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Abstract 

Study 1: Utilizing Topographic and Soil Features to Improve Rating for Farm-level Insurance 

Products  

Previous studies have shown a strong correlation between topographic/soil features and 

agricultural production; however, linkages between these features and agricultural insurance 

products are scarce. Agricultural insurance is an ever-growing means of governmental support for 

producers globally. However, failure to set insurance premiums that accurately reflect risk 

exposure can lead to low participation rates and/or adverse selection. The U.S. federal crop 

insurance program partly guards against this at the farm-level by inducing pricing heterogeneity 

via a rate multiplier curve, which does not consider topographic/soil information. We develop a 

method for econometrically incorporating this information into existing rating procedures used by 

the Risk Management Agency (RMA). The empirical application leverages 149,267 farm-level 

observations of Kansas producers across four dryland crops (corn, soybean, sorghum, and wheat), 

spanning 46 years, and matched to fine-scale topographic/soil features. The results suggest that 

incorporating these features does improve the prediction accuracy of yield losses and can, in 

general, improve rating performance. However, these improvements are specific to farms with 

limited yield histories, as there are no improvements for farms with the commonly used yield 

history of ten years. This suggests substantial rating improvements for new farms or those with 

limited histories for a particular crop, but more general improvements for the program are not 

likely to occur given a large number of current participants with a full ten-year yield history.  

 

 



  

Study 2: Tradeoffs Between Production-History-Based and Index-Based Insurance for Field 

Crops 

Agricultural insurance products based on Actual Production History (APH) typically suffer from 

adverse selection, moral hazard, and high program costs associated with pricing, loss assessment, 

and monitoring. On the contrary, Index-based insurance offers the opportunity of reducing, and 

even sometimes eliminating, some of these concerns; however, by design, they cannot guarantee 

that indemnities will be paid when producers experience losses. This concern is commonly referred 

to as basis risk and is the biggest limiting factor in the potential expansion of Index insurance 

programs. An extensive body of literature has shown that basis risk could be reduced to an 

appreciable extent by improving product design. Nonetheless, a knowledge gap on farm-level 

tradeoffs between APH- and Index-based insurance exists because observable data is limited. The 

novelty of this study is that it overcomes these limitations and extends the literature by providing 

ex-post simulated evidence of the tradeoffs between Index-based and APH-based insurance at the 

farm level. Using a sample of 5,428 corn, soybean, sorghum, and wheat KS farms from 1973-2018 

the study shows that economically significant tradeoffs do exist between APH- and Index-based 

insurance and that different types of index products are associated with differing levels of basis 

risk. Index-based insurance that protects against killing-degree-days (i.e., degree-days >30 °C) 

accumulation generates the most significant gains in economic rents and is associated with 

relatively low basis risk.  

 

 

 

 



  

Study 3: The Potential Significance of “Big Ag Data” in Corn Futures Markets 

The advent of precision agriculture technologies has left researchers to grapple with how to best-

use its associated “Big Ag-Data”. While the wealth of information output from precision 

equipment can easily be aggregated to a higher level in real-time, this poses an interesting question 

of whether aggregated real-time data will be relevant vis-à-vis periodic information from public 

sources. To this end, this study utilized advances in event study and yield projection methodologies 

to test the potential market value of simulated live streamed yield monitor data vis-à-vis USDA 

report yields. The results shows that the market for corn exhibits only semi-strong form efficiency, 

as the “news” provided by the monthly Crop Production and World Agricultural Supply and 

Demand Estimates reports is incorporated into prices in at most two days after the release. As 

expected, an increase in corn yields relative to what was publicly known, elicits a futures price 

decrease. On the contrary, live-streamed yield information does not significantly correlate with 

historic market reactions. Nonetheless, this study advances the market-price event-study 

methodology by utilizing sources of information not previously considered. Second, the study 

provides policy implications centered around the ongoing debate about the economic significance 

of USDA reports in the presence of growing information availability in the private sector.  

 

 

 

 

 

 

  



  

Utilizing geo-referenced and “big-ag” data to improve US agricultural policy 

 

 

by 

 

 

Francis Tsiboe 

 

 

 

 

B.S., University of Ghana, 2011 

M.S., University of Arkansas, 2015 

 

 

 

A DISSERTATION 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

 

Department of Agricultural Economics  

College of Agriculture 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2021 

 

 

Approved by: 

 

Major Professor 

Jesse Tack   



  

Copyright 

© Francis Tsiboe 2021. 

 

 

  



  

Abstract 

Study 1: Utilizing Topographic and Soil Features to Improve Rating for Farm-level Insurance 

Products 

Previous studies have shown a strong correlation between topographic/soil features and 

agricultural production; however, linkages between these features and agricultural insurance 

products are scarce. Agricultural insurance is an ever-growing means of governmental support for 

producers globally. However, failure to set insurance premiums that accurately reflect risk 

exposure can lead to low participation rates and/or adverse selection. The U.S. federal crop 

insurance program partly guards against this at the farm-level by inducing pricing heterogeneity 

via a rate multiplier curve, which does not consider topographic/soil information. We develop a 

method for econometrically incorporating this information into existing rating procedures used by 

the Risk Management Agency (RMA). The empirical application leverages 149,267 farm-level 

observations of Kansas producers across four dryland crops (corn, soybean, sorghum, and wheat), 

spanning 46 years, and matched to fine-scale topographic/soil features. The results suggest that 

incorporating these features does improve the prediction accuracy of yield losses and can, in 

general, improve rating performance. However, these improvements are specific to farms with 

limited yield histories, as there are no improvements for farms with the commonly used yield 

history of ten years. This suggests substantial rating improvements for new farms or those with 

limited histories for a particular crop, but more general improvements for the program are not 

likely to occur given a large number of current participants with a full ten-year yield history.  

 

 



  

Study 2: Tradeoffs Between Production-History-Based and Index-Based Insurance for Field 

Crops 

Agricultural insurance products based on Actual Production History (APH) typically suffer from 

adverse selection, moral hazard, and high program costs associated with pricing, loss assessment, 

and monitoring. On the contrary, Index-based insurance offers the opportunity of reducing, and 

even sometimes eliminating, some of these concerns; however, by design, they cannot guarantee 

that indemnities will be paid when producers experience losses. This concern is commonly referred 

to as basis risk and is the biggest limiting factor in the potential expansion of Index insurance 

programs. An extensive body of literature has shown that basis risk could be reduced to an 

appreciable extent by improving product design. Nonetheless, a knowledge gap on farm-level 

tradeoffs between APH- and Index-based insurance exists because observable data is limited. The 

novelty of this study is that it overcomes these limitations and extends the literature by providing 

ex-post simulated evidence of the tradeoffs between Index-based and APH-based insurance at the 

farm level. Using a sample of 5,428 corn, soybean, sorghum, and wheat KS farms from 1973-2018 

the study shows that economically significant tradeoffs do exist between APH- and Index-based 

insurance and that different types of index products are associated with differing levels of basis 

risk. Index-based insurance that protects against killing-degree-days (i.e., degree-days >30 °C) 

accumulation generates the most significant gains in economic rents and is associated with 

relatively low basis risk.  

 

 

 

 



  

Study 3: The Potential Significance of “Big Ag Data” in Corn Futures Markets 

The advent of precision agriculture technologies has left researchers to grapple with how to best-

use its associated “Big Ag-Data”. While the wealth of information output from precision 

equipment can easily be aggregated to a higher level in real-time, this poses an interesting question 

of whether aggregated real-time data will be relevant vis-à-vis periodic information from public 

sources. To this end, this study utilized advances in event study and yield projection methodologies 

to test the potential market value of simulated live streamed yield monitor data vis-à-vis USDA 

report yields. The results shows that the market for corn exhibits only semi-strong form efficiency, 

as the “news” provided by the monthly Crop Production and World Agricultural Supply and 

Demand Estimates reports is incorporated into prices in at most two days after the release. As 

expected, an increase in corn yields relative to what was publicly known, elicits a futures price 

decrease. On the contrary, live-streamed yield information does not significantly correlate with 

historic market reactions. Nonetheless, this study advances the market-price event-study 

methodology by utilizing sources of information not previously considered. Second, the study 

provides policy implications centered around the ongoing debate about the economic significance 

of USDA reports in the presence of growing information availability in the private sector.  

 

 

 

 

 

 



x 

Table of Contents 

List of Figures ............................................................................................................................... xii 

List of Tables ............................................................................................................................... xiv 

Acknowledgments......................................................................................................................... xv 

Dedication .................................................................................................................................... xvi 

Chapter 1 - Introduction .................................................................................................................. 1 

References ................................................................................................................................... 4 

Chapter 2 - Utilizing Topographic and Soil Features to Improve Rating for Farm-level Insurance 

Products ................................................................................................................................... 6 

2.1 Introduction ........................................................................................................................... 6 

2.2 Methods ................................................................................................................................ 9 

2.2.1 Crop Insurance Continuous Rating Models ................................................................... 9 

2.2.2 Measuring Predictive Accuracy ................................................................................... 14 

2.2.3 Measuring Economic Performance .............................................................................. 14 

2.3 Data ..................................................................................................................................... 15 

2.3.1 Loss Experience Data .................................................................................................. 16 

2.3.2 Actuarial Data .............................................................................................................. 19 

2.3.3 Topographic and Soil Features .................................................................................... 19 

2.4 Results ................................................................................................................................. 21 

2.4.1 Continuous Rating Exponent ....................................................................................... 21 

2.4.2 Predictive Performance ................................................................................................ 25 

2.4.3 Economic Performance ................................................................................................ 28 

2.4.4 Robustness of Main Finding ........................................................................................ 30 

2.5 Discussion and Conclusion ................................................................................................. 31 

References ................................................................................................................................. 34 

Chapter 3 - Tradeoffs Between Production-History-Based and Index-Based Insurance for Field 

Crops ...................................................................................................................................... 39 

3.1. Introduction ........................................................................................................................ 39 

3.2. Background Information .................................................................................................... 42 

3.2.1 Basic elements of APH-based contracts ...................................................................... 42 



xi 

3.2.2 Basic elements of Index-based contracts ..................................................................... 43 

3.2.4 Basis risk ...................................................................................................................... 47 

3.3. Methods ............................................................................................................................. 47 

3.3.1 Index insurance designs ............................................................................................... 48 

3.3.2 Index insurance interval allocation .............................................................................. 51 

3.3.3 Comparisons of potential outcomes ............................................................................. 53 

3.4. Data .................................................................................................................................... 54 

3.4.1 Sources ......................................................................................................................... 54 

3.4.2 Yield and APH-based loss experience data ................................................................. 55 

3.4.3 Index-based insurance data .......................................................................................... 55 

3.5. Results ................................................................................................................................ 57 

3.5.1 Basis risk ...................................................................................................................... 57 

3.5.3 Economic performance ................................................................................................ 58 

3.6. Conclusion ......................................................................................................................... 62 

Reference .................................................................................................................................. 63 

Chapter 4 - The Potential Significance of “Big Ag Data” in Corn Futures Markets .................... 68 

4.1 Introduction ......................................................................................................................... 68 

4.2. Event Study Literature ....................................................................................................... 70 

4.3 Methods .............................................................................................................................. 73 

4.4. Data .................................................................................................................................... 75 

4.5. Results ................................................................................................................................ 81 

4.6. Discussion and Conclusion ................................................................................................ 85 

References ................................................................................................................................. 86 

Chapter 5 - Overall Conclusion .................................................................................................... 89 

Appendix A - Study 1 ................................................................................................................... 91 

  



xii 

List of Figures 

Figure 2.1: Plots of continuous rating exponents from alternative models in Kansas .................. 23 

Figure 2.2: Spatial pattern in county-level continuous rating exponents for alternative models in 

Kansas ................................................................................................................................... 24 

Figure 2.3: Predictive and economic performance of alternative models for estimating continuous 

rating exponents in Kansas ................................................................................................... 26 

Figure 2.4: Distribution of farm-level relative premium rates ...................................................... 27 

Figure 2.5: Relationship between actual production history length and economic performance of 

soil texture conditioned continuous rating exponents in Kansas .......................................... 29 

Figure 3.1: False-Negative-Probabilities for Various Index-Based Insurance Products .............. 59 

Figure 3.2: Spatial pattern in basis risk for alternative index insurance products in Kansas ....... 60 

Figure 3.3: Economic Performance of Index-Based Crop Insurance ........................................... 61 

Figure 4.1: Time Series of Daily Returns for Corn Futures Price ................................................ 77 

Figure 4.2: Actual and Public/Live Projected Corn Yields .......................................................... 79 

Figure 4.3: Level of market surprise about yield and usage information in USDA Crop 

Production Reports ................................................................................................................ 80 

Figure A.1: Spatial Representation of Farm-Level Data by Crop ................................................ 95 

Figure A.2: Boxplots of Yields ..................................................................................................... 96 

Figure A.3: Representativeness of Kansas Farm Management Association (KFMA) Yields by 

Crop ....................................................................................................................................... 97 

Figure A.4: Relative Yields .......................................................................................................... 98 

Figure A.5: Sample Distribution by Production History Length .................................................. 99 

Figure A.6: Mean Empirical Loss Cost Ratios ........................................................................... 100 

Figure A.7: Boxplot of 2019 Federal Crop Insurance Actuarial Information for Enterprise Unit 

Dryland Production in Kansas at 75% coverage level ........................................................ 101 

Figure A.8: Statistical Learning Outcome for Soil Attribute Selection ...................................... 102 

Figure A.9: Map-unit Level Soil Texture Spatial Representation in Kansas ............................. 103 

Figure A.10: Farm Level Soil Texture Distribution by Crop ..................................................... 104 

Figure A.11: Robustness of Ceded to Retained Indemnity Ratios Across Model Specifications

 ............................................................................................................................................. 105 



xiii 

Figure A.12: Robustness of Ceded to Retained LR Ratios Across Model Specifications ......... 106 

Figure A.13: Sample of the spatial objects for a given farm ...................................................... 107 

  



xiv 

List of Tables 

Table 2.1 Regression Results ........................................................................................................ 22 

Table 4.1: Diagnostic Test ON Corn Futures Price Return Reaction to USDA Reports, 1965-

2019 ....................................................................................................................................... 82 

Table 4.2: Corn Futures Price Return Reaction to USDA Reports, 1965-2019 ........................... 83 

Table 4.3: Corn Futures Price Return Reaction to Yield “News” Announced in World 

Agricultural Supply and Demand Estimates (WASDE) and Crop Production Reports, 

1965/19 ................................................................................................................................. 84 

Table A.1: Kansas Farm Level Relationship Between Mean Yield and Yield Risk .................... 91 

Table A.2: USA County Level Correlation Between Mean Yield and Yield Risk ...................... 92 

Table A.3: Example Horizon Thickness Alteration for Root Zone Depth ................................... 93 

Table A.4: Table Fields Used in the Calculation of Topographic and Soil Features ................... 94 

 

  



xv 

Acknowledgments 

I stand tall because of God almighty and on the shoulders of a lot of people. For this reason, 

I first thank God almighty for the drive and grace throughout my scholarly training. I am grateful 

to Dr. Jesse Tack for his kindness and mentorship throughout my Ph.D. career. I appreciate the 

insight and help my supervisory committee offered. Thanks to Dr. Nathan Hendricks, Dr. Jisang 

Yu, Dr. Krishna Jagadish SV, and Dr. Stuart Heckman. I would like to thank the Department of 

Agricultural Economics for funding support. Thanks to Judy Duryee, Deanna Foster, and Amy 

Schmidt, for their welcoming smiles and kindness. To my wife, mother, and siblings, thanks for 

the love, laughter, well-wishes, and prayers, and understanding all this while. To my friends and 

colleagues, it is a pleasure knowing you. I cherish the friendship. It has been wonderful studying 

at Kansas State University! 

 

  



xvi 

Dedication 

To my wife (Mary Ama Tsiboe) and daughter (Liana Owusua Tsiboe) 

 

  



1 

Chapter 1 - Introduction  

The data revolution has been upon us for many years now, and public policy continues to 

grapple with how to best use the wealth of information currently at our disposal. It is not so much 

a question of whether new information can improve the efficiencies of providing public support 

and services for agriculture, it is more narrowly a question of what data to leverage and how to 

build it into existing programs. The wrong data can fail to deliver efficiencies at best, and make 

current programs less efficient at worst if too much noise is being built in. Consequently, this 

dissertation consists of three studies analyzing the potential of utilizing geo-referenced and “Big-

Ag” data to improve US agricultural policy from the angle of risk management and farm support.  

Globally, farmers and ranchers are currently facing increased climatic and market 

uncertainty in the coming decades, which suggests that support provided through agricultural 

insurance is likely to become more critical (Mahul and Stutley 2010; Smith and Glauber 2012). 

The World Bank shows that before 2008, the global agricultural insurance market generated $15 

billion in premiums, which helped producers across 65 advanced and emerging countries cover 

losses and stabilize revenues (Mahul and Stutley 2010). While the product space of the agricultural 

insurance market is diverse, they can be segregated into two broad groups based on the mode of 

indemnity trigger and pricing, i.e., Actual Production History [APH] based and Index-based 

schemes. Generally, agricultural insurance products are plagued by (1) adverse selection, the case 

whereby the insurance pool becomes riskier due to mispricing of products, which can lead to low 

participation as in the case of the Federal Crop Insurance Program (FCIP) before 2002 (Smith, 

Glauber and Goodwin 2017; Glauber 2013); (2) moral hazard, where insureds assume riskier 

activities to increase the chance of indemnification (Chambers 1989; Horowitz and Lichtenberg 

1993; Yu and Hendricks 2020; Park et al. 2020); (3) basis risk, where there is real or perceived 
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disconnects between product and outcome (Jensen and Barrett 2017; Carter et al. 2017; Barnett 

and Mahul 2007); and (4) high program costs associated with pricing, loss assessment, and 

monitoring (Barnett and Mahul 2007). These problems can be reduced to an appreciable extent if 

the design of the suite of products is improved. The motivation of the first two studies in this 

dissertation is to extend the literature by proposing data-driven ways of improving the designing 

of crop insurance to address the stated problems.  

The first study in Chapter 2 ascertains the feasibility and potential economic gains of using 

soil quality attributes for setting crop insurance premium rates at the farm level by pursuing two 

related questions: (i) does soil and topography conditioned rates lead to significant predictive and 

economic gains; (ii) do the gains depend on the number of yield observations available to rate-

setters. To answer these questions, this study develops a method for econometrically incorporating 

this information into existing rating procedures used by the Risk Management Agency (RMA) and 

deploys an ex-post APH-based insurance simulation based on observed data and grounded in RMA 

guidelines (RMA 2018) to evaluate this new method and the significance of soil information in 

crop insurance rating. The empirical application leverages 149,267 farm-level observations of 

Kansas producers across four dryland crops (corn, soybean, sorghum, and wheat), spanning 46 

years, and matched to fine-scale topographic/soil features derived using the nationwide gridded 

soil data from Soil Survey Geographic (SSURGO). The results suggest that features do improve 

the prediction accuracy of yield losses and can, in general, improve rating performance. 

Interestingly, these improvements are specific to farms with limited yield histories, as there are no 

improvements for farms with the commonly used yield history of ten years. 

The second study in Chapter 3 focuses on the same crops and ascertains the tradeoffs 

between Production-History-based and Index-based insurance by pursuing two related objectives: 
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(i) ascertain the potential outcomes of a broad range of weather Index-based insurance and APH-

based insurance under specified farm income goals; and given this, (ii) determine if the potential 

outcomes are different. The objectives are achieved by deploying an ex-post Index-based insurance 

simulation that is parallel to the APH-based insurance simulation in Chapter 2 to generate the two 

potential outcomes based on the same farm-level data and then assess their tradeoffs. The products 

in the ex-post Index-based insurance simulation are designed following RMA’s rainfall index 

insurance for pasture rangeland and forage (PRF-RI). The results show that economically 

significant tradeoffs do exist between APH- and Index-based insurance and that different types of 

Index products are associated with differing levels of basis risk. Particularly, Index-based 

insurance that protects against excess accumulation in killing-degree-days (i.e., degree-days >30 

°C) generates the most significant gains in farm income and economic rents and is associated with 

relatively low basis risk.  

Unlike the first two that dealt with agricultural risk management from a crop insurance 

angle, the third study is also focused on risk management but from the futures market angle. 

Particularly, the final study in Chapter 4 answered a simple but important question of whether live-

streamed harvest-time yields from precision technologies are potentially economically valuable. 

To answer this question, the study utilizes historic end-of-season farm-level corn yields that 

approximately represent 83% of US planted acres for 1999-2008 and Crop Progress and Condition 

(CPC) to construct weekly yield projection as representative of those from live yield monitors. The 

idea is to utilize the farm-level yield data to represent the population of farm-level US corn yields, 

and the weekly variation in CPC information on the proportion of annual crop harvested and under 

various conditions to approximate how the yield population changes throughout the harvest season. 

Given the simulated live-streamed harvest-time yields, the study then employs event study 
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methodology to evaluate the potential economic significance of live-streamed yield monitor data 

vis-à-vis USDA reports. The results showed that corn futures market participants react to USDA 

reports and that live-streamed yield information does not elicit significant market reaction beyond 

that. 

