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Abstract 

Autoclaved Aerated Concrete (AAC) is a lightweight concrete building material cut into 

masonry blocks or formed larger planks and panels.  Currently it has not seen widespread use in 

the United States.  However, in other parts of the world it use has been used successfully as a 

building material for over fifty years.  AAC is a relatively new (at least to the United States) 

concrete masonry material that is lightweight, easy to construct, and economical to transport.  Its 

light weight is accomplished through the use of evenly distributed microscopic air bubbles 

throughout the material; these bubbles result in a lightweight concrete that is composed of a 

latticework around spherical voids.  This report details the history, physical properties, 

manufacturing process, and structural design of AAC.  This report includes an explanation of the 

2005 Masonry Standards Joint Committee (MSJC) Code for the design of AAC members 

subjected to axial compressive loads, bending, combined axial and bending, and shear.  An 

example building design using AAC structural components is provided.  This report concludes 

that AAC has important advantages as a structural building material that deserves further 

consideration for use in the United States. 
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CHAPTER 1 - Introduction 

Autoclaved aerated concrete (AAC) is a lightweight concrete material that was developed 

in Sweden approximately 85 years ago but only recently, as early as 1990 in the Southeast, has it 

been used or produced in the United States (www.gostructural.com).  It is a lightweight building 

material that is easy to build with, has great thermal properties, and can be easily produced from 

locally available materials.  AAC is commonly found as masonry block units or as larger planks 

that can be used as wall components or as roof or floor components (Figure 1.1).  AAC has a 

high percentage of air making up its volume and the materials that are used to make it can be 

recycled from waste AAC material.  Recycled AAC can be ground up finely and can be used as 

the aggregate in the new mixture.  Also, the energy that is required to produce AAC is much 

lower than other masonry products (www.eaaca.org). 

 

 
Figure 1.1: AAC Masonry Block and Plank/Panels  

(left: www.e-crete.com, right: www.masonryinnovations.net) 

 

This report provides detailed information on the history, mechanical properties, a 

description of the manufacturing process, and the structural design requirements of autoclaved 

aerated concrete.  For the structural design requirements, the various strength requirements for 

axial, bending, and shear, are explained and examples are provided.  Using the 2005 Masonry 
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Standards Joint Committee Code (2005 MSJC Code), design of a simple building is provided 

using AAC structural components. 

 

The purpose of this paper is only to inform the reader of the capabilities of autoclaved 

concrete as well as provide examples on design approach as set forth by the 2005 MSJC Code.  It 

is not meant to create a new design approach nor is it to provide newly proposed analytical 

provisions. 
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CHAPTER 2 - History 

Compared to the twelve thousand plus years of masonry history, (masonry was used in 

the Egyptian pyramids, Mayan civilization, etc) the history of autoclaved aerated concrete begins 

much, much later on in the masonry history timeline.  The earliest specification, developed by 

the American Society for Testing and Materials International (ASTM International), for the 

design of AAC was released just nine years ago in 1998 and was a specification covering the 

structural design of non-load bearing and bearing walls of AAC.  Although the idea of aerating 

concrete to make it lighter is not a new idea the idea of autoclaved aerated concrete was first 

developed and patented in the early nineteen twenties in Sweden.  A Swedish architectural 

science lecturer, by the name of Johan Axel Eriksson, first discovered AAC in 1923 almost 

accidentally while working on some aerated concrete samples he placed them in an autoclave to 

speed the curing process (www.cfg.co.nz).  Its application was similar to masonry but it was 

more lightweight.  The use of AAC spread through Europe, then Asia, then Australia, and has 

just only recently (recently being the early 1990’s) come to United States.  AAC started out in 

the American southeast and has slowly been spreading in its use to other parts of the country.  In 

1998 the Autoclaved Aerated Concrete Products Association (AACPA) was formed to promote 

the use of autoclaved aerated concrete in the United States (www.aacpa.org). The AACPA is 

similar to the European Autoclaved Aerated Concrete Association (EAACA) which was created 

in 1988. 

 

Currently, in the United States, there are two producers of autoclaved aerated concrete.  

Xella Aircrete North America Inc. (Hebel) has plants located in Texas, Georgia, and Mexico as 

well, and AERCON is located in Florida (www.aacpa.org).  The annual production of AAC in 

the United States is not currently available, however, the annual production capacity of the 

largest North American producer of AAC (Hebel’s Georgia Facility) can produce approximately 

2.7 billion cubic feet (250,000 cubic meters) per year (www.xella-usa.com) 
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CHAPTER 3 - Manufacturing Process 

The production of Autoclaved Aerated Concrete (AAC) is similar in nature to the 

production of clay masonry units or even precast concrete.  The materials used in AAC are 

similar to the concrete normally used in structural components.  The manufacturing process of 

AAC can be likened to the process of baking bread, and can be summarized into five main steps: 

1) Assembling and mixing of the raw materials. 

2) Adding of the expansion agent. 

3) Expansion, shaping, pre-curing., and cutting. 

4) Final curing utilizing an autoclave. 

5) Packaging and shipping. 

The image below depicts the manufacturing process beginning with the mixing of raw materials 

and ending with the shipping stage. 

 

 
Figure 3.1: Manufacturing Process of AAC Masonry Units (www.aacstructures.com) 
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Step 1: Assembling and mixing of the raw materials 

The production of AAC starts with the raw materials of silica, cement, lime, and water.  

The silica, which is used for the aggregate, is made from finely ground quartz.  Fine sand can be 

used in place of silica.  Also, fly ash, slag, or mine tailings which are the ground up remains from 

mining operations, can be used as aggregate in combination with the silica.  These materials are 

the fine aggregate of the concrete mix.  The aggregate needs to be a fine gradation, not course or 

large material because a larger aggregate interferes with the internal structure created by the 

microscopic bubbles produced in step 2.  Portland cement is used, just as it is used in normal 

concrete mixes.  Portland cement is the binding agent which holds the aggregate together.  It 

reacts with water in a process called hydration and then hardens, bonding all the aggregates 

together to form a solid material.  All these mixed together with water form the base AAC 

mixture.  The raw components are then mixed together with water in a large container. 

Step 2: Adding of the expansion agent 

In making a loaf of bread, yeast is added to the dough mixture to make the bread rise.  In 

a similar way, an expansion agent is added to the concrete mix to increase its volume.  Yeast 

produces carbon dioxide which causes the dough to expand.  In autoclaved aerated concrete, the 

expansion agent that is used is aluminum powder or paste.  The aluminum reacts with the 

calcium hydroxide and water in the mixture creating millions of tiny hydrogen bubbles (Figure 

3.2).  This process can be shown by the following chemical equation (Pytlik & Saxena 1992): 

 

( ) 2 2 3 22
2 3 6 3 6 3 2Al Ca OH H O CaO Al O H O H+ + → ⋅ ⋅ +  

Aluminum Powder + Hydrated Lime → Tricalcium Hydrate + Hydrogen 

 

The hydrogen that is formed in this process bubbles up out of the mixture and is replaced by air 

(www.gmchomesfl.com).  The hydrogen, which is a lighter gas, rises and is replaced by air 

which is a denser gas that gets into the mix as the hydrogen foams up out of the material.  The 

aluminum expansion agent is thoroughly mixed into the batch so that it is evenly distributed 

during the mixing process.  The creation of hydrogen bubbles causes the mix to expand, 

increasing the volume of the mixture approximately two to five times its normal volume.  The 

volume increase is dependent upon the amount of aluminum powder/paste that is introduced to 
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react with the calcium hydroxide in the mixture.  The less expansion that is induced will produce 

a higher strength material (more dense) versus the maximum amount of expansion induced, 

which produces a lower strength material (less dense).  The microscopic voids created by the gas 

bubbles give AAC its light weight and other beneficial material properties, such as its high 

thermal resistance properties. 

 

 
Figure 3.2: Air voids in AAC (Tanner 2003) 

 

Step 3: Expansion, shaping, pre-curing, and cutting. 

After the addition of the expansion agent, the mix is poured into metal molds where it is 

allowed to expand.  If a plank or panel is being cast, then steel reinforcement is placed in the 

mold prior to pouring the mix into the mold.  The steel reinforcement is used to give tension 

strength to the lightweight concrete material.  When the mix is poured into the forms, commonly 

20 feet x 4 feet x 2 feet thick (Pytlik & Saxena 1992), it first expands and then is allowed to pre-

cure for several hours.  The pre-curing stage is to allow enough time such that the block can 

maintain its shape outside of its mold.  The pre-cured block can then be cut, utilizing a device 

that uses thin wires, into the desired shapes.  Standard AAC masonry can be found with nominal 

dimensions of 8 inches deep by 24 inches long with varying thickness of 4 inches to 12 inches. 

The larger blocks are cut into solid masonry blocks similar to concrete masonry units (CMUs).  

Unlike CMU, AAC masonry units are cut from the larger block rather than being formed 

individually.  The production of a plank, which can have reinforcement cast in, is not cut from a 
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large block.  The waste that is produced from cuttings or any leftover bits can be reused in the 

original mixture as aggregate after being finely ground. 

Step 4: Final curing utilizing an autoclave 

As defined by dictionary.com unabridged v1.1, an autoclave is “a strong, pressurized, 

steam-heated vessel.”  This large steam-heated vessel is in effect a large pressure cooker by 

which the autoclaved aerated concrete is cured.  Curing is the process by which the concrete 

mixture hardens through hydration (chemical process between cement and water), with the 

autoclave the blocks are cured with steam at high pressures.  The pressure, temperature, and 

moisture are closely controlled for the twelve hours of curing time.  The monitoring of proper 

pressure, temperature, and moisture allows for the optimum conditions for which hydration can 

occur.  During this process the autoclave is heated to 374 degrees Fahrenheit and pressurized to 

12 atmospheres of pressure, “quartz sand reacts with calcium hydroxide and evolves to calcium 

silica hydrate which account for the material's physical strength properties 

(www.gmchomesfl.com).”  Basically, this step can be described as the actual baking portion like 

with bread. 

Step 5: Packaging and shipping 

After approximately twelve hours of curing time (Pytlik & Saxena 1992), the cured 

blocks are removed from the autoclave, packaged, and shipped.  Figure 3.3 shows AAC being 

transported to a construction site.  Various literature states that after AAC is autoclaved it can be 

immediately shipped and used for construction, it is assumed that the cooling step is not 

expressed as a period of time where the material is set aside for the express purpose to cool 

down, but as the period of time when the material is being packaged.  At this point in the process 

the autoclaved aerated concrete units are ready for use in the construction process.  Currently in 

the United States, the greatest production and use of AAC is in the southeast. 
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Figure 3.3: Transportation of the AAC to jobsite (www.gmchomesfl.com) 
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CHAPTER 4 - Material Properties 

The material properties of autoclaved aerated concrete as listed by the 2005 MSJC Code 

are provided in the following sections: 

4.1 AAC Material Properties 
Autoclaved aerated concrete must have a minimum specified compressive strength (f’AAC) 

of 290 psi.  This is much lower than commonly specified 'mf of 1500 psi for CMU.  The 

strength class of AAC materials is described in ASTM Specification C 1386. 

 

Table 4.1: ASTM Specification C 1386 Autoclaved Aerated Concrete Masonry Units 

 
 

Although the compressive strength of this material is much lower than standard CMU, the 

strength is adequate for a low-rise construction.  The higher a building is constructed the more 

load the bottom portions of the structure must support.  Because of the lower strength of masonry 

compared to steel or concrete, a masonry structure would need larger members sizes at the 

bottom to support the same loads and remain stable.  This is why load-bearing masonry 

structures, and especially AAC, are not very tall when compared to buildings of steel and or 

concrete.  The compressive strength of AAC is also adequate for the other uses such as partitions 

or curtain walls, as shown in Figure 4.1. 
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Figure 4.1: AAC used as an exterior non-bearing wall in Warsaw, Poland (Stephens) 

 

The compressive strength of the grout (f’g) used with construction of autoclaved aerated 

concrete must be within a range of 2000 psi to 5000 psi.  This is the same grout that is used with 

CMU.  See ASTM C 476 the Specification for Grout for Masonry.  The same mortar types used 

for CMU are also used for AAC, however due to dimensional tolerances the AAC can be laid 

with thinner joints.  ASTM C 270 is the specification for mortar for unit masonry. 

4.1.1 Material Properties of AAC Masonry from the 2005 MSJC Code 

The proceeding information are the material properties that apply to equations used to 

calculate the AAC cracking moment, shear strength, and the reinforcement yield strength used in 

AAC masonry construction. 

 

The equation for masonry splitting tensile strength (2005 MSJC Code eq. A-1) which is 

used to determine the modulus of rupture is: 

2.4 'tAAC AACf = × f       (Equation 4.1) 

For example, using the minimum compressive strength, ftAAC, of 290 psi is: 

2.4 290 40.87tAACf psi psi≤ × =  
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The modulus of rupture for autoclaved aerated concrete is twice the masonry splitting 

tensile strength with maximum limitations of 50 psi and 80 psi for sections that contain 

horizontal leveling bed and thin-bed mortar, respectively.  A horizontal leveling bed is a thicker 

layer of mortar that is used to even out or level the height of a masonry unit, whereas thin-bed 

mortar are thinner layers of mortar that can be used with AAC.  The modulus of rupture can be 

calculated as: 

 

2r AAC tAACf f= ×       (Equation 4.2) 

 

Masonry direct shear strength is calculated using 2005 MSJC Code eq. A-2. 

 

0.15 'vf f= × AAC       (Equation 4.3) 

 

For example, using the minimum compressive strength, fv can be calculated as:  

 

0.15 290 43.5vf psi psi≤ × =  

 

Depending on whether or not mortar is used in the bed joint, the coefficient of friction 

between AAC units is given as the following and can be found in MSJC Code 2005 A.1.8.5: 

µ = 0.75 ~ friction between AAC units 

µ = 1.00 ~ friction when using thin bed or leveling bed mortar 

The coefficient of friction is used in the calculation of the sliding shear capacity which will be 

covered in chapter 5. 

 

The maximum yield strength, yf , of the reinforcing steel used in AAC is 60,000 psi.  This 

refers to the steel used to resist shear and tensile stresses that exceeds the strength of AAC. 

 

The modulus of elasticity of AAC can be found in the 2005 MSJC Code, section 1.8.2.3.1 

and is taken as: 

( )0.66500 'AAC AACE f=       (Equation 4.4) 
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This equation for modulus of elasticity is found in the 2005 MSJC Code, section 1.8.2.3.1. 

 

 The bearing strength of AAC is a strength reduction factor, 0.6, multiplied by the 

compressive strength (f’AAC) multiplied by the area as defined in the 2005 MSJC Code Section 

A.1.10.2.  The nominal bearing strength (Cn) can be described in the following equation: 

 '         (Equation 4.5) n AACC Af=

 The area used for the nominal bearing strength is: 

1A direct bearing area=  

or: 

 2
1 1

1

2AA A
A

≤  

 “Where A2 is the lower base of the largest frustum of a right pyramid or cone having A1 

as the upper base sloping at 45 degrees from the horizontal and wholly contained by the 

support.” (2005 MSJC Code)  This terminates at head joint for walls not in running bond. 

 

4.2 AAC Performance Properties 
There are other properties of autoclaved aerated concrete that can be described as 

material performance properties as contrasted with strength of material properties.  Material 

performance properties describes the less structural properties of AAC. 

 

Normally, concrete weighs in at about 130 lbs to 155 lbs per cubic foot whereas AAC 

weighs in, at its lowest, at around 25 lbs per cubic foot and at its highest at around 50 lbs per 

cubic foot.  This makes for easy transport (more material can be transported at once) and 

installation (faster installation of lighter masonry units).  This idea is further discussed in chapter 

7. 

 

AAC has good thermal properties without the aid of insulation.  AAC can absorb large 

amounts of radiant energy and slowly releases that thermal energy to the surroundings.  An 8 

inch wall constructed of AAC has an R-Value approximately of 11-12 (Aercon) without 

considering any other materials that may be attached for finishes.  In comparison, 1 inch rigid 
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insulation (cellular polyurethane) has an approximate R-Value of 6.  The higher the R-Value is, 

the better the thermal properties.  An 8 inch CMU Wall with cells filled with vermiculite has an 

approximate R-Value of 1.5.  These R-Values are taken from the Principles of Heating 

Ventilation and Air Conditioning (Principles of HVAC 2001).  A 2 inch x 6 inch wood stud wall 

with R-13 batt insulation, wood sheathing, gypsum board, felt, and shingles has an R-value of 

approximately 15.23 (Albright, Gay, Stiles, Worman & Zak, 1980).   This is an example of a 

wall combining structural components with non structural materials to form something with an 

insulating value that meets requirements.  In contrast AAC alone acts as the structural 

component and insulating material.   

 

In addition to its thermal insulation properties, is AAC’s 4 hour fire rating (Pytlik & 

Saxena, 1992).  Both 6 inch load bearing walls and 4 inch non load bearing walls of AAC have 4 

hour fire ratings.  This also includes 6 inch roof and floor panels. (Aercon)  In comparison, a 

wall of CMU has a required thickness of 8 inches or more to obtain a 4 hour fire rating (NCMA 

TEK 7-1A).  Concrete is a noncombustible material that is commonly used for fire separation 

walls as solid normal weight and light weight concrete, CMU and AAC. 

