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CHAPTER 1: INTRODUCTION

Texture is observed in objects which exhibit some

kind of structural pattern such as wood, raffia, grass,

wool, sand, canvas etc. These texture models play a very

important role in analysis and synthesis of images

.

Textural features computed from these images are used for

image classification

.

The textures are broadly classified into

macrotextures and microtextures . The distinction between

these textures is mainly based on the size of the texture

elements or primitives . Macrotextures are assumed to be

generated by larger primitives, whereas microtextures are

generated by smaller primitives. A microtexture can be

easily and adequately described by a number of attributes

of textures such as homogeneity, coarseness, directionality

etc. There are very few macroanalysis texture procedures

described in literature.

The primary purpose of this project is to compute the

various features which describe a texture like homogeneity,

contrast, inertia, correlation etc., and to classify the

texture using a popular technique viz
.

, Spatial Gray Level

Dependence Method (SGLDM) to compute the cooccurrence



matrices . These matrices are intermediate matrices which

contain most of the textural information and play a very

important role in discriminating man-made textures rather

than the natural textures. The different features computed

by these intermediate matrices measure the visual qualities

of different patterns. This technique was particularly

chosen for a number of reasons. The first and the foremost

reason is that studies show that SGI,DM is the most powerful

statistical technique compared to other texture analysis

algorithms like gray level run length method, gray level

difference method etc. The second reason is that its wide

variety of applications to a number of image classification

procedures . The third reason is the simplicity and

effectiveness associated with it.

The results of this report show that SGLDM can be used

for texture analysis. The features extracted from spatial

gray level dependence matrices contain information about

image textural characteristics such as periodicity,

homogeneity, contrast, inertia, gray level linear

dependencies (correlation), and complexity of the image.

Subsequently, the usefulness of the textural features in

classifying different images used in this study viz.,

raffia, french canvas, straw, paper, cork, wire and wood is

investigated.



CHAPTER 2: CLASSIFICATION OF TEXTURES

Textures are classified as fine, smooth, granulated,

regular, irregular, periodic etc. Textures can be

classified as natural or artificial textures, macrotextures

or microtextures depending upon the qualities the texture

elements exhibit. In image analysis textures are classified

into two main categories : statistical and structural [8],

The classification is shown in the Figure 2.1-1.

Classification of texture

Statistical

ACE
Trans tormi

Edge ness

Concurrence matrix

Texture transforms

Random held models

Periodic

Primitives:

Gray levels

Shape

Homogeneity

Placement rules:

Period

Adjacency

Closest distances

Edge density

Extreme density

Run lengths

Other

Mosaic models

Figure 2.1-1 Texture Classification [A.K. Jain,
'Fundamentals of Digital Image Processing', Prentice Hall
Inc., New Jersey, 1989, p395]

.

2.1 STATISTICAL APPROACH

A texture is defined by a set of statistical

properties extracted from a family of picture properties.



Simple statistics such as first order statistics to higher

order statistics can be used to classify textures. While

first order statistics are used to classify only a limited

set of textures, second order statistics are used a great

deal in classifying textures. Gray level cooccurrence

matrices, which are the main focus of this project, are

computed using second order statistics. Higher order

statistics were made use of in gray level runlength,

Fourier power spectrum, autoregression model etc. Following

are some of the statistical models used to classify

textures

.

AUTOCORRELATION FUNCTION (ACF)

ACF can be used to describe the coarseness or fineness

of textures. The width of ACF is considered to be

proportional to the coarseness of a texture. Resolution of

the image is a factor which plays an important role in the

spread of ACF. Since different images can have the same

ACF, ACF alone is not sufficient to distinguish among

several texture fields

.

IMAGE TRANSFORMS

A two-dimensional transform of the input image can

be used to estimate the coarseness, fineness and

orientation. The transform of an image is passed through

several band pass filters or masks. With circular or
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angular slits, energy is measured in different frequency

bands. These are useful in detecting orientation and

periodic or quasiperiodic properties of the textures.

EDGENESS

Density of edge pixels can be used to measure the

coarseness of random texture.

COOCCURRENCE MATRIX

Many forms of cooccurrence matrices are described in

literature [12]. They are all based on the same

cooccurrence principle. Some of the important techniques

are described briefly.

Spatial gray level dependence method which is the most

powerful technique was suggested by Haralick et al.[7].

The cooccurrence matrix S(i,j/d,e) is a probability

distribution matrix of relative frequencies where the

resolution cells with the gray levels i and j are separated

by a distance d in the direction of e.

A study using Generalized Cooccurrence Matrices (GCM)

was performed by Davis et al.[3]. Computation of GCM is

very similar to SGLDM, but this method identifies the

spatial distribution of elements like edges and lines.

SGLDM describes the distribution of pixel intensities. GCM

5



can be computed by specifying three parameters. For

example, the parameters could be the edge pixel, the

orientation and the specified distance. Consider a

GCM(M°,N°), where each element of GCM is increased by one

if there is an edge pixel with M° and a neighbouring edge

pixel with N° within the specified distance S.

The gray level run length method was suggested by

Galloway [5] . The gray level run is defined as the set of

picture points having the same gray level value and the run

length being the total number of points in the run. Each

element in the run length matrix S(i,j/e) is the count of

the number of times the picture consists of gray levels i

in the run length j for different angles of 9.

An angularly independent technique of computing

cooccurrence matrices was suggested by Sun and Wee [11] .

These matrices are called Neighbouring Gray Level

Dependence Matrices (NGLDM) . These matrices are computed

by the gray level relationship of an element with its

neighbours in all directions instead of a particular

direction. A Q matrix, Q(K,S) is constructed using NGLDM

method such that K is the gray level and S is the NGLDM

number. The larger the S the smoother the image and vice

versa. This technique is insensitive to rotation and linear

gray level transformation.

6



RANDOM TEXTURE FIELDS

Several texture models were suggested for texture

classification. De Souza [4] suggested an autoregressive

model for texture classification. Kashyap et al., [10]

suggested another random field model known as Simultaneous

Auto Regressive model (SAR) . Natural textures can be

classified using Gaussian-Markov model and was suggested

by Kaneko and Yodogawa [9]

.

2.2 STRUCTURAL APPROACH

A number of textural classifications have been

described based on primitives and placement rules. Texels

or texture elements are defined by their gray level, shape

and homogeneity. Placement rules define spatial

relationships. For deterministic structures the spatial

relationships may in turn be expressed in terms of

adjacency, closest distance, periodicities etc. For

randomly placed texels, placement rules can be expressed in

terms of edge density, run lengths of maximally connected

texels and extrema density.

2.3 OTHER APPROACHES

Other approaches include mosaic models which are

7



combination of both statistical and structural approaches.

Random geometrical processes are represented by these

models

.



CHAPTER 3: SPATIAL GRAY LEVEL DEPENDENCE METHOD AND

TEXTORAL FEATURES FOR IMAGE CLASSIFICATION

3.1 IMAGE DEFINITIONS

Image refers to a two-dimensional intensity function

f (x»y) where variables x and y denote the spatial

coordinates and the value of f at any point (x,y) is

proportional to the gray level of the image. A continuous

image f(x,y) is approximated by a Nx x N
y

array where Nx

is the number of resolution cells in the x direction and N„

is the number of resolution cells in the y direction. Each

element of the array which is referred to as pixel or pel

is assigned some gray value G which ranges from 1 to Na .

Classification of pictorial data is achieved by

basically performing various analyses on the two-

dimensional image f(x,y). Various features are extracted

from the block of resolution cells and images are

classified using a linear classifier which is one of the

pattern recognition techniques.

3.2 SPATIAL GRAY LEVEL DEPENDENCE METHOD (SGLDM)

Computation of spatial gray level dependence matrices

is one of the most essential components of SGLDM. The SGLDM

9



method is based on the second order joint conditional

probability density functions S(i,j/d,8), where each

element is the estimated probability of going from gray

level i to gray level j given the interspace sampling

distance d and the angle e. Computation of these matrices

can be explained by the following notion of adjacent or

nearest neighbour resolution cells as shown in Figure 3.2-

1 . The resolution cell (re) under consideration is adjacent

to its neighbours in the direction of 0°, 45°, 90°, and

135°. For example, cells #4 and #5 are the nearest

neighbours in 0° direction to the re, cells #2, and #7 are

the nearest neighbours in 90° direction to the re under

consideration. The principal orientations are 0°, 45°, 90°,

and 135°. Neighbours along 0° are horizontal neighbours,

neighbours along 90° are vertical neighbours and neighbours

along 45° and 135° are neighbours along right diagonal and

left diagonal directions respectively. The commonly used

distances are 1 to 80. Discriminatory power can be

increased by considering more values of e and d.

