INVESTIGATIONS OF SELECTED INITIAL VALUE PROBLEMS
USING A DIGITAL SIMULATION LANGUAGE

RODNEY T. NASH

B, S., Kansas State University, 1967

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Mechanical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1969

Approved by:

A AWt

Major” Professor




/D

]
“3 i

?/_’

A

e

B

¥
&

&

4

NE7

Chapter

NOMENCLATURE

I.

II.

III,

v,
V.

VI.

TABLE OF CONTENTS

INTRODUCTIDN . * L] L] . * L] L] L] L L]

Purpose of this Study. . . .
Background . + + + ¢ & ¢ ¢
Digital Simulation languages
Typical Applications . . . .

- - - -

DESCRIPTION OF CSMP PROGRAMMING, .

Procedure Prior to Programming
Language Elements,
Structure Statement
-Data Statements, ,
Control Statements
Procedural Blocks.

¢« » o+ @O e

L ] - - - -

- - - - -

; * e s @

L J L ] [ ] -

- L ] - -

- - - - - -

SAMPLE PROGRAMS. . . &+ o s o o & «

Simple Pendulum,
Biot Cooling . .
Whirling Shaft .,
Pole Vaulter . .

- = = =
" 4 a ®
- - L] -
*® & 8 =
- * a2 @
- - - -
e & & @
a = s ®»

CONCLUSIONS AND RECOMMENDATIONS, .

REFERENCES 4+ « & ¢ 4 & o o o o o o

APPENDIX L] L] [ ] L L] [ ] » . . L L) L] -

A'
B.
C.
D.

E.
F'
G.
Hl

CSMP Functionm List , . . . .
Development of Equations for

. [ ]
L ] [ ]
L ] .
L ] L ]
L[] L
L ] L ]
) [ ]
. [ ]
L] L]
. L ]
] &
the

L ] - - -
® @& = =
- = a @
L] - - -
* & & @
*® & » =
L] L] L] L]

4 @& & &4 = @
- : - L] - L] L 3
a ® 8 o & =
= & & 3 = =
- - - - - -
L L] - L] -» -
a % & & = =

4 & & &
L] - - -
- - L] L]
- - - -
* & e =
& - L] L]
" 4 e e

Shaft Problem

Block Diagram for the Shaft Problem. . . . .« .

Development of Equations for
PrOblemo ¢« 8 s & 9+ ¥ e & 3 @
Fortran Subroutine CAL , .
Fortran Subroutine CALC, .
Fortran Subroutine ROOCT,., .
Fortran Subroutine FUN , .,

the

[ ]

- - L ] -

Pole Vaulte

L] L] []

- & & °
e & * ® e

* o = &
e ® & 3 =
e & & @
a & * =

-

- - - - -

i1

Page

wo o

- - L] L]

+ 22
+ 25

.25
.31
‘36
'43

«+ 49

«51

+53
+ 54
+58

«59
«63
64
« 65
+ 66



114

LIST OF TABLES

Table Page

I. Elements of the CSMP Languageé. . « + o o = o ¢ ¢ « ¢« & 10
II. Comparison of Execution Times for CSMP
Integration Methods Used in the Object Cooling
PrOblem’ . . ] L] L] ] . L] * L] L] . L] » . ] L] . [ ] * . . [] L] 35
I1I. Comparison of Temperatures at Various Times
for the Cooling Problem Using the Seven
Wumerical Integration TGChniquEﬂ e o & s e s+ e s+ s s s« &35



iv

LIST OF FIGURES

Figure Page
1. Schematic View of a Simple Pendulum. . « s o« « s o« « &+ o +26
2, Printed Output from Pendulum Problem . . . & « &+ o« « + « »29
3. Print-plotted Output from Pendulum Problem . . . . + + « .30
4, Cooling Problem. . + « 4 o o s o o o s o o ¢ s o s o o & +32

3., Shaft Cross-section with Fixed and Rotating
Coordinate SYSLEmM8 + 4+ 4+ s o s s o s s o s o s s « o & o 37

6. Front View of the Shaft and Concentrated Mass. . . » « « 38

7a. Relation of Deflections in the x and y Directions
to the Fixed Coordinate System . . . « o« « s o s o s o o 54

