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Abstract 

The thermal maturity of hydrocarbon-rich source rocks can be estimated by several different 

methods. These methods focus on a specific geochemical or mineralogical aspect contained 

within the rock.    Because each method has limitations, it is advisable to use several methods to 

better determine thermal maturation. This report summarizes two common methods used to 

determine thermal maturity, vitrinite reflectance and illitization.  Vitrinite reflectance and 

illitization have both been shown to be effected by similar temperatures that are within the 

hydrocarbon generation window.  In some previous studies these two methods give different 

levels of maturation when looked at in tandem.  Formations such as the Woodford Shale of 

Oklahoma are made up almost completely of illite in the clay fraction, even at low levels of 

vitrinite reflectance. These are also without a clear source of potassium, which is often the 

limiting factor in the process of illitization.  Totten et al. (2013) suggest that in place of 

potassium feldspars, which are a common source of K+ for illite (but lacking in the Woodford) 

that the needed K+ was provided by the organic material that was being altered under the same 

temperatures of the clay minerals. The Woodford contains large amounts of organic matter, This 

would be consistent with promoting illitization at lower thermal maturities  than organic-poor 

shales. 
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Chapter 1 - Introduction 

Several previous studies have documented a correlation between diagenetic temperatures 

and the transformation of both organic material and that of the clay minerals found within 

sedimentary rock (Iacoviello et al., 2012; Guthrie, 1986).  Hydrocarbon- rich reservoirs will vary 

in present day content due to varying organic matter types and differing thermal histories caused 

by geologic activates such uplifts due to faulting or increases in pressure and temperature 

brought about by burial depths. For this reason, relationships between different methods to 

determine thermal maturation are examined closely. Guthrie et al. (1986) argued that, due to the 

temperature dependencies of both vitrinite reflectance and illite crystallinity (Figure 1), the 

degree of illitization could be used to approximate stages of hydrocarbon generation in the 

absence of vitrinite.  The sharpness ratio, based upon XRD measures of illitization, was proposed 

by Weaver (1960) as a way to measure the degree of metamorphism in clay-rich rocks.  It is also 

useful for diagenetic regimes. 

Research has subsequently shown that sections of the Woodford Shale found in central 

Oklahoma do not consistently present matching thermal maturity ranking (Kirkland et al, 1992; 

Alkhammali, 2015).  This review integrates studies performed at Kansas State University, along 

with several outside researchers’ publications, to show correlations and discrepancies of source 

rock evaluation techniques of thermal maturation, burial history, and hydrocarbon production of 

the Late-Devonian/ Early-Mississippian Oklahoma Woodford Shale. 

 
Figure 1 – Relationship between mean vitrinite reflectance in oil (VRo) and illite sharpness ratio (Weaver, 
1960) from the Stanley, Jackfork, and Atoka shales (Guthrie et al., 1986). 
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Chapter 2 - Mineralogy  

The term “clay” by definition refers to a naturally occurring material composed primarily 

of fine-grained mineral (Guggenheim and Martin, 1995). Geologists define the term “fine-

grained “ as particle size less than 2 µm. Clay minerals are primarily comprised of 

phyllosilicates, but can contain other types of minerals in this size range (Moore and Reynolds, 

1989).  Most clay minerals are not found in pure mineral form but in layers of mixed 

composition. Other minerals such as quartz can be identified in the clay fraction but are not 

considered clay minerals (Moore and Reynolds, 1989).   

The characteristics of clay minerals (i.e. composition, structure, charge) will have a direct 

effect on reservoir quality and exploration interpretations (Nadeau and Bain, 1986).  Even 

though clay minerals are very small, being measured in angstroms (Å), they can comprise ~30 to 

50% of sedimentary rocks (Środoń, 1990; Melka, 2009).  Because of their abundance and small 

size, the vast surface area available to clay minerals has the potential to have a very large impact 

on diagenesis. 

The main structure of all clays consists of two main structures, a tetrahedral sheet and an 

octahedral sheet (Figure 2). A pure tetrahedral silicate sheet would have the formula Si2O5 

(Figure 2a). Si4+ is the dominant cation but can be substituted for Al3+ and to a lesser extent Fe3+. 

The octahedral will vary more than the tetrahedral sheet. The octahedral sheet will comprise of 

six oxygen ions, sometimes single bonded with hydrogen to make hydroxyl bonds. The shape 

leaves an open spot in the middle, called the octahedral cation site. As shown in Figure 2b, 

typical cations to fill these spaces are Al3+, Mg2+, Fe2+, Fe3+, and occasionally Li (Moore and 

Reynolds, 1989).  
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Figure 2 a) Tetrahedral Layer, b) Hydroxyl Layer 

 

The manner in which these two types of layers fits together determines the type of clay 

mineral formed, the size it will be, and if it will be expandable or not. For example with a single 

layer of each, they will form a 1:1 layer clay mineral such as kaolinite.  A clay mineral with a 2:1 

layer formation will have two tetrahedral layers to either side of an octahedral layer. If Al3+ 

substitutes for Si4+, the clay mineral will have developed a negative net charge (Bailey, 1988). 

The strength of this net charge determines the likelihood of a 2:1 clay mineral being expandable, 

and the extent it is able to exchange cations.  These include Ca, Na, K, and H2O. Moore and 

Reynolds (1989) stated that there is a linear increase in CEC with increasing layer charge. 