135 c

#1

*4

#6

90 c 45 c

#2
H ^
re -• #5

7*—

h

#7

#3

Figure 3.2-1 Nearest neighbours to the re under
consideration
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Computation of spatial gray level dependence

matrices is easy and straightforward. A 4x4 image with

four gray levels ranging from 0-3 and the generalized form

of any spatial gray level dependence matrix are shown in

the Figure 3.2-2. Each element #(i,j) in the spatial gray

level dependence matrix is a count of the number of times

the gray levels i and j are adjacent to each other at a

given angle. For example, consider an element in the (1,2)

position. In distance one horizontal Sh matrix, the element

in the (1,2) position is a count of the total number of

times two gray levels 1 and 2 occurred horizontally

adjacent to each other at a distance of one. Similarly in

distance 1 vertical Sv matrix, the element in (1,2)

position is the total number of times two gray levels 1 and

2 occurred vertically adjacent to each other at a distance

of one. The spatial gray level dependence matrices, Sn and

Sv at d = 1 are shown in the Figure 3.2-3.

\ gray level i

image

#(0,0) #(0,1) #(0,2) #(0,3)
#(1,0) #(1,1) #(1,2) #(1,3)
#(2,0) #(2,1) #(2,2) #(2,3)
#(3,0) #(3,1) #(3,2) #(3,3)

Figure 3.2-2 A 4x4 image and the generalized form of
spatial gray level dependence matrix.
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d = 1

=h :

4 2 10
2 4

10 6 1

12

6 2

4 2

2 2 2 2

2

Figure 3.2-3 Horizontal and vertical spatial gray level
dependence matrices at d = 1

Using the generalized formulas, spatial gray level

dependence matrices can be derived for e = 0°, 45°, 90°, 135°.

Sh = S(i, j/d,0°)

- #{ (k,l) , (m,n) : f(k,l)=i, f(m,n)=j, [|k-m|=d, l-n=0]

(3.2-1)

8a = S(i, j/d, 135°)

= #( (k,l) , (m,n)

Sv = S(i, j/d, 90°)

= #( (k,l) , (m,n)

S r = S(i, j/d, 45°)

= #{ (k,l), (m,n)

f(k,l)=i, f(m,n)=j, [ (k-m=d, l-n=-d)

or (k-m=-d, l-n=d) ]

)

(3.2-2)

f(k,l)=i, f(m,n)=j, [k-m=0, |l-n|=d])

(3.2-3)

f(k,l)=i, f(m,n)=j, [ (k-m=d, l-n=d)

or (k-m=-d, l-n=-d) ]

)

(3.2-4)

where,

S(i,j/d,e) is the matrix of relative frequencies where the

neighbouring resolution cells with the gray levels i and j

are separated by distance d in the direction of angle e.

12



# denotes the number of elements in the set,

i and j are the gray levels of the cells located at (k,l)

and (m, n) , and

d i3 the distance between the resolution cells with the

gray levels i and j

.

The different distances indicated in the above

equations are explained as follows. A 3x3 image is shown in

the Figure 3.2-4. Consider elements in (k,l),(m,n) or

(m,n), (k,l) positions. For example, if (1,1), (1,2) or

(1,2), (1,1) are distance one horizontal neighbours (e =

0°), then (k-m) = and |l-n| = d = 1. Similarly, if

(1,1), (2,1) or (2,1), (1,1) are vertical neighbours (8

= 90°), then |k-m| = d = 1, (1-n) = 0.

Similarly, if (1,2), (2,3) or (2,3), (1,2) are right diagonal

neighbours (e = 45°), then (k-m) = -d = -1, (1-n) = -d = -1

or (k-m) = d = 1, (1-n) - d = 1.

Similarly, if (2,1), (1,2) or (1,2), (2,1) are left diagonal

neighbours (e = 135°), then (k-m) = d = 1, (1-n) =-d =-1

or (k-m) = -d = -1, (1-n) = d = 1.

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Figure 3.2-4 A 3x3 image.
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The matrices that are obtained are unnormalized frequency

matrices. Appropriate normalized frequency matrices can be

computed. Normalization of the matrix can be done by

dividing each entry in the matrix by an integer R. For

distance 1 and 0° direction (d = 1, e = 0°) there are a

total of R = 2 x Nx -1 x N horizontal pairs. When the

distance is 1 and e = 45° (d = 1, e = 45°) there are a

total of R = 2 x (N
y
-1) x (Nx -1) right diagonal pairs. By

symmetry, there are R = 2 x Nx x N„-l vertical neighbour

pairs with d = 1 and 9 = 90° and R = 2 x N„-l x N„-lx y

horizontal neighbour pairs with d = 1 and e = 135° .

3.3 EXTRACTION OF TEXTURAL FEATURES

A set of textural features computed from cooccurrence

matrices can be used to determine various visual qualities

of a pattern. There is a loss of textural information while

computing cooccurrence matrices from the digital image;

again there is a loss of information when the transition

occurs from the cooccurrence matrix to a set of textural

features. A set of textural features are needed to describe

a pattern since any one of them does not contain all the

textural information. In this study, textural features

computed from cooccurrence matrices include entropy,

correlation, homogeneity, inertia measure and contrast.

14



HOMOGENEITY (ASM)

This is measured from the following formula.

N„-l N -1

L<s(d,e)) = X
y

I [S(i,j/d,e)] (3.3-1)
i=0 j=0

The angular second moment (ASM) is a measure of homogeneity

of the image. If the image is homogeneous, the cooccurrence

matrix consists of a very few entries of larger magnitude

and on the other hand, if the image is nonhomogeneous,

there are a large number of entries with smaller magnitude.

CORRELATION

Correlation is given by

Ng" 1 N -1

C(S(d,e)) I I (i-,,x ) (j-^„) S(i, j/d,e)/axoy
1-0 j=0

'
(3*. 3-2)

Ng-1 N -1

where ,<x = J i £ S(i,j/d,6)
i=0 j=0

Ng
-1 N -1

»y = I J I S(i, j/d,8)
j=0 i=0

Ng-1 Ng-1

"k m
I (i-

''x> I s(i,j/d,e)
i=0 j=0

Ng-1 N -1

"V - I CJ-"y> I S(i, j/d,e)
* j=0 i=0

Correlation is a measure of linear dependencies of the

image

.
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ENTROPY

Entropy is a measure of change of brightness. Entropy is

small when the change of brightness in the region is

severe. Entropy is large when change in brightness is

smooth and is given by the following formula.

N -1 N -1
H(S(d,e)) V

Y.
S(i, j/d,e)log S(i, j/d,e) (3.3-3)

i=0 j=0

CONTRAST

The contrast is a measure of the amount of local

variations of the image and is given by the following

formula

.

N -1 N -1
L(s(d,e)) -

Y. Y. U-JI s(i,j/d,e) (3.3-4)
i=0 j=0

INERTIA

The inertia measure is believed to measure the

qualities of texture periodicity and texture gradient. The

importance of periodicity detection is that it can be used

to identify any special type of unit patterns and is given

by the following formula.

N -1 N -1
i(S(d,e)) = Y I (i-j) 2 s(i,j/d,e) (3.3-5)

i=0 j=0

The textural features described above are the most

commonly used textural measures and this measurement set

16



was used in this study. Many textural measures have been

described in the literature, out of which some measures

seems to be quite promising. New textural measures like

cluster shade and cluster prominence which were suggested

by Connors et al.[2], are believed to measure the

uniformity and proximity of a texture. A few other

statistical texture measures like sum entropy, sum variance

etc., were suggested by Haralick et al.[7].

17



CHAPTER 4 : RESULTS

4 . 1 INTRODUCTION

The image processing system consists of a digitizing

camera, a video display monitor and a general purpose

computer. The images used for this project are digital

images recorded using a digitizing camera. A video display

monitor may be used to display the images. These operations

or commands are administered using a general purpose

computer

.

The image processing system that was used for this

study was Grinnell GMR 270 series. The Grinnell captures

the images as 256 x 256 monochrome digital images using a

television camera. Each image consists of 256 lines with

the 256 pixels spaced along each line. The brightness for

each pixel ranges from to 255. A pixel with gray level

corresponds to a dark element and a pixel with gray level

255 corresponds to a bright element. In essence, the

Grinnell image processing system digitizes and displays 256

x 256 pixels with 256 gray levels. These images were

displayed on a Mitsubishi model #C3922 LPK high resolution

color TV monitor. A host computer VAX 11/750 was used to

control the operations of the Grinnell system.

18



Computer programs were written to obtain two types of

plots, two-dimensional scatter plots, inertia plots and the

final phase of the study included a classifier program.

These programs are user interactive and hence provide

flexibility to the user to some extent.

4.2 SCATTER PLOTS

Two-dimensional scatter plots or three-dimensional

scatter plots are the plots of one feature against the

other. These plots illustrate the classification power of

the features. The images used for this study are 256 x 256

images with 256 gray levels. Four windows of size 32 x 32

with 32 gray levels were created for each image and hence

four sets of samples were obtained for each image. A set of

five features viz., inertia, entropy, correlation, contrast

and homogeneity were computed from each of the reduced

samples

.

The two dimensional scatter plots which were employed

in this study, plot one feature value against the other for

all the eight images. For the scatter plots the following

notation for eight classes of textures were used.

paper =
wood =
grass =

cork =

19



french canvas = f
raffia = r
straw = s
wire = w

The textures paper, wood, wire and cork are shown in

Figure 4.2-1 and Figure 4.2-2. The textures french canvas,

raffia, straw and grass will be shown later in this

chapter. Figures 4.2-3 to 4.2-5 show sample scatter plots.

