST dataset. For each label, the original data point in plot 1 contributes in

making the corresponding prototype in Plot 2.

Dataset Instances Features Classes Reference

Covertype-7 581,012 55 7 Blackard and Dean (1999)
CreditCard 30,000 24 2 Yeh and Lien (2009)
HTRU2 17,898 9 2 Lyon et al. (2015)
Magic 19,020 11 2 Bock et al. (2004)
Mnist 70,000 785 10 LeCun et al. (1998)
Shuttle 58,000 9 7 Michie et al. (1994)
Skin 245,057 4 2 Bhatt and Dhall (2010)

Table 2.1: Datasets Description

2.4.2 Experimental Setup

To make unbiased comparison between instance selection methods, a stratified 10-fold cross-

validation method is used. In this method, a dataset is split into 10 folds, then for 10 times,

one fold is used for test set, and the remaining sets are utilized as a training set. This full

process is repeated 10 times to decrease the impact of randomization of splitting datasets.

Based on a class label, stratified splitting contributes to sampling from each class propor-

tionally. The final results of the evaluation measures are averaged over both folds and

repetitions, which is 100 in most of our experiments.
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We evaluate the performance of SVMTC by comparing it with the performance of apply-

ing the original data on SVM when data scales up. Covertype dataset is used with training

data sizes (50, 100, . . . , 500) thousands. With scaling the data, the accuracy and training

time are examined see Figure 2.4.

Figure 2.4: Scaling performance of the proposed method SVMTC and using the entire
data (SMO) on Covertype dataset with sizes from 50, 000 to 500, 000 varied on the interval
50, 000. Plot 1 illustrates the comparison of runtime of SVMTC and of using the original
data in seconds. Plot 2 shows the comparison of classification accuracy

In terms of scaling, Figure 2.4 compares the performance of our proposed method

SVMTC and SVM applied on raw data without IS (SMO). Figure 2.4 illustrates that clas-

sification accuracy by SVMTC fluctuates with training size increases. However, comparing

with SMO, it works effectively in terms of classification accuracy and training time, espe-

cially when data size is greater than 400, 000. Also, training time under SVMTC is linearly

increased. Under SMO, training time grows rapidly.

Big Data Simulation

To show the efficiency of SVMTC in a big data, we compare SVMTC with a well-known

prototypes selection method that applies k-means to obtain the prototypes (CLU). We sim-

ulated data of sizes 106, 107, and 108 from a mixture distribution of weighted combinations
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of two bivariate Gaussian distributions with parameters µ1 = (−0.5, 1)⊤, µ2 = (2.5, 4)⊤, Σ1

and Σ2 are 2×2 diagonal matrices with diagonal entries (1, 0.5) and (2, 1), respectively. We

also simulated data of sizes 106 and 107 from a mixture distribution of weighted combinations

of two 5-dimensional Gaussian distributions with parameters µ1 = (−0.5, 1, 1.5, 1.7, 1.9)⊤,

µ2 = (1.8, 2.1, 2.5, 2.8, 3)⊤, Σ1 and Σ2 are 5 × 5 diagonal matrices with diagonal entries

(3, 2, 2, 1, 1) and (1, 3, 2, 1, 2), respectively.

For 2-dimensional and 5-dimensional simulated data, when training size is 106, we picked

t∗ = 3. To obtain sufficient reduction we iterate TC twice; the second iteration is done by

clustering the prototypes obtained from the first iteration, while for k-means, k = 50, 000 is

chosen to balance with number of clusters constructed from TC. With scaling the training

size up, some parameters are scaled up little to obtain an adequate reduced size for training

SVM. When sample size is 107, t∗ = 5 and r = 2 are chosen for SVMTC, and k = 100, 000

for k-means. For sample size 107, we tried t∗ = 7 and r = 2 for SVMTC, and k = 50, 000

for k-means. After training SVM on reduced datasets, we test the accuracy on simulated

test set of size 104 that is sampled by the same way as training set for all experiments.

Table 2.2 and Table 2.3 illustrate the results of comparisons. When training set size is

108, it is impossible to implement k-means because of memory space limitation. In contrast,

our method spends less than 20 minutes to reduce data and less than 10 minutes for training

SVM on this reduced data with a high accuracy while training SVM on the original data

could takes days or it could be sometimes impossible. Results in Table 2.2 and Table 2.3 show

that our proposed method SVMTC outperforms k-means in performing high accuracy in

quite short clustering and training time. It could be impossible to train SVM in the original

data when data is 108, however, SVMTC allows training SVM while keeping classification

accuracy high.

Results of SVMTC on the simulated data size 107 with t∗ = 2 and varying the number

of repetitions r are shown in Figure B.3 and Figure B.4 in Appendix B.
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Feature Size 2
t∗ 3 5 7 6 8

Measurement Method 106 107 107 108 108

Pre Time k-means 402.511 11,831.439 12,123.843 - -
SVMTC 5.653 51.322 63.200 751.969 782.028

Train Time k-means 57.226 229.087 66.008 - -
SVMTC 18.967 376.5780 80.818 15,427.06 4,106.26

Pre Mem k-means 345.87 2,322.96 2,907.345 - -
SVMTC 210.845 1,736.145 1,747.245 18,293.67 18,315.68

Train Mem k-means 87.03 192.315 93.580 - -
SVMTC 62.115 186.7550 96.965 1,434.405 772.200

SV k-means 3,868.25 7,698.5 4,086.7 - -
SVMTC 2,602.05 7,728.60 4,188.45 51,667.65 30,301.60

RR k-means 90.00 98.00 99.00 - -
SVMTC 93.29 97.94 98.90 98.57 99.17

Accuracy k-means 98.490 98.504 98.499 - -
SVMTC 98.500 98.502 98.505 98.500 98.478

Table 2.2: Comparisons between SVMTC and k-means in big simulated datasets with two
features. RR indicates reduction rate of a dataset; pre is for preprocessing (clustering); time
and mem indicate runtime and memory usage, respectively.

Parameters Analysis

Threshold clustering (TC) is based on only one threshold parameter t∗. Choosing a value of

t∗ for TC in our proposed method SVMTC affects the results remarkably. Figures 2.5 and 2.6

illustrate the performance of SVMTC with parameter change t∗. The runtime and memory

usage of obtaining the prototypes are approximately constant when t∗ increases; time and

memory for training SVM in the reduced set increases slightly. Although classification

accuracy reduces with increasing t∗, it is still high enough to be used. Selecting a small

value of t∗ for SVMTC provides accurate results approximately equals to training SVM

on the original dataset. The results may not be affected greatly when training set size is

massive.
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Figure 2.5: Runtime, memory usage, reduction rate, and number of support vectors of
SVMTC and SMO in 4× 4 checkerboard dataset of size 50,000

Figure 2.6: Classification accuracy of SVMTC and SMO in two-dimensional 4×4 checker-
board dataset of size 50,000 based on changing t∗
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Feature Size 5
t∗ 3 5 7

Measurement Method 106 107 107

Pre Time k-means 1,401.903 44,857.904 22,444.860
SVMTC 23.870 337.198 408.525

Train Time k-means 521.427 1,659.400 538.838
SVMTC 172.279 1,016.635 237.642

Pre Mem k-means 461.560 3,521.850 3,284.200
SVMTC 272.770 2807.240 2,802.975

Train Mem k-means 167.150 392.360 194.895
SVMTC 94.840 311.050 127.695

SV k-means 27,702.9 55,582.500 29,500.9
SVMTC 16,555.1 43,491.250 19,645.8

RR k-means 90.00 98.00 99.00
SVMTC 93.92 98.35 99.29

Accuracy k-means 89.183 89.097 89.095
SVMTC 89.166 89.106 89.104

Table 2.3: Comparisons between SVMTC and k-means in big simulated datasets with five
features. RR indicates reduction rate of a dataset; pre is for preprocessing (clustering); time
and mem indicate runtime and memory usage, respectively.

2.4.3 Experimental Results and Analysis

The results of applying our proposed method, SVMTC on simulated and real datasets are

discussed in this section. Based on Tables 2.4 and 2.5, runtime of reducing a dataset by

using SVMTC and training is rapid compared to other methods. In addition, SVMTC uses

slight memory storage for reducing and training a dataset, see Tables 2.6 and 2.7. The

instance selection algorithm for SVM that uses few support vectors and high reduction is

superior. In Tables 2.8 and 2.9, SVMTC uses less support vectors in all datasets than

the other methods; some methods outperform SVMTC in reducing a data. Classification

accuracy of predicting new instances for different datasets is also shown in Tables 2.8 and

2.9. The accuracy of our proposed method SVMTC is higher than other methods in most

datasets, and is almost identical to the accuracy of using the original dataset. We compute

recall, precision, and F1 measures for imbalanced datasets HTRU2, magic, and skin. F1

results under SMO and SVMTC are shown in Figure 2.7. Results of applying SVMTC on
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the real datasets with varying values of t∗ and r = 1 are shown in Figure B.1 and Figure

B.2 in Appendix B. In general, SVMTC accelerates training SVM without sacrificing the

performance. Also, SVMTC outperforms other instance selection methods in term of accu-

racy, time and memory.

