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Abstract 

The goal of my project is to summarize large volumes of data and help users to visualize 

how events have unfolded over time. I address the problem of extracting overview terms from a 

time-tagged corpus of data and discuss some previous work conducted in this area. I use a 

statistical approach to automatically extract key terms, form groupings of related terms, and 

display the resultant groups on a timeline. I use a static corpus composed of news stories, as 

opposed to an on-line setting where continual additions to the corpus are being made. Terms are 

extracted using a Named Entity Recognizer, and importance of a term is determined using the 

measure. My approach does not address the problem of associating time and date stamps with 

data, and is restricted to corpora that been explicitly tagged. The quality of results obtained is 

gauged subjectively and objectively by measuring the degree to which events known to exist in 

the corpus were identified by the system. 
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CHAPTER 1 - Introduction 

1.1 Background 

 

This report addresses a text-based information extraction task known as event detection, 

the problem of identifying occurrences mentioned in text that are deemed significant or 

interesting according to some criterion.  Event detection has applications to intelligent search, 

detection and tracking of trending topics from blogs and microblogs, and the application 

explored in this project: timeline construction from online news articles. Query-driven retrieval 

of information is useful if the topic on which further information is needed is clearly defined but 

cannot answer general queries like "What happened over the last month?".  

 

The results returned by search engines are sorted using algorithms which prioritize results 

based on their popularity. A given search term may have different meanings in different contexts, 

and these alternate meanings may be overshadowed by results for more common usages of the 

search term. Sorting through this huge mass of data to identify the few hits of interest is a time 

consuming process and most people do not have the patience to scroll through page after page of 

results.  
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Figure 1.1: An ambiguous search term yields over 72 million hits, with interpretations ranging 

from a common aliment, to a music album by a popular artist 

   

Results from some search terms, for example terms related to people, organizations, 

events and places , are strongly temporal in nature, and lend themselves very well to be viewed 

along a timeline. A timeline helps to visualize the order in which a search term has evolved over 

a period of time, and to get an idea of its significance at various points along the timeline. 

Furthermore, the timeline can also be annotated with additional relevant information, allowing 

for a surprisingly information-rich interface that at the same time is easy to comprehend. 

1.2 Problem statement 

  

The goal of this study is to make search results more accessible to users, by making the 

temporal aspect of the results more lucid. This is achieved by automatically extracting potentially 

important features from search results and clustering contextually related features together. The 

clusters of features so obtained are then displayed along a timeline in a way that makes the 

relative importance of features apparent.  
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Figure 1.2: A timeline view of search results for president Barack Obama. The vertical bars 

indicate the popularity of the search term for a specific time period 

 

We crawl the web for a particular search term to yield a corpus of pages for that 

particular term. We then extract features (named entities and noun phrases) from a corpus of 

documents resulting from the crawl results. Features are automatically extracted based on their 

perceived ‘importance’, a process described in Chapter 4. These extracted features correspond to 

significant events in the corpus, and are ranked based on their relative importance. 

 

The process produces a ranked list of groups of features that correspond to significant 

events in the crawl results. Features determined are then grouped together if they are determined 

to be referring to the same event, and if they occur at roughly the same time. For each group we 

get a relative ranking of importance, a range of dates when it was important, and an indication of 

the amount of coverage in the corpus. This information is used to construct an overview timeline 

of the corpus, which displays related features as 'topics'. 
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1.3 Project objectives 

 

I aim to develop a system that searches a corpus of date tagged news articles and 

automatically extracts features likely to be of relevance to users, where a feature is noun phrase 

or named entity. Relevance judgments are made by statistically determining if the appearance of 

a feature is random or not.  

 

A list of relevant features so obtained is likely to have multiple features that refer to the 

same event. I then look for co-occurring features (features with a high degree of overlap in their 

date ranges) We make the initial assumption that two co-occurring features are not related, and 

use a test to distinguish random association from true association. Once features that are 

related have been found, they are grouped together into what I call 'topics', and a date range or 

ranges for each topic is determined.  

Finally, I aim to construct a timeline using the SIMILE API and display the topics found 

using the method described above. 

1.4 Project methodology 

 

First, I present a literature review of previous and current attempts at event detection and 

clustering, where I aim to identify relevant research. Once relevant work has been found, I aim to 

determine the pros  and cons of each individual approach and determine if existing work can be 

adapted or expanded upon. 