The research questions being posed in this dissertation have important implications for 

current and future agricultural policy. The analysis bridges data from multiple disciplines in 

innovative ways to leverage new insights, and the results will generate discussion among many 

types of stakeholders including producers, policymakers, and agribusinesses. The conclusion of 

this dissertation in Chapter 5 highlights some of the important implications for current and future 

agricultural policy. 
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Chapter 2 - Utilizing Topographic and Soil Features to Improve 

Rating for Farm-level Insurance Products 

 2.1 Introduction  

Previous research has established linkages between topographic and soil features with 

general agricultural production outcomes (Cox et al. 2003; Corwin et al. 2003; Juhos, Szabó and 

Ladányi 2016; Li et al. 2019); however specific links to large negative production shocks and/or 

agricultural insurance products are scarce. Initiated in Europe over two centuries ago, agricultural 

insurance is a large and rapidly expanding component of producer-oriented governmental support 

programs in both developed and developing countries (Mahul and Stutley 2010; Smith and Glauber 

2012). Although a bit dated, a 2008 World Bank survey found that the global agricultural insurance 

market provided indemnity and index-based crop insurance products that generated $15 billion in 

premiums across 65 countries (Mahul and Stutley 2010).  

A wide range of topographic and soil features have been linked to production, including 

soil texture/structure (Cox et al. 2003; Nyiraneza et al. 2012; Sene et al. 1985), available water 

(Campbell et al. 1993), pH (Anthony et al. 2012; Martín, Bollero and Bullock 2005), bulk density 

(Corwin et al. 2003), organic matter (Martín et al. 2005), nutrients (Cox et al. 2003; Di Virgilio, 

Monti and Venturi 2007), and slope (Kravchenko and Bullock 2000). However, these studies 

typically focus on the cross-sectional (spatial) effects on mean yield across locations and do not 

investigate implications for temporal (interannual) risk at a fixed location. Given the strong 

linkages to cross-sectional yield variation, one might also expect that topographic/soil features 

affect yield risk at a specific location as well. Furthermore, if this is the case then it suggests that 

components of agricultural insurance programs such as premium rates should also be affected by 
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them. To the best of this study’s knowledge, Woodard and Verteramo-Chiu (2017) is the only 

previous study linking a topographic/soil feature to crop insurance using observational data. 

The study focused on the U.S. federal crop insurance program (FCIP) which began in the 

1930s and is currently a public-private partnership where the Risk Management Agency (RMA) 

is mandated by the Federal Crop Insurance Corporation (FCIC) to oversee the FCIP and provides 

subsidized, multiple-peril individual and area-wide insurance policies covering both yield and 

revenue support for over 100 crops planted on a majority of U.S. cropland (RMA 2020). Major 

concerns for the FCIP include low participation, either caused by or in conjunction with adverse 

selection. The FCIP deals with these concerns by inducing pricing heterogeneity across farms 

based on their presumed risk in addition to subsidizing purchases. Cost savings from reducing 

subsidies is a perennial topic surrounding the program (United States Government Accountability 

Office [GAO] 2014; Congressional Research Service [CRS] 2015; Congressional Budget Office 

[CBO] 2017; Lusk 2017) but such a reduction would likely reduce producer participation 

(Congressional Budget Office [CBO] 2017). Importantly, subsidy reduction would place more 

importance on RMA’s ability to price risk accurately across farms to guard against low 

participation and/or adverse selection. 

There are many determinants of heterogeneous risk across farms, but few are easily 

observed from the rate-setter's perspective. One is to measure average yield/revenue on-farm and 

then presume that risk co-varies with that average, and indeed this approach is currently employed 

by the RMA (Coble et al. 2010). Another dimension that has received less attention is the 

incorporation of publicly available geo-referenced measures such as topographic and soil features 

as in Woodard and Verteramo-Chiu (2017), which found that conditioning yield histories on soil 

feature improved rating performance. The study extends the literature by pursuing two related 
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questions: (i) does soil and topography conditioned rates lead to significant predictive and 

economic gains and, if so, (ii) whether these gains depend on the number of historical yield 

observations available to rate-setters. Intuition for the second question comes from the potential 

ability of repeated sampling to naturally “capture” the time-invariant linkage between location and 

risk.  

The study also proposes a new method of incorporating soil information into crop insurance 

rates by recalibrating RMA’s rate multiplier curve, rather than adjusting historically reported yield 

series like Woodard and Verteramo-Chiu (2017). The method is applied to a sample of 149,267 

observations across 5,428 farms and four dryland crops (corn, soybean, sorghum, and wheat) in 

Kansas (KS) spanning 46 years (1973-2018). The analysis initially focuses on soil texture features 

that were considered “optimal” based on machine learning algorithms, but the main results are 

later shown to hold across a wide range of topographical and soil features including root zone 

depth, available water storage, slope, exchangeable cations, soil organic carbon, and the National 

Commodity Crop Productivity Index (NCCPI). Measures for these variables are derived using the 

nationwide gridded soil data from Soil Survey Geographic (SSURGO).  

The study finds that incorporating soil information does improve the predictive accuracy 

of losses and is associated with economically meaningful premium rate improvements for the 

overall sample of farms with varying yield history lengths.1 Perhaps more interestingly, the 

economic gains decrease rapidly with yield-history-length as very large gains are associated with 

histories of less than four years and essentially zero gains associated with yield histories of ten 

years. This is the first documented evidence that efficiencies from incorporating soil information 

 

1 Revenue insurance dominates the FCIP, however it includes a yield risk component that is based on that of yield 

insurance.  
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into FCIP rate-setting procedures crucially depend on how much historical yield information is 

provided by producers.  

 2.2 Methods 

 2.2.1 Crop Insurance Continuous Rating Models 

An extensive literature has attempted to estimate farm level rates (Carriquiry, Babcock and 

Hart 2008; Ramirez, Carpio and Rejesus 2011; Woodard and Verteramo-Chiu 2017), but typically 

rely on methods based on distributional assumptions of yields. To date, no study has utilized an 

identification strategy that relies on holding county base and fixed rates constant while adjusting 

the rate multiplier curve to better fit empirical LCRs from observed farm yield over a large 

temporal and spatial domain.  

RMA sets base insurance rates for county/crop combinations derived from historical loss 

experiences adjusted for extreme losses (Coble et al. 2010) and then averages them using weather-

weights as in Rejesus et al. (2015). In a sequential yet separate step, these county-level base rates 

are adjusted to the individual/unit level based on a presumption of risk relative to others in the 

same county (Coble et al. 2010). The relative risk adjustment is determined by a rate multiplier 

curve, which essentially embodies an assumption that risk correlates negatively with mean yield 

such that relatively productive insureds are lower risk and thus receive lower rates. Section 508 of 

the Agricultural Adjustment Act of 1938 mandates RMA to modify rating systems to be actuarially 

sound. Consequently, there is a large and growing literature analyzing RMA insurance rating 

procedures along the lines of actuarial soundness (Woodard, Sherrick and Schnitkey 2011), 

adverse selection (Skees and Reed 1986; Goodwin 1994), technology-induced yield trends 

(Adhikari, Knight and Belasco 2012; Seo et al. 2017), and heteroscedastic yields (Harri et al. 2011; 

Annan et al. 2014). 
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The main components of FCIP farm-level yield insurance contracts are the rate yield (𝑦̅𝑖), 

approved yield (𝑦̈𝑖), yield guarantee (𝑦̃𝑖𝑔), coverage level (𝐶𝑔), indemnity (𝐼𝑖𝑔), premium rate (𝑅𝑖𝑔), 

premium (𝑃𝑖𝑔), and subsidy (𝑆𝑔). Here i denotes farm and g denotes coverage level. The rate yield 

is the simple average of actual production history (APH) reported by farmers subject to no 

adjustments. While the approved yield could in principle be the same as the rate yield, several 

aspects of the RMA’s actuarial process can produce differences as the production history is 

typically adjusted higher through various mechanisms.2 The coverage level is selected by the 

purchaser and is the proportion of the insured unit’s approved yield used to set the yield guarantee 

such that 𝑦̃𝑖𝑔 = 𝑦̈𝑖 ∙ 𝐶𝑔.3 Assuming output price is equal to unity without loss of generality, the per-

acre indemnity for a given yield outcome, 𝑦𝑖𝑡, is given by 𝐼𝑖𝑔 = 𝑚𝑎𝑥{0, 𝑦̃𝑖𝑔 − 𝑦𝑖𝑡}.4 

Insurance policies are supposed to be priced actuarially fairly such that premiums are equal 

to expected indemnities: 𝑃𝑖𝑔 = 𝐸[𝐼𝑖𝑔]. Since 𝐼𝑖𝑔 are stochastic and not known at the time the policy 

is written, RMA sets the price as the product of a premium rate, (𝑅𝑖𝑔), determined using a 

continuous rating formula, and the yield guarantee: 𝑃𝑖𝑔 = 𝑅𝑖𝑔 𝑦̃𝑖𝑔.5 The final price paid by the 

insured is 𝑃𝑖𝑔𝑆𝑔, where 𝑆𝑔 is a subsidy factor determined by FCIC and is tied to coverage level.6 

 

2 Common adjustments made to approved yield calculations include yield exclusion, yield substitution, and trend.  

3 Federally approved coverage levels for the 2019 crop year ranged from 55-85% in 5% increments. 

4 Note that to the extent that approved yield is higher than rate yield, as is often the case, this benefits producers as the 

yield guarantee will be higher, and thereby, will increase indemnities for a given yield outcome and improves producer 

welfare (Adhikari, Knight and Belasco 2013) 

5 In practice, premiums are the product of the premium rate and liability = guarantee × price. However, in the current 

setup, price = 1, so liability = guarantee.  
6 For the 2019 crop insurance program, corn, soybeans, sorghum, and wheat policies with coverage levels of 0.55, 

0.65, 0.75, and 0.85 had 𝑆𝑔 respectively equal to 0.64, 0.59, 0.55, and 0.38. Between 2005-2018, the federal 

government subsidized on average 61.1% of farmers' premiums (RMA 2019b). 
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Based on RMA (2000), the specific formula that RMA uses to construct premium rates is 

given by7: 

 𝑅𝑖𝑔 = 𝛼𝑐𝑔[𝑦̅𝑖 𝑦̅𝑐𝑟⁄ ]𝛽𝑐 + 𝛿𝑐𝑔,        (2.1). 

Here the subscript c denotes county, and 𝛼𝑐𝑔 and 𝛿𝑐𝑔 are a base rate and fixed loading factor, both 

of which vary across coverage levels and are calculated from county-level aggregated loss 

experience data. The county base rate is scaled up or down for a particular farm based on a rate 

multiplier [𝑦̅𝑖 𝑦̅𝑐𝑟⁄ ]𝛽𝑐 that leverages the ratio of the producer’s rate yield over the county-level 

reference yield 𝑦̅𝑐𝑟 to make this adjustment. RMA defines this reference as an average of county-

level yields. For a given ratio, the base rate will be adjusted based on the value of the county-

specific rating exponent 𝛽𝑐. Even though Equation (2.1) is a simplified version of RMA’s 

continuous rating formula, it captures all the essential elements for this study.  

The adjustment of the county base rate for an individual farm depends on two main pieces 

of information: (i) the farm’s relative yield performance to that of its peers and (ii) the value of the 

rating exponent. For an average farm with a yield ratio of one, the implied rate multiplier will also 

take on a value of one regardless of the value of the rating exponent, and the premium rate will be 

𝑅𝑖𝑔 = 𝛼𝑐𝑔 + 𝛿𝑐𝑔. In practice, farms are either going to be above or below the reference yields, and 

the county base rate will be adjusted accordingly based on the sign of 𝛽𝑐. If 𝛽𝑐 is positive, then the 

rate multiplier is monotonically increasing in the yield ratio, and relatively more productive farms 

are considered riskier. Thus, the county base rate is adjusted upward. However, if instead, 𝛽𝑐 is 

negative, then the rate multiplier is monotonically decreasing, and the opposite effect occurs with 

 

7 The literature is inconsistent on the difference between rate and approved yield in the FCIP. RMA actuarial 

documents distinguish between two yields calculated from the farmer’s APH: approved yields are used in calculating 

farmer’s guarantee and rate yields are used to calculate premium rates (RMA 2019a). 
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relatively more productive farms assumed to be less risky. Thus, the county base rate is adjusted 

downward. According to Milliman and Robertson (2000), the use of a negative 𝛽𝑐 by RMA is 

based on research and is corroborated by (Botts and Boles 1958; Skees and Reed 1986).  

The RMA’s rating methodology approximates expected losses with rates (Coble et al. 

2010). This excludes the cost associated with program delivery since they are provided for in the 

Administrative and Operating cost (A&O) agreements. The RMA derives expected losses – 

referred to as the “loss cost ratio” (LCR) – as expected indemnity divided by liability. 

Consequently, since LCRs measure loss per unit of exposure, an objective of RMA’s method is to 

derive rates that reflect this. So, what can go wrong with the insurance continuous rating formula 

presented in Equation (2.1)? Woodard and Verteramo-Chiu (2017) postulated that biased rate-

yields (y̅i) could lead to biased rates (Rig) and showed that conditioning expected yields on soil 

could mitigate this.  

The study deviates from Woodard and Verteramo-Chiu (2017), by not adjusting rate-

yields, but rather allowing the key county-level parameter in the rate multiplier, 𝛽𝑐, to be re-

estimated to account for topographic and soil features. Based on RMA’s approximation of the 

expected loss component of rates with LCR, Equation (2.1) can empirically be estimated as 

𝐿𝐶𝑅𝑖𝑔𝑡 = 𝛼𝑐𝑔
∗ [𝑦̅𝑖𝑡 𝑦̅𝑐𝑟𝑡⁄ ]𝛽𝑐

∗+𝑓(𝑿𝑖,𝐶𝐷𝑅𝑑;𝝆) + 𝜀𝑖𝑔𝑡      (2.2),  

where the variable 𝐿𝐶𝑅𝑖𝑔𝑡 is an empirical LCR for farm i in year t under coverage level g. Details 

of its derivation are outlined in the data section. Note that the county level base rate and the 

exponent in the rate multiplier are being held fixed in this empirical model. These fixed parameters 
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are denoted with an asterisk (*) and take on values based on their 2019 crop year values published 

in RMA (2019a). The loading factor is omitted from the equation by setting it equal to zero.8  

The exponent for the rate multiplier curve has been amended to include the fixed value 

currently used by RMA plus an adjustment: 𝛽𝑐
∗ + 𝑓(. ), where 𝑓(. ) is a function of farm-level 

topographic and soil features (𝑿𝑖) and crop reporting district-level fixed effects (𝐶𝐷𝑅𝑑). The main 

idea is to estimate the 𝝆 parameters while holding both 𝛼𝑐𝑔
∗  and 𝛽𝑐

∗ fixed, which can then be used 

to re-estimate current continuous rating exponents to be reflective of empirical LCRs.  

Three types of adjustment functions are considered. The first includes only CRD level 

adjustments that are not based on topographic and soil features but rather ad hoc geographical 

boundaries: 𝑓(. ) = ∑ 𝜌𝑑𝐶𝑅𝐷𝑑
𝐷
𝑑  [i.e., CRD model] where 𝐶𝑅𝐷𝑑 is a dummy for crop reporting 

district d. The second ignores these and instead focuses on topographic and soil features: 𝑓(. ) =

ℎ(𝑿𝑖; 𝝆) [SOIL model]. The third considers both types simultaneously: 𝑓(. ) = ℎ(𝑿𝑖; 𝝆) +

∑ 𝜌𝑑𝐶𝑅𝐷𝑑
𝐷
𝑑 ) [CRD-SOIL model]. For comparisons to current rates, a baseline model where the 

adjustment function 𝑓(. ) is omitted entirely from the model is also included so that the four models 

under consideration are:  

[Baseline]  𝐿𝐶𝑅𝑖𝑔𝑡 = 𝛼𝑐𝑔
∗ [𝑦̅𝑖𝑡 𝑦̅𝑐𝑟𝑡⁄ ]𝛽𝑐

∗
       (2.3)    

[CRD]   𝐿𝐶𝑅𝑖𝑔𝑡 = 𝛼𝑐𝑔
∗ [𝑦̅𝑖𝑡 𝑦̅𝑐𝑟𝑡⁄ ]𝛽𝑐

∗+∑ 𝜌𝑑𝐶𝑅𝐷𝑑
𝐷
𝑑 + 𝜀𝑖𝑔𝑡    (2.4)   

[SOIL]   𝐿𝐶𝑅𝑖𝑔𝑡 = 𝛼𝑐𝑔
∗ [𝑦̅𝑖𝑡 𝑦̅𝑐𝑟𝑡⁄ ]𝛽𝑐

∗+ℎ(𝑿𝑖;𝝆) + 𝜀𝑖𝑔𝑡     (2.5)   

 

8 Alternatively, 𝐿𝐶𝑅𝑖𝑔𝑡 − 𝛿𝑐
∗ could have been used as the dependent variable in Equation (2.2). However, fixing 𝛿 at 

its 2019 crop year value will alter the rate multiplier curve by making it steeper (i.e., a large absolute value for 𝛽𝑐). 

To demonstrate, suppose the true rate multiplier curve has a continuous rating exponent of -1.5 and the insureds yield 

ratio is 1.5 with a corresponding 𝐿𝐶𝑅 = 1.5−1.5 = 0.54. Subtracting a fixed county rate of 0.02 from the LCR gives 

an effective continuous rating exponent of 𝛽𝑐 = ln[0.54 − 0.02] ln[1.5]⁄ = −1.6. 
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 [CRD-SOIL]  𝐿𝐶𝑅𝑖𝑔𝑡 = 𝛼𝑐𝑔
∗ [𝑦̅𝑖𝑡 𝑦̅𝑐𝑟𝑡⁄ ]𝛽𝑐

∗+ℎ(𝑿𝑖;𝝆)+∑ 𝜌𝑑𝐶𝑅𝐷𝑑
𝐷
𝑑 ) + 𝜀𝑖𝑔𝑡   (2.6). 

Equations 2.4-2.6 are estimated separately for each crop using nonlinear least squares with 

farm-level data pooled across all counties. Given the estimates of the parameters in 𝛒, the adjusted 

exponent is estimated for the three alternative models as 𝛽𝑐
∗ + ∑ 𝜌̂𝑑𝐶𝑅𝐷𝑑

𝐷
𝑑 , 𝛽𝑐

∗ + ℎ(𝑿𝑖; 𝝆̂), and 

𝛽𝑐
∗ + ℎ(𝑿𝑖; 𝝆̂) + ∑ 𝜌̂𝑑𝐶𝑅𝐷𝑑

𝐷
𝑑 ), respectively. Note that exponents will be adjusted at the 

county/CRD level under the CRD model, and at the farm level for the SOIL and CRD-SOIL 

models.  

 2.2.2 Measuring Predictive Accuracy 

Both in- and out-of-sample methods are used to measure the predictive accuracy of the 

models. In-sample accuracy is measured as the mean squared error, while out-of-sample accuracy 

is based on cross-validation using ten approximately equal-sized subsamples (folds). Both 

measures are reported relative to the baseline model (Equation [2.3]), with values below one 

indicating better performance. The whole process is repeated 1,000 times by bootstrap sampling 

the farms in the dataset to measure statistical uncertainty. 

 2.2.3 Measuring Economic Performance 

Based on Harri et al. (2011) and Coble et al. (2007), the study assumes the role of an 

Agricultural Insurance Provider (AIP) to ascertain whether the models generate premium rate 

adjustments that are economically different. If the rate prediction from the adjustment model 

(Equations 2.4-2.6) is lower than the baseline (Equation 2.3), then the contract is assumed to be 

overpriced and thus is placed in the retain pool. However, if the rate prediction is instead higher, 

then the contract is assumed to be underpriced and placed in the ceded pool. By separating all 

policies into these two pools, one can compare the indemnities that occur based on the observed 

yield outcomes across pools to quantify economic differences from adopting the adjustment 
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model.9 A complete set of results for comparing loss ratios (indemnities over premiums) across 

pools is also provided in the robustness checks section below. 

The cede/retain game is operationalized by utilizing an out-of-sample rating simulation 

approach with sixteen annual iterations from 2003-2018. For each iteration, a training sample of 

all prior years’ data is used to estimate the models and predict premium rates for all farms in that 

year. For example, data before 2003 would be used to predict rates for all farms in 2003, data 

before 2004 would be used to predict rates for 2004, and so on. For a given iteration, rates are 

compared to the baseline rate and farms are separated into cede and retain pools. Indemnities are 

then calculated based on observed yield outcomes for the farm, summed across all years, and then 

divided by the total policies in each pool. The aggregate values are then used to form ceded to 

retained indemnity ratios with values greater than one indicating the economic significance of the 

predicted rates. The same bootstrap as above is used to measure statistical uncertainty.  

 2.3 Data 

The loss experience from RMA Statplan along with accompanying Common Land Unit 

(CLU) data would be ideal for the current study.10 However, RMA loss data are not publicly 

available. Thus, data from secondary sources are used to replicate a mini version of the loss 

experiences in Kansas. The four main sources of data are: (1) 46 years of farm-level Kansas corn, 

sorghum, soybean, and wheat yields provided by the Kansas Farm Management Association 

(KFMA); (2) actuarial information from RMA’s 2019 Actuarial Data Master (ADM) (RMA 

 

9 The study utilized the cede/retain game because, given the limited geographical coverage of the sample, it will be 

erroneous to make efficient rating by the RMA the focus of the paper. Additionally, the public-private partnership 

associated with crop insurance delivery makes the cede/retain game an attractive robust but simple metric. 

10 The Statplan is the standardized database of all policies written by the FCIC since 1948 and is used to support sound 

actuarial decisions. 
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2019a); (3) gridded topographic and soil features from Soil Survey Geographic (SSURGO) 

provided by the USDA-NRCS (Soil Survey Staff 2020); and (4) gridded crop frequency layer from 

NASS CropScape (USDA National Agricultural Statistics Service 2019).11  

 2.3.1 Loss Experience Data 

The study focuses entirely on dryland production of corn, sorghum, soybeans, and wheat 

in Kansas. Observations were dropped from the sample in the following order: (1) if the farm 

cannot be geocoded based on mailing address; (2) if the reported yield was 1.5 times the largest 

recorded contest yield12: (3) if RMA does not report insurance parameters needed to calculate 

county base rates and loading factors in that county: and (4) any crop/county combination with 

less than 4-years of data from 1999-200213. All notes, tables, figures, and references in appendix 

A have a leading A. Figure A.1 shows the spatial representation of the 5,428 sample farms by crop. 