Dataset Time Credit Card HTRU2 Magic Mnist Shuttle Skin

SVMTC Pre 0.3788 0.058 0.103 754.90 0.4392 0.299
Train 32.6698 0.491 2.783 157.56 2.5132 1.541

k-means Pre 9.9096 0.5542 1.9526 981.16 - 19.750
Train 72.3584 0.1726 3.9172 214.06 - 1.348

SVM-KM Pre 13.1386 2.726 2.031 2,139.80 83.8998 44.875
Train 143.2354 0.860 15.535 355.76 0.5478 1.940

SMO Pre - - - - - -
Train 294.9776 3.321 23.713 2,454.18 9.8914 44.256

Table 2.4: Execution time for preprocessing (pre) and training (Train) of data constructed
from algorithms for different real datasets. Runtime of SVMTC is less than the time of
other methods in most datasets.

Dataset Time Checker50K Checker100K Sim50K Sim100K Sim500K Sim1M

SVMTC Pre 0.1200 0.2638 0.0918 0.2042 1.9710 5.6530
Train 1.0948 2.2698 0.3786 0.9578 24.1428 18.9760

k-means Pre 1.7066 6.5016 2.2058 6.6072 181.4016 402.5110
Train 1.275 4.0792 0.7810 1.9098 73.1770 57.2260

SVM-KM Pre 3.4244 13.919 5.0202 13.7784 334.9844 823.0390
Train 1.2298 4.1570 2.5608 8.4420 304.0714 988.8140

SMO Pre - - - - - -
Train 20.1414 68.1524 10.4996 62.1834 2,584.2988 -

Table 2.5: Execution time for preprocessing (pre) and training (Train) of data constructed
from algorithms for simulated datasets of different sizes. Runtime of SVMTC is less than
the time of other methods in most datasets.
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Dataset Memory Credit Card HTRU2 Magic Mnist Shuttle skin

SVMTC Pre 30.778 4.940 4.314 2,693.80 24.979 43.39
Train 44.212 18.299 10.677 1,676.90 40.064 23.31

k-means Pre 124.936 10.311 28.688 2,087.40 - 423.28
Train 54.534 5.194 11.98 1,736.20 - 23.16

SVM-KM Pre 1,821.518 913.663 277.994 90,494.50 847.413 2,556.11
Train 77.643 17.991 18.564 2,123.10 10.0580 23.77

SMO Pre - - - - - -
Train 109.235 42.229 23.106 6,891.90 97.787 198.74

Table 2.6: Memory usage for preprocessing (pre) and training (Train) of data constructed
from algorithms for different real datasets. Memory usage of SVMTC is less than the time
of other methods in most datasets.

Dataset Memory Checker50K Checker100K Sim50K Sim100K Sim500K Sim1M

SVMTC Pre 6.3170 13.7940 7.806 17.061 106.404 210.845
Train 1.7000 3.3340 6.798 12.166 60.197 62.115

k-means Pre 25.3030 49.6040 28.872 47.985 274.846 345.87
Train 1.5690 6.224 10.105 17.242 84.395 87.03

SVM-KM Pre 647.1570 1,626.89 1,098.936 1,691.084 9,207.345 11,500.89
Train 1.6140 5,2770 10.388 18.663 97.515 140.315

SMO Pre - - - - - -
Train 18.3460 36.7510 45.253 71.974 366.279 -

Table 2.7: Memory usage for preprocessing (pre) and training (Train) of data constructed
from algorithms for simulated datasets of different sizes. Memory usage of SVMTC is less
than the time of other methods in most datasets.
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Dataset Credit Card HTRU2 Magic Mnist Shuttle skin

SVMTC SV 8,517.67 537.09 2,766.88 3,180 582.32 618.63
RR 58.7164 58.409 58.79 76.99 58.14 90.10

k-means SV 11,847.15 513.38 3,651 4,125 - 581.9
RR 48.15 86.34 59.11 77.00 - 90.93

SVM-KM SV 15,032.99 909.61 5,963.82 5,436 527.53 802.51
RR 29.7763 58.793 27.06 72.73 89.35 90.85

SMO SV 18,776.02 1,115.99 6,508.18 12,720 851.90 1,718.64
RR - - - - - -

Table 2.8: Number of support vectors that are used (SV) and the reduction rate of instance
selection methods (RR) for different real datasets.

Dataset Checker50K Checker100K Sim50K Sim100K Sim500K Sim1M

SVMTC SV 4,046.30 5,594.60 400.74 591.58 2,726.25 2,602.05
RR 81.66 85.79 81.65 85.80 85.80 93.29

k-means SV 4,305.22 7,173.76 527.53 834.06 3,831.77 3,868.25
RR 80.00 80.00 76.00 80.00 80.00 90.00

SVM-KM SV 5,125.53 8,303.75 1,808.67 3,576.77 17,538.53 35,325.50
RR 82.93 82.15 80.50 79.00 78.99 83.24

SMO SV 14,026.87 23,191.42 1,924.77 3,753.96 18,345.07 -
RR - - - - - -

Table 2.9: Number of support vectors that are used (SV) and the reduction rate of instance
selection methods (RR) for simulated datasets.

52



Dataset Credit Card HTRU2 Magic Mnist Shuttle skin

SVMTC 79.77 97.96 86.25 98.47 99.71 99.65
k-means 80.10 96.92 82.39 98.49 - 99.53
SVM-KM 80.13 97.95 86.31 98.48 99.19 99.59
SMO 80.37 97.98 87.25 98.76 99.75 99.86

Table 2.10: Prediction accuracy of instance selection methods for different real datasets.
Accuracy of SVMTC is higher than the accuracy of other methods in most datasets.

Dataset Checker50K Checker100K Sim50K Sim100K Sim500K Sim1M

SVMTC 95.83 96.52 98.48 98.51 98.50 98.50
k-means 95.11 96.53 98.47 98.50 98.50 98.49
SVM-KM 90.81 94.46 98.47 98.49 98.50 98.50
SMO 97.60 98.07 98.47 98.50 98.50 -

Table 2.11: Prediction accuracy of instance selection methods for simulated datasets. Ac-
curacy of SVMTC is higher than the accuracy of other methods in most datasets.
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Figure 2.7: F1 for imbalanced datasets under SMO and SVMTC algorithms.
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2.5 Discussion

Many instance selection (IS) methods for support vector machines (SVM) have been devel-

oped; however, most methods decelerate when training set size is very large. Specifically,

approaches based on clustering typically utilize traditional clustering methods which are

not effective in big data settings. Recently, threshold clustering (TC) has been discovered

for clustering in which only the minimum number of instances in a cluster is assigned. The

objective of TC is to form clusters where maximum within-cluster distance is minimized.

Two main characteristics distinguish TC from other traditional clustering methods. First,

implementing TC reduces runtime and memory usage, especially in a massive dataset. Sec-

ond, TC is designed to form many clusters in which each cluster contains few instances

which makes it ideal for IS.

In this chapter, an IS method using TC is proposed for SVM. The method, support

vector machines with threshold clustering (SVMTC), is based on constructing prototypes

from TC, based on the parameter t∗, for each class in training set. Then, prototypes are

used as a reduced set for training SVM. If the reduction is not sufficient, TC is iterated

on the prototypes r times. We then prove that constructing prototypes by using TC can

approximately minimizes the maximum difference between the kernel matrix of using original

data and the kernel matrix of using an approximate data based on prototypes under radial

basis function (RBF) kernel function.

Simulations and experiments are applied to compare our method with other instance

selection methods. In big data settings, SVMTC shows its ability to train SVM using less

time and memory while keeping the accuracy high. In real data application, performance

of SVMTC is almost identical to the performance of using an original data where execution

time and memory usage of SVMTC is much smaller. With increasing the value of t∗, there

is a trade-off between classification accuracy and preprocessing time. Hence, to get more

accurate classification of SVMTC, small values of t∗ could be required, but time of clustering

could be longer.
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Chapter 3

SVMTC under Feature Reduction

Techniques

3.1 Introduction

In machine learning applications, large number of features, and massive data reduce the

performance of trained models and increase the time of training process. Many methods have

been developed to deal with data that has a large number of variables. Feature selection (FS)

and feature extraction (FE) are feature reduction techniques. FS methods select a subset

of original features. The selected features aim to improve the performance of classification

by minimizing the redundancy. Least absolute shrinkage and selection operator (LASSO)

and Fisher scores (F-scores) are examples of FS. On the other hand, FE techniques aim to

extract new features by projecting the data onto a new feature space.