 Next, I describe how I selected a group of date-tagged news articles pertaining to a 

limited set of events that have received significant coverage in the news. These articles will be 
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then be run though the Stanford Named Entity Recognizer in order to determine list of Named 

Entities and Noun Phrases contained in each individual article.     

 Once lists of features have been obtained, relevance judgments will be made for each 

feature, in each article. Co-occurring Features will be then tested for association and features 

determined to be referring to the same event will be grouped into topics. Each topic will have a 

date range, or multiple date ranges for which it was important calculated. This information is 

used to create a timeline using SIMILE.  

 In order to determine the efficacy of the system, the topics identified by the system are 

manually compared to a list of important topics known to exist in the data set. Also, subjective 

judgments about the quality of the search results will be made by end-users of the system. 

 

 

 

 

 

 

 

 

 

 



6 

 

CHAPTER 2 - Background 

2.1 The need for a timeline interface 

 

Today, users of search engines are presented with results that may run into millions of 

pages. It is extremely difficult for users to sort through a huge mass of results and find hits 

corresponding to potential topics of interest. For example, consider someone who has returned 

from a couple of weeks of vacation without access to a news source and who now wants to know 

what has transpired during his absence. He would have to go through two weeks' worth of 

newspapers, but this is a potentially time consuming proposition. An automated information-

extraction system could assist him by automatically picking out topics that have lately received 

significant coverage in the news, and bringing them to his attention. Similarly, consider an 

analyst whose task is to monitor the web for news of disease outbreaks from all over the world, 

and to determine if a disease outbreak in some part of the world has the potential to become more 

widespread. In such a usage scenario, it would be helpful if a system was available that would 

search for news reports that contain references to a pre-programmed list of  diseases of interest. 

If the number of reports from any area that mention a disease cross a threshold, the system would 

automatically bring the situation to the attention of the analyst. 

2.2 Result visualization 

 

 Several attempts have been made to improve the presentation of search results to users, 

usually by attempting to rank search results by importance. The most famous of these methods is 

the PageRank algorithm (Page, Brin, & Motwani, 1999), which attempts to measure the 

importance of each page in a set of linked documents. PageRank is a link analysis algorithm used 
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by the Google Internet search engine that assigns a numerical weighting to each element of a 

hyperlinked set of documents, with the purpose of "measuring" its relative importance within the 

set. The algorithm may be applied to any collection of entities with reciprocal quotations and 

references. PageRank uses the link structure of the internet as an indicator of an individual page's 

value. Essentially a link from page A to page B is interpreted as a vote by page A, for page B. 

The algorithm also considers factors other than the volume of votes, or links a page receives; it 

also analyzes the page that casts the vote. Votes cast by pages that are themselves "important" 

weigh more heavily and help to make other pages "important". However, with respect to the 

scenarios outlined above, this approach is not conducive to identify overall trends in the data. 

This is because the algorithm simply returns a ranked list of results, and does not take into 

account the temporal aspects of the results or the relationships between entities present in the 

search results.  

 

On the other hand,  graphical user interfaces such as timelines are simple and intuitive 

and increase the accessibility of information to a wider audience. A timeline exploits spatial and 

visual clues to provide a graphical representation that is more natural and closer to innate human 

capabilities. Spatial relationships are understood more quickly than verbal representations, and 

visual thinking is believed to be quicker than logical thinking (Galitz) 

 

   There have been a number of systems built for the purpose of browsing the information 

within large collections of data. These systems select significant words and phrases, and display 

them in a manner that allows the user to graphically gist the significant topics in the collection. 

Examples include I
3
R (Croft & Thompson), where the knowledge base is displayed graphically 
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as a network of nodes and links. Nodes represent entities such as documents, and links represent 

relationships between the entities. Wise, et al. (1995) discuss representations called 

ThemeScapes and Galaxies, where ThemeScapes are abstract, three-dimensional landscapes of 

information that are constructed from document corpora, and the Galaxies visualization which 

displays cluster and document interrelatedness by reducing a high dimensional representation of 

documents and clusters to a 2D scatterplot of ‘docupoints’ that appear as do stars in the night 

sky. Kohonen (2001) developed the Self Organizing Map, a type of artificial neural network-

based unsupervised learning model that can be applied to vector representations of text 

documents to produce a similarity graph of input data. These systems are all term, rather than 

document centered, and none of them makes explicit use of time. 