7b. Relation of Rotating and Fixed Coordinates . . .« + « + « 54

8, Schematic Representation of Pole Vaulter Problem . . . . .59



NOMENCLATURE
”,Y acceleration, feet/seconds squared
g acceleration due to gravity, feet/seconds squared
1,L length, feet
X,Y,2Z dependent variables, (units depend on problem)
T period, seconds
8 angular displacement, radians
ﬁo initial angular displacement, radians
T temperature, °F
T, Environment temperature, °F
m 3.1416, dimensionless
t Time, seconds
Bi Biot modulus, dimensionless
w natural angular frequency, cycles/second
$ driving frequency, cycles/second
m mass, 1bm
E Modulus of Elasticity, 1b./in’
I Moment of Inertia, 1n4
ax,ay Displacement, inches
k Spring Constant, lbflft
F Force, lbf
P Force, lbf
W Weight, 1bf
E angular acceleration, tadianslaec2
.x;gy acceleration, 1n/sec2

a,b,ul,a2 combinations of variables defined when used



CHAPTER 1
INTRODUCTION

Occurrences of initial value problems in practical
Engineering work are quite frequent, Sometimes referred to as
propagation problems, these problems result from mathematical
description of such phenomena as the diffusion of heat or
transmission of disturbances by waves., Examples of this type
of problem are the heat transfer analysias of systems with
known initial temperature distribution, the investigation of
motion of vibratory, mechanical systems, the solution of
transient responses in electrical and fluidic systems, and the
determination of paths for objects in flight. In essence, the
initial value problem is taking a known value of a dependent
variable and predicting what value that variable will assume

at the next step of the independent variable,
Purpose of this Study

Formulation of an initial value problem usually consists
of a set of differential equations relating the independent
variable to the dependent one and the initial conditions to be
employed in starting the solution. One method of solution
that has found large acceptance in solving initial value prob-
lems is to simulate them on analog computers. The purpose of

this report is to discuss a digital computer program which has



been developed by International Business Machines, Inc., to
carry out an analog type simulation using a digital computer,
The name of this particular program is the Continuous System
Modeling Program (CSMP) and it is for use with IBM's operating

system 360,
Background

Engineers have been seeking solutions teo initial value
problems as long as the Calculus has been widely applied. The
solution procedure took a major step forward when during World
War I1 the operational amplifier was developed, Thils break
through led to the development of the modern electronic analog
computer., Analog solution of ordinary differential equations
became the accepted method through the 1950's because digital
computing was just getting started and to program a digital
computer for such work was quite hard., Since the analog computer
uses parallel operation, carrying out all the steps of the
program simultaneously, it could yield solutions to initial
value problems quicker imn the execution phase than its digital
counterpart in the early days of machine computation. This
speed of execution helped to push analog computers to the
fore-front in solving initial value problems,

The widespread availability of high speed digital com=-
puters along with the development of specialized software

(special programs) has caused the advantages of analog over



digital to decrease in intensity, For an initial value prob-
lem to be simulated on an analog computer, scaling of magnitude
of both program variables and time must be done prior to exe-
cution in order to keep from over or under driving the amplifiers
of the analog computer, Often a programmer attempting a new
problem will find scaling a hard task as he will not know what
values of his output variables to expect. As the complexity

of the problem increases, the problem of scaling becomes even
more confusing. This is especially true when there are non-
linearities in the system., Analog computers are further limited
by the precision with which output can be interpreted. Analog
cutputs are usually on oscilloscopes, plotters, or strip chart
recorders where the accuracy of interpretation of results de-
pends on the operators ability teo read various measuring scales.
Further analog computers are limited in the size of system

that can be simulated by the number of integrating amplifiers.
Creating a wide range of different forecing functions in an
analog computer requires a fairly sophisticated set of hard-
ware,

With a digital computer, scaling of variables is not
necessary., As many integrations as necessary can be accom-
plished because the same subroutine carries out all the iante-
gration. Alm&st any type of mathematical function can be
generated from random numbers to sine functions. But program-
ming a digital computer to march out the solution of an initial

value problem is still a formidable task. Use of aids such as



the Scientific Subroutine Package, a set of machine stored
subroutines with numerical integration capabilities, still
requires considerable programming time for solution of initial

value problems.
Digital Simulation Languages

To overcome the lengthy time for coding a digital computer
to solve initial value problems, the past few years have wit-
nessed development of several special programs to facilitate
solution with only a few steps. Some of these various programs
are PACTOLUS (1)*, DIANA (2), MIDAS (3), MIMIC (3), and SIM 1
(4). The first two of these programs work on the so called
smaller digital machine (IBM 1620) and the programmer may
enter data during the simulation from the computer console
during simulation just as he could change potentiometer gsettings
during analog runs, The later programs have the simulation
run under complete computer control, With this type of pro-
gram the machine 1s charged with the responsibility of changilag
parameters during the run according to the programmers previous
instructions,