Threshold clustering (TC) (Higgins et al., 2016) is a recent clustering method that works

well under massive data. Recently, TC is utilized to improve traditional clustering methods

such as k-means, and it is used as an instance selection (IS) method. In Chapter 1.5, we

used TC to accelerate training support vector machines (SVM). However, TC might work

poorly in data with a large number of features. Thus, we propose using several feature
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reduction methods for TC to reduce the number of features so that TC works ideally to

accelerate training SVM.

In this chapter, we combine feature reduction and IS to improve SVM performance.

We utilize different feature reduction methods as a preprocessing step to our proposed IS

method, SVMTC. We proposed two methods to reduce the dimensions prior to SVMTC

implementation. One method is based on using the extracted features; the other aims to

use the reduced original features. Using real data applications, we find that LASSO tends

to be an effective feature selection method, and overall, show that SVMTC is improved

significantly under the proposed methods.

The rest of this chapter is organized as follows. In section 3.2, we describe principal

components analysis (PCA), linear discriminate analysis (LDA), LASSO, and F-scores. The

proposed procedures are discussed in section 3.3. Experimental studies are presented in

section 3.4. Finally, we present discussion about the proposed methods and the results of

applications in section 3.5.

3.2 Feature Reduction Methods

A brief review of feature reduction methods is presented.

3.2.1 Principal Components Analysis

Principal components analysis (PCA) is an unsupervised feature extraction method that was

proposed by Karl Pearson in 1901. This method aims to transform the correlated features

into uncorrelated features called principal components that represent data with the least

loss of information. PCA aims to preserve the variation of the data.

PCA extracts the first principal component that represents the highest variance of data.

The following component is orthogonal on the first one, and so forth. Consequently, the

new components are uncorrelated.
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Consider a dataset with d features, x1,x2, . . . ,xd, principal components are defined by

the linear combination of all features as follows

x∗
1 = a11x1 + a12x2 + . . .+ a1dxd

x∗
2 = a21x1 + a22x2 + . . .+ a2dxd
...

x∗
d = ad1x1 + ad2x2 + . . .+ addxd

where a′s are principal components coefficients. Principal components x∗
j , j = 1, 2, . . . , d

are extracted in which x∗
j is the eigenvector of the sample covariance matrix Σ with the

largest eigenvalue λj. To determine the most important principal components to use, the

components that explain the large ratio of variance are selected. A scree plot also can be

used to identify the useable principal components.

3.2.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a supervised feature extraction approach that aims

to extract lower dimensions of the original data. The objective is to minimize the ratio of

within-class variance to between-class variance. Consider a training dataset x1,x2, . . . ,xn ∈

Rd consisting of two classes C1 and C2, and let a unit vector w ∈ Rd, the optimization

problem to obtain the best w that discriminates the two classes is

max
w

w⊤Sbw

w⊤Sww

where, Sb = (µ1 − µ2)(µ1 − µ2)
⊤ is the between-class scatter matrix. The within-class

scatter matrix is

Sw =
∑
xi∈C1

(xi − µ1)(xi − µ1)
⊤ +

∑
xi∈C2

(xi − µ2)(xi − µ2)
⊤
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and µj =
1
Nj

∑
xi∈Cj

xi, j = 1, 2.

3.2.3 Least Absolute Shrinkage and Selection Operator

Least absolute shrinkage and selection operator (LASSO) is a regression analysis approach

designed by Tibshirani (1996). LASSO is a robust method that is used for regularization and

feature selection tasks. The main goal of LASSO is to reduce the prediction error by keeping

only the features correspond to non-zero coefficients. The process penalizes coefficients of

features and shrinks some to zero. One tuning parameter of LASSO controls regularization

process.

Consider a response variable y ∈ RN and a matrix of predictor variables X ∈ RN×d+1.

To estimate LASSO parameters (β), the optimization problem is

min
β0,β∈Rd+1

∥y − β0 −Xβ∥22 + λ∥β∥1

where λ > 0 is a tuning parameter. The L1 penalty, λ∥β∥1, generates sparse solutions of

the previous optimization problem. Thus, the selected features are the ones that correspond

to non-zero coefficients.

When a response variable y ∈ {0, 1} is binary, the corresponding optimization problem

is

min
β0,β∈Rd+1

−

{
1

N

N∑
i=1

yi(β0 + x⊤
i β)− log

(
1 + exp(β0 + x⊤

i β)
)}

+
λ

2

{
2α∥β∥1 + (1− α)∥β∥22

}
where 0 ≤ α ≤ 1, α = 1 for LASSO.

When a response variable y has C classes in which y ∈ {1, 2, . . . , c}, the corresponding
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optimization problem is

−

{
1

N

N∑
i=1

[
c∑

k=1

yi

(
β
(k)
0 + x⊤

i β
(k)
)
− log

c∑
j=1

exp
(
β
(j)
0 + x⊤

i β
(j)
)]}

+
λ

2

{
2α

d∑
l=1

∥βl∥q + (1− α)∥β∥2F

}

Where β is d× C matrix of coefficients.

3.2.4 Fisher Scores

Fisher scores (F-scores) is a statistical feature selection technique that computes the impor-

tance of each feature in the dataset. The discriminative power of each feature is measured.

F-scores measure how a feature can assign values that minimize the distance of instances in

the same class whereas maximize the distance of instances from different classes. Based on

F-scores, the features are ranked. The higher F-scores, the most important the features are.

To define the F-score of a feature, suppose a training dataset X ∈ RN×d with a class

variable that contains c categories, F-score of jth feature (xj) is defined as follows

FS(xj) =

∑c
k=1Nk(µj(k) − µj)

2∑c
k=1

∑Nk

i=1 (xij(k) − µij(k))2

where Nk denotes the sample size of class k = 1, 2, . . . , c, µj is the mean of feature j, µj(k)

is the mean of feature j in class k, xij(k) is the sample i in feature j of the class k.

3.3 SVMTC with Feature Selection and Feature Ex-

traction

Many methods that combine instance selection and feature reduction have been developed to

accelerate the machine learning algorithms. Generally, instance selection and feature reduc-
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tion are implemented separately. Suganthi and Karunakaran (2019) combined a cuttlefish

optimization algorithm and principal component analysis for instance selection and feature

reduction, respectively, to reduce the data prior the decision tree. In Malekipirbazari et al.

(2021), random instance selection is combined with some feature selection methods such as

F-scores and ReliefF. The performance of some classifiers after scaling the data down and

reducing the features is computed.

On the other hand, some researcher integrates instance selection and feature reduction,

simultaneously. Fragoudis et al. (2002) proposed an algorithm that combines feature and

instance selection, simultaneously, for text classification. De Souza et al. (2008) developed an

algorithm based on simulated annealing to combine instance and feature selection process.

In this section, we combine feature reduction methods with SVMTC in two methods.

The first method is the popular way in which feature reduction is first applied then instance

selection follows. We also propose another method in which feature selection is applied first

to reduce the features for TC, then the original data points are used in training SVM. This

method is used for feature extraction methods, PCA and LDA.

The process of Method 1 is shown as follows :

1. (Feature reduction) Apply the feature reduction algorithm on the entire dataset to

extract the subset selected features.

2. (SVMTC) Apply SVMTC directly on the reduced features dataset.

(a) (Clustering) Given threshold parameter t∗, cluster instances of the reduced

features dataset T
′
in each class c∗j , j = 1, 2, . . . , C, separately, by using TC.

(b) (Create prototypes) For each class c∗j , compute centroids of all clusters, and

add them to the reduced set T
′′
.

(c) (Training SVM) Given T
′′
from Step 2b, the cost parameter, and the kernel

function, SVM is trained on T
′′
.

(d) TC is repeated on the prototypes if data reduction after Step 2a is insufficient.
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The process of Method 2 is shown as follows :

1. (Feature extraction) Apply the feature extraction (PCA or LDA) algorithm in the

entire dataset to extract the subset selected features.

2. (SVMTC) Apply SVMTC with some changes as follows

(a) (Clustering) Apply TC in the features-reduced dataset to cluster each class,

separately.

(b) (Repetition) If the reduction is insufficient, iterate TC on the prototypes ob-

tained from Step 2a.

(c) (Create prototypes) For each cluster from a, compute the prototypes of the

entire features of datapoints that correspond to the reduced set in that cluster.