2.3 Previous work on event extraction 

 

(Swan & Allan, 2000) and [Yang, Pierce, Carbonell] are primarily concerned with the 

methodology of automatically selecting features from a corpus for display. (Swan & Allan, 

2000) also discusses the use of timelines as a browsing interface to a large collection of 

documents, and largely build upon the work described in (Swan & Allan, 1999)   

 

The authors make use of the TDT-2 dataset and require a corpus that has already been 

time-tagged. Features are identified and statistically significant features are extracted (These 

correspond to  objects or events that could be of potential interest to end users of the system). To 

obtain the list of features, a shallow parser was used to obtain noun-phrases, and a named entity 

extractor was used to find  locations, organizations, and names of people. The named entities and 

noun-phrases so obtained are what the authors use as 'features'. Once features have been 
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extracted, they are ranked based on how likely they are to have a high content bearing. Once 

features have been extracted, they are grouped onto clusters. Clustering is performed on the 

notion of 'topic', as defined by the TDT studies. The groups of features so obtained are used to 

automatically create an interactive timeline view that displays the major events and topics 

contained in the corpus of data. 

 

The TDT-2 dataset is a collection of 21,255 documents containing 192 topics with known 

relevance judgments. In order to produce groups of related features, the system begins by 

generating a list of named entities and noun phrases contained in the dataset. It then divides the 

corpus into days, and calculates the number of documents containing a feature on any given day. 

Statistical significance of features is calculated using the   metric. It is assumed by default that 

there is no correlation between features, unless co-occurrence is shown to be shown to be above 

a level of significance. Using the number of documents for any given day, the number of 

documents for that day containing a feature in question, the total number of documents in the 

corpus, and the degree of freedom for that feature, the  value can be calculated. The  value 

is only calculated if the occurrence on that day is more than what would be predicted by chance. 

 

The  value is compared to a predetermined threshold, and runs for consecutive days 

over the threshold are combined into a single range. Next, a measure of how distinctive the 

feature was at its peak value is calculated. This is determined by calculating the  value for 

every sub range of the range under consideration, and choosing the highest value thus obtained. 

Terms with significant appearances in the corpus and their associated ranges are then selected 
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and sorted on the maximum  value. This yields a sorted list of the most significant features in 

the corpus and their dates.  

  

These groups of features are then clustered into topics by selecting the highest-ranked 

unclustered feature and comparing the time ranges with all lower ranked features. If the dates 

overlap, a  calculation is performed, and if it is over a predetermined threshold, the feature is 

marked as a potential member of the cluster. Once the list of features has been processed 

entirely, a standard hierarchical agglomerative clustering on the marked features is performed. 

The dendrogram is then cut at a predetermined threshold, and the cluster containing the original 

central element is taken as the valid cluster. Average link clustering was used, as it tended to 

produce uniformly good results while being tolerant of minor weighting errors. 

  

Each cluster obtained was assigned a cluster name consisting of the highest ranked 

named entity followed by the highest ranked noun phrase. Additionally, the following attributes 

were associated with each cluster: 

1. Importance: A relative ranking of importance of the cluster 

2. Range: The range of dates for which the cluster was important 

3. Coverage: An indication of the amount of coverage received by the cluster in the corpus 

4. Interestingness: A measure of how distinctive or surprising the cluster is 

5. Term count: The number of distinctive search terms that are associated with that topic 

 

Finally, the timeline was then constructed using the cluster information determined above. In 

my paper, I only make use of the Importance and Range attributes. 
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[Allan, Papka, Lavenko] discusses the problems of detecting new events, and tracking 

existing events in a stream of news stories. New event  detection entails identifying new stories 

that discuss an event that has not been reported in previous stories, while event tracking refers to 

finding all subsequent stories that are related to a few seed stories.  

An event is defined as something that happens at a particular time and place. In order to 

determine if two events are the same, the authors introduce the concept of event identity, which 

is the set of properties that makes two events the same.  

The data set used in this study was the TDT corpus, which contains 15,863 news stories 

and 25 events. To establish a benchmark for the purpose of evaluating the effectiveness of the 

system, every story was judged with respect to every event. Effectiveness of the system was 

measured by the miss (false negative) and the false alarm (false positive or fallout) rates. A miss 

occurs when the system fails to detect a new event, and a false alarm occurs when the system 

indicates that a story contains a new feature, when it does not. A Detection Error Tradeoff curve 

(Martin) is used to show how false alarm and miss rates vary with respect to each other at 

various threshold values.  