The 149,267 yield observations spanning 1973-2018 exhibit a great amount of cross-sectional and 

temporal variation (Figure A.2, Panel A). The mean [standard deviation] of the yields in kg/ha are 

4,833 [2,137], 3,412 [1,484], 1,928 [905], and 2,470 [899] for corn, sorghum, soybeans, and wheat, 

respectively. Figure A.3 shows the representativeness of the KFMA data by comparing sample 

average yields at the crop-county-year level to yield statistics from NASS. 

 

11 All Data and models were processed on Beocat, a High-Performance Computing (HPC) cluster at Kansas State 

University (https://beocat.ksu.edu/) 
12 Yield Contests are annual competitions held at the state and national levels for major grains partly with the goal of; 

(1) recognizing and celebrating the success of high-yielding farmers; (2) promoting farming operations and best 

management practices to improve and sustain yields; and (3) sharing data to benchmark production and provide 

information to increase profitability. In this study, yields well above the highest ever recorded contest yields are 

deemed unrealistic, thus they are dropped from the analysis.  

13 Crop/county combinations with less than 4-years of data from 1999-2002 are drop from the analysis to ensure that 

all such combinations have the minimum required annual data points used in exponent estimation for the sixteen 

annual iterations of economic performance from 2003-2018. 

https://beocat.ksu.edu/
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A three-step algorithm is used to replicate loss experience data for each crop-year in the 

dataset, starting with 1983. The first step uses the yield data from ten successive years to estimate 

county-level transitional yields (T-yields) and county reference yields (𝑦̅𝑐𝑟𝑡). For the reference 

yield, annual county yields were first estimated as the average yield across all the farms in that 

county. The reference yield was then estimated as the mean of the annual county yields over the 

ten previous years (Rejesus et al. 2010). Given the county reference yields, the T-yields for each 

county was calibrated as 𝑦̅𝑐𝑟𝑡𝜗𝑐, where 𝜗𝑐 is the reference yield to T-yield ratio for county c, 

calculated from 2019 RMA values.14  

The second step of the loss experience algorithm estimates rate yield (𝑦̅𝑖𝑡) and approved 

yield (𝑦̈𝑖𝑡) for each farm/year/crop with their observed yields (𝑦𝑖𝑡) in ten successive years serving 

as the basis for an APH database. In practice, rate and approved yield calculations are complex; 

however, the study sheds some of the complexities such as yield exclusion, yield substitution, and 

trend adjustment to maintain the tractability of the analysis.  

Based on RMA guidelines (RMA 2018), rate yield is taken as the mean of the actual yields 

in the APH database; however, if there are no actual yields, the rate yield is taken as the T-yield. 

For approved yield, the APH database for an insured must have at least four successive yield data 

points (actual or assigned). If the APH database has actual yields for at least the last four successive 

years, the approved yield is just the simple average of the actual yields. Where the insured unit has 

less than four successive years of records, variable T-yields are used as replacements for the years 

 

14 The proportional calibration of T-yield based on reference yield was used because the calculation of T-yield is 

ambiguous in both the RMA and academic literature. Section 502(b) of the Agricultural Adjustment Act of 1938 

defines T-yield as the maximum average production per acre or equivalent measure that is assigned to acreage for a 

crop year. Thus, T-yields are alternatively estimated as the upper value of the 95% confidence interval across all farms 

in the ten successive years, but the results largely remained the same. 
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with no records to meet the four-year minimum yield requirement. Particularly, missing yields for 

insureds with a record of zero, one, two, and three year(s) are taken as 65, 80, 90, and 100% of 

their counties T-yield, respectively. Finally, the approved yield for an insured is bound between 

90% of its value in the previous year (i.e., yield cap) and 70–80% of the relevant T-yield (i.e., yield 

floor). The floor is set at 70, 75, and 80% if the four-year minimum yield requirement is short by 

three, two, and one yield(s).  

Figure A.2, Panels B-E, shows the annual box plots of rate yields, approved yields, T-

yields, and reference yields. As expected, all four types of yields are trending up with the rate 

yields exhibiting a larger amount of cross-sectional variability. The resulting relative yields 

(𝑦̅𝑖𝑡 𝑦̅𝑐𝑟𝑡⁄ ) are also presented in Figure A.4, and unlike the yields, they are stable over the study 

period as expected. The sample distribution of the loss experience by the number of actual yields 

used in their rate yield calculation shows that the majority meet the four-year minimum yield 

requirement (Figure A.5). 

Empirical LCRs based on observed yields 𝑦𝑖𝑡 for each farm/year/crop are calculated as 

follows. The approved yield (𝑦̈𝑖𝑡) from above is used to construct the guaranteed yield by coverage 

level: 𝑦̃𝑖𝑔𝑡 = 𝑦̈𝑖𝑡 ∙ 𝐶𝑔, which in turn, is used to measure actual indemnities given by 𝐼𝑖𝑔𝑡 =

𝑚𝑎𝑥{0, 𝑦̃𝑖𝑔𝑡 − 𝑦𝑖𝑡}. The ratio of these indemnities to the guaranteed yield then defines the 

empirical LCR: 𝐿𝐶𝑅𝑖𝑔𝑡 = 𝐼𝑖𝑔𝑡 𝑦̃𝑖𝑔𝑡⁄ . 𝐶𝑔 is assumed to be equal to 75%, the largest enrolled 

coverage in terms of acres of corn, soybeans, sorghum, and wheat in KS for 2002-2019 (RMA 

2020). The annual averages of the LCRs are shown in Figure A.6. Overall averages [standard 

deviation] of the LCRs are 0.076 [0.192], 0.073 [0.185], 0.079 [0.184], and 0.061 [0.171] for corn, 

sorghum, soybeans, and wheat, respectively. 
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Preliminary descriptive analysis of the farm level data used in this study in Table A.1 shows 

that there is a near one for one inverse relationship between mean relative yield and risk. Thus, the 

RMA’s actuarial methodology assumption is embodied in the raw data. Similar relationships also 

hold for the case of NASS county-level data (Table A.2). Table A.1 hints that the rating exponent 

is expected to remain negative even after they are adjusted. Consequently, the negativity restriction 

of the rating exponent is not directly imposed during estimation but rather evaluated ex-post.  

 2.3.2 Actuarial Data 

The KFMA data is farm-level instead of field-level, thus, it is a closer approximation to an 

enterprise unit (EU), thus, actuarial information for EU dryland production of corn, sorghum, 

soybeans, and wheat for a coverage level of 75% retrieved from the RMA’s 2019 ADM is used 

for the analysis. The specific actuarial parameters retrieved from the ADM are (1) county/crop 

continuous rating exponents; (2) county/crop reference rates (𝑅𝑐𝑟); (3) county/crop fixed rates 

(𝑅𝑐𝑓); (4) unit residual factors for production unit adjustments (𝑅𝑝); and (5) rate differential factors 

for coverage level adjustments (𝑅𝑔). Based on the ADM parameters, the county-level base rate 

(𝛼𝑐𝑔) and fixed loading factors (𝛿𝑐𝑔) are calculated as: 𝛼𝑐𝑔 = 𝑅𝑝𝑅𝑔𝑅𝑐𝑟 and 𝛿𝑐𝑔 = 𝑅𝑝𝑅𝑔𝑅𝑐𝑓. The 

boxplots of the retrieved and calculated actuarial parameters are shown in Figure A.7.  

 2.3.3 Topographic and Soil Features 

The exact location of each farmer’s field was unknown; however, they were best 

approximated using their mailing address following the procedure outlined in Note S1. This 

approach is not ideal with measurement error potentially leading to attenuation bias. However, the 

approach is somewhat representative of the real-world situation in which RMA historically did not 

know the exact location of insured fields nor more generally what field the farmer will eventually 

plant on at enrollment. Additionally, for any given year, the history on which APH is based could 
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have come from other fields. Furthermore, the results demonstrate substantial improvements in 

farmers with low APH history length and no improvements for farms with a high APH history, 

which suggests that there is a signal in the soil measure used and that the measurement error is 

likely minimal. 

The gSSURGO has over 500 topographic and soil features that the rating exponent could 

be conditioned on. A viable candidate feature must have significant within-county variation, so all 

features with a zero standard deviation or a coefficient of variation less than 0.01 were dropped. 

Next various statistical learning techniques were used to further narrow down the list of features 

by focusing on those with relatively high LCR predictability. Details of the specific algorithms 

used by these techniques are in James et al. (2013) and results are shown in Figure A.8. Based on 

the selection process, soil texture is chosen as the preferred feature. 

The basic elements of soil texture are (1) Sand - mineral soil particles that have diameters 

ranging from 2 to 0.02 mm; (2) Silt - mineral soil particles that range in diameter from 0.02 to 

0.002 mm; and (3) Clay - soil particles that have diameters less than 0.002 mm. The spatial 

distribution of these is depicted in Figure A.9 and the farm-level distribution in Figure A.10. In 

general, sample farms are located on soils that are abundant in soil particles classified as silt, which 

is the second-most occurring followed by sand. In addition to soil texture, root zone depth, 

available water storage, slope, exchangeable cations, soil organic carbon, and NCCPI are also 

considered as robustness checks. 
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 2.4 Results  

 2.4.1 Continuous Rating Exponent 

Equation 2.3 serves as the baseline model and the county level RMA exponents 𝛽𝑐
∗ are 

reported in green in Figure 2.1 Panel A. The alternative models, Equations (4)-(6), are estimated 

using nonlinear least squares, and the parameter estimates are reported in Table 2.1. Those 

parameter estimates are used to form adjusted rating exponents for each of the three alternative 

models, reported alongside the baseline exponents in Figure 2.1 Panel A. In general, the rating 

exponents remain negative after adjustment and are lower in magnitude relative to RMAs. This 

suggests that adjustments are inducing a flatter rate multiplier curve thereby leading to smaller 

adjustments above and below the reference yield and more homogeneous rates across farms within 

the county. The latter is a particularly interesting aspect of the results as one might expect that 

models that include additional farm-level information would naturally lead to more heterogeneous 

rates across farms. However, as it will be shown below the soil information and yield-history 

length can be thought of as substitutes in that information only improve rating when sample length 

is small. Although not empirically verified in this study, likely, the soil adjusted exponent is likely 

counteracting (reducing) the effects of a noisy mean yield estimate.  

 In Figure 2.1 Panel A, it can be observed that the cross-county variation in exponents from 

the CRD adjusted models (i.e., models CRD and CRD-SOIL) is relatively higher than RMA’s 

2019 values. On the contrary, the cross-county variation from the SOIL model is comparable to 

the RMA 2019 values. Figures 2.1 Panel B and Figure 2.2 show within farm and county variation 

of the continuous rating exponents, respectively.  
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Table 2.1 Regression Results 

  (1) CRD Model (2) SOIL Model (3) CRD-SOIL Model  
Soil texture    
Silt - 0.878** (0.488) 0.030 (0.854) 

Clay - -0.798 (0.621) 1.216 (1.367) 

Sand - 2.023** (1.006) -0.508 (0.927) 

CRD 
   

NW 0.768*** (0.086) - 0.563** (0.243) 

SW - - - 

SC 1.845*** (0.331) - 1.647*** (0.357) 

NE - - - 

SE 0.285** (0.105) - -0.072 (0.143) 

NC 0.531*** (0.151) - 0.248 (0.197) 

Dryland Sorghum 

Soil texture    
Silt - 0.382 (0.265) 0.206 (0.510) 

Clay - 0.415 (0.575) 0.565 (1.116) 

Sand - 0.149 (0.176) -0.192 (0.205) 

CRD 
   

NW 0.384*** (0.106) - 0.163 (0.157) 

SW 0.397*** (0.088) - 0.154 (0.101) 

SC 0.315*** (0.062) - 0.214 (0.113) 

NE 0.505*** (0.154) - 0.224 (0.180) 

SE 0.249* (0.117) - -0.007 (0.178) 

NC - - - 

Dryland Soybeans 

Soil texture    
Silt - 0.572 (0.501) 0.402 (0.694) 

Clay - 0.637 (0.848) 0.764 (1.170) 

Sand - 0.505** (0.253) 0.068 (0.340) 

CRD 
   

NW - - - 

SW - - - 

SC 0.649*** (0.093) - 0.275** (0.135) 

NE - - - 

SE 0.533*** (0.079) - 0.055 (0.118) 

NC 0.623*** (0.127) - 0.163 (0.177) 

Dryland Wheat 

Soil texture    
Silt - 0.681* (0.350) 0.826** (0.397) 

Clay - 0.659 (0.571) 0.037 (0.888) 

Sand - 0.784*** (0.239) 0.580* (0.362) 

CRD 
   

NW - - - 

SW - - - 

SC 0.736*** (0.066) - 0.199 (0.148) 

NE 0.544*** (0.152) - 0.017 (0.212) 

SE 0.735*** (0.057) - 0.214 (0.149) 

NC - - - 

Significance levels: * p<0.10, ** p<0.05, ***p<0.01 

Notes: The table shows the nonlinear least-squares regression results for the adjustment parameters in equations 4-6. 

A pooled model that included pooled data from all counties was estimated. RMA’s rating parameters are county-
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specific and are included in each model as fixed parameters. Three different regression models were considered, each 

based on a separate type of adjustment. The first includes only CRD level adjustments (CRD model) which are based 

on dummy variables at the CRD level, and the parameter estimates are reported in column 1. The second focuses on 

topographic and/or soil features (SOIL model) measured at the farm level and the parameter estimates are reported in 

column 2. The third includes both types of adjustments simultaneously (CRD-SOIL model). Standard errors are 

calculated by bootstrap sampling the farms in the dataset.  

 
Figure 2.1: Plots of continuous rating exponents from alternative models in Kansas 

Notes: Each panel of graph A shows the plots (circles) of county-level crop insurance continuous rating exponents 

provided by USDA Risk Management Agency (RMA) for 2019 (green) and from the models (CRD Model – Crop 

reporting district [CRD] conditioned exponents, SOIL Model – Linear soil texture conditioned exponents, and CRD-

SOIL Model – CRD and Linear soil texture conditioned exponents). For SOIL and CRD-SOIL, the soil texture 

elements (clay, silt, and sand) for each county were taken as the mean of all the farms in that county. The shaded 

region represents the bootstrap (1,000) 95% confidence interval (CI) for the estimates, and the dashed black line marks 

the reference for zero. Estimates with their 95% CI overlapping with the zero lines are not statistically significant. 

Farm-level data was provided by the Kansas Farm Management Association (KFMA).
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Figure 2.2: Spatial pattern in county-level continuous rating exponents for alternative models in Kansas 

Notes: Each reference map shows the spatial pattern of the decile rank of crop insurance continuous rating exponents by model/crop combination. Counties with 

positive exponents are excluded from the ranking and displayed as blue. The model designation represents exponents provided by USDA Risk Management Agency 

(RMA) for 2019 and those from the models (CRD Model – Crop reporting district [CRD] conditioned exponents, SOIL Model – Linear soil texture conditioned 

exponents, and CRD-SOIL Model – CRD and Linear soil texture conditioned exponents). For SOIL and CRD-SOIL, the soil texture elements (clay, silt, and sand) 

for each county were taken as the mean of all the farms in that county. Farm-level data was provided by the Kansas Farm Management Association (KFMA).
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 2.4.2 Predictive Performance 

Results for in- and out-of-sample prediction in Figures 2.3 Panel A and B indicate that the 

adjustment models reduce LCR prediction error. It is interesting to note that errors are the lowest 

for the models that utilize soil texture to adjust rates. Particularly, Figure 2.3 Panel A shows that 

out-of-sample errors from the models that include soil texture (SOIL and CRD-SOIL) are about 

3% lower than that of the status quo. This suggests that there is a signal in the soil measure used 

and that the measurement error could be minimal.  

Figure 2.4 presents the mean relative rates (to that of the RMA) from 2003-2018 for each 

observation using the adjustment from the SOIL model and paints a vivid picture of the resulting 

flatter rate multiplier curve as rates for yield ratios below one is adjusted lower while rates for 

ratios above one is adjusted higher. Overall rate adjustments are upward on average suggesting 

higher out-of-pocket insurance costs for producers, but there is substantial variation across farms 

from about -19% to 13%.  

To provide a measure of program level differences between these rates, RMA projected 

price for 2019 for valuation is utilized. For the case of the SOIL model, the mean total premium, 

subsidy, producer paid premium, and AIPs A&O were $57.13 M, $43.99 M, $13.14 M, and $12.51 

M, respectively. For the RMA 2019 exponents, similar values were $56.05 M, $43.16 M, $12.89 

M, and $12.28 M, respectively. Overall, the values when soil information is included in rate-setting 

were only about 2% higher than those from the RMA.  



26 

 

 
Figure 2.3: Predictive and economic performance of alternative models for estimating 

continuous rating exponents in Kansas 

Notes: Graph shows the predictive (A and B), and economic (C) performance of crop insurance continuous rating 

exponents estimated from the models (CRD Model – Crop reporting district [CRD] conditioned exponents, SOIL 

Model – Linear soil texture conditioned exponents, and CRD-Soil Model – CRD and Linear soil texture conditioned 

exponents). Panels A and B are evaluated in terms of relative performance to exponents provided by USDA Risk 

Management Agency (RMA) for 2019. Panel C is based on Coble et al. (2007) and Harri et al. (2011) and measures 

the level of forgone economic rents as the ratio of indemnities from ceded to that of retained policies under a simplified 

Standard Reinsurance Agreement (SRA) scenario. For Panels A and B values less than one indicate how well the 

exponents perform better than that of the RMA, and for panel C, values greater than one indicate a relatively higher 

level of forgone economic rents. The error bars represent the bootstrap (1,000) 95% confidence interval (CI) for the 

estimates, and the dashed black line marks the reference for one. Estimates with their 95% CI overlapping with the 

reference line are not statistically significant. Farm-level data was provided by the Kansas Farm Management 

Association (KFMA).  
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Figure 2.4: Distribution of farm-level relative premium rates 

Notes: Graph show distribution of mean farm level rates from the SOIL Model (Linear soil texture conditioned 

exponents), relative to rates from the exponents provided by RMA for 2019. For each Panel, the top [middle] 

distribution is for those policies with mean relative yield ratios above [below] one, and the bottom is for the entire 

sample. The dashed blue reference line is the point at which rates from the SOIL Model are equal to those from the 

RMA. The vertical axis of the pdfs has been omitted. Farm-level data was provided by the Kansas Farm Management 

Association (KFMA).  
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 2.4.3 Economic Performance 

Results for the ceded to retained indemnity ratios across all policies shown in Figure 2.3 

Panel C indicate that the SOIL model consistently produces rates that are economically different. 

For all crops together, the ratio was approximately 1.40 indicating that indemnities were 40% 

larger among the ceded policies relative to the retained.  

All crops had ratios above one with soybeans being the largest at ~1.5 and sorghum/wheat 

being relatively smaller at ~1.2. The difference could be attributed to wheat being a longer season 

crop spanning fall, winter, and spring months; whereby a large amount of weather variation 

obscures the soil information in the “signal”. A somewhat similar situation arises for sorghum as 

well since it is sown under hotter conditions than soybeans and is also harvested later under colder 

conditions (sometimes into December). Nonetheless, all three models produce very similar 

economic gains for each crop, suggesting that the adjustment based on soil covariates alone is 

robust to including an additional adjustment at the CRD level.  

One might suspect that the economic gains from including soil information are likely to 

decline with the amount of historical yield information provided by the farm. Soil effects are 

largely time-invariant and thus can likely be captured with a long enough yield history; however, 

it is unclear how short a history must be for soil to provide additional information not already 

captured by the rate yield. To investigate this, the indemnities within the ceded and retained pools 

are grouped by the number of years that were used in the rate yield calculation and the cede/retain 

ratios for each group are reported in Figure 2.5. Results suggest that economic gains do indeed 

decrease as yield histories become longer. Additionally, the rate of decline is striking as gains are 

essentially zero across all crops for the group with rate yields based on ten years of data. Focusing 

on the all-crop aggregate, the percentage reduction in economic gains between rate-yields based 
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on a 10-year history, the maximum allowable by the RMA, is approximately 63, 42, and 28%, 

respectively for 0–3-, 4-, and 5–9-year history. 