Different classes of textures form different clusters which

can be readily seen from these plots.

Figure 4.2-3 shows a scatter plot of correlation and

contrast against entropy. The samples wire, wood, cork and

to some extent paper form separate clusters. The remaining

samples overlap one another. Correlation vs. contrast and

correlation vs. entropy plots are shown in the Figure 4.2-

4
.

These scatter plots show that most of the samples are

overlapped except wood, french canvas and cork which form

good clusters for classification. Figure 4.2-5 shows the

scatter plots of correlation and entropy against contrast.

Clusters of samples wood, wire and cork are readily seen

from these plots, but the remaining samples do not form

distinct clusters.

From these two-dimensional scatter plots, a conclusion

can be drawn regarding the classification power of the

features. These features exhibit a moderate classification

20



power. All these features can classify at least four

texture classes. The samples grass, raffia, straw and to a

certain extent paper could not be very well classified.

Hence inertia plots were plotted to detect the textures

which exhibit periodicity. The results are discussed in

the next section.

21



a. Wood

b. Wire

Figure 4.2-1 Texture samples
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a. Cork

b. Paper

Figure 4.2-2 Texture samples
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Correlation vs. Contrast
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Figure 4.2-4 Scatter plots of correlation vs.
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Contrast vs. Correlation
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Figure 4.2-5 Scatter plots of contrast vs.

correlation and entropy.
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4.3 INERTIA PLOTS

Inertia measure is one of the textural measures

computed from cooccurrence matrices and is given by the

following formula.

Ng" 1 Ng" 1

I[S(d,e)J = I* £
y

(i-j)2 S (i,j/d,e)
i=0 j=0

Discriminatory power and hence the classification

power can be increased by increasing the number of angles

and intersampling distances. The normally used angles are 8

= 0°, 45°, 90°, and 135° and the distances are d =1 to 80. In

this study, horizontal and vertical inertia were computed

along 6=0° and e =90° for intersampling distances of d =

1 to 45.

The images used for inertia plots are raffia, french

canvas, grass and straw. The important reason for selecting

inertia measure is its ability to detect the texture

periodicity and texture gradient. The scatter plots did not

give a very good classification for aforementioned images.

The images raffia and french canvas exhibit periodicity,

which would distinguish them from grass and straw which do

not exhibit any periodicity. This will be later shown in

this section.

Figures 4.3-1 and 4.3-2 show the texture samples of

raffia, french canvas, grass, and straw. Figure 4.3-3 shows

27



the plot3 of horizontal and vertical inertia values against

intersampling distance for the image french canvas. The

image french canvas was originally scanned at a resolution

of 256 x 256 with 256 gray levels. The inertia values were

computed from the reduced image by creating a window of

size 45x45 and reducing the gray levels from 256 to 45.

Note that in both the plots of Figure 4.3-3 periodicity is

clearly exhibited by the image french canvas. These plots

can also be used to guage the pattern size of the french

canvas [1]. The horizontal and vertical inertia values are

minimum at the intersampling distances of djj = 21 and (Ly =

21, which indicates that the size of the unit pattern for

french canvas is 21 x 21 pixels. In other words the size of

each unit pattern of canvas is 21 pixels in the horizontal

direction and 21 pixels in the vertical direction.

Similarly the next minimum inertia values are at d^ = 43

and dLy = 42 which again indicates that the size of the unit

pattern is approximately 22 x 21 pixels. The periodicity is

slightly distorted due to the nonuniformity of the texture

fabric.

The texture of raffia shows the unit rectangular

pattern which is a different unit pattern compared to

canvas. The inertia values were again computed from a

reduced image of 45 x 45 with 45 gray levels. Figure 4.3-4

shows the plots of horizontal and vertical inertia against
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the intersampling distance d. Note a different type of

periodicity is exhibited by the image raffia. It is again

possible to measure the unit pattern size from these plots

[1). These plots indicate that the size of each pattern is

6x8 pixels, 6 pixels in vertical direction and 8 pixels in

the horizontal direction. Figures 4.3-5 and 4.3-6 show the

horizontal and inertia plots against intersampling

distance d for the images straw and grass. These images

were originally scanned at a resolution of 256x256 with 256

gray levels
. The inertia values were computed for reduced

images of size 45x45 with 45 gray values. These images can

be clearly distinguished from raffia and canvas since

these do not exhibit any periodicity which can be seen from

these plots.

The reason for choosing the inertia measure as the

feature to detect periodicity and its ability to guage the

unit patterns is clearly demonstrated. Hence these plots

definitely show a better classification for the images

which exhibit periodicity in texture pattern.
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a. raffia
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b . French canvas

Figure 4.3-1 Texture samples
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a. Grass

b. Straw

Figure 4.3-2 Texture samples
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Inertia vs. Distance(angle = deg)

Intersampling space d ((no_units))

Inertia vs. Distance(angle = 90 deg)

Intersampling space d (no_units)

Figure 4.3-3 Inertia plots along 0° and 90°

for image french canvas
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Inertia vs. Distance(angle = deg)

-H I
i i i i i i i

I
i i i i i i i

I
i 'I I

Intersampling space d (no_units)

Inertia vs. Distance(angle = 90 deg)

Intersampling space d (no_units)

Figure 4.3-4 Inertia plots along 0° and 90°

for the image raffia
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Inertia vs. Distance(angle = deg)

''''
I

|

40 48

Intersampling space d ((no_units))

Inertia vs. Distance(angle = 90 deg)

Intersampling space d (no_units)

Figure 4.3-5 Inertia plots along 0° and 90°

for the image grass
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Inertia vs. Distance(angle = deg)

Intersampling space d ((no_units))

Inertia vs. Distance(angle = 90 deg)

Intersampling space d (no_units)

Figure 4.3-6 Inertia plot3 along 0° and 90°

for the image straw
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4.4 LINEAR CLASSIFIER FOR IMAGE CLASSIFICATION

Pattern recognition consists of classification of a

set of processes. The classification of images or patterns

is based on the measurements taken from the selected

features like inertia, entropy, homogeneity, correlation

and contrast. A pattern recognition system consists of a

feature extractor and a classifier. The feature extractor

extracts the feature measurements from the input patterns

and a classifier performs the function of classification

[6] .

Pattern classification is basically a separation of

feature space. A set of N features extracted from a pattern

is called a feature vector which is shown in the Figure

4.4-1.

yi
Y2

Yn

Figure 4.4-1 Feature vector

Classification of an image is to assign each feature

vector a proper pattern class, which can be mathematically

formulated in terms of discriminant functions. Let l,2,..,m

be the m texture classes to be separated. The discriminant

functions associated with a pattern K is given by a linear
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combination of feature vector Y multiplied by its

appropriate weights as indicated by the formula,

D(Y)
N

I
k=l

WkYk + W,n+1 (4.4-1)

A linear four class classifier is shown in the Figure

4.4-2. Classification of patterns is done by an adaptive

classifier. The feature measurements for four images are

impressed on the terminals which are multiplied by a set of

weights. The sum is then passed through four threshold

units

.

v^ —Iw-, |-^__ ^_^
D12' D 13' D 14

Figure 4.4-2 A linear four class classifier

Let v-^, . . , vn , x-^, . . , xn , y lr . . , ynand z^ , . - , z n be the

feature vectors for four images . Classification of the
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images can be done by finding the different discriminant

functions and satisfying a few conditions such as follows:

If D 12 >Th 1 & D 13>Th 1 & D 14 >Th 1( then V belongs to image 1.

If D 12 <Th 1 & D23>Th2 & D24 <Th2 , then X belongs to image 2.

If D23<Th2 4 D34>Th3 & D 13<Th3 , then Y belongs to image 3.

If D34<Th3 s D24<Th3 s D 14 <Th3 , then Z belongs to image 4.

where,

D 12 is the discriminant function between the images 1 and

2. Similarly D24 is the discriminant function between the

images 2 and 4 and so on. Th lr Th2 ,and Th3 are the

thresholds between the images 1, 2, 3 and 4 as shown in the

Figure 4.4-3. A threshold of 0.0 was chosen between straw

and grass, a threshold of -1.0 was chosen between grass and

raffia and finally a threshold of -2.0 was chosen between

raffia and paper.

I I I

Image 4
|

Image 3 | Image 2 | Image 1
(paper)

| (raffia)
| (grass)

| (straw)
I I

I

Th3 Th2 Thi
(-2.0) (-1.0) (0.0)

Figure 4.4-3 Different images and their threshold values

For the number of texture patterns greater than two,

threshold devices that may be required are given by 2M > m
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where M is the number of threshold devices and m is the

number of patterns. For example, to classify eight pattern

classes three threshold devices may be sufficient.

4.5 TRAINING IN LINEAR CLASSIFIERS

If two textural patterns are linearly separable, then

by choosing the correct values of the weights a perfect

recognition can be achieved. Choosing the correct weights

can be done by training the classifier. Training a

classifier is done by adjusting the weights with a known

texture classification.

