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1. INTRODUCTION

1.1 Background

A signal, represented mathematically as a function of one or more

independent variables, conveys information about the state or behavior

of a physical system. For example, speech is represented as a function

of time. Signals are said to be continuous-time (CT) signals if they

are defined over a continuum of times, and discrete-time (DT) signals if

they are defined only at a discrete set of values of the independent

variable. In addition, if the amplitude of a CT signal is also con-

tinuous, then such a signal is called an analog signal. Similarly, if

the amplitude of a DT signal is also discrete, such a signal is called a

digital signal. Therefore, digital signals are represented as sequences

of numbers.

To extract any meaningful information from a signal, it has to be

processed. To that end, development of techniques to process the sig-

nals assumes great importance. Usually, these techniques involve

transforming a signal to some other advantageous signal that facilitates

its analysis. These transformation techniques are useful when we want

to separate two or more signals, or when a particular component of the

signal has to be enhanced in relation to the others, or when a desired

parameter of the signal has to be estimated. When a transformation

technique operates on an analog signal and produces another analog

signal as its output, it is called analog signal processing. If the
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transform operates on a digital signal to produce another digital signal

as its output, it is called digital signal processing (DSP).

DSP is employed in a variety of fields of science and technology

such as biomedical engineering, acoustics, sonar, radar, seismology,

speech communication, data communication, nuclear science, spectroscopy

and many others. As an example, when a signal is transmitted over a

communication channel, it is corrupted in a number of ways, by, e.g.,

channel distortion, fading, and the insertion of background noise. One

of the major functions at the receiving end is to compensate for all the

affecting disturbances. DSP techniques play an important role in such

an application.

DSP systems are especially attractive because they can be realized

with flexibility using digital computer, or they can be realized in

hardware using digital components. They can be used to simulate analog

systems, and most importantly, can sometimes be used to realize other-

wise impossible analog signal transformations.

The Fourier transform (FT) provides a very useful technique for use

in CT signal processing. Similarly, the discrete Fourier transform

(DFT) plays a vital role in DSP. Spectrum analysis, an important com-

ponent of DSP, is one area where the DFT finds extensive application.

But, for quite a long time, no efficient means of implementing it,

either in hardware or in software, was known. However, the disclosure

in 1965 by Cooley and Tukey [1] of an efficient algorithm to compute the

DFT revolutionized signal processing. The class of algorithms proposed

by them has come to be known as the fast Fourier transform or the FFT.

-2-



The FFT algorithm reduced the computation time of the DFT phenomenally,

facilitating the commercial availability of special-purpose signal

processing chips which can operate at extremely high data rates.

Despite its tremendous application, the DFT has an unattractive

feature in that it transforms a real-valued sequence also into a

complex-valued sequence.

In 1983, R. N. Bracewell [2] proposed an inherently real-valued

transform called the Hartley transform (HT). The new transform has the

advantage that a real-valued signal always generates a real-valued

transform signal. Secondly, unlike the FT, the HT is symmetric that

is, both the forward and inverse transforms are identical. Thirdly, the

HT is so closely related to the FT, that one can move from the Fourier

domain to the Hartley domain and vice versa in a straightforward manner.

Bracewell also introduced the discrete Hartley transform (DHT), which

has all the above mentioned advantages over the DFT. But, the most

important practical advantage of the DHT over the DFT is that it is

computationally faster than the DFT.

The HT has an interesting history. While working on problems

relating to transmission lines, in 1942, Hartley first proposed it under

the name symmetrical Fourier identity [3], However, it remained rela-

tively obscure for quite a long time until Bracewell revived it in 1983.

Interestingly, Zhong De Wang, working independently, proposed an identi-

cal transform in 1981 and developed many of its mathematical properties.

He called it the W-Transform [4-6],



1.2 Implementation of the Present Work

All the properties of the ITT and the DHT are developed, analogous

to the properties of the FT and the DFT, respectively. Decomposition

formulas for all the fast Hartley transform (FHT) algorithms are derived

and the computational cost of different algorithms are compared.

Studies in the enhancement of signal-to-noise ratio (SNR) are carried

out on simulated Raman spectra using the matched filter technique. The

matched filter is implemented using both the DFT and the DHT. The

computational efficiency and the filter response in both the methods are

compared.

1.3 Structure of the Thesis

In Chapter 2, we introduce the ET and develop its properties, and

in Chapter 3 we define the DHT and develop its properties. Chapters 4

and 5 present a detailed development of the radix-2 DIT and DIF algo-

rithms, respectively. We discuss the radix-4 DIT algorithm in Chapter

6, and the split-radix algorithm in Chapter 7. In Chapter 8, we discuss

an application of the DHT in the analysis of Raman spectra, present the

results of the simulation, and compare its performance with the DFT in

that application. Finally, Chapter 9 gives a summary of the conclusions

drawn.
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2. THE HARTLEY TRANSFORM

2.1 Introduction

Since the HT is so closely related to the FT and many of its

properties follow directly from those of the FT, we begin the chapter by

defining the FT of an aperiodic signal. Then we define the HT as

proposed by Bracewell and develop various properties of the transform.

2.2 The Fourier Transform

Given a signal x(t), its Fourier transform X(f) is defined as

! (t)e"
j2TTft

dt. (2.1)
J

To recover x(t) from X(f), we perform the inverse Fourier transform

(IFT) on X(f). The IFT is defined as

00

x(t) = | X(f)e
j2 " ft

df. (2.2)

—00

Since

e~
j2nft

= cos(2jift) - jsin(2nft),

we can rearrange Eqn. (2.1) as

00 00

X(f) -
J

x(t)cos(2nft)dt - j j x(t) sin(2nf t)dt

.

(2.3)

—-oo —00

As evident from (2.3), in general, the FT X(f) of a real signal x(t) is

complex, with the real part
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Re {X(f)} =
J

x(t)cos(2nft)dt, (2.4)

and the imaginary part

Im (X(f)} = -
J

x(t)sin(27Tft)dt. (2.5)

2.3 The Hartley Transform

The HT H(f) of a real signal x(t) is defined as

H(f) =
J

x(t)cas(2nft)dt (2.6)

where

cas(2nft) = cos(2nft) + sin(2nft). (2.7)

The HT is symmetric that is, if we need to recover x(t) from H(f), we

perform the transformation in (2.6) on H(f). Thus both the forward and

inverse transforms are identical.

Using (2.7) we can rewrite (2.6) as

I
H(f) = I x(t)cos(2nft)dt + I x(t)sin(2nft)dt. (2.8)

_CO —00

From (2.8) we observe that, unlike the FT, the HT of a signal x(t) is

real.

Using the trigonometric identities

cos(- x) = cos(x)

and

sin(- x) = - sin(x)
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we can compute II(-f) as

H(-f) =
j x(t)cos(2nft)dt - f x(t )sin(2nft)dt . (2.9)

Now, by splitting H(f) into even and odd parts H (f) and H (f) respec-
c o

tively, we get

H (f) = [H(f) + H(-f)] / 2, (2.10)
e

and

H (f) = [11(f) - K(-f)] / 2. (2.11)
o

Substituting the integral expressions for H(f) and H(-f) that we ob-

tained in (2.8) and (2.9) in (2.10) and (2.11). we get

09

H
e
(f) -

J
x(t)cos(2jtft)dt. (2.12)

and

H
Q
(f) = f x(t)sin(2nft)dt (2.13)

2.4 Properties

The HT has many interesting properties that can be successfully

employed in many signal processing applications. In this section we

will derive some of its important properties.

2.4.1 Relation Between the FT and the HT

From (2.4) and (2.12), we observe that

-7-



Re (X(f)J = H (f).
e

and

from (2.5) and (2.13), it is clear that

Im (X(f)} = - H (f).
o

Therefore, once we have the ITT of a signal x(t), we can compute its FT

as shown below.

X(f) - H (f) - j H (f). (2.14)
e o

By referring to (2.4), (2.5), (2.12) and (2.13) again, we see that the

FT of a signal z(t) can be computed from its FT X(f) as follows:

H(f) = Re {X(f)J - Im (X(f)}. (2.15)

2.4.2 Linearity

The in is a linear transform.

Let us find the transform of the signal {x (t) + x (t)}. Let the HT of

x (t) be H (f) and that of x (t) be H (f). Let the HT of

{x
x
(t) + x

2
(t)) be H(f). Then n(f) is given by

H(f) =
J

[x
x
(t) + x

2
(t)]cas(2nft)dt.

The above integral can be split into two integrals as shown below

H(f) =
J

x
1
(t)cas(2nft)dt + f x

2
(t)cas(2nft)dt

= H (£) + H
2
(f).
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Therefore, the HT of a sum of signals equals the sum of the HTs of

individual signals.

2.4.3 Reversal

If the HT of x(t) is H(f) then the HT of x(-t) is H(-f )

.

The KT of x(-t) is given by

f-«-HT {x(-t)} =
J

s(-t)cas(2Trft)dt.

—00

Now, let -t = u. Then dt = -du. Making these substitutions in the

above integral, we get

J«<«
HT U(-t)} =

J
x(u)cas{2nf(-u)}du

—00

00

=
J

x(u)cas{2nu(-f)}du

—OD

= H(-f).

Therefore, if the HT of x(t) is H(f), the HT of x(-t) is H(-f)

2.4.4 Transforms of Even and Odd Functions

Let x(t) be an even function. i.e.,

x(t) = x(-t).

The HT of x(t) is obtained as

H(f) = f x(t)cas(2nft)dt.
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Since x(t) is an even function, replacing z(t) by x(-t) in the above

integral, we get

= 1
H(f) =

J
x(-t)cas(2nft)dt

—€0

By the reversal theorem, the right hand side of the above equation is

H(-f). Therefore,

H(f) = B(-f).

Therefore, the HT of an even function is also even.

Now, let x(t) be an odd function i.e., x(t) - x(-t).

If we denote the HT of x(t) by H(f),

-JH(f) =
J

x(t)cas(2nft)dt.

— 00

Since x(t) = - x(-t), replacing x(t) by - x(-t) in the above equation,

we get

•"
I

H(f) = "
J

x(-t)cas(2nft)dt.

—oo

By the reversal theorem, the right hand side of the above equation is

- H(-f). Thus, the ibove equation reduces to

H(f) = - B(-f).

Therefore, the HT of an odd function is also odd.
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2.4.5 The Infinite Integral Theorem

The infinite integral of a signal x(t) can be computed very easily

from its HT. This result follows directly from the definition of the

HT. We know that

00

H(f) =
J

x(t)cas(2nft)dt.

—00

Substituting f = in the above equation, we get

00

H(0) =
J

x(t)dt, (2.16)

—00

since

cas(O) = cos(O) + sin(O) = 1.

2.4.6 Shift Theorem

Now, let us find the HT of x(t - T), which is the signal x(t)

shifted by T units.

We know that the HT of x(t - T) is given by

00

HT {x(t - T)} = f x(t - T)cas(27Tft)dt. (2.17)

—oo

Let (t - T) - h. Then

t = (T + h),

and

dt = dh.

Using the above substitutions, we rearrange (2.17) as

-11-



-\ITT U(t - T)} =
j x(h)cas {2nf(h + T)}dh. (2.18)

—00

Let us expand cas{2nf(h + T)}.

cas{2irf(h + T)} = cos {2nf(h + T)} + sin{2nf(h + T)}

cos(2nfh)cos(2n£T) - sin(2nfh) sin(2itfT)

+ sin(2nfh)cos(2irfT) + cos(2nf h) sin(2rtfT) . (2.19)

Collecting terms in the above expansion, we get

cas{2nf(h + T)} = cos(2nfT) {cos(2nfh) + sin(2jrfh)}

+ sin(2nfT) {cos(2nfh) - sin(2nfh)}.

Recognizing that

cos(2nfh) + sin(2nfh) = cas(2nfh) #

and

cos(2nfh) - sin(2nfh) = cos{2?rh(-f ) } + sin{2nh(-f)}

= cas{2nh(-f)}.

we can rewrite (2.19) as

cas{2nf(h + T)} = cos(2nfT)cas(2nfh)

+ sin(2jrfT)cas{2nh(-f)}. (2.20)

Substituting the result of (2.20) in (2.18), we get

HT {x(t - T)} =
f
x(h)[cos(2rtfT)cas(2nfh)

—00

+ sin(27TfT)cas{2rrh(-f)}]dh.

Splitting the above integral into two integrals, we get

09

HT{x(t - T)} = cos(2jrfT) f x(h)cas(2nfh)dh

-12-



+ s in(2nfT)
f
x(h)cas{2nh(-f )}dh

= cos(2jrfT)H(f) + sin(27tfT)n(-f )

.

(2.21)

Note that if x(t) is even, and thus H(f) is even, then the above result

reduces to

H(f)[cos(2nfT) + sin(2nfT)] = cas(2nfT)II(f )

.

and if x(t) is odd, and thus H(f) is odd, (2.21) becomes

H(f)[cos(2jrfT) - sin(27tfT)] = cas{2nT(-f )}H(f )

.

2.4.7 Derivative Theorem

From FT theory, we know that if X(f) is the FT of the signal x(t),

then the FT of its derivative is given by j2nf X(f) i.e.,

FT {dx(t)/dt} = j2nf X(f).

From (2.14), we can rewrite j2nf X(f) as follows:

j2nf X(f) = j2nf [H (f) - jH (f)]
e o

= 2nf [H (f) + jH (£)].
o e

where II (f) and H (f) are the even and odd parts of the HT H(f) of the
e o

signal x(t)

.

Since the above expression is the FT of the derivative of x(t),

from (2.15), the HT of the derivative is obtained as

HT {dx(t)/dt} = Re [FT {dx(t)/dt}] - Im [FT {dx(t)/dt}]

= 2nfH (f) - 2nfH (f). (2.22)
o e

Using the relations
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ii (f) = [n(f) - ii(-f)] / 2.
o

and

H (f) = [11(f) + H(-f)] / 2.
e

we rewrite (2.21) as

HT (dx(t)/dt) = - 2nf H(-f).

Alternatively, we can use the shift theorem to prove the derivative

theorem. We know that the derivative dx(t)/dt is defined as

dx(t)/dt = . Lim. n [x(t + h) - x(t)] / h. (2.23)

If H(f) is the HT of x(t), then by the shift theorem

HT {x(t + h)} = cos(2nfh)H(f) - sin(2nfh)H(-f )

.

Taking the HT on both sides of (2.23) and applying the above result, we

get

HT {dx(t)/dt} - Liin _ [cos(2Trfh)H(f) - sin(2nfh)H(-f )

n >

- H(f)] / h.

Evaluating the above limit using L'Hospital's rule, we get

HT {dx(t)/dt} = -2!fH(-f).

2.4.8 HT of the n* Derivative

The FT of the n derivative of a signal x(t), whose FT is X(f), is

given by (j2nf)
n
X(f).

By (2.14),

(j2nf)
n
X(f) = j"(2nf)

n
[H (f) - jH (f)],

e o

where H(f) is the HT of x(t).

-14-



Noting that

.n jnn/2
J e

= cos(nji/2) + jsin(nn/2),

we rewrite the above equation as

FT {d
n
x(t)/dt

n
} = (2nf)

n
[cos(nn/2) + jsin(nn/2)]

t{H(f) + H(-f)} / 2 - j{H(f) - H(-f)} / 2],

(2.15) tells us that if we subtract the imaginary part of the above

expression from its real part, we get the HT of the n derivative of

x(t) . Therefore,

HT {d
n
x(t)/dt

n
} =» (2nf)

n
[cos(nn/2)H(f) - sin(mr/2)H(-f ) ]

.

However, when n is odd, the first term in the above expression vanishes

and, when n is even the second term vanishes. Therefore,

HT {d
n
x(t)/dt

n
} = - (2nf)

n
sin(nn/2)H(-f) (n odd)

HT (d
n
x(t)/dt

n
) = (2nf)

n
cos(nn/2)H(f). (n even)

2.4.9 First-Moment Theorem

Given a signal x(t), its first moment is given by

CO

F. M. =
f
tx(t)dt.

—OB

Now, we know that the HT H(f) of x(t) is given by

00

H(f) = f x(t)cas(2nft)dt.

—00
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Taking the derivative of the above equation with respect to f yields

00

dH(f)/df = 2n f x(t) t[cos (2nft) - sin (2nft)] dt.

—00

Evaluating the above expression at f = gives

dH (0)/df = 2jt
f
x(t)tdt.

Therefore, the first moment can be found as

*
M# =

J"

tx(t)dt = [dH(0)/df] / 2ir.

2.4.10 Second-Moment Theorem

Given a signal x(t), its second moment is defined as

i. M. =
J

t
2
x(t)dt.

Differentiating (2.6) two times with respect to f yields

H (f) = 4n
2

J
t
2

x(t) [-cos(2nft) - sin (2nft)] dt

Evaluating the above expression at f = gives

H (f) = - 4n
2

J
t
2

x(t)dt

Therefore, the second moment is
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i. M. =
J

t
2

x(t)dt

- H (0)/4n
2

.

2.4.11 Centroid

Given a function x(t), its centroid is defined as

00 09

[
J

tx(t)dt] /
I

x(t)dt = H'(0) / {2n[H(0)]}.

—00 —00

The result follows directly from the infinite integral and first-moment

theorems

.

2.4.12 Autocorrelation Theorem

From FT theory, we know that the FT of the autocorrelation of x(t)

is given by |X(f)| where, X(f) is the FT of x(t).

However,

|X(f)|
2

= Re [X(f)]
2

+ Im [X(f)]
2

.

From (2.14), it follows that

Since

and

|X(f)|
2

= H
2
(f) + H

2
(f).

e o

H (f) = [H(f) + H(-f)] / 2,
e

H (f) = [H(f) - H(-f)] / 2,
o
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the above equation can be rearranged as

|X(f)|
2

= (l/2)[H
2
(f) + H

2
(-f)].

Thus, the HT of the autocorrelation function is a non-negative and even

function. Observe that if H(f) is even, the above expression becomes

ET(f), which resembles the familiar FT result.

2.4.13 Convolution Theorem

If the FTs of signals x (t) and x (t) are X (f) and X-(f). respec-

tively, then we know that the FT of the convolution of the two signals

is the product of the individual FTs X.(f) and X_(f) i.e.,

FT {x^t) * x
2
(t)} = X

1
(f)X

2
(f)

By (2.14), we can rewrite X (f)X (f) as

X
1
(f)X,(f) = [H, (f) - jH, (f)][H_ (f) - jEL (f)l.12 le lo 2e 2o

where

and

H, (f) is the even part of the HT H, (f) of x„(t),
le 11

H, (f) is the odd part of H, (f),
lo 1

H. (f) is the even part of the HT H.(f) of x.(t),
Ze 2 2

H„ (f) is the odd part of H„(f).
~o 2

Now, carrying out the multiplication in the above equation, we get

X^m.m = [H, (f)H_ (f) - H, (f)H„ (f)]12 le 2e lo 2o

- jtH, (f)H. (f) + H, (f)H_ (£)].
le 2o lo 2e

1 n-lo-



From (2.15), the IIT of the convolution is given by

HT { Xl (t)*x,(t)} = H, (f)H. (f) - B, (f)B. (f) + H (f)H (f)12 le 2e lo 2o le 2o

+ BL (f)BL (f).
lo 2e

Collecting the terms, we get

HT{x
1
(t)*x.(t)} = H. (f) [H. (f) + BL (f)]12 le Ze 2o

- BL (f) [H- n (f) - B. (£)].
lo iv Ze

= BL (f)B (f) - BL (f) [B. (f) - B. (f)].
le 2 lo 2o 2e

= [{B
1
(f) + B

1
(-f)} / 2]B

2
(f)

- [{B
1
(f) - B

1
(-f)} / 2] [{B

2
(f) - B

2
(-f)}

- {B
2
(f) + B

2
(-f)}] / 2.

Simplifying the above expression, we get

BT {x
1
(t)*x

2
(t)} = (1/2) [B

1
(f)B

2
(f) + B

1
(-f)B

2
(f) + H (f)H (-f)

- B
1
(-f)B

2
(-f)].

Bowever, if we have any symmetries in the functions being convolved, the

above result simplifies. Following is a summary:

SYMMETRY BT OF TBE CONVOLUTION

B
x
(f) is even H <f)H

2
(f>

B
2
(f) is even H (f)H

2
(f)

Both are even B (f)B (f)

B
1
(f) is odd B

1
(f)E

2
(-f)

B
2
(f) is odd B

1
(-f)B

2
(f)

Eoth are odd -H (f)H (f)

-19-



2.4.14 Product Theorem

If two signals x..(t) and x.(t) have FTs X (f) and X-(f). respec-

tively, we know that the FT of the product of the two signals is the

convolution of the individual FTs i.e.,

FT(x (t)x
2
(t)J = X

1
(f)*X

2
(f).

By (2.14),

X
1
(f)*X.(f) = [H. (f) - jH. (f)] • [H (f) - jH (f)].12 le lo Ze Zo

Rearranging the right hand side of the above equation into real and even

parts, we get

X
1
(f)*X.(f) = [H, (f) * H, (f) - E\ (f) * H. (f)]12 le 2e lo 2o

-j[H, (f) * H. (f) + H, (f) H, (f)].
le 2o lo 2e

(2.15) tells us that the HT of the product is obtained by subtracting

the imaginary part of the above expression from its real part.