 
Figure 2.5: Relationship between actual production history length and economic 

performance of soil texture conditioned continuous rating exponents in Kansas 

Notes: Graph shows the economic performance of crop insurance continuous rating exponents estimated from the 

SOIL Model (Linear soil texture conditioned exponents) across all crops, summarized by the length of actual 

production history. The performance is based on Coble et al. (2007) and Harri et al. (2011) and measures the level of 

forgone economic rents as the ratio of indemnities from ceded to that of retained policies under a simplified Standard 

Reinsurance Agreement (SRA) scenario. Values greater than one indicate a relatively higher level of forgone 

economic rents. The error bars represent the bootstrap (1,000) 95% confidence interval (CI) for the estimates, and the 

dashed black line marks the reference for one. Estimates with their 95% CI 
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 2.4.4 Robustness of Main Finding 

Figure A.11 shows that the pattern of declining economic gains as yield history length 

increases is robust across different dimensions of the empirical analysis. First, a wide range of 

alternative soil features is considered both alone and alongside the soil texture measures. These 

features include root zone depth, available water storage, slope, exchangeable cations, soil organic 

carbon, and the NCCPI. Second, while the analysis assumed a 75 percent coverage level because 

it was the largest enrolled across the four crops in Kansas since 2002 (RMA 2020), a full range of 

alternatives from 50-85 percent in 5-unit increments is considered. The third set of robustness 

checks extends the linear soil texture model to include polynomials of degree two to four in the 

adjustment function 𝑓(. ). The fourth set of robustness checks focuses on a key assumption of the 

measurement of soil information, in which the use of farm mailing addresses instead of specific 

geo-referenced field locations is used to match yield histories with soil data. Specifically, the 

buffer for aggregating soil information given the farms mailing address was varied from a 0.5- to 

3-mile radius; and separably, all farms whose mailing address was in an urban area were dropped.15 

The final set of robustness checks are reported in Figure A.12 and use loss ratios (indemnities over 

premiums) in the cede-retain measure instead of indemnities alone since it is a more complete 

measure of economic rents and is commonly used in the literature. Overall, the pattern of results 

 

15 Depending on the radius used, 8-9.5% of the sample used fell within areas designated as urban by the Census 

Bureau. However, as shown in Note S1, soil information is aggregated over the area with each buffer that overlaps 

with the gridded crop frequency layer from NASS CropScape. For robustness checks, farms whose mailing address 

spatially intersected with Census Bureau’s Urban Area Reference Maps were dropped regardless of their overlap with 

the crop frequency layer. The Census Bureau identifies two types of urban areas: (1) Urbanized Areas (UAs) of 50,000 

or more people; and (2) Urban Clusters (UCs) of at least 2,500 and less than 50,000 people. 
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from the robustness checks in Figures A.11 and A.12 are consistent with the main findings in the 

manuscript. 

 2.5 Discussion and Conclusion 

The study extends the crop insurance rating literature by incorporating topographic and 

soil information into rating procedures. A novel econometric approach based on RMA’s 

procedures for pricing insurance at the farm level was developed and applied to a sample of 

149,267 farm-level observations in Kansas spanning 1973-2018. The results show that including 

such information improves rate predictions on average and that the revised rates are economically 

different in the sense of a commonly used cede-retain game. 

Overall, the results are largely in line with previous findings in the literature with the one 

key exception being that economic gains from including soil information rapidly decline with the 

yield history of the farm, with no gains associated with farms that provide ten years of historical 

yield data. This finding highlights a crucial dimension in the debate surrounding whether RMA 

should incorporate soil information into their rating procedures as it suggests that the proportion 

of policies for which ten years of data is available is an important variable in this decision.  

Neither in this study nor RMA’s database more generally, can it be assumed that entrance 

into the data is only driven by new farmers as there exist experienced farms that simply choose not 

to participate in various programs. So, it cannot be stated specifically from this study that the 

results apply directly to new farmers as a limited yield history could be driven by selection into 

the KFMA. However, to the extent that a combination of experienced and new farmers is driving 

the result, and that the benefit of including soil information for new farmers is at least as large as 

experienced farmers in a limited yield history context, then the results would provide a lower 

bound on the benefits of including soil information for new farmers. This could be further broken 
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down into a distinction between experienced farmers growing a new crop versus young farmers 

with essentially no production history. In this view incorporating soil information can be beneficial 

for both young farmers and farmers that are switching crops, perhaps to adapt to changing 

environmental, climatic, and/or economic conditions. However, this is an important empirical 

question that warrants future research. 

While the study did only focus on Kansas farms, the policy implications are likely 

externally valid for other major production states/regions. The results essentially show that yield 

history length and soil information are substitutes for inferring risk. It is common to control for 

farm/location “fixed effects” in production applications and the core insight is that at some point 

repeated sampling allows you to capture, or control for, time-invariant drivers of production 

variation. This insight holds for alternative moments of the yield distribution in the context of Just-

Pope technology or more general “moments” models as well (Just and Pope 1979; Antle 2010). If 

one can repeatedly observe sample moments for two farms that are identical in every way except 

for their soil quality, then at some point one can disentangle the effect of soil on that moment. So, 

in principle, the more interesting question is how many repeated draws one requires to make this 

distinction, and it is likely that the amount of weather/pest/disease variation in the data matters a 

lot for this threshold since they would affect signal-to-noise ratios. In general, dryland crop 

production in Kansas is considered more variable relative to other major crop-producing regions 

such as the U.S. Corn Belt, so if it takes ten years of data to capture soil effects here it would 

probably be less in many other places. However, this is an empirical question that warrants future 

research.  

Although no evidence of economic gains associated with ten-year yield histories was 

found, there are some additional considerations for utilizing soil conditioned rates that were not 
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directly assessed here and thus might be considered by future research. First, incorporating soil 

information could help guard against moral hazard, as farmers can easily alter yields through 

various adjustments to production practices (e.g. fertilizer, pest control, seeding rates, etc.) but it 

is difficult in practice to adjust soil quality, especially within the growing season when moral 

hazard concerns may be highest (Coble et al. 1997). Second, several studies have shown that 

federal farm program payments impact land values (Barnard et al. 1997; Lence and Mishra 2003; 

Roberts, Kirwan and Hopkins 2003; Taylor and Brester 2005; Latruffe and Le Mouël 2009). Shaik, 

Helmers, and Atwood (2005) assert that any future efforts to reduce net agriculture subsidies could 

have large effects on land prices like that of the 1960s or 1970s. Thus, in addition to rates being 

important from an insurance perspective, getting them right or wrong could have implications for 

a farm’s financial status through land capitalization.  

In closing, several caveats to the analysis are worth mentioning. First, it focuses solely on 

the dryland operations of Kansas farms that produce corn, soybeans, sorghum, or wheat. 

Subsequent studies can overcome this by expanding the scope of this study to include a wider 

variety of crops, production practices (e.g., irrigation), and locations; however, it should be noted 

that the availability of farm-level panel data required for this type of analysis is quite limited. 

Second, the topographic and soil information used in this study is based on the mailing address of 

the farms in the KFMA database. Robustness checks in the analysis provide some evidence that 

this is a plausible working assumption, but future work might consider more tightly matched soil 

and production information if possible. 
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Chapter 3 - Tradeoffs Between Production-History-Based and 

Index-Based Insurance for Field Crops 

 3.1. Introduction 

Initiated in Europe over two centuries ago, the agricultural insurance sector is a large and 

rapidly expanding component of support programs for farmers and ranchers in both developed and 

developing countries (Mahul and Stutley 2010; Smith and Glauber 2012a). The most recent global 

survey in 2008 by the World Bank shows that the global agricultural insurance market across 65 

advanced and emerging countries generated $15 billion in premiums, which helped producers 

cover losses and stabilize revenues (Mahul and Stutley 2010). The product space of the agricultural 

insurance market includes individual/area-wide policies covering yield and revenue support for 

both crops and livestock. These policies are further segregated into two broad groups based on the 

mode of indemnity trigger and pricing, i.e., Actual Production History [APH] based and Index-

based schemes.16 While APH-based policies abound, the global importance and the range of Index 

insurance products in recent times have also expanded in both developing and developed countries 

which have generated extensive literature (Carter et al. 2017; Barnett and Mahul 2007; Miranda 

and Farrin 2012; Jensen and Barrett 2017; Vroege, Dalhaus and Finger 2019). 

 

APH-based policy pricing and indemnifications are based on the actual farming experience 

of the purchaser (Risk Management Agency [RMA] 2020), while Index-based policies are based 

 

16 APH based products include both revenue and yield insurance but the analysis will focus only on APH based yield 

insurance products. 
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on the realizations of an Index that is external to the purchaser (Collier, Barnett and Skees 2010; 

Coble et al. 2020). In addition to the design difference, relatively speaking the former suffers from 

adverse selection (Smith, Glauber and Goodwin 2017; Glauber 2013), moral hazard (Chambers 

1989; Horowitz and Lichtenberg 1993; Yu and Hendricks 2020; Park et al. 2020), and high 

program delivery cost (Barnett and Mahul 2007). Thus, if properly designed to address moral 

hazard and adverse selection, Index-based insurance offers the opportunity of reducing the cost 

associated with program delivery (Barnett and Mahul 2007). For example, Belasco, Cooper and 

Smith (2019) showed that replacing the current suite of policies in the US Federal Crop Insurance 

Program (FCIP) with an Index-based crop disaster program could lead to savings of $3-4 billion 

annually realized through focusing agricultural support on systemic weather risk rather than 

idiosyncratic risk; and reducing program delivery cost. In the US, rainfall index insurance for 

pasture rangeland and forage (PRF-RI), vegetation Index insurance, and area-based yield/revenue 

insurance for row crops are already available (Risk Management Agency [RMA] 2020). However, 

in general, these products suffer from weak demand due to basis risk (Jensen and Barrett 2017; 

Carter et al. 2017; Barnett and Mahul 2007). 

An extensive body of literature has shown that basis risk could be reduced to an appreciable 

extent by improving product design (Conradt, Finger and Spörri 2015; Dalhaus and Finger 2016; 

Dalhaus, Musshoff and Finger 2018; Vroege et al. 2019; Bucheli, Dalhaus and Finger 2020; 

Vroege et al. 2021). However, assuming the best Index is operationalized, the tradeoffs between 

APH- and Index-based insurance at the farm level remain largely unknown for (at least) two 

reasons. First, Index-based insurance covering a broad range of weather indices for traditional field 

crops is missing, thus observable data is lacking as evidenced by the limited datasets used in 

previous studies (Carriker et al. 1991; Miranda 1991; Smith, Chouinard and Baquet 1994; Deng, 



41 

 

Barnett and Vedenov 2007; Jensen, Barrett and Mude 2016, Barnett et al. 2005) or simulated data 

based on strong assumptions (Stigler and Lobell 2021). Second, for any meaningful insights to be 

drawn from these tradeoffs, one should observe separately the potential outcomes of both APH- 

and Index-based insurance for the same farmer under identical conditions so that direct 

comparative advantages can be made.  

The novelty of this study is that it overcomes the data limitations and fills the knowledge 

gap of the missing tradeoffs. Two related objectives are pursued: (i) ascertain the potential 

outcomes of a broad range of weather Index-based insurance and APH-based insurance under 

specified farm income goals; and given this, (ii) determine if the potential outcomes are different. 

The objectives are achieved by deploying two parallel ex-post simulations to generate the two 

outcomes at the farm-level and then assesses their tradeoffs. The empirical strategy is applied to 

farm-level yields for corn, soybean, sorghum, and wheat under known conditions in Kansas and 

spanning 46 years (1973-2018). The results show that economically significant tradeoffs do exist 

between APH- and Index-based insurance and that different types of Index products are associated 

with differing levels of basis risk. Particularly, Index-based insurance that protects against excess 

accumulation in killing-degree-days (i.e., degree-days >30 °C) generates the most significant gains 

in economic rents and is associated with relatively low basis risk. 17 

The remainder of Chapter 3 is organized as follows. Section 3.2 provides background 

information of both APH- and Index-based insurance as well as their core differences and touches 

on basis risk as it relates to this study. The methods section follows next in section 3.3 and it 

outlines the product designs for the insurance products simulated, how purchasers choose among 

 

17 The study focusses on yield protection even though most crop insurance in the U.S. today is revenue protection. 

Revenue insurance includes a yield risk component that is based on that of yield insurance. 
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alternative Index-based insurance enrolment parameters, and how the tradeoffs between APH- and 

Index-based insurance are evaluated. The data section is in Section 3.4, and Sections 3.5 and 3.6 

present the core results and conclusions, respectively.  

 3.2. Background Information 

Agricultural insurance costs and payouts are normally quoted in equivalent monetary terms 

that are tied to the price per unit of the underlying products and their extensive margin (i.e., land 

size). In what follows, the study abstracts from that reality by assuming that the underlying product 

is priced at unity with an extensive margin of one. Thus, without loss of generality, all cost and 

payouts are per unit bases on output terms (i.e., kg/ha).  

 3.2.1 Basic elements of APH-based contracts 

The building blocks for an APH-based contract are the rate yield (𝑦̅𝑖
𝐴), approved yield (𝑦̈𝑖

𝐴), 

yield guarantee (𝑦̃𝑖𝑔
𝐴 ), coverage level (𝐶𝑖𝑔

𝐴 ), indemnity (𝐼𝑖𝑔
𝐴 ), premium rate (𝑅𝑖𝑔

𝐴 ), premium (𝑃𝑖𝑔
𝐴 ), 

and subsidy (𝑆𝑔
𝐴), where i denotes farm, g denotes coverage level, and A denotes APH-based 

contract type. The rate and approved yield are both derivatives of the insureds reported APH such 

that the former is the simple average of APH and the latter is the same but with upward adjustments 

including yield exclusion, yield substitution, and trend. 18 The purchaser elects the coverage level 

to indicate the proportion of the approved yield to be insured such that 𝑦̃𝑖𝑔 = 𝑦̈𝑖 ∙ 𝐶𝑔.19 The per-

 

18 Note that to the extent that approved yield is higher than rate yield, as is often the case, this benefits producers as 

the yield guarantee will be higher, and thereby, will increase indemnities for a given yield outcome and improves 

producer welfare (Adhikari, Knight and Belasco 2013) 

19 Federally approved coverage levels for the 2019 crop year ranged from 55-85% in 5% increments. 
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acre indemnity for a given yield outcome, 𝑦𝑖𝑡, is given by 𝐼𝑖𝑔 = 𝑚𝑎𝑥{0, 𝑦̃𝑖𝑔 − 𝑦𝑖𝑡}.20 The final 

price paid by the insured is 𝑃𝑖𝑔 = 𝑅𝑖𝑔 𝑦̃𝑖𝑔𝑆𝑔, where the premium rate, (𝑅𝑖𝑔), is determined using a 

continuous rating formula (Risk Management Agency [RMA] 2000) and 𝑆𝑔 is a subsidy factor 

determined by FCIC and is tied to coverage level.21 

 3.2.2 Basic elements of Index-based contracts 

The building blocks for an Index-based contract are the Index variable, a grided surface, 

Index interval, Index interval weight (𝑊𝑖𝑟𝑣
𝐼 ), expected grid Index (𝐸𝑟𝑣

𝐼 ), trigger grid Index (𝑇𝑖𝑔
𝐼 ) 

(same as coverage level), final grid Index (𝐹𝑟𝑣
𝐼 ), base premium rate (𝑅𝑟𝑣𝑔

𝐼 ), policy protection per 

unit, county base value (𝑦̅𝑐
𝐼), productivity factor (𝑃𝐹̅̅ ̅̅

𝑖
𝐼), premium (𝑃𝑖𝑟𝑣𝑔

𝐼 ), premium subsidy (𝑆𝑔
𝐼 ), 

indemnity (𝐼𝑖𝑟𝑣𝑔
𝐼 ), and payment calculation factor, where i denotes farm, r denotes grid ID, v 

denotes interval ID, g denotes coverage level, and the exponent I denotes Index-based contract 

type. 

As indicated in the introduction, Index-based insurance based on a broad range of indices 

(e.g., weather) for traditional field crops in the US is missing, so the study draws from the PRF-

RI. The Index variable (i.e., the variable used in constructing the Index) for the PRF-RI is grided 

precipitation but we considered other variables as well. The Index interval is the specified period 

(combinations of at most two successive months without overlap) for which data on the Index 

variable is collected. Given the two-month interval rule, insureds then choose among 11 intervals 

 

20 In practice, indemnities are the product of the yield shortfall and price = 𝑚𝑎𝑥{0, 𝑦̃𝑖𝑔 − 𝑦𝑖𝑡}× price. However, in 

the current setup, price = 1, so 𝐼𝑖𝑔 = 𝑚𝑎𝑥{0, 𝑦̃𝑖𝑔 − 𝑦𝑖𝑡}. 

21 For the 2019 crop insurance program, corn, soybeans, sorghum, and wheat policies with coverage levels of 0.55, 

0.65, 0.75, and 0.85 had 𝑆𝑔 respectively equal to 0.64, 0.59, 0.55, and 0.38. Between 2005-2018, the federal 

government subsidized on average 61.1% of farmers' premiums (Risk Management Agency [RMA] 2019b). 
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during the year: Jan/Feb, Feb/Mar, Mar/Apr, Apr/May, May/Jun, Jun/Jul, Jul/Aug, Aug/Sep, 

Sep/Oct, Oct/Nov, and Nov/Dec. The no overlap rule (e.g., cannot choose Aug/Sep and Sep/Oct 

jointly for the same grid) essentially limits the maximum number of intervals to six. Finally, 

purchasers must assign weights ranging from 10-60% to each interval selected such that the sum 

of weights across all selected intervals within a given grid is 100%.  

The Index variable and interval are used to calculate two key pieces of information for each 

grid and interval: expected grid Index (𝐸𝑟𝑣
𝐼 ) (i.e., mean accumulated value of the Index variable 

over a base period) and final grid Index (𝐹𝑟𝑣
𝐼 ) (current accumulated value of the Index variable), 

both expressed as a percentage of 𝐸𝑟𝑣
𝐼 . The other piece of information is the trigger grid Index (𝑇𝑖𝑔

𝐼 ) 

(analogous to coverage level for the case of APH). Historic values of the 𝐸𝑟𝑣
𝐼  and 𝐹𝑟𝑣

𝐼  are used to 

estimate base premium rates for each grid, Index interval, and 𝑇𝑖𝑔
𝐼  combination which helps to 

minimize adverse selection and moral hazard. 

Like that of the APH-based products, the size of the premium and indemnity depends on 

the policy protection per unit (i.e., liability) which is the product of the insured acres, share of acres 

insured, and dollar amount of protection (DAP). The DAP is the product of county base value (𝑦̅𝑐
𝐼), 

productivity factor (𝑃𝐹̅̅ ̅̅
𝑖
𝐼), coverage level (same as 𝑇𝑖𝑔

𝐼 ), and the Index interval weight (𝑊𝑖𝑟𝑣
𝐼 ). Here 

𝑦̅𝑐
𝐼 reflects the mean level of output per unit at the county level and 𝑃𝐹̅̅ ̅̅

𝑖
𝐼 is selected by the insured 

to individualize coverage based on their perceived relative productivity to that of their peers in the 

same county. The producer paid premium (𝑃𝑖𝑟𝑣𝑔
𝐼 ) for a given combination of grid/interval/coverage 

is given as the product of the liability, base premium rate (𝑅𝑟𝑣𝑔
𝐼 ) for the grid/interval/coverage, and 

a subsidy rate (𝑆𝑔
𝐼 ) tied to coverage and determined by the FCIC. Depending on the nature of the 

insurance, when there is a loss/gain in the Index value the indemnity due for a given 

grid/interval/coverage is the product of a payment calculation factor (PCF) and the liability. 
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Conventionally, 𝑃𝐶𝐹 = 𝑚𝑎𝑥 {0,
𝑇𝑖𝑔

𝐼 −𝐹𝑟𝑣
𝐼

𝑇𝑖𝑔
𝐼 } for products that insure against a shortfall in the 

accumulation of the underlying Index variable. However, while the study is unaware of any such 

products, an alternative calculation is 𝑃𝐶𝐹 = 𝑚𝑎𝑥 {0,
𝐹𝑟𝑣

𝐼 −𝑇𝑖𝑔
𝐼

𝑇𝑖𝑔
𝐼 } for products that insure against 

excess in accumulation of the underlying Index variable. Here, the study adopts the shortfall case 

to adequately represent some basic ideas. Putting all these together, the premium (𝑃𝑖𝑔
𝐼 ) and 

indemnity (𝐼𝑖𝑔
𝐼 ) for a given farm and coverage level across all grids and intervals are given by  

𝑃𝑖𝑔
𝐼 = ∑ ∑ 𝑃𝑖𝑟𝑣𝑔

𝐼
𝑣𝑟 = 𝑦̅𝑐

𝐼 ∙ 𝑇𝑖𝑔
𝐼 ∙ 𝑃𝐹̅̅ ̅̅

𝑖
𝐼 ∙ ∑ ∑ [𝑊𝑖𝑟𝑣

𝐼 × 𝑅𝑟𝑣𝑔
𝐼 ]𝑣𝑟       (3.1) 

𝐼𝑖𝑔
𝐼 = ∑ ∑ 𝐼𝑖𝑟𝑣𝑔

𝐼
𝑣𝑟 = 𝑦̅𝑐

𝐼 ∙ 𝑇𝑖𝑔
𝐼 ∙ 𝑃𝐹̅̅ ̅̅

𝑖
𝐼 ∙ ∑ ∑ [𝑊𝑖𝑟𝑣

𝐼 × 𝑚𝑎𝑥 {0,
𝑇𝑖𝑔

𝐼 −𝐹𝑟𝑣
𝐼

𝑇𝑖𝑔
𝐼 }]𝑣𝑟     (3.2). 

3.2.3 Similarities and differences between APH- and Index-based contracts22  

Below is a simple description of the insurance cycle intended to highlight key differences 

between the administration of APH- and Index-based contracts. The insurance cycle for both 

contracts broadly follows a similar path that starts with the purchaser providing the needed 

information to the insurance provider for a contract to be drafted and priced. For the case of the 

APH scheme, the purchaser provides an APH database if available and then selects the desired 

coverage level. For the case of the Index scheme, the purchaser need not provide an APH database 

but rather the grid IDs associated with the fields they want to insure. Along with the grid IDs, the 

purchaser will also elect the intervals for each grid, the coverage level, and their perceived 

 

22 It is worth noting that the insurance variables like premiums and indemnities may not directly comparable across 

APH- and Index- based insurance products as presented so far. A normalization routine in this study is linear as such 

it is likely to be overly simple. A more robust procedure would be to use a Schlenker and Roberts (2009) type model 

in the same spirit as Belasco, Cooper, and Smith (2019). 
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productivity factor. The insurance provider will use the information together with predetermined 

parameters from RMA to price the contract for the purchaser for a specified insurance period. 