The new event detection algorithm is a modification of the single pass clustering algorithm 

described in (Rijsbergen). It processes new stories on-line (as they arrive) as follows: 

 Use feature extraction and selection to build a query representation of the story's content. 

 Determine the query's initial threshold is by evaluating the new story with the query. 

 Next, compare the new story with earlier stored queries 
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 If the story triggers no previous query by exceeding its threshold, flag the story as 

containing a new event, otherwise, if an existing query is triggered, flag the story as not 

containing a new event. 

 Add the story to the agglomeration list of queries that it triggered 

 If needed, rebuild existing queries using the story 

 Add the new query to memory. 

In order to evaluate the system, the authors carried out a subjective evaluation and an 

objective evaluation. A subjective evaluation carried out by persons other than the authors 

deemed the topics formed by the system to be reasonable. 

In order to carry out an objective evaluation, a text narrative of the major news stories of 

the year called 'Facts on File' was used. The list of stories from Facts on File was taken and 

reduced to a machine readable form, where a date range for each story was given and a list of 

noun-phrases and significant names that might be found were listed. Stories from Facts on File 

were considered as relevant, and stories not listed were considered irrelevant. The output of the 

system was compared with the list of stories from facts on file, and clusters identified by the 

system were deemed relevant if the date range of the cluster corresponded to the date of the 

story, and if there was at least one feature in common with the derived story and the judged 

story. 
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2.4 The SIMILE timeline project 

 

SIMILE timeline is a DHTML based AJAX widget. SIMILE allows users to easily create 

graphical representations of a chronological sequence of events. The purpose of the project was 

originally to create a tool for visualizing a schedule of activities, but over time has evolved to 

become much broader in scope. The method described in this paper makes extensive use of 

SIMILE's ability to represent events that take place over a period of time, as opposed to discrete 

events. 

 

Figure 2.1: A portion of a SIMILE timeline showing news events over a three hour time 

period. The upper band displays hourly news, while the lower band displays events taking 

place over a period of several days. 

 

A timeline contains one or more bands, which can be panned infinitely by dragging with 

the mouse pointer. A band can be configured to synchronize with another band such that panning 

one band also scrolls the other. Bands show the same events at different resolutions, for example, 

the bottom band can show events over a period of several years, while the upper band provides 

an expanded view of a small section of the lower band.   
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Figure 2.2: Bands 

 

A band is responsible for supporting panning as well as coordinating its various sub-

components:  

 An ether, which maps between pixel coordinates and dates/times. It specifies how many 

pixels are taken up by a time span.  

 An ether painter, which paints date/time labels (or other markings) and the background of 

the band as well as the highlight (the lighter part of the lower band in the first timeline 

above)  

 Zero or more decorators, which further decorate the background of the band.  

 An event painter, which paints the events. 

The band also takes an event source which provides events to be displayed in that band. 

Different bands can have different event sources. This flexibility allows for timeline mashups. 

Various sub-components that do painting take a theme, which stores default visual and 

behavioral settings. 

 

A timeline is implemented as a div element that contains inner div elements as its bands. 

The band divs are cropped and positioned relative to the timeline div. A band div itself contains 

several inner elements that implement various parts of the band. The bands also have different 

background colors, and the weekly band of the second timeline has weekend markings. All of 
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these visual elements are "painted" by adding HTML elements to the band divs at the appropriate 

positions.  

 

As a band is panned, its div is shifted horizontally or vertically, carrying all of its visual 

elements along. When either end of the band div approaches the visible (non-cropped) area, the 

band div is re-centered, its coordinate origin is changed, and then its various visual elements are 

re-"painted" relative to the new coordinate origin. All of this "paging" is done as seamlessly as 

possible so that the user experiences smooth, infinite panning.  
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CHAPTER 3 - Methodology 

3.1 Overview 

 

The system finds named entities and noun phrases (features) that are likely to have a high 

content bearing, as determined by conducting a  test. Features are extracted from time-tagged 

news articles, and are marked with the date of4 the news story that they were extracted from. 