Therefore,

HTU^Ox.U)} = H. (f) • H. (f) - H, (f) * H. (f)
l z le ze lo Zo

+ h, (f) * n. (f) + n. (f) * n„ (£).
le 2o lo 2e

since

H. (f) = [H,(f) + H\(-f)] / 2,
le 1 1

H. (f) = [H.(f) - n\(-f)] I 2,
lo 1 1

H, (f) = [H_(f) + H.(-f)] / 2,
ze z z

H, (f) = [H.(f) - H.(-f)] / 2,
Zo z z

the above equation can be simplified as

HT{x
1
(t)x

2
(t)} = (l/2)[H

1
(f) * n

2
(f)
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+ H^-f) * n
2
(f) + H

x
(f) * H

2
(-f)

- ^(-f) * n
2
(-f)].

However, if the functions being multiplied possess some symmetries, the

above result simplifies. Following is a summary:

SYMMETRY HT OF THE PRODUCT

H^f) is even H (f)*H (f)

H
2
(f) is even H (f)*H (f)

Both are even H (f)*H (f)

H (f) is odd H
1
(f)*H

2
(-f)

H
2
(f) is odd H

1
(-f)*H

2
(f)

Both are odd -H (f)*E (f)

2.4.15 Cross-Correlation Theorem

If two signals x (t) and *
2
(t) have FTs X (f) and

X_(f), respectively, the FT of the cross-correlation of the two signals

*
is given by X (f)X.(f), where the superscript ' * ' indicates the com-

plex conjugate. Using the relation between the FT and the HT, we get

X
1
*(f)X.(f) = [H. (f) - jH, (f)]* [H. (f) - jH. (f)]12 le lo 2e 2o

Carrying out the multiplication and rearranging the above expression, we

get

X*(f)X.(f) = [H, (f)H. (f) + H, (f)H. <f>]12 le 2e lo 2o

-21-



- J[H
le

(f)H
2o

(f) - H
lo

(f)U
2e

(f)].

From (2.15), we know that the IIT of the cross-correlation is obtained by

subtracting the imaginary part of the above expression from its real

part.

HT{cross-correlation of x (t) and x_(t)}

H, (f)H. (f) + H. (f)H, (f) + H, (f)H (f) - IT (f)H„ (f).
le 2e lo 2o le 2o lo 2e

Substituting for H. (f), H, (f), H. (f), H„ (f) in terms of IL(f),
le lo 2 e 1 o 1

H.(f), H (-f) and H_(-f) in the above expression, we get

HT{cross correlation of x (t) and x (t)} =

(1/2)[H (£)H (f) + H
1
(-f)H

2
(f) - H (f)H

2
(-f) + B^-f)K

2
(-f)1

.

However, if one of the functions in the cross-correlation possesses some

symmetry, the above result simplifies. Following is a summary:

SYMMETRY ITT OF THE CROSS CORRELATION

H^f) is even H (f)H (f)

H
2
(f) is even H^-fJH^f)

Both are even H (f)B (f)

H
x
(f) is odd -H (f)H

2
(-f)

E
2
(f) is odd n

1
(f)H

2
(f)

Both are odd H (f)H
2
(f)

2.4.16 Parseval's Theorem

Parseval's theorem states that
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J
I x(t)|

2
dt =

J
I X(f)|

2
df

—00 —CO

where

X(f) is the FT of the signal x(t).

The above theorem holds true for the HT also.

Noting that

-Ix(t) = H(f)cas(2nft)df,

we can write

f
x
2
(t)dt =

J"

x(t)
f
H(f)cas(2nft)dfdt.

09 —CO GO

Interchanging the order of integration on the right hand side, we get

00 CO CO

f x
2
(t)dt =

J
H(f) f x(t)cas(2nft)dt df.

— 00 —00

The second integral on the right hand side is the HT of the signal.

Therefore,

f
x
2
(t)dt =

j H
2
(f)df.

Wang [5] described a real series representation for periodic signals.

Since from a signal processing point of view we are more interested in

data sequences than in CT signals, in the next chapter the DHT is

defined and its properties are derived.
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3. THE DISCRETE HARTLEY TRANSFORM

3.1 Introduction

We begin the chapter by defining the DFT of a finite-length

sequence. The DHT as defined by Bracewell [2] is presented next.

Finally, many useful properties of the DIIT are derived and comparisons

made with those of the DFT.

3.2 The Discrete Fourier Transform

The DFT {X(k)} of a finite-duration sequence

U(n)} = {x(0), x(l), ...» x(N - 1)} is defined as

N-l

X(k) = (1/N) ^ x(n)W~
nk

. k = 0. 1, ..., N - 1 (3.1)

n=0

where

W.
T
is called the kernel and is given by W., = e

N N

Using the definition for the kernel given above, we can expand (3.1) as

N-l

X(k) = (1/N) 5 x(n)cos(2nnk/N)

n=0

N-l

- j(l/N) J x(n)sin(2;tnk/N), k = 0, 1, .... N-l. (3.2)

n=0

From (3.2) it is clear that the DFT of a sequence is, in general,

complex, with the real part
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N-l

Re {X(k)} = (1/N) ^ x(n)cos(2jrkn/N). (3.3)

n=0

and the imaginary part

N-l

Im {X(k)} = (1/N) 5 x(n)sin(2nkn/N). (3.4)

n=0

To recover (x(n)} from (X(k)}, we perform the inverse DFT (IDFT), which

is defined as

N-l

x(n) = ^ X(k)W
nk

, n = 0, 1, ..., N-l (3.5)

n=0

where, W.
t

is the kernel as defined earlier.
N

3.3 The Discrete Hartley Transform

The DHT H(k) of an N-point real sequence {x(n)} is defined as

N-l

H(k) = (1/N) ^ x(n)cas(2nnk/N), k = 0. 1, .... N-l. (3.6)

n=0

where

cas(2nnk/N) = cos(2nnk/N) + sin(2nnk/N).

Using the above expansion for cas (2nnk/N) , we split (3.6) into two

summations as shown below.

N-l N-l

H(k) = (1/N) ^ x(n)cos(2jrnk/N) + (1/N) ^ x(n)sin(2nnk/N)

.

n=0 n=0

k = 0, 1. ..., N - 1.(3.7)

We can compute H.(-k) from the above equation as
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N-l

H(-k) = (1/N) ^ x(n)cos{2nn(-k)/N}

n=0

N-l

+ (1/N) ^ x(n)sin{2nn(-k)/N}. k = 0, 1, .... N-l. (3.8)

n=0

Using the trigonometric identities

cos{2nn(-k)} = cos(2nnk)

and

sin{2nn(-k)} = - sin(2nnk)

we can rewrite (3.8) as

N-l

H(-k) = (1/N) J x(n)cos(2nnk/N)

n=0

N-l

- (1/N) ^ x(n)sin(2nnk/N), k = 0, 1, .... N-l. (3.9)

n=0

We can split H(k) into even and odd parts, with the even part TI (k)
B

being given by

H (k) = [H(k) + H(-k)] / 2, (3.10)

and the odd part H (k) obtained as
o

H (k) = [H(k) - H(-k)] / 2. (3.11)
o

Substituting the summations of (3.7) and (3.9) for II ( k ) and H(-k) in

(3.10) and (3.11), we get

N-l

H (k) = (1/N) ^ x(n)cos(2nnk/N), k = 0, 1, .... N-l (3.12)

n=0
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N-l

H (k) = (1/N) ) x(n)sin(2nnk/N), k = 0, 1, .... N-l. (3.13)
O L

n=0

In all the above equations, H(-k) = H(N - k) . For example, for a six-

teen point sequence, i.e. N = 16, H(-l) is H(15), H(-2) is H(14) and so

on. The notation H(-k) instead of H(N - k) is only an extension of the

habit formed in dealing with the CT functions.

Unlike the DFT, the DHT does not have a separate inverse DHT.

If we want to recover the original data sequence {x(n)}, we only need to

perform the DHT operation on {H(k)J.

N-l

x(n) =
Y

R(t)cas(2nnk/N). n = 0, 1, .... N-l. (3.14)

k=0

Note the absence of the (1/N) factor in the above equation before the

summation symbol, which was present when we defined H(k). Its absence

does not alter the fact that the DHT is symmetric, because by symmetry

we mean invariance of the kernel in (3.6) and (3.14). The factor (1/N)

is only a constant that does not affect the nature of the transform. In

fact, some authors omit (1/N) in (3.6) as well.

If we compare (3.7) and (3.2), it is evident that for any real

sequence the DHT generates a real-valued sequence, whereas the DFT

produces a complex-valued sequence. In fact, it is this particular

property of the DHT that makes it attractive in many applications.

3.4 Properties

The DHT possesses many useful properties that enable us to develop

fast algorithms to compute it, and also apply it successfully in various
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signal processing applications such as digital filtering, fast convolu-

tion, spectral analysis, etc. In this section many of its useful

properties are developed.

3.4.1 Relation Between the DFT and the DHT

The DFT and the DHT are so closely related that we can move easily

from one transform to the other. By looking at (3.3) and (3.12) we

observe that

Re{X(k)} = n (k)
e

and

from (3.4) and (3.13) we note that

Im{X(k)} = H (k).
o

Therefore, if we have the DHT {H(k)J of an N-point real-valued sequence,

we can find the DFT of the sequence as shown below.

X(k) = H (k) - jH (k). k = 0, 1, .... N - 1. (3.15)
e o

Referring to (3.3), (3.4), (3.12), and (3.13) we note that if we

have the DFT {X(f)} of a real-valued sequence, we can compute the DHT

(H(k)} as

H(k) = Re{X(k)} - Im{X(k)}, k = 0, 1. .... N - 1. (3.16)

3.4.2 Periodicity of the Kernel

We know that the DHT of an N-point real-valued sequence is given by

N-l

H(k) = (1/N) ^ x(n)cas(2nnk/N), k = 0, 1, .... N-l.
n=0
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In the above equation the factor cas(2nnk/N) is called the kernel. Let

us focus on the kernel briefly.

cas[2nn(k + N)/N] = cos[2nn(k + N)/N] + sin[2nn(k + N)/N]

Expanding the right hand side using the familiar trigonometric iden-

tities, we get

cas[2nn(k + N)/N] = cos(2jtnk/N)cos(2jinN/N) - sin(2nnk/N) sin(2nnN/N)

+ sin(27tnk/N)cos(2nnN/N) + cos(2nnk/N)sin(2jinN/N)

.

- cos(2jrnk/N) + sin(2nnk/N)

= cas(2nnk/N)

.

The above equation shows that the kernel is periodic on N. In the light

of this fact let us compute the (k + N)th element in the DHT of the data

sequence {x(n) }

.

N-l

!(k + N) = (1/N) J x(n)cas[2nn(k + N)/N], k = 0, 1, .... N-l.HI

n=0

Since the kernel is periodic on N,

N-l

H(k + N) = (1/N) ^ x(n)cas(2jrnk/N), k = 0, 1, .... N-l.
n=0

- R(k).

Therefore, each of the first N elements in the DIIT sequence repeats

itself after an interval of N points. Now, let us compute the (n + N)

element in the data sequence (x(n)} from its DHT.

N-l

x(n + N) = 5 H(k)cas[2rrk(n + N)/N], n = 0, 1, .... N-l.
k=0

Since the kernel is periodic on N, the above equation reduces to
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N-l

x(n + N) = J H(k)cas(2nnk/N), n = 0, 1, .... N-l.
k=0

= x(n).

As we have seen above, the periodicity of the kernel imposes periodicity

on the data sequence as well as its DHT. If the length of the sequence

is N, whenever we perforin the DHT on it, the sequence is implicitly

assumed to be periodic with period N. In this respect the DHT is iden-

tical to the DFT.

3.4.3 Orthogonality of the Kernel

The kernel of the DHT is orthogonal and real, which makes the DHT

an orthogonal transform. Let us consider the following summation:

N-l

^ cas(2nnk/N)cas(2nmk/N) (3.17)

k=0

Expanding the terms in the summation, we get

N-l

^ [cos(2nnk/N) + sin(2nnk/N)l [cos(2nmk/N) + sin(2rrmk/N) ]

k=0

Simplifying the above summation further, we get

N-l N-l

^ cos(27ink/N)cos(2nmk/N) + ^ sin(2nnk/N)cos(2mnk/N)

k=0 k=0

N-l N-l

+ 2 cos(2nnk/N)sin(27rmk/N) + ) sin(2nnk/N) sin(2rtmk/N) .

k=0 k=0
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Collecting the terms and combining them using the familiar trigonometric

identities, we get

N-l N-l N-l

^ cas(2nnk/N)cas(2nmk/N) = ^ cos[2n(n - m)k/N] + ^ sin[2n(n + m)k/N].

k=0 k=0 k=0

However, both the summations on the right hand side are zero.

Therefore

N-l

) cas(2nmk/N)cas(2nnk/N) = 0.

k=0

Let m = n in (3.17). Then it becomes

N-l N-l

^ cas(2Trnk/N)cas(2nnk/N) = ^ [cas(2nnk/N)]
2

k=0 k=0

N-l

=
]! [cos(2nnk/N) + sin(2nnk/N)

]'

k=0

N-l

= ^ cos
2
(2nnk/N) + sin

2
(2nnk/N)

k=0

+ 2cos(2nnk/N)sin(2nnk/N)

.

N-l N-l

=
J 1 +2 ^ cos(2nnk/N)sin(2nnk/N)

k=0 k=0

= N +0 (Since sine and cosine or orthogonal

to each other over one full cycle)

= N.

Therefore, we have proved that
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N-l

) cas(2nmk/N)cas(27tnk/N) =0, if m is not equal to n and

k=0

= N, if m = n.

Hence, the kernel is orthogonal and the DHT is an orthogonal transform.

The DFT also is an orthogonal transform but the kernel is complex in its

case

.

3.4.4 Linearity

The DHT is a linear transform like the DFT. Let us consider two

N-point sequences {x (n)} and {x_(n)}. Then the DHT of the summation is

given by

N-l

H(k) - (1/N) ^ [x
1
(n) + x

2
(n)]cas(2nnk/N), k = 0. 1. .... N-l.

n=0

However, we can split the above summation into two summations as shown

N-l N-l

H(k) = (1/N) ^ x
1
(n)cas(2jrnk/N) + (1/N) ^ x

2
(n)cas(2nnk/N)

,

n=0 n=0

k = 0. 1, .... N - 1.

= H
x
(k) + H

2
(k)

Where, H (k) and H (k) are the DHTs of the sequences {x (n)} and

{x (n)} respectively. Therefore, the DHT of a sum of sequences is the

the sum of the DHTs of the sequences taken independently. If lengths of

the sequences are not identical, we make them so by adding zeros to the
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data sequence having less number of data points before applying this

theorem.

3.4.5 Reversal

Let us take an N-point data sequence {x(n)J and arrange all the

elements in the reverse order to get the sequence {x(N - n)}. The DHT

of {x(N - )} is simply a reversed version of the DHT {E(k)} of {x(n)},

except for the first element. That is, if {x(0), x(l), .... x(7)} has

the DIIT sequence {H(0), H(l), .... H(7)}, then the DHT of the sequence

U(0), x(7), x(6), .... x(l)} is {H(0), H<7). H(6), ..., H(l)}.

3.4.6 Transforms of Even and Odd Sequences

We know that the DHT of a sequence {x(n)} is given by

N-l

H(k) = (1/N) 5 x(n)cas(2nnk/N), k = 0, 1, .... N-l.

n=0

For a data sequence that is even, we can replace x(n) by x(-n) in the

above equation.

N-l

H(k) = (1/N) ^ x(-n)cas(2nnk/N), k = 0, 1, ..., N-l.

n=0

By the reversal theorem, the right hand side of the above equation is

H(-k).

Therefore

H(k) = H(-k).

The above result shows that the DHT of an even real-valued sequence

is also even.



The above result can also be proved via the DFT. From (3.15) we

know that X(k) is related to H(k) by

X(k) = H (k) - jH (k).
e o

Since the DFT of a real and even-sequence is real and, as such, does not

have any imaginary part, from the above equation we conclude that the

DIIT of the data sequence does not have any odd part.

Now, let us consider a data sequence that is odd. i.e.,

x(n) = - x(-n)

.

The DHT of {x(n)} is given by,

N-l

H(k) = (1/N) ^ x(n)cas(2nnk/N), k = 0, 1, ..., N-l.
n=0

Since the data sequence is odd, we replace x(n) by -x(-n) in the above

equation.

N-l

H(k) = (1/N) ^ -x(-n)cas(2jrnk/N).

n=0

By the reversal theorem, the right hand side is -H(-k) . Hence

H(k) = - H(-k).

We can reach the same conclusion from our knowledge that the DFT of a

real and odd-sequence is imaginary. Applying that fact to Eqn. (3.15),

we can conclude that the DHT of an odd and real sequence is also odd.

3.4.7 Shift Theorem

Let us consider a data sequence (x(n)} whose DHT is (H(k)}. Now,

let us circularly shift the data sequence by m samples to the left.
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When we do that, the samples that are pushed beyond the left edge of the

sequence will reappear at its right end, thus always maintaining the

length of the data sequence as N.

For example, consider an 8-point data sequence {x(n)} as shown below.

(x(0), x(l), x(2), x(3), x(4), x(5). x(6), x(7)}.

If we circularly shift {x(n)} by two samples to the left, we get the

following sequence.

(x(2), x(3), x(4), x(5), x(6), x(7)» x(0), x(l)}.

Observe that the length of the data sequence is same, that is eight, in

both the cases.

Now, let us find the DHT of such a shifted sequence.

N-l

H[x(n + m)] = (1/N) ^ x(n + m)cas (2nnk/N) , k = 0, 1, ..., N - 1.(3.18)

n=0

where m is the amount of shift.

Let n + m = t. Then n = t - m.

Also, when n = 0, t = m and when n=N-l, t = m + N - 1.

Making the above substitutions for n and the limits of summation in

(3.18), we get

N-l+m

H[x(n + m)] = (1/N) ^ x(t)cas[2n(t - m)k/N], k = 0, 1, .... N-l.

t=m

Expanding cas[2n(t - m)k/N] and splitting the above summation into two,

we get

N-l+m

[x(n + m)] = (1/N) ^ x(t)cos{2n(t - m)k/N}H

t = B!
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+ (1/N) ^ x(t)sin(2ji(t - m)k/N}» k = 0. 1 N - 1.

t=m

Using the familiar trigonometric identities we can rewrite the above

summations as follows:

N-l+m

H[x(n + m)] = (1/N) ) x(t) [cos(2ntk/N)cos (2nmk/N)

t=m

+ sin(2ntk/N)sin(2nmk/N)]

N-l+m

+ (1/N) ^ x(t)[sin(2ntk/N)cos(2nmk/N)

t=m

- cos(2ntk/N)sin(2nmk/N)].

Collecting the terms, we get

N-m+1

H[x(n + m)] = (l/N)cos(2mnk/N) 5 x(t) [co$(2ntk/N) + sin(2ntk/N)

]

t=m

N-m+1

- (1/N)sin(27rmk/N) ^ x(t ) [cos(2ntk/N) - sin(2ntk/N) ] .

t=m

Recognizing that

cos(2ntk/N) + sin(2ntk/N) = cas(2ntk/N)

cos(2ntk/N) - sin(2ntk/N) = cas{2nr(-k)/N)

,

we can rewrite the above equation as

N-l+m

H[x(n + m)] = cos(2jtmk/N)(l/N) ^ x(t )cas(2ntk/N)

t=m
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N-l+m

- sin(2jrmk/N)(l/N) J x(t)cas{2nt (-k)/NJ

.

t=m

H[x(n + m)] = cos(2nmk/N)H(k) - sin(2jrmk/N)H(-k)

= cos(2nmk/N)H(k) - sin(2jrmk/N)II(N-k)

.

If H(k) is even, then the above result becomes

H(k)[cas{2nm(-k)}],

and if H(k) is odd, it will be H(k)cas(2mnk/N)

.

3.4.8 Convolution

Circular convolution of two data sequences can be implemented

easily using the DHT. To perform circular convolution of two sequences,

both the sequences must be of identical length, unlike in linear con-

volution where differing lengths are allowed. Circular convolution

involves time reversing one sequence, overlaying it on the other and

then carrying out the convolution in the usual manner, remembering that

whenever we shift an element, the shift is circular.

If we have two data sequences {x (n)} and {x-(n)}, each of length

N, then their circular convolution is

N-l

y(n) = (1/N)
J

x
1
(h)x

2
(n - h) , n = 0. 1, ..., N-l.

h=0

If the DFTs of {x (n)} and {x (n)} are X (k) and X (k) respec-

tively, then the DFT of the circular convolution of the two sequences is

F[x
1
(n) * *

2
(n)] = X^kJX^k).

By Eqn. (3.15), we rewrite the right hand side as
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X, (k)X.(k) = [n, (k) - jil (k)][n_ (k) - jn_ (k)]
l z le lo it zo

Where E, (k), B„ (k), fl„ (k), B„ (k) are the even- and odd- parts
le lo 2e 2o

respectively, of the DHTs B (k) and H (k) of the data sequences.