Smectite has a high CEC, therefore it will frequently expand or contract to allow for different 

sized cations.  Illite on the other hand has a lower CEC. Once illite has formed with potassium as 

the dominant intralayer cation (Figure 3), it becomes more ordered and does not expand  (Moore 

and Reynolds, 1989). 
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Figure 3 – This figure is showing a comparison of non expanding clay minerals along side ones that expand. 
The length here is measured in nanometers. (1nm=10Å). As the size of the minerals increase, so does the 
Cation Exchange Capacity allowing for more miscellaneous material to pass through the interlayer spacing. 
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Smectite represents a group of expandable clay minerals, which includes the clay mineral 

montmorillonite.  Smectites are the main phyllosilicate phase that forms from the weathering of 

bentonites and potassium bentonites. The general chemical formula is listed as: 

(Na, Ca)(Al, Mg, Fe)6(Si4O10)3(OH) 6-nH2O 

These clays are arranged in a 2:1 di-octahedral sheet, the most abundant cation controls 

the interlayer spacing. Smectite interlayer spacing ranges from 10-17 Å (Ransom and Helgeson, 

1994). Its weak layer charge can vary between 0.2-0.6 allowing for this expansion. This capacity 

allows for the movement of water in between sheets, giving smectite its plastic properties. It is 

one of the most basic clay minerals and the starting point for different clay-mineral transitions 

(Moore and Reynolds, 1989).  

Illite is also a 2:1 dioctahedral clay mineral; however, it is non-expandable.  Unlike 

smectite, illite contains a non-exchangeable monovalent cation and an exchangeable cation.  The 

half –cell formula for illite has been documented by Nadeu and Bain (1986) as: 

(K+E+)x+y(Al3+
2-yMg2+

yFe2+)(Si4-xAlx)O10(OH)2 

For this formula K+ is the non-exchangeable cation and E+ represents any exchangeable 

monovalent cation.  K+ is a strongly held component in illite that prevents the clay mineral from 

expanding and also inhibits the passage of water. 

Modern muds, and shallow buried sediments, have a high percentage of smectite. More 

deeply buried rocks become more illite-rich. This has been reported by many authors, and is 

summarized by Totten et al. (2002). This diagenetic process occurs when smectite transforms 

into illite by forming a smectite/illite (I/S) mixed layer complex of growing illite abundances.  

The reaction for this process is, according to Nadeu and Bain (1986): 

Smectite + Al3+ +K+ à Illite + Quartz + Na+ +Ca++ + H2O 
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Smectite starts to incorporate K+ as it becomes illite, with a coupled substitution of Al3+ 

for Si4+ within the tetrahedral sheet, and Mg2+ for Al3+ in the octahedral sheet. As burial 

diagenesis progresses, smectite-rich I/S becomes illite-dominated I/S as a function of time, 

temperature, and the concentration of K+ in pore fluids (Pytte and Reynolds, 1989; Hower et al., 

1976; Huang et al., 1993). End-member illite is the ultimate product of the process called 

illitization, and resembles the mica mineral muscovite. This transition is seen by XRD as a 

sharpening of the 10Å illite peak, which is described as an increase in illite crystallinity (Totten 

and Blatt, 1993). 

The extent of illitization that has occurred is based on the percent of illite/smectite within 

the mixed layer stacking order and designated according to a “Reichweite” (R) value. When 

smectite is the dominant clay mineral (compared to illite) the order is considered random. As the 

percentage of illite found within the mixed layer clays increases, the illite layers stack in a more 

orderly arrangement.  The stacking orders are divided into three interstratification ranges. These 

ranges are based on the probability that the more ordered of two mixed-layer clay minerals, in 

this case illite, having a 10 Å peak compared to smectites 17 Å, will be affected by the other. The 

Reichweite “reach back” value of R is the frequency of occurrence for any combination of 

illite/smectite and is calculated using the junction probabilities and compositions. 

 

PA.B = 1 and PA.A = 0    (Reynolds, 1980) 

 

  The first order (R=0) is smectite dominated and can contain up to 20% illite. Short-

ranged, random ordered I/S (R≥1) is comprised of approximately 50% smectite and illite.  Clays 
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with long range ordering (R≥3) have 50%-95% illite (Lanson, 1997; Pollastro, 1993; Meuneir 

and Velde, 2004).  

 

 

Figure 4 - Graphical representation of Illitization ordered stacking 

 

The different ordering stages of illitization follow specific trends that correlate with 

burial temperature (Waples, 1980; Pollastro, 1993; Hover, 1996). The conversion of smectite to 

illite begins at ~50oC and continues through to ~200oC (Hoffman and Hower, 1979; Sass et al, 

1987). There is a rapid increase in illite content as temperature increases and the ordering of I/S 

moves from R=0 to R≥1 (Figure 5). The start of this change also corresponds to the temperature 

at which organic matter begins to break down into hydrocarbons, i.e. ca. 60oC (Pevear, 1999) 

(Figure 6). 
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Figure 5 - The rapid conversion of smectite to illite represents R=0 to R>1. The bottom curve is R>1 to R>3 
and occurs more slowly when ordering is near 80% illite (Cuadros, 2006) 

 

 

Figure 6 – This figure shows a generalization of the relationship between illitization R values, hydrocarbon 
generation, and temperature (Pollastro, 1993). 

 

Since both time and temperature can affect the degree of illitization, two different models 

are used when looking at the extent of illitization.  These are the short-life geothermal model and 

the long-range model (Table 1).  The short-life geothermal model (Pollastro, 1993) is used for 

areas of deposition that are under 3 m.y. old, whereas the long-range model, otherwise known as 
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the Hoffman and Hower model, is used for regions of deposition that are 5 m.y. to 300 m.y in 

age (Pollastro, 1993). When illitization is being used as a geothermometer, these two models 

show that higher temperatures are needed for younger sediments to achieve the same percentage 

of illite as older sediments. If a heating event duration of under  3m.y. is not taken into account, 

the maximum temperature inferred would be incorrect compared to the indicating R value 

(Pollastro, 1993). 