(d) (Training SVM) Given the reduced data from Step 2c, the cost parameter, and

the kernel function, SVM is trained on the reduced dataset of the entire features.

In Method 2, if repetition is required, prototypes obtained in 2a are computed from the

features-reduced dataset which are not the same as the prototypes obtained from 2c.

We apply two methods on different real and simulated data using several feature reduc-

tion methods.

3.4 Experiments

We evaluate SVMTC under feature reduction methods using real-world datasets in the

UCI Machine Learning database (Merz, 1998) and simulated data. Comparison between

performance of SVMTC under the two proposed methods of feature reduction methods is

carried out using several measurements. First, we evaluate runtime, which is divided into

three parts. One part computes the time (seconds) of reducing the features under feature
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reduction methods. The second part computes the time (seconds) of reducing the feature-

reduced data under IS methods. The last part computes the time of training SVM. Memory

space is used to compute the capacity (mega bytes) of reducing features, reducing data and

training SVM. In addition, testing accuracy, which is the proportion of correct predicted

classes of a class label in a test set to all predictions, is utilized for comparisons.

All algorithms are implemented using R programming language. The e1071 package

(Meyer et al., 2020) is used to perform SVM by using the svm function, which implements

the normal sequential minimal optimization (SMO) algorithm. TC is executed by using

the sc clustering function in scclust package (Savje et al., 2018). We use pro-

comp function in the stats package to perform principal components analysis. For linear

discriminate analysis, we use the lda function in the MASS package (Ripley et al., 2022).

The glmnet function in the glmnet package (Friedman et al., 2022) is used to perform

LASSO. For F-scores, we use the do.fscore function in the Rdimtools package (You,

2018). Some experiments are implemented on an Intel(R) Core(TM) i7-7500 CPU at 2.7

GHz processor. For big datasets, experiments are applied on an Intel(R) Core(TM) i7-7700

CPU at 3.6 GHz processor.

A stratified 5-fold cross-validation method is implemented on the most datasets to make

an unbiased comparison between feature reduction methods for SVMTC. In this method,

a dataset is split into five folds. then repeated five times, one fold is used for the test set;

and the remaining four sets are utilized as a training set. This full process is repeated many

times to decrease the impact of randomization of splitting datasets. Based on a class label,

stratified splitting contributes to sampling from each class proportionally. The final results

of the evaluation measures are averaged over both folds and repetitions. For datasets with

a small number of instances, in each fold of 5-fold cross-validation, we perform 10-cross-

validation to choose the optimal λ for LASSO. For big datasets, we select the features of

the entire dataset based on the optimal λ, then these features are used in each fold of 5-fold

cross-validation.
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Datasets used in the experiments are described as follows:

• Covertype dataset has 580, 012 instances, and 55 attributes. The class variable has

seven categories that are the types of forest cover. The dataset is also pre-processed

so that the class variable becomes binary (Baker et al., 2019).

• Credit Card dataset has 30, 000 instances, and 24 attributes. The class label is to

determine if a customer uses a default payment or not.

• HIGGS dataset has 11 million instances and 29 attributes. The dataset has been

generated using Monte Carlo simulations, in which physicists discriminate between

signal and background processes. The signal process produces Higgs particles; the

background process does not. The first 21 attributes are kinematic properties. The

rest are functions of the first 21 attributes.

• Mnist handwritten (0-9) digit dataset contains 70, 000 grayscale images in which each

image is formed of 28 × 28 pixels of handwritten digit, totally 784 attributes besides

the class label, which takes values 0, 1, . . . , 9. Cao and Boley (2006) transformed the

class variable into two classes in which digits (1, 2, 3, 4, 5) belong to class 1, and digits

(0, 6, 7, 8, 9) are transformed into class −1. In the experiment, we implemented our

methods in binary and multi-class MNIST dataset.

• SUSY dataset has 5 million instances and 19 attributes. The dataset has been gen-

erated using Monte Carlo simulations, in which physicists discriminate between signal

and background processes. The signal process produces supersymmetric particles, the

background process does not. The first eight attributes are kinematic properties; the

rest are functions of the first eight attributes.

The summary of datasets is shown in Table 3.1.
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Dataset Instances Features Classes Reference

CreditCard 30,000 24 2 Yeh and Lien (2009)
Covertype-7 581,012 55 7 Blackard and Dean (1999)
HIGGS 11M 29 2 Baldi et al. (2014)
Mnist-2 70,000 785 2 LeCun et al. (1998)
Mnist-10 70,000 785 10 LeCun et al. (1998)
SUSY 5M 19 2 Baldi et al. (2014)

Table 3.1: Datasets description

3.4.1 Results

The results of applying our proposed methods on real datasets are discussed in this section.

Based on Tables 3.2 and 3.3, the results show that the accuracy of SVMTC under feature

reduction methods outperform SVMTC without feature reduction. However, SVMTC under

LASSO takes less total time and memory than other feature reduction methods. Tables 3.4

and 3.5 demonstrate that our second proposed method (Method 2) outperforms Method

1. In Tables 3.6 and 3.7, several feature reduction methods improve SVMTC in term of

accuracy. For the SUSY dataset, Table 3.10 shows that SVMTC under LASSO outperforms

other feature reduction methods in term of accuracy, time, and memory. Tables 3.11 and 3.12

illustrate that the performance of SVMTC under LASSO is higher than other methods in

terms of time and memory. In general, LASSO tends to be an effective feature selection

method, and overall, it is shown that SVMTC is improved significantly under the proposed

methods.

3.5 Discussion

Many methods have been developed to deal with data with large number of features. Feature

reduction is one popular preprocessing method to extract the most relevant features and

remove redundant ones. Feature selection (FS) and feature extraction (FE) are the most

popular techniques to reduce the features. FS methods tend to select a subset of original

features to improve the performance of classification by minimizing the redundant features;
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FE methods aim to extract new features by projecting the data onto a new feature space.

In Chapter 1.5, we proposed an IS method using TC to accelerate training SVM. How-

ever, TC works poorly in data with large number of features. Thus, we proposed adding a

step of feature reduction methods in SVMTC algorithm so that TC works ideally to accel-

erate training SVM. In this chapter, we combined feature reduction and IS to improve SVM

performance. We utilize different feature reduction methods as a preprocessing step to our

proposed IS method, SVMTC. We propose two ways to reduce the dimensions before IS.

One way is based on using the extracted features from FE methods; the other aims to use

the reduced original features based on FS methods. we show, via application to datasets

that reducing features by using feature reduction methods can improve the performance of

SVMTC.
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Chapter 4

Comparative Study of Iterative

Threshold Instance Selection and

K-means

4.1 Introduction

Instance selection (IS) is a common data mining process that is used with large amount of

data to reduce the size (Liu and Motoda, 2002). It plays an important role in data mining by

providing relevant data and discarding superfluous ones. Applying selected data on machine

learning algorithms reduces runtime without losing integrity of data (Olvera-López et al.,

2010a). IS can be applied by sampling, classification, or clustering. In real applications, the

majority of data are without class values. IS methods that are based on classification are

extremely beneficial but cannot be applied to unlabled data directly. In contrast, methods

associated with clustering are useful for unlabled data.

Liu and Motoda (2002) review some methods relies on clustering. One generates pseudo

points from clusters, called prototypes, and then uses these prototypes instead of working

with all data points. One well-known example is the k-means clustering algorithm. Another
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method is data description in a hierarchy. One example of this is COBWEB which improves

the idea of conceptual clustering by applying an incremental method (Fisher, 1987). Also,

there are IS methods based on squashing data. Squashing compresses an original dataset

without losing any statistical information. The process passes through grouping, momen-

tizing and generating (GMG) sequentially (DuMouchel et al., 1999). In this chapter, we

focus on the method that relies on constructing prototypes.

In this chapter, we use k-means and some of its variants as IS methods and compare with

iterative threshold instance selection (ITIS) that is proposed by (Luo et al., 2019). Then,

we analyze the performance of k-means clustering, HAC, and DBSCAN after implementing

the reduction methods. By using k-means, hierarchical agglomerative clustering (HAC),

and density based spatial clustering of applications with noise (DBSCAN), we cluster the

prototypes obtained from the IS methods. Then for each original unit, we assign it back

to the cluster that belongs to the prototype of the original unit that is used to obtain that

prototype Some performance measurements are computed for comparisons. Additionally,

we compare k-means after ITIS with stabilized hybrid clustering (SHC) (Amiri et al., 2019),

and hybrid hierarchical method (Chipman and Tibshirani, 2006) with HAC after ITIS.