Carrying out the multiplication in the above equation, we get

X,(k)X„(k) = [B, (k)H (k) - B, (k)E, (k)]12 le 2e lo 2o

-j[E, (k)B. (k) + H, (k)E. (k)].
le 2o lo 2e

Using the result of (3.16) we obtain the DUT of the convolution as

E[x,(n) • x.(n)] = B. (k)[H. (k) + B„ (k)] - B, (k)[B (k) - B, (k)].12 le 2e 2o lo 2o 2e

Writing B, (k), B. (k), B. (k), B. (k) in terms of Hfk), Bf-k), fl„(k),
le 2e lo 2o 112

and B (-k) , we get

B[x
1
(n)*x

2
(n)] = (1/2) [B

1
(k)B

2
(k) + H <-k)H <k) + B

1
(k)B

2
(-k)

- B
1
(-k)B

2
(-k)].

In some special cases we get simpler results. Following is a summary:

SYMMETRY PET OF TEE CIRCULAR CONVOLUTION

(x^n)} is even H (k)H (k)

(x
2
(n)} is even H (k)H (k)

Both sequences are even B (k)fl.(k)

(x
1
(n)) is odd B (k)B

2
(-k)

U
2
(n)} is odd B

1
(-k)E

2
(k)

Both sequences are odd - B (k)E (k)



V/henever we need to perform linear convolution of two sequences, {x (n)}

of length N and {x (n)} of length N , N > N . we add a string of zeros

to both the sequences until the length of each becomes at least equal to

(N + N. - 1), and then perform circular convolution on the resulting

sequences.

3.4.9 Product Theorem

Let us consider two data sequences {x (n)} and (x.(a)}, each of

length N. If their DFT sequences are {X (k)} and {X (k)} respectively,

then the DFT of their product is given by the circular convolution of

X (k) and X (k) . That is,

F[x
1
(n)x

2
(n)] = (1/N) [X^k) * X

2
(k)]

Using the result of (3.15) we can rewrite the r *. _, t hand side of the

above equation as

(l/NmCk) * X.(k)] = (1/N)[H. (k) - jH, (k)] * [H, (k) - jH_ (k)]12 le lo 2e lo

Carrying out the multiplication and rearranging the above expression, we

get

(l/NHX^k) * X.(k)] = (1/N)[{H. (k) * H. (k) - H, (k) * H. (k)}12 le Ze lo lo

-j{H, (k) * H„ (k) + H, (k) * H. (k)}].
le 2o lo 2e

Using the result of (3.16) we obtain the DHT of the product

{x (n)x.(n)} as shown below.

H[x, (n)x„(n)] = (1/N) [H, (k)*{H. (k) + H. (k)}12 le Ze zo
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h, (k)*{n. (k) - n (k)}].
lo 2o 2e

Observing that

H, (k)
le

[B , (k) + IL(-k)]/2 n, (k)11 lo
[H^k) - K (-k)]/2.

H
2e

(k) [H,(k) + n,(-k)]/2 n. (k) [n
2
(k) - H

2
(-k)]/2

we get

H[ Xl (n)x
2
(n)] = (l/2N)[H

1
(k) * H

2
(k) + Il^-k) ^(k)

+ H (k) * H <-k) - D (-k) * D (-k)]

If there is any symmetry in one or both of the multiplying sequences,

the above result simplifies. Following is a summary.

SYMMETRY DHT OF TITE PRODUCT

{x (n) is even}

{x_ (n) is even}

Both sequences are even

{x (n) is odd}

(x.(n) is odd}

Both sequences are odd

1/N)[H (k)H
2
(k)]

1/N)[H (k)H (k)]

l/N)[H
1
(k)H

2
(k)]

l/N)[H
1
(k)H

2
(-k)]

l/N)[n
i
(-k)H

2
(k)}

l/N)[-H
1
(k)H

2
(k)]

3.4.10 Cross-Correlation Theorem

Circular cross-correlation of two data sequences {x (n)} and

{x (n)} is given by

N-l

y(n) = (1/N) ^ x
1
(h)x

2
(n + h) , n = 0, 1, .... N - 1. (3.19)

h=0
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Collecting the terms and combining them using the familiar trigonometric

identities, we get

N-l N-l N-l

2 cas(2nnk/N)cas(2nmk/N) = ^ cos[2n(n - m)k/N] + 1 sin[2n(n + m)k/N].

k=0 k=0 k=0

However, both the summations on the right hand side are zero.

Therefore

N-l

) cas(2nmk/N)cas(2nnk/N) = 0.

k=0

Let m = n in (3.17). Then it becomes

N-l N-l

2 cas(2nnk/N)cas(2nnk/N) = ^ [cas(2nnk/N)

]

2

k=0 k=0

N-l

= ^ [cos(2nnk/N) + sin(2jmk/N) ]

2

k=0

N-l
r 2 2

= ) cos (2nnk/N) + sin (2nnk/N)

k=0

+ 2cos(2nnk/N)sin(2nnk/N).

N-l N-l

= ] 1 +2 ^ cos(2nnk/N)sin(2nnk/N)

k=0 k=0

= N +0 (Since sine and cosine or orthogonal

to each other over one full cycle)

= N.

Therefore, we have proved that
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M-l

) cas(2nmk/N)cas (2nnk/N) =0, if m is not equal to n and

k=0

= N, if m = n.

Hence, the kernel is orthogonal and the DHT is an orthogonal transform.

The DFT also is an orthogonal transform but the kernel is complex in its

case .

3.4.4 Linearity

The DHT is a linear transform like the DFT. Let us consider two

N-point sequences {x
1
(n)} and (x_(n)}. Then the DHT of the summation is

given by

N-l

H(k) = (1/N) ]) [x
1
(n) + x

2
(n)]cas(2nnk/N), k = 0, 1. ...» N - 1.

n=0

However, we can split the above summation into two summations as shown

N-l N-l

H(k) = (1/N) ^ x
1
(n)cas(2nnk/N) + (1/N) ]> x

2
(n)cas(2nnk/N)

.

n=0 n=0

k = 0, 1 N-l.

= H
x
(k) + H

2
(k)

Where, H (k) and H (k) are the DHTs of the sequences {x (n)} and

(x_(n)} respectively. Therefore, the DHT of a sum of sequences is the

the sum of the DHTs of the sequences taken independently. If lengths of

the sequences are not identical, we make them so by adding zeros to the
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data sequence having less number of data points before applying this

theorem.

3.4.5 Reversal

Let us take an N-point data sequence (x(n)} and arrange all the

elements in the reverse order to get the sequence {x(N - n)}. The DHT

of {x(N - )} is simply a reversed version of the DHT {E(k)} of {x(n)},

except for the first element. That is, if {x(0), x(l), .... x(7)} has

the DHT sequence {H(0), H(l), .... H(7)}, then the DHT of the sequence

{x(0), x(7), x(6). .... x(l)} is {H(0), H(7), H(6). .... H(l)}.

3.4.6 Transforms of Even and Odd Sequences

We know that the DHT of a sequence {x(n)} is given by

N-l

H(k) = (1/N)
J

x(n)cas(2nnk/N), k = 0, 1, ..., N-l.
n=0

For a data sequence that is even, we can replace x(n) by x(-n) in the

above equation.

N-l

H(k) = (1/N) ^ x(-n)cas(2nnk/N), k = 0, 1, .... N-l.
n=0

By the reversal theorem, the right hand side of the above equation is

H(-k).

Therefore

H(k) = H(-k).

The above result shows that the DHT of an even real-valued sequence

is also even.
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The above result can also be proved via the DFT. From (3.15) we

know that X(k) is related to H(k) by

X(k) = H (k) - jH (k).
e o

Since the DFT of a real and even-sequence is real and, as such, does not

have any imaginary part, from the above equation we conclude that the

DHT of the data sequence does not have any odd part.

Now, let us consider a data sequence that is odd. i.e.,

x(n) = - x(-n)

.

The DHT of (x(n)} is given by,

N-l

H(k) = (1/N) ^ x(n)cas(2nnk/N), k = 0, 1, .... N-l.
n=0

Since the data sequence is odd, we replace x(n) by -x(-n) in the above

equation.

N-l

H(k) = (1/N) ^ ~x(-n)cas(2nnk/N).

n=0

By the reversal theorem, the right hand side is -n(-k). Hence

H(k) = - H(-k).

We can reach the same conclusion from our knowledge that the DFT of a

real and odd-sequence is imaginary. Applying that fact to Eqn. (3.15),

we can conclude that the DHT of an odd and real sequence is also odd.

3.4.7 Shift Theorem

Let us consider a data sequence {x(n)} whose DHT is {H(k)}. Now,

let us circularly shift the data sequence by m samples to the left.
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When we do that, the samples that are pushed beyond the left edge of the

sequence will reappear at its right end, thus always maintaining the

length of the data sequence as N.

For example, consider an 8-point data sequence {x(n)J as shown below.

(x(0), x(l), x(2), x(3), x(4), x(5), x(6), x(7)}.

If we circularly shift {x(n)} by two samples to the left, we get the

following sequence.

(x(2), x(3), x(4), x(5), x(6), x(7), x(0), x(l)}.

Observe that the length of the data sequence is same, that is eight, in

both the cases.

Now, let us find the DHT of such a shifted sequence.

N-l

H[x(n + m)] = (1/N) J x(n + «a)cas (2nnk/N) . k = 0, 1. ..., N - 1.(3.18)

n=0

where m is the amount of shift.

Let n + m = t. Then n = t - m.

Also, when n = 0, t m and when n = N - 1, t=m+N-l.

Making the above substitutions for n and the limits of summation in

(3.18), we get

N-l+m

H[x(n + m)] = (1/N) ^ x(t)cas[2n(t - m)k/Nj, k = 0, 1, .... N-l.

t=m

Expanding cas[2n(t - m)k/N] and splitting the above summation into two,

we get

N-l+m

[x(n + m)] = (1/N) ^ x(t)cos{2n(t - m)k/N}H.
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+ (1/N) 5 x(t)sin{2n(t - m)k/N}, k = 0, 1, .... N - 1.

t=m

Using the familiar trigonometric identities we can rewrite the above

summations as follows:

N-l+m

H[x(n + m)] = (1/N) ) x(t ) [cos(2ntk/N)cos(2mnk/N)

t=m

+ sin(2ntk/N)sin(2nmk/N)]

N-l+m

+ (1/N) 2 x(t)[sin(2ntk/N)cos(2nmk/N)

t=m

- cos(2jTtk/N)sin(2nmk/N)].

Collecting the terms, we get

N-m+1

H[x(n + m)] = (l/N)cos(2nmk/N) > x(t> [cos(2irtk/N) + sin(2ntk/N)]

t=m

N-m+1

- (1/N)sin(27tmk/N) 5 x(t ) [cos(2ntk/N) - sin(2ntk/N) ] .

t=m

Recognizing that

cos(2ntk/N) + sin(2ntk/N) = cas(2ntk/N)

cos(2ntk/N) - sin(2ntk/N) = cas{2nT(-k)/N}

,

we can rewrite the above equation as

N-l+m

H[x(n + m)] = cos(2nmk/N)(l/N) J x(t)cas(2*tk/N)

t=m
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N-l+m

- sin(27tmk/N)(l/N) 5 x(t )cas{2nt (-k) /N}

.

t=m

H[x(n + m)] = cos(2nmk/N)H(k) - sin(2nmk/N)H(-k)

= cos(2nmk/N)H(k) - sin(2nmk/N)n(N-k)

.

If H(k) is even, then the above result becomes

H(k)[cas{2nm(-k)}],

and if H(k) is odd, it will be H(k)cas(2mnk/N)

.

3.4.8 Convolution

Circular convolution of two data sequences can be implemented

easily using the DHT. To perform circular convolution of two sequences,

both the sequences must be of identical length, unlike in linear con-

volution where differing lengths are allowed. Circular convolution

involves time reversing one sequence, overlaying it on the other and

then carrying out the convolution in the usual manner, remembering that

whenever we shift an element, the shift is circular.

If we have two data sequences {x (n)} and {z. (n)}, each of length

N, then their circular convolution is

N-l

y(n) = (1/N) ^ x
1
(h)x

2
(n - h) , n = 0, 1, .... N-l.

h=0

If the DFTs of {x (n)} and {x (n)} are X (k) and X (k) respec-

tively, then the DFT of the circular convolution of the two sequences is

F[x
1
(n) * *

2
(n)] = X^kJX^k).

By Eqn. (3.15), we rewrite the right hand side as
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x.ujx.U) = [ir (k) - jir (k)][n, (k) - jn. (k)]12 le lo ze zo

Where E, (k), H„ (k), H„ (k). H„ (k) are the even- and odd- parts
le lo 2e 2o

respectively, of the DHTs H (k) and H (k) of the data sequences.

Carrying out the multiplication in the above equation, we get

X
t
(k)X,(k) = [H. (k)B. (k) - H. (k)BL (k)]12 le Ze lo 2o

-jfH, (k)H,, (k) + H, (k)H„ (k)].
le 2o lo 2e

Using the result of (3.16) we obtain the DliT of the convolution as

H[x,(n) * x.(n)] = H, (k) [H„ (k) + H. (k)] - E\ (k) [H_ (k) - H„ (k)].
1 2 le Ze 2o lo 2o 2e

Writing H. (k), H. (k), H. (k), H, (k) in terms of H,(k), B(-k). H„ (k),
le 2e lo 2o 11 2

and H (-k) , we get

H[x
1
(n)*x

2
(n)] = (1/2) [H (k)H (k) + H

1
(-k)H

2
(k) + H <k)H <-k)

- H (-k)H (-k)].

In some special cases we get simpler results. Following is a summary:

SYMMETRY PITT OF THE CIRCULAR CONVOLUTION

(x
1
(n)} is even H (k)H <k)

(x
2
(n)} is even H (k)H

2
(k)

Both sequences are even H (k)H (k)

(x
1
(n)) is odd H

1
(k)H

2
(-k)

(x
2
(n)} is odd H

1
(-k)H

2
(k)

Both sequences are odd - H (k)E (k)



Whenever we need to perform linear convolution of two sequences, {x (n)}

of length N and {x_(n)} of length N , N > N , we add a string of zeros

to both the sequences until the length of each becomes at least equal to

(N + N - 1), and then perform circular convolution on the resulting

sequences.

3.4.9 Product Theorem

Let us consider two data sequences {x (n)} and {x_(n)}, each of

length N. If their DFT sequences are {X (k)} and {X.(k)J respectively,

then the DFT of their product is given by the circular convolution of

X (k) and X (k) . That is,

F[x
1
(n)x

2
(n)] = (1/N) [X^k) * X

2
(k)]

Using the result of (3.15) we can rewrite the r^^ t hand side of the

above equation as

<1/N)[X, (k) * X„(k)] = (1/N)[H, (k) - jH, (k)] • [H. (k) - jH. (k)]12 le lo Ze zo

Carrying out the multiplication and rearranging the above expression, we

get

(l/NHX^k) * X.(k)] = (1/N)[{H. (k) * H_ (k) - H, (k) * II. (k)}12 le Ze lo lo

-j{R\, (k) * H„ (k) + H, (k) * H. (k)}].
le 2o lo 2e

Using the result of (3.16) we obtain the DHT of the product

{x (n)x.(n)} as shown below.

Hfx^nJx.U)] = (1/N>[H, (k)*{H. (k) +H (k)}12 le 2e 20
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- h, (k)*{H. (k) - n_ (k)}].
lo 2o Ze

Observing that

H, (k) = [^(k) + H, (-k)]/2 H, (k) = [H(k) - ir(-k)]/2,
le 1 1 lo 1 1

h„ (k) = [H„(k) + iL(-k)]/2 n. (k) = [n„(k) - H„(-k)]/2
Ze Z Z Zo Z z

we get

H[x (n)x
2
(n)] = <1/2N)[H <k> * H

2
(k) + ^(-k) * O^k)

+ e (k) * h <-k) - n (-k) * n
2
(-k)]

If there is any symmetry in one or both of the multiplying sequences,

the above result simplifies. Following is a summary.

SYMMETRY DHT OP THE PRODUCT

{x
1
(n) is even} (1/N) [H^UH^k) ]

{x
2
(n) is even} (1/WIH (k)^(k)]

Both sequences are even (1/N) [H (k)H (k)

]

{x
1
(n) is odd} (l/N)[H

1
(k)H

2
(-k)]

{x
2
(n) is odd} (1/N)[H (-k)H

2
(k)]

Both sequences are odd (1/N)[-H (k)H (k)]

3.4.10 Cross-Correlation Theorem

Circular cross-correlation of two data sequences {x (n)} and

{x
2
(n)} is given by

N-l

y(n) = (1/N) ^ x^M^* + h) ' n = °' lf •*•' N " l ' (3.19)

h=0
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Note the similarity between the circular cross-correlation and the

circular convolution of two data sequences. The difference is that in

the convolution operation, we flip one of the data sequences before

carrying out the operation, whereas in cross-correlation we do not.

If the DFT sequences of {x (n)} and {x (n)} are {X (k)} and {X (k)}

respectively, then the DFT of their cross-correlation is

F[Cross correlation of x (n) and x.(n)] = X (k)X (k)

*
Where X

1
(k) is the complex conjugate of X

1
(k)

.

*
Using the result of (3.15), we rewrite X (k)X.(k) in terms of the DUT of

the cross correlation H(k)

.

X*(k)X.(k) = [H, (k) + jH. (k)][H. (k) - jE„ (k)]12 le lo 2e 2o

Where H, (k), H, (k), H„ (k), H„ (k) are the even- and odd- parts of the
le lo 2e 2o

DHTs H (k) and H
2
(k).

Expanding the right hand side, we get

X*(k)X„(k) = [H, (k)H. (k) + H. (k)H. (k)]12 le 2e lo 2o

- jfH, (k)H. (k) - B, (k)H. (k)].
le 2o lo 2e

Using the result of (3.16), we obtain the DHT of the correlation as

Hfcross-correlation of x (n) and x_(n)]

= H, (k)H„ (k) + H, (k)H. (k) + H. (k)H. (k) - H, (k)H. (k)

.

le 2e y lo 2o le 2o lo 2e

Substituting for H, (k) , H, (k), H. (k), H. (k) in terms of H (k),
le lo 2e 2o 1

D (-k), H (k), H (-k) and then simplifying, we get
X L, /*
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Hfcross correlation of x (n) and x.(n)]

= (l/2)[H
1
(k)E

2
(k) + H (-k)H

2
(k) - H

1
(k)H

2
(-k) + H (-k)H (-k)] (3.20)

Symmetry in one or both of the sequences correlated simplifies the above

result. Following is a summary:

SYMMETRY DHT OF THE CROSS CORRELATION

{x (n)} is even

{x_(n)} is even

Both sequences are even

{x (n) } is odd

{x (n)} is odd

Both sequences are odd

H (k)n
2
(k)

H (-k)H
2
(k)

H (k)n
2
(k)

-H (k)H
2
(-k)

H (k)n
2
(k)

H (k)H
2
(k)

Vfhen we need to perform linear cross-correlation of two data sequences,

{x
1
(n)} of length N and {x_(n)J of length N , we add a string of zeros

to the data sequences until the length of each becomes atleast

(N + N. - 1), and then perform a circular cross correlation as shown

above.

3.4.11 Autocorrelation Theorem

Given an N-point sequence (x 4 (n)} its autocorrelation R is
1 xx

defined as

N-l

R
xx

(n) = (1/N> ^ x (h)x (n + h). n = 0, 1. .... N-l.
h=0
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Observe that if x (n) = x_(n) in (3.19), we get the above equation for

autocorrelation. Therefore, taking the result for the DHT of the

cross-correlation for two sequences in (2.20), and making the substitu-

tion H (k) H (k), we obtain the DHT of autocorrelation of

U^n)}.

Therefore,

R (k) = (l/2)[H?(k) + H?(-k)]. (3.21)
xx 11

From the above equation it is clear that the DHT of the autocorrelation

of a real sequence is a non-negative even function. From the properties

of the DHT we know that if x (n) is even, H (k) = E (-k) and if x (n) is

7
odd, H (k) = - H (-k). In either case (3.21) reduces to H (k)

.

If we need to perform the linear autocorrelation of x (n), we add zeros

to the data sequence until its length becomes atleast 2N - 1 and then

perform the circular autocorrelation as described above on the resulting

sequence.

3.4.12 Parseval 's Theorem

If {x(p)} is an N-point real-valued sequence, we know that its DHT

is given by

N-l

H(k) = (1/N) ^ x(p)cas(2npk/N), k = 0, 1, ..., N-l. (3.22)

p=0

By changing the index in the data array from p to q, we can again write

the DHT of the data sequence as

-43-



N-l

H(k) = (1/N)
J

x(q)cas(2jTqk/N), k = 0, 1 N- 1. (3.23)

q=0

Multiplying (3.22) and (3.23), we get

N-l N-l

H
2
(k) = (1/N)

2
^ ]>

x(p)x(q)cas(2npk/N)cas(2nqk/N).

p=0 q=0

k = 0, 1. .... N - 1.

Now, let us sun both sides of the above equation over N points.