 

 

 

 

Table 1 - Comparison of Hoffman and Hower’s long-range illite versus a short-life younger model (Pollasro, 
1993) 

 

The timing of illitization can be determined by radiometric dating techniques. Because 

illite is a K-bearing phase, it can be dated using the 40K-40Ar or the 40Ar-39Ar geochronological 

technique (Pevear, 1999).  Its utility in this regard was tested and confirmed by Alkhammali 

(2015) at Kansas State University. In his study, it was shown using 40K-40Ar dating that the start 

of illitization occurred after the time of deposition of the Woodford, i.e. the illite was not a 

depositional phase in the sediments that would become the Woodford shale. Using this type of 

dating and comparing it to previous models, two stages of development were seen in relation to 

the oil generation window. The earliest illite formed before oil generation began, whereas the 

second occurred during oil generation (Higley et al., 2014; Alkhammali, 2015). 

 

 

Change in I/S Hoffman and Hower 
model 

(5-300 m.y.) 

Short-life geothermal 
model 

(<3 m.y.) 
Smectite-to R =0 50°-60°C Variable 

R= 0 to R=1 100°-110°C 120°-140°C 
R=1 to R=3 170°-180°C 170°-180°C 
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Chapter 3 - Types of Hydrocarbon Producing Organic Matter 

 

Thermal maturity of organic material is measured by the degree of coalification that the 

organics have undergone (McCarthy et al, 2011).  With sufficient time, temperature and 

pressure, the organic matter contained within sediment transforms into kerogen and bitumen.  

Kerogen is organic matter that is insoluble in organic solvents, whereas bitumen is organic 

matter that is soluble in organic solvents, and results from thermal maturation of kerogen 

(Cardott, 1989).  Kerogen can be classified into 4 types (Type I-IV) based on their respective 

origins. The kerogen types are identified through pyrolysis, by determining their distinctive 

hydrogen to oxygen ratio (Cardott, 1989).   

Type I kerogen is sourced from lacustrine algae and marine algae. The organic matter 

comes from a low energy environment that has a major contribution from bacteria and other 

microorganisms. Hydrocarbons that are produced from these kinds of locations are typically oil 

prone, and are characterized by having high hydrogen to oxygen ratio (Zhang et al, 2013).  

Type II kerogen is sourced from marine phytoplankton, zooplankton and various other 

microorganisms including bacteria. It can also contain limited organic matter of terrestrial origin. 

This type is typically generated in a moderate to deep marine environment where reducing 

conditions promote the preservation of organic matter. These environments limit the metazoans 

and bacteria that would have consumed the organic matter.  Kerogens of this type can produce 

both oil and gas depending on the heat and maturation time (Kirkland et al. 1992). 

 Woody tissues from terrestrial plants, such as stems, bark, roots and leaves of vascular 

plants, make up Type III kerogen (Cardott, 1989). The depositional environment for this type is 

typically from terrestrial environments to shallow marine areas. Kerogens from this type tend to 
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generate dry gas with very little to no oil. Most coals are derived from Type III kerogen (Tissot 

et el, 1974).  

Type IV is oxidized organic matter or high-gray vitrinite (Cardott, 1989).  The organic 

matter found is residual from older sediments that have been altered by weathering or biologic 

oxidation such as that in swamps or soils. This kerogen type produces almost no hydrocarbons 

because of its very low hydrogen content, even though it is rich in carbon (Tissot et el, 1974). 

Kerogen 

Type 

Source Material General Environment of 

Deposition 

I Mainly Algae Lacustrine setting 

II Mainly plankton, some contribution from algae Marine setting 

III Mainly higher plants Terrestrial setting 

IV Reworked, oxidized material Varied settings 

Table 2 - Summary of source material and environmental deposition of the four kerogen types 
(Cardott,1989). 
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Figure 7 - Modified Van Krevelen diagram illustrating how hydrogen, oxygen and carbon content can be used to identify 
kerogen types and the transitions each type will go through to produce hydrocarbons (Tissot et al, 1980) 
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Chapter 4 - Different Measures of Thermal Maturity 

Thermal history helps with understanding the processes needed to generate oil and 

natural gas by examining the processes and extent of organic maturation (Héroux et al. 1979).  

Vitrinite reflectance is the most widely used optical method and is the measure of light reflected 

from specific organic material found within woody plant material that first began colonizing 

terrestrial environments during the Silurian (McCarthy et al, 2011).  Vitrinite is an organic 

maceral with two sub-components, collinite and telinite.  Telinite represents the remains of the 

plant cell walls while collinite is a structureless component that remains after chemical 

decomposition.  Vitrinite reflectance examines the collinite portion and is further divided into 

sections.  Telocollinite is vitrinite that is free of inclusions, whereas desmocollinite contains 

inclusions of liptinite and other materials. Telocollinite provides the most accurate reflectance 

measurements, because desmocollinite tends to have higher H/C values and a lower reflectance, 

making maceral identification extremely important (Peters and Cassa, 1994).  

 The reflectivity of vitrinite increases because of the increased amount of aromatization 

caused by increased burial temperatures.  Vitrinite contains multiple carbon ring structures that 

become more planar with exposure to heat. As the aromatization continues, the newly formed 

aromatic rings align with each other, making the internal structure more ordered, which 

subsequently reflects more light (Peters et al., 2006). Reflectivity (VRo) values measure only the 

maximum temperature reached, since this procedure is irreversible.  The technique can be less 

reliable for very immature levels of maturation due to a lack of aromatization activation energy 

(Héroux et al., 1979). 