After the purchase of the contract, the next stage is what happens after a loss is recorded. 

For the case of the APH scheme, the policyholder must first write a notice of damage/loss for each 

unit insured within 72 hours of initial discovery, but not later than 15 days after the end of the 

insurance period unless otherwise stated. This will allow the insurance provider to send loss 

adjusters to inspect and gather information on the damage/loss to assist the policyholder in filing 

the claim for indemnity. At the end of the insurance period, a check is sent to the policyholder if 

indemnities exceed the premium due. If the premium due exceeds the indemnity or no loss/damage 

was recorded, the policyholder instead receives the balance of the premium due as a bill. It is worth 

noting that the policyholder is responsible for establishing the time, location, cause, and amount 

of any loss. For the case of the Index-insurance, the policyholder need not contact the insurance 

provider for indemnification. The insurance provider calculates the final grid Index for the period 

for which the contract covers and makes indemnity payments to the policyholder given any 

shortfall in the final grid Index and insured elected parameters in the contract. Thus, 

indemnification for the case of Index insurance is made before the season ends, usually no more 

than 60 days following the determination of the final grid Index. 

Major drawbacks of the APH-system are its large administrative costs, and the possibility 

of moral hazard on the part of policyholders at enrollment and during production to increase the 

chance of indemnification. One advantage of the APH-system over the Index-system is that it 

makes use of the policyholder’s experience to rate the policy. Additionally, indemnification is 

based on actual loss/damage, so policyholders receive a payout when they experience an actual 

loss. This cannot be said about the Index insurance because of the basis risk. 
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 3.2.4 Basis risk 

In simple terms, basis risk is the disconnect between the Index variable and output. In 

practice, this can translate into three situations: (1) indemnification without actual loss; (2) 

indemnification that is less or higher than actual loss; and (3) actual loss without indemnification 

(Coble et al. 2020) thereby reducing the usefulness of Index insurance as a risk management tool. 

Several studies confirm basis risk as a supply-side issue (related to product design) that reduces 

demand for Index insurance (Vedenov and Barnett 2004; Barnett and Mahul 2007; Giné, 

Townsend and Vickery 2008; Binswanger-Mkhize 2012; Smith and Glauber 2012b; Elabed et al. 

2013; Jensen et al. 2016; Clarke 2016; Jensen and Barrett 2017; Carter et al. 2017). 

According to Coble et al. (2020), basis risk is the variance of the conditional distribution 

of actual losses given a specific Index value and they note that it is often difficult to model because 

of limited data. Thus, basis risk tends to be measured as the linear correlation/covariance between 

the Index and losses, but this may be misleading because of potential nonlinearities that are likely 

to exist (Collier et al. 2010). A simple but intuitive measure widely used is a false negative 

probability (FNP), i.e., the probability of actual loss without indemnification (Elabed et al. 2013; 

Yu et al. 2019). According to Elabed et al. (2013), if the FNP is large then farmers will place less 

value on Index insurance and may choose not to buy it; thereby directly reducing its feasibility as 

an effective risk management instrument. This study also uses FNP as the indicator to measure the 

level of basis risk associated with a broad range of Index insurance products for traditional row 

crops.  

 3.3. Methods 

The study simulates stylized schemes for APH- and Index-based insurance like Chapter 2. 

Premiums and indemnities are simulated ex-post such that all farmers in a historic farm-level data 
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spanning 46 years (1973-2018) participate in both schemes for every year data is available for 

them. This ensured that adverse selection (since all farmers participate in both schemes) and moral 

hazard (yield remain the same under both schemes) are ruled out. While this is an abstraction from 

reality since it is unlikely for a single farmer to purchase both APH- and Index-based insurance, it 

makes it possible for one to observe separately the potential outcomes of both schemes for the 

same farmer under identical conditions.  

The APH-insurance simulation is the same as that of Chapter 2 but for the case where their 

adjustment function is omitted entirely (i.e., RMA 2019 parameters are taken as given). For the 

APH-based simulations, the analysis assumed a 75 percent coverage level since it has the largest 

enrollment in Kansas since 2002 for the crops considered (RMA 2020). For the Index-based 

insurance simulation, the study simulates outcomes for indices based on precipitation, soil 

moisture, and 19 indices for degree-days for the 11 Index intervals discussed above. The 19 indices 

for degree-days are based on thresholds of 15 to 29°C (i.e., beneficial growing-degree-days) and 

30 to 33°C (i.e., harmful killing-degree-days) all in 1°C increment. Finally, across all the 

simulations, premium subsidies are not considered because since they are tied to coverage rather 

than product, they will cancel out when comparing two products of the same coverage level as in 

this study. 

 3.3.1 Index insurance designs 

The study draws insights from the literature by assuming that output for the ith farmer for 

season t (𝑦𝑖𝑡) is not only random but also stochastically dependent on some random process 𝑋(𝑡) 

(e.g., weather) with a realized seasonal value of 𝑋𝑡. Elabed et al. (2013) represents this relationship 

as 

𝑦𝑖𝑡 = 𝑔(𝑋𝑡) + 𝜗𝑡 + 𝜂𝑖𝑡          (1). 
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Here, the function 𝑔(∙) approximates the impact of 𝑋𝑡 on 𝑦𝑖𝑡; 𝜗𝑡 accounts for the residual impact 

of the random process 𝑋(𝑡) not captured by 𝑋𝑡; and 𝜂𝑖𝑡 captures the impact of other random factors 

uncorrelated with 𝑋𝑡. In practice, the parameters of the approximation function 𝑔(∙) determines 

the design parameters of an Index insurance product based on the random process 𝑋(𝑡), and 𝜗𝑡 

and 𝜂𝑖𝑡 captures any inherent basis risk of the Index insurance. According to literature, the basis 

risk associated with 𝜗𝑡 can be reduced by improving the design parameters of the Index insurance 

such that 𝑔(∙) predicts 𝑦𝑖𝑡 precisely (Conradt, Finger and Bokusheva 2015; Bucheli et al. 2020). 

In this study, attention is given to the choice of the random process 𝑋(𝑡), i.e., the Index variable, 

rather than the parameters in 𝑔(∙) as Bucheli et al. (2020) does.  

For a given insurance period t, Index variable, interval, the expected grid Index (𝐸𝑟𝑣𝑡
𝐼 ) is 

the mean accumulated value of the Index variable over all periods 𝑡 − 𝑗 such that 𝑗 ≥ 2. Likewise, 

the final grid Index (𝐹𝑟𝑣𝑡
𝐼 ) is just the current accumulated value of the Index variable. Depending 

on the Index variable, the Index insurance product was designed as a policy that protects against a 

shortfall or an excess in the accumulation of the underlying Index variable. Particularly, policies 

based on precipitation, soil moisture, and growing-degree-days (i.e., degree-days with thresholds 

of 15 to 29°C) insured against a shortfall in accumulation of the underlying Index variable. Policies 

based on killing-degree-days (i.e., degree-days with thresholds of 30 to 33°C) insured against 

excess in accumulation. The rationale for this distinction is that naturally, relatively more 

precipitation and high soil moisture improves yields. Also, previous studies show that crop yield 

growth increases linearly up to a temperature threshold (i.e., the optimal temperature) and then 

sdecreases linearly for every 1°C increase above that threshold : the optimal temperature for 

various crops tend to be between 29-33°C (Schlenker and Roberts 2009; Tack, Barkley and Nalley 

2015). 
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In practice, the insurance provider will use historic values of the 𝐸𝑟𝑣𝑡
𝐼  and 𝐹𝑟𝑣𝑡

𝐼  to estimate 

base premium rates for each grid, Index interval, and 𝑇𝑖𝑔
𝐼  combination, annually. However, because 

of data limitation, the study used the entire sample space for each grid to estimate the rates for the 

respective grid so that for each farm/year policy simulated, the grid level rates do not change but 

the 𝐸𝑟𝑣𝑡
𝐼  and 𝐹𝑟𝑣𝑡

𝐼  do.  

The current RMA procedure used to rate the PRF-RI relies on nonparametric empirical burn 

rates which are bounded based on rates derived from parametric distributions (Lognormal, 

Truncated Normal, and Gram Charlier (GC) expansion) (Coble et al. , 2020). As suggested by 

Coble et al. (2020), this study uses a similar approach but expands the range of the bounding 

parametric rates to include those from Weibull and Gamma distributions. Furthermore, the study 

excludes the rates from the Gram Charlier (GC) expansion distribution. The specific bounding 

undertaken in the rating process involves the following steps: 

1. For each Index variable/grid/interval/coverage combination, calculate the empirical burn 

rates as the mean of the PCF; i.e., 𝑚𝑎𝑥 {0,
𝑇𝑖𝑔

𝐼 −𝐹𝑟𝑣
𝐼

𝑇𝑖𝑔
𝐼 } for the case of insuring against a shortfall 

and 𝑚𝑎𝑥 {0,
𝐹𝑟𝑣

𝐼 −𝑇𝑖𝑔
𝐼

𝑇𝑖𝑔
𝐼 } for the case of insuring against an excess.  

2. Use the burn rates to estimate parametric rates implied by the Lognormal, Truncated 

Normal, Weibull, and Gamma distributions 

3. If the burn rate is less than the maximum of the parametric rates an initial raw rate is set to 

the minimum of the parametric rates. 

4. If the burn rate is higher than the maximum of the parametric rates an initial raw rate is set 

to the maximum of the parametric rates. 
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5. If the burn rate is between the minimum and maximum of the parametric rates, the raw rate 

is set to the burn rate. 

6. The raw rate is then loaded by dividing by 0.88 to get the base premium rate.  

For the PRF-RI, the final base rate for a given grid is determined via a spatial smoothing algorithm 

that takes a weighted average of the grid’s raw rate and those from contiguous grids. In this study, 

the spatial smoothing algorithm was not employed because of technical constraints.  

The study utilizes the 𝐸𝑟𝑣𝑡
𝐼 , 𝐹𝑟𝑣𝑡

𝐼 , and the base premium rate as the design parameters in the 

simulation that follows. 

 3.3.2 Index insurance interval allocation 

In this study, the decision to sign up for insurance is automatic, but for each farm/year 

combination, the study must choose the coverage level (i.e., trigger grid Index [𝑇𝑖𝑔
𝐼 ]), productivity 

factor (𝑃𝐹̅̅ ̅̅
𝑖
𝐼), and Index intervals and assign Index interval weight (𝑊𝑖𝑟𝑣

𝐼 ) to them. For ease of 

comparison to corresponding APH-based insurance simulation, the analysis assumed a 75 and 

125% coverage level for products that protect against a shortfall and excess in accumulation of the 

respective Index, respectively. The 𝑃𝐹̅̅ ̅̅
𝑖
𝐼 was taken as 𝑦̅𝑖 𝑦̅𝑐𝑟⁄ , which is the producer’s rate yield 

(𝑦̅𝑖) over a county-level reference yield (𝑦̅𝑐𝑟). Also, it will be shown in the data section, the 

empirical implementation that aggregates 𝐸𝑟𝑣
𝐼 , 𝐹𝑟𝑣

𝐼 , and 𝑅𝑟𝑣𝑔
𝐼  which essentially removes the need 

for grid ID selections. So, the only variable left to choose is 𝑊𝑖𝑣
𝐼  for all farm/year combinations in 

the dataset and each of the 21 Index-insurance products deployed in the simulation.  

Given the assumptions made so far, and following similar empirical applications elsewhere 

(Popp and Rudstrom 2000; Nalley et al. 2009; Barkley, Peterson and Shroyer 2010), the study 

relies on Markowitz portfolio theory (Markowitz 1952) to simulate how farmers purchase 

insurance by allocating 𝑊𝑖𝑟𝑣
𝐼 . Here the intuition is that direct production and Index intervals are 
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investment assets. The distribution of proceeds from direct production (i.e., 𝑣 = 0) and each of the 

11 Index intervals (i.e., ∀𝑣 ∈ [1,11]) are given by 𝑦𝑖𝑡0~𝑖𝑖𝑑 𝑁(𝑦̅𝑖0, 𝜎𝑖0
2 ) and 𝑦𝑖𝑡𝑣~𝑖𝑖𝑑 𝑁(𝑦̅𝑖𝑣, 𝜎𝑖𝑣

2 ); 

and the covariance of any two assets is cov(𝑦̅𝑖𝑘, 𝑦̅𝑖𝑣) = 𝜎𝑖𝑣𝑘. Thus, the expected proceeds (𝐸(𝜋𝑖𝑡)) 

and variance of proceeds (𝑉(𝜋𝑖𝑡)) for the ith farm at time t is given by  

𝐸(𝜋𝑖𝑡) = 𝑊𝑖0
𝐼 𝐸(𝑦𝑖𝑡0) + ∑ 𝑊𝑖𝑡𝑣

𝐼 𝐸(𝑦𝑖𝑡𝑣)𝑣         (3.3) 

𝐸(𝑦𝑖𝑡𝑣) = 𝑦̅𝑐
𝐼 ∙ 𝑇𝑖𝑔

𝐼 ∙ 𝑃𝐹̅̅ ̅̅
𝑖𝑡
𝐼 ∙ 𝑚𝑎𝑥 {0,

𝑇𝑖𝑔
𝐼 −𝐸(𝐹𝑖𝑡𝑣

𝐼 )

𝑇𝑖𝑔
𝐼 } − 𝑅𝑖𝑡𝑔𝑣

𝐼      (3.4) 

𝑉(𝜋𝑖𝑡) = ∑ ∑ 𝑊𝑖𝑣
𝐼 𝑊𝑖𝑘

𝐼 𝜎𝑖𝑣𝑘𝑘𝑣           (3.5). 

All variables are defined in sections 3.2.1 and 3.2.2, but the most important thing to note is that 

farm proceeds are the summation of the direct expected proceeds from production (𝐸(𝑦𝑖𝑡0)) plus 

the expected proceeds from insurance for each Index interval (𝑦𝑖𝑡𝑣). Also note that the direct cost 

of production and premium subsidies are eliminated, because they are the same for both APH- and 

Index-based schemes.  

Given the above set up, the farmer can allocate the weights to each investment by pursuing 

one of five objectives: (1) finding the global minimum variance portfolio; (2) finding the global 

maximum proceeds portfolio; (3) finding the efficient portfolio for a target level of risk; (4) finding 

the efficient portfolio for a target level of proceeds; or (5) equally allocated portfolio. In this study, 

only objective (1) is considered since it reflects the reason for insurance purchase (i.e., to deal with 

risk), and the study assumes that farmers are risk-averse.23 Thus, the constrained minimization 

problem for each farm/year combination is 

min
𝑊𝑖𝑣

𝐼
𝑉(𝜋𝑖𝑡) = ∑ ∑ 𝑊𝑖𝑣

𝐼 𝑊𝑖𝑘
𝐼 𝜎𝑖𝑣𝑘

11
𝑘=0

11
𝑣=0         (3.6) 

 

23 Alternatively, farmers may be buying insurance to maximum expected payments since the premiums are 

subsidized. However, since subsidies are not considered, the study does not consider this objective.  
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[constraint 1]  𝑊𝑖0
𝐼 = 1 

[constraint 2]  ∑ 𝑊𝑖𝑣
𝐼12

𝑣=1 = 1 

[constraint 3]  𝑊𝑖,𝑣
𝐼 ∙ 𝑊𝑖,𝑣+1

𝐼 = 0 ∀𝑣 ∈ [1,11] 

[constraint 4]  𝑊𝑖𝑣
𝐼 = {

0.1 ≤ 𝑊𝑖𝑣
𝐼 ≤ 0.6 𝑊𝑖𝑣

𝐼 > 0

0 𝑊𝑖𝑣
𝐼 = 0

 . 

Since insurance purchase is an afterthought of a production decision, 𝑊𝑖0
𝐼  is always set to one 

[constraint 1], but the sum of weight for the Index intervals must equal one [constraint 2]. 

Additionally, as in the case of the PRF-RI, purchasers must assign weights to the non-overlapping 

interval [constraint 3] that range from 10-60% [constraint 4]. 

The solution for the global minimum variance portfolio from the constrained minimization 

problem is used to calculate ex-post the premiums and indemnities for each farm/year combination 

and then compared to those from the APH-based schemes along four dimensions: (1) 

indemnification pattern (i.e., basis risk), (2) farm-level outcome, and (3) economic significance.  

 3.3.3 Comparisons of potential outcomes 

As noted above, the study used alternative Index variables to gauge which is associated 

with low basis risk. To do this, the study used two measures. The first is false-negative probability 

(FNP) (Elabed et al. 2013; Yu et al. 2019); for a given Index variable this is defined as 𝐹𝑁𝑃 =

𝑃𝑟[𝐼𝑖𝑔
𝐼 = 0|𝐼𝑖𝑔

𝐴 > 0] = 𝑃𝑟[𝐼𝑖𝑔
𝐼 = 0, 𝐼𝑖𝑔

𝐴 > 0] 𝑃𝑟[𝐼𝑖𝑔
𝐴 > 0]⁄ . This is operationalized by first 

computing the size of the indemnities from both schemes across all farm/year combinations, and 

then empirically compute the joint and marginal probabilities to obtain the FNP. This was done 

for each type of Index variable considered. The FNP does not tell us about the level of basis risk 

at the farm level so the study considers another measure defined as 𝑏𝑎𝑠𝑖𝑠 =  
𝑚𝑎𝑥{0,𝐼𝑖𝑔

𝐴 −𝐼𝑖𝑔
𝐼 }

𝑦̅𝑖
𝐴 ×
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100%. Here a no-zero value indicates the extent of the short fall in the indemnity due the farmer 

with relatively higher values indicating relatively high short falls.  

For the economic significance, this study uses the same method as Chapter 2 with the only 

difference being that the soil-adjusted outcomes are replaced with outcomes from Index-based 

insurance. However, unlike Chapter 2, this study reports the cede to retain LR ratios instead of 

indemnity ratios. Finally, to get a measure of statistical uncertainty, the various outcome measures 

are repeatedly calculated 1,000 times by bootstrap sampling the farms in the data. 

 3.4. Data 

 3.4.1 Sources 

Six main sources of data are utilized; (1) 46 years of farm-level Kansas corn, sorghum, 

soybean, and wheat yields provided by the Kansas Farm Management Association (KFMA); (2) 

actuarial information from RMA’s 2019 Actuarial Data Master (ADM) (Risk Management 

Agency [RMA] 2019a); (3) 4-by-4-kilometer gridded daily temperature and precipitation from the 

PRISM Climate Group at Oregon State University (http://prism.oregonstate.edu) and Professor 

Wolfram Schlenker at Columbia University (http://www.columbia.edu/~ws2162/links.html); (4) 

2008-2019 30-by-30-meter gridded national cropland data layers (CDLs) from NASS CropScape 

(USDA National Agricultural Statistics Service 2019); (5) soil moisture content from state-of-the-

art land surface model (LSM) data from the North American Land Data Assimilation System Phase 

2 (NLDAS-2); and (6) 1979-2019 weekly crop progress reports from NASS Quick Stats (United 

States Department of Agriculture [USDA] 2019). 24,25 

 

24 The NLDAS-2 used in this study were acquired as part of the mission of NASA's Earth Science Division and 

archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). 

25 All data and models were processed on Beocat, a High-Performance Computing cluster at Kansas State University 

(https://beocat.ksu.edu/) 

http://prism.oregonstate.edu/
http://www.columbia.edu/~ws2162/links.html
https://beocat.ksu.edu/
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 3.4.2 Yield and APH-based loss experience data 

The yield data from KFMA and APH-based insurance actuarial information from RMAs 

ADM are the same as Chapter 2, thus, the reader is referred to the relevant sections in Chapter 2 

for extensive details. To summarize, The KFMA data has 5,428 sample farms with 149,267 yield 

observations spanning 1973-2018 that exhibits a great amount of cross-sectional and temporal 

variation. The mean of the yields for the four crops considered in kg/ha is 4,833, 3,412, 1,928, and 

2,470 for corn, sorghum, soybeans, and wheat, respectively. The respective standard deviation was 

2,137, 3,412, 1,928, and 2,470 kg/ha. Chapter 2 showed the representativeness of the KFMA data 

by comparing sample average yields at the crop-county-year level to yield statistics from NASS. 

Given the KFMA data, Chapter 2 used a three-step algorithm grounded in RMA guidelines (RMA 

2018) to replicate 1,000 simulations of loss experience data for an APH-based insurance scheme 

for each crop-year in the dataset, starting with 1983. The study utilizes these simulations for the 

APH-based insurance scheme in this study.  

 3.4.3 Index-based insurance data 

The basic idea for the Index-based insurance simulation is to match each of the 1,000 

simulations from Chapter 2 with a corresponding Index-insurance policy. As indicated in the 

methods section, the Index-based insurance simulation included indices based on precipitation, 

soil moisture, and 19 indices for degree-days. The precipitation and temperature for degree-days 

from the sources cited above were available in a raster map with four-kilometer cell sizes. While 

the precipitation data was taken as given, the degree-days variables were derived following similar 

research that used similar data (Schlenker and Roberts 2009; Tack et al. 2015; Shew et al. 2020). 

The soil moisture from NLDAS-2 were hourly estimates for different soil layers based on three 

different LSMs in raster maps with 14-kilometer cell sizes. Particularly, this study relies on soil 
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moisture stored in the 0–10 cm soil layer as it has been shown to best predict crop yields when 

compared to alternatives in the same database (Ortiz-Bobea et al. 2019). Given this choice, the soil 

moisture stored in the 0–10 cm soil layer was taken as the mean across the three sources (NOAH, 

SAC, and MOSAIC) available in NLDAS-2.  