N-l N-l N-l N-l

])
H^k) = (1/N)

2
J ^ x( P )x( ^ ) ^ cas(2npk/N)cas(2jiqk/N)

k=0 p=0 q=0 k=0

By the orthogonality property of the kernel, we have

N-l

y cas(2npn/N)cas(2nqn/N) = N, p = q

n=0

= 0, otherwise

Hence

N-l N-l

]> ^(k) = (1/N) ]> x
2
(p).

k=0 p=0

Changing the index on the right hand side, we get

N-l N-l

2 ^(k) = (1/N) ^ x
2
(n).

k=0 n=0

The above equation is the Parseval's theorem for the DHT. Table 3.1

provides a summary of the properties of the DHT.
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H^k)

H
2
(k)

H^k) - H
l

(
--k)

TABLE 3.1 PROPERTIES OF THE DBT

1. Kernel a cas(2iran/N) Orthogonal and periodic on N

2. (Effect of periodicity (Imposes periodicity on the

of the kernel) data sequence and its DHT)

3. DHT{x(n)} - (Re{X(k)} - Im{X(k)}. where

X(k) is the DFT of x(n))

4. DFTU(n)} - (H (k) - jH (k), where H(k)
e o

is the DHT of z(n))

5. x
x
(n)

6. x
2
(n)

7. x
x
(n) = x

1
(-n)

8. x
x
(n) - - x

t
(-n) H^k) - - H^-k)

9. x
x
(n) + x

2
(n) H^k) + H

2
(k)

10. x
x
(n + m) Ccos(2jnak/N)H

1
(k) - sin(2nmk/N)H

1
(-k) ]

11 . [x
x
(n)«x

2
(n) ] (1/2) [H

1
(k)H

2
(kJ+R^ <-k)H

2
(k^ (k)H

2
(-k)-^ (-k)H

2
(-k) ]

12. x
x
(n)x

2
(n) (1/2)[H (k)«H

2
(k) + H <-k)«n

2
<k) + E^k^C-k)

+ B (-k)*H (-k)]

13. {Cross-correlation (1/2) [H (k)H (k) + H
1
(-k)H

2
(k)

of x
x
(n) and x

2
(n)) - H

1
(k)H

2
(-k) + B^-k^C-k)]

14. R (x,(n)} (l/2)[E*(k) + E*(-k)]
xx 1 11

N-l N-l

15. (1/N) ]> x
2
(n) -

]> B^k)

n=0 k=0
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4. RADIX-2 DECIMATION-IN-TIME FAST HARTLEY TRANSFORM ALGORITHM

4.1 Introduction

We know that the DHT of an N-point real sequence {x(n)} is given by

N-l

H(k) = (1/M) ^ x(n)cas(2nnk/N), k = 0, 1, .... N-l.
n=0

However, if we compute the DIIT of the sequence directly, we need N

multiplications and N additions to compute each coefficient in the DHT

sequence, and a total of w multiplications and additions to compute the

N-point sequence. This is an extremely tall order for long data

sequences. As such, the fast algorithms are a practical way out of this

computational explosion. Bracewell [7] was the first to introduce a

radix-2 decimation- in-time (DIT) fast algorithm to compute the DHT, but

he did not exploit many inherent symmetries in the algorithm. Kwong and

Shiu [8] proposed a more refined version of Bracewell 's algorithm, which

significantly reduced the number of multiplications and additions re-

quired to compute the DHT. Sorensen e_t a_l. [9] derived the same

algorithm by an index mapping approach. This algorithm is the most

commonly used, and also computationally the least complex of all the FHT

algorithms.

However, the radix-2 algorithm can only be used with data sequences

whose length is an integer power of two, because the algorithm involves

successively splitting the data sequence into two equal half-length

sequences. Any fast algorithm that computes the DHT of a given length
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of data sequence from smaller length DHTs by splitting the data into

smaller sequences is called a DIT algorithm.

4.2 The Decomposition Formula

By exploiting the symmetry and the periodicity of the kernel

cas(2nnk/N), the DHT computation can be decomposed into successively

smaller DHT computations.

Let us consider the DHT equation of an N-point real-valued

sequence.

N-l

H(k) = (1/N) 5 x<n)cas(2nnk/N). k = 0, 1, .... N-l. (4.1)

n=0

Since N is an even integer (which is a essential for this algorithm), we

can compute H(k) by separating {x(n)} into two (N/2)-point sequences,

one consisting of the even-indexed samples and the other containing odd-

indexed samples in (x(n)}. Stated mathematically,

t(k) = 3 x(n)cas(2rtnk/N) + ^ x(n)cas(2nnk/N)HI

n even n odd

By substituting the variables n = 2r for even n and n = 2r + 1 for odd

n, we get

(N/2)-l

H(k) = ^ x(2r)cas{2n(2r)k/N}

r=0

(N/2)-l

+ ^ x(2r + l)cas{2n(2r + l)k/N}. (4.2)

r=0
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However,

cas{2*(2r + l)k/N} = cas{2n(2r)k/N + 2nk/N}

= cos{2n(2r)k/N + 2nk/N} + sin{2n(2r)k/N + 2nk/N}

= cos{2n(2r)k/N}cos(2nk/N)

- sin{2n(2r)k/N}sin(2nk/N)

+ sin{2ji(2r)k/N)cos(27ik/N)

+ cos{27t(2r)k/N}sin(2:rk/N).

Rearranging the terms, we get

cas{2rt(2r + l)k/N} = cosUnk/N) {cos[2n (2r)k/N] + sin[2n(2r)k/N]

}

+ sin(2nk/N) {cos [2n(2k)r/N] - sin[2n(2k)r/N] }

.

= cos(27Tk/N)cas{2jr(2r)k/N}

+ sin(2nk/N)cas{27r(2k)(-r)/N}

= cos(2nk/N)cas{2nrk/(N/2)}

+ sin(2nk/N)cas{2nk(-r)/(N/2)}

Substituting the above expression for cas{2n(2r + l)k/N} in (4.2), we

get

(N/2-1)

H(k) =
]> x(2r)cas{2nrk/(N/2)}

r=0

(N/2)-l

+ cos(2nk/N) J *<2r + l)cas{2nrk/ (N/2) }

.

r=0

(N/2)-l

+ sin(2nk/N)
J

x(2r + Dca${2nk(-r) / (N/2) } .

r=0

Recognizing that each of the above summations is an (N/2)-point DlfT, we

can rewrite the above equation as
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H(k) = H
2r

(k) + cos(27ik/N)H
2r+1

(k) + sin(2nk/N)H
2r+1

(-k)

= H. (k) + cos(27ik/N)H/
. (k) + sin(2nk/N)H„ ^{(N/2) - k}

,

£.1 zr+l 2r+l

k - 0, 1, .... (N - 1). (4.3)

where

H (k) is the DHT of the (N/2)-point even-indexed samples and
£ T

H„ _(k) is the DHT of the (N/2)-point odd-indexed samples. Since all
Zr+l

of the above are (N/2)-point DHTs, they are all periodic on N/2.

Therefore, the steps involved in the computation of an N-point DHT

are

:

1. Split the data sequence into two (N/2)-point sequences, one

consisting only of the even-indexed samples and the other consisting

only of the odd-indexed samples.

2. Compute the DHTs of the two sequences separately. Call the DHT of

the even-indexed samples H (k) and the DHT of the odd-indexed

samples E. .. (k)

.

3. Compute the sum in (4.3) to obtain the DHT of the N-point

sequence

.

However we can repeatedly apply Step 1 in performing Step 2, dividing

each (N/2)-point sequence into two (N/4)-point sequences, and each

(N/4)-point sequence into two (N/8)-point sequences and so on, until we

reach the stage where we need to compute only 2-point DHTs, which re-

quire no multiplications. In the next section, the working of the

algorithm is explained with application to a 16-point DHT.
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4.3 Example Description of the Algoritlun

Let us consider a 16-point data sequence {x(0), x(l), x(2), ....

x(15)}. Now, as Step 1 suggests in Sec. 4.2, let us rearrange the data

points such that the first half of the array consists of the

even-indexed samples and the second half consists of the odd-indexed

samples. Before computing the DHTs of the two 8-point sequences above,

let us continue splitting them, as in Step 1, until we reach the 2-point

sequences. Table 4.1 on the next page explains the procedure.

The last column in Table 4.1 is the result of repeatedly applying

Step 1 to the data sequence. If we observe closely, the index of any

sample in the last column is obtained by taking the binary repre-

sentation of the data sample index in the first column of the same row,

and then reversing the bit string. For example, let us consider x(12)

in the first column. The number 12 is represented as 1100 in binary

form. If we reverse the digits, we obtain 0011, whose decimal equiv-

alent is 3, and, as such, x(3) is the sample point found in the last

column for the row containing x(12). Similarly, the number 14 is repre-

sented as 1110 in binary form, and, reversing it we obtain 0111, which

is the binary equivalent of the number 7. That explains why we find

x(14) in the first column, and x(7) in the last column of the same row

in the above table.

Therefore, in the first step we scramble the data array such that

it contains the samples in the bit reversed order. The scrambled data

is shown as the input to the algorithm in Fig. (4.1).

From Eqn. (4.1), we see that the DHT of a two-point sequence
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(x(0), x(l)} is obtained by once adding them, and next subtracting one

from the other i.e.,

H(0) = x(0) + x(l).

and

H(l) = x(0) - x(l).

TABLE 4.1 SCRAMBLING THE DATA FOR THE RADIX-2 DIT ALGORITHM

Original 1st 2nd 3rd

array scramble scramble scramble

x(0) x(0) x(0) x(0)

x(l) x(2) x(4) x(8)

x(2) x(4) x(8) x(4)

x(3) x(6) x(12) x(12)

x(4) x(8) x(2) x(2)

x(5) x(10) x(6) x<10)

x(6) x(12) x(10) x(6)

x(7) x(14) x(14) x(14)

x(8) x(l) x(l) x(l)

x(9) x(3) x(5) x<9)

x(10) x(5) x(9) x(5)

xUl) x(7) x(13) x<13)

x(12) x(9) x(3) x(3)

x(13) x(ll) x(7) x(H)

x(14) x(13) x(ll) x(7)

x(15) x(15) x(15) x(15)
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Computation of the 2-point DHTs is shown in Fig. (4.1). The broken

lines in the figure indicate subtraction and the solid lines indicate

addition. From these two-point DIITs, we compute the four-point DHTs in

the second stage. Computation of a four-point DIIT also does not need

any multiplications.

In the third stage, we compute the 8-point DIITs from the 4-point

DHTs using (4.3), bearing in mind that the top 4-point sequence always

acts as H (k) and the bottom one as H (k). The internal structure

of the boxes marked T in Fig. (4.1) is shown separately in Fig. (4.2).

The input to the bozes labeled T is always the bottom sequence

H (k). The boxes implement the summation cos(2nk/N)H (k) +

sin(2nk/N)H„ f(N/2)-k) with N = 8, k = 0. 1, .... 3.
Zr+1

Finally the 16-point sequence is obtained from the two 8-point

sequences, with the top 8-point sequence acting as H (k) and the bottom

8-point sequence acting as H„ , (k) in Eqn. (4.3). The box T. imple-
2r+l 4

ments the summation

cos(2jik/N)H
<
. - (k) + sin(2nk/N)H. ,{(N/2)-k}, N = 16, k = 0, .... 7
2r+l 2r+l

4.4 Conmvtational Cost

Let us consider Eqn. (4.3).

H(k) = n. (k) + cos(2nk/N)n. _ (k) + sin(2nk/N)B. ^,{(N/2) - k}
lt zr+i zr+l

From the above equation we can form the following three equations.
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HUN/2) - k} = H. {(N/2) - k} - cos(2jtk/N)H, ,{(N/2) - k}It 2 r + 1

+ sin(2nk/N)H
2r+1

(k) (4.4)

H(k + N/2) = H„ (k)
2r

- [cos(2nk/N)H_ (k) + sin(2nk/N)H. ^{(N/2) - k}], (4.5)
Zr+1 2r+l

H(N - k) = H„ {(N/2) - k}
2r

+ [cos(2nk/N)H. ^{(N/2) - k} - sin(2nk/N)H„ , <k) . (4.6)
2r+l 2r+l

In arriving at the above equations, we used the fact that H (k) and

H .. (k) are periodic on N/2.

By referring to (4.3), (4.4), (4.5), (4.6) we see that the basic

products involved in those equations are only those that are shown in

Table 4.2

TAELE 4.2 PRODUCTS REQUIRED TO COMPUTE AN N-POINT DHT

USING THE RADIX-2 DIT ALGORITHM

PI = cos(2nk/N)[H- ^(k)] P2 = cos (2nk/N) [H. ^{(N/2) - k} ]
zr+i zr+i

P3 = sin(2nk/N)[H. ^ (k)] P4 = sin(2nk/N) [H, ^{(N/2) - k}

]

2r+l 2r+l

By forming the above products, we observe that for each k we can compute

a total of four points n(k), H{(N/2) - k} . H{(N/2) + k} and H(N - k)

.

Thus, once we form the products necessary to compute H(0), H(l), ....

H{(N/4)}, we can compute the remaining (3N/4) - 1 coefficients in the

DHT sequence without any further multiplications. Table 4.3 explains

the fact clearly for a 16-point sequence.
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TABLE 4.3 WORKING OF THE RAIUX-2 DIT AGORITHM FOP. A 16-POINT DHT

N - k

15

14

13

k .(N/2) - k (N/2) + k

8

1 7 9

2 6 10

3 5 11

4 12

Thus, for a 16-point data we can compute the entire DHT sequence by

forming the following products

PI, P2, P3, P4, k = 0, 1, .... 4

in Table 4.2, and then using them in Eqns. (4.4) - (4.6), instead of

directly computing the coefficients using Eqn. (4.3).

From Table 4.2 it is clear that whenever k = or k = N/4, the

trigonometric terms in products PI through P4 become either zero or one

and as such, we do not need any multiplications for those two special

cases. Avoiding these two special cases, we need to compute the four

products

PI, P2, P3. P4. k = 0, 1, ..., (N/4) - 1.

So for an N-point sequence we need 4[(N/4) - 1] = N - 4 products.

Since we repeatedly apply Eqn. (4.3) in the algorithm by computing

(N/2)-point DHTs from two (N/4)-point DHTs, and (N/4)-point DHTs from

two (N/8)-point DITTs etc., we can reap the above mentioned advantages in

multiplications at every stage. Therefore the total number of multi-

plications is given by
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M = (N - 4) + 2[(N/2) - 4] + 2
2
[(N/2

2
) - 4] + ... + 2

? 3
[N/(2

? 3
) - 4]

where

P = log
2
N.

Simplifying the above expression, we get

M = (P - 2)N - 4(1 + 2 + 2
2

+ 2
3
+ ... + 2

P~ 3
)

= (P - 2)N - 4(2
P"2

- 1)

= (P - 2)N - N + 4

= PN - 3N + 4.

Hence total number of multiplications is given by

M = N log N - 3N + 4.

Additions

Having formed the products

PI. P2, P3, P4, k = 0. 1, .... (N/4) - 1,

let us form the following two summations

51 = PI + P4 and

52 = P3 - P2

Then (4.3), (4.4), (4.5), (4.6) can be rewritten as

H(k) = H <k> + S1,

H{(N/2) + k} = H
2j

.(k) - SI,

H{(N/2) - k} = H„ {(N/2) - k} - S2,
2r

H(N - k) = H„ {(N/2) - k} + S2.
Zr

-57-



Therefore, in addition to the two summations SI and S2 , we need the

above four summations, with k taking values from 1 through (N/4) - 1),

to compute the entire N-point DKT sequence. Thus a total of

6[(N/4) - 1] = (3N/2) - 6 additions are needed. But for the two special

cases of k = and k = N/4, we need only two additions each instead of

the usual six as explained below.

Substituting k = and k = (N/4) in (4.3), (4.4), (4.5) and (4.6), we

get

11(0) = B. (0) + H ^(0)lt zr+l

and

H(N/2) = B„ (0) - B. ^(0).
2r 2r+l

H(N/4) = B. (N/4) + B. ^(N/4),

and

B(3N/4) = B. (N/4) - B. _ (N/4)

.

zr zr+i

Therefore, total number of additions A is given by

A = (3N/2) - 6 + 4 = (3N/2) - 2.

Since we continue splitting the data sequence into half-length sequences

until we reach 2-point sequences, we can obtain the above savings in

additions at every stage. Therefore, total number of additions A

is given by

A = [(3N/2) - 2] + 2[(3/2)(N/2) - 2] + ... + 2
?~2

[ (3/2) (N/2
P" 2

) - 2]

where

P = log
2
N.

A = (3N/2HP - 1) - 2[1 + 2 + 2
2
+ ... + 2

P~2
]

= (3N/2MP - 1) - 2[2
P~ 1

- 1]



= (3N/2XP - 1) - N + 2.

The above is the number of additions needed until we reach 4-point

sequences. In addition, we have (N/2) two-point sequences, which need N

more additions

A = (3N/2)P - (3N/2) - N + 2 + N

= (3N/2)log
2
N - (3N/2) + 2.
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5. RADIX-2 DECIMATION-IN-FREQDENCY FAST HARTLEY TRANSFORM ALGORITHM

5.1 Introduction

Decimation-in-time (DIT) and decimat ion- in-f requency (DIF) algo-

rithms differ in one significant aspect. DIT algorithms compute the

DHTs from short length DIITs and DIF algorithms compute the DIITs a_s short

length DHTs. That is, when we compute the DHT of a 16-point sequence

using DIT algorithm, we first compute the 2-point, 4-point, 8-point DHTs

and finally by combining the two 8-point DIITs, we obtain the 16-point

DHT, In a DIF algorithm, the task of computing a 16-point DHT is

progrssively reduced to that of computing only 2-point DHTs, without

ever actually computing the intermediate 8-point and 4-point DHTs.

Computationally, a DIF algorithm does not have any advantage over the

corresponding DIT algorithm. A radix-2 DIF algorithm can be used only

with data sequences whose length is an integral power of two.

Meckelburg and Lipka [10] first introduced the radix-2 DIF FHT algo-

rithm, Sorensen e_t a_l. [9] derived the same algorithm by an index

mapping approach.

5.2 The Decomposition Formula

The DHT H(k) of an N-point real data sequence {x(n)} is given by

N-l

H(k) = (1/N) J x(n)cas(2nnk/N), k = 0. 1, ..., N-l. (5.1)

n=0

We can divide {x(n)} into two half-length sequences and rearrange

the above equation as
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(N/2)-l

H(k) = (1/N) ^ x(n)cas(2nnk/N)

n=0

(N/2)-l

+ (1/N) ^ x(n)cas(2nnk/N). k = 0, 1. ..., N - 1.

n=N/2

or

(N/2)-l

H(k) = (1/N) ^ x(n)cas(2nnk/N)

n=0

(N/2)-l

+ (1/N) ^ x(n + N/2)cas{2nk(n + N/2)/N), k = 0, 1, ..., N - 1.

n=0

(N/2)-l

H(k) = (1/N) } x(n)cas(2nnk/N)

n=0

(N/2)-l

+ (1/N) ^ x(n + N/2)cas[kn + 2nnk/N) , k = 0, 1, ..., N - 1.(5.2)

n=0

Now, let us compute the even- and odd- indexed DHT samples separately.

Substituting k = 2r in (5.2), we obtain the even-indexed samples

(N/2)-l

H(2r) = (1/N) ^ x(n)cas{2nn(2r)/N}

n=0

(N/2)-l

+ (1/N) ^ x(n + N/2)cas[2rjr + 2nn(2r)/N], r = 0. 1, ..., (N/2) - 1.

n=0

Recognizing that

cas[2rn + 2nn(2r)/N] = cas(2nn(2r)/N)

we can rewrite the above equation as
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(N/2)-l

H(2r) - (1/N) J [x(n) + x(n + N/2)]cas{2nn(2r)/N)}

n=0

(N/2)-l

= (1/N) ^ [x(n) + x(n + N/2) ]cas [2nnr/ (N/2) ]

,

n=0

r = 0, 1. .... (N/2) - 1. (5.3)

Since the above is the expression for an (N/2)-point DHT, we conclude

that the even indexed samples of the DHT can be computed as an

(N/2)-point DHT.

Substituting k = 2r + 1 in (5.2), we obtain the odd-indexed samples

of the DHT sequence.

(N/2)-l

H(2r + 1) = (1/N) ^ x(n)cas[2nn(2r + 1)/N]

n=0

(N/2)-l

+ (1/N) ^ x(n + N/2)cas[(2r + l)n + 2nn(2r + 1)/N]. (5.4)

n=0

Using the fact that

cas[(2r + l)n + 2nn(2r + 1)/N] = cas[n + 2nn(2r + 1)/N]

= - cas[2nn(2r + 1)/N]

we can rewrite (5.4) as

(N/2)-l

H(2r + 1) = (1/N) ^ x(n)cas[2nn(2r + D/N]

n=0

(N/2)-l

- (1/N) ^ x(n + N/2)cas[2nn(2r + D/N],

n=0

r = 0, 1. .... (N/2) - 1. (5.5)

-62-



(N/2)-l

= (1/N) 2 tx(n) " x(n + N/2)]cas[2nn(2r + 1)/N]. (5.6)

n=0

However

cas[2rrn(2r + 1)/N] = cos (2nn/N)cas(2nn(2r)/N)

+ sin(2nn/N)cas[2n(2r)(-n)/N]

Substituting the above result in (5.6), we get

(N/2)-l

H(2r + 1) = (1/N) ^ [x(n) " x(n + N/2)]cos(27tn/N)cas(2Ttnr/(N/2)

n=0

(N/2)-l

+ (1/N) ) [x(n) - x(n+N/2)]sin(2nn/N)cas[2nr(-n)/(N/2)] (5.7)

n=0

Reversing the direction of the second summation in (5.7), we get

(N/2)- 1

H(2r+1) = (1/N) 5 C[x(n) ~ *< n + N/2)]cos(2nn/N)

n=0

+ [x{(N/2) - n} - x(N - n)]sin(2Trn/N)}cas{2nnr/(N/2)} (5.8)

The above is an (N/2)-point DHT to compute the odd-indexed samples of

the DHT.