By using simulations, we illustrate that the performance of clustering after ITIS is more

accurate, with reducing runtime and memory usage, than other competing methods in most

cases. By increasing sample size, ITIS works more effectively than other methods. Under

clustering by DBSCAN, ITIS and k-means work effectively.

The rest of this chapter is organized as follows. Section 4.2 reviews ITIS, k-means, HAC,

DBSCAN, SHC, and hybrid hierarchical clustering. Simulation and results are covered in

section 4.3.1. The last section 4.4 includes general discussion.
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4.2 Preliminaries

In this section, a brief review of ITIS, k-means and its variations, and hybrid clustering

methods is presented.

4.2.1 Iterative Threshold Instance Selection

Iterative Threshold Instance Selection (ITIS) (Luo et al., 2019) is a new method of instance

selection (IS) based on recent efficient clustering called threshold clustering (TC) (Higgins

et al., 2016). The main advantage of TC is its ability to cluster the data a prespecified

number of data points in each cluster. In addition, TC allows clustering with small maximum

within-cluster dissimilarity to an average within-cluster dissimilarity. The idea of ITIS is to

decrease the data size by a factor of α. The algorithm performs in the following steps:

1. Proceed threshold clustering on data of size n to make n∗ clusters each one has t∗ or

more, where t∗ is a small size threshold.

2. For each cluster, compute a center point to form n∗ prototypes.

3. Terminate if the data is reduced by a factor of α or go to Step 1 after replacing data

of size n with n∗ prototypes.

ITIS works effectively in a large dataset with runtime O(t∗mn log n), where m is the number

of iterations. However, it has a limitation when sample size is small becasue the similarity

between each prototype and its data points becomes small.

4.2.2 Iterative Hybridized Threshold Clustering

Luo et al. (2019) proposed a novel clustering method called iterative hybridized threshold

clustering (IHTC) based on ITIS. This method allows traditional clustering such as k-

means, HAC and DBSCAN to work effectively in massive data. The idea is to use ITIS as a
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preprocessing step before applying traditional clustering methods. IHTC goes through the

following steps:

1. Based on threshold parameter t∗ and the number of iterations m, ITIS is applied on

the dataset of size n to obtain the prototypes.

2. By using a clustering method such as k-means, cluster the prototypes computed from

Step 1.

3. For every prototype, assign the original instances that are a part of computing a

prototype to the cluster belonging to that prototype.

IHTC can reduce the size of data and can eliminate overfitting of instances so that the

performance of clustering algorithm is improved.

4.2.3 K-means Clustering

The k-means clustering (Lloyd, 1982) is Lloyd’s method in which initial values of centers

are chosen randomly. The method is based on partitioning data points into prespecified k

clusters. The k-means algorithm is performed as follows:

1. Select k data points uniformly at random from the dataset and set them as centers.

2. Compute the squared Euclidean distance between all units and centers. Assign each

unit to the nearest center to perform k clusters.

3. Recompute the average of each cluster and replace centers with them.

4. Repeat Steps 2 and 3, then terminate when there are no changes for the centers.

The k-means clustering can be utilized as an IS method (MacQueen, 1967) by partitioning

the data into k clusters, then the centroids of clusters are dealt as a prototype. One drawback

of k-means is the sensitivity to the initialization. One way to improve the speed of k-means

is to apply it in a parallel way.
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4.2.4 K-means++ Clustering

The k-means++ clustering (Arthur and Vassilvitskii, 2006) overcomes the drawback of

initializing the centers randomly in k-means by specifying a way of choosing them. It is

performed as k-means except the initialization in Step 1 is developed as follows

1. Select one center uniformly at random, say c1, from data points.

2. For i = 1, 2, .., k, select a new center ci, choosing x from data points with probability

D(x)2∑
x D(x)2

, where D(x) is the shortest distance from a record to the closest center.

The remaining steps are proceed as k-means Steps 2-4.

4.2.5 Fuzzy C-means Clustering

The fuzzy C-means clustering (Bezdek, 1981) is an extension of k-means to overcome its

limitations. The basic idea is that each data point belongs to many clusters with a different

degree of membership between 0 and 1. The fuzzy C-means algorithm steps are as follows

1. Initialize a fuzzy partition matrix randomly.

2. Calculate c centers.

3. Calculate fuzzy partition values based on distances.

4. Compare the matrices of iteration t and t+1, stop if there are no differences, otherwise

go to Step 2.

One drawback of the fuzzy C-means is that it takes a long computational time.

4.2.6 Stabilized Hybrid Clustering

Stabilized Hybrid Clustering (SHC) is a hybrid clustering method proposed by Amiri et al.

(2019). For a given k, the clusters are obtained in the following way.
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1. K-means is applied to obtain much more (small) clusters than k. Then by using single

linkage clustering, these small clusters are joined.

2. Recluster the results from the first stage to obtain a dendrogram. This stage is called

the stabilization stage.

3. The dendrogram that is obtained from Step 2 is cut to get clusters greater than or

equal to k. Then, the clusters are merged to obtain exactly k clusters.

SHC is able to cluster even with non-convex clusters.

4.2.7 Hybrid Hierarchical Clustering

Hybrid hierarchical clustering (Chipman and Tibshirani, 2006) combines agglomerative

(bottom-up) hierarchical clustering and top-down clustering. The method based on making

a group of objects that is closer to each other than to any other object; this group is called

a mutual cluster. This type of cluster does not break by bottom-up clustering. The steps

of clustering data are as follows.

1. Compute mutual clusters.

2. Tree structured vector quantization (TSVQ) the top-down clustering is performed with

keeping each mutual cluster right. This step is completed by replacing the mutual

clusters by their centroid.

3. Execute a top-down clustering within each mutual cluster.

This method overcomes the weaknesses of top-down clustering and bottom-up by combining

advantages of both. As data size increases, mutual clusters can be affected especially with

low dimensions data.
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4.3 Process of Comparisons of ITIS and K-means

To evaluate ITIS, we compare ITIS to other IS methods under traditional clustering methods

based on runtime, memory usage, and prediction accuracy. The general process is shown as

follows.

1. Apply an IS method on the simulated data to obtain the reduced set.

2. Implement the clustering method on the reduced set from Step 1.

3. For each data point x
′
of the reduced set, assign the original instances that are a part

of computing x
′
to the cluster belonging to x

′
.

4. Obtain the clustering performance on the ultimate clusters from Step 3.

We simulated data with different sizes to compare between ITIS and the different competitive

IS methods.

4.3.1 Simulation

We compare ITIS with k-means and its variations using simulated data. These methods are

applied to samples of sizes (104, 105, 106). The data is sampled from a mixture distribution

of weighted combinations of three bivariate Normal distributions. The pdf is as follows.

f(x) = 0.3p(x|µ1,Σ1) + 0.6p(x|µ2,Σ2) + 0.2p(x|µ3,Σ3)

for j = 1, 2, 3, p(x|µj,Σj) is the pdf of Normal distribution with parameters µj and Σj.

µ1 =

 1

2

 , µ2 =

 7

8

 , µ3 =

 3

5
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Σ1 =

 1 0

0 0.5

 ,Σ2 =

 2 0

0 1

 ,Σ3 =

 3 0

0 4


For sample sizes of 10, 000 and 100, 000, each case is replicated 1, 000 times; with

1, 000, 000 it is replicated 100 times becasue of lengthy time to execute k-means and its

variations. In each replicate, the execution time in seconds, memory in megabytes, pre-

diction accuracy and clustering validation methods are computed. All implementations are

executed in the R programming language. The Itis package is used to perform ITIS.

We use the clusternor package to perform k-means++ and fuzzy C-means (Mhembere,

2020). The default kmeans, hclust, and dbscan functions are used to cluster prototypes

by k-means, HAC, and DBSCAN, respectively. Additionally, an R library, GHC, in GitHub

is used to implement Stabilized Hybrid Clustering (Saeid et al., 2019). To implement the

hybrid hierarchical clustering, we use R source codes which are available in Chipman and

Tibshirani (2015). For computing Silhouette measurement, the clusterCrit pack-

age is used (Desgraupes, 2018). Some parts of simulation are performed on the Beocat

Research Cluster at Kansas State University. The Beocat is funded in part by NSF grants

CNS-1006860, EPS-1006860, and EPS-0919443 (University, 2018). All simulations are im-

plemented on Intel(R) Core(TM) i7-7500 CPU at 2.7 GHz processor.