Features that stay important for a number of consecutive days are consolidated into a date ranges 

for that feature. Date ranges for multiple features are compared to determine if any overlap 

exists. If features with overlapping ranges are found, it is likely that they both refer to the same 

event in the news, and the features are consolidated into a group. 

For years, a Congressional hearing with Alan Greenspan was a marquee event. 

Lawmakers doted on him as an economic sage. Markets jumped up or down depending on what 

he said.  

From this example, the following features will be extracted; and ranked based on their 

likely importance in the context as follows: 

1. Congressional hearing 

2. Alan Greenspan 

3. Markets 

4. Lawmakers 

5. Sage  

Next, features are clustered on the notion of topic. The result of this will be: 

 Alan Greenspan = {Congressional hearing, Alan Greenspan}, importance = 1 
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 Markets = {markets} , importance = 2  

 Lawmakers = {lawmakers}, , importance = 4  

 Sage = {sage} , importance = 4  

The group information extracted in this way is then projected onto a timeline, an example 

of which can be seen in the figure below: 

 

Figure 3.1: Timeline view of identified topics 
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3.2 System overview 

 

The system can be broadly divided into several distinct components. A broad overview of 

the components involved is as shown in Figure 3.2 below: 

 

Figure 3.2: System overview 
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Data Collector: The data collector uses the Heritrix web crawler and a list of pre-specified seed 

terms and search URLs to obtain the input data set. As the approach described in this report 

relies on the presence of explicit date stamps for individual articles, the web crawler was run on 

the web site of the Reuter's news reporting agency, which tags each story with a date and 

location, amongst other attributes. 

Named Entity Recognizer: The named entity recognizer is run on the results of the web crawl, 

obtained from the data collector. This report makes use of the Stanford NER. This is a four class 

NER tagger, and divides the extracted entities into the following classes: 

PER: Names of persons 

LOC: Geographical locations 

ORG: Entities such as government organizations, institutions  

OTHER: Any entity that cannot be classified as any of the preceding three 

Each entity extracted is tagged with the date of the article in which it was found. 

Chi-Square Calculator: The Chi-Squared value of a feature provides a measure of how 

distinctive the feature under consideration is. This part of the system takes as input the list of 

entities found by the named entity recognizer, and calculates for each feature a Chi-Square value. 

This value is calculated for every day in the corpus and for every term found on any given day. 

Features below a pre determined significance level are discarded.  

Feature Grouper:  Due to the nature of news stories, many of the features detected by the 

system co-occur with each other, and refer to the same event. In order to avoid displaying 

multiple timelines for a single news event, features that belong to one event are identified and 

grouped together to avoid visual clutter on the timeline. Additionally, events that span multiple 

days are identified, and date ranges are calculated for these events.  
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Timeline Preprocessor: In order to create a timeline, a SIMILIE recognizable events file needs 

to be created. This file controls formatting instructions, centers and adjusts the scale of the 

timeline and controls the display of events. This part of the system takes in the list of groups of 

events and individual features with their corresponding date ranges, and generates an XML file 

that can be recognized by SIMILIE.   

3.3 Identifying significant features 

 

We begin by generating a list of all the named entities and noun phrases (locations, 

organizations, names of people) present in the corpus. It is assumed that features are produced as 

a result of a random process with an unknown binomial distribution. Further, we assume initially 

that there is no association between features, i.e. the co-occurrence of two features is devoid of 

meaning until it is shown to be statistically unlikely. We are interested in determining if the 

appearance of a feature is random or not. Features shown to be not random can be considered as 

'interesting' and processed further.  

The  statistic is used for measuring the strength of association, as it is an excellent 

statistic for distinguishing random association from true association. We begin by dividing the 

corpus into individual days. Next, for every day in the corpus, we generate a list of features 

occurring on that day. We discard all features that have four or fewer occurrences in the corpus.  

In order to perform the  test, we need to define what we are taking as samples, and 

what we are taking as occurrences. Here, we take samples as documents, and define an 

occurrence as any document that contains one or more instances of a feature under consideration. 