The final data needed to operationalize the analysis was the relevant months within the 

growing season to base the Index intervals on. To get these data, the study used the weekly crop 

progress reports from NASS Quick Stats. For each crop, the study selected only the months and 

adjoining ones (i.e., previous, and subsequent) for which the reports indicated at least 1% progress 

for planting and at most 50% for harvesting for the respective crop. Using this method, the relevant 

Index intervals from 1979-2019 for the crops are corn (Feb/Mar, Mar/Apr, Apr/May, May/Jun, 

Jun/Jul, Jul/Aug, Aug/Sep, Sep/Oct, Oct/Nov), sorghum (Feb/Mar, Mar/Apr, Apr/May, May/Jun, 

Jun/Jul, Jul/Aug, Aug/Sep, Sep/Oct, Oct/Nov), soybeans (Apr/May, May/Jun, Jun/Jul, Jul/Aug, 

Aug/Sep, Sep/Oct, Oct/Nov, Nov/Dec, Dec/Jan), and wheat (Feb/Mar, Mar/Apr, Apr/May, 

May/Jun, Jun/Jul, Jul/Aug, Aug/Sep, Sep/Oct, Oct/Nov).  

Given the above data, the study constructs 𝐸𝑟𝑣
𝐼 , 𝐹𝑟𝑣

𝐼 , and 𝑅𝑟𝑣𝑔
𝐼  for each of the Index variables 

and interval at the grid level and their respective raster. The study then aggregated the 𝐸𝑟𝑣
𝐼 , 𝐹𝑟𝑣

𝐼 , 

and 𝑅𝑟𝑣𝑔
𝐼  to the farm level. The aggregation was necessary because the exact location of each 

farmer’s field was unknown; however, they were best approximated using their mailing address 

following the procedure outlined in Note S1 in appendix A. As noted in Chapter 2, while not ideal 

because of potential measurement error and attenuation bias, the approach is somewhat 

representative of the real-world situation in which RMA operates. The specific aggregation 

involves the following steps: 

1. Geocoded farm mailing address to get an approximated spatial coordinate of the farm 
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2. Created a 1.5-mile radius circular spatial polygon using the spatial coordinate of the farm 

as its centroid  

3. Cropped and masked the grid surface for each Index that overlaps with the circular polygon  

4. Cropped and masked the 3m crop frequency layer that overlaps with the circular polygon  

5. Extract grid IDs from portions of each masked grid surface that overlap with the masked 

3m crop frequency layer. 

6. Calculated the weight for each grid ID by counting the number of grids from (5) and then 

divided that by the total number of grids from (5) 

7. The information (𝐸𝑟𝑣
𝐼 , 𝐹𝑟𝑣

𝐼 , and 𝑅𝑟𝑣𝑔
𝐼 ) for each farm is taken as the weighted average of the 

information in their assigned grid IDs.  

 3.5. Results 

 3.5.1 Basis risk 

Index-based insurance that protects against excess accumulation in killing-degree-days is 

associated with relatively low basis risk. Figure 3.1 reports the estimated probabilities based on 

the mismatch between APH- and Index-based insurance indemnifications. Since the APH-based 

product is directly tied to actual production, it is taken as the truth. Thus, any deviation from its 

indemnification pattern can be used as a gauge for basis risk. Given a null hypothesis that a 

producer is indemnified based on the APH-product, the study focuses on the incorrect rejection of 

a true null hypothesis, i.e., where the producer is not indemnified by the Index product despite 

experiencing a loss. The study finds that generally, the Index products simulated have FNP less 

than 0.5. However, there are some interesting dynamics. First, Index products that protect against 

reduced accumulation in precipitation or soil moisture are generally associated with relatively low 

FNP when compared with those that protect against reduced accumulation in growing-degree-
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days. On the contrary, Index products that protect against reduced accumulation in precipitation 

or soil moisture are associated with relatively high FNP when compared with those that protect 

against excess accumulation in killing-degree-days.  

Figure 3.2 shows the spatial distribution of the second measure for basis risk (i.e., the extent 

of the short fall in the indemnity due the farmer). The darker areas in Figure 3.2 shows those areas 

where the typical farmer received relatively less indemnity from the index product relative to what 

they should have received from the APH product. Figure 3.2 corroborates the conclusion from the 

FNP on Figure 3.1 as it can be observed that the index product that protects against excess 

accumulation in killing-degree-days is associated with a relatively less short fall (0.2 to 1.79%) in 

the indemnity due the farmer when compared to the other products.  

 3.5.3 Economic performance 

Compared to APH-based products, Index-based insurance that protects against excess 

accumulation in killing-degree-days generates significant gains in economic rents. Results for the 

ceded to retained Loss-Ratio ratios across all policies and by crops are shown in Figure 3.3. 

Focusing on all crops aggregate measure, Index insurance protecting against excess accumulation 

in killing-degree-days with thresholds of 33 °C produces outcomes that are economically 

significant when compared to policies based on APH. For all crops together, the ratio was 

approximately 1.1 indicating that LR was 10% larger among the ceded policies relative to the 

retained. There is also significant heterogeneity across the four crops with corn being the largest 

(approximately 1.25) and wheat the smallest (approximately 1). Extreme temperatures have been 

shown to significantly reduce crop yields, thus it is not surprising that Index-based insurance that 

protects against their excess is economically significant.  
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Figure 3.1: False-Negative-Probabilities for Various Index-Based Insurance Products 
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Figure 3.2: Spatial pattern in basis risk for alternative index insurance products in Kansas 
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Figure 3.3: Economic Performance of Index-Based Crop Insurance 
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 3.6. Conclusion 

This study extends the crop insurance literature by providing simulated evidence of the 

tradeoffs between APH- and Index-based insurance at the farm level which remains largely 

unknown. Using a sample of 5,428 corn, soybean, sorghum, and wheat KS farms from 1973-2018, 

and implementing an empirical strategy that formulates two parallel simulations, the study showed 

that economically significant tradeoffs do exist between APH- and Index-based insurance and that 

different types of Index products are associated with differing levels of basis risk. Particularly, 

Index-based insurance that protects against excess accumulation in killing-degree-days generates 

the most significant gains in economic rents and is associated with relatively low basis risk. The 

findings are important given the dual role of a government-led insurance scheme of providing a 

risk coping mechanism and transferring funds to farmers. The results suggest that where farm-

level production data is limited, exploring Index-based insurance that protects against excess 

accumulation in killing-degree-days can achieve this dual objective.  

There are several caveats to the analysis. First, the focus is solely given to dryland 

operations of Kansas farms that produce corn, soybeans, sorghum, and/or wheat. Subsequent 

studies can broaden the scope by including more locations, crops, and production practices (e.g., 

irrigation). Second, the weather information used in this study is based on the mailing address of 

the farms in the KFMA database. Thus, for those producers who do not live on or close to their 

farmland, the information could include significant measurement error. Finally, the results rely on 

premiums and indemnities that are simulated ex-post based on historic data. To make this possible 

a strong assumption made was that all farmers in the historic data participate in both schemes, 

which had implications for adverse selection and moral hazard. Ongoing work includes efforts to 

measure the relevance of these concerns.  
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Chapter 4 - The Potential Significance of “Big Ag Data” in Corn 

Futures Markets 

 4.1 Introduction 

Since the 1970s the United States Department of Agriculture (USDA) has published 

multiple report series that provide agricultural stakeholders with current and expected market 

conditions, thereby reducing uncertainties about prices and quantities. A few of these reports that 

are of interest in the context of this study include the: Annual Acreage; Annual Prospective 

Plantings; Weekly Crop Progress and Condition (CPC); Monthly Grain Stocks; Monthly World 

Agricultural Supply and Demand Estimates (WASDE); and Monthly Crop Production (CP). These 

USDA reports rely on statistical survey approaches to collect production and usage data, as such, 

they are not available in real-time but rather on well-established release dates throughout the year. 

Due to the evolving priorities of the USDA, and the growth of the private sector in providing 

relatively low-cost market information and analysis, the debate about the economic significance 

of the USDA reports has generated extensive research in the academic literature (Gorham 1978; 

Ying, Chen and Dorfman 2019; McKenzie and Darby 2017; Schaefer, Myers and Koontz 2004; 

Isengildina, Irwin and Good 2006; Sumner and Mueller 1989). Most of these articles employed 

some variant of event study methodology to show that amid private-sector information, the USDA 

reports significantly impacted markets, suggesting that the reports have economic significance.26  

In recent years, the adoption and use of precision agriculture technologies have increased, 

generating increased attention to the output data of precision equipment. An annual survey of 

stakeholders in the precision agriculture technology supply chain in 2015 showed that two of the 

 

26 Section 4.2 elaborates on the event study methodology. 
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most adopted technologies between 2013 and 2015 were unmanned aerial vehicles (UAVs) and 

“Big Data” (Erickson and Widmar 2015). A unique aspect of precision agriculture is the potential 

of capturing near real-time information such as planted area, and time and level of input application 

or harvest (yield). According to Sykuta (2016), the near real-time information captured by 

precision equipment can easily be aggregated to a higher level. This poses an interesting contrast 

to the USDA report methodology which relies on periodic surveys to estimate production and 

usage information.  

Previous studies have examined the possibility of generating production information – 

particularly yield – that is equally if not more accurate than those published in the USDA reports. 

Several of these studies feed weather data into stylized yield models to estimate near real-time 

end-of-season yield forecasts. However, one that is of interest to this study utilizes a unique dataset 

of end-of-season farm-level corn yields akin to that generated by precision technologies to simulate 

aggregated end-of-season yields. Tack et al. (2019a) utilized various strategies that reflect 

conditions that private-sector aggregators are likely to face when estimating national end-of-season 

yields from precision technologies. Vis-à-vis USDA final end-of-season yields, Tack et al. (2019a) 

showed that non-random sampling schemes are associated with biases that can be effectively 

removed by benchmarking procedures for removing systematic prediction error.  

Building on Tack et al. (2019a), this study seeks to answer a simple but important question 

of whether live-streamed harvest-time yields from precision technologies are potentially 

economically significant. To answer this question, the study utilizes historic end-of-season farm-

level corn yields that approximately represent 83% of US planted acres for 1999-2008 and CPC to 

construct weekly yield projection as representative of those from live yield monitors. The idea is 

to utilize the farm-level yield data to represent the population of farm-level US corn yields, and 
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the weekly variation in CPC information on the proportion of annual crop harvested and under 

various conditions to approximate how the yield population changes throughout the harvest season. 

Given the simulated live-streamed harvest-time yields, the study then employs event study 

methodology to test the potential economic significance of live-streamed yield monitor data vis-

à-vis USDA reports.  

The remainder of Chapter 4 is organized as follows. Section 4.2 provides a review of event 

study methodologies as it pertains to the importance of USDA reports to participants in futures 

markets. The methods section follows next in section 4.3 and it outlines the specific event study 

methodologies utilized and key hypothesis tested. Section 4.4 presents the data used and how the 

live-streamed harvest-time yields were simulated from them. Finally, Section 4.5 and 4.6 presents 

the core results and conclusions, respectively.  

 4.2. Event Study Literature  

The event study methodology, introduced by Fama et al. (1969) is used in the accounting 

and finance disciplines as the standard methodology for testing the null hypothesis of market 

efficiency, and to examine the impact of some announcement or event on the wealth of the firm’s 

security holders (Binder 1998)27. In agricultural economics, researchers have used the event study 

methodology to ascertain the warning signs of looming food crises (World Food Programming 

(WFP) and Centre of Research and Studies on Economic Development (CERDI) 2012) and to 

analyze the impact of food contamination (Li et al. 2010) or market situation (Gorham 1978; Ying 

et al. 2019; Isengildina et al. 2006) information release on commodity prices and quantities. In the 

context of this research, the main idea is that, if markets are efficient, the conditional expectation 

 

27 See Corrado (2011) and Binder (1998) for an extensive review of the event study methodology since Fama et al. 

(1969). 



71 

 

of the final prices of contracts at maturity should be well represented by futures prices. Thus, spikes 

in the variability of futures return reflect changes in market participants’ expectations of the 

maturity prices due to news in the USDA reports. Conditional on the contents of the news, and 

importantly if the news is valuable to market participants, the changes in the futures return can 

either be positive or negative. Furthermore, if the market is efficient, the reaction to any news in 

the USDA reports should be instantaneous. Following this idea, the event study methodologies 

used in analyzing the announcement effects of USDA reports are of three strands.  

Regardless of the nature of the analysis, all studies use some measure of future price return. 

The main measures used are 

∆𝑃𝑖 =
𝑃𝑖,𝑑

𝑃𝑖,𝑑−𝑗
− 1           (4.1)  

|∆𝑃𝑖| = |
𝑃𝑖,𝑑

𝑃𝑖,𝑑−𝑗
− 1|           (4.2)  

𝑟𝑖 = 100 × (
ln 𝑃𝑖,𝑑

ln 𝑃𝑖,𝑑−𝑗
)           (4.3), 

where the subscript 𝑃𝑑 is the settlement price of commodity i’s nearby futures contract on day d. 

While j can take on any value greater than zero, it is naturally set to one. Typically, close-to-open, 

close-to-close, or open-to-close methods are used in the determination of 𝑃𝑖,𝑑 and 𝑃𝑖,𝑑−1. For close-

to-open, 𝑃𝑖,𝑑−1 and 𝑃𝑖,𝑑 are the closing and opening futures price for day 𝑑 − 1, and d, respectively, 

and for close-to-close, they both represent closing and opening futures price for the respective 

days. Open-to-close follow a similar nomenclature.  

As indicated earlier, if the markets are efficient, the impact of any new information should 

be reflected instantaneously in futures prices. Thus, for USDA reports released at the end or 

beginning of the day’s trading session, any new information should be incorporated into the price 

at the beginning of the preceding day’s session. Thus, the close-to-open method will be 
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appropriate. However, if reports are released during the trading session, the close-to-close method 

is appropriate. Some of USDA’s reports before 2008 were released during the trading hours, 

however, subsequent releases after 2008 are typically done at the end of trading hours. Depending 

on the period of study and type of USDA report analyzed, several studies have used either the 

close-to-open or close-to-close method.  

The first strand of event study methodologies, utilized by the early literature and as a preliminary 

test for the recent, relies on simple parametric (e.g., t-tests and F-tests) and nonparametric chi-

square (e.g., Savage test, Kruskal-Wallis test, and Van der Waerden test) test of difference in 

measures of future price variability following a report release and that of non-release days. The 

second strand of event study methodologies used in analyzing the announcement effects of USDA 

reports utilizes time series regression frameworks. These studies regressed measures of future price 

variability on a dummy for the release of several types of USDA reports and other control 

variables. Consequently, the second strand only provides a yes/no answer to whether the USDA 

reports influence the actions of market participants.  

The third strand methodologies also utilize a regression framework. However, unlike the 

second strand that utilizes a dummy to represent an announcement effect of the reports, the third 

utilizes a measure of the extent of the surprise in the reports. Furthermore, unlike the second strand 

that utilizes all data points over their study period, the third makes use of only the data points 

around the announcement dates. The prototypical framework for the third strand is represented as 

𝑟𝑖,𝑡 = 𝛼 + 𝑥𝑖,𝑡
𝑒 𝛾 + 𝑥𝑖,𝑡

𝑢 𝛽 + ∑ 𝑥𝑖,𝑡−𝑗
𝑢 𝛿𝑗

𝑚
𝑗 + 𝜇𝑖,𝑡 ,  

𝑡 = −𝑘, … ,0, … , +𝑘,   𝑖 = 1, … , 𝐼,  and  𝑗 < 𝑘    (4.4). 

First, the time index is 𝑡 = −𝑘, … ,0, … , +𝑘, where zero indicates the daytime trading session 

immediately following the release of an issue (𝑖) of a given report (e.g., for this study CP and/or 
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WASDE). The release of one issue is taken as one event, hence the event index is 𝑖, and it takes 

on values from 1 to 𝐼 (𝐼 is the total number of issues from the inception of the given report to date). 

The variable 𝑟𝑖,𝑡 has the same definition as before, and it could be calculated based on a close-to-

open, close-to-close, or open-to-close basis. The variable 𝑥𝑖,𝑡
𝑒 , is a vector of expected information 

known to the market participant at the close of trading day 𝑡 − 1; 𝑥𝑖,𝑡
𝑢  is a vector of unanticipated 

information (the surprise), derived as 𝑥𝑖,𝑡
𝑎 − 𝑥𝑖,𝑡

𝑒 , where 𝑥𝑖,𝑡
𝑎  is a vector of announced information 

in report issue i. Finally, 𝜇𝑖,𝑡 is a stochastic term; and 𝛼, 𝛾, 𝛽, and 𝛿𝑗 parameters to be estimated.  

It follows from rational market expectations that 𝑥𝑖,𝑡
𝑒 = 𝐸[𝑥𝑖,𝑡

𝑎 |𝛺𝑖.𝑡−1], where 𝛺𝑖.𝑡−1, is a 

vector of the information set at the close of trading day 𝑡 − 1, such that 𝑥𝑖,𝑡
𝑢  is uncorrelated with 

𝛺𝑖.𝑡−1. Furthermore, it also follows from the efficient market hypothesis that 𝛾 = 0, because 𝛺𝑖.𝑡−1 

will be reflected in prices at the close of trading day 𝑡 − 1. Additionally, 𝛿𝑗 ≠ 0 will violate the 

notion that the reaction to any news in the USDA reports should be instantaneous. Consequently, 

if markets are efficient, the relevant equation for the analysis reduces to 

 𝑟𝑖,𝑡 = 𝛼 + 𝑥𝑖,𝑡
𝑢 𝛽 + 𝜇𝑖,𝑡 , 𝑡 = −𝑘, … ,0, … , +𝑘,  and  𝑖 = 1, … , 𝐼,  (4.5). 

Based on the presented framework, the third strand will usually estimate Equation (4.4) and then 

test the null hypothesis (jointly or individually); 𝛾 = 0 and 𝛿𝑗 = 0. If both are not rejected, they 

then proceed to estimate Equation (4.5) to ascertain the effect on futures price return after the 

surprise (𝑥𝑖,𝑡
𝑢 ) is realized. If the null hypothesis fails, then Equation (4.5) is used.  

 4.3 Methods 

This study employed all three strands of event study methodologies used in analyzing the 

announcement effects of USDA reports. However, the preferred model is the methodology that 

falls under the regressions with a degree of surprise measure (Equations 4.4 and 4.6). The main 
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idea is that if markets are efficient, the conditional expectation of the maturity price of contracts 

should be well represented by futures prices. Thus, spikes in the variability of futures return reflect 

changes in market participants’ expectations of the final prices due to news. Conditional on this 

news, and importantly if it is valuable to market participants, the changes in the futures return can 

either be positive or negative. Furthermore, if the market is efficient, the reaction to the news will 

be instantaneous. More importantly for this study, if the market reaction to the news from live-

streamed and USDA information is non-zero, then this implies that the former can provide useful 

information beyond what is available in the latter.  

Previous studies have taken expected information in Equation (4.4) as 𝑥𝑖,𝑡−1
𝑎  (a naïve 

assumption) (Lehecka 2014; McKenzie and Darby 2017; Gorham 1978), the average of market 

analyst expectations (Frank, Garcia and Irwin 2008; Garcia et al. 1997; Colling and Irwin 1990), 

or the average of proprietary information (Schaefer et al. 2004). In this study, two sources of 

surprise are used; (1) “public surprise” calculated based on 𝑥𝑖,𝑡
𝑒 = 𝑥𝑖,𝑡−1

𝑎 ; and (2) “live surprise” 

calculated based on 𝑥𝑖,𝑡
𝑒 = 𝑥𝑖,𝑡

𝑙 , where 𝑥𝑖,𝑡
𝑙  is the weekly simulated live-streamed harvest-time 

yields akin to live-streamed yield monitor data. The study included up to three days of historic 

surprise and controlled month of year and the autocorrelation in return variability by including two 

lags.  

Based on the specified in Equation 4.4, this study tests the following hypotheses. If 𝛽 = 0 

fails with 𝛿𝑗 = 0 and 𝛾 = 0, then futures prices reflect both public and private information and 

will not react to USDA reports or live-streamed yield data since they do not provide “news” to the 

market. In this situation, the market exhibits strong form efficiency (Fama 1970). On the other 

hand, the rejection of 𝛽 = 0 can be taken as importance of the respective sources of “news” to the 

market. More importantly if both 𝛽 for “public surprise” and “live surprise” is non-zero, then this 
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implies that live-streamed data can provide useful information beyond what is available in USDA 

reports. Furthermore, if 𝛽 ≠ 0 is coupled with 𝛿𝑗 = 0 and 𝛾 = 0, then the underlying assumption 

is that markets exhibit only semi-strong form efficiency, as the “news” provided by the report is 

instantaneously incorporated into prices.  

 4.4. Data 

Data for USDA reports on corn yields were retrieved from various issues of WASDE and 

CP, and the daily corn futures prices from the Chicago Board of Trade (CBOT). Rather than simply 

dropping potentially useful data in low-trading months or leaving the results susceptible to 

confounding via sparse trading, the study utilizes the Adjemian and Irwin (2018) method of 

generating a composite contract series for corn that chooses each day’s trading data from the 

nearby and harvest contract series, based on highest trading volume. The average for the composite 

contract open and close price and the daily returns are shown in Figure 4.1. The average composite 

contract price over the entire sample was $2.25/kg and the average for 2019 (the last year in the 

data) was $3.03/kg. The average close-to-open daily returns over the entire sample were 0.005% 

and the average for 2019 was -0.003%.  