One of the most sophisticated of this last type program
is the IBM CSMP, The Continuous System Modeling Program is
designed to allow problems to be programmed from analog circuit
diagrams, block flow diagrams, or directly from the governing
differential equations. The language of this program is made

up of a set of relatively self explanatory statements which

*Numbers in parentheses refer to references in the List of
References.



according to IBM doesn't require extensive understanding of
either computer programming (Fortran) or digital computer
operation. The CSMP program accepts the users source program
and then translates it into Fortran, For this reason Fortran
statements are acceptable inputs and some knowledge of this
computer language will definitely be helpful in working with
C5MP, After the source statements have been translated into
Fortran, they are compiled (translated into machine language)
in Fortran IV, Level E, linkedited, and then the simulation
runs are carried out by the CSMP program., Input and Output
statements are simplified by means of a free format, The order
in which data statements are placed in a typical program isn't
fixed since the CSMP program will sequence the statements so
that the simulation may be completed, Output options are
tabular printing of variables, print-plotting of variables,
maximum-minimum range of variables, and preparation of wvaria-
bles to be used in user supplied plotting programs. CSMP
offers the user a choice of seven different kinds of numerical
integration, Two of these techniques are of sufficient sophis~-

tication to allow the user to specify acceptable error limits.

Typical Applications

Use of these digital simulation programs is receiving
considerable use in design and research applications around
the country. The Jet Propulsion Laboratory of the California

Institute of Technology (2) reports that they have used their



digital simulation program to analyze such complex problems

as 3 degree of freedom autopilots and soft-landing of a space
capsule. Other problems studied were the Mariner 1967 auto-
pilot study, gimballed engine autopilot for Voyager, and a
wide-angle gyro attitude control system for the Voyager cap-
sule. Wright-Patterson Air Force Base (3) lists as a sample
of problems they have attempted with thelr digital simulation
program such things as pilot ejection studies, longitudinal
motion of aircraft studies, and aircraft arresting gear system
studies, NASA personnel (4) are reported to have attempted a
six-degree~of-freedom problem which was programmed in 3 hours
using a digital simulation language, and checked out in 1-1/2
hours of digital computer time. They estimated that programming
and check out would have taken about six weeks on the analog

computer,



CHAPTER II
DESCRIPTION OF CSMP PROGRAMMING
Procedure Prior to Programming

The first astep in preparing an initial value problem for
solution by the Continuous System Modeling Program is to set
up a mathematical description of the problem in differential
equation form, A complete description of the problem will
include initial conditions and range of values of varying
parameters in addition to the basic differential equations.
As an example of this step, the following equations define
the mathematical problem associated with the simulation of
the free vibration of a simple pendulum,

6 + g/L sin® = 0,0
initial angle; 8, = 60°
initial angular velocity = 0,0

g/L = 10,0

The appropriate differential equation was derived by
using Newton's second law of motion., The initial displace-
ment of 60 degrees from the vertical was selected in order
to rule out small angle approximatioms, Initial velocity,
acceleration of gravity, and length of the pendulum were the

other system parameters required for a complete description

of the problem.



The next step in setting up a CSMP program is to solve
the differential equations for the highest order differential
in each equation. This is the usual step one takes in setting
up equations to be programmed on an analog computer, I1IBM
suggests that people familiar with analog programming may wish
to prepare circuit diagrams or block diagrams assoclated with
analog programming to help them visualize the Bteps of the
solution., However, this step doesn't seem to be necessary to
the author as the CSMP program can be set up directly from
the mathematical description of the problem, The reason for
taking thils second step ia so that the highest order derivative
can be integrated to yield the next lowest order derivative,

A succession of these step integrations will yieid the varia-
bles desired as output by the programmer. A furtherrword of
explanation of this second step is that the computer reduces
higher order differential equations into a set of first order
equations in order to use numerical integration on this set
of equations., Arranging the derived differential equations
in the form outlined in step two is the necessary format for
this reduction of order to be carried out,