This statistic is referred to as df (document frequency). 
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a. The number of documents containing the feature for the current day 

b. The number of documents not containing the feature for the current day  

c. The number of documents containing the feature over the entire corpus 

d. The number of documents not containing the feature over the entire corpus 

 

 

 
 

 
  

 
a b 

 
c d 

 

Table 1: Contingency table for calculating the value of individual features 

 

Knowing the number of documents from a given day, the number of documents on that 

day containing the feature (fi), the total number of documents in the corpus (N), and the number 

of degrees of freedom (df) for the feature, we can form a 2 x 2 contingency table. This is 

modeled by a  distribution with one degree of freedom. Using Table 3.1, we can obtain  

from the following equation: 

 

 

The value is calculated for every feature in every article from the corpus. The 

threshold is set at 7.878, which corresponds to a probability of 0.005 that a feature from a 

stationary process would identified as being random. In other words, this would yield 5 false hits 

a day in a 1000 event corpus: a sufficiently low value. Additionally, for events occurring over 

consecutive days, this probability is even lower. Runs of consecutive days above this threshold 
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are combined into a single range. If the  value is above 7.879, the feature is considered to be 

significant and is tracked further.  

 

We may obtain multiple disjoint date ranges for some features. In this case, runs 

separated not by more than one day are combined into a single range. To calculate a measure of 

how distinctive a feature is at its peak value, the  value is calculated for every subrange of the 

range under question, and the highest value is chosen. 

3.4 Grouping similar features  

 

The features and their associated ranges that we have identified are produced by news 

stories and events. For example consider 3.1, which contains Pirates, Somalia and Maersk 

Alabama, all of which are terms from the same story (note the overlap in dates). For a given 

event there are usually multiple terms that are associated with it. Grouping these terms together 

reduces the total number of events that must be comprehended, and makes these evens easier to 

identify.  

 

After selecting terms with significant appearances in the news, and associated ranges, we 

sort on their significance (their  value). This yields a list of the most significant events in the 

corpus and their dates. These features are then grouped into topics by taking the highest ranked 

ungrouped feature, and comparing the time ranges with all lower ranked ungrouped features. If 

the date ranges for two features overlap, we test the default assumption that these features are 

independent over the time span in question. If the test shows that independence is statistically 
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unlikely, we mark these terms as related. This is done by performing a   calculation and if the 

value is above a threshold, this feature is marked as a potential member of the cluster. 

 

Event 

 

            Date Range 

Pirates April 07 - 13 

Chrysler Corporation April 20 - 22 

Somalia April 09 - 13 

Maersk Alabama April 07 - 13 

Swine Flu April 24 - 25 

Table 2: Date ranges for top ranked features by values 

 

As an example, consider the terms in Table 3.1. We do not consider overlapping Maersk 

Alabama with Swine Flu as the date ranges do not overlap. However, Pirates does overlap, so we 

consider the chi-square value for the pair of terms for that date range. That value is 541.2, which 

is well over our threshold, so they are merged. The next term that overlaps is Somalia, with a 

score of 149.7, so we merge that as well. This process continues until no more terms can be 

merged. 

 

In order to group related features together, we sort the features by their  values. For 

each feature, we compare its date range with that of lower ranked ungrouped features. If there is 

an overlap in the date range, we test the hypothesis that these features are independent by 

invoking a second association. The assumption that two features fi and fk have independent 
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distributions implies that P(fi)= P(fj|fk). This is tested for the time spans where features fj and fk 

are significant. The resulting counts form a 2 x 2 contingency table where: 

a. The number of documents in a given time span where fk and fj co-occur 

b. The number of documents where fj occurs without fk 

c. The number of documents where fk occurs without fi 

d. The number of documents containing neither feature  

 

 

 
  

 
a b 

 
c d 

 

Table 3: Contingency table for calculating the value in order to determine co-occurrence 

 

If the  value calculated in this way lies above our threshold of 7.879, we conclude that 

the features are related and add them to the group. 
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CHAPTER 4 - Experiments 

4.1 Evaluation criteria 

 

Information Retrieval Systems are usually judged by determining if a system's results (on 

a fixed set of queries on a fixed corpus) are relevant or not. These relevant judgments are made 

by human assessors. A subjective assessment showed that the system-generated topics created by 

grouping features tend to be of high quality for an automatic system, i.e., most of the retrieved 

features are reasonable and . 

 

For objectively determining overall usability of the system, including that of the timeline 

GUI interface, it is proposed to obtain reviews of the system from persons other than the author. 

4.2 Corpus retrieval 

 

The dataset used for my experiments consisted of a set of about 120 news articles 

collected over a period of several contiguous days from the news reporting agency Reuters. The 

dataset was obtained using a modified version of the Heritrix webcrawler. The crawl was seeded 

with the following groups of terms, each of which had received substantial news coverage at the 

time of running the crawl. 