 

AAC is good as a sound absorber and has been used frequently as sound walls along side 

roadways.  A material that is a good sound absorber has the capacity to reduce reflected sound by 

absorbing some of the sound without all of it being reflected back.  On the other hand, AAC 

transmits sound at a somewhat higher rate than normal CMU.  The sound transmission class, 

STC, of an 8 inch AAC wall is 41(www.acsolar.com), which is comparable to an STC value of 

49 for a hollow 8 inch CMU wall (NCMA TEK 13-1a). The higher the STC is, the greater the 

sound reduction or the lower the STC the less sound reduction.   

 

Because AAC is a non-organic building material, autoclaved aerated concrete is naturally 

mold resistant.  It is also unaffected by termites and does not decompose.  This makes AAC 

more of a low maintenance material than wood.   

 

Through its various material and performance properties it is seen that AAC is a great 

material for the construction of walls in buildings even though it has a relatively low 
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compressive strength.  It is easily installed because of its light weight, has good thermal 

characteristics which increase a building’s energy efficiency, a 4-hour fire rating, and is a non-

organic material produced from readily available material.  Its strength, although lower than 

standard CMU, is quite adequate for low-rise construction. 
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CHAPTER 5 - Structural Design Requirements 

In the design of AAC structures, the requirements set forth in the 2005 Masonry 

Standards Joint Committee Code, Specification, and Commentaries Appendix A is used.  This 

chapter provides several design examples demonstrating various code requirements for the 

design of AAC as a structural building material.  Members under axial compression, bending, 

combined axial compression and bending, out of plane and in plane loading of walls by wind or 

seismic forces, are covered.  The design of AAC currently only uses Strength Design. 

5.1 Unreinforced and Reinforced Members Subjected to Axial Compression 

Only 
AAC members that are subjected to axial compression consist mainly of bearing walls.   

For the design of unreinforced AAC members the nominal axial strength of a member is based 

on the compressive strength of the material and the slenderness of the wall.  The slenderness of 

the wall is determined by taking the height of the member divided by the member’s radius of 

gyration.  The radius of gyration of a member is the square root of the moment of inertia divided 

by the area of its cross-section or: 

Ir
A

=        (Equation 5.1.1) 

Once the slenderness ratio, h
r  is determined, the code specifies two formulas to determine the 

axial strength of a member depending on the slenderness ratio.  If the ratio is equal to or less than 

99 the nominal axial compressive strength is given by 2005 MSJC Code (Eq. A-3): 
2

0.80 0.85 ' 1
140n n AAC

hP A f
r

⎡ ⎤⎛ ⎞⎛ ⎞= × × × × −⎢ ⎜ ⎜ ⎟⎜ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎥⎟⎟   (Equation 5.1.2) 

For a slenderness ratio greater than 99 the nominal axial compressive strength is given by 2005 

MSJC Code (Eq. A-4): 

 
2700.80 0.85 'n n AAC

rP A f
h

⎡ ⎤⎛ ⎞= × × × ×⎢ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎥    (Equation 5.1.3) 
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In the following example with the conditions shown, the dimensions of the unreinforced AAC 

wall are used to determine the maximum factored load per linear foot of wall (wu) the wall can 

support: 

• Height of wall is 10’ 

• Wall thickness 8” 

• ' 290AACf psi=  

• Properties are based on solid block 

10'

8"
UNREINFORCED AAC WALL

 
Figure 5.1: Example Unreinfored AAC Wall Axial Strength 

Moment of Inertia per foot length of wall: 

( )33
412 8

512
12 12
bhI in

×
= = =  

Area per foot length of wall: 
28 12 96A bh in= = × =  

Radius of gyration: 
4

2

512 2.309
96

I inr i
A in

= = = n  

Slenderness ratio: 

( )10 12
51.97

2.309
inh

r in
×

= =  

51.97 99h
r
= ≤  Therefore use Equation 5.1.2 
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( )

2

2
2

0.80 0.85 ' 1
140

10 12
0.80 0.85 96 290 1 16322.4

140 2.309

n n AAC

n

hP A f
r

in
P in psi

in

⎡ ⎤⎛ ⎞⎛ ⎞= × × × × −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞×⎛ ⎞⎢ ⎥⎜ ⎟= × × × × − =⎜ ⎟⎜ ⎟×⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

lbs

 

The nominal axial compressive strength that was found in this example is based upon a one foot 

section of wall.  Therefore the ultimate load the wall can support is the nominal axial strength per 

foot of wall multiplied by the strength reduction factor, 0.9.  The strength reduction factor can be 

found in the 2005 MSJC Code Section A1.5.1. 

( )

16322.4

0.9 16322.4 14690

14690

n

n

u

lbsP ft
lbsP lbs ft

w plf

φ

=

= =

=

 

This is the calculation for unreinforced AAC under axial loading.  The calculation for reinforced 

AAC subjected to axial loading is slightly different using the 2005 MSJC Code.  In reinforced 

AAC, reinforcing steel or welded wire fabric can be placed in the form before the molding 

process for horizontal or vertically spanning wall panels.  In the case of AAC masonry block, 

hollow cells can be cut in the block so that rebar can be placed in a cell and be grouted during the 

construction process.  Reinforcement can provide additional strength in compression for AAC 

but does not usually apply because the reinforcement must be confined by ties.  This is similar to 

reinforced CMU.  As in the previous calculations, the slenderness ratio is used to determine 

which equation is to be used in calculating the nominal axial strength of the AAC in 

compression.  If the slenderness ratio is equal to or less than 99 the nominal axial strength is 

given by 2005 MSJC Code (Eq. A-7) 

 

( )
2

0.80 0.85 ' 1
140n AAC n s y s

hP f A A f A
r

⎡ ⎤⎛ ⎞⎡= × × − + × −⎤ ⎢ ⎥⎜ ⎟⎣ ⎝ ⎠⎦
⎢ ⎥⎣ ⎦

 (Equation 5.1.4) 

For a slenderness ratio greater than 99 the nominal axial strength is given by 2005 MSJC Code 

(Eq A-8) 

( )
2700.80 0.85 'n AAC n s y s

rP f A A f A
h

⎛ ⎞⎡= × × − + × ⎜ ⎟⎣ ⎝ ⎠
⎤⎦   (Equation 5.1.5) 
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In reinforced AAC, the area of steel has an effect on the overall nominal capacity of the member.  

The reinforcing displaces a small area of concrete in the AAC member and so that area is taken 

out for the calculation of the nominal strength.  In the following example the nominal axial 

strength of a reinforced wall is calculated using the given conditions: 

• Wall height is 12’ 

• Nominal wall thickness is 6” 

• Wall has vertical #5 bars placed at 60” on center 

• ' 290AACf psi=  

• 60000yf psi=  

12'

6"
REINFORCED AAC WALL
w/ #5's @ 60"o.c.

 
Figure 5.2: Example Problem Reinforced AAC Wall Axial Strength 

Moment of Inertia per foot length of wall: 

( )33
412 6

216
12 12
bhI in

×
= = =  

Area per foot length of wall: 
26 12 72A bh in= = × =  

Radius of gyration: 
4

2

216 1.732
72

I inr i
A in

= = = n  

Slenderness ratio: 
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( )12 12
83.1

1.732
inh

r in
×

= =  

83.1 99h
r
= ≤  Therefore use Equation 5.4 

( )
2

0.80 0.85 ' 1
140n AAC n s y s

hP f A A f A
r

⎡ ⎤⎛ ⎞⎡ ⎤= × × − + × −⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦
 

' 290AACf psi=  

2 26072 360
12n

ininA ift in
ft

⎛ ⎞
⎜ ⎟= =⎜ ⎟⎜ ⎟
⎝ ⎠

n

n

 

20.31sA i=  

60 60000yf ksi psi= =  

( ) ( )
( )

2

2 2 2 12 12
0.80 0.85 290 360 0.31 60000 0.31 1

140 1.732

55,550

n

n

in
P psi in in psi in

in

P lbs

⎡ ⎤⎛ ⎞×⎡ ⎤ ⎢ ⎥= × × − + × −⎜ ⎟⎣ ⎦ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
=

 

This gives the nominal axial strength per 5 feet of wall.  From this the ultimate load is 

determined as the nominal axial strength times the strength reduction factor divided by 5’. 

( )

55,550 11,110
5

0.9 11110 9999
9999

n

n

u

lbsP p
ft

P lbs plf
w plf
φ

= =

= =

=

lf

 

The reinforced nominal strength can be rewritten, to determine how much steel will be required 

and at what spacing to help support the axial load on the member.  It can also be rewritten so that 

the required thickness of the wall can be determined based on a given area of steel.  The design 

strength is determined by multiplying the nominal strength, , by the strength reduction 

factor,

nP

φ , found in section A.1.5 of the 2005 MSJC Code.  From A.1.5, the strength reduction 

factor for axially loaded reinforced AAC is 0.90 and the factor for unreinforced AAC is 0.60.  

The factored axial load must always be less than or equal to the design strength: 

nP Puφ ≥        (Equation 5.1.6) 
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These preceding provisions are for axial loads only and the vertical reinforcing must be tied 

similar to a column.  Effective ties for compression steel in walls are not normal practice for 

masonry walls; therefore, most walls are designed as unreinforced even though vertical 

reinforcing is provided.  In section 5.3 of this report, the design strength for combined axial and 

bending will presented. 

 

5.2 Members Subjected to Flexure 
In most cases, a member designed for flexure must be reinforced to resist tension forces 

because AAC has a very low strength in tension.  The material covered in this section is only 

applicable to members that are subjected to flexure combined with an axial compressive force of 

less than five percent of the net cross-sectional area of the member multiplied by as given 

in the 2005 MSJC Code, Section A.3.4.2.1.  After it is determined that the axial force in the 

member is less than the maximum allowed, the nominal moment strength is determined.  The 

nominal flexural strength of a beam must be greater than or equal to 1.3 multiplied by the 

nominal cracking moment strength,

'AACf

crM . 

1.3n crM M≥        (Equation 5.2.0) 

The 2005 MSJC Code does not directly address the design of flexural steel in an AAC 

member for purely flexural members.  The formulas to determine the steel in beams was derived 

from the nominal moment capacity equation for walls subjected to out of plane bending and axial 

loads.  For the case of purely axial loads the portions for moment produced by axial load at an 

eccentricity and axial load with a deflection effect are taken as zero.  The 2005 MSJC (Eq. A-20 

and A-21) are used to determine nominal flexural strength are: 

( )
2n s y u
aM A f P d⎛= + × −⎜

⎝ ⎠
⎞
⎟      (Equation 5.2.1) 

( )
0.85 '

s y u

AAC

A f P
a

f b
+

=       (Equation 5.2.2) 

Modified for flexure only, the equations become: 

( )
2n s y
aM A f d⎛ ⎞= × −⎜

⎝
⎟
⎠

 

     (Equation 5.2.3) 
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Where 

( )
0.85 '

s y

AAC

A f
a

f b
=       (Equation 5.2.4) 

In the following flexure example with the given conditions, the minimum and maximum steel is 

, is 8” 

 

 is 12” 

determined followed by the calculation of the design bending strength for the beam: 

• Beam span is 6’ 

• Nominal width, b

• Nominal depth, h, is 16”

• Nominal depth of steel, d,

• ' 290AACf psi=  

60yf ksi=  • 

6'

16"

8"

12"

 
Figure 5.3: Beam Example Flexural Strength 

  cr1.3nM M≥  

min

1.3
2

1.3
2

rAAC g
s y

rAAC g
s y

f IaA f d
y
f IaA f d

y

⎛ ⎞− ≥⎜ ⎟
⎝ ⎠

⎛ ⎞− =⎜ ⎟
⎝ ⎠

  

min 1.3

2

rAAC g
s

y

f I
A

ay f d
=

⎛ ⎞−⎜
⎝

⎟
⎠

     (Equation 5.2.5) 

( ) ( )2 2.4 ' 2 2.4 290 81.74rAAC AACf f psi= = = psi   (Equation 4.2) 

16 8
2 2
h iny i= = =  n

 21



3 3
48 16 2730.67

12 12g
bhI in×

= = =  

( ) ( )( )0.67 0.003 0.67 12 0.003
4.757

0.003 0.00207 0.003 0.00207
d in

a i= = =
+ +

n  

4
2

min
81.74 2730.671.3 0.063

4.7578 60000 12
2

s
psi inA i

inin psi in

×
= =

⎛ ⎞× −⎜ ⎟
⎝ ⎠

n  

Maximum Steel is based on the 2005 MSJC Commentary 3.3.3.5 the value 0.85, 0.67, and the 

strain value comes from 2005 MSJC Code Section A.3.3.5. 

max

0.85 0.67 ' mu
AAC

mu y
s

y

f bd
A

f

ε
ε αε

×
+

=    (Equation 5.2.6) 

( )
( )
( )

( ) ( ) 2
max

1.5 inf

0.003 max

0.00207

0.0030.85 0.67 290 8 12
0.003 1.5 0.00207

0.16
60000

mu

y

s

tension re orcement factor

usable stain in masonry

yield strain

psi in in
A i

psi

α

ε

ε

=

=

=

× ×
+ ×

= = n

 

Note: The tension reinforcement factor, α, can be found in MSJC Commentary 3.3.3.5. 

Therefore a bar with area of steel between the minimum and maximum will be selected.  A #3 

bar with an area of 0.11 in2 is the only one which meets the requirements. 
20.11sA in=  

Using the modified equations for flexure only: 

( )20.11 60000
3.347

0.85 290 8
in psi

a i
psi in

×
= =

× ×
n  

( )2 3.3470.11 60000 12 68154.9 5679.6
2n

inM in psi in lb in lb ft⎛ ⎞= × × − = ⋅ =⎜ ⎟
⎝ ⎠

⋅  

 

5.3 Members Subjected to Combined Axial and Bending 
In this section the concepts of the two previous sections will be combined.  This section 

is based on walls that have out of plane loading plus an axial compression force.  The nominal 
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axial strength is the same as discussed in the previous section for members with axial loading 

only.  For the nominal flexural capacity the provisions in 2005 MSJC Code A.3.5 are used.  

Equation 5.1.4 (A-7 of the 2005 MSJC Code) is used for walls with a slenderness ratio less than 

or equal to 99.  Equation 5.1.5 (A-8 of the 2005 MSJC Code) is used for walls with a slenderness 

ratio greater than 99.  These equations give the nominal axial compressive strength.  The 

nominal flexural strength is determined using equation 5.2.1 and equation 5.2.2.  The ultimate 

axial load (Pu) is taken as the summation of the factored wall weight at mid-height and the 

factored load on the wall, as given in equation 5.3.1 (2005 MSJC Code Eq. A-18). 

        (Equation 5.3.1) u uw uP P P= + f

The nominal axial strength must further meet the requirements of equation 5.3.2(2005 MSJC 

Code Eq. A-16 ). 

0.2 'u
AAC

g

P f
A

≤       (Equation 5.3.2) 

If the wall being designed does not meet the requirement of equation 5.3.2 then the provisions of 

the 2005 MSJC Code A.3.5.5 must be used.  Section A.3.5.5 also applies if the slenderness ratio 

is greater than 30, if the slenderness of 30 is exceeded a minimum 6 inch wall thickness is 

required.  For the following given data on the wall, the nominal axial strength and nominal 

flexural strength can be determined.  Afterward using the nominal flexural strength the 

maximum out of plane loading can be determined (For example this could be out of plane wind 

load): 

• Wall height is 12’ 

• Nominal wall thickness is 8” 

• A #4 bar is placed vertically every 24” (2’-0”) in the center of the wall. 

• The density of the wall is 35 pounds per cubic foot 

• A superimposed factored load of 1000 pounds per linear foot at center line of wall.  This 

load is assumed to be from a combination of dead load and snow load. 

• Out of plane wind factored load of 10 pounds per square foot 

• ' 290AACf psi=  

• 60yf ksi=  
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12'

8"

2'
#4 bars @ 24" o.c.

w = 1000plfw =1000plf

 
Figure 5.4: AAC Wall Example Axial and Bending Strength 

The factored axial load on the wall at mid-height is determined since it will be combined with 

the maximum moment which will occur at mid-height.: 

( ) 1 8"1.2 35 12 ' 168
2 12

u uw uf

uw

P P P

P pcf

= +

⎛ ⎞= × × =⎜ ⎟
⎝ ⎠

plf

S

 

This uses a 1.2 load factor on the dead load assuming a load combination1.2 +0.8W. 1.6D +

  168 1000 1168uP plf plf plf= + =

Check requirements of equation 5.3.2. 

 
( )

( )2
1168 12.17 0.2 ' 0.2 290 58

8 12
u

AAC
g

P plf psi f psi psi
inA in in ft

= = ≤ =
×

=  OK 

Moment of Inertia per foot length of wall: 

( )33
412 8

512
12 12
bhI in

×
= = =  

Area per foot length of wall: 
28 12 96A bh in= = × =  

Radius of gyration: 
4

2

512 2.309
96

I inr i
A in

= = = n  
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Slenderness ratio: 

 
( )12 12

62.36 30
2.309

inft fth
r in
= = ≥  A 6 inch minimum wall thickness is required. 

99h
r
≤  Therefore use equation 5.1.4. 