A method of source rock evaluation that is less focused on any particular organic type is 

Rock-Eval pyrolysis. Pyrolysis involves the heating of organic matter in an oxygen-free 
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environment. In a chamber of inert gas filled with either helium or nitrogen, a sample is heated in 

intervals from 100 °C to 850 °C. Each interval is used to simulate heating that would occur in an 

undisturbed sedimentary basin over millions of years. Pyrolysis results are derived by the gases 

that are produced during heating, which are then used to determine the amount of pyrolyzable 

carbon (free oil and gas), the residual carbon, mineral carbon and the total organic carbon. 

Pyrolysis will also give the amount of hydrogen and oxygen needed to determine the Hydrogen/ 

Oxygen Indexes used to identify the kerogen type from Figure 4 (Staplin, 1969; Herdoux et al, 

1979; Jarvie, 1991). 

 Illitization temperatures, as well as temperatures that effect vitrinite reflectance, have a 

strong correlation to oil/gas production, making illitization a commonly used and reliable 

geothermal gauge. Vitrinite reflectance coupled with illite crystallinity, and organic typing 

provided from pyrolysis, provides a more accurate understanding of diagenetic history than any 

singular observation (Figure 8). For example, R=0 to R≥1 stacking orders correspond to vitrinite 

reflectance values ranging from 0.5-0.66% which is near the beginning of the oil generation 

window (Pevear, 1999). The VRo, R ordering values along with identifying in-situ microfossils 

and the identification of types of kerogen, may be used to determine the original depositional 

environment, length and depth of burial, and possible types of hydrocarbons that may be 

produced from the sample area (Figure 8).  
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Figure 8 - Correlation between vitrinite reflectivity, illitization, temperature, and hydrocarbon production. 
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Chapter 5 - Factors Affecting Thermal Maturation Indicators 

Thermal maturity, as determined by both illitization and vitrinite reflectance, usually is 

consistent despite the different methods to determine it.  One should expect this, if temperature is 

the dominant control on these maturation indicators. These indicators do not always agree, 

however, prompting the question of which one is reliable. Since kinetics affects each of the 

thermal indicators at different rates, different indicators are only rough estimates.  When looking 

at a particular indicator it is important to examine any factors that may cause enhanced or 

suppressed rates of thermal maturation.   

The conversion from smectite to illite has been tested in natural environments as well as 

reproduced in a laboratory (Nadeau and Bain, 1986; Proust et al, 1990).  Illitization is a process 

that has been studied in regions such as the Ouachita Mountains in North America (Guthrie et al, 

1986), McMurdo Sound, Antarctica (Iacoviell et al. 2012), and the South China Sea (Jiang, 

2012).  In each study, the transition from smectite to illite remained consistent with previously 

documented temperature curves. This consistency further enforces the use of illite as a reliable 

geothermometer for most sedimentary rocks. 
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Figure 9- South China Sea Illitization (Jiang, 2012) 

  

 

Figure 10 - Comparison of modeled and observed smectite/ illite conversion found in the Gulf Coast (Huang 
et al., 1993) 
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The geochemical path of illitization requires a few rate-limiting constituents, in particular 

K and Al. Whitney and Northrop (1988) examined potassium as the main limiting factor.  Their 

study found that when an excess of K+ was available to smectite, not only was more illitic I/S 

produced, but also more random I/S of a lower R ordering value.  When K+ was withheld, the 

reaction dramatically changed, because some of the original smectite layers were consumed in 

order to form the illite. Other factors limit illitization, such as a lack of porosity, which may hold 

volatiles that may have otherwise been removed from the rock.  High concentrations of Mg2+ and 

Na+ can both lead to the suppression of illitization, and must be looked at in when using 

illitization as an indicator of paleotemperatures (Whitney and Northrop, 1988; Huang et al., 

1993). 

 

Figure 11 - X-ray diffraction patterns for K-saturated I/S showing an increase in illite above a pattern 
showing Na-saturated I/S with a decrease in illite (Whitney and Northrop, 1988). 
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Vitrinite reflectance may also yield false indications of thermal maturity (Barker, 2004; 

Fedor, 2002).  There are several reasons why inaccurate estimates of thermal maturity might 

occur (Héroux et al, 1979; Fedor and Vido, 2003; Cardott, 1993; Cardott, 2013). Factors that 

may bring about suppressed or enhanced reflectance can be attributed to the quality, quantity, 

and accuracy of analysis of the samples used in vitrinite examination (Fedor and Vido´, 2003).  

Vitrinite values may be inaccurate because of contamination of samples.  This can be 

ameliorated with careful sampling strategies, by counting enough vitrinite grains in each sample, 

and by close scrutiny of the standard deviation of the counting statistics. Error includes such 

things as misidentification of non-vitrinite inclusions.   Drilling fluids can throw off reflectance 

readings as well if the vitrinite is impregnated with foreign material from oil-based drilling 

fluids.  If the samples are well cuttings, there is the potential for rock from above the 

stratigraphic unit under consideration to fall back down the well, providing cross-contamination 

(Héroux et al, 1979).   

Less straightforward to unravel are sources of suppression and enhancement that occur 

during burial.    Goodarzi et al. (1988) investigated vitrinite reflectance in different types of 

sedimentary rock and found carbonates presented a slightly increased VRo value compared to 

coal beds, which in turn were slightly higher than shales.  Researchers have even found a strong 

suppression of vitrinite in liptinite-rich petroleum source rock (Hutton and Cook, 1980; Peters et 

al., 2006).   

Over pressurization of sedimentary basins can also retard maturation (Carr, 1999; Law et 

al, 1989; Quick and Tabet, 2003). Michels et al. (1994) found a significant suppression effect on 

kerogens in a hydrous environment when examined using confined pyrolysis versus hydrous 

pyrolysis. Both pyrolysis systems had temperatures and pressures increasing from 260 – 400 °C 
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and 250-1300 bar pressure respectively. They found that the availability of water, the type of 

system (open or confined), and the type of kerogen available would respond differently to heat 

and pressure. Hill et al. (2009) found similar results in coal beds, although their results suggest 

that pressure had a secondary effect on organic maturation. Carr (1999) attributed this to the 

retention of volatiles that prevented the molecular reorganization associated with aromatization.  