Hence from (5.3) and (5.8) we see that an N-point DHT can be computed as

two (N/2)-point DHTs. The following are the steps involved in the

computation of the DHT of an N-point sequence (x(n)}.

1. First, form the N/2-point sequences {g(n)} and (h(n)}, where g(n)

and h(n) are given by

g(n) = [x(n) + x(n + N/2)], n = 0, 1, .... (N/2) - 1,

h(n) = [x(n) - x(n + N/2)], n = 0, 1. .... (N/2) - 1.

2. Then compute the (N/2)-point sequence
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f(n) = h(n)cos(2nn/N) + h{(N/2) - n} sin(2nn/N)

,

n = 0, 1 (N/2) - 1.

3. Compute the (N/2)-point DHTs of the sequences g(n) and f(n).

The DHT of g(n) gives the even- indexed samples, and the DHT of f(n)

gives the odd-indexed samples of Il(k).

However, in performing Step 3 we can apply Steps 1 and 2 to the computa-

tion of those (N/2)-point DHTs repeatedly, until we need to compute only

2-point DHTs. It is this repeated application of Steps 1 and 2 that

makes the computation of the DHT faster. The working of the algorithm

for an 8-point data sequence is explained in the next section.

5.3 Example Description of the Algorithm

Fig. (5.1) shows the flow diagram for an 8-point FHT. Observe that

in Fig. (5.1), the data on the input side of the flow diagram is in

the normal order. We do not need to scramble the data in the beginning

as we did with the DIT radix-2 algorithm. In the diagram, whenevr two

solid lines meet at a point, it corresponds to an addition and when a

solid line and a broken line meet, it defines subtraction.

As suggested in Step 1 in the previous section, we first form the

4-point sequences {g(n)} and {h(n)} as follows:

g(n) = x(n) + x(n + 4), n = 0, 1, ..., 3

h(n) = x(n) - x(n +4), n = 0, 1, .... 3

The box marked T achieves the computation of f(n). The internal struc-

ture of T. is shown separately. The box T takes the sequence h(n) as

its input and computes f(n) as

-64-



f(n) = h(n)cos(2nn/N) + h(4 - n)sin(2nn/N) , N = 8, n = 0, ...» 3.

According to Step 3 in the previous section, we now compute the

DHTs of g(n) and f(n). But we can apply Steps 1 and 2 to those two

sequences one more time, leading us to the computation of only 2-point

DHTs. We observe that the DIIT coefficients are in the bit reversed

order. We have to perform a bit reversal operation, as described in the

previous chapter, to get the coefficients back in the normal order. In

this example, we have only three stages involved, reduction of an

8-point computation to two 4-point DHTs, and 4-point DHTs to 2-point

DHTs and finally the computation of 2-point DHTs. In general, for a

p
data sequence of length N = 2 , we will have P iterations in the DHT

computation process. Like the DIT radix-2 algorithm in the last chap-

ter, this DIF algorithm also is an in-place algorithm. Therefore, once

we compute g(n) and f(n) from the original 8-point data in the first

iteration, we can replace the data elements with g(n) and f(n) in the

data array. We keep doing this in all the iterations until we compute

the required 2-point DHTs in the final iteration at which point the

original data elements in the array will have been replaced by the DHT

coefficients.

5.4 Computational Cost

We stated earlier that from the N data elements in (x(n)}, we form

the (N/2)-point sequences {g(n)} and {h(n)}, and from h(n) the sequence

f(n). The sequence f(n) is given by

f(n) = h(n)cos(2rrn/N) + h{(N/2) - n}sin(2nn/N) , n = 0, .... (N/2) - 1.
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Thus, to obtain a point f(n) we need two multiplications

1. h(n)cos(2nn/N)

2. h{(N/2)-n}sin(2nn/N).

Since {f(n)} contains a total of (N/2) points, we thus need a total of

2(N/2) = N multiplications. However, whenever n = or n = N/4, the

trigonometric functions in the above two multiplications reduce to

either zero or one, and, as such, we can avoid those multiplications.

Therefore, those two special coefficients save us a total of four

multiplications. Hence, the number of multiplications required to

obtain the (N/2)-point sequence {f(n)} from the N-point data is (N-4).

These savings in multiplications can be obtained in all the iterations.

Adding all such multiplications until we reach 4-point DFITs (wherefrom

we do not need any multiplications), the total count M is given by

M = (N-4) + 2[(N/2) - 4] + 2
2
[(N/2

2
) - 4] + ... + 2

P"3
[ (N/2

P~ 3
) - 4]

where P = log.N.

Simplifying further, we get

M = (P - 2)N - 4[1 + 2 + 2
2

+ ... + 2
P~3

]

- (P - 2)N - 4[2
P"2

-1]

= (P - 2)N + 4 - N (since 2
P

= N)

= PN - 3N + 4

M = Nlog N - 3N + 4.

Let us consider the number of additions. From the original data se-

quence {x(n)}, we first form g(n) and h(n) as shown below.

g(n) = tx(n) + x(N + N/2)], n = 0, 1. .... (N/2) - 1

-67-



h(n) = [x(n) - x(n + N/2)], n = 0. 1. .... (N/2) - 1.

We need (N/2) additions to form {g(n)J and (N/2) additions to form

(h(n)}, totaling N additions. Besides, in the computation of f(n), we

come across additions of the following type:

f(n) = h(n)cos(2nn/N) + h[(N/2) - n] sin(2rm/N) , n = 0, .... (N/2) - 1.

We thus need (N/2) more additions to compute {f(n)}. However, when

n = or n = (N/4), the trigonometric functions in the above addition

become either zero or one and, as such, we do not need any additions in

evaluating f(0) and f(N/4), thus saving us two additions in computing

(f(n)}. Therefore, to compute {f(n)l we need [(N/2) - 2] additions.

Hence, the total number of additions in computing (g(n)}, (h(n)}, (f(n)}

are given by

Al = (N/2) + (N/2) + (N/2) - 2

= (3N/2) - 2

Summing such additions over all the iterations until we reach 2-point

DHTs, the total number of additions A is given by

A = [(3N/2) - 2] + 2[(3/2)(N/2) - 2]

+ 2
2
[(3/2)(N/2

2
) - 2] + ... + 2

P"2
[(3/2)(N/2

P"2
) - 2].

= (3N/2MP - 1) - 2[1 + 2 + 2
2

+ ... + 2
P"2

]

= (3N/2MP - 1) - 2[2
P~ 1

- 1]

= (3N/2MP - 1) - N + 2. (since 2
P
= N)

In addition, we will have (N/2) two-point DHTs to compute, thus requir-

ing 2(N/2) = N more additions.

Thus, number of additions is given by

A = (3N/2MP -D-N + 2 + N
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- (3N/2)P - 3N/2 + 2

= (3N/2)log
2
N - 3N/2 + 2.

The above count for additions and multiplications is the same as that

for the DIT radix-2 algorithm discussed in the previous chapter.
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6. RADIX-4 DECIMATION-IN-TIME FAST HARTLEY TRANSFORM ALGORITHM

6.1 Introduction

In the previous two chapters, we discussed the radix-2 algorithms

which can be used to compute the DHT of a sequence whose length is an

integer power of two. In addition to being even, if the length of a

sequence is an integer power of four, we can use a radix-4 algorithm to

compute its DHT more efficiently. In a DIT radix-4 algorithm, we split

the data sequence into four equal-length smaller data sequences, compute

the DIITs of those sequences, and finally combine them to obtain the DHT

of the original data. Sorensen e_t a_l. [9] derived a radix-4 algorithm

by an index mapping approach. Prado [11] also presented a radix-4

algorithm, which takes more number of operations than that of Sorensen

et a 1 . In this chapter, we derive the radix-4 algorithm from the

definition of the DHT, without relying on the index mapping approach,

describe its working with an example, and finally obtain its computa-

tional cost.

6.2 The Decomposition Formula

The DHT of an N-point real data sequence (x(n)} is given by

N-l

H(k) = (1/N) 5 x(n)cas(2nnk/N), k = 0. 1, .... N-l. (6.1)

n=0

Since the length of (x(n)} is an integer power of four (which is a

precondition for using this algorithm), we can split the summation in
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the above equation into four equal-length smaller summations as shown

below. Since the factor (1/N) is only a constant outside the summation,

we need not carry it in the derivation process until we reach the final

step.

(N/4)-l (N/4)-l

H(k) = 2 x(4n)cas[2n(4n)k/N] +
J

x(4n + Dcas[2n(4n + l)k/N]

n=0 n=0

(N/4)-l

+ 5 x(4n + 2)cas[2n(4n + 2)k/N]

n=0

(N/4)-l

+ ^ x(4n + 3)cas[2n(4n + 3)k/N]. (6.2)

n=0

Observing that

cas[2n(4n + l)k/N] = cos[2n(4n + l)k/N] + sin[2n(4n + l)k/N],

and then using the familiar trigonometric identities, we get

cas[2n(4n + l)k/N] = cos(2nlk/N)cas[2nnk/ (N/4)

]

+ sin(2nlk/N)cas[27rn(-k)/(N/4)]. (6.3)

Using the result of (6.3) in (6.2) with 1 = 1, 2, 3, we get

(N/4)-l

H(k) = ^ x(4n)cas[2nnk/(N/4)]

n=0

(N/4)-l

+ cos(2nk/N) ^ x(4n + l)cas[2nnk/(N/4)]

n=0

(N/4)-l

+ sin(2nk/N) ^ x(4n + l)cas[2nn(-k)/(N/4)

]

n=0
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(N/4)-l

+ cos[2n(2k)/N] J x(4n + 2)cas[2nnk/ (N/4)

]

n=0

(N/4)-l

+ sin[2n(2k)/N] ^ x(4n + 2)cas [2nn(-k)/ (N/4)

]

n=0

(N/4)-l

+ cos[2n(3k)/N] ^ x(4n + 3)cas[2nnk/(N/4)

]

n=0

(N/4)-l

+ sin[2n(3k)/N] ^ x(4n + 3)cas[2nn(-k)/ (N/4) ]

,

n=0

k = 0, 1, .... (N/4) - 1. (6.4)

Bringing back the (1/N) factor and recognizing that

(N/4)-l

(1/N) ^ x(4n + l)cas[2nn(-k)/(N/4)], k = 0, 1. ..., (N/4) - 1

n=0

is an (N/4)-point DHT, and indicating it as H. ,, we can rewrite (6.4)
4n+l

as

H(k) = [H. (k) + cos(2nk/N)H. . (k) + sin(2nk/N)ir . (-k)
4n 4n+l 4n+l

+ cos[2n(2k)/N)H. .(k) + sin[2n(2k)/N)H. _ (-k)
4n+2 4n+2

+ cos[27t(3k)/N)IT ,(k) + sin[2n(3k)/N)H\ ,(-k)] (6.5)
4n+3 4n+3

Eqn. (6.5) is the decomposition formula for the DIT radix-4 algorithm.

Thus, H(k) is computed from four (N/4)-point DHTs - H, (k). H, , (k),
4n 4n+l

H. ,„(k) and H. ,_(k). The following are the steps involved in the
4n+2 4n+3

algorithm.
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1. Split the data sequence {x(n)} into four (N/4)-point sequences

{x(4n)}, {x(4n + 1)}, {x(4n + 2)}, {x(4n + 3)}.

n = 0, 1, ..., (N/4) - 1.

2. Compute independently the (N/4)-point DHTs

*a (k) ' B
a xi (k) » Ea o.o

(k) and E
a ..<»<*>' k = 0, 1. ..., (N/4) - 1

4n 4n+l 4n+2 4n+3

respectively, of the sequences formed in Step 1.

3. Using (6.5) combine the above (N/4)-point DHTs to obtain the N-point

DHT.

6.3 Example Description of the Working of the Algorithm

Let us consider a 64-point sequence (x(n)}. As Step 1 suggests in

Sec. 6.2, let us divide it into four 16-point sequences as shown below.

(x(4n)} = {x(0), x(4), x(8), ..., x(60)}

{x(4n + 1)} = {x(D. x(5). x(9). .... x(61)}

{x(4n + 2)} = {x(2), x(6), x(10) x(62)}

{x(4n + 3)} = {x(3), x(7). x(ll), .... x(63)}.

Now, according to Step 2, we have to compute the DHTs of the above

16-point sequences. But in doing so, we can again apply Step 1, thus

splitting each 16-point sequence into four 4-point sequences. The

division of {x(4n)} results in the following:

(x(16n)} = {x(0). x(16), x(32), x(48)}

{x(16n + 4)} = U(4), x(20), x(36), x(52)}

{x(16n + 8)} = {x(8), x(24), x(40), x(56)}

{x(16n + 12)} = {x(12). x(28), x(44). x(60)}



Similarly when we split the second 16-point sequence {x(4n + 1)}, we

obtain the following four-point sequences.

{x(16n + 1)} = {x(l). x(17), x(33), x(49)}

{x(16n + 5)} = {x(5), x(21). x(37). x(53)}

{x(16n + 9)} = {x(9), x(25), x(41). x(57)}

{x(16n + 13)} = {x(13),x(29). x(45), x(61)}.

When v/e split the third 16-point sequence {x(4n + 2)} into 4-point

sequences, we obtain

{x(16n + 2)} = {x(2), x(18), x(34), x(50)}

{x(16n + 6)} = {x(6), x(22), x(38), x(54)}

{x(16n + 10)} = {x(10), x(26), x(42), x(58)}

{x(16n + 14)} = (x(14), x(30), x(46), x(62)}

And finally the division of the last 16-point sequence {x(4n+3)} results

in the following four sequences.

{x(16n + 3)} = {x(3), x(19)» x(35), x(51)}

{x(16n + 7)} = {x(7). x(23), x(39). x(55)}

{x(16n + 11)} = {x(ll), x(27). x(43). x(59)}

{x(16n + 15)} = {x(15), x(31), x(47), x(63)}.

Therefore, the first thing that needs to be done is to scramble the data

array such that it contains the data elements in the above order of

rows. Some kind of scrambling of the input data is the characteristic

of any DIT algorithm.

Once we scrambled the data array, the first stage in the computa-

tion process is to compute the DHTs of all the above 4-point sequences,

and this does not require any multiplications.
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Now that we have all the necessary sixteen 4-point DITTs, we coinbine

2
them using (6.5) with N = 4 and k = 0, 1, ..., 15 to obtain the four

16-point DHTs in the second stage.

Once we have the four 16-point DHTs, we compute the 64-point DHT

3
from them using (6.5), with N = 4 and k = 0, 1, .... 63 in the third

and final stage.

Observe that in the second and third stages above, the value of N

in (6.5) is always an integer power of four, and the value of the ex-

ponent is same as the iteration number. In total, we have three

iterations - computation of 4-point, 16_point and 64-point DHTs - in the

P
evaluation of a 64-point DHT. For a data sequence of length 4 , we will

have P stages in the evaluation of the DHT as shown in Fig. (6.1), where

P = 4.

6.4 Computational Cost

From (6.5) we generate the following seven equations.

H(k + N/4) = H. (k) - sin(2jtk/N)n, _ (k) + cos(2nk/N)H . ., (-k)
4n 4n+l 4n+l

- cos[2n(2k)/N]H
j(

„(k) - sin[2n(2k)/N]H . ^.(-k)
4n+2 4n+2

+ sin[2n(3k)/N]H, _(k) - cos[2jt(3k)/N]H . _(-k)(6.6)
4n+3 4n+3

H(k + N/2) = H, (k) - cos(2jTk/N)H. . (k) - sin(2nk/N)H (-k)
4n 4n+l 4n+l

+ cos[2n(2k)/N]H
j,

„(k) + sin[2n(2k)/N]II. i0 (-k)
4n+2 4n+2

- cos[2n(3k)/N]H
v(

,(k) - sin[2n(3k)/N]H _(-k)(6.7)
4n+3 4n+3
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H(k + 3N/4) = H. (k) + sin(2nk/N)H. (k) - cos(2jrk/N)H, , (-k)4n 4n+l 4n+l

- cos[2n(2k)/N]H. (k) - sin[2n(2k)/N]n f-k)
4n+2 4n+2

- sin[2n(3k/N]H. _(k) + cos[2n(3k)/N]n „(-k) (6.8)4n+3 4n+3

H[(N/4) - kj = H . (-k) + cos(2nk/N)H. _ (k) + sin(2jrk/N)H„ , (-k)4n 4n+l 4n+l

+ sin[2n(2k)/N]H. (k) - cos [2n(2k)/N]n, ^(-k)
4n+2 4n+2

- cos[27T(3k)/N]H. <k) - sin[2n(3k)/N]ir <-k) (6.9)
4n+3 4n+3

H[(N/2) - k] = H (-k) + sin(2nk/N)H. ., (k) - cos (2nk/N)H, A, (-k)
4n 4n+l 4n+l

- sin[2n(2k)/N]H. _<k) + cos [2n(2k)/N]H, ^,(-k)
4n+2 4n+2

+ sin[2n(3k)/N]n. _(k) - cos [2*(3k)/N]H f-k) (6.10)
4n+3 4n+3

H[(3N/4) - k] = H, (-k) - cos(2nk/N)H
yl

(k) - sin(2nk/N)R\ f-k)
4n 4n+l 4n+l

+ sin[2n(2k)/N]n. .(k) - cos[27t(2k)/N]II . ^.(-k)
4n+2 4n+2

+ cos[27T(3k)/N]H, ^,(k) + sin[2jr(3k)/N]H, ,(-k) (6.11)
4n+3 4n+3

H(N - k) = H . (-k) + cos(2nk/N)H. _ (-k) - sin<2nk/N)H. . (k)
4n 4n+l 4n+l

- sin[2n(2k)/N]H. _(k> + cos [2«(2k)/N]H . ^-(-k)
4n+2 4n+2

- sin[2n(3k)/N]H. _<k) + cos[2n(3k)/N]H. _(-k),
4n+3 4n+3

k = 0, 1 (N/8) - 1. (6.12)

In deriving the above equations, we repeatedly used the fact that

3, <*), H, ^-.(k), E a ^,<k) and H, ^,(k) are all periodic on (N/4). In
4n 4n+l 4n+2 4n+3

the above Eqns. (6.5) - (6.12)

H, (-k) = H. [(N/4) - k],
4n 4n
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In Eqns. (6.5) - (6.12) the only products involved are those shown in

Table 6.1

TABLE 6.1 PRODUCTS REQUIRED TO COMPUTE AN N-POINT DUT

USING THE RADIX-4 DIT ALGORITHM

1. cos(27tk/N)H. . (k)
4n+l

3. cos[2n(2k)/N]H. _(k)
4n+Z

5. cos[2n(3k)/N]H, .(k)
4n+3

7. sin(2nk/N)H, . (k)
4n+l

9. sin[2n(2k)/N]H
/(

_(k>
4n+2

11. sin[2n(3k)/N]U. _(k)
4n+3

2. sin(2nk/N)H. _ (-k)
4n+l

4. sin[2n(2k)/N]n. ^(-k)
4n+2

6. sin[2n(3k)/N]IT ,(-k)
4n+3

8. cos(2nk/N)H. _ <-k)
4n+l

10. cos[2n(2k)/N]H ^(-k)
4n+2

12. cos[2n(3k)/N]H ,(-k)
4n+3

k = 0, 1, .... (N/8) - 1.

From (6.5) - (6.12), we see that once we form the above products, we can

compute the entire DIIT sequence. The advantage is that instead of using

(6.5) N times to evaluate the N DHT coefficients, we could as well use

it only (N/8) times to compute the first (N/8) coefficients, and still

obtain the entire N-point sequence with the help of Eqns. (6.6) -

(6.12). Table 6.2 explains the above fact for a 64-point sequence.

From Table 6.2 we observe that whenever we compute

H(k), k = 0, 1, ..., 8 (values in the left most column)



using (6.5), with the help of the twelve products in Table 6.1, we can

simultaneously obtain all the other coefficients in that row. For

example, when we compute R(3) we also obtain H(13), H(19), H(29), H(35),

11(45), H(51) and H(61) at the same time without ever actually evaluating

them from (6.5), the basic DIT equation. This extraordinary symmetry is

not exploited if we employ any radix-2 algorithm for a data sequence

whose length is an integer power of four.

TABLE 6.2 WORKING OF THE RADIX-4 DIT ALGORITHM FOR A 64-POINT DHT

k (N/4)-k k+N/4 (N/2)-k k+N/2 (3N/4)-k k+3N/4 N-k

16 32 48

1 15 17 31 33 47 49 63

2 14 18 30 34 46 50 62

3 13 19 29 35 45 51 61

4 12 20 28 36 44 52 60

5 11 21 27 37 43 53 59

6 10 22 26 38 42 54 58

7 9 23 25 39 41 55 57

8 24 40 56

Therefore we need 12[(N/8) + 1] = (3N/2) + 2 multiplications to

compute the N-point DHT from four (N/4)-point DHTs . However, whenever k

= or k = (N/8) we have some savings in the number of multiplications.