 

( )
2

2 2

2

0.80 0.85 ' 1
140

' 290
2496 192
12

0.20
60000

n AAC n s y s

AAC

n

s

y

hP f A A f A
r

f psi
inA in in

A in
f psi

⎡ ⎤⎛ ⎞⎡ ⎤= × × − + × −⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦
=

⎛ ⎞= =⎜ ⎟
⎝ ⎠

=

=

 

Since the steel is not confined and therefore must be neglected for the calculation of compressive 

strength (this would be the same as using Equation 5.1.2 versus 5.1.4) 

( ) ( )

( )

2

2 12 120.80 0.85 290 192 1
140 2.309

30349 15174.52
0.9

0.9 15174.5 13657

n

n n

n

P psi in

lbsP P plfft

P plf plf
φ
φ

⎡ ⎤⎛ ⎞×⎡ ⎤ ⎢ ⎥= × × − ⎜ ⎟⎣ ⎦ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= ⇒ =

=

= =

 13657 1168n uP plf P plfφ = ≥ =  OK 

Determining the nominal flexural strength Equation 5.2.1 and 5.2.2: 

 ( )
2n s y u
aM A f P d⎛ ⎞= + × −⎜ ⎟

⎝ ⎠
 

 
( ) ( ) ( )( )

( )( )

20.20 60000 1168 2
7.27

0.85 ' 0.85 290 8
s y u

AAC

in psi plf ftA f P
a i

f b psi in
++

= = = n

n

 

  4d i=
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( ) ( )( )

( )

2 7.270.2 60000 1168 2 4 5232.64
2

436
0.9

0.9 436 392.4

n

n

n

inM in psi plf ft in lb in

M lb ft

M lb ft lb ft
φ
φ

⎛ ⎞= + × − =⎜ ⎟
⎝ ⎠

= ⋅
=

= ⋅ = ⋅

⋅

 

Comparing the moment from out of plane wind: 

 ( )( )22 10 1 12
180 392.4

8 8u n

psf ft ftwLM lb ft M lb ftφ= = = ⋅ ≤ = ⋅  O.K. 

 

Equations 5.3.3 (2005 MSJC Code equation A-17) for the total moment on the wall takes 

into account the effects of axial load eccentricity and second order P-delta effects. 

 
2

8 2
u u

u uf
w h e

u uM P Pδ= + +      (Equation 5.3.3) 

  
( )

u

uf

u uf

u

w factored uniform load on wall
P factored load from roof floor

e eccentricity of P

deflection from factored momentδ

=

=

=

=

The deflection in the preceding equation can be found using the deflection calculations presented 

in section 5.5 of this chapter, the only difference being that a factored moment, uM , is used 

instead of the service moment, serM .  For this example this effect was not taken into account 

because the nominal flexural strength was the desired result, when actual loads are being used 

equation 5.3.3 will be used. 

 The area of steel can be checked against the maximum area prescribed in the 2005 MSJC 

Code A.3.3.5 as: 

 
( ) ( )

max

0.0030.85 ' 0.67
1.5 0.00207 0.003

u
AAC

s
y

Pf d b
A

f
φ

⎛ ⎞
−⎜ ⎟⎜ ⎟+⎝= ⎠  (Equation 5.3.4) 
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5.4 Members Subjected to Shear 

This section describes the process needed to determine the nominal shear strength, , of 

a member.  The nominal shear strength can be described as the combination of the nominal shear 

strength of the AAC itself, , plus the nominal shear strength provided by the steel 

reinforcement, 

nV

AACV

sV (2005 MSJC Code equation A-9). 

n AAC sV V V= +        (Equation 5.4.1) 

The nominal shear strength is limited by two equations (2005 MSJC Code equation A-10 and A-

11), or an interpolation between them, based on the ratio of the ultimate moment and the ultimate 

shear multiplied by the depth of the member in the direction which shear is considered. 

For: 

 
0.25

6 '

u

u v

n n AA

M
V d

V A f

≤

⇒ ≤ C

      (Equation 5.4.2) 

And for: 

 
1.00

4 '

u

u v

n n AA

M
V d

V A f

≥

⇒ ≤ C

      (Equation 5.4.3) 

AACV  is determined based on the provisions in sections A.3.4.1.2.1 to A.3.4.1.2.5 of the 2005 

MSJC Code.  The minimum value for shear strength of AAC is used as the most critical. 

In-Plane Shear Strength: 

For nominal shear capacity governed by web shear cracking, the following equations are to be 

used.  Eq. 5.4.4a is used for AAC masonry with mortared head joints, Eq. 5.4.4b is used for AAC 

masonry without mortared head joints, and Eq. 5.4.4c is to be used for AAC masonry in other 

than running bond (2005 MSJC Code equation A-12(a, b, c)). 

0.95 ' 1
2.4 '

u
AAC w AAC

AAC w

PV l t f
f l t

= +    (Equation 5.4.4a) 

0.66 ' 1
2.4 '

u
AAC w AAC

AAC w

PV l t f
f l t

= +    (Equation 5.4.4b) 

0.9 ' 0.05AAC AAC n uV f A= + P      (Equation 5.4.4c) 
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wl length of wall considered in direction of shear
t thickness of wall
=
=

 

For nominal shear strength governed by crushing of the diagonal compressive strut, the 

following equation is used (2005 MSJC Code equation A-13a). 

 When: 

 2

2
2

1.5

0.17 '
3
4

u

u v

w
AAC AAC

w

M
V d

hlV f t
h l

<

⇒ =
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

    (Equation 5.4.5) 

 When: 

u

u v

M
V d

> 1.5 

AACV  governed by crushing of the diagonal strut need not be considered.  This is not taken as 

shear strength of zero.  Instead it is not included in determining the critical shear strength. 

For a nominal shear strength governed by sliding shear at an un-bonded surface (2005 MSJC 

Code equation A-13b): 

 AAC AAC uV Pμ=        (Equation 5.4.6) 

The coefficient of friction given previously in Chapter 4 is: 

 0.75AACμ =  ~ For AAC to AAC 

 1.00AACμ =  ~ When thin bed mortar or leveling bed mortar is used 

Out-of-Plane Shear Strength: 

For nominal shear strength by out-of-plane loading on a wall (2005 MSJC Code equation A-15). 

 0.8 'AAC AACV f= bd       (Equation 5.4.7) 

Shear Strength from Steel: 

The second part of the nominal shear strength equation is the strength provided by reinforcing 

steel in the section considered (2005 MSJC Code equation A-14). 

 v
s y v

AV f
s

= d

 

       (Equation 5.4.8) 
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Where: 

 

An example demonstrating how to determine in-plane and out-of-plane shear strength of a non-

f 8” AAC Masonry in running bond with mortared head joints 

ntally in fully grouted bond beams every 32” 

d beam blocks have a 1” face shell 

k is 120 pcf, other block is 35 pcf 

v

y

v

A Area of shear steel
f Yield stress of steel

s spacing of shear steel
d depth in the direction shear considered

=
=

=
=

 

bearing wall is provided for the following conditions: 

• Wall height is 10’ 

• Wall is composed o

• Thin-bed mortar is used 

• #5 bars are placed horizo

• Vertical #4 bars are spaced evenly every 24” 

• Wall length is 20’ 

• The 8”x8”x16” bon

• Grout strength is 2000 psi 

• Unit weight of grouted bloc

• A conservative value of 1.0uM
=  is assumed 

u vV d

• ' 290AACf psi=  

• 60yf ksi=  

10'

8"

2'

#4 bars @ 24" o.c.

2'-8"
#5 bar @ 32" o.c.
Fully Grouted Cells

 
Figure 5.5: Wall Example In Plane and Out of Plane Shear 
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Determine the nominal shear strength based on the limit states listed above. 

In-Plane Shear Strength: 

Find VAAC for web shear cracking: 

The load provided by the upper half of the wall can be determined as: 

 

 2 2
2 2

8 8 8 85.5 35 2 120 192.22
144 144

u
in in in inP rows pcf rows pcf plf

in in
ft ft

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥× ×⎜ ⎟ ⎜ ⎟

= +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 =

Assuming a load case of S , the ultimate axial load become  

 

1.2 1.6 0.5D W+ + s:

(1.2 1uP = )92.22 231plf plf=  

For mortared head joints use equation 5.4.4a: 

( )
( )( ) ( )

( )( )

0.95 ' 1
2AAC w AACV l t f= +

 

.4 '

20 12 240

231 20
0.95 240 8 290 1 31962.9

2.4 290 240 8

u

w

AAC

P
f l t

l ft inft

plf ft
V in in psi lbs

psi in in

= =

= + =

 

The value 

AAC w

in

1.0u

u vV d
M

=  is assumed, therefore use equation 5.4.5 for crushing of the diagonal strut: 

2

2 
2 3

4 wh l⎛ ⎞+ ⎜ ⎟
⎝ ⎠

0.17 ' w
AAC AAC

hlV f t=  

( )( )
( )( )

( ) ( )

2

22

10 12 240
0.17 290 8 47328

310 12 240
4

AAC

inft inft
V psi in lbs

inft inft

×
= =

⎛ ⎞× + ⎜ ⎟
⎝ ⎠

 

For sliding shear using equation 5.4.6: 

 AA

( )( )
1.0

1.0 231 20 4620

AAC AAC u

C

AAC

V P

V plf ft lbs

μ
μ

=
=

= =
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In-plane nominal shear strength is governed by the smaller value from sliding shear, this would 

not be the case if a large enough axial load was applied to the wall.  If the load that a wall is 

subjected to becomes high then the crushing of the diagonal strut would be the controlling case. 

The shear strength considering the horizontal reinforcing steel using equation 5.4.8:

( )( )

2

2

0.31
32

v

s in= 
236

0.31 60000 236 137175
32

v
s y v

v

s

AV f d
s

A in

d in

inV psi in lbs
in

=

=

=

= =

 

 

Using equation 5.4.1 for out of plane shear strength: 

 

The nominal shear strength using equation 5.4.1 for in plane forces is: 

 
4620 137175 141795

n AAC s

n

V V V
V lbs lbs lbs

= +

= + =
 

( )
0.8

0.8 141795 113436V lbs lbs
φ
φ
=

= =n

( )( )
0.8 '

0.8 24 4 290 1308
AAC AAC

AAC

V bd f

V in in psi

=

= =
 

lbs

lbs

heck versus equation 5.4.3: 

 

 
1308nV lbs=

 

( )
0.80

0.80 1308 1046.4

n AAC

n

V V

V lbs
φ
φ

=

=

= =

C

( )
( )

1.0 1.00

4 'n n AACV A f⇒ ≤

4 24 8 290 6539

0.8 6539 5231.2
1046.4 5231.2 . .

1046.4

u

u v

n

n

n

n

M
V d

V in in psi lbs

V lbs lbs
V lbs lbs O K

V lbs

φ
φ

φ

= ≥

= × =

= =

= ≤ ⇒
⇒ =
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Maximum out of plane design shear strength: 

 

( )

( )( )
2 1046.4

52.32

n uV V
sL area under loading

lbs

φ

p
124 2012

sf
ftftin in

≥
=

⇒ =

 

This gives the maximum factored out of plane load in pounds per square foot. 

Due to the fact that a grouted block may be used and grout has a higher strength than the 

AC the nominal shear strength of the AAC will be based on the strength of the grouted block 

and therefore will use equation 5.4.9 to determine (2005 MSJC Code Equation 3-21) to 

determine the nominal shear strength of the grouted block ( ). 

 

×

A

mV

4.0 1.75 ' 0.25u
m n m

u vV d⎜ ⎟
⎝ ⎠⎣ ⎦

u
MV A f P

⎡ ⎤⎛ ⎞
= − +⎢ ⎥     (Equation 5.4.9) 

 ' 'm gf f⇒  

Also the strength of the steel is based on the normal masonry equation, equation 5.4.10 (2005 

MSJC Code Equation 3-22). 

 0.5 v
s y vs

AV f d=        (Equation 5.4.10) 

 a able horizontal deflection of a 

vertical element is 0.7% of the member height, as described in equation 5.5.1 (2005 MSJC Code 

quation A-22). 

5.5 Deflection Limitations 
The 2005 MSJC addresses the requirements for deflection limitations of vertical 

members, most typically walls and columns.  The maximum llow

E

0.007s hδ ≤        (Equation 5.5.1) 

or example, the horizontal deflection at mid-span for a 10’ tall wall cannot exceed 0.84 inches.  

vice load moment, Mser, is less than the cracking moment.  The 

racking moment is cal

 

F

The calculation for the deflection using section A.3.5.6 (2005 MSJC Code) is dependent upon 

whether of not the applied ser

c culated using equation 5.5.2 (2005 MSJC Code Eq. A-25). 

cr n rAAC
n

PM S f
A

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
     (Equation 5.5.2) 
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For the case where service load moment, serM , is less than the cracking moment, deflectio

calculated using equation 5.5.3 (2005 MSJC Code Eq. A-23). 

 

n is 

25
ser crM M<

48
ser

s
M

AAC g

h
E

δ⇒ =
      (Equation 5.5.3) 

I

When Mser is less than the nominal moment but greater than the cracking moment, deflection is 

calculated using equation 5.5.4 (2005 MSJC Code Eq. A-24). 

 ( ) 22 55
cr ser n

ser crser

M M M

48 48s
AAC g

M M hM hδ

< <

−
⇒ = +

   (Equation 5.5.4

AAC gE I E I
) 

The maximum deflection that a member can have is to be calculated using out of plane forces 

ntric

mitations of the example building 

design in Chapter 6. 

 

 

 

and axial forces that are placed at an ecce ity.  Although examples are not provided, the 

provisions of this section will be used to check the deflection li
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CHAPTER 6 - Example Building Design 

This building design example is provided to demonstrate the design requirements 

xplained in Chapter 5.  The building has 12 foot high AAC masonry walls with 10 inch AAC 

of panels and plan dimensions of 30 feet wide by 50 feet in length.  The roof panels used were 

etermined using the Aercon Technical Manual (Aercon).  The building is located in Manhattan, 

ansas and will be considered as a Building Occupancy Category II.  Figures 6.1 through 6.1 

show the plan view, elevations and wall sections. 

e

ro

d

K

50'

30'

12'

6'

12'

15' 15' 20'

15' 15' 20'

L1

L2 L1 L3L4

L5L5

L5 L5

L2 L2 L3

L5 L5

Panel
Span 18'

N

Panel
Span 12'

 
Figure 6.1: Plan View Example Building 

 

12'

50'

7'-4"

2'-8"

5' 5' 22'-6" 5' 5' 5' 2'-6"
Wall 6 Wall 7 Wall 8 Wall 9

 
Figure 6.2: South Elevation 
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1'-4"

7'-4"

2'-8"

12'

50'

2'-6" 5'
2'-6"

6' 11' 3' 10' 5' 5'
Wall 5

Wall 4

Wall 3 Wall 2 Wall 1

 
Figure 6.3: North Elevation 

 

7'-4"

12'

30'

13'-6" 3' 13'-6"
Wall A Wall B

 
Figure 6.4: West Elevation 

 

12'

30'
Wall C

 
Figure 6.5: East Elevation 
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12'
10" AAC Masonry Wall
Flexural & Shear Reinforcement
as designed

Bond Beam @ Roof

10" AAC Roof Panels (Aercon)

 
Figure 6.6: Wall Section 

 

7.87"

3"

3.45"

3"

Fully Grouted Bond Beam
Area of Steel  as Designed

10" AAC Roof Panel (Aercon)

 
Figure 6.7: Bond Beam at Roof 
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10" Thick AAC Masonry
Interior Bearing is Unreinforced

Grouted

10" Thick AAC Roof Panel (Aercon)

 
Figure 6.8: Section at Roof Bearing 

6.1 Determination of Building Design Loads 
The design loads for the example building follow the guidelines found in the ASCE 7-05 

Minimum Design Loads for Buildings and Other Structures (ASCE 7-05). 

6.1.1 Dead Loads 

Dead Load for Roof: 

• A 10 inch AAC Roof Panel is used in the construction of this building. 

• Roof Panels of length 12 feet and 18 feet are used to span the 30 foot building. 

• Strength Class PAAC 4 from ASTM C 1386 is selected as the averaged value. 

• The unit weight of each panel is 39 pcf (Aercon) 

• Miscellaneous weight is f  as well as to cover any 

unknowns. 

 

rom any extra dead loads on the roof

( ) ( )roofD panel psf miscellaneous psf= +  

1039 15 47.5
12of

inpcf psf psfin
ft

⎜ ⎟= + =⎜ ⎟⎜ ⎟
⎝ ⎠

 roD
⎛

Dead Load for Wall: 

⎞
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• Dead load for wall is to be base M C 1386 for the same reason as 

oof dead load. 

d on PAAC 4 of AST

chosen in the r

• Wall unit weight is 37 pcf ( ' 580AACf psi= ) 

6.1.2 Live Loads 

The building being designed is has only one story, therefore only the roof live load will 

be considered.  The design roof live load is based on ASCE 7-05 Section 4.9.1. 

Roof Live Load: 

1 2

12 20
r o

r

L L R R
psf L psf

=
⇒ ≤ ≤

 (ASCE 7-05 eq. 4-2) 

sf (ASCE 7-05 t. 4-1) 

(Based on tributary area of roof panel maximum 36 sf (2 ft x 18 ft)) 

(Based on no slope) 

6.1.3 S  

The building design snow load is based on ASCE 7-05 Chapter 7. 