As an example of the second step, consider a two degree
of freedom vibration problem, The example problem is the
forced vibration of a shaft with a concentrated mass on the
free end of the shaft, The shaft is circular with two flat
sides milled on it. As a result of the milling, the princi-

pal moments of inertia are different in value, This problems



description involves two second order differential equations,
These two equations are set up with the second order differ-
entials on the left slide of the equations in the required

form below,

a+ b cos(24t) b sin{(2¢t)
X +
2 2 2 2
b - a b - 8

Y

L

¥ . b sin(thl X + &= b cos(2¢t) Y

b2 - a b2 - az

Language Elements

At this poeint, one is in a position to begin the pro-—
gramming of his problem, CSMP allows for a free format type
of coding. This means that the programmer is free to enter
source statements for his program in any column of a standard
eighty column card between column one and column seventy-twvo,.
A system of equations to be solved by a CSM? program is de-
scribed to the computer by a series of structure, data, and
control statements.

These three kinds of CSMP statements are made up of con-
stants, variable names, operators, and functions. Constants
are unchanging quantities used in their numeric form in the
various statements. The term constant implies the same

meaning in CSMP as in other forms of digital or anmalog computing,.
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Variable names are symbolic repreaeﬁtations of quantities

that may be either changed during a simulation run or be changed
between successlve runs, Operators used in CSMP are of the
same form and meaning as those used in baslc Fortran. Table 1
lists these operators and their functions as well as the order
in which the computer carries out the operations indicated.
Those fitemse of highest hierarchy in any astatement are done
first then the statements of next rank and so on through the
complete statement, Functions are mathematical operatlons

the CSMP program will execute automatically for the user,
Chapter III on sample programs will give the reader a better
understanding of the function of each of these elements in

structuring the CSMP language.

TABLE 1
SYMBOL OPERATION ORDER
% exponentiation ith
* multiplication 2nd
/ division 2nd
+ addition 3rd
- subtraction 3rd

Structure statements describe the functional relationships
between the wvariables of the problem. A person who is familiar
with basic Fortran will find that a majority of these struc-
ture statements are Fortran statements. However, certain unique

funections are provided by the CSMP program which serve to define
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relationships between variables., The most notable of these
added functions 1is the integration operation, A listing of
these functions which range from differentiation to a limiter
function and from noise generation to picking the smallest
value in a set of numbers can be found in Appendix A, As an
example of a set of structure statements, those used in the
simple pendulum problem discussed earlier are shown here,

X2DOT = - GOVERL * SIN(X)

XDOT = INTGRL(XDOTIC,X2DOT)

X = INTGRL(XIC,XDOT)

In these statements the second derivative of‘X with re-
spect to time is set equal to the negative of the acceleration
of gravity divided by the length of the pendulum (- GOVERL)
times the sine of X, The parameter GOVERL has a previously
defined value. The SIN(X) indicates that the sine series is
to be evaluated using the argument X. 1In the second state-
ment, the first derivative of X is set equal to the integral
of X2DOT with XDOTIC as the appropriately defined initial con-
dition to be applied in the integration., This statement tells
the CSMP program that it is to apply numerical integration to
the second derivative of X with respect to time using the
initial condition XDOTIC inorder to obtaln the first derivative
of X, The last statement repeats the action of the second
statement except the first derivative is integrated to yield
the variable X. These structure statements need not appear

in the source program Iin any set order., The CSMP program will
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arrange them in the proper sequence in the translation phase.
They are, however, restricted to one statement per card,

Some general rules which must be followed in connection
with use of structure statements can be found on page 15 of
the CSMP users manual (5). In paraphrased form, the most

significant of these requirements are:

a, The arithmetic operators (+,-,%,/,**) may not
appear consecutively,

b. Any arguements used in CSMP functions must appear
in parenthesis after the functions name and be
separated by commas.

¢, Parenthesls may be used to clarify the order of
arithmetic operations,

d. There is a set of words which are reserved in the
CSMP language and cannot be used as variables by
the programmer. These are given in the CSMP users
manual.

e, Statements may in general be continued for eight
carda by use of three periods in a row to indicate
that the statement will be continued on the next
card.

f. An asterisk in card column one indicates a comment
card, On this type of card the information is
ignored by the processor and the programmer may
enter explanatory Information which will appear in
the source listing of the program.

g. Columns 73-80 of a standard computer card are
ignored by the compiler in processing the structure
statements.