When k = 0, there are no multiplications at all since all the

trigonometric functions in the twelve products in Table 6.1 are either

zero or one. When k = (N/8) we note that
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k = (N/4) - k k + (N/4) = (N/2) - k

k + (N/2) = (3N/4) - k k + (3N/4) = (N - k)

Therefore for this case, Eqns. (6.9) - (6.12) are sane as

Eqns. (6.5) - (6.8) and, as such, we obtain only four coefficients

instead of the usual eight. The following are the equations we obtain

when k = N/8.

H(N/8) = H, (N/8) + 2D\ _ (N/8) + H. .(N/8) (6.13)
4n 4n+l 4n+2

H(3N/8) = H. (N/8) - H. ^„(N/8) + 211. .(N/8) (6.14)
4n 4n+2 4n+3

H(5N/8) = H. (N/8) - 2H, . (N/8) + IT ^,(N/8) (6.15)
4n 4n+l 4n+2

H(7N/8) = H, (N/8) - H. ^.(N/8) - 2n. ^.(N/8). (6.16)
4n 4n+2 4n+3

In arriving at the above equations, we used the fact

cos(n/4) + sin(n/4) = 2

We see that the only products involved in the above equations are

2 ^Ea ^-.(N/8)] and 2[H. .(N/8)]
4n+l 4n+3

So, when k = N/8, we need to compute only two products instead of the

usual twelve. Hence for the special cases of k = and k = N/8 com-

bined, we have a total of only two products instead of the normal twenty

four. Hence the number of multiplications M is given by

M = 3N/2 + 12 - 22 = (3N/2) - 10.

Combining such multiplications over all the iterations, we get

M = [(3N/2) - 10] + 4[(3/2)(N/4) - 10] + 4
2

[ (3/2) (N/4
2

) - 10]

+ ... + 4
P"2

[(3/2)(N/4
P"2

) - 10],

where P = log N.
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Simplifying the above expression further, we get

M = (3N/2HP - 1) - 10[1 + 4 + 4
2

+ ... + 4
P'2

]

- (3N/2)P - (3N/2) - 10[4
P_1

-l]/3

M = (3N/2)P - (7N/3) + 10/3.

Additions

Once we form the twelve products in Table 6.1, let us form the

summations given in Table 6.3.

TABLE 6,3 PRIMARY SUMMATIONS REQUIRED TO COMPUTE AN N-POINT DHT

USING THE RADIX-4 DIT ALGORITHM

SUM1 = PRODI + PROD2 SUM2 = PROD3 + PROD4

SUM3 = PROD5 + PROD6 SUM4 = PROD7 + PROD8

SUM5 = PROD9 + PRODI SUM6 = PRODI 1 + PROD12

where PRODI, PROD2, etc. are the products in Table 6.1. Thus we have a

total of six summations to compute. Now, again referring to

Eqns. (6.5) - (6.12), we note that they can be implemented as shown

below.

H(k) = [H\ (k) + SUM2] + [SUM1 + SUM3]
4n

H(k + N/4) = [H„ (k) - SUM2] + [SUM6 - SUM4]
4n

H(k + N/2) = [E, (k) + SUM2] - [SUM1 + SUM3]
4n

H(k + 3N/4) « [H„ (k) - SUM2] - [SUM6 - SUM4]
4n

H[(N/4) - k] = [H, (-k) + SUM5] + [SUM1 - SUM3]
4n



!I[(N/2) - k] = [II. (-k) - SUM5] + [SUM4 + SUN6]
4n

R[(3N/4) - k] = [H, (-k) + SUM5] - [SUM1 - SUM3]
4n

E(N - k) = [IT (-k) - SUM5] - [SUM4 + SUM6]
4n

If we do the above summations directly, we need three additions for each

coefficient, thus totaling 24 additions. If we observe the above

summations carefully, we notice that each parenthesized sum occurs

twice. So instead of repeating an addition already performed, we store

it in a temporory register once it is computed, as shown in Table 6.4

TABLE 6.4 INTERMEDIATE SUMMATIONS

Tl = H, (k) + SUM2 T3 = SUM + SUM3
4n

T2 = B. (k) - SUM2 T4 = SUM6 - SUM4
4n

Then, (6.5) - (6.8) can be implemented as given in Table 6.5.

TAELE 6.5 ADDITIONS TO GENERATE THE FIRST FOUR DKT COEFFICIENTS

H(k) = Tl + T3 H(k + N/2) = Tl - T3

H(k + N/4) = T2 + T4 H(k + 3N/4) = T2 - T4

Once H(k), H(k + N/4), H(k + N/2) and n(k + 3N/4) are formed the sums

stored in Tl through T4 are no longer useful. To save memory space, we

can use the same registers this time to form the summations given in

Table 6.6.

TABLE 6.6 ADDITIONAL INTERMEDIATE SUMMATIONS

Tl - E, (-k) + SUM5 T3 = SUM1 - SUM3
4n

T2 = H, (-k) - SUMS T4 = SUM4 + SUM6
4n

Then, Eqns. (6.9) - (6.12) are implemented as given in Table 6.7.
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TABLE 6.7 ADDITIONS TO COMPUTE THE LAST FOUR DHT COEFFICIENTS

U[(N/4) - k] = Tl + T3 H[(N/2) - k] = T2 + T4

H[(3N/4) - k] = Tl - T3 H(N - k) = T2 - T4

If we add all the summations in Tables 6.3 through 6.7, we have a total

of 22 additions. Normally, we will have to carry out such additions for

k = through k = N/8 resulting in a total of

[(N/8) + 1]22 = (11/4)N + 22 additions. However, for the special cases

of k = and k = (N/8) we have some savings in the number of additions.

For k=0, Eqns. (6.9) through (6.12) are only repetitions of Eqns. (6.5)

through (6.8) and, as such, we obtain only four distinct coefficients.

To compute them we form the four sums given below.

Tl = H. (0) + H. ^,(0) T3 = H. .(0) + H. .(0)
4n 4n+l 4n+2 4n+3

T2 = H. (0) - H. .(0) T4 = H. (0) - B. -(0)
4n 4n+l 4n+2 4n+3

Then the four coefficients are obtained as given below.

H(0) = Tl + T3 B(N/2) = T2 + T4

H(N/4) = Tl - T3 H(3N/4) = T2 - 4

Thus only eight additions are needed when k =

When k = (N/8), to obtain the four DHT coefficients given by

Eqns. (6.13) through (6.16), we first form the following four

summations.

Tl = H, (N/8) T2 = 2[B. ^,(N/8)]
4n 4n+l

T3 = H. (N/8) T4 = 2[H. ^.(N/8)]
4n+2 4n+3

Then those equations can be implemented as given below

H(N/8) = Tl + T2 + T3
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H(3N/8) = Tl - T3 + T4

H(5N/8) = Tl - T2 + T3

n(7N/8) = Tl - T3 - T4.

As described above, we thus need only 16 additions for the special cases

k = and k = (N/8) combined, instead of the usual 44. Hence the total

number of additions required to compute the N-point PHT from four

(N/4)-point DKTs is given by

A = (11N/4) + 22 - 44 + 16 = (11N/4) - 6

Summing all such additions over all the iterations until we reach

16-point DHTs, we get

A = [(11N/4) - 6] + 4[(ll/4)(N/4) - 6] + 4
2

[ (11/4) (N/4
2

) - 6]

+ ... + 4
P"2

[(11/4)(N/4
P"2

) - 6]

where P = log N.

-=
; . 4)NP - 1KN/4) - (N/2) + 2.

P-l
In addition, we also have 8[4 J = 2N additions to compute all the

necessary 4-point DHTs. Hence the total number of additions is

A = (11N/4)P - 5N/4 + 2.
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7. SPLIT-RADIX FAST HARTLEY TRANSFORM ALGORITHM

7.1 Introduction

In the previous chapters two different types of radix-2 algorithms

were described to compute the DHT of data sequences whose length is an

integer power of two. In the last chapter a radix-4 algorithm was

introduced which computes the DHT of a data sequence more efficiently if

its length is an integer power of four. In this chapter, a new algo-

rithm which involves the application of both the radix-2 and radix-4

algorithms is described. The new algorithm, known as the split-radix

algorithm, is computationally more efficient than either the radix-2 or

the radix-4 algorithm. The idea of the split-radix algorithm was first

proposed in 1984 by Duhamel [12] to compute the DFT of a data sequence.

A similar algorithm was proposed by Soo-chang Pei and Ja-ling Wu [13] to

compute the DHT of a real-valued sequence. Using the index mapping

approach Sorensen e_t al. [9] derived a more efficient split-radix algo-

rithm to compute the DHT. In this chapter the decomposition formula for

the algorithm is derived from the definition of the DHT without taking

recourse to the index mapping approach, and its working is described.

7.2 The Decomposition Formula

The split-radix algorithm applies the radix-2 DIF decomposition to

the even-indexed samples, and the radix-4 DIF decomposition to the

odd-indexed samples of the data sequence.

The DHT of an N-point real-valued data sequence is given by



N-l

H(k) = (1/N) 5 x(n)cas(27tnk/N), k = 0, 1, ..., N-l. (7.1)

n=0

We can rewrite the above summation as shown below.

(N/2)-l N-l

H(k) = (1/N) 3 x(n)cas(2nnk/N) + (1/N) J * (n)cas (2nnk/N)

n=»0 n=N/2

(N/2)-l (N/2)-l

=(1/N)[ ^ x(n)cas(2nnk/N) + ) x(n+N/2)cas{2nk(n + N/2)/N}],

n=0 n=0

k = 0, 1 N-l. (7.2)

In the rest of the derivation the factor (1/N) is not carried through,

but is restored in the final step of the derivation.

Let us consider the even- and odd- indexed DUT coefficients

separately.

Let k = 2m in Eqn. (7.2). Then

(N/2)-l (N/2)-l

H(2m) = ]> x(n)cas[2:rn(2m)/N] + ) x(n + N/2)cas[2n(n + N/2)(2m)/N]

n=0 n=0

(N/2)-l (N/2)-l

) x(n)cas[2nn(2m)/N] + ^ x(n + N/2)cas [2nn(2m) /N]

n=0 n=0

(N/2)-l

5 fx(n) + x(n + N/2)]cas{2nnm/(N/2)},

n=0

m = 0. 1. .... (N/2) - 1. (7.3)

The above is an (N/2)-point DHT. Thus the even-indexed coefficients

II(2m) are obtained by repeatedly applying the above radix-2 DIF formula.
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Now let us consider the odd-indexed samples in the DllT sequence. Let k

= 2p + 1.

Then we can rewrite Eqn. (7.2) as

(N/2)-l

H(2p + 1) = 5 x(n)cas[2nn(2p + D/N]

n=0

(N/2)-l

+ ) x(n + N/2)cas[2n(n + N/2)(2p + 1)/N]

n=0

Since

cas[(2p + l)n + x] = cas[n + x] = -casx,

the above equation becomes

(N/2)-l

H(2p + 1) = ^ x(n)cas[2n(2p + l)n/N]

n=0

(N/2)-l

^ x(n + N/2)cas[2n(2p + l)n/N].

n=0

(N/2)-l

^ [x(n) - x(n + N/2)]cas{2nn(2p + D/N},

n=0

p = 0, 1, .... (N/2) - 1. (7.4)

Ilowever,

cas[27Tn(2p + 1)/N] = cos(2nn/N)cas (4nnp/N) + sin(2nn/N)cas{4nn(-p)}

.

Using the above result in Eqn. (7.4), we get

(N/2)-l

H(2p + 1) = ^ [x(n) - x(n + N/2) ]cos (2nn/N)cas(4nnp/N)

n=0

•o /



(N/2)-l

+
J

fx(n) " x(n + N/2)]sin(2nn/N)cas{4nn(-p)/N} .

n=0

If the direction of summation in the second sum is reversed, we get

(N/2)-l

n(2p + 1) = ^ [U(n) - x(n + N/2)}cos(2jrn/N)

n=0

+ {x(N/2 - n) - x(N - n)}sin(2nn/N)]cas(4nnp/N).

P = 0. 1, ....(N/2) - 1. (7.5)

The above is the radix-2 DIF decomposition formula to obtain the

odd-indexed coefficients of the DHT. If we were interested in only a

radix-2 algorithm, we would have stopped at this point. However, in the

split-radix algorithm we once again apply a radix-2 decomposition to the

formula in Eqn. (7.5). We observe that this additional radix-2 decom-

position is applied only in evaluating the odd-indexed coefficients, but

not in evaluating the even-indexed samples. If we had done so, we would

be effectively deriving the usual radix-4 DIF algorithm.

We can split the (N/2)-point summation in Eqn. (7.5) into two

(N/4)-point summations as follows.

(N/4)-l

(H(2p + 1) = J Hx(n) - x(n + N/2) }cos (2nn/N)

n=0

+ {x(N/2 - n) - x(N - n)}sin(2nn/N)]cas(4nnp/N)

(N/4)-l

+ ^ [{x(n + N/4) - x(n + 3N/4) }cos{2n(n + N/4)/N}

n=0

+ {x(N/4 - n) - x(3N/4 - n)}sin{2n(n + N/4) /N} ]cas {4np (n + N/4)/N}
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Using the familiar trigonometric identities, we can rewrite the above

equation as

(N/4)-l

n(2p + 1) = J Kx(n) - x(n + N/2)}cos(2nn/N)

n=0

+ {x(N/2 - n) - x(N - n)}sin(2nn/N)]cas(4nnp/N)

(N/4)-l

+ 5 [(x(N/4 - n) - x(3N/4 - n) }cos (2nn/N)

n=0

- {x(n + N/4) - x(n + 3N/4) } sin(2nn/N) ]cas{np + 4nnp/N) (7.6)

If we let p = 2m in the above relation, we obtain the 'even' samples

H(4m + 1) of the odd-indexed DHT sequence. After further simplification

we finally obtain

(N/4)-l

H(4m + 1) =
J

[(x(n) - x(n + N/2) + x(N/4 - n)-x(3N/4-n)}cos(2nn/N)

n=0

+ {x(N/2-n) - x(N-n) + x(n+3N/4) - x(n+N/4) } sin(27Tn/N) ]cas Urmia/ (N/4) }

,

m = 0, 1, .... (N/4) - 1. (7.7)

The above equation is the (N/4)-point DHT that computes the odd DHT

coefficients H(4m+1), m = 0, 1, ..., (N/4)-l.

If we let p = 2m + 1 in Eqn. (7.6), we obtain the 'odd' coeffi-

cients H(4m+3) of the DHT.

(N/4)-l

H(4m + 3) = ^ ftx(n) - x(n + N/2)}cos(2nn/N)

nO

+ {x(N/2 - n) - x(N - n)}sin(2nn/N)]cas{2irn(2m + l)/(N/2)}
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(N/4)-l

+ 5 [{x(n + 3N/4) " l(n + N/4)}sin(2nn/N)

n=0

- {x(N/4 - n) - x(3N/4 - n) }cos (2nn/N) ]cas {2nn(2n + l)/(N/2)}

Collecting the terns, we get

(N/4)-l

H(4n + 3) = J {x(n) " *<n+N/2) " »(N/4 - n) + x(3N/4-n)

}

cos (2nn/N)

n=0

cas{2;in(2m + l)/(N/2)}

(N/4)-l

+ ^ {x(N/2 - n) - x(N - n) - x(n + 3N/4) + x(n + N/4) } s in(2nn/N)

]

n=0

cas(2nn(2m + )/(N/2). (7.8)

Eowever,

cas[2nn(2m + l)/(N/2)] = cos{2n(2n)/N}cas{2n[2nk/ (N/2) ]

}

+ sin{2n(2n)/N)cas{2n(2n)(-k)/(N/2)}. (7.9)

Substituting the above expansion in the first sum of Eqn. (7.8) and

calling it SUM1, we get

(N/4)-l

SUM1 = 2 < x(n) " x(n + N/2) " x(N/4 " a) + x(3N/4 - n)}cos(2nn/N)

n=0

cos{2n(2n)/N)cas{2n(2nk)/(N/2)}

(N/4)-l

+
^

{x(n) - x(n + N/2) - x(N/4 - n) + x(3N/4 - n) }cos (2nn/N)

n=0

sin{2n(2n)/N)cas{2n(2n)(-k)/(N/2)}
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If we reverse the direction of summation of the second sum in the above

equation, i.e. substituting {(N/4) - n} in place of n, we get

(N/4)-l

SUM1 = 5 **< n > * s(n + N/2) " x(N/4 " n) + *(3N/4 " n)}cos(2nn/N)

n=0

cos[27t(2n)/N]cas{2n(2nk)/(N/2)}

(N/4)-l

+ 5 {x(N/4 - n) - x(3N/4 - n) - x(n) + x(n + N/2) } s in(2nn/N)

n=0

sin[2n(2n)/N] cas{2n(2nm) / (N/2) }

.

combining the above two summations using the trigonometric relation,

cos(A + B) = cosAcosB - sinAsinE,

we get

(N/4)-l

SWil = 2 < x(n) " x(n + N/2) + »<3N/4 - n) - x(N/4 - n) }cos{2n(3n)/N}

n=0

cas{2nnm/(N/4)} (7.10)

Now, considering the second sum in Eqn. (7.8) with the result of

Eqn. (7.9) substituted in it and calling it SUM2 , we get

(N/4)-l

SU?!2 = ^ {x(N/2 - n) - x(N - n) - x(n + 3N/4) + x(n + N/4)}

n=0

sin(2nn/N)cos{2n(2n)/N) cas{2n(2nk)/(N/2)}

(N/4)-l

+ ^ {x(N/2 - n) - x(N - n) - x(n + 3N/4) + x(n + N/4)}

n=0
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sin(27Tn/N)sin{2n(2n)/N) cas{2n(2n) (-m)/(N/2)}

reversing the direction of summation in the second sum in the above

equation, we get

(N/4)-l

SUM2 = J (x(N/2 - n) - x(N - n) - x(n + 3N/4) + x(n + K/4)]

n=0

sin(2nn/N)cos{2n(2n)/N} cas{2n(2nx.i) / (N/2)

}

(N/4)-l

+ ^ (x(N/4 + n) - x(n + 3N/4) - x(N - n) + x(N/2 - n)}

n=0

cos(2nn/N)sin{2n(2n)/N} cas{2n(2nn) / (N/2) }

.

Using the trigonometric relation

sin(A + B) = sinAcosB + cosAsinB

and combining the two summations in the above equation we get

(N/4)-l

SUM2 = ^ {x(N/2 - n) - x(N - n) - x(n + 3N/4) + x(n + N/4)}

n=0

sin(2n(3n)/N)cos{2n(nm)/(N/4)} . (7.11)

Combining (7.10) and (7.11), we get

(N/4)-l

H(4m + 3) = ^ [{x(n) - x(n + N/2) + x(3N/4 - n) - x(N/4 - n)}

n=0

cos{2n(3n)/N)

+ {x(N/2 - n) - x(N - n) - x(n + N/4) + x(n + N/4)}

sin{2n(3n)/N}]cas(2nnm/(N/4),

m = 0, 1, .... (N/4) - 1. (7.12)

Table 7.1 gives a summary of the above discussion.
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7.3 Working of the Algorithm

Fig. (7.1) describes the working of the split-radix algorithm in a

block diagram for a 32-point data sequence. Observe the way the DHT is

TABLE 7.1 PROCEDURE TO COMPUTE AN N-POINT DHT USING THE SPLIT-RADIX

ALGORITHM

Coefficients to be computed DIF equation to be used

1. Even coefficients (7.3)

H(2m), m = 0, 1. .... (N/2) -
.

2. Odd coefficints (7.7)

H(4m +1), m = 0, 1, .... (N/4) - 1

3. Odd coefficients (7.12)

H(4m +3), m = 0, 1, ..., (N/4) - 1.

computed. The task is reduced to that of computing a half-length

16-point DHT and two quarter-length 8-point DHTs.

The half-length DHT computes the even-indexed coefficients H(0),

H(2). H(4), H(6), H(8), H(10), H(12), H(14), H(16), H(18). H(20). H(22).

H(24), H(26), n(28), H(30)

.

The first quarter-length DHT computes the odd-indexed coefficients

H(l). E(5), H(9), H(13), H(17). H(21), H(25), H(29)

.

The second quarter-length DHT computes the following odd-indexed

coefficients H(3). H(7), n(ll), H(15), H(19), H(23), H(27), H(31).

However the computation of the even- and odd- indexed coefficients is

again reduced to three smaller length DHT computations until we reach

the stage where we need to compute only 4-point or 2-point DHTs, both of
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which require no multiplications. The split-radix algorithm also is an

in-place algorithm. Tt is applicable to all sequences whose length is

an integer power of two, and is the most efficient of all in-place

algorithms.
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The number of omit ipl icat ions N is given by

M = (2N/3)log
2
N - 19(N/9) + 3 + (-l)

P
/9

and the the number of additions A is given by

A = (4N/3)log
2
N - (14N/9) + 3 + (-l)

P
(5/9)

where P = log.N.