• Building located in Manhattan, 

• 

20oL p=  

1 1.0R =  

2 1.0R =  

( )( )20 1.0 1.0 20rL psf psf= =  

now Loads 

Kansas. 

Ground snow load, 20gp psf=  

• Importance factor is based on Building Occupancy Category II 

Flat Roof Snow Load: 

 0.7f e t gp C C Ip=  

 1.0eC =  (Assume p

 

 

artially exposed B) 

 1.0tC =  (All other structures) 

1.0I =  

( )( )( )( )0.7 1.0 1.0 1.0 20 14fp psf psf= =  

minf gp Ip= for areas where 20gp psf≤ Check  

 
( )min 1.0 20 20fp psf psf

14 20 20fpsf psf p psf⇒ ≤ ⇒ =
 

= =
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6.1.4 Wind Loads 

 wi o or the Main Wind Force Resisting System (MWFRS) 

 shear and are from 

.  The building component design for out of plane wind loads are based 

n loads determined from ASCE 7-05 Section 6.5 for Components and Cladding. 

 

The building enclosure type will be determined through ASC

uilding Enclos re: 

North Wall 

• Gross Area,

The building design nd l ads f

are used to determine the controlling loads, wind or seismic, of the base

ASCE 7-05, Section 6.5

o

E 7-05 Section 6.2. 

B u

 

( )12 50 600gA ft ft sf= =  

• penings,Area of O ( )( ) ( ) ( )5 3.34 6 7.34 5 6 107.44ft f ft ft ft ft+ + =2opA t= sf  

South Wall 

• sf

• 

( )12 50 600gA ft ft= =  

( )( )3 5 3.34 50.1opA ft ft sf= =  

East Wall 

• ( )12 30 360gA ft ft sf= =  

• 0opA sf=  

West Wall 

( )12 30 360gA ft ft sf= =  • 

• opA ( )3 7.34 22.02ft ft= =  sf

closure 

)

ition; therefore the building is not open. 

Check for Partial Enclosure (if both of the following conditions occur in a wall, the 

building is Partially Enclosed) 

)

• North Wall, 

Check for Open En

( ) (1 0.8op wall g wall c≥ onsideredA A  

No wall satisfies this cond

( ) (1 1.10op wall op remainderA A> ∑  

( )107.44 1.10 50.1 0 22.02 79.3sf sf sf sf sf> + + =  
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( ) ( )( )
)(

1 min 4 ,0.01

0.20

op wall g wall considered

op

A sf A⎡ ⎤> ⎣ ⎦

≤
 

North Wall, 

allA

giA

• s107.44 4sf f>  

( ) 179.56 0.094 0≤• .20 . .
1960

op allA sf O K
A sf

= = ⇒  

The north wall was chosen to be checked because it contains the largest area of openings. 

North wall fulfills requirements for partial enclosure. 

Buildin e for 

he Analytical Method of ASCE 7-05 Section 6.5 is to be used for 

the design of wind loads. 

Determine MWFRS wind force for base shear calculation: 

• Basic Wind Speed, ph       (ASCE 7-05 Fig 6-1) 

• (to be used in load calculations only)    (ASCE 7-05 Tbl 6-4) 

(for Case 1) t

gi

 

g is considered Partially Enclosed because the North Wall met the requirements abov

a partially enclosed building.  T

 

90V m=

0.85dk =

• Exposure B, 0.70zk = 12h f=      (ASCE 7-05 Tbl. 6-3) 

•          (ASCE 7-05 6.5.7.2) 

with         (ASCE 7-05 Fig 6-10) 

 1E 2E 3E 4E 

1.0ztk =

pfGC 0oθ =• 

Table 6.1: GCpf for each building surface (ASCE 7-05) 

1 2 3 4 5 6 

pfGC  0.4 -0.69 -0.37 -0.29 -0.45 -0.45 0.61 -1.07 -0.53 -0.43 

 

• 0.55piGC = ± (Partially Enclosed)     (ASCE 7-05 Fig 6-5) 

• dV I (ASCE 7-05 eq.6-15) 

)

in

20.00256h z ztk k k=  q

( )( ) ( ) ( ) (20.00256 0.7 1.0 90 1.0 14.52h d dq k k psf= =  

• For Low Rise Build gs 

h pf pip q GC GC⎡ ⎤= −⎣ ⎦  (ASCE 7-05 eq. 6-18) 
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Table 6.2: Calculation (  - of p (psf) ASCE 7 05 eq.6-18) 

piGC 1 2 3 4 5 6 1E 2E 3E 4E  

+ -2.2 -18.0 -13.4 -12.2 -14.5 -14.5 0.9 -23.5 -15.7 -14.2 

- 13.8 0.3 1.7 -2.0 2.6 3.8 1.5 1.5 16.8 -7.6 

*Note: positive values signify “towards the surf ignif

 

Calculatio a”

The distance “a” is 10 percent the least horizontal dimension (30 feet) or 40 percent of 

t of the least horizontal dimension or 3 feet. 

ace” negative values s y “away from surface” 

n of “ : 

the mean building height (12 feet) whichever is smaller.  The distance “a” is greater than 4 

percen

( ) ( )min 0.10 30 3 ,0.4 12 4.8

3

a ft ft ft

a ft

= =⎡ ⎤⎣ ⎦
⇒ =

 
ft=

The worst case scenario in the transverse and longitudinal direction

combination of zone t considered is 

only half (6 feet) because the assumption is that the rema er of force siste  the 

on grade. 

 

Calculating the base shear: 

 result in a 

s 1 (-) plus 4 (+) and zones 1E (-) plus 4E (+).  Wall heigh

ind  the  is re d by slab 

Transverse Base Shear (see Figure below for reference): 

30'

50'

2a 2a  
Figure 6.9: Wind in Transverse Direction 

 41



 

( )( )( )( ) ( ) ( )( )( )16.8 14.2 2 6 6 13.8 12.2 50 2 6 6 8160psf psf ft ft psf psf ft ft ft lbs= + + + − =Tw
Longitudinal Base Shear (see figure below for reference): 

 

30'

50'
2a

2a

 
Figure 6.10: Wind in Longitudinal Direction 

 

( )( )( )( ) ( ) ( )( )( )16.8 14.2 2 6 6 13.8 12.2 30 2 6 6 5040Lw psf psf ft ft psf ps ft ft ft lbs= + + + − =f
 

Out of Plane Design Wind Load for Components and Cladding: 

 The design loads for out of plane wind are determined using ASCE 7-05, Table 6-11a for 

s than one third the wall height 

multiplied by the wall height.  The values found in ASCE 7-05 Table 6-11a are interpolated for 

the effective area. 

Effective Area: 

 

the values of GCp.  The effective wind area need not be les

( ) ( )1 12 12 48
3 3eff

ftA h h ft⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 sf

GCp interpolated values: 

For Zone 4 (wall interior) and 5 (wall ends): 

 ( )48 101 1.0 0.7 0.98
500 10

sf sf
sf sf

⎡ ⎤−
− −⎢ ⎥−⎣ ⎦

 = +

For Zone 4 (wall interior): 

  ( )( )48 101.1 1.1 0.8 1.08
500 10

sf sf
sf sf

⎡ ⎤−
− − − − − = −⎢ ⎥−⎣ ⎦
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For Zone 5 (wall ends): 

( ) ( )48 101.4 1.4 0.8 1.35
500 10

sf sf
sf sf

⎡ ⎤−
− − − − − = −⎢ ⎥−⎣ ⎦

 

Calculate p for out of plane wind loads: 

 The out of plane wind loads can be determined by using ASCE 7-05 eq. 6-22 for Low  

Rise Buildings. 

h p pip q GC GC⎡ ⎤= −⎣ ⎦   (ASCE 7-05 eq. 6-22) 

 

 of p (psf) for out of plane wind load (ASCE 7-05 eq. 6-22) 

Zone 4 & 5 Zone 4 Zone 5 

Table 6.3: Calculation

piGC  

+ 6.2 -23.7 -27.6 

- 22.2 -7.7 -11.6 

  

6.1.5 Seismic Loads 

n of seismic loads is based on ASCE 7-05 Chapters 11 and 12.  The base 

ears calculated in this section are compared with wind to determine which load governs and is 

therefore be used to determine lateral forces for design. 

icien

The determinatio

sh

CDetermining the Seismic Response Coeff t s : 

(www.usgs.gov) (using zip code 66503) 

Soil Class D 

 

 (ASCE 7-05 eq. 11.4-1) 

 (ASCE 7-05 eq. 11.4-2) 

 sS
S

=
=1

0.206
0.053

 

 (No Soil Report) 

1.6aF =
2.4vF =

 

(1.6 0.206ms a sS F S= = ) 0.3296=  

( )1 1 2.4 0.053 0.1272m vS F S = =  =

( )2 2 0.3296 0.2197
3DSS = 

3msS = =  (ASCE 7-05 eq. 11.4-3) 

 ( )1 1
2 2 0.1272 0.0848
3 3D mS S= = =  (ASCE 7-05 eq. 11.4-4) 
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1.0I =Building Occupancy Category II (Importance Factor ) 

The value for the seismic force reduction factor (R) was obtained through laboratory 

sting of shear all specimens by Varela, Tanner, and Kligner (2006).   

Determine Seismic Design Category (SDC): 

0.167 0.33DSS SDC B≤ ≤ ⇒  

10.067 0.133DS SDC B≤ ≤ ⇒  

( )0.750.02 12 0.1289x
t nT C h ft= = =  

12LT =  

3R =  (Varela 2006) 

te w

LT T≤  

1
max

0.0848 0.2193
30.1289

1.0

D
s

SC
RT
I

⇒ = = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (ASCE 7-05 eq.12.8-3) 

min 0.01sC =  (ASCE 7-05 eq. 12.8-5) 

0.2197 0.0732
3

1.0I⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

DS
s

SC
R

= = =
⎛ ⎞ ⎛ ⎞

 

Determ

 The weight of building will be based on the dead load of the roof plus upper half of the 

walls and subtracting out the openings.  The wall weights will be based on the use of 10 inch 

AAC masonry. 

ining Weight of BuildingW : 

( ) ( )( )( ) ( )( ) ( )( ) ( )( )1037 2 30 2 50 6 6 1.34 5 1.34 3 1.34 6
12

inW pcf ft ft ft ft ft ft ft ft ftin

⎛ ⎞
⎜ ⎟ ⎡ ⎤= + − − −⎣ ⎦⎜ ⎟⎜ ⎟
⎝

+

(ASCE 7-05 eq. 12.8-1) 

6.1.6 Base Shear Comparison 

Base Shears for wind and seismic are compared to determine which governs wall in-

plane shear loads and roof diaphragm forces.  See Table 6.4 for a comparison of the wind and 

( )( )47.5 30 50 99238.65psf ft ft lbs=
Determine Seismic Base Shear: 

ft ⎠

( )0.0732 99238.65 7264sV C W lbs lbs= = =  
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seismic base shears.  A value of 1.6 is multiplied to wind to account for th

differences between Wind and Seismic forces. 

 

Table 6.4: Governing Base Shear 

nd 1.6W) Seismic (1.0E) Governing Case 

e load combination 

Direction Wi  (

Transverse ( )1.6 8160 13056lbs lbs= 7264 lbs Wind Governs 

Longitudina ( )1.6 5040 8064lbs lbs=  l 7264 lbs Wind Governs 

 

6.1.7 Distribution of Shear forces 

The distribution of the shear forces as governed by the wind load are distributed 

wall section uninterrupted by wall openings. The rigidity of each 

wall is based on this calculation: 

according to the rigidity of each 

13

4 3AAC eff
c

E t h hR
V L

−

L
⎡ ⎤⎛ ⎞ ⎛ ⎞= +⎢ ⎜ ⎟
⎝ ⎠⎢⎣

(Equation 6.1) 

 considered cantilevered, fixed at the bottom and 

ee at the top.  The valu

⎥⎜ ⎟
⎝ ⎠⎥⎦

 

h wall height=  

L length of wall=  

This equation is used because the wall is

e AAC effE t
V

fr is constant in the direction being considered, i.e. the value 

would t when cons inal and t ons to

values of V in either case are different.  Since the value is n one direc

 be differen idering longitud ransverse directi gether and the 

constant i tion, AAC effE t
V

can 

be t e it will be canceled during calculation

The value of shear that is applied to a wall is the combination of the direct shear and the 

shear produced by torsion: 

aken out becaus s. 

Direct shear ~ vF VR
R

=
∑

 (Equa

Torsion Shear ~ 

tion 6.2) 

2T
RdF M
Rd

=
∑

T  (Equation 6.3) 
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The torsion shear comes from the fact that the roof panels perform as a rigid diaphragm.  

The rigidity of each wall can be found i

elevations Figures 6.2 through 6.5 for identification of wall marks. 

 

Table 6.5: Transverse Wall Rigidity 

n the following tables using equation 6.1.  Refer to the 

Wall h (ft) L (ft) Rigidity 

A 12 13.5 0.1826 

B 12 13.5 0.1826

C 12 30 0.6868

 

igidity 

 

Table 6.6: Longitudinal Wall R

Wall h (ft) L (ft) Rigidity 

1 12 5 0.016

2 12 10 0.0951

3 12 11 0.1181

4 12 2.5 0.0022

5 12 2.5 0.0022

6 12 5 0.016

7 12 22.5 0.4531

8 12 5 0.016

9 12 2.5 0.0022

 

Using these rigidities e “x” and “y” directions.  

The origin of the axis is taken as th hwe rior co he building.  The center of 

rigidity is found by: 

the Center of Rigidity can be found in th

e sout st exte rner of t

cr
Rd

d
R

= ∑
∑

 (Equation 6.4) 

The following tables are the values used in the determination of the center of rigidity. 
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Table 6.7: Determination of cen of rigid xis) 

Wa R d (x ft) R*x 

ter ity (x-a

ll 

A 0.1826 0.42 67 0.07

B 0.1826 2 67 0.4 0.07

C 0.6868 29.58 15 34.05

 

Center of Rigidity (x-axis): 

34.2409 32.5142
1.052

cr
Rx

x ft
R

= = =∑ 
∑

 

T

Wall R d (y ft) R*y 

 

able 6.8: Determination of the center of rigidity (y-axis) 

1 0.016 29.58 0.4733

2 0.0951 29.58 2.8131

3 0.1181 29.58 3.4934

4 0.0022 29.58 0.0651

5 0.0022 29.58 0.0651 

6 0.016 0.42 0.0067

7 0.4531 0.42 0.1903

8 0.016 0.42 0.0067

9 0.0022 0.42 0.0009

  

Center of Rigidity (y-axis): 

 7.1146 9.8691
0.7209cr

Ry
y f

R
= = =∑
∑

 t

 The center tion) such that 

the momen

 for rigidity is used to find the eccentricity (in the x and y direc

t TM is calcu . 

ft

ft

 The moments for each direction of shear can be calculated using the equation: 

lated

 32.5142 25 142xe ft ft= − =  7.5

 15 9.8691 5.1309ye ft ft= − =  
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TM Ve=   

For Transverse Direction: 

 ( )( )0.85 8160 7.5142 52118.5
TTM lbs ft lb ft= =  ⋅

For Longitudinal Direction: 

 ( )( )0.85 5040 5.1309 .8
LT 21980M lbs ft lb ft= = ⋅

factor for wind. 

 The shear force is distributed to each of the walls following equations 6.2 and 6.3.  The 

roceeding tables show the distribution of direct and torsion shears as well as the total shear that 

is applied to each wall section. 

stribution of Shear in the Transverse Direction 

Wall R x ft(to CR) R  R*x

 

kWhere 0.85 is the d

p

 

Table 6.9: Di
2*x  FV (lbs) FT (lbs) Total (lbs)

A 0.1826 32.0975 5.8610 188.1236 1205 530 1735

B 0.1826 32.0975 5.8610 188.1236 1205 530 1735

C 0.6868 17.0691 11.7231 200.1020 4529 1061 5590

 

 

Table 6.10: Distribution of Shear in the Longitudinal Direction 

) R*y R*y2Wall R y ft(to CR  FV (lbs) FT (lbs) Total (lbs) 

1 0.016 19.7142 0.3154 6.2184 153 83 236

2 0.0951 19.7142 1.8748 36.9606 904 492 1396

3 0.118 19.7142 1 2.3282 45.8995 1123 610 1733

4 0.0022 19.7142 0.0434 0.8550 22 12 34 

5 0.0022 19.7142 0.0434 0.8550 22 12 34

6 0.016 9.4524 0.1512 1.4296 153 83 236

7 0.4531 9.4524 4.2829 40.4835 4309 1122 5431

8 0.016 9.4524 0.1512 1.4296 153 83 236

9 0.0 12 34022 9.4524 0.0208 0.1966 22
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6.2 Design of AAC Components for the Example Building 
The example building will be designed using the loads determined in section 6.1.  The 

design requirem  walls, lintels 

ond ms wi

• 10 inch A nry un nch high inch lon

• Roof panels are 2 feet wide spanning 18 feet and 12 feet. 