These could include the amount of gelification (vitrinitization) of huminite macerals and any 

pressure-induced retardation that might have occurred (Cardott, 1990). 

 

 

 

Chapter 6 - Discussion – The Woodford Shale as a Case Study 

 

The Woodford Formation of Oklahoma is a hydrocarbon-rich source rock of Late 

Devonian to Early Mississippian age characterized by inter-bedded shales and cherts (Cardott 

and Lambert, 1985; Roberts and Mitterer, 1992). There are three distinct layers to the Woodford 

that Kirkland et al. (1992) identified using conodonts.  Although the total organic content can 

range from 0.3 to 25wt%, the middle layer is the most hydrocarbon rich and has the greatest 

organic content (Cardott and Lambert, 1985; Kirkland et al., 1992).   

The Woodford has a recorded reflectance value (Ro) trend of 0.48 to over 5% in 

Oklahoma (Cardott and Lambert, 1985). Cardott (1990) suggested in his study of the Woodford 

Shale that VRo values <1.3% may be suppressed, but he was unable to explain why, or the 

degree to which the values were suppressed.  An example of this may be found by revisiting the 

research of Kirkland et al. (1992).  The samples examined by Kirkland et al. (1992) all showed 
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immature VRo values averaging 0.42% while having no mixed layer illite/smectite content 

which would suggest a thermally mature zone.  

 

 

Table 3 - Results from Kirkland et al, 1992 

 

Totten et al. (2013) demonstrated that if there were an insufficient source of potassium to 

sustain the conversation of smectite to illite, illitization would be suppressed. The source of this 

K+ is typically from potassium rich feldspars (Lynch, 1997). The average Gulf of Mexico shale 

would have initially needed to be composed of at least 13.4% K2O to sustain the amount of 

illitization that has occurred (Totten and Blatt, 1993).  The Woodford would be have similar 

potassium requirements. Kirkland et al. (1992) examined an outcropping with exposure to all 

three members of the formation. From the middle layer K-feldspars were absent from weathered 

samples and only averaging <1wt% in the other samples. In those samples quartz made up 29 to 
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96 wt% of the inorganic fraction, while illite was the dominant clay mineral in all three members 

of the Woodford. 

Totten et al. (2013) suggested that sources of potassium other than K-feldspar may be 

involved in providing the necessary K+.  Their study looked at different types of materials 

including organic matter, clay minerals, oil, and brines and found that the potassium to rubidium 

ratio within the clay fraction closely matched that of the organic fractions, and were distinctly 

different than they would have inherited from silicate precursors, and were similar to the K/Rb of 

other organics (Chaudhuri et al., 2007).  From these findings they concluded that a major source 

of K+ ions could be the deposited organic matter and that the two events, illitization and organic 

matter transformation, occurred simultaneously (Totten et al., 2013).  A reaction path that would 

support that theory might be (Freed and Peacor, 1992): 

3.93 K+ + 1.57 smectite = illite + 1.57 Na+ + 3.14 Ca+2 + 4.28 Mg+2 + 4.78 Fe+3 + 

24.66 Si+4 + 57 O-2 + 11.40 OH- +15.7 H2O 

This equation does not take into account the addition of Al3+, although it is also typically 

high in organic matter.  Because 1.57 moles of smectite yields 1 mole of illite and 24 moles of 

silica, this reaction might also explain the cherty nature of the Woodford described by Kirkland 

et al. (1992). 

In the area of Payne County, Oklahoma, vitrinite isoreflectance maps indicate a VRo 

value of 0.50% - 0.60% (Figure 13). This value would suggest that the maturity level of the 

shales in this region are at the very beginning of the oil generation window as seen previously in 

Figure 5. This would also be a value that typically correlates to a stacking order of a little greater 

than R=0, containing ~20% illite and nearly 80% smectite within I/S mixed layer composition. 

This is not observed in these samples. 
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The red triangle markings in Figure 13 are wells from Payne County that were examined 

by Alkhammali (2015). From the XRD patterns from Alkahmmali’s research, it was 

demonstrated that the I/S clay minerals are very well ordered.  He calculated that I/S mixed layer 

was about 90-95% illite and was well crystalline.  This means that the ordering would have a 

value of R=3 (Moore and Reynolds, 1989).   

Using the Xrd patterns from these wells (Alkhammali, 2015) Weavers sharpness ratio can 

be determined. An example is shown in Figure 12, measuring the height of the 10A peak and 

showing it in relation to the height of the peak at 10.5 A. Actual measured ratios on the XRD 

patterns from Alkhammali (2015) can be found in Appendix A.  

Weaver (1960)   Sharpness Ratio = A/B (Figure 12) 

 

Figure 12 - Sharpness ratio measurements (Weaver, 1960) 
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Figure 13 - Vitrinite isoreflectance map of the Woodford Shale of eastern Oklahoma (modified from Cardott, 
2013). The triangle markers signify locations of sample wells from Alkhammali (2015). 

 

 

The illite crystallinity shown by Wearvers sharpness ratio and the vitrinite relfectance 

values estimated from the isoreflectance map (Figure 13) are plotted in Figure 14 and compared 

to the trend from Guthrie et al., (1986). The shales that were examined in the study done by 

Guthrie et al were of comparable age (Mississippian and Pennsylvanian) as the Woodford (Late 

Devonian) and are from a nearby region in Oklahoma.  The Woodford samples do not agree with 
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the correlation between vitrinite and illitization found in Guthrie et al. (1986). The Woodford 

samples are almost entirely illite, even at thermally immature vitrinite reflectance values (Figure 

14). 