Tables 7.2 through 7.4 give a summary of the operation counts for

different algorithms. By operation counts we mean the total number of

multiplications and additions. We can see from these operation counts

that the split-radix algorithm uses less multiplications and less addi-

tions than either the radix-2 or the radix-4, but still has a fairly

compact code. Therefore this is generally the most efficient algorithm

for data sequences whose length is a power of two. The operation counts

for these algorithms is less than those required to compute the DFT of a

real-valued data sequence [14],
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TABLE 7.2 OPERATION-COUNTS FOR RADIX-2 ALGORITHMS

Length Mults Adds Mult + Add

RADIX-2

4 8 8

8 4 26 30

16 20 74 94

32 68 194 262

64 196 482 678

128 516 1154 1670

256 1284 2690 3974

512 3076 6146 9222

1024 7172 13826 20998

2048 16388 30722 47110

4096 36868 67586 104454

TABLE 7.3 OPERATION-COUNTS FOR THE RADIX-4 ALGORITHM

Length Mults Adds Mult + Add

4 8 8

16 14 70 84

64 142 450 594

256 942 2498 3440

1024 5294 12802 18096

4096 27310 62466 89776
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TABLE 7.4 OPERATION-COUNTS FOR THE SPLIT-RADIX ALGORITHM

Lenp.th Mults Adds Mult + Add

SPLIT-RADIX

4 8 8

8 2 22 24

16 12 64 76

32 42 166 208

64 124 416 540

128 330 998 1328

256 828 2336 3164

512 1994 5350 7344

1024 4668 12064 16732

2048 10698 26854 37552

4096 24124 59168 83292
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8. AN APPLICATION: RAMAN SPECTRA AND MATCHED FILTERING

8.1 Introduction

In this chapter an example application of the DHT in the analysis

of Raman spectra is described, wherein it is employed to perform the

fast convolution operation. We begin the chapter with a brief introduc-

tion to the origin of Raman spectra, and then we discuss the role of the

FT and the DFT in the resolution of the spectra. The concept of matched

filtering and its applicability in the enhancement of SNR of the spectra

is presented. The implementation of the matched filter using both the

DFT and the DHT is discussed next, and finally we close the chapter with

a comparison of the performance of the DFT and the DHT in the applica-

tion chosen.

8.2 Raman Spectra

The Raman effect, also known as the scattering of modified radia-

tion, was first discovered in 1928 by C. V. Raman [15]. The phenomenon,

first observed in the case of liquids, is universal in character and is

a powerful technique in identifying different substances unambiguously.

When visible light of a particular frequency is used to excite any

material, the spectrum of the scattered light from the substance con-

tains the signature of the material. This phenomenon is known as the

Raman effect, and the spectrum of the scattered light is referred to as

the Raman spectrum for that substance. For any given substance, the

difference in frequency between the incident light and the scattered
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light is constant and is independent of the frequency of the incident

light. This shift in frequency between the incident light and the

scattered light corresponds to the frequency of oscillation of the

chemically bonded atoms in the substance, which in turn depends on the

geometry of the molecule. In terms of quantum theory of light, the

difference in frequency between the spectrum of the incident light and

the Raman spectrum is positive or negative, depending on whether the

incident light is delivering energy to the target molecule or receiving

energy from it.

One major drawback in analyzing the Raman spectra is that they are

very feeble. Matched filtering is a very useful technique to enhance

the SNR in such cases.

S.3 Matched Filtering

8.3.1 Preliminaries

Before describing the matched filter, some preliminary definitions

and models for the signal and noise portion of the spectrometer output

are presented.

Raman shift : When a substance is subjected to the Raman effect, the

frequency of oscillation of the chemically bonded atoms in the substance

alters. This shift in frequency is called the Raman shift and is

measured in terms of wavenumbers (cm )

.
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signals : Spectroscopic signals are pulse-like in nature with wavenumber

as the independent variable. For our study here a Lorentzian pulse is

considered. It is defined by

s(v) = A(v
Q
)/ [1 + {(v - v

Q
)/h}

2
]

where A(v ) is the peak amplitude of s(v) at the center frequency v and

h is the half-width at half-height (hwhh) of the pulse. The Lorentzian

pulse is taken for study since it is the most difficult of all the peaks

to detect for a given half-width at half-height.

Noise : The noise part of the spectrum is treated as a random process

(rp) with white Gaussian statistics.

White noise : So named by analogy to the white light which contains all

the visible frequencies, white noise is a zero mean rp whose power

spectral density (PSD) is a constant at all the frequencies.

PSD : If x(t) is a wide-sense stationary (wss) rp, and its FT is given

by X(f), then its PSD S (f) is given by
xz

XX
T — > »

E
|

|X
T
(f)!

2
/ 2T ].

where 7^(f) is the FT of the signal x(t) restricted to an interval -T

and T. For the white noise S (f) is a constant and is given by
xx

S (f) = NA / 2. (8.1)
xx

Autocorrelation : If x(t) is a wss rp, its autocorrelation function

R (t) is given by
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R
xx

(t) - FT*
1

[ S (f) ]. (8.2)

From Eqns. (8.1) and (8.2) we see that R (t) for the white noise is
xx

given by

R (t) = [N /2]6(t),
XX o

where, 6(t) is the Dirac delta function. As is clear from the above

equation, the white noise is uncorrelated to itself.

8.3.2 Theory of the Matched Filter

Matched filter is an optimal linear system which maximizes the SNR

at the output of the filter.

We assume that the input to the filter consists of the sum of a

deterministic signal s(t) and a random noise process n(t). The signal

and noise at the output of the filter are denoted as s (t) and n (t),
o o

respectively. The instantaneous signal power at the output is given by

2
s (t) and the average noise power as N . If the filter's impulse
o o

response is indicated as h(t) and its Fourier transform as 11(f), then

the output signal s (T) at t = T is given by

S(f)H(f)e
j2,TfT

df.- I

where S(f) is the FT of the signal s(t).

Similarly the output average noise power is
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N
q

=
J

S^mllim^df (8.3)

—CO

where S.,.,(f) is the PSD of the input noise process. Therefore the
NN

output SNR is

00

S /N = | f S(f)H(f)e
j27TfT

df I

2
/ N

o o J o

where N is given in Eqn. (8.3)
o

It can be shown [16] that the above ratio is maximum when

•m -J2nfT
E(f) = H (£) = C

&
).',-. (8.4)

opt S^(f)

where C is a real constant and S (f) is the complex conjugate of S(f).

8.3.3 Matched Filter for White Noise

We know that if the input noise process is white, its PSD

S»,»,(f) = N 12. Substituting the above value for SXIXt (f) in Eqn. (8.4),
NN o NN

we get

H At) = KS*(f)e"
j2TTfT

opt

where K = 2C/N is a real constant. The impulse response of the filter
o

is given by

h ft) =
f

H (f)e
j2nft

df
opt J opt
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= Ks(T - t). (£.5)

From Eqn. (8.5) it is clear that the impulse response of the matched

filter, when the input noise process is white, is equal to the input

signal shifted by T units and then reversed. The delay T is a parameter

under the control of the filter designer. If we choose T = and K = 1

in Eqn. (8.5), then it becomes

h ft) = s(-t). (8.6)
opt

Since the transfer function of the filter is so closely tied to the

input signal as shown in the above equation, the filter is referred to

as the matched filter. This feature can sometimes be a problem too, in

that it requires of us a knowledge of the exact shape of the input

signal. However, we can often make good guesses about the input signal

profile .

8.3.4 Matched Filter as a Correlator

The output of the matched filter is given by

y(t) = x(t)*h ft)
opt

=
f x(r)h ft - x)dx
J opt

where x(t) = s(t) + n(t) and * denotes convolution. If n(t) is a white

noise process, the above equation becomes

y(t) =
J

x(x)s(-t + r) dt
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»
J

x(t + T)s(r)dT (8.7)

—00

The above equation shows that y(t) is the cross correlation of the

assumed input signal with the input signal-plus-noise.

8.3.5 Implementation Considerations

The spectrum to be filtered is treated as an N-point sequence

{x(m)}, a = 0, 1, ..., N - 1.

and the sampled version {h (m)} of the filter's impulse response is
opt

also made the same length. Then the linear convolution of the input and

the filter's impulse response is given by

N-l

y(k) = 3 x<m)h(k - m). k = 0, 1, .... 2N - 2, (8.8)

m=0

where y(k) is the output of the matched filter. The convolution equa-

tion above is the linear convolution of the input spectrum and the

filter's impulse response. However, the linear convolution can be

achieved by adding atleast N-l zeros to both {x(m)} and {h(m)} and

then performing a circular convolution on the resulting sequences. The

advantage of the approach lies in the fact that we could use the DFT or

the DHT to compute the circular convolution. Fig. (8.1) shows the block

diagram for implementing the matched filter using the DFT. Dyer and

Hardin [17] used the above approach in analyzing simulated Raman spectra

using the matched filter technique.
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Implementation of the matched filter using the DI'T approach is

presented here.

Fig. (8.2) shows the block diagram of the implementation of fast

linear convolution using the DKT. The N-point spectrum {x(m)} and the

N-point digitized filter transfer function {h(m)} are both zero padded

upto 2N points. Mote that for the matched filter, {h(m)} is the

reversed version of the input pulse. Since a Lorentzian pulse centered

at zero is an even pulse, obeying the relation h(m) = h(N - m), the Din

of the circular convolution of x(m) and h(m) is the product of the

individual DKTs H (k) and H (k) of x(m) and h(m), respectively. Using

this fact, we find the DIIT of the circular convolution of the 2N-point

sequences (x(m)} and (h(m)} as shown in Fig. 3.2. Since the DIIT is a

symmetric transform, by performing the 2N-point DIIT on the resulting

sequence, we get the linear convolution of x(m) and h(m) . Since we are

interested only in the enhancement of the N-point spectrum that we

started with, we discard the last N points in the resulting sequence.

The main advantages of the DIIT approach are that it computes the linear

convolution faster than the DFT technique and, that it is simpler to

implement than the latter when one of the functions being convolved is

even.
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8.4 Simulation Results

As an example application of the DIIT, simulated Raman spectra were

analyzed using matched filter. The signal taken for study consisted of

two Lorentzian peaks, one centered at 250 cm and the other at 650

cm , and was shown in Fig. 8.3. The half-width at half-height (hwhh)

of each peak was 20 cm , and the sampling rate v/as 1024 sanples/sec

.

Yfhite Gaussian noise having unity variance was added to the signal to

generate the input spectrum. Fig. 8.4 represents the noise and Fig. 8.5

depicts the input spectrum.

The input spectrum consisted of 1024 points and the SNR (maximum

amplitude of peak/ rms amplitude of noise) was 2.0. Fig. $.6 presents

the output of a matched filter having the spectrum of Fig. 8.5. as its

input. The impulse response of the filter was a reversed Lorentzian

peak having a hwhh of 20 cm . The two spectral peaks are evident in

the output spectrum, one located at 250 cm and the other at 650 cm

Fig. 8.7 presents the output of the same matched filter iznlemented

using the DIIT instead of the DFT. Again, the spectral peaks are clearly

discernible from the noise at 250 cm and 650 cm

As evident from the output spectrum, the filter output is insensi-

tive to the choice of the transform. The analysis was carried out with

two other filters also, one matched to a Lorentzian peak of hwhh = 5
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cm and the other to a Lorentzian peak with hwhh = 10 cm . The fil-

ters v/ere implemented with the DFT as well as the D!1T. Table 8.1 shows

a summary of the computation times for both the methods.

TABLE 8.1 COMPUTATION TIME FOR IMPLEMENTING THE MATCHED FILTER

HWHH of filter's response Approach CPU time in sees.

<-
-1

5 cm

10 cm"
1

20 cm

D!IT 2.80

DFT 3.06

DIIT 2.83

DFT 3.00

DHT 2.77

DFT 3.05

On the average the DHT approach has taken 2.8 sees compared to 3.04

sees, for the DFT approach for a 1024 point spectrum.

Software for the matched filter was written in VAX-11 FORTRAN and

was given in the Appendix. The white noise was generated using RALPH, a

general-purpose DSP software developed at Kansas State University.
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9. CONCLUSIONS

Various properties of the HT for a real signal, and the DIIT for a

real data sequence were derived in the first two chapters. It was shown

that all the properties of the FT and the DFT have a counterpart in the

HT theory. These properties look very much identical, especially when

the data sequence possesses either odd or even symmetry.

The DFT of a data sequence generates a complex-valued sequence.

Ilowever, the DFT of a real-valued data has a useful property that its

real part is even and its imaginary part is odd. General-purpose FFT

algorithms written to deal with real- as well as complex-valued data do

not take advantage of the above property. However those algorithms can

be optimized for computing the DFT of real-valued data sequences more

efficiently to save memory and computation time. The DHT helps us avoid

taking recourse to such complicated methods of optimizing to achieve

efficiency in dealing with real-valued data. Once the DHT of the

real-valued data is computed, using a simple relation between the DFT

and the DHT, we obtain the DFT of the sequence. This approach for

computing the DFT has the advantage of speedier computation of the DIIT,

and it does not have the complexity of optimizing methods. This method

is especially attractive in case of a DIF FFT for real-valued input,

since there are no easy methods available to compute the DFT of a real

data efficiently from the conventional methods. The operation-counts

for radix-4 and split-radix algorithms to compute the DHT also are less

than the number of operations for the corresponding FFT algorithms.
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Finally an esample application was given, in which simulated Raman

spectra were analyzed using a matched filter. The DKT approach took

less computational effort than the DFT method.
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ft**************** t-******^*******************************,,,******

Department of Electrical and Computer Engineering
Kansas State University

Vax Fortran Source Filename: MATCHED_FILTER.FOR

*******e**«*«*******************************«*****************««

ROUTINE: Mainline

DESCRIPTION: It enhances the Signal to Noise Ratio
(SNR) of the input spectrum using the
Matched Filtering method.
Discrete Hartley Transform (DHT)

technique is used to implement the matched
filter

DOCUMENTATION
FILES : None

RETURN: Not Used

ROUTINES
CALLED: DHT2,NPLOT

AUTHOR: CHANDRA C. VARANASI

DATE CREATED: 22nd March 1987, Version 1.0

***«**«*************«************>M: ***************************

The following are some of the key variables used in

the routine

SPECTRUM: (Real) Array containing the input spectrum,

zero padded to twice its original
length

PROFILE: (Real) Array containing the signal profile
pulse, zero padded to twice its original
length

OUTPUT: (Real) Array containing the spectrum with
enhanced Signal to Noise Ratio (SNR),

resulting as the output from the

matched filter. Length of the array is

same as the original input spectral

data length
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IMPLICIT NONE

REM. SPECTRUM (0 : 2047 ). PROFILE (0: 2047 ) , X_DATA (0:2047),
+ OUTPUT(0:1023),Y_DATA(0:2047)

INTEGER NUMBER,

I

* Read the input spectral data into the array SPECTRUM

CALL SGOPEN ( 5 ,
' READ ' , ' NOPROMPT ' ,

' SPECT . DAT ' ,
' REAL ' . NUMBER

)

CALL SGTRAN ( 5 , ' READ '

,
' REAL ' . SPECTRUM. NUMBER

)

DO I = 0,2047
Y_DATA ( I ) =SPECTRUM ( I

)

X_DATA(I)=FLOAT(I)
END DO

* Read the input signal profile pulse into the array PROFILE

CALL SGOPEN (6, 'READ' , 'NOPROMPT' , 'PRO. DAT' , 'REAL' , NUMBER)
CALL SGTRAN ( 6 , ' READ '

,
' REAL ' , PROFILE , NUMBER

)

* Take the DHT of the SPECTRUM

CALL LIB INIT_TIMER
CALL DHT2 (SPECTRUM, 2048, 11

)

* Take the DHT of the signal PROFILE

CALL DHT2 (PROFILE, 2048. 11)

* Multiply the above two DHTs

DO I = 0,2047
SPECTRUM(I) = SPECTRUM (I )*PROFILE( I)

END DO

* Take the inverse DHT of the sequence. In fact, inverse DHT and
* forward DKT are one and the same

CALL DHT2 (SPECTRUM, 2048,11 )

CALL LIB SnOW_TI?IER

* Now, retain the first 1024 points

DO I = 0,1023
OUTPUT(I) = SPECTRUM(I)
X_DATA(I) = FLOAT (I)

END DO
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* Plot the matched filter OUTPUT

CALL SIMPLK_PLOT (1024.'
+ 'LINEAR ',X_DATA. OUTPUT. 'cm I t-lt I

'.

+ 'Raman Shift', ' '.'Amplitude')

END
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*«*********(l*******#«***«*******£4******4:« ***********************

Department of Electrical and Computer Engineering
Kansas State University

Vax Fortran Source Filename: MATCDED_FILTER_DFT.FOR

t************ ********** + +:***.>:*(** + ****•** + + * + •* + <!'**** ***********

ROUTINE: Mainline

DESCRIPTION: It enhances the Signal to Noise Ratio
(SNR) of the input spectrum using the

Matched Filtering method.
Discrete Fourier Transform (DFT) is used
to implement the matched filter

DOCUJENTATION
FILES: None

RETURN: Not Used

ROUTINES
CALLED: FFT.NPLOT

AUTHOR: CHANDRA C. VARANASI

DATE CREATED: 22nd March 1987. Version 1.0

**************************************************************

The following are some of the key variables used in

the routine

SPECTRUM: (Complex) Array containing the input spectrum,
(zero padded to twice its original
length), as its real part . Imaginary
part is zero.

PROFILE: (Complex) Array containing the signal profile
pulse, (zero padded to twice its

original length), as its real part.

Imaginary part is zero

OUTPUT: (Real) Array containing the spectrum v/ith

enhanced Signal to Noise Ratio (SNR),

resulting as the output from the

matched filter. Length of the array is

same as the original spectral length

***************************** *><****f.***>:*K *********** **********
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IMPLICIT NONE

COMPLEX SPECTRUM* : 2047 ) .PROFILE (0 : 2047)

REAL OUTPUT(0:1023),X_DATA(0:1023),A(0:2047),B(0:2047)

INTEGER NUMBER,

I

CALL LIB INIT_TIMER

* Read the input spectral data into the real array A

CALL SGOPEN ( 5 , ' READ '

»
' NOPROMPT '

,
' SPECT . DAT '

,
' REAL ' , NUMBER

)

CALL SGTRAN (5. 'READ' , 'REAL' , A, NUMBER)

* Read the zero padded profile pulse into the real array B

CALL SGOPEN ( 6 . ' READ '

,
' NOPROMPT '

,
' PRO . DAT '

,
' REAL ' , NUMBER

)

CALL SGTRAN (6. 'READ' , 'REAL' ,B, NUMBER)

* Transfer the data and profile into the complex arrays SPECTRUM
* and PROFILE respectively

DO I = 0,2047
PROFILE ( I )= B(I)
SPECTRUM(I) = A(I)

END DO

* Take the DFT of the input SPECTRUM
CALL LIB INIT_TIMER
CALL FFT (SPECTRUM, 2048,0)

* Take the conjugate of the transformed SPECTRUM

DO I = 0,2047
SPECTRUM(I) = CONJG(SPECTRUM(I))

END DO

* Take the DFT of the signal PROFILE

CALL FFT (PROFILE, 204 8,0)

* Multiply X *(K) and H(K) where:

* X(K) DFT of the zero padded inpuf spectrum
* IKK) DFT of the zero padded signal profile pulse

DO I = 0,2047
SPECTRUM(I) = SPECTRUM (I) 'PROFILE (I)

END DO
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* Take the inverse DFT of the product

CALL FFT (SPECTRUM, 2048,1)

CALL LIB SE0',7_TIMER

* Now retain only 1024 points of the data, since that is the
* length of the original spectrum

DO I = 1,1023
OUTPUT(I) =REAL(SPECTRUM(204S-I))
X_DATA(I) = REAL(I)

END DO

* Plot the matched filter output

CALL SIHPLE_PLOT( 1024, 'Matched Filter Output using DFT',
+ ' LINEAR ',X_DATA, OUTPUT. 'cm|t-lt| ',

+ 'Raman Shift',' '
, 'Ampl itude '

)

END
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* 4c * ft ft ft * * * * * * ft ft ft ft s* ******* * * * * ft ft * * * * * * ft ft ft ft ft ft * * ft * * * * ij ************* *

Department of Electrical and Computer Engineering
Kansas State University

Vax Fortran Source Filename: PROFILE. FOR

************************** ft* ft* * * * * >s ft * * * * * >s * * »s * ft ft >s >:•• ft e ft * c ft ********

ROUTINE: PROFILE. FOR

DESCRIPTION: It generates a Lorentzian pulse centered
at zero. After that, the array
containing the pulse is zero padded
to twice the pulse length. Zeros are

added in the middle of the data strean
instead of at the end. The zero padded
pulse will be used as the profile in the

convolution

DOCUMENTATION
FILES: None

RETURN:

ROUTINES
CALLED:

Not Used

None

AUTHOR: CHANDRA C. VARANASI

DATE CREATED: 30th March 1987 Version 1.0

************** * ************ * * * * * * * * * * * * * * * * * * * * * ft ft * * * * ********* *

The following are the key variables used in the routine

AMPLITUDE:

ALPHA:

PULSE:

PROFILE

:

(Real) The amplitude of the Lorentzian
peak

(Real) The half_width at half_height
of the pulse

(Real) Array containing the pulse

(Real) Array containing the zero padded
pulse

****************** * * ft * ft ft ft ft ft********** * * * ft ft ft ft ft ft ft ft ft ft ft ft C ft ft ft ******** «
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IMPLICIT NONE

REAL AMPLITUDE, ALPIIA, PULSE(-512 : 511 ) , PROFILE(0: 2047 ) ,

+ X_DATA( 0:2047)

INTEGER I

PARAMETER (AMPLITUDE = 2.0. ALPHA = 20.0)

* Generate the Lorentzian pulse

DO I = -512,511
PULSE(I) = AMPLITUDE/ (1+ (I/ALPHA)**2)

END DO

* Now, zero pad the profile upto twice the number of points
* bringing the negative part of the pulse to the end of the
* data stream and store in the array PROFILE

DO I = -512,-1
PROFILE (2048+1) = PULSE(I)
PROFILE (1+5 12) = PULSE (1+5 12)

END DO

* Write PROFILE to the disk

CALL SGOPEN (5, 'WRITE '

, 'NOPROMPT' , 'PRO. DAT '

, 'REAL' , 2048)
CALL SGTRAN ( 5

,
' WRITE '

,
' REAL ' » PROFILE , 204 8

)

* Plot the zero_padded profile. For that set up the X-axis data

DO I = 0,2047
X_DATA(I) = REAL(I)

END DO

* Now plot

CALL SIMPLE_PLOT(2048, 'Zero Padded Prof ile ', 'LINEAR'

,

+ X_DATA, PROFILE, 'cm|t-lt I ', 'Raman Shift',
+ ' ', 'Amplitude')

END
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************ * * * « * # * * * * * * **£:. * ****.;::; * * * * * * * * * a * * * * # * * * # * * * * >: , $ ^. * **

Department of Electrical and Computer Engineering
Kansas State University

Vax Fortran Source Filename: NOISE_PLOT.FOR

ROUTINE : NOISE_PLOT . FOR

DESCRIPTION: It plots the zero mean unit variance
white Gaussian noise generated using
RALPH, a general purpose signal
processing software developed at the

Kansas State University.