Data Statements

The second kind of statement used in programming an
initial value problem to be Bolved with IBM's CSMP are data
statements. These statements, as thelr name suggests, are
used to supply information to the program about parameters,

constants, initial conditions, and tabular data., The
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distinction between parameters and conetants is that a parameter
is free to be changed as the simulation of a problem preo-
gresses while a constant is fixed at one value, Only one
parameter may vary through a single simulation, Initial con-
ditions are those values to be supplied to the integration
routines to start the simulation, Tables of data correspond

to subscripted variables in Fortram, That ig, it contains
variables which take on a different value as the index of its
subscript varies.

As an example of some data statements here are those
that were used in the two degree of freedom vibration problem
mentioned earlier.

CONST Cl1=0.1875,C2=0,2500,...

E=,300E8,M=0.0060103,L=10.,20

PARAM PHIDOT =(104.,10%,1)

INCON XIC=1,0, YIC =0,0,XDOTIC=0,0,YDOTIC=0,0
The first data statement 1is signified by the lable CONST
which designates variables appearing on this card as constants.
The constants Cl and C2 are assigned numeric wvalues, each
constant and its value being separated from the others by a
comma, Notice that a blank must follow the card lable CONST
but as to other spacing the programmer is free. The three
dots after the specification for C2 indicate that more con-
stants will follow on the next card. The value agsigned to
the constant E is the standard Fortran method of expressing

scientific notation. E is set equal to 0.3 time 10 to the
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eight power or thirty million. PARAM is the label used with

the second example data statement, which indicates that varia-

bles identified on that card are parameters. In this case

the forcing frequency, PHIDOT, is set equal to 104,0 for the

first simulation then PHIDOT is increased by 0.1 and another

simulation takes place., The number 10 indicates that PHIDOT

is to be increased in the above manner 10 times. That 1s the

parameter Iis to range from 104,0 to 105.0 in increments of

one tenth, INCON is the final example card label shown. This

card assigned values to the initial conditions which were

used in integration functiona, Note that a blank follows PARAM

and INCON, this blank is required after all card labels.
Another kind of data statement that finds some applica-

tion is the TABLE data statement., Using this type of data

statement allows the programmer to handle large sets of data

by referencing it with a single name followed by a varying

subscript., Variables defined in this manner are handled

just like subscripted variables in Fortran, That is each

data point in the table of data is referred to by the name

of the table followed by a number in parenthesis that is the

position of the desired data element in the table. The num-

ber 5 would be assoclated with the f{fth item in the table.

As an example this type of statement was used in a CSMP

program to simulate the motion of a pole vaulter,

TABLE ICG(1-21)=3%20,,19.,17.,8.,6,,8.,14,,18,,11%20,

This sample statement defines the moment of inertia with
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respect to the pole vaulters center of gravity. The moment
of inertia has 21 different values as the problem progresses.
The elements of ICG are indexed sequentially as they appear
in the defining statement. That 18 the element number 1 is
20.0, the number 2 element is 20,0, the same for the third,
and the 4th element has a value of 19,0, To use the variable
ICG in a structure statement, it would be referenced as
ICG(K) where K would be the integer associated with the Kth
element of the table. 1In order to use a table statement,
pricr to its appearance in the source program, a certain area
of the computer memory must be set aslide to store the com=-
ponents of the table. A STORAG label on a card will do this
task. The corresponding statement for the above example

would be.
STORAG ICG(21)

There are two more kinds of data statements available
for use with CSMP, The first of these allows for linear
interpolation between a select number of data entries by the
programmer., The second type does a parabolic interpolation
between points, The same sample statement that was discussed
for the TABLE data statement would look like this when entered
in the program using the arbitrary function generation capa-
bilities just mentioned.
AFGEN CURVEl=0.,20.,.05,20,,.1,20.,.15,19,,.2,17,,.25,8,..3,6

.35,8.,.4,.4.,.45,18,,.5,20.,.55,20.,.6,20.,.7,20
.75,20.,.8,20.,.85,20,,.9,20.,.95,20.,1.,20.