• Actua si  wall e 7.87 inches high x 9.45 inches wide (Aercon) 

• Thin- ta  in bed and head joint

• ' 5

ents that were provided in chapter 5 will be used.  The design of all

and b bea ll use: 

 thick AC maso its, 8 i  by 24 g. 

l dimen ons of the units ar

bed mor r is used s 

80f psi=AAC  

• f p' 2000 si=  g

yf ksi  60• =

6.2.1 North Side Wall Design 

heck for Out of Plane Bending and Compression: 

Moment of Inertia: 

 

C

( )3
42 9.45in in in1

843.9
12

I ft= =  

Area: 

 ( ) 2
12 9.45A in in 113.4 in

ft= =  

Radius of Gyration: 
4

2

843.9 2.73inr in= =   
113.4in

Slend terness Ra io: 

( )12 12
52.75

2.73

inft th
r in
= =  f 

Consider the load case S (high moment and large axial load): 1.2 1.6 0.5D W+ +
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( ) ( )37 1012 47.5 9
2 12

185 427.5

pcf inD ft psfin
ft

D plf plf

⎛ ⎞
⎜ ⎟= +⎜ ⎟⎜ ⎟
⎝ ⎠

= +

 
ft

f

plf

Where the 0.85 used in the wind load is . 

 

( )20 9 180S psf ft pl= =   

 (0.85 27.W = )( )6 1 23.46psf ft =  

dk 

 10 3ine ⎛= −⎜ 3.5
2 2

in in⎞ =⎟
⎝ ⎠

 

he maximum moment can be found at the mid-height of the wall as shown in Figure 6.11. T

Moment from
Roof Load @

Moment from
Out of Plane

Eccentricity Wind Load

12'

 

Moment at mid-height of wall from load case: 

Figure 6.11: Maximum Moment on a Wall 

( ) ( ) ( )( ) ( )
21.2 427.5 0.5 180 3.5 1.6 23.46 12

12 9163
2 8u

plf plf in plf ft in lb inM ft f
+⎡ ⎤⎣ ⎦ ⋅= +  t=

Axial from load case:  

( ) ( )1.2 185 427.5 0.5 180 825uP plf plf plf plf= + + =  

Check equation 5.3.2 

 ( )2
825 7.28 0.2 ' 0.2 580 116 . .

113.4
u

AAC
g

P plf psi f psi psi O K
inA

ft
= = ≤ = = ⇒  
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Axial Strength: 

99h
r
≤  Use equation 5.1.4. 

 ( )
2

0.80 0.85 ' 1
140n AAC n s y s

hP f A A f A
r

⎡ ⎤⎛ ⎞⎡ ⎤= × × − + × −⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦
 

Steel is not considered because it is not tied (this is the same as using Equation 5.1.2). 

 ( )( ) ( )

2
2 1440.80 0.85 580 113.4 1 38376

140 2.73n
inin lbP psi ft fin

⎡ ⎤⎛ ⎞⎡ ⎤ ⎢ ⎥= − ⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦
 t=

 ( )0.90 38376 34538.4 825 . .n u
lbsP plf P plf O Kftφ = = ≥ =  ⇒

Flexural Strength: 

P-Delta effect is to quired.  Using section 

dded to the moment. 

P-Delta Effect: 

 be considered to determine the area of steel re

5.5 Drift Limitations the P-Delta effect can be a

 cr n rAACM S f= ⎜
⎝ n

P
A

⎛ ⎞
+ ⎟

⎠
 (Equation 5.5.2) 

 I
nS

y
=  

 80rAACf psi=  (Thin-bed Mortar) 

4

2

843.9 82580 15587.6
9.45 113.4

crM
in

plfft lb inpsi f
2

tin in
ft

⎛ ⎞
⎜ ⎟ ⋅+ =⎜ ⎟⎞ ⎜ ⎟⎜ ⎟ ⎝ ⎠

 =
⎛
⎝ ⎠

2

9163 15587.6

5
48

u cr

u
u

AAC g

lb in lb inM Mft f
M h
E I

δ

⋅ ⋅= < =

⇒ =

t
    (Equation 5.5.3) 

( )( )

( )( )

2

40.6

5 9163 144
0.0793

48 6500 580 843.9
u

lb in inft in
inpsi ft

δ
⋅

= =  

2

8 2
u u

u uf
w h e

u uM P Pδ= + +       (Equation 5.3.3) 
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( )( ) ( ) ( ) ( )
21.6 23.46 12 3.5plf ft inin12 1.2 427.5 0.5 180

8 2uM plf plfft= + +⎡ ⎤⎣ ⎦  

 ( )825 0.0793 9228lb inplf in ft
⋅+ =  

The moment calculated is less than the calculated cracking moment therefore no steel is 

quired to resist axial loads a

use in a comparison with a CMU wall under similar loading condition. 

olve for Area f Steel using equations 5.2.1 and 5.2.2: 

re nd out-of-plane bending.  The area of steel will be calculated for 

S  o

( )
2u
aP d⎛ ⎞× −⎜ ⎟

⎝ ⎠
      (Equation 5.2.1) n s yM A f= +

( )
0.85 '

s y u

AAC

A f P
a

f b
+

=        (Equation 5.2.2) 

 u
n u n

MM M Mφ
φ

≥ ⇒ ≥  

 Substitute a into equation 5.2.1 

 ( ) ( )
( )2 0.85 '

s y uu
s y u

AAC

A f PM A f P d
f bφ

⎛ ⎞+
⎜ ⎟= + −
⎜ ⎟
⎝ ⎠

 

( ) ( )
2

20
1.7 ' 1.7 ' 1.7 '

y y u
s y s s u s

AAC AAC AAC

f f P P
A f d A A P d A u yf

f b f b f
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
  

b

  
2

1.7 '
u

AAC

P
f b

uM
φ

⎛ ⎞ ⎛
− −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 This can be put into quadratic equation form: 

 

⎞  

2 4
2s

b b ac
a

− ± −
=  A

2

1.7 '
y

quadratic
AAC

u y

f
a

f b
P f

b f d 
0.85 'quadratic y

AACf b

−
=

= −  

2

1.7 '
u u

quadratic u
AAC

P Mc P d
f b φ

= − −
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( )( )
( )

( )( )

( )
( )( )

2

2

60000 304259.63
0 12psi in

= −
1.7 58

825 600009.4560000 275132.86
2 0.85 580 12

9228825
6412.73

2 1.7 580 12 0.9

quadratic

quadratic

quadratic

a

plf psiinb psi
psi in

lb in
plf ft

psi in

−
=

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

⋅
− = −

⎝ ⎠

 

)

9.45825 inc plf ⎛ ⎞= −⎜ ⎟

( )(
( )

2275132.86 275132.86 4 304259.63 6412.73
2 304259.63sA

− ± − − −
=

−
 

2
0.024s

inA ft=  

Using a  c# 4 bar at 48 inches on enter would be more than adequate. 
2 20.2 0.05in in

ftft
 

4sA = =

Check maximum area of steel: 

( ) ( )
max

0.0030.85 ' 0.67
1.5 0.00207 0.003

u
AAC

s
y

Pf d b
A

f
φ

⎛ ⎞
−⎜ ⎟⎜ ⎟+⎝ ⎠=  (Equation 5.3.4) 

( ) ( ) ( )
2

max

9.45 0.003 8250.85 580 0.67 12
2 1.5 0.00207 0.003 0.90

0.138
60000s

in plfpsi in
inA ftpsi

⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠= =

Area of steel is below maximum. 

Check the nominal moment capacity with # 4 bars every 48 inches: 

( ) ( )( )
( )( )

20.2 60000 825 4
0.647

0.85 580 48
in psi plf ft

a i
psi in
+

= =  n

( ) ( )( )2 9.45 0.6470.2 60000 825 4 67343
2 2n

in inM in psi ft lb in⎛ ⎞= + − =⎜ ⎟
⎝ ⎠

 ⋅

( ) ( )0.9 67343 60608.7 4 9228 36912 . .n u
lb inM lb in lb in M ft lb in O Kftφ ⋅= ⋅ = ⋅ ≥ = = ⋅ ⇒  

Consider load case (highest moment with lowest axial): 

plf

0.9 1.6D W+

( )0.9 185 427.5 551.25uP plf plf= + =  
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( )( ) ( ) ( )
21.6 23.46 12 3.5plf ft inin12 0.9 427.5 8781.1

8 2u
lb inM plfft ft
⋅= + =  

Check nominal moment capacity with # 4 bars every 48 inches: 

( ) ( )
( )( )

( )20.2 60000 551.25in psi + 4
0.600

0.85 580 48
plf ft

a in
psi in

= =  

( ) ( )( )2 9.45 0.6000.2 60000 551.25 4 62857n
2 2n

in iin psi ft ⎛= + −⎜ ⎟
⎝ ⎠

lb in⎞ = ⋅  M

( ) ( )0.9 62857 56571.3 4 8781.1 35124.4 . .n u
lb inM lb in lb in M ft lb in O Kftφ ⋅= ⋅ = ⋅ ≥ = = ⋅ ⇒

 No reinforcement is required for axial load and out-of-plane bending. 

Use the load comb for highest out of plane shear load. 

Check if the section is adequate for out of plane shear: 

 

Check out of plane Shear Strength: 

o 0.9 1.6D W+

( )( )1.6 23.46 12
225.2

2uout of plane

plf ft lbsV ft− − = =  

0.8 'AAC AACV f= bd        (Equation 5.4.7) 

( ) 9.450.8 580 12 1092.4
2AAC

in lbsV psi in ft⎟
⎠

⎛ ⎞= =⎜
⎝

 

( )
8781.1

0.56
551.25 12 9.45

2 2

u

u v

lb in
M ft

plf ftV d in

⋅
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

    (Equation 5.4.3) 

Interpolation between equations 5.4.2 and 5.4.3 is required. 

( )1 0.566 6 4
1 0.25n nV A−⎛ ⎞≤ − −⎜ ⎟−⎝ ⎠

 'AACf

( ) ( )( )1 0.566 6 4 12 9.45 580 13181.8
1 0.25n

lbsV in in psi ft
−⎛ ⎞≤ − − =⎜ ⎟−⎝ ⎠

 

Consider no shear reinforcement: 

AAC nV V=  

13181.8n
lbsVCheck ft≤  
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1092.4 13181.8AAC n
lbs lbV V ft= = ≤ . .s O Kft ⇒  

Check design shear strength out-of-plane: 

( )0.75 1092.4 819.3 225.2 . .n u
lb lbs lbsV Vft ft ftφ = = ≥ =  O K⇒

Wall is adequate without shear reinforcement for out-of-plane loads. 

Check In-Plane Bending: 

The equations to check in-plane bending are the same as the equations used in out of 

plane bending.  Consider Wall 3 (L = 11ft), this is the wall with the highest shear load from shear 

distribution.  Use the load combination 0.9 1.6D W+ for highest bending with lowest axial load. 

12'

Length (L)

Shear Force (V)

Axial Force (P)

Tension Force
(Resist Bending)

 
Figure 6.12: In Plane Shear on a wall 

plf

 

( )0.9 185 427.5 551.25uP plf plf= + =  

( )( )1.6 1733 12 33273.6u wM V h lbs ft lb ft= = = ⋅  

Check if # 4 bar at cell at end of wall is adequate: 

( ) ( )( )
( )( )

20.2 60000 551.25 11
3.877

0.85 580 9.45psi in
in psi plf ft

a in
+

= =  

( )( )
( ) ( )2

551.25 11 5
8.82

plf ft ft
ft=  10.5d ft= −

0.2 60000 551.25 11in psi plf ft+

( ) ( )( ) ( )2 3.8770.2 60000 551.25 11 8.82 12 1876851
2n

ininM in psi ft ft lb inft
⎛ ⎞= + − = ⋅⎜ ⎟  
⎝ ⎠
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( ) 10.9 1876851 140764 33273.6 . .
12n uM lb in lb ft M lb ft O Kin

ft
φ

⎛ ⎞
⎜ ⎟= ⋅ = ⋅ ≥ = ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

 ⇒

# 4 bars at ends of wall are adequate for in plane bending. 

Check in plane Shear Strength of wall 

Consider Wall # 3 (L = 11ft), this is the wall with the highest shear load from shear 

distribution.  Use the load combo 0.9 1.6D W+ for highest shear force and lowest axial load on 

wall. 

etermine in-plane shear value fo  for web shear cracking. 

There are mortared head joints, therefore use equation 5.4.4a: 

(0.9 185 427uP plf= + ).5 551.25plf plf=  

r AACVD

0.95 ' 1
2.4 'AAC w

u
AAC w AAC

PV l t f
f l t

= +     (Equation 5.4.4a) 

( )11 12 132w
inl ft ft= =  in

n9.45t i=  

( )( ) ( )
( )( )

551.25 11
0.95 132 9.45 580 1 29715

2.4 580 132 9.45AAC

plf ft
V in in psi

psi in in
= +  lbs=

Check for crushing of the diagonal strut: 

12 1.14 1.5
10.5

u u

u v u v v

M V h h ft
V d V d d ft

= = = = ≤  

Crushing of diagonal strut must be considered 
2

0.17 ' w
AAC AAC

hlV f t=      (Equation 5.4.5) 2
2 3

wh l⎛ ⎞+ ⎜ ⎟4⎝ ⎠

( )( ( ))
( ) ( )

2

2
2

144 132
0.17 580 9.45 76558AAC

n in
V psi lbs= =  

3144 132
4

i
in

in in⎛ ⎞+ ⎜ ⎟
⎝ ⎠

Check sliding shear (thin-bed mortar): 

AAC AAC uV Pμ=         (Equation 5.4.6)  
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1.0AACμ =         (Thin-bed mortar) 

  

Minimum strength of sliding shear governs governs: 

bs

Check if shear strength is adequate without shear reinforcement: 

( )( )1.0 551.25 11 6064AACV plf ft lbs= =

6064AACV l=  

1.14 1.00u

u v

M
V d

= ≥
       (Equation 5.4.3) 

4 'n n AACV A f⇒ ≤

( )( )4 11 12 9.45 580 120615.5n
inV ft in psi lbsft

⎛ ⎞≤ =⎜ ⎟
⎝ ⎠

 

Check design in-plane shear str

6064 120615.5 . .AAC nV lbs V lbs O K= = ≤ ⇒  

ength: 

( ) ( )0.75 6064 4548 1.6 1733 2773 . .n uV lbs lbs V lbs lbs O Kφ = = ≥ = =  ⇒

Wall is adequate without shear reinforcement to resist in plane shear forces. 

6.2.2 East Side Wall Design 

Check for Out of Plane Bending and Compression: 

Section p all Design 

Consider the load cas

 

roperties are the same as calculated for the North W

e 1.2 1.6 0.5D W S+ + (high moment and large axial load): 

( ) ( )1 ft
 

37 1012 47.5
2 12
pcf inD ft psfin

ft

⎜ ⎟= +⎜ ⎟⎜ ⎟

 lf

 plf

 *Note: the 0.85 use

 

⎛ ⎞

185 47.5D plf plf
⎝ ⎠

= +

( )20 1 20S psf ft p= =  

( )( )0.85 27.6 1 23.46W psf ft= =  

d in the wind load is dk . 

10 3 3.5
2 2
in ine i⎛ ⎞= − =⎜ ⎟

⎝ ⎠
 n
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Momen  t at mid-height of wall from load case:

( ) ( ) ( )( ) ( )
21.2 47.5 0.5 20 3.5 1.6 23.46 12

12 8225
2 8u

plf plf in plf ft in lb inM ft ft
+⎡ ⎤⎣ ⎦ ⋅= + =  

Axial from load case:  

( ) ( )0.5 20 289plf plf+ =  1.2 185 47.5uP plf plf= +

Check equation 5.3.2 

 ( )2 ' 0.2 580 116 . .
113.4

u
AAC

g

289P plf 2.55 0.2psi f
ft
= ≤

Axial Strength: 

psi psi O K
inA

= = = ⇒  

99h
r
≤  Use equation 5.1.4. 

 ( )
2

0.80 0.85 ' 1
140n AAC n s y s

hP f A A f A
r

⎡ ⎤⎛ ⎞⎡ ⎤= × × − + × −⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦
 

Steel is not considered because it is not tied (same as using Equation 5.1.2). 

( )( ) ( )

2
2 1440.80 0.85 580 113.4 1 38376

140 2.73n
inin lbP psi ft fin

⎡ ⎤⎛ ⎞⎡ ⎤ ⎢ ⎥= − ⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦
  t=

( )0.90 38376 34538.4n u
lbsP plfftφ = = ≥ 289 . .P plf O K= ⇒  

Flexural Strength: 

nsidered to determine the area of steel required.  Using section 

5.5 Drift Limitations the P-Delta effect can be added to the moment. 

P-Delta Effect: 

 

P-Delta effect is to be co

cr n rAAC
n

PM S f
A

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (Equation 5.5.2) 

 I
nS

y
=  

 80rAACf psi=  (Thin-bed Mortar) 

 58



4
843.9 in

2
28980 14743.4

9.45 113.4
2

cr
plfft lb inM psi ftin in

ft

⎜ ⎟ ⋅= + =⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 
⎛ ⎞

2

8225 14743.4

5
48u

u cr

u

AAC g

lb in lb inM Mft ft
M h

I

⋅ ⋅= < =

    (Equation 5.5.3) 

E
δ⇒ =

( )
( )

( )

( )

25 8225 144
0.0712

lb in inft inδ
⋅

= =  
48

u 40.66500 580 843.9 inpsi ft

2

8 2
u u

u uf
w h e

u uM P Pδ= + +       (Equation 5.3.3) 

( )( ) ( ) ( ) ( )
21.6 23.46 12 3.512 1.2 47.5 0.5 20

8 2u

plf ft ininM plft= + +⎡ ⎤⎣ ⎦  f plf

 ( )289 0.0712 8246 lb inplf in ft
⋅+

The moment calculated is less than the cracking moment therefore the wall does not 

require reinforcement to resist axial loads and out-of-plane bending. 