4.3.2 Clustering Based on K-means

By using simulated data of sizes (104, 105, 106), we obtain prototypes from each of ITIS

with m = 3 and t = 2, k-means, k-means++, parallel k-means, and fuzzy C-means with

k values (103, 104, 105), respectively. Then, we cluster prototypes from each method by k-

means with k = 3 because the data is sampled from the mixture with three bivariate normal

distributions. We assign each original unit back to the cluster that belongs to the prototype

from which the original unit is used to obtain that prototype. To reduce the runtime, we
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exclude fuzzy C-means when sample size is more than 104, and k-means++ is discarded

when N = 106. The runtime and memory usage are computed for each method. Addition-

ally, to measure prediction accuracy of clustering, we considered that each data comes from

independent Normal distribution in a cluster. The prediction accuracy computes the data

points correctly clustered divided by the sample size. Cluster validation methods, Silhouette

and R2, are also computed to measure the performance of clustering. Computing Silhouette

was excluded when sample size increases. Silhouette (Rousseeuw, 1987) is used to test the

consistency of the clustering with range (−1, 1), in which a large value shows that each unit

matches its cluster correctly. R2 is a ratio of sum of squares between clusters to total sum

of squares with range (0, 1) in which a large value indicates small variance of clusters. Table

1 displays the results. We notice from the results that clustering after ITIS works more

efficiently as data size increases. In general, using ITIS consumes less time and memory

while preserving prediction accuracy in most cases.

4.3.3 Clustering Based on HAC

HAC, proposed by Ward Jr (1963) is a well-known bottom-up clustering method in which

each data point is considered a cluster and then every two clusters are merged. The process

ends up with only one cluster. In this part of simulation, we compute prototypes by using

ITIS with t = 2, and each of k-means, k-means++, parallel k-means, and fuzzy C-means

with k values (103, 104, 104); from dataset of sizes (104, 105, 106), respectively. For ITIS, we

use m = 3 when the data size 104 and 105, and we increase the number of iterations to

m = 6, with data size 106. Then, we cluster the prototypes from each method by HAC.

We assign each original unit back to the cluster that belongs to its prototype. Again, to

reduce the runtime, we exclude fuzzy C-means when sample size is more than 104, and

k-means++ is discarded when N = 106. The runtime and memory usage are computed for

each method. In addition, prediction accuracy and cluster validation methods (Silhouette
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and R2) are computed. We exclude computing Silhouette when sample size increases. The

results are shown in Table 2. It is clear that IHTC with HAC is more accurate than other

methods in all cases while using the least time and memory.

4.3.4 Clustering Based on DBSCAN

DBSCAN was first proposed by Ester et al. (1996) and is based on density-based of clusters.

It can cluster data with arbitrary shape. The DBSCAN algorithm relies on determining two

parameters; ϵ which is a radius of neighborhoods of each unit, and minimum amounts of

units to form a cluster. In this case the simulated data is constructed of two rings, the

small ring is inside the large one, see Figure 4.1. From data of sizes (104, 105,106), we obtain

prototypes by ITIS with t = 2 and m = 3, and with k-means and parallel k-means with

k values (103, 104,105). Then, we cluster prototypes from each method by DBSCAN with

ϵ = 1.5 and default minimum amounts 5. We assign each original data point back to the

cluster that belongs to its prototype. The runtime and memory usage are computed for each

method. In addition, prediction accuracy and cluster validation methods are computed. The

results are shown in Table 3. The results show that clustering after ITIS consumes short

time with less memory usage. It is clear that all methods are accurate, and parallel k-means

consumes the same time as ITIS; however, ITIS uses less memory than others.

4.3.5 IHTC with K-means Versus SHC

We also implement IHTC with k-means and SHC on the simulated data of size 103 only

because SHC is running slowly with big data. We compute runtime and memory usage for

each method along with prediction accuracy and cluster validation methods. The results

of this simulation are shown in Table 4. The results demonstrate that the performance of

IHTC with k-means is superior to SHC.

84



P
er
fo
rm

an
ce

M
em

or
y
U
sa
ge

(M
b
)

R
u
n
ti
m
e
(s
ec
on

d
)

A
cc
u
ra
cy

(%
)

10
4

10
5

10
6

10
4

10
5

10
6

10
4

10
5

10
6

K
-m

ea
n
s

12
.0
33
2

1,
15
8.
42

1,
23
1.
39

0.
48
42
6

46
.3
97
38

77
0.
74
9

85
.5
33
38

86
.3
61
67

85
.4
80
64

K
-m

ea
n
s+

+
11
.1
42
6

99
4.
45
77

-
0.
40
88
8

25
.8
00
94

-
85
.7
50
31

86
.5
73
4

-
P
ar
al
le
l
K
-m

ea
n
s

21
.0
69
3

1,
18
9.
96
2

1,
20
8.
01
9

0.
14
77
8

9.
98
11
4

19
.9
55
4

85
.0
58
94

84
.8
01
41

82
.6
76
86

F
u
zz
y
C
-m

ea
n
s

11
.0
22
1

-
-

30
0.
83
13

-
-

85
.8
71
19

-
-

IT
IS

6.
76
51

57
5.
81
04

40
2.
48
6

0.
07
47
2

5.
33
26

12
.9
89
6

86
.1
67
7

86
.4
95
1

86
.1
96
25

T
a
b
le

4
.3
:
C
lu
st
er
in
g
pe
rf
or
m
an

ce
u
si
n
g
(r
u
n
ti
m
e,

m
em

or
y
u
sa
ge

an
d
ac
cu
ra
cy
)
ba
se
d
on

H
A
C
.

P
er
fo
rm

an
ce

S
il
h
ou

et
te

R
2

N
u
m
b
er

of
P
ro
to
ty
p
es

10
4

10
5

10
6

10
4

10
5

10
6

10
4

10
5

10
6

K
-m

ea
n
s

0.
44
54
9

-
-

0.
76
38
5

0.
76
50
3

0.
76
29
3

1,
00
0

10
,0
00

10
,0
00

K
-m

ea
n
s+

+
0.
44
63
5

-
-

0.
76
44
1

0.
76
57
7

-
1,
00
0

10
,0
00

-
P
ar
al
le
l
K
-m

ea
n
s

0.
42
70
0

-
-

0.
75
54
4

0.
75
88
9

0.
75
32
3

1,
00
0

10
,0
00

10
,0
00

F
u
zz
y
C
-m

ea
n
s

0.
44
72
6

-
-

0.
76
48
3

-
-

1,
00
0

-
-

IT
IS

0.
44
73
8

-
-

0.
76
49
2

0.
76
60
2

0.
76
65
4

74
2

7,
36
8

5,
45
4

T
a
b
le

4
.4
:
C
lu
st
er
in
g
pe
rf
or
m
an

ce
u
si
n
g
(S
il
ho

u
et
te
,
R

2
an

d
th
e
si
ze

of
re
du

ce
d
da

ta
)
ba
se
d
on

H
A
C
.

85



P
er
fo
rm

an
ce

M
em

or
y
U
sa
ge

(M
b
)

R
u
n
ti
m
e
(s
ec
on

d
)

A
cc
u
ra
cy

(%
)

10
4

10
5

10
6

10
4

10
5

10
6

10
4

10
5

10
6

K
-m

ea
n
s

1.
12
2

16
.1
50
5

25
1.
00
76

0.
14
13
8

8.
88
67
8

95
4.
12
26

99
.8
42
07

99
.9
97
4

99
.9
98
16

P
ar
al
le
l
K
-m

ea
n
s

10
.1
97
1

48
.0
51
00

59
4.
83
77

0.
05
30
4

0.
19
40
2

9.
12
59
2

99
.9
72
91

99
.9
95
3

99
.9
98
52

IT
IS

1.
39
29

6.
00
04

64
.3
94
5

0.
03
74
4

0.
24
46
4

4.
14
30
4

99
.9
21
18

99
.9
99
98

99
.9
99
84

R
aw

D
at
a

0.
03
42

0.
43
99

-
0.
04
56
6

1.
74
30
6

-
99
.9
82
8

99
.9
99
4

-

T
a
b
le

4
.5
:
C
lu
st
er
in
g
pe
rf
or
m
an

ce
u
si
n
g
(r
u
n
ti
m
e,

m
em

or
y
u
sa
ge

an
d
ac
cu
ra
cy
)
ba
se
d
on

D
B
S
C
A
N
.

P
er
fo
rm

an
ce

S
il
h
ou

et
te

N
u
m
b
er

of
P
ro
to
ty
p
es

10
4

10
5

10
6

10
4

10
5

10
6

K
-m

ea
n
s

0.
25
13
18

0.
25
12
25

-
1,
00
0

10
,0
00

10
0,
00
0

P
ar
al
le
l
K
-m

ea
n
s

0.
25
12
40

0.
25
12
26

-
1,
00
0

10
,0
00

10
0,
00
0

IT
IS

0.
25
12
39

0.
25
12
22

-
74
8

7,
40
1

73
,6
59
.6
7

R
aw

D
at
a

0.
25
12
41

0.
25
12
23

-
-

-
-

T
a
b
le

4
.6
:
C
lu
st
er
in
g
pe
rf
or
m
an

ce
u
si
n
g
(S
il
ho

u
et
te
,
an

d
th
e
si
ze

of
re
du

ce
d
da

ta
)
ba
se
d
on

D
B
S
C
A
N

86



Figure 4.1: Data is formed of outer ring with 7700 units and inner ring of 2300 units.