.
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The form of this statement 1s an independent variable followed
by the associated value of a dependent variable, 1In this
case, time is the independent value and for each specification
of time there is an enumeriation of the moment of inertia.

To use the moment of inertia in the program, the following

type of statement would be necessary.
ICG=AFGEN (CURVELl,TIME)

The action of the program in responce to such a statement
would be to assign a value to ICG for any given value of
TIME by linearly interpolating the set of values given in

the data statement.
Control Statements

The last kind of statements necessary to program CSMP
are program control statements. This category is subdivided
into three separate kinds of control statements, These are:
Translation Control statements; Execution Control statements;
and Output Control statements, These titles are self-explanatory
as to the functions carried out by the three different kinds of
control statements.

Translation Control Statements specify how the structure
and data statements are to be translated from CSMP statements
into machine language. Each of the different translation
'cont;ol statements are indicated by a different card label.

The most often used are discussed here, As before a blank
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space must follow each card label, Some examples from pre-
viously discussed programs of these statements are:

RENAME TIME=TEMP

FIXED 1I,J

STORAG ICG(21)

DECK
NOSORT

SORT
INIT

DYNAM

TERMIN

END

STOP

ENDJOB

A card identified by the label RENAME allows the pro-

grammer to change the name of one or more of the variables
that are assigned a name by CSMP, The independent variable
of the standard CSMP simulation is TIME, The example listed
above shows this variable being renamed TEMP which is an
abbreviation for temperature. Any s8ix character name may be
substituted for one of the CSMP variables so long as the new
name begins with an alphabetic character and does not contain
any embedded blanks or special characters. Renaming variables
will facilitate a better description of the physical problem
when the CSMP variables do not apply. FIXED on a card allows
the variables listed on that card to be consider integers.

Whereas, in Fortran I,J,K,L,M, and N as well as any variable

whose name begins with these letters are consider integex
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variables, only those specified in CSMP by a FIXED statement
are consldered to be integers. STORAG is the label used to
reserve space for variables to be entered into the program
using a TABLE data statement and was discussed under that
tOpic. DECK allows the user to request that a translated
deck of cards be punched so that he may enter his program
without the translation phase for successive runs. This
feature would be helpful for use in programs that would re-
quire extensive simulation runs, Data, execution control,
and output control statements are not included in the trans-
lated deck and these statements must then be supplied with
the punched deck when it is used., The combination of the
statements, NOSORT and SORT, allows the programmer to place
statements in the CSMP source program which are not sorted
by the CSMP program at translation time. These statements
that the programmer wishes not to be sequenced by the com-
pller must come between the two cards with the labels NOSORT
and SORT. The included statements are then translated in
the order they appear in the NOSORT section, The combination
INIT and DYNAM allows the user to put a series of operation
in the program which are done only once at the outset of the
execution phase, TERMIN indicates that all the statements
following the card with the TERMIN label are to be carried
out at the completion of the simulationm run, END, STOP, and
ENDJOB labels signify the end of the CSMP source statements.,

The reader is referred to the sample programs presented in
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Chapter III for examples of application of the Translation
Control statements.

The second kind of control statements are Execution
control statements., This type of statement 1is used to specify
the actual mechanics of a simulation run. Such things as
length of the run, the kind of numerical integration to be
used, and the step size to be used with the integration are
specified with this category of statement, The three most
often used Execution Control statements are examplified by
the following examples.

TIMER PRDEL=,05, OUTDEL=,05, FINTIM=10,0, DELT=,05

FINISH X=1.1, Y=1.1

METHOD RKSFX

The program information supplied by the statement TIMER
is data for the integration interval used Iin each step while
marching out the solution. The wvariable PRDEL is the name
associated with the printing out of output variables. That
is 1if the user desires time sequenced values of any of the
variables in his program, he can assign a value to PRDEL and
receive printed output at hilis specified increments. OUTDEL
has the same function for print plotting of wvariables against
th§ independent wvariable, FINTIM places a final value on the
independent wvariable which in this example is 10.0 seconds,
The unit of time was determined from the units of physical
data in the program. DELT is the value of the integration