Let Y = y^ 1^2' •••i^n be a feature vector of a

texture pattern. Augmented feature vector X and weight

vector W are shown in Figure 4.5-1.

X =

*n+l

Figure 4.5-1 Augmented feature vector and the
weight vector.

If 1 and 2 are the pattern classes which are linearly

separable, then a solution weight vector exists such that

if XTW (D 12 )> Th x , then X belongs to 1 and if XTW (D 12 )<

Th x , then X belongs to 2

.

The training is done by the following procedure. A
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data set with the known classification is fed to the

classifier. If there is no error in classification, then

for the image belonging to 1, the product XTW should be

greater than Th 1 . If XTW < Th
: for the image belonging to

1, the weight vector is adjusted such that

"new " wold + (alpha * X) (4.5-1)

On the other hand, if the product XTW > Th 2 for the

image belonging to two, then the new weight vector would be

wnew " "old " (alpha * X) (4.5-2)

where alpha is any fixed positive number.

In this study an alpha value of . 1 was chosen and the

classifier was trained for threshold values of 0.0, -1.0,

and -2.0.

4.6 IMAGE CLASSIFICATION

A four class classifier shown in the Figure 4.5-2 was

used to classify raffia, grass, straw and paper. The input

to the classifier consisted of five textural features

computed from distance 1 spatial gray level dependence

matrices. The data sets were obtained by creating 4 windows

of size 32x32 from original 256x256 images. The average set

computed from four data sets was used as a training set and

the four data sets were used as test samples. The

contingency table or confusion matrix for the

classification of test samples is shown in the Fig 4.6-1.
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The straw and grass showed 75% accuracy in

classification which was better compared to the paper and

raffia which showed 50% and 25% respectively. Overall

classification accuracy on the data set which was obtained

by adding all the diagonal elements of the contingency

table and dividing by the total number of samples was found

to be approximately 57%.

>,
u
o
Cn
11)

4J
ID

ID

3
u

Assigned category

straw grass raffia paper total

straw 3 1 4

grass 1 3 4

raffia 1 1 1 1 4

paper 1 1 2 4

total 6 6 1 3 16

Figure 4.6-1 Contingency table for the
classification of data set.

The obvious reason for a moderate degree of accuracy

is that the classifier was trained with only one data set,

which resulted in improper weights. By choosing more

training sets, a classifier can be trained better. Hence

the conclusion is that scatter plots, inertia plots and the

classifier were useful in classifying only certain images

and do not give good classification for all images.
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is that the claasifier was trained with only one data set,

which resulted in improper weights. By choosing more

training sets, a classifier can be trained better. Hence

the conclusion is that scatter plots, inertia plots and the

classifier were useful in classifying only certain images

and do not give good classification for all images.



CHAPTER 5: SUMMARY AND CONCLUSIONS

The primary purpose of this project was to compute and

test the classification power of the cooccurrence matrices

using the popular technique, Spatial Gray Level Dependence

Method (SGLDM) . Various textural features like inertia,

entropy, homogeneity, contrast and correlation were

computed using cooccurrence matrices. The textures used for

this study included raffia, wood, wire, french canvas,

paper, grass, cork, and straw. The cooccurrence matrices

and textural features were computed from a reduced image.

Programs were written in "C" to compute cooccurrence

matrices and textural features. Scatter plots and inertia

plots were plotted and a linear classifier was used to

classify the textures.

Two-dimensional scatter plots, which are the plots of

one feature against the other were made use of in this

study. A good clustering of some of the images occurred,

which resulted in a good classification of those images.

Some of the images like raffia, grass, straw and paper

could not be very well classified. The scatter plots showed

a fairly good classification power and could classify four

to five textures successfully.
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Since the images like raffia, grass and straw could

not be very well classified, plots of horizontal and

vertical inertia against intersampling distance d were

obtained. Horizontal and vertical inertia were computed

along and 90 degrees with the intersampling distance d =

1 to 40. Results showed that the inertia plots could be

used to detect periodic property of the textures. The

textures raffia and canvas which exhibited different types

of periodicities were very well distinguished from grass

and straw which did not exhibit any periodic property.

The final phase of the study included texture

classification using a linear classifier which makes use of

all the features. The test samples used for this study were

raffia, grass, straw and paper. Straw and grass showed a

fairly good classification with an accuracy of 75%. Overall

classification accuracy on the entire data set was found to

be 57 per cent.
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APPENDIX A: EQUIPMENT LIST

1. Digital Equipment Corporation VAX 11/750 digital

computer

2. Grinnell GMR 270 Series Image Processing System

3. Mitsubishi Model #C3922 LPK Color Television Monitor

4. Hewlett-Packard 7475A plotter

5. Olympus 35mm Camera

6. Ilford 35mm film, ASA 100
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APPENDIX B: Computer Listings

This appendix includes the computer listings of some

of the important routines written for this study. These

routines are written to compute cooccurrence matrices,

textural features and also includes a classifier program

for textural classification. These computer listings

include only the routines which are relevant to the report

and plotting routines which plotted scatter plots and

inertia plots are excluded.
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.ttt*tt*tttt*tt**tt**t*tttt**ttt$tttttt*ttttt»t*t*tt*tttttttttttt
% DePGrtftttnt of Electrical slid Coftpuler Engineering

$ Ksnsss Btste University
t VAX C Source file nam*.' ! co..occ„»8trix»L'

mtittii.%tt*ii.%ttttt*tttttttt.tttttttttt*t*tttttttttttt*%tttt*ttttt

t DESCRIPTION: The following FTOSrsm opens s imeee

* file and reiids the ine^e. The

? cooccurrence matrices ere computed

* frora the window of user's choice end

* the different Postures .like inertiei

* entropwj contrasticorceleiion end

* homnsErnfiit-w ere cnsfnitedi

*

* DOCUMENTATION none.
* files:

*

* ARGUMENTS! none.

*

*

* RETURN! none.

*

'.) FUNCTIONS
* CALLED: honio...irie.T5u rff< ) i

t r; o r r ( ) r

t inert io<

)

t

t ent ropH (

)

t

t contrast (

)

*

*

* AUTHOR*. [i. K. Durse

*

* DATE CREATED! Septemher 20i 19SB version 1.00

t

h REVISIONS: none,

I

ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt/

include <stdio.h>

tfoefine or OxOd
define spore 0>:30

tdefine SI7E 3?

define MAX 256
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3 d p f i n f MAXIMUM XO','A

Bain ( )

tixl&rn doublp hn»o..nBBSurp()tc(jf»trast()i entropKf ) ir.orri ) .

inertia( )

f

''*
«

* Variable declarations. *
* */

ir'^ : ' /* General purpose loop counters */
J

»

k>

'slli /* First. ?.rs« level fr<J« matrix */
v»12> /* Second 3ras level from matrix */
1' /* Dummy v3rir-hl.es. */
m,

C|

dummy*

window. /* Number of the window. to
initi /* Window first ^.coordinate »/
fin*lf /* Uindow first. y...coordinate */

flrsti It Uindow last x.coordlnate to
last. It Uindow last ^..coordinate. */

f* *
* Array declarations. %

t 1/

int. s.sti. level [MAXIMUM:!: /* t..d imajle array, to
i»„ la...,j, v,rt MAX 3C MAX J. It ?..d Hasp, array. */

co..offr..«itrlx CSI7E3C5I7EJi/t Cooccurrence natrix */

occmatrix C8IZEKSIZEK

double homosten. ft HnmoSenci t.y of the imsSc */
ent., /i Entropy of the imase. */

con. /» Contrast, of the imaSe, to
con It Correlation of the imase. */
ineri /* Inertia of the inaSe. */

char file-name rSlZC.li

char fna»er20.1i

FILE *fpri It Pointer to the file tl
file *fpi

9; Promt the user to enter the file name and read the file *

* nscip. *

s %/
printf (*\n Please enter the file najie •)!

scsnf '.'/'.",' t f.ile„nsme):
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.'* *

* Open the fHn of user's choice end if ens- prror occurs *

* while opening the rile Flint, the error ».er>sa4.« end exit. *

s 1/
if (( fpr ! f oi nil (f il, .nenei "r')) -- HULL)

frintf C\n ERROR openins the file Jts'i filf..n»»e)1
BKit (0))
t.

n- »

* rror.it, tha user to enter the number of the window to be *

i processed. The switch statMent chooser, the sizn of the t

' window. t

if %/

printf ("Please oritur the number (sire) of the uindou 1
);

scsnf (
'

"d* » Rw.indc.w)i

switch .window)

esse .1 : ini t = 7,7 j

fine.I = iA!

first. = 3?!

lest = a;
break

»

case ?. . init ~ 32.

finel = All

Pirst - 1 92;

lest. = ?24i

b r e e k i

esse n : init. = 19?i

final = 224!

first = 321

lest. = 44;

break i

c r,-.i; 1 . init = 172!