The major difference between the Woodford and the Ouachita Mountain shales studied 

by Guthrie et al. (1986)  is the increased amount of organic matter.  As stated previously, the 

Woodford can have a TOC of up to 25wt%, and averages almost 20%. This is much higher than 

average shales, which typically contain less than 1% TOC.  It is likely that the increased 

potassium available from the organic fraction promoted the early transformation of smectite to 

illite at lower thermal maturity than occurs in average shales. This is consistent with previous 

observations of Woodford behavior by Totten et al. (2013).  

 
Figure 14 – Woodford Shale compared to Ouachita Shales 
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Chapter 7 - Conclusion  

Increased subsurface temperatures during burial alters both clay minerals and organic 

matter.  To determine the extent of these changes, geologists focus on thermal maturity 

indicators, such as vitrinite reflectance and illite crystallinity.  Vitrinite reflectance, measured as 

the percentage  of light reflected from multiple grains of vitrinite, are semi-quantitative; they 

tend to be more accurate at lower maturity levels. Illitization is used as a geothermometer by 

determining the extent of known clay-mineral transformations on XRD. While it is recognized 

that time plays a role in these transformations, it is usually assumed that a minimum time 

(therefore a maximum temperature) has occurred. This record of maximum diagenetic 

temperatures are usually in agreement with each other, and with other organic transitions such as 

hydrocarbon generation. 

  Guthrie et al. (1986) stated that, in the absence of vitrinite, illite crystallinity could be 

used to approximate hydrocarbon generation-preservation stages of potential source rocks. This 

comparison cannot be used when trying to interpret the maturity of the Woodford Shale. The 

Woodford has an advanced level of progression of illitization, at least in Payne County, 

Oklahoma, that does not correspond with observed vitrinite reflectance values or with early 

hydrocarbon maturation (oil window). This could be explained by the high level of organic 

content within the Woodford, supplying an abundance of potassium to accelerate illite formation 

in I/S mixed layer clay minerals at lower temperatures than observed in shales with lower 

organic content. 

 



 27 

References  

Alkhammali, S.A., 2015, Geochemical And Clay Mineralogical Characteristics Of The 
Woodford Shale, Payne County, Oklahoma, Masters Thesis, Kansas State University. 82 
pp 

Bailey, S.W., 1988, Structures and compositions of other trioctahedral 1:1 phyllosilicates: in 
Bailey, S.W., editor, Hydrous Phyllosilicates (exclusive of micas), Vol. 19 in Reviews in 
Mineralogy, Mineralogical Society of America, Washington, D.C., p 169-188.  

Barker, C., 2004, Update On The Influence Of Extractable Organic Matter On Vitrinite 
Reflectance: Implications To Liquid Hydrocarbon Or Bitumen Impregnation As A 
Suppression Mechanism, Abstracts of the 21 Annual Meeting of the Society for Organic 
Petrology: 2004, Volume 21 p 83-86 

Berner, E. and R. Berner, 1996, Global environment water, air, and geochemical cycles Prentice-
Hall, Englewood Cliffs, NewJersey. 376 pp. 

Cardott, B. J. and M. W. Lambert, 1985, Thermal maturation by vitrinite reflectance of 
Woodford Shale, Anadarko basin, Oklahoma, AAPG Bulletin, vol. 69, no. 11, p. 1982-
1998.  

Cardott, B.J. (1989) Thermal maturation of the Woodford Shale in the Anadarko basin, in K.S. 
Johnson, ed., Anadarko basin symposium, 1988: OGS Circular 90, p. 32-46. 

Cardott, B.J., W.J. Metcalf, III, and J.L. Ahern, 1990, Thermal maturation by vitrinite reflectance 
of Woodford Shale near Washita Valley fault, Arbuckle Mountains, Oklahoma, in V.F. 
Nuccio and C.E. Barker, eds., Applications of thermal maturity studies to energy 
exploration: SEPM, Rocky Mountain Section, p. 139-146. 

Cardott, B., 2013, Woodford Shale: from hydrocarbon source rock to reservoir, AAPG 
Education Directorate Woodford Shale Forum, Oklahoma City, Oklahoma, April 11, 
2013, Power Point Presentation, http://www.searchanddiscovery.com/pdfz/documents/ 
2013/50817cardott/ndx_cardott.pdf.html 

Carr, A., 1999, A vitrinite reflectance kinetic model incorporating overpressure retardation, 
Marine and Petroleum Geology, vol. 16, no. 4, p. 355-377.  

Chaudhuri, S., N. Clauer, and K. Semhi, 2007, Plant decay as a major control of river dissolved 
potassium: a first estimate, Chemical Geology, vol. 243, no. 1, p. 178-190.  

Cuadros, J., 2006, Modeling of smectite illitization in burial diagenesis environments, 
Geochimica et Cosmochimica Acta, vol. 70, no. 16, p. 4181-4195.  

Fedor, F. and M. Hamor-Vido, 2003, Statistical analysis of vitrinite reflectance data—a new 
approach, International journal of coal geology, vol. 56, no. 3, p. 277-294.  



 28 

Freed, R. L. and D. R. Peacor, 1992, Diagenesis and the formation of authigenic illite-rich I/S 
crystals in Gulf Coast shales: TEM study of clay separates, Journal of Sedimentary 
Research, vol. 62, no. 2.  

Goodarzi, F., T. Gentzis, and R. M. Bustin, 1988, Reflectance and petrology profile of a partially 
combusted and coked bituminous coal seam from British Columbia, Fuel, vol. 67, no. 9, 
p. 1218-1222.  