SHC IHTC with
K-means

Memory (Mb) 10,047.15 0.2098
Time(Second) 655.1712 4.6749
Accuracy(%) 61.6048 85.2516
Silhouette 0.4250 0.4656
R2 0.5131 0.7859

Table 4.7: Comparison between SHC and IHTC with k-means (N = 103)

4.3.6 IHTC with HAC Versus Hybrid Hierarchical Clustering

We implement IHTC with HAC; and Hybrid Hierarchical Clustering (hybridHclust) on data

that is sampled from a mixture distribution of size 104. Then, we compute runtime memory

usage, prediction accuracy and cluster validation for each method. Table 5 represents the

results of this simulation. The results illustrate that IHTC with HAC uses significantly less

time and memory than the hybrid hierarchical clustering; with 6% more accuracy.
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hybridHclust IHTC with
HAC

Memory (Mb) 59,475.9 6.9816
Time(Second) 239.6496 0.0763
Accuracy(%) 80.4631 86.2058
Silhouette 0.4137 0.4473
R2 0.7490 0.7650

Table 4.8: Comparison between hybridHclust and IHTC with HAC (N = 104)

4.4 Discussion

Clustering is an unsupervised learning method that can be performed on unlabled data.

There are a minority of instance selection (IS) methods that are based on clustering. K-

means clustering is a well-known method that can be used as IS by keeping its centers as

selected prototypes. However, the number of selected prototypes should be prespecified.

Luo et al. (2019) proposed an IS method based on threshold clustering. This type of

clustering ensures clustering the data has a prespecified number of points in each cluster.

Simulations and experiments on real data proved the efficiency of ITIS to reduce the massive

dataset without consuming much time and memory, and while preserving the accuracy.

In this chapter, we validate the efficiency of ITIS by comparing it with IS methods

based on clustering. The comparisons are obtained after clustering the prototypes by ITIS

and well-known clustering methods. We also compared IHTC with k-means and IHTC with

HAC with some hybrid clustering methods based on k-means and HAC. Several performance

measurements are used for comparisons.

The results from simulation illustrate that clustering the prototypes that are created by

ITIS reduce runtime and memory usage with retaining the clustering accuracy. Clustering

by HAC records superior results in most cases compared to standard k-means. Comparing

IHTC with HAC and IHTC with k-means with hybrid clustering methods demonstrates a

significant difference favor ITIS.
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Chapter 5

Conclusion

5.1 Introduction

Support vector machines (SVM) is a powerful supervised learning method for classification.

However, training SVM would be computationally impossible, especially when data is mas-

sive. Instance selection (IS) methods for SVM have been developed to counteract this. In

this dissertation, we propose the use of threshold clustering (TC) as IS to accelerate training

SVM. TC is a recently-developed efficient clustering method that is designed to split data

into many small clusters, making it ideal for IS. Given a threshold t∗, TC partitions data

into t or more units while ensuring that the maximum within-cluster dissimilarity is small.

The proposed method begins by applying TC on each class of the training dataset. Cen-

troids of all clusters are computed to create the refined training set, then SVM is trained

on this set. If data reduction is insufficient, TC may be applied on the centroids to obtain

a new reduced training set. The entire algorithm is named support vector machines with

threshold clustering (SVMTC). Under Gaussian radial bases kernel function, we prove that

the maximum distance between kernel matrix, which is used in solving SVM, by using orig-

inal data and kernel matrix that uses prototypes, is bounded when TC is used to extract

these prototypes.
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TC works effectively in big data, but it suffers from the curse of dimensions. For data with

a large number of dimensions, TC might work slowly. We propose using feature reduction

methods before applying TC. Two methods are considered to integrate feature reduction

with SVMTC.

Iterative threshold instance selection (ITIS) is a recent extension of TC that is used in a

massive data. ITIS begins by partitioning unlabeled data into clusters, then prototypes are

computed of each cluster. If the reduction is not enough, TC is applied on the prototypes.

Iterative hyperdized threshold clustering (IHTC) is a novel clustering method that is formed

by using ITIS. In this dissertation, we use simulation to compare between ITIS and other IS

methods in a massive dataset. Also, we compare between IHTC and some hybrid clustering

methods. Results show that ITIS and IHTC outperform the competitive methods.

5.2 Future Work

Using threshold clustering as instance selection to accelerate SVM training shows it is ef-

fective via simulation and experiments in real datasets and big data. In addition, we also

show the effectiveness of using the prototypes extracting from threshold clustering for SVM,

theoretically. In general, we may apply our method in other classification methods such as

random forest. However, it is insufficient to prove that experimentally. future work could

show the effectiveness of our method for other classification methods such as random forest

experimentally and theoretically.

Most feature selection methods take a long time, and few methods utilize clustering

methods for feature selection. Future research could exploit the efficiency of threshold clus-

tering to propose a new feature selection methods that could work faster than other feature

selection method. Future work may also integrate TC for IS and FS tasks, simultaneously

to accelerate SVM.

Some clustering methods such as k-means clustering has a kernel version that can cluster
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data of any shape. We obtained the kernel version of TC in R by making some changes in

the distance package. In the future, work can improve the kernel version of TC. Then,

we utilize kernel TC as IS to accelerate training SVM.

Additional work can build an R package for SVMTC; and for SVMTC for datasets with

a large number of features.
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Appendix A

Proof of Lemma 2

A.1 Lemma 3

Lemma 3. If x̂ is a prototype of a convex hull of a cluster c, and i, j ∈ c, then

∥xi − x̂∥ ≤ max
ij∈c

∥xi − xj∥

where convex hull H(c) of cluster c is defined as the set of all convex combinations of finite

number of datapoints in c:

x ∈ H(c) if and only if there exists βj such that x =
∑
j∈c

βjxj and
∑
j∈c

βj = 1.

A.1.1 Proof of Lemma 3

Suppose that i ∈ c and define λi = max
ij∈c

∥xi − xj∥. By definition, we can write x̂i as convex

linear combination of datapoints j ∈ c. Thus,

∥xi − x̂∥ =

∥∥∥∥∥xi −
∑
l∈c

βlxl

∥∥∥∥∥ =

∥∥∥∥∥∑
l∈c

βl (xi − xl)

∥∥∥∥∥ ≤
∑
l∈c

βl∥xi − xl∥ ≤ λi

(∑
l∈c

βl

)
= λi.
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A.2 Proof of Lemma 2

Proof. Let ϵ > 0, σ2 is the parameter of Gaussian radial basis function. Since threshold

clustering guarantees producing clustering such that the maximum within-cluster weight is

no larger than 4λ, where λ is an optimal value.

max
ij∈c

∥xi − xj∥ ≤ 4λ

Since λ =
√
2
4
σ
(
− log

(
1− ϵ2

2

)) 1
2
, and log

(
1− ϵ2

2

)
< 0 for 0 < ϵ < 1, hence we have

max
ij∈c

∥xi − xj∥ ≤ 4

[√
2

4
σ

(
− log

(
1− ϵ2

2

)) 1
2

]

max
ij∈c

∥xi − xj∥ ≤
√
2σ

(
− log

(
1− ϵ2

2

)) 1
2

max
ij∈c

∥xi − xj∥2 ≤ −2σ2 log

(
1− ϵ2

2

)

Using Lemma 3, we have max
i

∥xi − x̂i∥ ≤ max
ij∈c

∥xi − xj∥, where x̂i is the prototype of
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the cluster that xi belongs to. Hence,

−1

2σ2
max

i
∥xi − x̂i∥2 ≥ log

(
1− ϵ2

2

)
exp

(
−1

2σ2
max

i
∥xi − x̂i∥2

)
≥
(
1− ϵ2

2

)
− exp

(
−1

2σ2
max

i
∥xi − x̂i∥2

)
≤
(
ϵ2

2
− 1

)
2− 2 exp

(
−1

2σ2
max

i
∥xi − x̂i∥2

)
≤ ϵ2√

2− 2 exp

(
−1

2σ2
max

i
∥xi − x̂i∥2

)
≤ ϵ

max
i

√
2− 2 exp

(
−1

2σ2
∥xi − x̂i∥2

)
≤ ϵ

max
i

√
2− 2K(xi, x̂i) ≤ ϵ

Under Gaussian radial basis kernel function, we can write

max
i

√
K(xi,xi) +K(x̂i, x̂i)− 2K(xi, x̂i) ≤ ϵ

max
i

√
ϕ(xi) · ϕ(xi) + ϕ(x̂i) · ϕ(x̂i)− 2ϕ(xi) · ϕ(x̂i) ≤ ϵ

max
i

√
(ϕ(xi)− ϕ(x̂i)) · (ϕ(xi)− ϕ(x̂i)) ≤ ϵ

max
i

∥ϕ(xi)− ϕ(x̂i)∥ ≤ ϵ
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Appendix B

SVMTC Performance

B.1 SVMTC Performance with Varying Threshold Size

of TC

By varying threshold size t∗ of threshold clustering, we compare the performance of SVMTC

for different datasets. We use t∗ = 2, 3, 4, 5, 6, 7, 8, 9, then we evaluate SVMTC by using

runtime and memory usage of pre-processing, runtime and memory usage of training SVM

on the reduced dataset, reduction rate, number of support vectors used and accuracy of

SVM. Figure B.1 shows runtime and memory usage for SVMTC divided into pre-processing

and SVM training. The other evaluation measurements are presented in Figure B.2.