Tins! = 2241

first a l?2i

lest = 224!

breski

/t ,

t Ini I i 3 1 ix.:? the imafle array to zeros. *

X s/

for (i - o; i < MAXi + ti)

{

for (j = 0! j < MAX! H.1)

C

niia?:ie..arrsH LiKJI = 0»

>

,'* j

* Reed the integers of the file into the im.v.le errs-.i one *
* after the other leaving out. all the nowlino characters *

* end c.\»rri:;c return character** *
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k - 3!

foi (i = 01 i i MnXi Hi)
c

foi (,J * 0! ,J : KilXi 1t,j)

while (k !
= 0)

c = f*etc (ft»r)!

if ( ( a != '\r,') 1% tc !» cr))

if (c --= space)

c -= 0x201
else

c -» 0x30!
if (k l« 1)

duitifny = k--l i

wiiile (durtisy != 0)

c « c * 101

dumay--;

ifii3.^e„srr3H kiiUl += c>

}

ft— -*

% Set all ths elements of occ i?iokri>: and cooccurence ittrix *
* eausl to zero* *

% _ 1/

for (i =0! i < SIZE! tti

)

for (J Oi J < SIZE! ttJ)

occ.BBtrixEiHJ.1 = 0!

ecocc ..fistrixCiltJI = Oi

y

:t %

* Ini til iza gratt-levftl ifistrix. *
j %/

for (i » 0! i < MAXIMUM! tti)

drsy-level Til = 0!

/t 1

* Read the v.rsii levels of two dimensional array into one %

t dimensions] gray lovel array end scale* the ;?r.-;y levels. *
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* _ */

k s Of

Tor (i - initi i . final) Hi)

for [J first) .< <, last! t+J)

iras-leveHIO = iasse.. nrrsw Ci3tJ3/8l

I. Hi

J

/g *

* Kecul in tha valuta of two neighbouring ?i;:t'ls and if anw *

* two i»ix»ls have jBias neighbouring values then increase the *

* corresponding elosent of nccurrsnc* matrix oh one. *

j. 1/

for (i = Oi i < SIZE; Hi)

for (j * 01 J < s.un tt.i)

1 e Oi

for (it. = 0! < MAXIMUM; m = rr. + 3?)

for <k = ni K
' <« + 31) i Hk)

vsll = *ray.. leve] r. 1 1

;

lt+;

V*X2 - *f 8B_]fiV«lC13l

if (<i =« v*il) 81 (J -« vsl2))

ocr.. iiiBtr.\;;Li K Jl = orc_iTiBt-r.i>:ri.ir Jl I li

if (d == vsl2) SS (j « VB.U>>

occmatrixriH.iJ = occ. matrixf i lf.j.1 + li

>

}

ihs
>

>

y

ft *

* Transfer all the elements of oec.matrix into cooccurrence *

* nstrix. *

t */

for (i = Oi i < SIZE! Hi)
<

for (j = Oi J i SUES H.i)

{

LO..occ..)[iBtri:-:riK.il = occ.diat rixf. i 1CJ1 i

}

n «

* Call the function ho»o..*as*ure to measure the homoseneitn *
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* di trie i Haste.

ho»o.=len = hi>i»o.../,,o,-surc(co..oec. matrix) >

J^intffTi.e ho»osene i ts 1< • »f«, ho»a«en)>

* Rail tin, ronctlun entropy to misui-« Mm imtropn of the
4 JfoBfie.

ent » entrnF L H<co...ncc_»at.rJx)«
printf ("The entropn is = Xlt'i ent);

,*--
^

* Call tha function inertia to ueasurs inertia of the masse. *-—
_^

iner -• inertia(co_occ..»3trix) ;

piiiitfCTha inertia of the UaSfi - llfiinerli

* i'.sll the function contrast to »easure contrast.

-•on -• contrast<eo„occ»atrix>)
printfCThf! contrast of the mac-, . yAf ., con);

* End of prosfraia*

return!!!)

i

-*

-*/

* Coll tha function t.orr to ftoscura the correl stioni

CO? ' CO

printf* €
1

.t(co..qcc

>i\£ correJ
.»8tri>;)(

tion of the ifeftifft = nf i corll
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* Department, of Electrical and Computer Ensinserins

* Kan»as State University

* VAX C Source file name I More.iner .c

*

* fuhctign;
*

maint )

*

* description:

*

»

*

t

*

* documentation
* fii.es:

»

The fo.Uow.inS function cofliput.es inertia

for different. intcrsamel ins distances

d = 1 to 45 end uses simple plot to

plot inertia vs. distance.

none

* arguments:

*

none

* return:

*

none

*

»: FUNCTIONS

t called:

*

*

t author:

*

simple_plot( )

D. K. DurSa

s

* DATE CREATFIi:

*

November 10. 19B8 version 1.00

*

* revisions;

I

none

*

naummmtt*M*MmMt*t*mmmmtmmtM(«m***tsst/

# include <sfedto * h>

define cr OxOd

define space 0x20

define SIZE 45

define MAX 254

define MAXIMUM 4050

main (

)

-C

extern simple_.p! oto;
/»

/* Variable declarations.

*/

*/
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»/

ft General purpose loop counters t/

Flot.taFS = !> /* Line plot foi simple: lot. */

len*Ui i 90. ,'% Iiisiie sire. */

value. /* Dumly variable */

vail. /::: First s'ray level of the matrix */

V312. /* Second sray level of the matrix*/
1. /* Mummy variables t/

mi

c

.

dummy.

tfitio'owi /* Number of the window. */

init. /# Window first x ..coordinate t/

final. /* Window first. »_ coordinate. */

first. /* Window last x ..coordinate • */

last. 1% Window laut '(.coordinate. */

n:(.l = ISi /* Total number of ?.ray levels *-/

distt /'(t lutersampl in.? distance. */

/* *

* Array declar st.i oris

.

*

j 1/

int *ra»_level rMAXIMUII 3

.

/* 1-d iaase arrau. '*/

imaae ..arras CMAX1l.'MflX.1> /* 2- d imase arras */

co.occ. matr.ixrsIZFlLr.IZE 3 ./* Cooccurrence matrix. */

occ. matrix CStZEJCSlZE])

double inertiiCSIZE.il /* Inertia buss */

di.slaricelSIZE.li ,'% Intcrsami-1 ins" distance array */

double inert /* Inertia to he computed. */

r. /% Normalisation constant */

rtx = AZt /*: Resolution cells in x..dir t/

mi » ATii /% Resolution cells in y~.dir. */

char file..name rSI7f.:li /* File to be opened. */

char fnameCSOli
char xt.i lleCMAXli /* X title array «/

atitleCHAXl. /* Y title array */

xunitsrHAX.li /* X axis units array */

v.i.m i t. -.,[. M A X :i

»

,'*. 1 axis units array */

plul_titleCMAX:; /* Plot title array. */

FILE Jfpri /* Pointer to file. ./

FILE *fp;

/t . g

* Prompt, the ur.sr to enter the file name and read the file *

It name. *

t %J
printf ("\n Please enter the file name ').

fecor.f Cas'i file..name
-.*
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*- Op.. I, the fi!s of user'- choice end if srrj error occur; *
i while ;JMninS the file print the error messase and exit. *

if <( Or * foeen (file.„B.*Bei •>')) -= mil.:.)

irintf C\r, FRROR upeuina the file Is'. file..n«»e)i

-'* :
*

* Bet the size of the uindou to 43 ;; 90. *
* */

ir.it, = o;

final aa;

rirst = 01

Ust = 89)

/j ,
J I n i t i n l i i: ;. fc ho i ftsite 3 r r s m 1 1> ze ror . *
*

*/
for (i » 01 i i HAXi I r i

)

for (j - 0; J < MAX) t+J)

itese.srrsa CiHj.1 = 0)

''* *

* Rosd the integers of the file into the inase array one *
* after the other lesv.ins out all the neuliru? characters *.

* orid csrritie return characters. »

* %f
i. = z;

for (i = 0! i < MAX! Hi)
i

for <J Oi ,j < ffAX ) + + .j)

C

uhile (k !•- 0)

c

c = fsetc (fr-r)i

if (( c !« '\n') 88 (c != cr))
<

if (c == space)
c - = 0>;?0i

else
c - 0x30)

if (

k

! = 1

)

c

dummy * k-1)
while (dummy [s 0)

c • c * 10)

dummy--

>

i*8Be_*rr»t) tj.lC.i:i + = cS
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k--i

/*---
*

* Sufc all tlto t.'leftanta of ooc matrix* cooccurrence matrix* *

t inertia end distance arrays enual to ;rcro. *

* ^
for <i =0! J < SI7Ei +!i)

t

for (.i = Oi j ; sizes t+j)

occ_matrixf i.lf J.l = 0*

cu..ot:c_matri>i[: i l[;..i 1 = >

1

for (i»0l i< SIZff+ti)

inarliati] - 0.0!

/t 1

t Initilizs !rsy..tevel ttstrix* *
,.; ......