 

1. Pirates, Somalia, NATO, Navy 

2. Swine Flu, Outbreak, Mexico, WTO 

3. General Motors, Chrysler, Bankruptcy, ATF 
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The advantage of using news articles that they are already tagged with the date on which 

the event occurred. Automatically extracting dates from web pages is possible, but in practice a 

page may contain references to other days that we are not interested in. For example, consider 

this snippet from a news article which illustrates the difficulty in identifying the correct date 

associated with an event: 

 

An Italian cruise ship used guns and a fire hose to beat off a pirate assault. A South 

Korean tug boat with 16 crew onboard, is still being held in northern Somalia after it was seized 

on April 11. 

 

This article is about the event involving the Italian ship, and is dated 29th April, but 

contains reference to an incident involving a Korean ship that took several days previously. In 

this case, we need to make a relevance judgment and select the correct date. Using a pre tagged 

corpus sidesteps this problem. 

4.3 Entity recognition 

 

The corpus so obtained using the crawler was partitioned into individual days. The 

Stanford Named Entity Recognizer was then run on the articles from each day in the corpus, and 

used to generate a list of Named Entities (People, Organizations, Locations) for that day. Each 

named extracted is considered to be a feature of the news article.  

The dataset was broken up into days because as described in the previous section, I make 

use of the df (document frequency) statistic.  
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4.4  Chi-square value calculation 

 

After generating lists of features for each day, we calculate the number of documents 

containing a particular feature on each day of the corpus and the total number of documents 

containing the feature in the corpus. With these numbers, and knowing the total number of 

documents in the corpus, the  value of each feature for each day is calculated. The  value 

for a feature on a particular day in the corpus is only calculated if it is contained in three or more 

documents from that day.  

 

The conventionally accepted significance level is 0.05 or 5%. This corresponds to a  

value of 3.841, for a distribution with one degree of freedom. The next step is hence to discard 

all features that have a  value that is below the threshold. 

4.5 Experimental results: A case study 

 

In order to determine if the appearance of a feature, a  test is performed for every 

feature on every set of documents comprising a day. For the   test, we need to define what are 

taken as samples, and what are taken as occurrences. I use a statistic known as df (document 

frequency), where samples are documents, and an occurrence is any document that contains one 

or more occurrences of a feature under consideration. 

 

 Statistics are only calculated for features with df > 2. For each feature, and for each date, 

the  value is calculated. If it is above 3.841, which corresponds to a probability of 0.05, we 
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begin tracking the feature. The largest contiguous block of days where for each day the feature 

was significant is assembled. For example, the  values for the feature U.S. Centers for 

Disease Control and Prevention, starting with April 23 are as shown in Table 4.1. From April 

23th to April 26th, the feature has a  value of > 3.841, hence the entire date range is associated 

with this feature.  

April 23 April 24 April 25 April 26 

4.78 24.01 4.78 4.83 

Table 4: values for the feature "U.S. Centers for Disease Control and Prevention" 

 

The features and their associated date ranges are produced by news stories and events. 

Every news story tends to have a number of features associated with it, hence in order to simply 

matters for the end users, features associated with the same news story are grouped together. 

Grouping features reduces the number of objects displayed on the timeline, and makes news 

stories easier to identify. Table 4.2 shows some of the   values found by the system, and their 

associated date ranges. 
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Feature Chi-Square value Dates 

Chapter 11 45.51724138 23, 24, 25 

Pakistan 35.0798419 23 

Swat Valley 35.0798419 23 

General Motors 30.31468531 23, 25 

Chrysler 30.31468531 23, 24, 25 

Swine Flu 30.31468531 23, 24, 25, 26 

Mexico 30.31468531 23, 24, 25, 26 

California 10.90909091 23, 24, 25 

 

Table 5: Features ranked by  values 

 

In order to group stories, the feature list is first sorted on the values. For each feature 

not part of a group, the date range for the feature is compared with that of lower ranked features. 