We conclude that increasing t∗ improves runtime and memory usage for SVM training

while we could use more time and memory for pre-processing. In addition, reduction rate is

increased and number of support vectors reduces when t∗ increases whereas SVM accuracy

is slightly reduced for some datasets.
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Figure B.1: Runtime and memory usage of reduction and SVM training for different
datasets with changing of t∗.
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Figure B.2: Classification accuracy, reduction rate of SVMTC and number of suport vectors
used for different datasets with changing of t∗.
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B.2 SVMTC Performance with Varying Number of It-

erations

By using threshold size t∗ = 2 of threshold clustering and by varying the number of iterations

r, we compare the performance of SVMTC for a simulated data of size 107 with two features.

We use m = 3, 4, 5, 6, 7, 8. Then we evaluate SVMTC by using runtime and memory usage

of pre-processing, runtime and memory usage of training SVM on the reduced dataset,

reduction rate, number of support vectors used and accuracy of SVM. Figure B.3 shows

runtime, memory for SVMTC divided into pre-processing and SVM training, reduction rate

and number of support vectors. The classification accuracy is presented in Figure B.4.

We conclude that increasing r improves runtime for SVM training. We may use large

amount of memory for preprocessing; however, less memory is used for SVM training. In

addition, reduction rate is increased and number of support vectors reduces when r increases,

whereas SVM accuracy is fluctuated.
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Figure B.3: Runtime, memory usage, reduction rate and number of support vectors of
SVMTC with t∗ = 2 and with changing of r for simulated data of size 107 and 2 features.
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Figure B.4: Classification accuracy of SVMTC with t∗ = 2 and with changing of r for
simulated data of size 107 and 2 features.
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Appendix C

R Functions

In this section, functions that we coded in R are showed. The functions that implement

SVMTC in small and big data are given included the supplementary functions.

C.1 R Function of SVMTC

This function is used to obtain the reduced dataset, the first two steps of SVMTC. For small

datasets, this function can be implemented with one repetition r = 1.

# tr i s the t r a i n i n g s e t .

# c l i s the column number o f c l a s s l a b e l .

# t i s the parameter o f t h r e s h o l d c l u s t e r i n g .

# nc i s the number o f c a t e g o r i e s o f c l a s s l a b e l .

# The output i s the reduced da t a s e t .

SVMTC 1 2 <− function ( tr , c l , t , nc ){

r <− by( tr , t r [ , c l ] , function ( x ){ sc c l u s t e r i n g ( d i s t an c e s ( x ) , t )} )

ns <− matrix (0 , byrow <− FALSE, ncol <− c l )

for ( i in 1 : nc ){
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ns <− rbind ( ns , fastAgg ( as .matrix ( t r [ t r [ , c l ]==i , ] ) , r [ [ i ] ] ) ) }

a s s i gn ( ”TrainData1” ,data . frame ( ns ) , env i r = globalenv ( ) )}

C.2 R Function of SVMTC for Big Datasets

For a big dataset, this function can be used to obtain the reduced dataset with r repetitions.

# tr i s the t r a i n i n g s e t .

# c l i s the column number o f c l a s s l a b e l .

# t i s the parameter o f t h r e s h o l d c l u s t e r i n g .

# nc i s the number o f c a t e g o r i e s o f c l a s s l a b e l .

# r i s the number o f r e p e t i t i o n .

# The output i s the reduced da t a s e t .

SVMTC2 1 2 <− function ( tr , c l , t , nc , r ){

fun <− function ( t r ){ I t i s : : I t i s f c t nomid ( tr , t , r , c l −1,dim( t r ) [ 1 ] ) }

r <− by( tr , t r [ , c l ] , fun )

b <− matrix (0 , ncol=c l )

for ( i in 1 : nc ) {b <− rbind (b , r [ [ i ] ] [ [ 1 ] ] ) }

a s s i gn ( ”TrainData1” , b [ −1 , ] , env i r = globalenv ( ) )}

C.3 Supplementary Functions

C.3.1 Function 1

The following function is fastAgg function that is used from C++ in our R codes. We use

this function to compute the centroids of clusters fast.

NumericMatrix fastAgg ( NumericMatrix orgMeans , In tege rVecto r ca t s ) {
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//orgMeans i s the o r i g i n a l da t a s e t

// ca t s i s the ca t e go r i e s , numbered 0 to n−1

// Store dimensons o f the f o r loop

long catLeng = cat s . l ength ( ) ;

int numCols = orgMeans . nco l ( ) ;

// i n i t i a l i z e number o f ca t e go r i e s ,

// i n i t i a l i z e number o f o b s e r va t i on s in each category ,

// i n i t i a l i z e aggrega ted means

long numCats = max( ca t s ) ;

In tege rVecto r c a tS i z e (numCats+1);

NumericMatrix aggMeans (numCats+1,numCols ) ;

for ( int j = 0 ; j < numCols ; j++){

for ( long i = 0 ; i < catLeng ; i++ ){

// D i f f e r en t i n s t r u c t i o n s i f j = 0 and i f j no t equa l zero

i f ( j == 0){

// Increase the ca tegory t o t a l

c a tS i z e [ ca t s [ i ] ]++;

//Update the means

aggMeans ( ca t s [ i ] , j )

= (double ) ( c a tS i z e [ ca t s [ i ] ] −1)/ ca tS i z e [ ca t s [ i ] ] ∗ aggMeans ( ca t s [ i ] , j )

+(double )1/ ca tS i z e [ ca t s [ i ] ] ∗ orgMeans ( i , j ) ;

}

else {

aggMeans ( ca t s [ i ] , j ) = (double ) aggMeans ( ca t s [ i ] , j )

+(double )1/ ca tS i z e [ ca t s [ i ] ] ∗ orgMeans ( i , j ) ;

}
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}

} return aggMeans ;

}

C.3.2 Function 2

We use this function to iterate threshold clustering m > 0 times.

# I t i s f c t nomid

# i t e r a t e d t h r e s h o l d in s tance s e l e c t i o n

# dat i s da tase t , i t shou ld be a n∗d matrix

# t i s t h r e s h o l d s i z e , i t shou ld be pre−s p e c i f y

# m i s number o f i t e r a t i o n f o r t h r e s h o l d c l u s t e r i n g (m > 0)

# d i s dimension o f da t a s e t ( eg : d = 2)

# n i s d a t a s i z e

# The output i s a l i s t o f s i z e 2 .

# The f i r s t l i s t i s proto cen te r f o r l a s t s tep ,

# The second l i s t i n c l u d e s c l u s t e r l a b e l f o r l a s t s t ep

I t i s f c t nomid <− function ( dat , t , m, d , n){

c l u s t e r l a b e l <− rep (NA, n)

for ( i in 1 :m){

my d i s t <− d i s t an c e s ( dat )

my c l u s t e r i n g new <− sc c l u s t e r i n g (my d i s t , t )

aggdata old <− fastAgg ( as .matrix ( dat ) , my c l u s t e r i n g new)

i f ( i == 1){

c l u s t e r l a b e l <− as . integer (my c l u s t e r i n g new)

}
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else {

c l u s t e r l a b e l <− f a s t J o i n 2 (my c l u s t e r i n g old , my c l u s t e r i n g new)

}

dat <− aggdata old

my c l u s t e r i n g old <− c l u s t e r l a b e l

}

return ( l i s t ( dat , c l u s t e r l a b e l ) )

}
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