In addition to the price data, the study used corn planted acres and production level (bu) 

from the Risk Management Agency (RMA) Actual Production History (APH) database spanning 

from 1999 to 2008 to construct live-streamed data akin to that of yield monitors. The total number 

of APH observations is about 1.5 million from 156,906 farms in 1,919 counties and 47 states. On 

average, farm size and yields were estimated at 82.15 hectares and 7,865 kg/ha, respectively.  

To construct the live-streamed data, the study assumed that the seasonal productivity for each farm 

(𝑖) is equal to their end of season (𝑡) yield (𝑌̅𝑖𝑡). Secondly, for harvest week 𝑤, the study further 

assumes that, for each farm, the proportion of planted acres (𝐴𝑖𝑡
𝑝

) that are available for harvest is 
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equal to that of the state (𝑠) level statistic (𝜃𝑠𝑡𝑤) published in the weekly CPC. Thus, farm i's 

harvested acres (𝐴𝑖𝑠𝑡𝑤
ℎ ) and quantity (𝑄𝑖𝑠𝑡𝑤

ℎ ) for harvest week 𝑤 are given by; 𝐴𝑖𝑠𝑡𝑤
ℎ = 𝐴𝑖𝑡

𝑝
× 𝜃𝑠𝑡𝑤 

and 𝑄𝑖𝑠𝑡𝑤
ℎ = 𝐴𝑖𝑠𝑡𝑤

ℎ × 𝑌̅𝑖𝑡 . The variables 𝐴𝑖𝑠𝑡𝑤
ℎ  and 𝑄𝑖𝑠𝑡𝑤

ℎ  are then taken as the weekly live-streamed 

data from each farm during harvest. Given the live-streamed data, the study utilizes four different 

non-random aggregation methods similar to those in Tack et al. (2019b) to estimate weekly harvest 

time live-streamed yields. The methods used, which are extensively discussed in Tack et al. 

(2019b) are; (1) all simple average; (2) all acreage weighted average; (3) I-state acreage weighted 

average; and (4) C-belt acreage weighted average. The acreage weights are calculated as 𝜏𝑖𝑠𝑡𝑤 =

𝐴𝑖𝑠𝑡𝑤
ℎ

∑ 𝐴𝑖𝑠𝑡𝑤
ℎ𝑁

𝑖

.  
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Figure 4.1: Time Series of Daily Returns for Corn Futures Price 

 

Based on initial work by Tack et al. (2019b), non-random sampling schemes are associated 

with biases which can be effectively removed by benchmarking procedures for removing 

systematic prediction error. In this spirit, this study utilized two adjustments. The first is based on 

the long-run relationship  

𝑦̅𝑡 = 𝜎0𝑦̂𝑡𝑤 + 𝜀𝑡           (4.7) 



78 

 

Where 𝑦̅𝑡 is the final yield for season 𝑡 published by USDA several seasons later, and 𝑦̂𝑡𝑤 is this 

study’s weekly live-streamed yield estimate. Thus, given the estimate of the long run correction 

term (𝜎̂0), the benchmarked live-streamed yield estimate is given by 𝑦̂𝑡𝑤
∗ = 𝜎̂0𝑦̂𝑡𝑤. For the second 

benchmarking procedure, the study assumes the correction term is a function of harvest time 

information available during harvest week w. This was modeled as 

𝑦̅𝑡 = [𝜎0 + 𝜎ℎ(1 − 𝜃𝑡𝑤)]𝑦̂𝑡𝑤 + 𝜀𝑡         (4.8)  

Where 𝜃𝑡𝑤 is the proportion of planted acres harvested and is calculated as 𝜃𝑡𝑤 =
∑ 𝐴𝑖𝑠𝑡𝑤

ℎ𝑁
𝑖

∑ 𝐴𝑖𝑡
𝑝𝑁

𝑖

. Given 

the parameter estimates of Equation 4.8, the benchmarked live-streamed yield estimate is given by 

𝑦̂𝑡𝑤
# = [𝜎̂0 + 𝜎̂ℎ(1 − 𝜃𝑡𝑤)]𝑦̂𝑡𝑤.  

The constructed live-streamed data are shown in Figure 4.2. In most cases, the live-

streamed data gives a low forecast as the season starts that increases as more acreage is harvested. 

Without any adjustments, the live-streamed forecast is higher than the equivalent forecast from 

USDA. However, after adjustments via benchmarking, the live-streamed forecast converges to the 

USDA forecast. Furthermore, the similarity between Figure 4.2 Panels B and C indicates that 

simple benchmarking based on a single long run correction term is robust to complex 

benchmarking that relies on harvest time information.  
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Figure 4.2: Actual and Public/Live Projected Corn Yields 

 

The study used the live-streamed and USDA forecast to construct the level of surprises 

shown in Figure 4.3. The mean level of public surprise was 0.13% indicating that the yield of 
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information from public sources (i.e., USDA report) was 0.13% higher than expected. Along 

benchmarking lines, the live-streamed data provided yield information that was 6.51% lower than 

expected when the forecast was not benchmarked. When benchmarked, the surprise was 0.24 and 

0.27% higher when benchmarked with a simple long-run multiplier and harvest time information, 

respectively. Figure 4.3 shows that generally, the level of surprise from the benchmarked live 

surprise is the same as that from the public surprise. The unadjusted live surprise is mostly lower 

than the public surprise.  

 

Figure 4.3: Level of market surprise about yield and usage information in USDA Crop 

Production Reports 
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 4.5. Results 

Corn futures market participants react to USDA reports. Results from parametric and 

nonparametric tests based on the first strand of event study methodology (Table 4.1) and 

regressions based on the second strand (Table 4.2) suggest that return variability for USDA report 

release days is significantly (p<0.05) different from non-release days. Particularly, the CP and 

WASDE reports command the greatest return variability. Differences in variability across months 

also show that the reaction to reports could be influenced by the production cycles. The regression 

result for the conditional impact of reports on return variability on Table 4.2 also implied that 

release day variability is 0.16% higher than non-release days.  

Under the EMH approach, Table 4.1 shows that the market for corn exhibits only semi-

strong form efficiency, as the “news” provided by CP and WASDE is incorporated into prices in 

at most two days after the release. As expected, an increase in corn yield (a supply-side factor) 

relative to what was publicly known, elicits a futures price decrease. Given that the mean price 

was $3.03/kg in 2019 and a 1% unanticipated increase in yield would elicit a 0.45% decrease in 

futures prices, a decrease of 1.36 cents/kg. This is reasonable as the law of supply dictates price to 

fall with quantity. In this case, market participants expected a low yield but the yield from a 

certified public source (USDA) was higher which translates to an increase in supply than they 

anticipated so they update their willingness to pay (price) downwards. On the other hand, live-

streamed yield information does not significantly correlate with historic market reaction. 
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Table 4.1: Diagnostic Test ON Corn Futures Price Return Reaction to USDA Reports, 1965-2019 

Report  
  

N 
  Variance    Variance homogeneity tests 

    Report day Non-report day   F test Levene Brown and Forsythe Kruskal-Wallis 

Report type           

Any report   2,021   2.22 1.38   0.62*** 70.24*** 70.66*** 45.06*** 

Prospective Planting (PP)   32   9.51 1.64   0.17*** 37.80*** 36.61*** 13.56*** 

Acreage Report (AR)  33   9.21 1.80   0.20*** 17.19*** 16.89*** 10.07*** 

Crop Progress/Condition (CPC)  1,362   1.67 1.53   0.92** 2.20 2.19 1.59 

Crop Production (CP)  70   2.19 0.56   0.26*** 42.89*** 42.34*** 28.13*** 

WASDE  325   2.32 1.19   0.51*** 24.85*** 24.86*** 15.83*** 

WASDE & CPC  42   1.97 1.43   0.72 1.38 0.75 0.08 

WASDE & CP  132   3.92 1.02   0.26*** 47.94*** 47.85*** 29.36*** 

WASDE, CP & CPC  25   4.58 1.31   0.29*** 15.31*** 11.14*** 19.55*** 

Release month [reports]           

January [WASDE]   45   7.06 1.49   0.21*** 36.02*** 34.00*** 24.51*** 

February [WASDE]   40   1.28 0.67   0.52*** 4.72** 3.72* 2.41 

March [PP, WASDE]   74   4.28 1.64   0.38*** 10.37*** 10.53*** 3.33* 

April [CPC, WASDE]   178   1.46 1.34   0.92 0.44 0.43 1.91 

May [CPC, WASDE]   236   2.18 1.61   0.74*** 6.96*** 6.94*** 6.11** 

June [AR, CPC, WASDE]   235   3.14 2.21   0.70*** 2.72* 2.66 1.35 

July [CPC, WASDE]   215   2.94 2.07   0.71*** 5.61** 5.62** 4.49** 

August [CP, CPC, WASDE]   219   2.94 1.43   0.48*** 19.21*** 19.14*** 9.54*** 

September [CP, CPC, WASDE]   233   1.23 0.90   0.73*** 8.11*** 7.94*** 9.92*** 

October [CP, CPC, WASDE]   246   1.85 1.05   0.57*** 9.89*** 9.64*** 3.15* 

November [CP, CPC, WASDE]   210   0.98 0.74   0.75*** 2.14 1.92 0.20 

December [CPC, WASDE]   90   0.67 0.81   1.22 0.02 0.01 1.43 

Regime                     

1981/85  334   2.45 1.61   0.66*** 14.80*** 14.54*** 10.70*** 

1986/89  377   1.08 0.68   0.63*** 11.73*** 11.73*** 9.78*** 

1990/95  173   1.35 0.89   0.66*** 4.37** 3.64* 1.44 

1995/01  282   1.04 0.66   0.63*** 6.92*** 6.98*** 2.86* 

2001/12  304   3.39 2.11   0.62*** 15.15*** 15.14*** 10.50*** 

2013/18   551   3.07 1.97   0.64*** 15.19*** 15.31*** 7.94*** 

Significance levels: * p<0.10, ** p<0.05, ***p<0.01 
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Table 4.2: Corn Futures Price Return Reaction to USDA Reports, 1965-2019 

  

Return type  

Close-to- 

Open 

|Close-to- 

Open| 

Close-to- 

Close 

Open-to- 

Close 

Open-to- 

Open 

Model parameters  
    

Constant 0.16**(0.08) 0.01***(0.00) 0.26**(0.10) 0.15(0.12) 0.07(0.11) 

Event time 0.00(0.02) 0.00(0.00) -0.02(0.02) -0.01(0.03) 0.01(0.02) 

Time maturity (ln[weeks]) 0.00(0.01) 0.00***(0.00) 0.00(0.01) 0.00(0.01) 0.00(0.01) 

Lagged return        
One day 0.05***(0.02) 0.02*(0.01) 0.02*(0.01) 0.28***(0.02) -0.02(0.01) 

Two day -0.02(0.02) 0.03***(0.01) -0.02(0.01) -0.12***(0.02) -0.03**(0.01) 

Three day -0.01(0.01) 0.00(0.01) 0.00(0.01) 0.04**(0.02) -0.01(0.01) 

Report (base=WASDE)           

Prospective Planting (PP) -0.01(0.15) 0.00**(0.00) -0.15(0.16) -0.32*(0.16) -0.21(0.16) 

Acreage Report (AR) -0.19(0.14) 0.00(0.00) -0.24(0.16) -0.30(0.19) -0.38**(0.18) 

Progress/Condition (CPC) -0.04(0.05) 0.00(0.00) -0.11*(0.06) -0.17**(0.07) -0.13**(0.06) 

Crop Production (CP) -0.01(0.07) 0.00*(0.00) 0.00(0.09) 0.02(0.11) 0.01(0.10) 

WASDE & CPC 0.18*(0.11) 0.00(0.00) 0.24*(0.13) 0.25*(0.14) 0.29**(0.13) 

WASDE & CP -0.02(0.08) 0.00(0.00) -0.05(0.10) -0.06(0.11) -0.02(0.10) 

WASDE, CP & CPC -0.04(0.13) 0.00(0.00) 0.10(0.16) 0.20(0.19) 0.11(0.14) 

Effect by Report (base=WASDE)           

Prospective Planting (PP) 0.05(0.07) 0.00***(0.00) 0.05(0.08) -0.02(0.08) 0.00(0.08) 

Acreage Report (AR) -0.11(0.08) 0.00(0.00) 0.16(0.11) 0.31**(0.13) 0.01(0.11) 

Progress/Condition (CPC) 0.02(0.02) 0.00(0.00) 0.03(0.03) 0.04(0.03) 0.03(0.03) 

Crop Production (CP) -0.03(0.03) 0.00(0.00) 0.00(0.04) 0.01(0.05) -0.01(0.04) 

WASDE & CPC 0.06(0.06) 0.00(0.00) 0.08(0.08) 0.07(0.09) 0.08(0.08) 

WASDE & CP -0.02(0.03) 0.00***(0.00) -0.03(0.05) -0.01(0.05) -0.01(0.04) 

WASDE, CP & CPC 0.12*(0.07) 0.00(0.00) 0.17(0.12) 0.14(0.16) 0.15(0.14) 

Release month (base=Dec)           

Jan 0.01(0.16) 0.00**(0.00) -0.07(0.17) 0.06(0.17) 0.09(0.18) 

Feb -0.11(0.12) 0.00*(0.00) -0.19(0.14) -0.12(0.15) -0.04(0.15) 

Mar -0.08(0.12) 0.00(0.00) -0.11(0.15) 0.01(0.16) 0.11(0.15) 

Apr -0.05(0.09) 0.00(0.00) -0.10(0.11) 0.02(0.12) 0.07(0.12) 

May -0.12(0.09) 0.00**(0.00) -0.14(0.11) -0.01(0.12) 0.04(0.11) 

Jun -0.08(0.10) 0.00***(0.00) -0.11(0.12) -0.02(0.13) 0.04(0.12) 

Jul -0.06(0.09) 0.00***(0.00) -0.14(0.11) -0.04(0.12) 0.03(0.12) 

Aug -0.10(0.07) 0.00***(0.00) -0.15(0.09) -0.02(0.11) 0.06(0.10) 

Sep -0.16**(0.07) 0.00(0.00) -0.18*(0.10) 0.00(0.11) 0.02(0.10) 

Oct -0.04(0.07) 0.00(0.00) -0.04(0.08) 0.13(0.10) 0.21**(0.10) 

Nov -0.09(0.06) 0.00(0.00) -0.17**(0.08) -0.09(0.10) 0.01(0.09) 

Regime (base=2013/19)       

1981/85 -0.09*(0.05) 0.00(0.00) -0.15**(0.06) -0.10(0.07) -0.09(0.06) 

1986/89 -0.01(0.04) 0.00***(0.00) -0.11*(0.06) -0.13*(0.07) -0.08(0.06) 

1990/95 -0.01(0.05) 0.00***(0.00) -0.01(0.07) 0.05(0.09) 0.03(0.07) 

1995/01 -0.06(0.04) 0.00***(0.00) -0.06(0.06) -0.03(0.06) -0.05(0.05) 

2001/12 -0.06(0.06) 0.00(0.00) -0.03(0.06) 0.01(0.07) -0.05(0.07) 

Model diagnostics           

Sample size 8,606 8,606 8,606 8,606 8,606 

R-squared (%) 0.74 10.64 0.63 8.79 0.72 

Log-likelihood -14,143.69 28,431.49 -15,895.85 -16,916.44 -16,274.95 

Model significance 1.52** 15.51*** 1.53** 12.88*** 1.57** 

AIC 28,359.38 -56,790.99 31,863.71 33,904.88 32,621.90 

BIC 28,613.55 -56,536.82 32,117.87 34,159.04 32,876.07 

Significance levels: * p<0.10, ** p<0.05, ***p<0.01 
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Table 4.3: Corn Futures Price Return Reaction to Yield “News” Announced in World 

Agricultural Supply and Demand Estimates (WASDE) and Crop Production Reports, 

1965/19 

  
All Avg. surprise 

All Acr. Avg. 

surprise 
I-state surprise C-belt surprise 

  Unadjusted data 

Public yield surprise reaction         

Day 1 -0.445** (0.171) -0.712*** (0.180) -0.707*** (0.165) -0.616*** (0.161) 

Day 2 - -0.242* (0.139) -0.256** (0.125) -0.175 (0.125) 

Day 3 - -0.250* (0.134) -0.242* (0.140) -0.167 (0.138) 

Public usage surprise reaction         

Day 1 -0.114 (0.369) -0.013 (0.329) -0.055 (0.356) -0.076 (0.348) 

Day 2 - 0.102 (0.263) 0.071 (0.250) 0.048 (0.253) 

Day 3 - 0.283 (0.208) 0.241 (0.209) 0.229 (0.202) 

Live surprise reaction         

Day 1 - 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 

Day 2 - 0.022 (0.036) 0.009 (0.023) 0.010 (0.033) 

Day 3 - -0.014 (0.037) 0.001 (0.023) -0.004 (0.035) 

Sample size 115 115 115 115 

R-squared (%) 46.529 41.088 42.573 43.527 

Model significance 4.406*** 4.442*** 4.838*** 4.504*** 

AIC 375.985 387.130 384.193 382.267 

BIC 430.883 442.028 439.092 437.166 

EMH test 1 2.848** 2.108* 2.031* 2.520** 

  Adjusted data [JBT] 

Public yield surprise reaction         

Day 1 - -0.697*** (0.190) -0.693*** (0.149) -0.588*** (0.161) 

Day 2 - -0.253 (0.157) -0.263** (0.128) -0.168 (0.131) 

Day 3 - -0.227 (0.138) -0.233* (0.138) -0.141 (0.133) 

Public usage surprise reaction -       

Day 1 - -0.024 (0.340) -0.057 (0.382) -0.089 (0.359) 

Day 2 - 0.085 (0.259) 0.059 (0.253) 0.049 (0.252) 

Day 3 - 0.293 (0.204) 0.256 (0.212) 0.238 (0.203) 

Live surprise reaction -       

Day 1 - 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 

Day 2 - 0.021 (0.096) 0.010 (0.083) -0.017 (0.078) 

Day 3 - -0.037 (0.096) -0.015 (0.085) -0.036 (0.076) 

Sample size - 115 115 115 

R-squared (%) - 41.175 42.512 43.561 

Model significance - 4.473*** 5.427*** 4.484*** 

AIC - 386.959 384.316 382.197 

BIC - 441.858 439.215 437.095 

EMH test 1 - 2.204* 1.972* 2.482** 

  Adjusted data [JFT0] 

Public yield surprise reaction         

Day 1 - -0.677*** (0.189) -0.692*** (0.150) -0.578*** (0.159) 

Day 2 - -0.234 (0.151) -0.262** (0.128) -0.160 (0.129) 

Day 3 - -0.214 (0.139) -0.233* (0.139) -0.135 (0.135) 

Public usage surprise reaction -       

Day 1 - -0.042 (0.339) -0.059 (0.379) -0.097 (0.358) 

Day 2 - 0.084 (0.260) 0.055 (0.251) 0.041 (0.251) 

Day 3 - 0.267 (0.205) 0.256 (0.212) 0.224 (0.204) 

Live surprise reaction -       

Day 1 - 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 

Day 2 - 0.024 (0.085) 0.014 (0.081) -0.015 (0.068) 

Day 3 - -0.045 (0.086) -0.018 (0.083) -0.037 (0.066) 

Sample size - 115 115 115 

R-squared (%) - 41.485 42.593 43.773 

Model significance - 4.604*** 5.426*** 4.452*** 

AIC - 386.352 384.154 381.765 

BIC - 441.251 439.053 436.664 

EMH test 1 - 2.224* 1.938* 2.474** 

Significance levels: * p<0.10, ** p<0.05, ***p<0.01 
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 4.6. Discussion and Conclusion 

The results are interesting as the advent of precision agriculture technologies and its 

associated revolution of “Big Ag-Data” has left researchers to grapple with how to best use the 

wealth of information available. Since this information can be aggregated to a higher level in real-

time, it poses an interesting question of whether equivalent but periodic information from public 

sources will remain relevant. To this end, this study utilized advances in event study and yield 

projection methodologies to test the potential economic significance of simulated live-streamed 

yield monitor data vis-à-vis USDA yields.  

The results support the narrative that corn markets in the US exhibit only semi-strong form 

efficiency. This implies that “news” accompanying the arrival of a report is incorporated into 

prices immediately. This conclusion corroborates that of Gorham (1978), where the study showed 

that corn and, to a lesser extent, wheat reports had significant announcement effects on close-to-

close price returns from 1950-77. Colling and Irwin (1990) also showed that the hog futures market 

exhibited semi-strong form efficiency. Particularly they showed that close-to-close price returns 

from 1981-88 (a) do not react to anticipated changes in reported information, (b) reacts rationally 

to unanticipated changes in reported information, and (c) adjusts within a day to unanticipated 

information following the release of reports. Using a similar framework as Colling and Irwin 

(1990), Lehecka (2014) drew similar conclusions for corn and soybean market efficiency and 

reaction to USDA CPC reports from 1986-2012. McKenzie and Darby (2017) also showed that 

USDA provides the futures market with important information, which is vital to the price discovery 

process.  

Given the marked market movement elicited by USDA provided information, the results 

showed that real-time yields akin to that of yield monitors do not correlate with historic market 
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reactions. Perhaps, since USDA report release days are known well in advance, the market moves 

in anticipation of their release. Thus, one caveat to this study is that since the real-time yields were 

not available on the days analyzed, these may not necessarily reflect the reactions of market 

participants. It is reasonable to have that all the reactions in the price data are captured by the 

USDA reports since there were observed by a large cross-section of the market. An extension and 

verification of this result will be to use actual data from yield monitors that were available to a 

subset if not all market participants. 