If there is an overlap in date ranges, the default assumption that features are independent is tested 

by carrying out a test. If the test shows that independence is statistically unlikely, the features 

are marked as related. For example, consider the entries in Table 4.2. It can be seen that Chapter 

11 overlaps with Chrysler, and when the values for the two features are calculated, they are 

found to be above the threshold. Hence the two features are merged. The next feature that has a 

date overlap is General Motors, which is also above the threshold and it too is merged. After 

merging terms, we obtain the news stories shown in Figure 4.3. 
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News Story Date Range 

General Motors, Chrysler, Chapter 11 April 23 - 26 

Swine Flu, Mexico, California April 23 - 26 

Pakistan, Swat Valley April 23 

Table 6: Extracted news stories 

 

The news stories and their date ranges so obtained are then written to an events file that is 

in a format that can be recognized by the SIMILIE timeline generator, along with instructions 

that specify the date range and resolution of the timeline. SIMILIE automatically takes care of 

how events are laid out and produces a timeline.  

  

 

Figure 4.1: Constructed SIMILIE timeline 
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CHAPTER 5 - Conclusion 

 

This report presents a technique for generating clusters of named entities and noun 

phrases that capture the information corresponding to major news topics covered in the corpus. 

The resultant clusters were evaluated with the help of human assessors, who felt that the resultant 

groupings of features were very indicative of important topics within the dataset 

 

Ultimately, I would like to implement a system that automatically tags events with dates, 

rather than relying on an explicitly time-tagged corpus. In the future, the semantic web will allow 

for tagging of a large amount of information, rather than just the date to be associated with web 

pages. This metadata could conceivably be used to garnish the timeline with other relevant 

information. It is not hard to imagine a use case scenario where clicking on an event on the 

timeline allows for viewing additional information about that event, all of it gleaned 

automatically from the source document. 

 

 Future improvements to the system could focus on improving the accuracy of feature 

extraction. At the moment, about 1 in every 200 features extracted for single-day events is 

spurious although events spanning multiple days are far less susceptible to this kind of error.  

 

The techniques presented in this report can make a significant contribution to the 

accessibility of information, as it allows the creation of an overview timeline that provides a 

high-level overview of the content of a large amount of data. As the amount of metadata 
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available online increases, systems similar to the one described here can be expected to become 

more common, thus simplifying user interaction. 
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Appendix A: χ2 tests 

 

A χ2 test (chi-square test) is any statistical hypothesis test in which the test statistic has a 

chi-square distribution when the null hypothesis is true, or any in which the probability 

distribution of the test statistic (assuming the null hypothesis is true) can be made to approximate 

a chi-square distribution as closely as desired by making the sample size large enough. 

 

An example of where the distribution of the test statistic is an exact chi-square 

distribution is the test that the variance of a normally-distributed population has a given value 

based on a sample variance. Such a test is uncommon in practice because values of variances to 

test against are seldom known exactly. 

 

Some examples of chi-squared tests where the chi-square distribution is only 

approximately valid are: 

 

 Pearson's chi-square test  

 Yates' chi-square test 

 Mantel-Haenszel chi-square test. 

 Linear-by-linear association chi-square test. 

 The portmanteau test in time-series analysis, which tests for the presence of 

autocorrelation 

 Likelihood-ratio tests in general statistical modeling, for testing whether there is 

evidence of the need to move from a simple model to a more complicated one (where 

the simple model is nested within the complicated one). 
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Appendix B: The χ2 distribution 

 

The χ2 distribution (or chi-square distribution) is one of the most widely used theoretical 

probability distributions in probability theory and inferential statistics. It is useful because, under 

reasonable assumptions, easily calculated quantities can be proven to have distributions that 

approximate to the chi-square distribution if the null hypothesis is true. In this paper, it is used to 

test if the co-occurrence of two events is statistically significant. 

 

The best-known situations in which the chi-square distribution is used are the common 

chi-square tests for goodness of fit of an observed distribution to a theoretical one, and of the 

independence of two criteria of classification of qualitative data. Many other statistical tests also 

lead to a use of this distribution, like Friedman's analysis of variance by ranks. 

Definition: 

 

If Xi are k independent, normally distributed random variables with mean 0 and variance 

1, then the random variable: 

 

 

is distributed according to the chi-square distribution with k degrees of freedom. This is 

usually written as: 

 

 

The chi-square distribution has one parameter: k - a positive integer that specifies the 

number of degrees of freedom (i.e. the number of Xi) 

 

The chi-square distribution is a special case of the gamma distribution. 
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Probability density function of the χ2 distribution  

 

 

Cumulative distribution function of the χ2 distribution 

 