Guggenheim, S. and R. Martin, 1995, Definition of clay and clay mineral: joint report of the 
AIPEA nomenclature and CMS nomenclature committees, Clays and Clay Minerals, vol. 
43, no. 2, p. 255-256.  

Guthrie, J. M., D. W. Houseknecht, and W. D. Johns, 1986, Relationships among vitrinite 
reflectance, illite crystallinity, and organic geochemistry in Carboniferous strata, 
Ouachita Mountains, Oklahoma and Arkansas, AAPG Bulletin, vol. 70, no. 1, p. 26-33.  

Héroux, Y., A. Chagnon, and R. Bertrand, 1979, Compilation and correlation of major thermal 
maturation indicators, AAPG Bulletin, vol. 63, no. 12, p. 2128-2144.  

Higley, D. K., T. A. Cook, and M. J. Pawlewicz, 2014, Petroleum Systems and Assessment of 
Undiscovered Oil and Gas in the Anadarko Basin Province, Colorado, Kansas, 
Oklahoma, and Texas—Woodford Shale Assessment Units, Higley, DK, compiler, 
Petroleum systems and assessment of undiscovered oil and gas in the Anadarko Basin 
Province, Colorado, Kansas, Oklahoma, and Texas—USGS Province, vol. 58.  

Hoffman, J. and J. Hower, 1979, Clay mineral assemblages as low-grade metamorphic 
geothermometers: application to the thrust faulted disturbed belt of Montana, USA: 
Society of Economic Paleontologists and Mineralogists Special Publication 26: 55-79. 

Hover, V. C., 1996, Relationship Between Organic Matter And authigenic Illite Smectite in 
Devonian Black Shales, Michigan and Illinois Basins, USA, in Crossey, L.J., Loucks, R., 
and Totten, M. W., eds., Siliciclastic diagenesis and fluid flow; concepts and 
applications: SEPM (Society for Sedimentary Geology), Special Pub. 55, p. 73-83.  

Hower, J., E. V. Eslinger, M. E. Hower, and E. A. Perry, 1976, Mechanism of burial 
metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence, 
Geological Society of America Bulletin, vol. 87, no. 5, p. 725-737.  

Huang, W., J. M. Longo, and D. R. Pevear, 1993, An experimentally derived kinetic model for 
smectite-to-illite conversion and its use as a geothermometer, Clays and Clay Minerals, 
vol. 41, p. 162-162.  

Hutton, A. C. and A. C. Cook, 1980, Influence of alginite on the reflectance of vitrinite from 
Joadja, NSW, and some other coals and oil shales containing alginite, Fuel, vol. 59, no. 
10, p. 711-714.  



 29 

Iacoviello, F., G. Giorgetti, F. Nieto, and I. T. Memmi, 2012, Evolution with depth from detrital 
to authigenic smectites in sediments from AND-2A drill core (McMurdo Sound, 
Antarctica), Clay Minerals, vol. 47, no. 4, p. 481-498.  

Jarvie, D. M., 1991, Total organic carbon (TOC) analysis, in Treatise of Petroleum Geology, 
Handbook of Petroleum Geology, Source and Migration Processes and Evaluation 
Techniques, Ed. R.K. Merrill, AAPG Press, Tulsa, Ok. p. 113-118 

Jiang, S., 2012, Clay Minerals from the Perspective of Oil and Gas Exploration, Clay Minerals in 
Nature, Ch. 2, p. 21-38  

Kirkland, D., R. Denison, D. Summers, and J. Gormly, 1992, Geology and organic geochemistry 
of the Woodford Shale in the Criner Hills and western Arbuckle Mountains, Oklahoma, , 
vol. 93, p. 38-69.  

Lanson, B., 1997, Decomposition of experimental X-ray diffraction patterns (profile fitting): a 
convenient way to study clay minerals, Clays and Clay Minerals, vol. 45, no. 2, p. 132-
146.  

Law, B. E., V. Nuccio, and C. Barker, 1989, Kinky vitrinite reflectance well profiles: evidence of 
paleopore pressure in low-permeability, gas-bearing sequences in Rocky Mountain 
foreland basins, AAPG Bulletin, vol. 73, no. 8, p. 999-1010.  

Lynch, F. L., 1997, Frio shale mineralogy and the stoichiometry of the smectite-to-illite reaction: 
the most important reaction in clastic sedimentary diagenesis, Clays and Clay Minerals, 
vol. 45, no. 5, p. 618-631.  

McCarthy, K., K. Rojas, M. Niemann, D. Palmowski, K. Peters, and A. Stankiewicz, 2011, Basic 
petroleum geochemistry for source rock evaluation, Oilfield Review, vol. 23, no. 2, p. 32-
43.  

Melka, K, 2009, A Scheme for the Classification of Micaceous Minerals, Acta Geodyn. 
Geomater., Vol. 6, no. 1, p. 69-75. 

Meunier, A., B. Velde, and P. Zalba, 2004, Illite K–Ar dating and crystal growth processes in 
diagenetic environments: a critical review, Terra Nova, vol. 16, no. 5, p. 296-304. 

Michels, R., P. Landais, R.P. Philp, and B.E. Torkelson, 1994, Effects of pressure on organic 
matter maturation during confined pyrolysis of Woodford kerogen: Energy Fuels, v. 8, p. 
741-754.  

Moore, D. M. and R. C. Reynolds, 1989, X-ray Diffraction and the Identification and Analysis of 
Clay Minerals, Oxford university press Oxford. 332 pp 

Nadeau, P. and D. Bain, 1986, Composition of some smectites and diagenetic illitic clays and 
implications for their origin, Clays and Clay Minerals, vol. 34, no. 4, p. 455-464.  