No reinforcement is required for axial load or out-of-plane bending. 

 

Check out of plane Shear Strength: 

Use the load combination

=  

0.9 1.6D W+ for highest out of plane shear load combined with 

the lowest compressive force. 

Check if section is adequate for out-of-plane shear: 

( )( )1.6 23.46 12
225.2

2uout of plane

plf ft lbsV ft− − = =  

0.8 'AAC AACV f= bd        (Equation 5.4.7) 

( ) 9.450.8 580 12 1092.4
2AAC

in lbsV psi in ft
⎛ ⎞= =⎜ ⎟
⎝ ⎠
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( )
8183

1.38
209.25 12 9.45

u

lb in
M ft

plf ftV d in

⋅
= =

⎛ ⎞
    (Equation 5.4.3) 

2 2
u v

⎜ ⎟
⎝ ⎠

1.38 1.00u

u vV d
= ≥

  
M

     (Equation 5.4.3) 
4 'n n AACV A f⇒ ≤

( )( )4 12 9.45 580 10924 lbspsinV in in ft≤ =  

Consider no shear reinforcement: 

Check

AAC nV V=  

10924n
lbsV ft≤  

1092.4 10924 . .AAC n
lbs lbsV V Oft ft= = ≤ ⇒  K

Check nominal shear strength out of plane: 

( )0.75 1092.4 819.3 225.2 . .n u
lb lbs lbs O K= ⇒  V Vft ft ftφ = = ≥

Wall is adequate without shear reinforcement for out of plane loads. 

Check In Plane Bending: 

The equations to check in plane bending are the same as the equations used in out of 

plane bending.  Consider Wall C (L = 30ft), this is the wall with the highest shear load from 

shear distribution.  Use the load combination 0.9 .6D W1+ for highest bending with lowest axial 

load. 

12'

Shear Force (V)

Axial Force (P)

Tension Force
(Resist Bending)

 Length (L)

Figure 6.13: In Plane Shear Force on wall 
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( )0.9 185 47.5 209.25uP plf plf plf= + =  

( )( )1.6 5431 12 104275.2u wM V h lbs ft= = = lb ft⋅  

Check if # 4 bar at cell at end of wall is adequate: 

( ) ( )( )
( )( )

20.2 60000 209.25 30
3.923

0.85 580 9.45

in psi plf ft
a i

psi in

+
= =  n

( )( )
( ) ( )2

209.25 30 14.5
29.5 24.52

0.2 60000 209.25 30
plf ft ft

d ft
in psi plf ft

= − =
+

 ft

( ) ( )( ) ( )2 3.9230.2 60000 209.25 30 24.52 12 5342120
2n

ininM in psi ft ft lb inft
⎛ ⎞= + − =⎜ ⎟
⎝ ⎠

 ⋅

( ) 10.9 5342120 400659 1042
12 u 75.2 . .nM lb in lb ft Min

ft
⋅ = ⋅ ≥ =⎜ ⎟⎜ ⎟

lb ft O Kφ
⎛ ⎞
⎜ ⎟= ⋅ ⇒

⎝ ⎠

 

# 4 bars at ends of wall are adequate for in plane bending. 

 

Check in plane Shear Strength of wall 

e highest shear load from shear 

distribution.  Use the load comb

Consider Wall C (L = 30ft), this is the wall with th

o 0.9 1.6D W+ for highest shear force on wall. 

plf

Determine in plane shear value fo  for web shear cracking. 

There are mortared head joints, therefore use equation 5.4.4a: 

( )0.9 185 47.5 209.25uP plf plf= + =  

r AACV

0.95 ' 1
2.4 '

u
AAC w AAC

AAC w

PV l t f
f l t

= +     (Equation 5.4.4a) 

( )30 12 360w
inl ft ft= =  in

n9.45t i=  

( )( ) ( )
( )( )

209.25 30
0.95 360 9.45 580 1 79067

2.4 580 360 9.45AAC

plf ft
V in in psi lbs

psi in in
= + =  

Check for crushing of the diagonal strut: 
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12 0.41 1.5
29.5

u u

u v u v v

M V h h ft
V d V d d f

= = = = ≤  
t

Crushing of diagonal strut must be considered 
2

20.17 ' w
AAC AAC

hlV f t=  
2

4 wh l+ ⎜ ⎟
⎝ ⎠

3⎛ ⎞
    (Equation 5.4.5) 

( )( )
( )

( )

( )

2360
185709

in
lbs  2

2

144
0.17 580 9.45

3144 360
4

AAC

in
V psi in

in in
= =

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

Check sliding shear (thin-bed mortar): 

AAC AAC uV Pμ=         (Equation 5.4.6)  

1.0AACμ =         (Thin-bed mortar) 

  

Minimum strength of sliding shear governs: 

bs

reinforcement: 

( )( )1.0 209.25 30 6277.5 s= =AACV plf ft lb

6277.5AACV l=  

Check if shear strength adequate without shear 

0.41 1.00u

u v

M
V d

= ≤  

Interpolation between equations 5.4.2 and 5.4.3 is required. 

( )1 0.416 6 4
1 0.25n nV A−⎛ ⎞≤ − −⎜ ⎟−⎝ ⎠

 'AACf

( ) ( )( )1 0.416 6 4 30 12 9.45 580 362681
1 0.25n

in lbsV ft in psift ft
−⎛ ⎞⎛ ⎞≤ − − =⎜ ⎟⎜ ⎟ ⎠

 
− ⎝⎝ ⎠

( )1.6 5431
11587u lbsVlbs lbs≥ = =/  6277.5

0.75AACV
φ

=

Therefore shear reinforcement is required 

Determine horizontal steel needed if # 4 bars are used: 

u n AAC sV V V V

u
s AAC

VV V

φ φ φ≤ = +

φ
⇒ = −
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( )1.6 5431
6277.5 5309

0.75s

lbs
V lb= − =  s lbs

v
s y vs

(Equation 5.4.8) AV f d=         

v v
s y v y v

s

A AV f d s f
s V

= ⇒ =  d

( )( )
20.20 60000 354 800.2

5309
ins psi in
lbs

= =  in

Consider a # 4 bar every 6 feet 

( )( )0.20 60000 354 59000
72sV psi in lbs

in
= =  

6277.5 59000 65277.5 362681nV lbs lbs lbs lbs= + = ≤  

Check design in-plane shear strength: 

( ) ( )0.75 65277.5 48958 1.6 5431 8689.6 . .n uV lbs lbs V lbs lbs O Kφ = = ≥ = =  ⇒

# 4 bar every 6 feet for horizontal shear reinforcement to resist in plane shear forces 

is more than adequate. 

6.2.3 Interior Bearing Wall Design 

The interior bearing wall is to be designed as an unreinforced AAC wall for axial load 

only.  Consider the load combination1.2 1.6D S+ .  Design as an unreinforced AAC wall 

although the requirements of MSJC 2005 may require reinforcement to be placed for seismic 

requirements for this SDC (SDC B) the MSJC 2005 Code does not require reinforcement.  This 

wall w load only then the required steel will be stated at the end 

of this wall design. 

Check for Compression: 

Moment of Inertia: 

 

ill be checked for resisting axial 

( )3
412 9.45in in

843.9
12

inI ft= =  

Area: 

 ( ) 2
12 9.45A in in 113.4 in

ft=  

Radius of Gyration: 

=
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4

 2113.4in

Slenderness Ratio: 

 

843.9 2.73inr i= = n  

( )12 12
52.75

2.73

inft fth
r in
= =  

Consider the given load case: 

( )
 

( )47.5 15

185 712.5

psf ftin
ft

D plf plf

⎟ +⎟⎟
⎠

= +

 

 lf

 

37 1012pcf inD ft
⎛ ⎞
⎜=

2 12⎜⎜
⎝

( )20 15 300S psf ft p= =  

( ) ( )1.2 185 712.5 1.6 300 1557uP plf plf plf plf= + + =  

Axial Strength: 

99h
≤  Use equation 5.1.2. 

r
2

0.80 0.85 ' 1
140n

⎢⎣
n AAC

hP A f
r

⎡ ⎤⎛ ⎞⎛ ⎞= × × × × −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎥⎝ ⎠⎦
 

( )( ) ( )

2
2 1440.80 0.85 113.4 580 1 38376

140 2.73n
ininP psift in

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟= × − =⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦
 lbs

( )0.60 38376 23025.6 1557 . .n u
lbsP plf P plf O Kftφ = = ≥ =  ⇒

Interior bearing wall is adequate as an un-reinforced bearing wall. 

For an AAC wall that is not part of the lateral force resisting system for SDC B, the 

MSJC 2005 Section 1.14.4 does not require any horizontal or vertical reinforcement. 

 

6.2.4 Bond Beam at Roof 

A fully grouted bond beam is to surround the building at the roof level as shown in 

Figure 6.7.  Th e made to withstand forces in the roof diaphragm from wind 

or seismic loads.  The lateral load from the wind or seismic causes tension and compression 

e bond beams must b
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forces to act on the perimeter of the diaphragm.  Imagine that the roof diaphragm acts as a large 

uniformly loaded beam where the “top” of the beam is affected by compression and the “bottom” 

is subjected to tension.  The ends of this “beam” are collectors that transfer wind shear to the 

resisting shear wall.  The strength of the bond beam in compression is based on the strength of 

the grout.  Depending upon the direction being considered, collectors are to withstand the 

compression forces produced from the wind whereas the chord forces, the “top” and “bottom” of 

the “beam,” resist the moment produced by the wind. See Figure 6.14 which shows the wind 

forces. is transferred 

directly  a 

and wall. 

 In the case of this building the collectors are not applicable as the shear 

 between the roof diaphragm and the wall.  This would not be the case for a wall with

full height opening as a collector would be needed to transfer forces between the roof 

50'

30'

w = 8064lbs = 268.8plf30ft

w = 13056lbs
50ft  = 261.12plf

 
Figure 6.14: Forces on Roof Bond Beam 

 

In the transverse direction (up to down in Figure 6.14): 

 ( )2261.12 50
2758

58 30
12

chords

plf ft
T lbs

inft in

= =
⎛ ⎞
⎜ ⎟−⎜ ⎟⎜ ⎟

 

ft⎝ ⎠

In the longitudinal direction (left to right in Figure 6.14): 

 ( )2268.8 30
608

58 50
12

chords

plf ft
T l

inft in
ft

= =
⎛ ⎞
⎜ ⎟−⎜ ⎟⎜ ⎟
⎝ ⎠

 bs
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Design for 50 foot and 30 foot bond beams: 

Design the bond beam to resist tension (compression) chord forces. 

 Assume a # 4 bar to resist tension forces (# 4 bar has commonly been used in the 

building). 

Resistance to tension is calculated as follows for the steel in tension: 

Nominal tension strength s yA f=  

( )20.2 60000 12000s yA f in psi lbs= =  

12000chordsT lbs
φ

≤  

2758 3064.5 12000lbs lbs≤   
0.9

chordsT lbs
φ

= =

) in both the longitudinal and 

transverse direction. 

6.2.5 Design Lintels for Doors and Windows 

The design of lintels to resist moment and shear forces is based on the area and 

 The area of AAC can be neglected 

because the compressive strength of AAC is much less than the compressive strength of the 

rout.  The blocks to be used are Aercon U-Blocks, as shown in Figure 6.15 below.  The bond 

beam blocks are the of the same dimension as the standard 8 in x 10 in x 24 in AAC masonry 

that is being used in the building except that there is a hollowed out core along the length.  Data 

 A # 4 bar is adequate for tension (compression

compressive strength of the grout in the AAC bond beam. 

g

for bond beam is described in Figure 6.15. 
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Figure 6.15: U-Block for Lintel Design (Aercon) 

 

Consideration is taken into account for the possibility of arching action, a condition 

where masonry in running bond distributes loads similar to an arch, of the masonry.  Several 

conditions must be fulfilled before arching action can be used: 

Condition 1: The height above the opening must be sufficient. 

 140 8
2above openingh in width in= ≥ +  

Condition 2: Masonry layout must be in running bond. 

Condition 3: There can be no control joint adjacent to lintel. 

Condition 4: A minimum bearing of 4 inches is required. 

Condition 5: Sufficient strength must be provided to resist lateral thrust. 

The 40 inches from condition 1 is the difference between the top of the opening and the bottom 

of the roof panel bearing elevation.  Table 6.11 describes which lintels being designed are 

subject to arching actio

 

 

n based on satisfying the above criteria. 
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Table 6.11: Determination of Arching Action 

Condition L1 (3ft) L2 (5ft) L3 (5ft) L4 (6ft) L5 (3ft) 

1 No (44 in) Yes (26 in)  Yes (26in) Yes (38in) Yes (38 in) 

2 Yes Yes  Yes Yes Yes 

3 Yes Yes  Yes Yes Yes 

4 Yes  Yes Yes Yes Yes 

5 Yes Yes No No No 

Arching? Yes Yes No No No 

 

Design lintel L1: 

Lintel L1 has an opening of 3 feet.  Therefore it is assumed that two bond beam blocks 

id in length are sufficient for this span. 

• Lintel Length: 4 ft 

• 6-inch bearing each end

• ond beam with grout: (Aercon U-Block) 

• rching actio ies. 

• overning loa bination is

Shear on the Lintel: 

 

 

la

 

• Effective Span: 0.5 3 3.5ectiveSpan bearing opening ft ft ft= + = + =  eff

B 39w p= lf  

A n appl

G d com  1.4D  

int

2 2
l el wallW

u
wV =

L L
+  

( )1
2wallW h= ( )abovet wall pcf   

 ( )( )( ) 2
2

31.57
44

plf
in

ft

=  1 126 9.45 37
2 1

wallW in in pcf=

 
( )( )( ) ( )1.4 39 3.5plf ft

V =
1.4 31.57 3.5

172.9
2
plf ft

lbs+ =  
2u

Moment on the Lintel: 
2 2

int

8 3
l el wall

uM = +  w L W L 
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( )( ) ( )( )2 21.4 39 3.5 1.4 31.57 3.5
264.1

8 3u

plf ft plf
M lb ft= + = ⋅  

Check design moment strength: 

The equations 5.2.1 and 5.2.2 have been changed to reflect the use of the grout.  

( )
2n s y
aM A f d⎛ ⎞= −⎜ ⎟

⎝ ⎠
 

( )
0.85 '

s y

g grout

A f
a

f b
=  

Try a # 4 bar at depth n4d i=  

( )
( )( )

20.2 60in 000
1.295

0.85 2000 5.4
psi

a in
psi n

= =  

 

5i

( )2 1.2950.2 60000 4 40230
2n

inM in psi in lb in⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 ⋅

 ( ) 10.9 40230
1n 3017.25 264.1 . .

2 uM lb inφ = ⋅ lb ft M lb ft O Kin = ⋅ ≥ = ⋅ ⇒  

 One # 4 bar at d = 4in is adequate for flexure. 

Check design shear strength:

 

ft

 

4.0 1.75 'u
m n

u v

MV A gf
d

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 

V

1.0uM
V d

≤  
u v

 264.1 4.58 1.0
4172.9

12

u u

u v u v

M lb ft M
V d V d

inlbs in
ft

⋅
= = ⇒

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 =

( )( ) ( )( )4.0 1.75 1.0 5.45 6 2000 3290.4mV in in psi= − =   lbs

 ⇒

tel. 

Design lintel L2: 

( )0.75 3290.4 2467.8 172.9 . .m uV lbs lbs V lbs O Kφ = = ≥ =  

 Shear reinforcement is not required for this lin
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 Lintel L2 has an opening of 5 ft feet.  Therefore it is assumed that three bond beam 

th, are sufficient for this span. 