DOCUMENTATION
FILES : None

RETURN: Not Used

ROUTINES
CALLED : SIMPLE_PLOT

AUTHOR: CHANDRA C. VARANASI

DATE CREATED: 30th March 1987 Version 1.0

*********************************************************** * *« **

The following are the key variables used in the routine

GAUSSIAN NOISE: (Real)Array containing the samples of

the zero mean unit variance Gaussian
noise

.

* * * * * * * * * * *** lieA*** ft ft ft*** ft ft**** ft**ft* ftft** ft******ft** ft ft** ft ft ft ft**** * ft

IMPLICIT NONE

REAL X_DATA (0:1023). GAUSSIAN NOISE (0: 1023

)

INTEGER I, NUMBER

PARAMETER (AMPLITUDE =2.0, ALPHA = 20.0)

* Read the noise samples from the disk

CALL SGOPEN ( 5 , ' READ '

,
' NOPROMPT '

,
' NOI SE . DAT '

,
' REAL '

,

+ NUMBER)
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CALL SGTRAN ( 5 , ' READ '

,
' REAL ' . GAUSS IAN_NO I SE . NUMBER

)

DO I = 0, 1023

X_DATA(I) = FLOAT(I)
END DO

* Plot the noise

CALL SIMPLE_PLOT( 1024, 'White Gaussian noise ', 'LINEAR'

,

+ X_DATA,GAUSSIAN_NOISE, 'Cm|t-lt|'»
+ 'Raman shift', ' ', 'Amplitude')

END
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Department of Electrical and Computer Engineering
Kansas State University

Vax Fortran Source Filename: SPECTRUM. FOR

****************4^***«***«********«*«**««*****«*«$$««&«&$#««**««

ROUTINE: SPECTRUM. FOR

DESCRIPTION: It reads the input signal data file as

well as the noise data file and then
generates the input spectrum by nixing
the above two files

DOCUMENTATION
FILES : None

RETURN: Not Used

ROUTINES
CALLED

:

SIMPLE_PLOT

AUTHOR: CHANDRA C. VARANASI

DATE CREATED: 1st April 1987 Version 1.0

***********«****«****#*#**********************«******«**********

The following are the key variables used in the routine

SPECTRUM: (Real) Array into which the input signal
is read. When the noise is added
to it, it contains the simulated
input spectrum to the matched
filter

NOISE: (Real) Array into which the white
Gaussian noise, generated using
RALPH, is read

*<««*iti4(*a******#*<:*<:H:<:«:**««*«**************************************

IMPLICIT NONE

REAL SPECTRUM(0:2047),NOISE(0:2047),X_DATA(0:2047)

INTEGER NUMBER, I

* Read the input signal into SPECTRUM. Input signal is a
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* misture of two Lorentzian pulses.

CALL SGOPEN ( 7 , ' READ '

,
' NOPROMPT '

,
' SIGNAL . DAT '

,
' REAL '

,

+ NUMBER)
CALL SGTRAM ( 7 , ' READ '

,
' REAL ' , SPECTRUM , NUMBER

)

* Read the zero mean unit variance white Gaussian noise generated
* using RALPH

CALL SGOPEN (5, 'READ' , 'NOPROMPT' , 'NOISE.DAT '. 'REAL'

,

+ NUMBER)
CALL SGTRAN ( 5

,
' READ '

,
' REAL ' . NO I SE , NUMBER

)

* Add the two arrays SPECTRUM and NOISE to generate the input
* spectrum and place the result in SPECTRUM

DO I = 0.2047
SPECTRUM (I) = SPECTRUM(I)+NOISE(I)
X_DATA(I) = REAL(I)

END DO

* Write the input spectrum to the disk

CALL SGOPEN (6, 'WRITE ', 'NOPROMPT' , 'SPECT.DAT' , 'REAL' ,2048)
CALL SGTRAN ( 6 , ' WRITE '

,
' REAL ' , SPECTRUM ,2048)

* Plot the input spectrum

CALL SIMPLE_PLOT( 2048, 'Input Spectrum ', 'LINEAR' ,X_DATA.
+ SPECTRUM, 'cm It-It I

', 'Raman Shift', ' '.'Amplitude')

END
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* * ***** * ************************** *******************************

Department of Electrical and Computer Engineering
Kansas State University

Vax Fortran Source Filename: LORENTZ.FOR

****************************************************************

ROUTINE:

DESCRIPTION:

DOCU!!ENTATION
FILES:

RETURN:

ROUTINES
CALLED:

AUTHOR:

DATE CREATED:

LORENTZ.FOR

It generates a lorentzian shaped pulse of
desired amplitude and half width half
height

None

Not Used

None

CHANDRA C.VARANASI

23rd March, 1987 Version 1.0

****************************************************************

The following are some of the key variables used in the

routine

PEAK:

ALPHA:

(Real) The amplitude of the

lorentzian peak

(Real) The half_width at half_height

CENTER_FREQUENCY : (Real) The frequency at which the

lorentzian pulse attains its

peak

L0RENTZ1,L0RENTZ2: (Real) Arrays that contain the

lorentzian pulses at two

distinct center frequencies

LORENTZ: (Real) Array that contains the

summation of L0RENTZ1 and
LORENTZ2

************************>: ***************************************

1*% *



I'fPLICIT NONE

REAL
+

+

+

+

PEAK, ALPHA, CENTER_FREQUENCY1

,

CENTER_FREQUENCY2 , LORENTZ1 (0 : 1023 )

,

FREQUENCIES ( : 1023 ) , LORENTZ2 ( : 1023 )

,

LORENTZ (0:1023).
X DATA(0:1023)

INTEGER

PARAMETER
+

+

(PEAK = 2.0, ALPHA = 20.0,
CENTER_FREQUENCY1 = 250.0,
CENTER FREQUENCY2 = 650.0)

* * ********************** * * * »:: * $ * >:a . >:: <• c : • >: >:• >:• * * * * * * * * * ************** *

DO I = 0.1023

LORENTZl(I) = PEAK/(1.0+((I - CENTER_FREQUENCY1 )

/

ALPHA) **2)

LORENTZ2(I) = PEAK/ (1.0+( (I - CENTER_FR£QUENCY2 )

/

ALPHA) **2)

END DO

* Add LORENTZ1 and LORENTZ2 that is going to be the signal

DO I = 0,1023
LORENTZ (I) = L0RENTZ1(I)+L0RENTZ2(I)
X_DATA(I) = REAL(I)
FREQUENCIES (I) = REAL(I)

END DO

* Plot the signal

CALL SIMPLE_PLOT( 1024, 'Input Signal ', 'LINEAR * ,X_DATA,
+ LORENTZ, 'cmlt-ltl '» 'Raman Shift', '

'»

+ 'Amplitude')

* Write the signal to the disk
CALL SGOPEN ( 6

,
' WRITE '

,
' NOPROMPT '

,
'

S

IGNAL . DAT '

.
' REAL '

,

+ 1024)
CALL SGTRAN (6, 'WRITE '» 'REAL' .LORENTZ, 1024)

END
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# ft ***** ft ft * ft ft ft ft ft * ft ft * ft ft ft ft ft * ft >:= ft * ********::** ft ft ft ft ft ******************* *

ft

Department of Electrical and Computer Engineering
Kansas State University

Vax Fortran source filename: SIMPLE_PLOT.FOR

ft***************************************************************

ROUTINE: SUBROUTINE
SIMPLE_PLOT (NUM_POINTS.PL0T_TrTLE,
PLOTJYPE , X_DATA» Y_DATA, X_AXI S_UNITS

,

X_AXI S_TITLE , Y_AXISJJNITS , Y_AXI S_TITLE

)

DESCRIPTION: Plots X_DATA and Y_DATA values as

abscissae and ordinates respectively, and

places a TITLE and UNITS on the corresp-
onding axes. PLOT_TYPE specifies the

type of plot being generated, and finally
the plot is given a PLOT_TITLE.
The routine gives the user the choice of

plotting on either the screen or the HP
plotter.

DOCUMENTATION
FILES: None

VARIABLES IN

THE ARGUMENT:

NUM POINTS:

PLOT TITLE:

PLOT TYPE:

(input) integer
Number of data points to be plotted

(input) character*(*)
Title to be placed on plot

(input) character*(*)
Character string specifying the type of

plot to be generated. The following are

valid:
for linear-linear
for log-linear
for linear-log
for log-log

'LINEAR'

'LOG-LINEAR'
'LINEAR-LOG'
'LOG-LOG'

X DATA:

Y DATA:

(input) real

Array of abscissae values to be plotted

(input) real

Array of ordinate values to be plotted
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X_AXIS_UNITS: (input) character* (*

)

Name to be given to the units associated
with the X_AXIS

X_AXIS_TITLE: (input) character* (*

)

Title to be placed on the X_AXIS

Y_AXIS_UNITS: (input) character* (*)

Name to be given to units associated with
Y_axis

Y_AXIS_TITLE: (input) character* (*

)

Title to be placed on the Y_axis

RETURN:

ROUTINES
CALLED

:

Not used

PAXIS
PCHRPL
PCLOSP
PINIT
PLGAXS
PLGLIN
PLGLOG
PLINE
PLOGSC
PL^OG
PORIG
PPLOT
PSCALE
PSTCIIR

PSTVEL
PTEXT
PTXTLN
PWIND

AUTHOR:

DATE CREATED:

REVISIONS:

Chandra C. Varanasi

2nd September 1986

8th September 1986
Plotting log-log curve is added
13th September 1986
Offsetting the plot_title is added

**»«*«t*pii********«*#«»*««»iii#*i5*ii(*(tf)i(«^o*f:t:.^*i::i:i:ft:c^f(>:'<<i****«**

The subroutine SIMPLE_PLOT calls some routines from
THE P SYSTEM OF GENERALIZED PLOT SUBROUTINES. The
following are the key variables required to call the

above routines.
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CLENX:

CLENY:

(Output from subroutine PLOGSC)
Length in cm. of one log cycle
1.0 <= CLEN <= Length of X_axis

(Output from subroutine PLOGSC)
Length in cm. of one log cycle
1.0 <= CLEN <= Length of Y_Axis

real

DELTAX: (output from subroutine PSCALE) real
Scale factor (increment in X between tic
marks)

DELTAY: (output from the subroutine PSCALE) real
Scale factor (increment in Y between tic

marks)

DIVLENX: (output from subroutine PSCALE) real

Space between X_azis tic marks in user
units

DIVLENY: (output from subroutine PSCALE) real
Space between Y_axis tic marks in user
units

FIRDEL: (input to suj . - line PLINE) real

A four element array containing the

following:

FIRSTX
DELTAX
FIRSTY
DELTAY

Starting value of X_data
Described above
Starting value of Y
Described above

FIRLEN: (input to subroutine PLINE) real

A four element containing the following:
FIRSTX
DELTAX
FIRSTY
CLENY:

Starting value of X_DATA
Described above
Starting value of Y_DATA
Described above

LENSTR: (output from subroutine PTXTLN) integer
Number of characters in PLOT TITLE

NEGFLGX

:

(output from subroutine PLOGSC) integer

Flag to warn that negative values were
encountered in X_DATA
0: No negative values in X_DATA
1: Negative values in X_DATA
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NEGFLGY

!

OFFSET:

(output from subroutine PLOGSC) integer
Flag to warn that negative values were
encountered in Y_DATA

(input to the routine PPLOT) real

Margin on the left side of the title)

«***«*******««*****<^*************«4t***************** **********

SUBROUTINE SIMPLE_PLOT (NUM_POINTS, PLOT_TITLE,
+ PLOTJTYPE , X_DATA , Y_DATA

,

+ X_AXI S_UNITS . X_AXI S_TITLE

.

+ Y_AXIS_UNTTS , Y_AXI S_TITLF.

)

Declare the variables

IMPLICIT NONE

INTEGER CHOICE. I , NUM_POINTS, NEGFLGX, NEGFLGY.
+ LENSTR

REAL CLENX, CLENY, DELTAX. DELTAY, DIVLENX.
DIVLENY. FIRDEL(4). FIRLEN(4). FIRSTX.
FIRSTY. OFFSET. X_DATA(0:*). Y_DATA(0:*)

CHARACTER PLOTJITLE* (*) , PLOTJTYPE* ( * )

,

X_AXIS_UNTTS* (* ) . X_AXIS_TITLE* (•

)

Y AXIS UNITS*(*), Y AXIS TITLE*(*)

****************************************************************

PRINT*. ' SELECT THE PLOTTING DEVICE (ENTER 1 OR 2
)

'

PRINT*
PRINT*, ' 1. Tektronix 4014 display'
PRINT*,' 2. HP 7475A Plotter'

* Read the user's choice of the plotting device

READ*. CHOICE

* Initiate the corresponding device

IF (CHOICE .EG. 1) THEN
CALL PINTT (4014, ' ',1.0, 'A')

ELSE
CALL PINIT( 7475, ' ',1.0, 'A')

END IF
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* Set pen velocity

CALL PSTVEL (3.0)

* Establish an origin

CALL PORIG (4.54, 4.0)

* Establish the bounds of the plot

CALL PWIND (0.0,0.0,0.0,0.0)

IF (PLOTJTYPE .EQ. 'LINEAR') THEN

* Scale both X_DATA and Y_DATA

CALL PSCALE (X_DATA, NUM_POINTS ,18.0, FIRSTX. DELTAX,
+ DIVLENX)

CALL PSCALE (Y_DATA, NUM_POINTS, 12 . , FIRSTY , DELTAY,
+ DIVLENY)

* Fill in the array FIRDEL

FIRDEL(l) = FIRSTX
FIRDEL (2) = BELTAX
FIRDEL(3) = FIRSTY
FIRDEL (4) = DELTAY

*

* Draw the linear axes

CALL PAXIS(0.0,0.0,X_AXIS_TITLE,X_AXIS_UNITS,220.
2010, 18. 0,0.0, FIRSTX, DELTAX, DIVLENX)

CALL PAXIS(0.0,0.0,Y_AXIS_TITLE,Y_AXIS_UNITS,120,
1010, 12. 0,90.0, FIRSTY, DELTAY, DIVLENY)

* Draw the linear-linear curve

CALL PLINE (X_DATA, Y_DATA» NUM_POINTS, FIRDEL, 1
,

'
'

,

+ DIVLENX, DIVLENY)

END IF

IF (PL0T_TYPE .EQ. 'LOG-LINEAR') THEN

* Scale the X and Y axes data

CALL PSCALE (X_DATA , NUM_POINTS ,18.0, FIRSTX , DELTAX

,

+ DIVLENX)
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CALL PLOGSC(Y_DATA, NUMJPOINTS, 12 .0, FIRSTY, CLEW , NEGFLGY

)

* Draw the logarithmic Y and linear X axes

CALL PAXIS (0 .0,0.0, X_AXIS_TITLE, X_AXIS_UNITS, 220 , 2010

,

+ 18. 0.0.0, FIRSTX. DELTAX.DIVLENX)
CALL PLGAXS(0.0,0.0,Y_AXIS_TITLE,Y_AXIS_UNITS,-1010,

+ 12. 0,90.0, FIRSTY, CLENY)

* Fill in the array FIRLEN

FIRDEL(l) = FIRSTX
FIRDEL(2) = DELTAX
FIRDELO) = FIRSTY
FIRDEL(4) = CLENY

* Draw the log-linear curve

CALL PLGLIN (X_DATA, Y_DATA , NUM_POINTS , FIRLEN, 1 ,
'

+ DIVLENX)

END IF

IF (PLOT_TYPE .EQ. 'LINEAR-LOG') THEN

* Scale the data
CALL PLOGSC(Y_DATA, NUM_POINTS. 18 .0, FIRSTX, CLENX, NEGFLGX)
CALL PSCALE(Y_DATA, ND?.l_POINTS, 12 .0, FIRSTY, DELTAY,

+ DIVLENY, )

* Draw the axes

CALL PAXIS (0.0,0.0,Y_AXIS_TITIJE,Y_AXIS_UNITS, 120,1010,
+ 12. 0,90.0, FIRSTY, DELTAY,D IVLENY)

CALL PLGAXS(0.0,0.0,X_AXIS_TITLE,X_AXIS_UNITS, 2010, 18.0,
+ 0.0, FIRSTX, CLENX)

*

* Fill in the array FIRLEN

FIRDEL(l) = FIRSTX
FIRDEL(2) = CLENX
FIRDELO) = FIRSTY
FIRDELU) = DELTAY

* Draw the linear-log curve

CALL PLNLOG (X_DATA, Y_DATA, NUM_POINTS , F JRLEN, 1
,

'
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+ DIVLENY)

END IF

IF (PLOTJTYPE .EQ. 'LOG-LINEAR') THEN
*

* Scale the data

CALL PLOGSC (X_DATA, NUM_POINTS, 18 .0, FIRSTX, CLENX, NEGFLGX)
CALL PLOGSC (YX_DATA.NUM_POINTS, 12 .O.FIRSTY, CLENY , NEGFLGY

)

* Draw the logarithmic axes
CALL PLGAXS(0.0,0.0,X_AXIS_TITLE,X_AXIS_UNITS, 2010, 18.0,
+ 0.0, FIRSTX, CLENX)
CALL PLGAXS (0 . 0, . , Y_AXIS_TITLE, Y_AXIS_UNITS, -1010,12 . ,

+ 90. O.FIRSTY, CLEW)

* Fill in the array FIRLEN

FIRDEL(l) = FIRSTX
FIRDEL(2) = CLENX
FIRDELO) = FIRSTY
FIRDEL(4) = DELTAY

* Plot the log-log curve

CALL PLGLOG (X_DATA, Y_DATA, NUM_PO INTS. FIRLEN, 1
,

'
'

)

END IF

* Calculate the length of the plot_title

CALL PTXTLN (PLOT_TITLE,LENSTR)

* Set the character size

CALL PSTCER (0.3,0.4,10.0)

* Set the offset

OFFSET = (18.0 - LENSTR*0.3)1.5)/2.0

* Move the pen to the position where the plot_title is to start

CALL PPLOT(OFFSET, 13.0, 0)

* Plot the title

CALL PTEXT(PLOT TITLE)

•141-



* Close the plotting device

CALL PCLOSP
END
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ABSTRACT

The discrete Fourier transform (DFT) is widely used in various

applications in digital signal procesing (DSP). However, the DFT is a

complex-valued transform and, as such, it transforms real-valued se-

quences into complex-valued transform sequences. Also, the inverse DFT

is different from the forward DFT. In contrast, the discrete Hartley

transform (DnT) is an inherently real-valued transform and is also

symmetric

.

Various properties of the Hartley transform (IIT) and the DHT are

derived in this study and compared with the well-known properties of the

Fourier transform (FT) and the DFT. Decomposition formulas for dif-

ferent fast algorithms to compute the DHT are derived. The algorithms

include the decimation-in-time (DIT) and decimat ion- in-f requency (DIF)

radix-2, radix-4 and split-radix algorithms. Computational cost in

terms of number of multiplications and additions is derived for all the

algorithms and compared. Finally, an application of the DHT in the

analysis of Raman spectra is given, wherein it is used to implement the

matched filter. The matched filter was implemented via the DFT also.

Both filter response and computation time were compared for the two

methods. The DHT approach proved faster in terms of computation time,

but the filter response was insensitive to the choice of the transform.