Despite the caveat, this study advances the market-price event-study methodology by 

utilizing sources of information not previously considered. Second, the study provides policy 

implications centered around the ongoing debate about the economic significance of USDA reports 

in the presence of growing information availability in the private sector.  
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Chapter 5 - Overall Conclusion 

This dissertation consists of three studies analyzing the potential of utilizing geo-referenced and 

“Big-Ag” data to improve US agricultural policy from the angle of risk management and farm 

support. The motivation was that the data revolution has been upon us for many years now, but 

public policy continues to grapple with how to best use the wealth of information currently at our 

disposal. The first study in Chapter 2 extends the crop insurance rating literature by incorporating 

fine-scale topographic and soil information into rating procedures. A novel econometric approach 

based on RMA’s procedures for pricing insurance at the farm level was developed and applied to 

a sample of 149,267 farm-level observations in Kansas spanning 1973-2018. The results suggest 

that features do improve the prediction accuracy of yield losses and can, in general, improve rating 

performance. Interestingly, these improvements are specific to farms with limited yield histories, 

as there are no improvements for farms with the commonly used yield history of ten years. As the 

first to document this, Chapter 2 highlights a crucial dimension in the debate surrounding whether 

RMA should incorporate soil information into their rating procedures as it suggests that the 

proportion of policies for which ten years of data is available is an important variable in this 

decision. The methodological contribution of this study can easily be adopted by RMA to annually 

parameterize the rate multiplier curve along several dimensions (e.g., soil, coverage level, or 

production practice). Furthermore, while Chapter 2 does not directly assess non-economic gains, 

soil conditioned rates could help guard against moral hazard, as farmers can easily alter yields and 

less so their soil. Additionally, tying rates directly to land could have implications for a farm’s 

financial status through land capitalization. 
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The second study in Chapter 3 focuses on the same crops and ascertains the tradeoffs between 

Production-History-based and Index-based insurance. Using the same farm level data as Chapter 

2 with fine-scale weather data at the grid-day level and implementing an empirical strategy that 

formulates two parallel simulations, the study showed that economically significant tradeoffs do 

exist between APH- and Index-based insurance and that different types of Index products are 

associated with differing levels of basis risk. Particularly, Index-based insurance that protects 

against excess accumulation in killing-degree-days generates the most significant gains in farm 

income and economic rents and is associated with relatively low basis risk. The findings are 

important given the dual role of a government-led insurance scheme of providing a risk coping 

mechanism and transferring funds to farmers. The results suggest that where farm-level production 

data is limited, exploring Index-based insurance that protects against excess accumulation in 

killing-degree-days can achieve this dual objective. 

The final study in Chapter 4 utilized advances in event study and yield projection methodologies 

to evaluate the potential economic significance of simulated live-streamed yield monitor data vis-

à-vis USDA report yields. Chapter 4 relies on high frequency daily price data coupled with farm-

level yields that constitutes over 80% of US corn planted acres from 1999-2008. The results 

showed that corn futures market participants react to USDA reports and that live-streamed yield 

information does not elicit significant market reaction beyond that. Despite this negative result, 

Chapter 4 advances the market-price event-study methodology by utilizing sources of information 

not previously considered. Second, Chapter 4 provides policy implications centered around the 

ongoing debate about the economic significance of USDA reports in the presence of growing 

information availability in the private sector. 
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Appendix A - Study 1 

Table A.1: Kansas Farm Level Relationship Between Mean Yield and Yield Risk 

  Absolute risk   Relative risk 
 SD LAPM  CV S- LAPM LCR 

Dryland corn       

Correlation with mean yield 0.105 0.184  -0.649 -0.465 -0.629 

Elasticity for mean yield 0.015 0.045  -0.360 -0.282 -0.343 

Correlation with relative yield 
0.144*** 

(0.045) 

0.586*** 

(0.124) 
 -0.856*** 

(0.045) 

-0.707*** 

(0.062) 

-0.919*** 

(0.049) 

Elasticity for relative yield 
0.026 

(0.084) 

0.161 

(0.234) 
 -0.858*** 

(0.102) 

-0.804*** 

(0.124) 

-0.907*** 

(0.112) 

Dryland sorghum       

Correlation with mean yield 0.126 0.234  -0.628 -0.434 -0.613 

Elasticity for mean yield 0.069 0.123  -0.456 -0.323 -0.443 

Correlation with relative yield 
0.171*** 

(0.039) 

0.706*** 

(0.100) 
 -0.829*** 

(0.039) 

-0.647*** 

(0.050) 

-0.841*** 

(0.041) 

Elasticity for relative yield 
0.116* 

(0.062) 

0.609*** 

(0.159) 
 -0.923*** 

(0.070) 

-0.734*** 

(0.082) 

-0.938*** 

(0.073) 

Dryland soybeans       

Correlation with mean yield -0.005 0.121  -0.702 -0.585 -0.685 

Elasticity for mean yield -0.041 -0.013  -0.442 -0.408 -0.433 

Correlation with relative yield 
0.046 

(0.036) 

0.383*** 

(0.084) 
 -0.954*** 

(0.036) 

-0.808*** 

(0.042) 

-0.962*** 

(0.038) 

Elasticity for relative yield 
-0.038 

(0.064) 

0.018 

(0.151) 
 -0.981*** 

(0.083) 

-0.934*** 

(0.085) 

-0.995*** 

(0.086) 

Dryland wheat       

Correlation with mean yield 0.245 0.192  -0.424 -0.359 -0.423 

Elasticity for mean yield 0.052 0.036  -0.375 -0.318 -0.381 

Correlation with relative yield 
0.351*** 

(0.048) 

0.644*** 

(0.121) 
 -0.649*** 

(0.048) 

-0.678*** 

(0.061) 

-0.669*** 

(0.050) 

Elasticity for relative yield 
0.114 

(0.078) 

0.124 

(0.194) 
  

-0.878*** 

(0.078) 

-0.930*** 

(0.097) 

-0.915*** 

(0.080) 

Notes: Table shows the relationship between farm-level mean yield (𝑦̅𝑖 = ∑ 𝑦𝑖𝑡
𝑇
𝑡=1 ) and mean relative yield (𝑦𝑖̃ =

∑ {𝑦𝑖𝑡 𝑦𝑐𝑡⁄ }𝑇
𝑡=1 ) and; measures of absolute risk (Standard deviation [SD], Lower absolute partial moment [LAPM]); 

and relative risk (Coefficient of variation [CV], Standardized Lower absolute partial moment [S-LAPM], and 

Empirical loss cost ratio [LCR]). The measures were calculated for each farm using their most recent ten years of 

successive yields (𝑦𝑖𝑡) and the reference yield is taken as the ten-years mean county yield (𝑦𝑐𝑡). The SD and CV were 

calculated using conventional formulae; LAPM is calculated using formulation provided in Antle (2010) and S-LAPM 

is the mean (𝑦̅𝑖) standardized version of LAPM; LCR is calculated as ∑ {max[0, 𝑦̅𝑖 − 𝑦𝑖𝑡] 𝑦̅𝑖⁄ }10
𝑡=1 . Farm level data was 

provided by the Kansas Farm Management Association (KFMA).
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Table A.2: USA County Level Correlation Between Mean Yield and Yield Risk 

  Absolute risk   Relative risk 
 SD LAPM  CV S-LAPM LCR 

Dryland corn       

Correlation with mean yield -0.528 -0.457  -0.727 -0.649 -0.717 

Elasticity for mean yield -0.520 -0.466  -0.710 -0.632 -0.704 

Correlation with relative yield 
-1.464*** 

(0.174) 

-4.659*** 

(0.517) 
 -2.464*** 

(0.174) 

-3.329*** 

(0.259) 

-2.255*** 

(0.165) 

Elasticity for relative yield 
-1.468*** 

(0.175) 

-4.400*** 

(0.530) 
 -2.384*** 

(0.181) 

-3.116*** 

(0.272) 

-2.208*** 

(0.169) 

Dryland sorghum       

Correlation with mean yield 0.374 0.377  -0.315 -0.049 -0.361 

Elasticity for mean yield 0.140 0.092  -0.487 -0.289 -0.479 

Correlation with relative yield 
0.611*** 

(0.194) 

1.777*** 

(0.527) 
 -0.389* 

(0.194) 

-0.112 

(0.264) 

-0.470** 

(0.205) 

Elasticity for relative yield 
0.405* 

(0.222) 

1.120* 

(0.615) 
 -0.590*** 

(0.191) 

-0.434 

(0.269) 

-0.631*** 

(0.206) 

Dryland soybeans       

Correlation with mean yield -0.269 -0.325  -0.584 -0.548 -0.553 

Elasticity for mean yield -0.302 -0.339  -0.610 -0.565 -0.581 

Correlation with relative yield 
-0.642*** 

(0.157) 

-2.293*** 

(0.443) 
 -1.642*** 

(0.157) 

-2.146*** 

(0.221) 

-1.596*** 

(0.165) 

Elasticity for relative yield 
-0.719*** 

(0.153) 

-2.432*** 

(0.434) 
 -1.701*** 

(0.151) 

-2.198*** 

(0.216) 

-1.670*** 

(0.159) 

Dryland wheat       

Correlation with mean yield 0.584 0.779  -0.051 -0.057 -0.148 

Elasticity for mean yield -0.009 0.180  -0.555 -0.493 -0.527 

Correlation with relative yield 
0.954** 

(0.382) 

2.025*** 

(0.473) 
 -0.046 

(0.382) 

0.013 

(0.237) 

-0.174 

(0.388) 

Elasticity for relative yield 
0.058 

(0.664) 

0.820 

(1.081) 
  

-0.774 

(0.416) 

-0.422 

(0.270) 

-0.748 

(0.439) 

Notes: Table shows the relationship between county-level mean yield (𝑦̅𝑐 = ∑ 𝑦𝑐𝑡
𝑇
𝑡=1 ) and mean relative yield (𝑦𝑐̃ =

∑ {𝑦𝑐𝑡 𝑦𝑠𝑡⁄ }𝑇
𝑡=1 ) and measures of absolute risk (Standard deviation [SD], Lower absolute partial moment [LAPM]) and 

relative risk (Coefficient of variation [CV], Standardized Lower absolute partial moment [S-LAPM], and Empirical 

loss cost ratio [LCR]). The measures were calculated for each county using NASS Quick Stats data for 2008-2017 

and the reference yield is taken as state mean yield (𝑦𝑠𝑡) for the same period. The SD and CV were calculated using 

conventional formulae; LAPM is calculated using formulation provided in Antle (2010) and S-LAPM is the mean (𝑦̅𝑖) 

standardized version of LAPM; LCR is calculated as ∑ {max[0, 𝑦̅𝑖 − 𝑦𝑖𝑡] 𝑦̅𝑖⁄ }10
𝑡=1 .  
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Table A.3: Example Horizon Thickness Alteration for Root Zone Depth 

mukey cokey chkey 
Original information Altered information 

Hzdept_r Hzdepb_r Hzthk_r Hzdept_r Hzdepb_r Hzthk_r 

100017 149541 1 0 25 25 0 25 25 

100017 149541 2 25 75 50 25 75 50 

100017 149541 3 75 100 25 75 100 25 

100017 149542 1 0 50 50 0 50 50 

100017 149542 2 50 100 50 50 100 50 

100017 149542 3 100 200 100 100 150 50 

Hzdept_r is the average distance from the ground surface to the upper boundary of the soil horizon 

Hzdepb_r is the average distance from the ground surface to the lower boundary of the soil horizon  

Hzthk_r is the average soil horizon thickness (hzdepb_r - hzdept_r) 
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Table A.4: Table Fields Used in the Calculation of Topographic and Soil Features 

Field Table Description Units 

Hzdept_r chorizon 
The distance from the top of the soil to the upper boundary of the 

soil horizon 
cm 

Hzdepb_r chorizon The distance from the top of the soil to the base of the soil horizon. cm 

Hzthk_r Calculated 
A measurement from the top to bottom of a soil horizon throughout 

its areal extent [hzdepb_r - hzdept_r] 
cm 

claytotal_r chorizon 
Mineral particles less than 0.002mm in equivalent diameter as a 

weight percentage of the less than 2.0mm fraction 
% 

silttotal_r chorizon 
Mineral particles 0.002 to 0.05mm in equivalent diameter as a 

weight percentage of the less than 2.0mm fraction 
% 

sandtotal_r chorizon 
Mineral particles 0.05mm to 2.0mm in equivalent diameter as a 

weight percentage of the less than 2 mm fraction 
% 

aws0_150 Valu1 
Available water storage estimate (aws) in standard zone 5 (0‐150 cm 

depth), 
mm 

soc0_150 Valu1 
Soil organic carbon stock estimate (soc) in standard zone 5 (0‐150 

cm depth). 
g/m2 

rootznemc Valu1 
Root zone depth is the depth within the soil profile that commodity 

crop roots can effectively extract water and nutrients for growth 
cm 

nccpi3all Valu1 

National Commodity Crop Productivity Index has the highest value 

among Corn and Soybeans, Small Grains, or Cotton (weighted 

average) for major earthy components. Values range from .01 (low 

productivity) to .99 (high productivity). 

index 

cec7_r chorizon 

The amount of readily exchangeable cations that can be electrically 

adsorbed to negative charges in the soil, soil constituent, or other 

material, at pH 7.0, as estimated by the ammonium acetate method. 

meq/100g 

slope_r component 
The difference in elevation between two points expressed as a 

percentage of the distance between those points. (SSM) 
% 

2mmTot Calculated 
Particles less than 2 mm fraction [claytotal_r + silttotal_r + 

sandtotal_r] 
% 

Clay 
Calculated Clay particles as a weight % of the less than 2 mm fraction 

[claytotal_r / 2mmTot] 
ratio 

Silt 
Calculated silt particles as a weight % of the less than 2 mm fraction [silttotal_r 

/ 2mmTot] 
ratio 

Sand 
Calculated sand particles as a weight % of the less than 2 mm fraction 

[sandtotal_r / 2mmTot] 
ratio 

Sources: https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=stelprdb1241114&ext=pdf  

https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=stelprdb1241115&ext=pdf 

https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=nrcseprd1643228&ext=pdf  

https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=stelprdb1241114&ext=pdf
https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=stelprdb1241115&ext=pdf
https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=nrcseprd1643228&ext=pdf
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Figure A.1: Spatial Representation of Farm-Level Data by Crop 

Notes: Graph shows the spatial representation of geocoded addresses for farms that produced the specified crops at 

least in one year from 1973-2018. Farm-level data was provided by the Kansas Farm Management Association 

(KFMA). 
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Figure A.2: Boxplots of Yields 

Notes: Panel A is from farm-level data provided by the Kansas Farm Management Association (KFMA). Panels B-E is based on the yields in Panel A and following 

RMA published guidelines. 
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Figure A.3: Representativeness of Kansas Farm Management Association (KFMA) Yields 

by Crop 

Notes: Mean yields for each crop-year-county combination were estimated for the KFMA data. Given these values, 

the percentage difference for each crop-year-county mean yields relative to their corresponding NASS yield retrieved 

from NASS Quick Stats was then calculated to make the figure. 



98 

 

 
Figure A.4: Relative Yields 

Notes: Graph show distribution of the ratio of farm-level rate yields and county level reference yields. The rate yields are the simple average of ten successive 

years of actual yields and reference yields are the mean of ten successive annual county yields. Farm-level data was provided by the Kansas Farm Management 

Association (KFMA). 
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Figure A.5: Sample Distribution by Production History Length 

Notes: Figure shows the proportion of the sample that are classified by the length of actual production history in ten 

years. Farm-level data was provided by the Kansas Farm Management Association (KFMA). 
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Figure A.6: Mean Empirical Loss Cost Ratios 

Notes: For each farm/crop/year, empirical loss cost ratios are calculated as ∑ {max[0, 𝑦̅𝑖 − 𝑦𝑖𝑡] 𝑦̅𝑖⁄ }10
𝑡=1 . The horizontal 

dashed line is the overall mean. Farm-level data was provided by the Kansas Farm Management Association (KFMA). 
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Figure A.7: Boxplot of 2019 Federal Crop Insurance Actuarial Information for Enterprise 

Unit Dryland Production in Kansas at 75% coverage level 

Notes Panel A-E were retrieved from RMA’s 2019 Actuarial Data Master found at  

ftp://ftp.rma.usda.gov/pub/References/actuarial_data_master/2019/ 

ftp://ftp.rma.usda.gov/pub/References/actuarial_data_master/2019/
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Figure A.8: Statistical Learning Outcome for Soil Attribute Selection 
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Figure A.9: Map-unit Level Soil Texture Spatial Representation in Kansas 

Notes: Constructed by author, using data provided by Gridded Soil Survey Geographic (gSSURGO) Database for the 

Conterminous United States, available online at https://gdg.sc.egov.usda.gov/  

https://gdg.sc.egov.usda.gov/
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Figure A.10: Farm Level Soil Texture Distribution by Crop 

Notes: Constructed by author, using farm data provided by the Kansas Farm Management Association and soil data 

provided by Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United States, available 

online at https://gdg.sc.egov.usda.gov/. 

 

 

 

 

 

 

https://gdg.sc.egov.usda.gov/
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Figure A.11: Robustness of Ceded to Retained Indemnity Ratios Across Model 

Specifications 

Notes: The top panel shows the ceded to retained indemnity ratios for different models defined by the vertical axis of 

the subsequent panels. The second panel changes the conditioning topographic and soil features for the models; where 

TEX= soil texture, RTZ= root zone depth, AWS=available water storage, SLP=slope, CEC7=exchangeable cations, 

and SOC=soil organic carbon. Coverage level specification for loss experience data generation ranged from 50 to 

85%; the degree of the polynomial for the conditioning topographic and soil features ranged from 1-4, and the buffer 

for feature aggregation ranged from 1.5-mile to 10-mile radius. The green-filled dot indicates the position of the 

preferred model: Linear soil texture model for a coverage level of 75% loss experience data, and feature aggregation 

using a buffer of a 1.5-mile radius.  
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Figure A.12: Robustness of Ceded to Retained LR Ratios Across Model Specifications 

Notes: The top panel shows the ceded to retained LR ratios for different models defined by the vertical axis of the 

subsequent panels. The second panel changes the conditioning topographic and soil features for the models; where 

TEX= soil texture, RTZ= root zone depth, AWS=available water storage, SLP=slope, CEC7=exchangeable cations, 

and SOC=soil organic carbon. Coverage level specification for loss experience data generation ranged from 50 to 

85%; the degree of the polynomial for the conditioning topographic and soil features ranged from 1-4, and the buffer 

for feature aggregation ranged from 1.5-mile to 10-mile radius. The green-filled dot indicates the position of the 

preferred model: Linear soil texture model for a coverage level of 75% loss experience data, and feature aggregation 

using a buffer of a 1.5-mile radius.  



107 

 

 

Figure 5.13: Sample of the spatial objects for a given farm 
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Note A.1: Soil Data Aggregation  

Topographic and soil features were determined for each farm using data retrieved from 

publicly available high-resolution (1:12,000 to 1:63,360) static Soil Survey Geographic 

(SSURGO) provided by the USDA-NRCS. Particularly, the study utilizes the gridded version of 

SSURGO (gSSURGO) published as a file geodatabase. The gSSURGO is the product of merging 

traditional SSURGO digital maps and tabular data into the geographical extent of the conterminous 

U.S. and adding a corresponding raster map. The raster map is available in a ten-, thirty-, and 

ninety-meter cell size that approximates Albers Equal Area projected vector polygons. Each raster 

cell is identified by a map unit that describes an area dominated by a soil group. It is common to 

find several raster cells with the same map unit. Map units are not homogenous in their topographic 

and soil features, as they are made up of one to three “components”. Components can also be 

composed of up to three “horizons” which are completely homogenous but vary by depth. The 

data for the map units, components, and horizons are stored in their tables within the geodatabase 

and are prefixed by “mu”, “co”, and “ch”, respectively. Each can be related to one another via 

“keys”.  

Map units [Components] are identified by “mukey” [“cokey”] and can be found in both the 

map unit and component [component and horizon] tables to relate them. Horizon tables also have 

an additional key “chkey” to relate other tables that contain information that can be disaggregated 

within a horizon. The study utilized information stored in all tables, however, since there is 

horizontal [vertical] variability of properties within each map unit [component], the information 

must carefully be aggregated to properly represent this variability. Furthermore, at the horizon and 

component level, three values for the same properties are available: the low, representative, and 

high value. The study utilized representative values (post-fixed with “_r”) in all calculations. 

Finally, horizon and/or horizon portions that are deeper than 150cm were also excluded from any 
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aggregation, with the rationale that they are beyond the root zone of most field crops. Table A.3 

presents an example of the operation using the horizon thickness.  

Using a bottom-up approach, the information stored or calculated by horizons is first 

aggregated to the component level based on horizon thickness weighted averages. Similarly, 

component-level information and horizon aggregated data, are further aggregated to the map unit 

level via component extent weighted averages. Farm assignment of gSSURGO map unit key and 

aggregation weights method is outlined below (see Figure A.13 for a visual representation). 

1. Geocoded farm mailing address to get an approximated spatial coordinate of the farm 

2. Created a 1.5-mile radius circular spatial polygon using the spatial coordinate of the farm 

as its centroid  

3. Cropped and masked the 3m gSSURGO map that overlaps with the circular polygon  

4. Cropped and masked the 3m crop frequency layer that overlaps with the circular polygon  

5. Extract map unit keys from portions of the masked 3m gSSURGO that overlap with the 

masked 3m crop frequency layer. 

6. Calculated the weight for each mukey by counting the number of grids from (5) and then 

divided that by the total number of grids from (5) 

The information for each farm is taken as the weighted average of the information in their assigned 

gSSURGO map unit key(s). The necessary fields and descriptions of the information contained in 

their respective tables in the gSSURGO, and derived soil attributes are listed in Table A.4.  

 

 

 

 