1/
for ti = OS » < HAXIMWS + lx>

Srsi-Jevei Til = 0)

n 1

% Road thtf stray levels of two dimensional array Into one *

* dimensions] stray level array and scale the stray levels. *

t
-

% ,

k = Oi

for (i - imt! i < final} Hi)

for (j = first! J < last! + + .))

tfruf-lvVtUM = ( int. ) ima.Se.. array I i ICJJ/S . Af!8888BB;

kit;

>

)

It *

* Confutation of r. *

f %/
t = 2 t nx * (n« - 1)>

It %
t Road in the values of tuo neighbouring pixels and if any *

* two pixels have same neighbouring values then increase the *

* corresponding element, of or cur rej.ee matrix hy one and repeat *

* this process for d * 1 to 45. *
j. % ,
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value - 4o»

for (clist = li diit <=44! Hdist.)

Cur !i - Oi i ! SI«E> Mi)

for u * 0) ,i : r. :r .* r ; t hi:

1 - 0i

for (a - Ci p.. < HAXIKIIMI i» = ni + length)

lor !k = ) k < (it lvalue) ; + + k)

vail = *rsH-levelC I'M

1 = (Hdist)l
v«32 » stray,. IffVOKl :li

if (<i «« vsll) U (J " val2>)

<

ucc-nairixTiK jD = pcc„»»trixr.iHJ.l + If

>

if t(i == v»)2) 88 (J == vail)

)

occ-.nstrixr.iH J3 s nccftStrixKiHjl + 1»

1 = C(] -(list) t l)i

l-l+( length -value);

>

>

n *

* Trsnsfsr all tii« elendnts of occ-Mtrix into ro..occurance t

* nial.ri::. *

t */

for (i =- 01 i (. SIZES + + i)

for (j • o; .i < size; hj>
{

CQ.occftstrixtinnxi = ncc._aat.rixtiK.J3l

>

n *

* CoDir-ute tha inertia Tor Bach of ths sampling distances and *

* fill the inertia crrsu. *

* */

iner • Q.Oi

for (i = 01 i . nS-.i Hi)

for (J » 01 J . M-ll + + .i)

iner r* ( .co.occ_j,3trixl.iH.J:i/r) t (i-.i) t

(i-.i))i

3

ti.ertistdi-.t3 ' irier/10.0.
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dilteneeCdisU = distf
•'* *

t Rsnniti.iUzti nccurrenoG find cooccurrence n£tricff£» *
*— -

*/
for !i=(j; i <SIZEU+i)

far! J = 0! J (SIZE! I ki

)

en., dcc. in st. rixti JtJ!l -0i

owe ,.«istri>.C i:|[j] = OS

}

y

n *

$ H«1S th« si»pli! plot, to plot, inertia vs. intor^smplinis *

* distance. %

t %/

strcpy CMtitlei " Int.?

r

sampling f,pscs ct*)l

5tfc?y(wtitXe» 'Vsr Inertia')

;

strcpy '>;uni 1==? 'ftcunits 1
) f

si j cr-n' yuru tft'i "no ..units' ) i

strcpyCpXot_tiU** 'In#rtip vs. D it stance <enule = des)');
sijtpls „plot< 55i»cJi stance » inertisjxtj tin j*.*tit 1 pi xun its*

y

units*
plot_f-wiF'fli plot.. title) »

/J %

t Fnd pf proa rem. *

t 1/

return(O) »
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>'tt*m*tuuttttttttttttMt*tttt*ttttt*tttttttttttttttttt*tttsttt
* Department, of Elsctrical anil Co»putor Enaineerins
£ Ksn?ss St.ste University

VAX C Source file ri&m;-; : ho»oseneitw*c
ttttttttttttWtttttttt$tl:$t$ttttt*ttttftt*tttttttt*tttt*ttttttt<t
*

t

* FUNCTION! home., incisure ()

*

*

* DESCRIPTION: The fnllowins function computes
hoftogftneitu f r o m the cooccurrence
matrices.

* DOCUMENTATION
* FILES!

* ARGUMENTS!

* CO.. occ..ft»tri^ (input) integer
* cooccurrence mstri>;

* return:

* 'lomo (output) doufoJt

This function returns computed
value of homogeneity to the* nujin.

*

*

*

* author: n. k. riurss

*

* HATE CREATFIi: September 30. 1983 version 1.00

*

* REVISIONS: none,

ntttttttuttttm*tttttttttttttttttttuttttttttttntt*t$ttttttt»/

include <stdio.h>
include <mrtth.h>

definc SIZE 32

double ho»o_»easure<co.. oec.-ft8trix)

int cu..occ-»3tri>!CSIZE3CSIZE3>

inl riS-1 - 32! /* Tots! number of SI-SM levels. %/
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lilt i, ;t Gimeral purpor.s loop counters. */

J »

double Ml > ?•-«> ''* Po««r of u "- >' r"J function. */

homo, /* Texture Feature to be computed */

r , /* Value for the norms) iistion of */

/* matrix. *-'

,-,;: = 3?,0i /* No. of *rsH levels in x ilir. »/

na « 32. Oi /* H«. or ar.iw levels in y dir. */

double pow (

)

i

n ----- *

% The coiiput.r..'oi) of R for nor»ali*3tin<J tho co..occ..mstri>:. *

I

r - ? '* nx * (ns - 1 ) i

„ »

* Calculation or htmoseneits i«asur«*
,,, __ */
j

hoiito - 0*0)

Tor (j 0; i < n*-H Hi)

fcr (J - Oi J < nS-il H. i)

howo != foy ((doublt) co..occ„*8trixCi3CJ'i/pp

vsi)

;

y
+

t Return hooo-tsneita to the main function. *

t—
return (homo) t
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/***M«*um*m*Mmmmmtm*tMu»m*mm*mM««M
BfiPsrtBeiit, of Electrical and Commtsr Ensinserina

Kansas Stata University
VAX r: Source file nana : Contrast.

c

*i*tttttttttttttt*tttttttntttttotttttttttttttttttttttttuttttt$
*

FUNCTION! contrast. <)

DESCRIPTION! The following function comrules
contrast froo the cooccurrence) matrices.

» nOCUMENTATinN
* files:

* ARGUMENTS:
i-o. occ. matrix (input) ciouhlp

cooccurrence matrix

i return:

* contrast
t

t

(output) double
this runction returns computed value
of contrast to the Bain.

* author:
*

*

* BATE created:
t

*

* revisions:
*

P. K. Bursa

September 1?> 1?SS version 1.00

tntttttttttnttttttttttUtttntttttttttttttUtttttttttttttttttt/

•include <stdio>h>
include < m ^ t h »h>

Idefine SHE 32
Jdefine MAX ,10000

double contrast (co_occ..»atrix)

int cr.occ_»3trJxCSIZEnCSI7E.1i

IfiL ri=J_l - ?,?

i r.t if

/# Total number of :Jrny levels %/

/* General purpose loop counters */
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double rontrasti /* Feature to be toaputtd */
5«»> /* Sum of cooccurrence natrix */
r ' /* Yslue fur the nornal juration of'*:/

/* Batriji. */
nx = !»2,0> /;'. (Jo of ri r j.„ values in x dir. */
"" " 32. Oi ,':! Ho of grs^i i/aluo« in v; dir. */

/*
1

* Coipukstion of r for nornsl ijation of ca.oec»8trt>:. *

» ?/

r = 2.0 * n;-: * in'! - .1) i

/J f

* Calculation o^ contrast. *

« ___ };/

contrast -• 0.0;

for (i = 0! i < n3 . li Hi)
-C

fur (J = Oi J < ns..li + + ..0

contrast. += (sbs(i-j) * co..oec.a*trix[i]CJ3/r)l
J

y

return (contrast!

>
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/tt*ttt**t*ttttttttt*****ttttt*itttt*tttt*tt*tttttt*tt*ttttttt*ttt
t Departsej.t tif Electrical snd Conputs-r Engineering
* Kansas State University

W. C Source file ftSfte I Inertie..'

tt*ttttttt*t*tttttttttttttt*ttt.ttt*ttt*ttttttttttttttttttt*t*t.*t

* function: inertia O

MISCRIPT JQH TiiH following function L'0»putes

inertia from the cooccurrpnce
matrices.

t DOCUMENT M ION

* files:

i arguments:

* r:o..occ,.«atri ( input.) in tester

* return:
fl' inert i?

*

*

t

* author:

*

(output) douhtp
This function returns the computed
valup of inertia to the usini

D. K. Duraa

* DATE created: octohpr 17i 1?8R version .t .00

* revisions:
*

*»«*******tt»*«*«*M|[*««***»iM!*«*»|;t.*t»tt**t**«*t**n****»»/

4ineludp <stdio»h>
linclude <niatii.h>

tdefine SHE 32

double inertia (co„oocmat r ix)

it,!. co..occ_ii3trixCSUE.1CSIZE3i

inl r.sl. J = X'. /* Total nunber of .'.'rau levels, %/
/* General purpose loop counters *'
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double va) - ?,0, /* Power of tin; ran f ur.rt.Aon . */
inartisi /* rsxturs feature to be computed *./

''' >'* Value to noraalis-e (.he: matrix. */
n « = 32. Oi /* Ho. of Sraw levels in the x dir*/
riy = 3?.0i /* No. of Sra« levels in Hie « dirSV

double pow ( )

i

/*
^

* The confutation of R for norm.il izatins the oo oro matrix. *
I 1/

r =21 nx * (oa - 1)1
/«..