interval. Each of these variables has program assigned values
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and unless specified in an Execution Control statement by
the programmer, these default options will be used by the
CSMP program, Thus the programmer doesn't have to put a
value on each of these items unless he chooses to do so.
Some experimentation with each problem will usually be neces-
sary before the optimum combination will be determined.
FINISH is the statement label of the second statement shown
in the example. This statement causes a simulation rum to
terminate 1if the values indicated on the card are reached or
exceeded, TFor the example if X or Y were to become larger
in absolute value than 1.1 the run would be terminated., The
final example is the METHOD statement, Through the use of
this card the CSMP user tells the computer which integration
technique to choose in carrying out the simulation, RKSFX
in the example indiﬁates that a fixed interval Forth-order
Runge-Kutta routine is to be employed, The varlous methods
available for use and the appropriate symbolic names are

listed below,

SYMBOL METHOD

ADAMS Second-order Adams integration
with fixed interval

MILNE Variable-gstep, fifth-order, pre-
dictor-corrector Milne integration

RECT Rectangular integration

RKS Fourth-order Runge~-Kutta with

variable integration interval;
Simpson's Rule used for error
estimation
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REKSFX Fourth-order Runge=-Kutta with
fixed interval

SIMP Simpson's Rule integration with
fixed interval

TRAPZ TrapezZolidal integration

The last kind of a control statement is the Output
Control statement. These statements are used to indicate
which variables are to be printed, which are to be plotted,
and what labels are to be put on the tables and graphs. As
with other kinds of CSMP statements there is unique set of
statement names used for Output Control statements of which
these may serve as examples,.

PRINT X,Y,0,XDOT,YDOT,0DOT,RAD,ICG

TITLE OUTPUT VARIABLES

PRTPLT X,Y,0,C,ETA

LABEL DISPLACEMENT

RANGE X,Y

The wvarlables listed after PRINT will be printed out over
the range of time the simulation lasts in increments specified
by PRDEL., The statement after the card label TITLE will ap-
pear at the top of each page of printing. PRTPLT indicates
which variables are to be print~plotted against time according
to the increment size defined by OUTDEL., The label specified
by LABEL will appear on each print-plot., RANGE causes the

maximum and minimum values of a variable to be printed out

along with the time they occurred after each siwmulation.
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Procedural Blocks

The discussion of the basic approach to and elements of
CSMP programming is now complete. This material is not an
exhaustive treatment of the subject and the reader may wish
to refer to.the various IBM reference manuals listed in the
List of References as well as to the sample programs of
Chapter III for more information. Just the basic elements
of the CSMP program have been outlined so far., To complete
Chapter II, grouping these basic elements into groups to act
as procedural blocks will be discussed., CSMP provides for
three different ways of combining the basic elements of CSMP
and Fortran together in procedural blocks.

The first of these ways 1s referred to as a MACRO, It
is a function-defining capability which allows the CSMP user
to designate a group of mathematical statements as a function
and then reference this block by a single name. That is
when the programmer has a set of mathematical steps in his
program which is used several times but with different input
parameters each time, he may define a functional block and
then supply the appropriate variables to the function iﬁstead
of writing the equations each time he wants the calculations
performed. The form for this block is the card label MACRO
followed by a dummy variable which is set equal to the function
with appropriate inputs in parenthesis after the name, TFol-

lowing the MACRO card are the cards with statements defining
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the function, Any CSMP structure statement may be used, Some=-
where in these statements the dummy variable used on the first
card has to be set equal to the desired output, Multiple
outputa may be used but multiple dummy variables must be
placed in the MACRO statement and these separated by commas.
After the cards with the mathematical statements, a card with
the label ENDMAC is required to terminate the function block.
This block of cards must appear in the source program prior
to any structure statements, A MACRO would look something
like the following sample,

MACRO IDOT,I,C,ETA,DEM1=CALC(ICG,RAD,TIME,DELT,M,0,Y,X)

: (structure statements)

ENDMAC

The second of these methods for handling several state-
ments as a unit, is referenced by the card label PROCED. 1Its
format is the same as a MACRO's except the end statement for
this block is ENDPRO. The only differences between these firat
two blocks is that the PROCED block can be used only once per
simulation and the PROCED block is not sorted by the CSMP
program, If a PROCED block is put Inside a MACRO block it
can be used as often as the MACRO. PROCED blocks may be
placed anywhere in the CSMP program except inside another
PROCED block.