• Lintel Length: 6 ft 

• 6-inch bearing each end 

• Effective Span: 

• Bond beam with grout: lf  (Aercon U-Block) 

• Arching action applies 

• Governing load combination is 

Shear on the Lintel: 

 

blocks, laid in leng

0.5 5 5.5effectiveSpan bearing opening ft ft ft= + = + =  

39w p=

1.4D  

int

2 2uV  l el wallw L W L
= +

( )1 ( ) 
2wall aboveW h t wall pcf=  

 ( )( )( ) 2
2

1 138 9.45 37 46.13
2 144

wallW in in pcf plf
in

ft

= =  

( )( )( ) ( )1.4 39 plf 5.5 1.4 46.13 5.5
327.8

2
ft plf ft

lbs+ =  
2uV = 

Moment on the Lintel: 

 
2 2

intl el wallw L W LM = +  u 8 3

 ( )( ) ( )( )2 21.4 39 5.5 1.4 46.13
u

plf ft 5.5
857.7

8 3
plf

M lb ft= ⋅  

Check design moment strength: 

The same steel and depth can be applied from Lintel L1 (# 4 bar at d = 4in) to design 

Lintel L2 

 

= +

 

( ) 10.9 40230 3017.25 857.7 . .
12n uM lb in lb ft M lb ft O Kin

ft
φ = ⋅ = ⋅ ≥ = ⋅ ⇒  

 # 4 bar at d = 4in is adequate for flexure. 

Check design shear strength: 
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4.0 1.75 'u
m n

u v

MV A
V d

 gf
⎞⎛ ⎞

= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

 

⎛

1.0u

u v

M
V d

≤  

857.7 7.85 1.0
4

 

327.8
12

lbs in
⎜ ⎟
⎜ ⎟⎜ ⎟

u u

u v

M lb ft M
V d

ft

⋅
⇒ =

⎝ ⎠

 
u vV d

in
= =

⎛ ⎞

( )( ) ( )( )4.0 1.75 1.0 5.45 6 2000 3290.4mV in in psi= − =   lbs

 O K⇒

is lintel. 

tel L3: 

 Lintel L3 has an opening of 5 ft feet.  Therefore it is assumed that three bond beam 

th, are sufficient for this span. 

• Lintel Length: 6 ft 

• 6-inch bearing each end 

• Effective Span: 

• Bond beam with grout: lf  (Aercon U-Block) 

• Arching Action doesn’t apply. 

• Governing load combo i

( )0.75 3290.4 2467.8 327.8 . .m uV lbs lbs V lbsφ = = ≥ =  

 Shear reinforcement is not required for th

 

Design lin

blocks, laid in leng

0.5 5 5.5effectiveSpan bearing opening ft ft ft= + = + =  

39w p=

s1.2 1.6D S+ (Highest Load) 

Shear on the Lintel: 

 int

2 2
l el wall

u
w L w LV = +  

 wallw Roo= f Wall+  

 ( ) ( ) ( )101.2 37 4 47.5wall
inW pcf ft

⎡ ⎤⎛ ⎞
9 1.6 20 9 949

12
psf ft psf ft plfin

ft

⎛ ⎞
⎥ + =⎡ ⎤⎣ ⎦⎜ ⎟⎜ ⎟⎟ ⎥⎝ ⎠⎠ ⎦

 ⎢⎜ ⎟⎜ ⎟= +⎢ ⎥⎜ ⎟⎜⎢⎝⎣

( )( )( ) ( )1.2 39 5.5plf ft 949 5.5
2738.5

2
plf ft

lbs+ =  
2uV = 
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Moment on the Lintel: 

 
2 2

intl el wallw L w LM = +  u 8 8

 ( )( ) ( )2 21.2 39 5.5 949 5.5
3765.4

8 8u

plf ft plf ft
M lb ft+ = ⋅  

heck design moment strength: 

From before with a # 4 bar: 

=

C

3017.25nM lb ftφ = ⋅  

Not adequate for the applied moment. 

Try a # 5 bar at depth n4d i=  

( )
( )( )

20.31 60000
2.008

0.85 2000 5.45
in psi

a i
psi in

= =  n

 ( )20.31 60000 2.0084 55725.6
2n

inM in= psi in lb in⎛ ⎞− = ⋅⎜ ⎟
⎝ ⎠

 

 ( ) 10.9 55725.6 4179.42 3765.4 . .
12n uM lb in lb ft M lb ft O Kin

ft
φ = ⋅ = ⋅ ≥ = ⋅  ⇒

 # 5 bar at d = 4in is adequate for flexure. 

 

Check design shear strength: 

4.0 1.75 'u
m n

u v

MV A
V d gf= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 

⎛ ⎞⎛ ⎞

1.0u

u vV d
≤  M

3765.4 4.12 1.0
42738.5

12

u u

u v u v

M lb ft M
V d V d

inlbs in
ft

⋅
= = ⇒ =

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

  

( )( ) ( )( )4.0 1.75 1.0 5.45 6 2000 3290.4mV in in psi= − =   lbs

 ( )0.75 3290.4 2467.8mV lbs lbsφ = = ≥ 2738.5 . .uV lbs= ⇒  N G

l.  Shear reinforcement is required for this linte
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u m
s

V VV φ
φ
−

=   

2738.5 2467.8 361
0.75s

lbs lbsV l−
= =   bs

 v
s y v

AV f
s

= d         (Equation 5.4.8) 

s
v

y v

sVA
f d

=  

Try prescribed maximum from 2005 MSJC Code Section A.3.4.2.3 of 50 percent beam 

depth: 

7.87 3.935
2 2

s in= = = : h in

( )
( )

23.935 361
0.006

60000 4v

in lbs
A in

psi in
= =  

Use a # 3 bar every 3.935 inches ( 20.11vA in= ) 

 Distance where shear reinforcement can end: 

 
( )

2

2

u m
u

u m
u

L V VVV x V xL V

φ
φ

⎛ ⎞ −⎜ ⎟
− = ⇒ =⎜ ⎟

⎜ ⎟
⎝ ⎠

 

( ) ( )2 12 3.26
2738.5

in
5.5 2738.5 2467.8ft lbs lbs

x inftlbs
= =  

 Therefore 1 # 3 bar at 1 inch from each end is adequate for shear reinforcement. 

  

Design lintel L4: 

 Lintel L4 has an opening of 6 ft, 4 bond beam blocks, laid in a row, are sufficient for this 

span. 

• 

• 1 foot bearing length. 

• Effective Span: 

• Bond beam with grout: lf  (Aercon U-Block) 

−

Lintel Length: 8 ft 

1 6 7effectiveSpan bearing opening ft ft ft= + = + =  

39w p=
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• Arching Action doesn’t apply. 

• Governing load combo is1.2 1.6D S+ (Highest Load) 

hear oS n the Lintel: 

 int

2 2
l

u
wV = el wallL w L

+  

 w Roof Wall= +  wall

( ) ( ) ( )101.2 37 4 47.5 9 1.6 20 9 949
12wallW pcf= +⎢⎜⎜⎢⎝ ⎠

inft psf ft psf ft plfin
ft

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟ + =⎡ ⎤⎣ ⎦⎥⎟⎜ ⎟⎜ ⎟⎟ ⎥⎝ ⎠

  

⎣ ⎦

 
( )( )( ) ( )1.2 39

u

plf
V =

7 949 7
3485.3

2 2
ft plf ft

lbs+ =  

Moment on the Lintel: 

 
2 2

intl el wallw L w L
8 8uM = +  

( )( ) ( )2 21.2 39 7 949 7
6099.3

8 8u

plf ft plf ft
M lb ft= + = ⋅  

Check design moment strength: 

From before with a # 5 bar at 4 in: 

4179.42nM lb ftφ = ⋅  

Not adequate for the applied moment. 

Try a # 6 bar at depth n (depth available for reinforcement is 5.87 inches, 5 inches is 

sed such that enough space is allowed below the bar) 

5d i=

u

( )
)( )(

20.44 60000
2.849

0.85 2000
a

p
=

5.45
in psi

in
si in

=  

( )2 2.8490.44 60000 5 94393.2
2n

inM in psi in lb in⎛ ⎞= − = ⋅⎜ ⎟
⎝ ⎠

  

( ) 10.9 94393.2 7079.5 6099.3 . .
12n uM lb in lb ft M lb ft O Kin

ft
φ = ⋅ = ⋅ ≥ = ⋅   ⇒

 lexure. 

Check design shear strength: 

# 6 bar at d = 5in is adequate for f
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 4.0 1.75 'u
m n g

u v

V A f
V d

= −⎜ ⎟⎜⎜ ⎟⎝⎝ ⎠
 M⎛ ⎞⎛ ⎞

⎟
⎠

 1.0u

u v

M
V d

≤  

 6099.3 4.20 1.0
53485.4

12

u u

u v u v

M lb ft M
V d V d

inlbs in
ft

⋅
= = ⇒

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 =

( )( ) ( )( )4.0 1.75 1.0 5.45 6 2000 3290.4mV in in psi= − =  lbs 

 ( )0.75 3290.4 2467.8mV lbs lbsφ = = ≥ 34uV = 85.3 . .lbs N G⇒  

 required for this lintel.  Shear reinforcement is

u m
s

V VV φ
φ
−

=   

3485.3 2467.8 1356.7
0.75s

lbs lbsV l−
= =  bs 

v
s y v

AV f
s

= d         (Equation 5.4.8)  

s
v

y v

sVA
f d

=  

Try prescribed maximum from 2005 MSJC Code Section A.3.4.2.3 of 50 percent beam 

epth 7.87 3.935
2 2
h ins i= = = n : d

( )
( )

23.935 1356.7
0.018

in lbs
A in= =  

60000 5v i in

Use a # 3 bar every 3.935 inches (

ps

20.11vA in= ) 

Distance where shear reinforcement can end:  

( )
2 u mV V

V x
φ

φ
−

= ⇒ =  

2

u
u m

u

L
VV x L V

⎛ ⎞
⎜ ⎟

− ⎜ ⎟
⎜ ⎟
⎝ ⎠
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( ) ( )2 12 12.26
3485.3

in
7 3485.3 2467.8ft lbs lbs

x inftlbs
= =  

 

−

1 #x bars required
s
+ =  

 Use an s = 3.5in 

 12.26x in1 1 5
3.5

bars
s in

 (This value is rounded up) + = + =

 Therefore 1 # 3 bar at 1 inch and 4 # 3 bars at 3.5 inches from each end is adequate 

r shear reinforcement. 

 

Design lintel L5: 

Lintel L5 has an opening of 3 ft, 2 bond beam blocks, laid in a row, are sufficient for this 

span. 

• Lintel Length: 4 ft 

• 6 inch bearing length 

• Bond beam lf  

• 

bo i

fo

 

0.5 3 3.5effectiveSpan bearing opening ft ft ft= + = + =  • Effective Span: 

: 39w p= (Aercon U-Block) 

Arching Action doesn’t apply. 

• Governing load com s1.2 1.6D S+ (Highest Load) 

hear on the Lintel: S

 intl elwV = +
2 2u

 

wallL w L  

wallw Roof Wall= +  

 

( ) ( ) ( )101.2 37 2.67wallW pcf s ft⎢ ⎥⎜= +⎢⎜ 47.5 15 1.6 20 15 1433.8
12

inft psf ft p f plfin
ft

⎤⎞⎞
⎟⎜ ⎟ + =⎡ ⎤⎣ ⎦⎥⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥

 
⎡⎛ ⎛

⎝ ⎠⎝ ⎠⎣ ⎦

 
( )( )( ) ( )1.2 39 3.5 143

u

plf ft
V = +

3.8 3.5
2591.1

plf ft
lbs=  

2 2

Moment on the Lintel: 
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2 2
int

8 8
l el wall

u
w L w L M = +  

 ( )( ) ( )2 21.2 39 3.5 1433.8 3.5
2267.2

8 8u

plf ft plf ft
M lb ft= + = ⋅  

Check design moment strength: 

 From before with a # 4 bar: 

 ( ) 10.9 40230 3017.25 2267.2 . .
12n uM lb in lb ft M lb ft O Kin

ft
φ = ⋅ = ⋅ ≥ = ⋅ ⇒  

 # 4 bar at d = 4in is adequate for flexure. 

ngth: Check design shear stre

4.0 1.75 'u
m n

u v

MV A
V d

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 gf 

1.0u

u v

M
V d

≤   

2267.2 2.62 1.0
42591.1

12

 u

V d
= =

⎛ ⎞
u

u v u v

M
V d

inlbs in
ft

⇒ =

⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 M lb ft⋅

 ( )( ) ( )( )4.0 1.75 1.0 5.45 6 2000mV in in p= − 3290.4si lbs=  

 ( )0.75 3290.4V lbsφ = 2467.8m lbs= ≥ 2591.1 . .uV lbs= ⇒  N G

Shear reinforcement is required f tel. 

 

 or this lin

u m
s

V VV φ
φ
−

=  

2591.1 2467.8 164.4
0.75s

lbs lbsV l−
= =   bs

 v
s y v

AV f
s

= d         (Equation 5.4.8) 

s
v

y v

sVA
f d

=  
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Try prescribed maximum from 2005 MSJC Code Section A.3.4.2.3 of 50 percent beam 

epth 7.87 3.935
2 2
h ins i= = = n : d

( )
( )

23.935 164.4
0.003

60000 4v

in lbs
A i

psi in
= =  n

Use a # 3 bar every 3.935 inches ( 20.11vA in= ) 

 Distance where shear reinforcement can end: 

 
( )

2

2

u m
u

u m
u

V x V xL V
φ− = ⇒ =⎜ ⎟

⎜ ⎟
 

L V VV φ⎛ ⎞ −⎜ ⎟

⎝ ⎠

 
( ) ( )

3.5 2591.1 2467.8
2 12 1

2591.1

ft lbs lbs
inx inftlbs

−
= =  

 Therefore 1 # 3 bar at 1 inch from each end is adequate for shear reinforcement. 

orcement Summary 
This section provides a summary of the reinforcement that was calculated in the previous 

ction. 

Walls: 

 North & South walls use 10 inch thick AAC masonry with no reinforcement for axial and 

ut-of-plane bending (1 # 4 bar is to be located at each end at openings and corners).  No shear 

reinforcement is required for these walls for in-plane or out-of-plane shear. 

out-of-plane bending (1 # 4 bar is ).  For shear 

reinforcement # 4 b hear.  No out-of-

plane s

he exterior walls called for in this design example are shear walls and must meet the 

requirements of the 2005 MSJC Code Section 1.14.  # 4 bars are provided at least 24 

6.3 Example Building Reinf

se

o

 East & West walls use 10 inch thick AAC masonry with no reinforcement for axial and 

to be located at each end at openings and corners

ars at 72 inches on center (vertical) is required for in-plane s

hear reinforcement is required. 

 T

seismic 

inches of each side of openings and wall ends and horizontal reinforcement at the top and bottom 

of wall openings extending not less than 24 inches or 40 bar diameters. 
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 Interior Bearing wall uses 10 inch thick AAC masonry and has been designed as an un-

reinforced AAC bearing wall.  The 2005 MSJC Code does not require reinforcement for 

components that are not part of the lateral resistance system for SDC B.  This only applies to this 

building example.  Refer to the 2005 MSJC Code for other cases. 

eam is adequate to resist 

hragm.  

he 

L2 Lintels are 1 course fully grouted lintel blocks with 1 # 4 bar at depth 4 inches. No 

ear reinforcement required. 

3 Lintels are 1 course fully grouted lintel blocks with 1 # 5 bar at depth 4 inches. Shear 

r 

 bars at each end. 

# 3 bar at each end.  The shear reinforcement is not necessary due 

 

Bond Beams: 

 Single course of bond beam is adequate to resist chord forces applied to the building 

through the roof diaphragm; 1 # 4 bar placed in the fully grouted bond b

the chord forces.  However, for SDC B the 2005 MSJC Code Section 1.14.4.3 requires that 0.4 

square inches of reinforcement is to be placed in the bond beam that anchors the roof diap

Therefore 2 # 4 bars are placed in the fully grouted bond beams at the roof level in all exterior 

walls. 

 

Lintels: 

 A following is a listing of the calculated reinforcement requirements for the lintels.  T

reinforcement calculated although works for the design of this project an alternate solution may 

be to use double angles to resist the tension and shear produced in place of the reinforcement. 

L1 Lintels are 1 course fully grouted lintel blocks with 1 # 4 bar at depth 4inches.  No 

shear reinforcement is required. 

 

sh

 L

reinforcement is covered by 1 # 3 bar at each end.  The shear reinforcement is not necessary due 

to the fact that 1 inch from each end is over the bearing length of the lintel.  For L3 there is no 

shear reinforcement required. 

L4 Lintels are 1 course fully grouted bond beams with 1 # 6 bar at depth 5 inches. Shea

reinforcement is covered by 5 # 3

L5 Lintels 1 course fully grouted bond beams with 1 # 4 bar at depth 4 inches. Shear 

reinforcement is covered by 1 

to the fact that 1 inch from each end is over the bearing length of the lintel.  For L5 there is no 

shear reinforcement required. 
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CHAPTER 7 - Comparison of AAC with CMU 

The 10 inch thick AAC wall from the Example Design Building in Chapter 6 is to be 

used in comparison with a 10 inch CMU wall.  The CMU wall is designed based on the same 

axial load and bending moment as the AAC wall to give this comparison some validity.  The 

calculations for the AAC wall show the amount of steel for the specified loads is 0.024 2in
ft

.  

This area of steel is comparable to 0.017 2in
ft

 

the required vertical steel value for the CMU is found in Appendix A. 