$
* Calculation of inertia measure. %
> 1/

inertia = O.OJ

for (i s Hi i i ntf-ii Hi)

for (J * Oi j < MJ.j i t + .i)

{

inertia 1 =( (ro.Dcc-aatrixri.KJl/r) * <(i-,j)

* (i-.i))))

)

/*--
,

* Return insrtS* to the *sin function. *
* —-*/

return (inertia).:

)

66



,'S****************»$**«*****MM*******MMMttttt

t

MM*********
* Bepartfiiflnt of Electrical and Coaputar Engineering
* Kansas Slate University
* VAX V. Source file naae I Entrnps.c
«»S«H«{*nS«JSStt«t*M«a«»M«tttt«;<:*««t!.H»«««t:
*

« FUNCTION! entrops ()

* DESCRIPTION! The following function compute;; cntrop*
from thffl cooccurronca matrices.

* DOCUMENTATION

* FIIES!

* ARSUHEKTS!
t co-orcifcatrix (input) int
*

*

* return:
* ant

*

*

(output) double
This function returns computed value
of ant-ropH to the Main*

* author: H. K. DurSs

* DATE CREATED:
*

*

* REVISIONS!
»

SpFtaaber 13i 19SB varr.icjri 1.00

*mm**m****mm*m*m*mmm*m*m**m*m***m*mm*«*m*m/

include <«tdio»h>
include <math.h>

define SIZE 32

Idefifie MAX 10000

double cntruPH(co_oce ..mat ri>;

)

int ccoecnatrixCSIZEHSIZFJi

in I ruS.l - 32. /* Total nonbar of SraH levels t/
/* Oeneral purpose loop counters*/
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double PtitTOPV, /rtexture fe.stuio to be coaeutedt/
Sl(*' /# Sum of cooccurrence n.st.ri>: */
enl ' /* Negative value of entrop*. *,'

r ' /* Virtus for the nor»flHjslton */
.'* of iiifll. ri::* */

nx * 32. Oi /» Ho. uf iirB'i levels in >: dir. */
ny = 33.0! /* No, of irsu levels in H dir. »/

/* ...
j

* Cooputstjon of r for norajsliret. jon of co_occ»nt.rix. *

J; ^
r = 7,0 :t nx t <fia - l)i

'* *

* Calculation of FntrnrH. %
%

1,

enirops « 0.0!

for (i = o; i < nS-li Hi)
c

for (j -- o; J C n*_li r+Jl

entropy (= < <ro..orc..jist.ri::riK.i]/r)*

lr..110(i:o..oco..Biat,ri>:rilCJ]/r) ) J

sr.t » ( ( -1 ) * entropy)!
return (ent)i

'
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/tttttttttt**tttt*tt*ttt**t.ttt**tttWt1i.tttttttttt*tttttttttttt**

i Depsrtssnt of Electrical slid Coiipui.or EnSine»rinS

I Kansas Btete University

* VAX C Source file tu*.! : Correlation.

c

***************** *************** ********************************

* function:

* description:

*

*

*

The fol llouins ppogra* cowutes one nf

the? features* corrfflstton from the

cooccurrence matrices .

* documentation
* files:

* AGUKEHTS:

* eo-oce.. mat ri>:

*

(input) intesfer

cooccurrence matrix.

* return:
* c o r r

*

*

*

*

* author:

*

*

* date created:

*

(output) double

This function returns computed value

of cor relation to the main.

U. K. Bursa

September 20 . 198R version 1.00

* REVISIONS! none.

*

;i:*:m**» ************************************************* ******»/

tinclude <fitdio.h>

include <math.h>

idefine SIZE 32

double corr ( eo. ooc met. ri>:

)

int co_ucc . matrixes I ZEK SIZE! i

exlern double r-nyrrOI

int n*_1 = 3?i /* Total number of Sraw levels. */

69



/ * bunor..u purpose loop counters. */
j j

/* Texture Posture to be confuted */
/* Value for normalization of the *,'

/I Brs t r i >: > * /
"" \J2,0 ' 7 * No of -Iran levels in x dir. */
"** ;*' ,() ' ''* No of aro* levels in u dir. »/ZJ" ear" /* rts.in value of x, */
*-»«««' /* Neon value of u. */
»-v*ri /j u9r ii,n ,;B „f ,,, t/
tf-v»r> /> Variance of w. %/
toU1 ' /* Total of scan deviations. */
K *-": ISl"'i ' /* Product of sort, of variances. */
6 /* Sua of cooccurrence matrix. */

1%

t Tlis aii,;:i,l.;,Ui„, „f R for normalisation of the eo_occ...»trlx.*
"~

" */
r * 2 it nx * (n* - ill

,'*---

* Calculation of x..»ei)n. *
t *

H-aean - Co;
iUS, » 0.0«

foi ti = Ot i < ns.ii Hi)

fot !.i = Oi j < n*_] i +fj)
{

sua +- co_ocr.n,stri::r.i:i:.j.l/ri

x-»ssn 1= i * sum!

/* "

s
* Calculation of u..»e»n. »
I

*

(/
y..mpan « . 0;

sum = o,o;

for (.j • o; .j < nS-li +t.j)

C

for (j = o; i < ns-l i + + .U

{

sum += co.oce_«8trixCiKJ3/i!

s-mean += j * sua!
>

,%
1

* Calculation of xvsr. *

*
*

K_vap o.c;
sua = 0,0!
for (j = o; i < nS_li t + i'J

C
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for (j = Oi .j i nsL.1 ! t + J)

»u* I- co-occ.aBtraxCiir.i.T/i'T

>._vsr f* (i - x-fhean) * (.i - u.-inesn) S tilifci

/$ ^

* Calculation of u..v3r. *

* */

»_v8i = o.o;

iu» = o.o;

for (J = 01 ,j < r>3_ll + -L.ii

for <i - Oi i -'. nS.li ++.\)

sum 1= co. oce_mstr.t >:fi Hj.'J / r!

}

y.vsr fa (,t - h . mean)* C ..i - ;,<.. mean) * suisi

/t .

* Calculation of correlation* *

*
_ */

total = c.o;

for '.I - Oi i < nB..li Hi)

for (.i = Oi J < nS-li t+J)

C

tots] 1= c.{\ - K..n«an) * (J - u-Boan) *

co ..onc-.mat, ri:: r
. ill J1/r ) i

>

>;w_si<S»3 = ?.nrt (>:.. vsr) * sflrt(H..var ) S

corr = total / ::y . f, ismsi

„ - *

* Return correlation to the Rain function. *

*« */

return (corr)i
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,'ttttttt*tt%tt*t*tt**t:t»**ttttlHl*tttttSttttttitttttt*ttt1>ttttttt*

* Bcpartaent at Electrical rind Computer Engineering
t Karisss State Univcrsitu
* VAX C Source file r.

.-
h. .? ! Uei3h»c

«mm*ti *««»*', ********* ************************************

* function:

* DESCRIPTIONS The following pruBrja computes the

fr appropriate weights fur different
* features*

* nOCUHEMTATION
* FILES! none.

t ARGUMENTS!

* return:
1.

* FUNCTIONS
* CALL Ell! none .

*

i. AUTHOR: D. K. Bur«e

t

* HATE CREATED: Novenhor ?3i 19BS version 1.00

* REVISIONS: none.
*

J***************************************************************/

include <stdia*h>

(define MAX 40

define NUH 6

define I. EH 24

define VE3 1

define Nil

/* *

t Declaration or variables* *

t _ 1 ,

lnt iii = 0i /* General purpose loop counters. */
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1

1

J!

k,

1=0

1

answer*!! /% Boolean verisble for weights. »/

double u«li /* Sum of Uis feature vectors for */

uy2» /* images one end two* */

alpha =0.1 1
.'* Alpha for s<Uust»ent of weidhts */

sunlCNUiOi /* Sua of the feature vectors for */
iuiiiSfflUrl'li /* ia.iles one and two, */

weiahttNUin, ,'* tleistht vector. */

str-SwIXFrOi /* Feature vector for strew. */

reffistl EMIi /*. Feature vector for raffia. XI
sir<;ir»n..FN1 * /% Feature vector for Srass. */

paperflFNl ! /% Feature vector for paper. */

" "- *

* ftverasSe values of l.he features are assi.-lned to their t

t respective locations, t
* 1 ,

slrauEOl 0.0H25!straum n 1 .(1331 ! strawf?] « 0, 1 108-14 ;

*tr*«E33 « 3.95792!strawi:41 = 1 ,?»13?)»tMMC53 » 1.01

ars»»C03 ~- D.«H95»«r«S5C13 = 1 .A383A!l!r3ssC21 0.109533!
a rasa! 3.1= 1.4148345l*re»«C43»l .?7773At!!rs»«CSJ'l .01

r af f i,iCO 1 -0. 1 35! raf fiat 11 =1 .A8A99! raffiam=0 . 12396!
raffia! 31=4. 87349! ref fiat 41 = 1. 9607A ! ref f iar5:i = l , 0>

p ape r 1 01 =0. 02 185 1 pap ertn- 1.57135! pope r('71=0. 113411
Paperr3l = 4..l439)paperi:4l = .1.8]2?8!par.erf5:».l.0;

/t ,

* I r j i ti el i rati on of sum and weisht arrays to zero and one* *

t %/

for (i = 0! i < HUM! tli)

f

iu«Ui1 = 0.0!

suniJm = 0.0!

weiihtro.l = 1.0!

wei?;itri'i = l.oi

wei<shtm 1.0!

weishU'33 = 1,01

weUhtf41 = 1.0!