 30 

Peters, K. S., C. Walters, and J. M. Moldowan, 2006, The Biomarker Guide: Biomarkers and 
isotopes in the environment and human history, Cambridge University Press, vol. 1, p. 
90-91.  

Peters, K. E. and M. R. Cassa, 1994, Applied source rock geochemistry, Memoirs-American 
Association of Petroleum Geologists, p. 93-93.  

Pevear, D. R., 1999, Illite and hydrocarbon exploration, Proceedings of the National Academy of 
Sciences of the United States of America, vol. 96, no. 7, p. 3440-3446.  

Pollastro, R. M., 1993, Considerations and applications of the illite/smectite geothermometer in 
hydrocarbon-bearing rocks of Miocene to Mississippian age, Clays and Clay Minerals, 
vol. 41, p. 119-119.  

Proust, D., J. Lechelle, A. Lajudie, and A. Meunier, 1990, Hydrothermal reactivity of mixed-
layer kaolinite/smectite: experimental transformation of high-charge to low-charge 
smectite, Clays Clay Miner, vol. 38, no. 4, p. 415-425.  

Pytte, A. and R. Reynolds, 1989, The thermal transformation of smectite to illite, in Anonymous 
Thermal history of sedimentary basins, Springer, p. 133-140.  

Quick, J. C. and D. E. Tabet, 2003, Suppressed vitrinite reflectance in the Ferron coalbed gas 
fairway, central Utah: possible influence of overpressure, International Journal of Coal 
Geology, vol. 56, no. 1, p. 49-67.  

Ransom, B. and H. C. Helgeson, 1994, A chemical and thermodynamic model of aluminous 
dioctahedral 2: 1 layer clay minerals in diagenetic processes; regular solution 
representation of interlayer dehydration in smectite, American Journal of Science, vol. 
294, no. 4, p. 449-484.  

Reynolds Jr., R. C., 1980, Interstratified clay minerals: in Crystal Structures of Clay Minerals 
and Their X-ray Identification, G. W. Brindley and G. Brown, eds. Mineralogical 
Society, London, 249-303. 

Roberts, C.T., and R.M. Mitterer, 1992, Laminated black shale-bedded chert cyclicity in the 
Woodford Formation, southern Oklahoma, in K.S. Johnson and B.J. Cardott, eds., Source 
rocks in the southern Midcontinent, 1990 symposium: OGS Circular 93, p. 330-336. 

Sass, B. M., P. E. Rosenberg, and J. A. Kittrick, 1987, The stability of illite/smectite during 
diagenesis: An experimental study, Geochimica et Cosmochimica Acta, vol. 51, no. 8, p. 
2103-2115.  

Środoń,	
  J.,	
  1990,	
  Illite-­‐Smectite	
  in	
  the	
  rock	
  cycle:	
  Lectures	
  6th	
  Meet.	
  European	
  Clay	
  Groups.	
  
Seville:	
  137-­‐150. 

Staplin, F. L., 1969, Sedimentary organic matter, organic metamorphism, and oil and gas 
occurrence, Bulletin of Canadian Petroleum Geology, vol. 17, no. 1, p. 47-66.  



 31 

Tissot, B., B. Durand, J. Espitalie, and A. Combaz, 1974, Influence of nature and diagenesis of 
organic matter in formation of petroleum, AAPG Bulletin, vol. 58, no. 3, p. 499-506.  

Totten, M. W., Blatt H., 1996, Sources of silica from the illite to muscovite transformation 
during late-stage diagenesis of shales, Siliciclastic diagenesis and fluid flow, Concepts 
and Applications: Society of Economic Paleontologists and Mineralogists, Special 
Publication No. 55, p. 85-92 

Totten, M. W. and H. Blatt, 1993, Alterations in the non-clay-mineral fraction of pelitic rocks 
across the diagenetic to low-grade metamorphic transition, Ouachita Mountains, 
Oklahoma and Arkansas, Journal of Sedimentary Research, vol. 63, no. 5, p. 899-908.  

Totten, M. W., M. A. Hanan, D. Knight, and J. Borges, 2002, Characteristics of mixed-layer 
smectite/illite density separates during burial diagenesis, American Mineralogist, vol. 87, 
no. 11-12, p. 1571-1579.  

Totten, M.W., Ramirez-Caro, D., Chaudhuri, S., Clauer, N., Boutin, R., Riepl, G., Miesse, J. and 
Semhi, K., 2013, Source of Potassium for the Illitization Process in Buried Argillaceous 
Rocks: A Case for Evidence from the Woodford Shale, North-Central Oklahoma. 
GCAGS Transactions, 2013, p 449-454 

Waples, D., 1980, Time and temperature in petroleum formation: Application of Lopatin's 
method to petroleum exploration; Am. Assoc. Pet. Geol. Bull; vol. 64, no. 6. P 499-454.  

Weaver, C. E., 1960, Possible uses of clay minerals in search for oil, AAPG Bulletin, vol. 44, no. 
9, p. 1505-1518.  

Whitney, G. and Northrop, H. R., 1988, Experimental investigations of the smectite to illite 
reaction: Dual reaction mechanisms and oxygen-isotope systematics: Amer. Mineral 73, 
77-90. 

Zhang, T., G. Ellis, S. Ruppel, K. Milliken, M. Lewan, and X. Sun, 2013, Effect of organic 
matter properties, clay mineral type and thermal maturity on gas adsorption in organic-
rich shale systems, Conference Paper, no.1543690 Unconventional Resources 
Technology Conference, Denver, Colorado, 12-14 August 2013. 6pp  

 

 

 

 

 

 



 32 

 

Chapter 8 - Appendix A- 

 

 

 



 33 



 34 

 

 



 35 

 

 

 