Advan

As stated before, AAC is a lightweight concrete material.  From Table 4.1 the range of 

weight  the 

ht, 

 required for the CMU wall.  The determination of

tages of the light weight of AAC compared to CMU. 

for the strength classes is 25 pounds per cubic foot to 50 pounds per cubic foot.  From

Design Example 37 pounds per cubic foot masonry units were used, with the 12 foot wall heig

this translates to: 

 ( )( )9.45 12 37 350in
12

ft pcf plf
ft

=  

per linear foot of wall per foot height of wall to 56.5 pounds per linear foot of wall per foot 

in

In comparison, a CMU wall of the same thickness (10 inches) has a range of 33.5 pounds 

esigners Guide 5th Edition (MDG-

5).  Usi

height of wall.  These values were taken from the Masonry D

ng a middle value from the design guide of 45 pounds per linear foot of wall per foot 

height of wall, the 12 foot wall translates to: 

 ( )( )9.45 12 37 350
12

in ft pcf plfin
ft

=  

In  th comparison, a CMU wall of the same ickness (10 inches) has a range of 33.5 pounds per 

linear foot of wall per foot height of wall to 56.5 pounds per linear foot of wall per foot height of 

wall.  T

2 

hese values were taken from the Masonry Designers Guide 5th Edition.  Using a middle 

value from the design guide of 45 pounds per linear foot of wall per foot height of wall, the 1

foot wall translates to: 

 ( )( )12 45 540ft plf plf=  
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That is more than 50 percent increase in weight.  The lighter weight of AAC could possibly 

mean faster placement of block or faster construction times (Pytlik & Saxena 1992). 

gner’s Guide the average weight of an 8”x10”x16” CMU is 37.5 pounds.  

 

 The lightweight of AAC has another advantage.  The maximum gross weight limit for 

trucks on Kansas Interstate highways is 80,000 pounds and the maximum legal dimensions of a 

truck and trailer combination is 8.5 feet wide, 14 feet tall, and 65 feet long (ksrevenue.org).  

From the Masonry Desi

To look at it another way: 

( )
( )

3
3

80,000

1580
12

lbs 2133.33
37.5

2133 8 10 16

CMUlbs
CMU

CMU in in in
f

3

t
in

=

=

× ×  

ft

Using the 37 pounds per cubic foot from the design example for AAC: 

380,000 2162.2
37

lbs ft
pcf

=  

From this it is clear that a larger amount of AAC can be transported at one time, even taking into 

account the size limitations.  This higher volume per truck means that money can be saved in the 

transportation of building materials. 

Constructability advantages by using AAC rather than CMU. 

Normally in construction when a concrete material needs to be shaped it is poured in that 

 special blades it is cut to 

the desired shape on the job site.  ACC is typically pre-cast or pre-cut into the desired shapes in 

the manufacturing plant.  However, AAC can be cut in the field using normal wood working 

 for wood.  This does not even take into account the fact 

that regular wood drills and drill bits can be used or the fact that simple hand tools can be used to 

k & Saxena 1992). 

shape on the job site, comes pre-cast in that shape, or through the use of

tools such as handsaws, band saws, etc.  Figure 7.1 below shows a block of AAC being cut at the 

job site with a regular band saw.  Diamond blades used for cutting concrete and CMU have a 

greater cost than a common handsaw

drive nails into AAC for the attachment of other materials (Pytli
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Figure 7.1: AAC cut with band saw (www.pragmaticconstruction.com) 

Comparison of material costs between AAC and CMU. 

Using the 2006 RSMeans Building Construction Cost Data, the prices for an 8 inch AAC 

block can be compared to an 8 inch thick CMU wall based on the square foot of wall 

constructed.  The AAC has a material cost of $3.15 per square foot which is higher than the 8 

inch reinforced CMU at $2.02 per square foot.  If non-reinforced CMU at a cost of $1.93 per 

square foot is used, the gap becom

disadvantage for AAC. 

Comparison of the insulating value of AAC and

s 

r density concrete materials seem to have a higher 

insulating value.  AAC has the ability to absorb large amounts of radiant thermal energy which is 

a 1997) this helps in insulating one side 

f an a  

es even wider.  This initial material cost is clearly a 

 CMU. 

 Referring to the R-values of AAC given in Chapter 4, an 8 inch thick panel of AAC ha

an R of about 11.5 this is based on a density of 25 to 31 pounds per cubic foot.  Likewise, the R-

value for 8 inch CMU (Normal weight) with vermiculite in the cells has an R-value of 1.5.  For 

lightweight 8 inch CMU with cores filled with vermiculite the R-value is approximately 4.5.  

From this information, it can be seen that lowe

released or transmitted back at a low rate (Pytlik & Saxen

o ssembly from the other, the better the ability to insulate the greater the R-value.  For CMU

to even match the value of AAC, 8 inch CMU (lightweight) with vermiculite filled cores would 

need additional insulation consisting of 1 inch of rigid insulation (R-value is 9) and 2 layers of 

5/8th inch gypsum board (R-value approximately 1) for a total R-value of 11.5. 
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Comparison of in-plane shear strengths of AAC and CMU walls. 

The 10 inch thick AAC wall from the Example Design Building is to be used in 

comparison with a 10 inch CMU wall.  The CMU wall is designed based on the same in-plane 

shear load as the AAC wall.  The design strength of AAC was governed by the sliding shear 

amounting to 4548 pounds.  The CMU as determined from one equation (the three situations are

not calculated: web shear cracking, crushing of the diagonal strut, and sliding sh

 

ear) and was 

found as 54265.5 pounds. This is much higher than the AAC wall value of 4548 pounds.  The 

 between AAC block and the 

thin-set m

 

strength of the AAC for this example is determined from the friction

ortar that was used.  The determination of the in-plane shear strength for the CMU is 

found in Appendix A. 
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CHAPTER 8 - Conclusion 

Autoclaved Aerated Concrete (AAC), is a product that has been used in construction for 

more than 80 years beginning in Europe, expandi and recently to the United 

States.  AAC is a ligh to masonry units or 

produced in larger panels or 

AAC CMU 

ng to other nations 

tweight concrete building material that is cut in

planks.  AAC units are used for walls, both load bearing and non-

load bearing partitions, and for roof or floor framing using planks.  The purpose of this paper 

was to present the history of AAC, a description of the manufacturing process, a description of 

the material and performance properties of AAC, and present the design requirements of AAC 

using strength design.  In depth, this report has described the process by which AAC can be 

designed including example problems as well as a design building example.  This report has also 

shown how AAC can be directly compared to CMU (Table 8.1).  The purpose of this report has 

been to increase the understanding of what AAC is and to provide details of its capabilities as a 

building material.   

 

Table 8.1: Comparison Summary 

Comparison Criteria 

Rebar Comparison Greater than to CMU Less to AAC 

Weight Comparison 
Lower Transportation Cost 

Higher Weight ~ Possible 

Greater Transportation Cost 

Lighter Weight ~ Possible 

Cons son 
Field Modification Possible Specia ed for 

tructability Compari
with Normal Hand Tools 

l Tools Requir

Field Adjustments 

Material Cost Comparison 
Base Material Cost Less than Base Material Cost Greater 

than CMU AAC 

Insulating Comparison 
Alone has Greater R-Value 

than CMU (R-Value = 1

Alone has Lesser R-Value 

1.5) than AAC (R-Value = 4.5) 

 

 

n to C  wit

pressive strength.  For low-rise construction, the need for a higher strength material is not a 

critical factor; however, it appears that AAC could be competitive for buildings with low to 

In a direct compariso MU, AAC is seen as material h a relatively low 

com
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modera ther 

at 

f 

g 

’s 

sibly 

te strength requirements.  Aside from AAC’s low compressive strength, it has o

important characteristics that other building materials do not have.   In chapter 7 it was shown 

that the amount of reinforcement required for wall in a one story building is comparable to th

of CMU.  This means that even though AAC has a lower compressive strength, the amount o

steel required to resist the same loads is relatively the same.  Also, AAC’s value as an insulatin

material is greater than that of CMU.  This results in faster construction times and less cost 

because of the instillation and material cost of additional insulating materials with CMU.  AAC

lightweight characteristics has the possibility of increasing the efficiency of the construction 

process by shortening the time and cost for transportation (higher volume less time) and pos

reducing labor costs (walls can perhaps be constructed faster).   To conclude, AAC is a 

lightweight concrete material that deserves as much consideration as CMU, or even steel or 

wood, as a building material in the United States. 
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Appendix A - Design of 10 inch CMU wall 

In this section the design of a 10 inch CMU wall for the North wall in the example 

building will be performed.  It will use the same loads for roof dead and snow, as well as the out 

of plane wind load.  Also, in conjunction with the loads being used for the problem the physical 

properties of the wall section, i.e. the area, moment of inertia, etc, will be taken from the 

Masonry Designer’s Guide 5th Edition (MDG-5). 

• Wall construction: 10 inch CMU (Actual dimensions 9.63”x7.63”x15.53”) 

• Wall height: 12 feet 

• ' 1500mf psi=  

• Assume a 48 inch grout spacing 

• Use 3.5e in= from North Wall example 

• Wall weight: 45 plf
per foot of wall height  

• Loads: 

o Roof Dead – 47.5 pounds per square foot 

o Roof Snow – 20 pounds per square foot 

o Out of Plane Wind – 20.7 pounds per square foot (outward) 

Interpolated from MDG-5: 

Area ( ) ( )2 240" 8"50.4 116 61.33
48" 48"

in in in2

ft ft
⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ft  

This is to adjust for the use of a grouted cell every 48 inches on center. 

Width

2
61.33

5.11
12

in
ft inin

ft
= =  

Moment of Inertia ( ) ( )4 440" 8"635 892 677.83
48" 48"

in in in4

ft ft
⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ft  

Radius of Gyration 
4

2

677.83 3.32
61.33

in in
in

= =  

Slenderness Ratio 
( )12 12

43.37
3.32

inft ft
in

= =  
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The 2005 MSJC Code states in 3.3.5.4, “when the slenderness ratio exceeds 30, the 

factored axial stress shall not exceed 0.05 'mf . 

Using the governing load combo of 1.2 1.6 0.5D W S+ + the factored loads become: 

( ) ( ) ( )11.2 47.5 9 0.5 20 9 ' 1.2 45 12
2

603 324 927

u

u

P psf ft psf plf

P plf plf plf

⎡ ⎤= + + ×⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦
= + =

 

  ( )1.6 20.7 1 33.12 outwardW psf ft plf= =⎡ ⎤⎣ ⎦

Axial Strength Calculation 

Nominal Axial Strength – check if CMU is adequate without steel 

 
[ ]

2

43.37

0.80 0.80 ' 1
140n m n

h
r

hP f A
r

=

⎡ ⎤⎛ ⎞⇒ = −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

 ( )( ) ( )

2
2 1440.80 0.80 1500 61.33 1 53225.65

140 3.32n
ininP psi ft in

⎡ ⎤⎛ ⎞⎡ ⎤ ⎢ ⎥= − ⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦
plf=

=

 

  OK ( )0.90 53225.65 47903 927n uP plf plf P plfφ = = ≥

The 10 inch CMU wall has a more than adequate strength to support the factored axial load 

without reinforcement. 

Flexural Strength Calculated 

Factored Moment 

 ( ) ( ) ( )
233.12 12

603 3.5 12 9264.42
8u

plf ft inM plf in lb inft= + = ⋅  

 
( )463 677.83

11193.5
7.63

2

r
cr

psi inf IM lb in
iny

= = = ⋅
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The factored moment is less than the cracking moment, therefore 2005 MSJC Eq 3-30 is used to 

calculate the deflection. 
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( )

25
48 900 '

u
u

m

M h
f I

δ =  

 ( )( )
( )( )( )

2

4

5 9264.42 144
0.022

48 900 1500 677.83u

lb in in
in

psi in
δ

⋅
= =  

The moment at mid height can now be calculated. 

 
2

8 2
u

u uf
w h e

u uM P Pδ= + +  

 ( ) ( ) ( )
233.12 12 3.512 603 927 0.022 8229.6

8 2u

plf ft inin lb inM plf plf inft f
⋅= + + = t  

Check factored axial stress. 

 0.05 'u
m

g

P f
A

≤  

 ( )2
927 15.1 0.05 1500 75

61.33
u

g

P plf psi psi psi
inA

ft
= = ≤ =  OK 

The “a” value that is calculated is similar to the calculation for AAC, instead of the value 

of , a value of 0.800.85 'AACf 'mf is used. 

 
0.80 '

u s y

m

P A f
a

f b
+

=  

 ( )
2n s y u
aM A f P d⎛ ⎞= + −⎜ ⎟

⎝ ⎠
 

This is extended to a quadratic equation to solve for the value of sA .  The value for nM is taken as 

the calculated uM divided by the factor 0.9φ = . 

 
2 4

2s
b b acA

a
− ± −

=  

 

2

2

1.6 '

0.80 '

1.6 '

y
quadratic

m

u y
quadratic y

m

u u
quadratic u

m

f
a

f b
P f

b f d
f b

P Mc P d
f b φ

−
=

= −

= − −
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( )
( )( )

( )
( )( )

( )
( )( )

2

2

60,000
125000

1.6 1500 12

927 60,0009.6360,000 285037.5
2 0.80 1500 12

8229.69279.63927 4710.333
2 1.6 1500 12 0.90

quadratic

quadratic

quadratic

psi
a

psi in

plf psiinb psi
psi in

lb in
plfin ftc plf
psi in

−
= = −

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

⋅
⎛ ⎞= − − = −⎜ ⎟
⎝ ⎠

 

 
( ) ( )( )

( )

2285037.5 285037.5 4 125000 4710.333
2 125000sA

− ± − − −
=

−
 

 
2

0.017s
inA ft− =  

A number 4 bar is adequate for a spacing of 48 inches.  This provides 
20.20 0.054

in in2

ft = ft reinforcement. 

Check the nominal moment capacity with # 4 bars every 48 inches: 

( ) ( )( )
( )( )

20.2 60000 927 4
0.273

0.80 1500 48
in psi plf ft

a i
psi in
+

= = n  

( ) ( )( )2 9.63 0.2730.2 60000 927 4 73489.9
2 2n

in inM in psi plf ft lb in⎛ ⎞= + − =⎜ ⎟
⎝ ⎠

⋅  

( ) ( )0.9 73489.9 66141 4 8229.6 32918.4 . .n u
lb inM lb in lb in M ft lb in O Kftφ ⋅= ⋅ = ⋅ ≥ = = ⋅ ⇒

W

 # 4 bars at 48 inches on center vertical are adequate for combined out of plane 

bending and axial compression. 

In-Plane Bending and Shear Strength Calculated 

Check In Plane Bending: 

The equations to check in plane bending are the same as the equations used in out of 

plane bending.  Use the load combination 0.9 1.6D + for highest bending with lowest axial 

load. 
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12'

Length (L)

Shear Force (V)

Axial Force (P)

Tension Force
(Resist Bending)

 
Figure A.1: In Plane Shear on a wall 

 

( )0.9 185 427.5 551.25uP plf plf= + = plf  

( )( )1.6 1733 12 33273.6u wM V h lbs ft lb ft= = = ⋅  

Check if # 4 bar at (cell at end of wall) is adequate: 10.67d = ft

( ) ( )( )
( )( )

20.2 60000 551.25 11
1.563

0.80 1500 9.63
in psi plf ft

a i
psi in
+

= = n  

( )( )
( ) ( )2

551.25 11 5.17
10.67 8.94

0.2 60000 551.25 11
plf ft ft

d ft
in psi plf ft

= − =
+

ft  

( ) ( )( ) ( )2 1.5630.2 60000 551.25 11 8.94 12 1923762
2n

ininM in psi ft ft lb inft
⎛ ⎞= + − =⎜ ⎟
⎝ ⎠

⋅  

( ) 10.9 1923762 144282.15 33273.6 . .
12n uM lb in lb ft M lb ft O Kin

ft
φ

⎛ ⎞
⎜ ⎟= ⋅ = ⋅ ≥ = ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

⇒  

# 4 bars at ends of wall are adequate for in-plane bending. 

Check in-plane Shear Strength of wall 

The nominal shear strength of a CMU wall based on masonry and steel has some major 

differences in calculation.  When calculating of a CMU wall the strength is calculated from 

one equation, equation 3-21 of the 2005 MSJC Code Section 3.3.4.1.2.1.  This differs from the 

calculation of which determines the minimum of web shear cracking, crushing of the 

diagonal strut, and sliding shear. 

mV

AACV
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W

plf

Use the load combo for highest shear force on wall. 0.9 1.6D +

( )0.9 185 427.5 551.25uP plf plf= + =  

Determine in plane shear value  mV

4.0 1.75 ' 0.25u
m n

u v

MV A f
V d

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

m uP     (MSJC Eq. 3-21) 

1.0u

u v

M
V d

≤  

( )( )
33273.6 1.125 1.0

1.6 1733 10.67
u u

u v u v

M lb ft M
V d lbs ft V d

⋅
= = ⇒ =  

( ) ( )( ) ( )( )4.0 1.75 1.0 11 12 5.11 1500 0.25 551.25 11 60295m
inV ft in psi plf ft lbsft

⎛ ⎞= − + =⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠

 
1.00

4 '

u

u v

n n

M
V d

V A f

≥

⇒ ≤ m

       (MSJC Eq. 3-20) 

( )( )4 11 12 5.11 1500 104496n
inV ft in psift

⎛ ⎞≤ =⎜ ⎟
⎝ ⎠

lbs

lbs

lbs

 

60295 104496 . .m nV lbs V lbs O K= = ≤ ⇒  

( )1.6 1733 2772.8uV lbs= =  

( )0.9 60295 54265.5 2772.8n uV lbs lbs Vφ = = ≥ =  

Wall is adequate without shear reinforcement to resist in-plane shear forces. 
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