«ei«httS3 = 1.0!

/t (

* The following for loop computes the SUA of two feature *

t vectors for two iniases after multiplying with their *

* respective! weights. *

*-- */

while (answer == YES)
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To! (i »'(ll i < 6) Hi)

stwirk.1 )- (sressCil * wfifhtClDI
£M«,2i:oii f- (psK?riii * ucishunn
1 = 1 III

uv? - 5Mft?Cs3j

1 » ft)

5U»1C03 « 0.0)
E.uri.',M'0] = 0.0)

'*— -*

t The UKi.3iits of the feature vectors srp adjusted by s value *

"4: =Jph = until thp thresholds nf the imager, one ami two are *:

* satisfied and uoiftht vector <:orivprse% to an appropriate one*
t 1/

if (wil. >-1.0)<

if<«w2 <-?.<)) f

far (J a Oi.i < 4) + + j>

ppiritf Cwoishts sip lit' ivieightCD)!
snswpr = NO.)

else

for ( i =- ; i < Aiitt)
ueisht.fi] = ueislhtfil - (alpha * i>ar>epCi])!

answer = YES)

)

for (i • 0) I < 41 Hi)
ueishtm = ueiahtfil + (alpha * Ur3S«ti3)l

$ Fnd of the prosre-m. *

-*7
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* Department of Electrical and ConpuUir Ensinoerinfl
* Kansas Stele llnivers.itn

* vY.X C Source file natta ! Pattern.

c

tttttttitttttttttttiitttttttttwttttttt tttttttttttt*it*tt**t*t*t*t

*

function:

* DESCRIPTIONS The following prostfei computes v&riouis

* discriminant functions front the weights

* computed earlier grid classifies the

* unknown i»3$l«s based on discriminant
* functions

i

*

* DOCUMENTATION
* FILES

:

none .

*

*. ARGUMENTS: none.

* RETURN: none.

J' FUNCTIONS
* CALLED! none.

*

* author: d. k. nurse

*

» DATE r-REATFTi! December ?0> 1988 version 1.00

I

*

* REVISIONS! none.

*

tttttttttttttttttttttttttittttttttttttttttttttttttttttttttttttttt/

include <stdio.h>

define MAX 40

define MUil 6

define I.EM ?A

define SIZE 4

ne in (

)

* Declaration of variables. *

t */
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l=Oi

/* General purpose Ioof counters */

double ui2fNUM.il dirr.sizn.
uUCNUfii, dnrsi7Eli
uHfNUMli dltrSJ7rf.il

w23r)l(IMl, d23CSIZEli
w24I:HUM:1t d24CSI7E.li

uMCNMUi d34C8IZE.li

unknown! I. EMI i

y.ilue !

/* Different weights and the

/* discriminant functions.

/% Unknoun iin = 3p texture features */

/* Texture feature value */
.'*

X Differs
*

ul2f01-

wl2r.33 =

ul3[01

n.Ur33'

U14C0].

U14I 3.1 =

H23C0X
U23C33'

u74(.0 I

«24C31=

U34C01
u34[31=

nt ueishts to calculate discis-inant functions*

0. 997545' 8Mt2Cl 3=0. 395547) wl2C2:i*0. 947794!
-0.554508iMt?r.4.1=0.41349!wl2r.5:)"0.7i

1 .009) wl3t 1 3«0 .141 132) tit 3C 2J-=>0 . 984427 S

- 1.-14534 !ul3r.41 = ) ,931328i«13C51=1.4l
0»7B#82!wl4tl3»-2.V8S3«1i«l4[2l«0 .9704371
-2.773054iul4E4.1 = A.954V2 ,!wl4f5n = 1.4 8

0. 99502 !u23l:i 1=0. 445025 !u23r.2 1=0. 954154!

-0.7360'. Su73i: 4 1 = 0. 42 197)1173151 =0.7)

0.7A273!u24i:l.l=-4.UAA274iu2H71 = -0. 780787!

0,r35B81iw?4l"4J=7.B17414iw24r5.1«-9.4;

0. 8 74985 ) u34fll = -0. 828808 !w34C 2 1=0. 890021)

0,4724?<>i.i34E4-l=-0. 958532! w34t.'5:i---0. 91
' I.

-

%

noun *

mases*
I

*/

* Proftpt

* ifflg«

* based
*.

the user to enter the texture features of the unf

and the iaase is classified into one of the four i

on different discriminant functions*

for!! - 0! i < 241 Hi!
C

printf ( "Please enter the texture feature \n')i

scanff 'Zlf iSvslue)!
unknounf.il -" value!

t Initialization of discriniin.irit function arraws*

for ( i » ! i < 4 i

C

dl2f.il = 0.0!

dl3Cil = 0.0!
dl4fi.l « 0.0!

d23r.il = 0.0!

d24Cil ' 0.0!

d.Mfil « 0.0)

If Hi)

% L. i ru?3 r combination of f a a t u r
- vectors after mi L tit pitting
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aitli their respective ueishtr..

for (.i

C

for <]

oi,i

dl2Lk.J 1= (unknownm * w!?n.'J)i
dU[k:i +- (ui.knounti.l
d23rt.: t = (unknour.ri.'l

d 1 4 f !; 1 t- funknownru
c! 2 4 C k

3

+= (unkriowr.ri.'l t u24n.'l)i
•-Jjin-J += (inknounii] * u.HI'U);
1-1 r 1)

}

* U13M.1);
* ».?,in:i)i

* u.t4u:n;

/*--
* rii

* d e

».

if

unknown iuaiie is cUssifiad into one of the four in
ending or, the value of the discrieiniint function .

t<d!2rk.1 > o.o) u (iii;ii:ki >o.o) 88 <dl4Ik.l
r-rintf ( ir/isae belongs to straw.'))

else if ((dU'rk.l < 0.0) 88 (d?3i:iO >-l,«)
(rt24Ck3 5-1.0))
Frint.f C ' ime-ee belongs to 3rass*))

elr,a i," <(d23rk1 < -1.0) 8?, (d34Ck1 > -2.0)
(dULkl < -2.0))
printf (

' nie.ge belongs to raffls'))
eir.i! if ((drill.!'.] < -2.0) 88 (d24Ck] < -2.0) 8

<'f!4i:k:i < -2.0) )

printf ("J»»Se bolonss to paper');
else jf f((dl2Ck.l>0.«) 88 ! dl JkklX) . ) ) Il((dl4l.k

fdi2Ek'J>o.0))i i((dnrk:i>o.o)88(dHi.k:i>o
printf ( 'imsse bclonsr. to straw'))

else if (UdlSUKO.O) 88 (d',!3I.k:i>-1.0))M((dl2Ck
(d24i:k1>-1.0)j

I I((d23i:k.l>-1.0)88(d24rk.l>
pnntl'f -iusr-e belongs to slra*s'))

else if <((d34rk.K-2.0)88(d24r.k.K-2.0))l K(d34[kJ<
<dl4CkK-2.0)>| K(d24£kJ<-2,0)JI<dl4tkl<
printf ( "imsSe belongs to purer*))

el-.'.! if (((d23rk:i<-1.0)88(d34rk]>-2.0))IM(d2.3Ckl
(dnrk.K-2.0))i i((d.!irk:i>-2.o)f,8<di:5tk:K
printf ( inijjs'e belongs to raffia"))
li

0,0))

t

I'i

l>0.0)(

.())))

K0.O)S
1.0)))

<-2.0>

2.0))

:-i.O)
•2,0))

= k +

= o;

* Fnd of tha pr-odr-sn,

.

%

*

*
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ABSTRACT

A popular technique called Spatial Gray Level

Dependence Method (SGLDM) was used to compute and test the

classification power of cooccurrence matrices. The SGLDM

was particularly chosen because of its powerfulness and

simplicity. Various textural features such as entropy,

correlation, homogeneity, contrast and inertia were

computed from cooccurrence matrices which measure the

various visual qualities of textural patterns.

A brief discussion of various classification

approaches is included as a background. Details of spatial

gray level dependence method and textural features are

included .

Final phase of this project consists of classification

of various textures using textural measures. Two-

dimensional scatter plots and inertia plots were plotted

and images were classified to a certain extent. A linear

classifier which made use of more than two textural

features could classify the entire data with an accuracy of

57 percent.