The third method of handling groups of statements is

the use of Fortran subroutines, Both the function subroutine
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and the regular subroutine are allowed to be used in CSMP,

As with Fortran, the function subprogram is used for multiple
outputs. All Fortran rules apply to subroutine usage, how-
ever, the reader who 1s famliliar with Fortran will note that
the CSMP statement for calling a subroutine 1is different from

Fortran, The statement

1pOT,I,C,ETA,DEMl=CALC(ICG,RAD,TIME,DELT,M,0,Y,X)

calls a subroutine whose symbolic name is CALC, This is the
same form used to reference MACROs and PROCEDs. The inputs
to this subroutine from the main CSMP program are listed in
parenthesis after the subroutine name and the outputs are
listed on the left side of the equal sign., The standard For-

tran card to go at the beginning of CALC would be,

SUBROUTINE CALC(ICG,R,TIME,DELT,M,0,Y,X,IDOT,I,C,ETA,DEML)

All subroutines must be placed after the STOP card and before

the ENDJOB card prior to processing a CSMP program,
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CHAPTER III
SAMPLE CSMP PROGRAMS

This chapter consists of description of four sample CSMP
programs. Since the main emphasis here 18 on the digital simu-
lation language, little discussion of the problems themselves
will be included. 1In each case, however, some background in-
formation will be presented along with the sample program and

a discussion of what each statement in it does.
Simple Pendulum

When small angle approximation are applicable (sin 8 = 6,
cos 8§ = 1), the analytical solution of the differential equation
is a linear combination of sine and cosine terms. However,
when the displacement of the pendulum exceeds, approximately
twenty degrees from the vertical, the analytical solution
becomes much more complex since the small angle approximations
are no longer valid. For displacements greater than twenty
degrees, the mathematical procedure for solution yields an
elliptical integral that defines the period of oscillation,

As a test of CSMP the governing differential equation for

a simple pendulum
X = - B
X 1 sin x

was programmed using an initial displacement of sufficient
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magnitude as to rule out the use of small angle approximations.
In this problem the ratio of acceleration due to gravity to the
length of the pendulum (%) was arbitrarily picked as 10,0, The
other physical parameters chosen to define the problem were
initial displacement (60°), initial pendulum acceleration (0.0),
and problem duration (5 seconds), The CSMP statements used to
simulate this problem are listed below. Those statements which
appear in the program with an asterisk as the first character
are comment cards, The numbers which appear at the right hand

side of the program are merely identification numbers.

[l 014l IAL L L DN L
L Ty
L

:

Figure 1. Schematic View of a Simple Pendulum.
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* ***PENDULUM SIMULATION®*%*
*
* **DATA STATEMENTS**
ES
PARAM GOVERL=10.,0 1
INCON XIC=1,0471975,XDOTIC=0,0 2
* .
* **EXECUTION CONTROL STATEMENTS**
% _
TIMER PRDEL=.05,0UTDEL=,05,FINTIM=5,0 3
*
* **QUTPUT CONTROL STATEMENTS**
*
PRINT X2DOT,XDOT,X 4
TITLE SIMPLE PENDULUM ACCELERATION, VELOCITY, AND DISPLACEMENT 5
PRTPLT X ' 6
LABEL PENDULUM MOTION 7
&
* **STRUCTURE STATEMENTS**
*
X2DOT = -GOVERL*SIN(X) 8
XDOT=INTGRL (XDOTIC,X2DOT) 9
X=INTGRL(XIC,XDOT) 10
*
* **TRANSLATION CONTROL STATEMENTS*%
*
END 11
STOP ‘ 12
ENDJOB 13

The first card of the program is labeled PARAM, This card
defines the ratio g/l that is to be used in this particular simu-
lation of a pendulum. By using a parameter card to designate a
value of g/l, the programmer allows himself the option of changing
this ratio for other runs, A separate simulation of the problem
will be carried out for each value that appears on the PARAM
card up to fifty runmns.

The second card of the program specifies the initial angu~
lar displacement and initial angular velocity. 1.0471975 is the

initial angle in radians which is equivalent to sixty degrees.
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The timer card sets the printing increment for output at one
hundredth of a second, the increment for plotting at the same
value, and specifies the length of the simulation is to be five
seconds. The fourth and fifth cards indicate which variables
are to be printed and what heading is to appear at the top of
the page of printed output, Cards six and seven signify which
variables to plot against time and what lable to put on the
dependent variable axis.

The governing differential equation appears on the eighth
card, All these cards allow free format and this statement
was only set further to the right in order to distinguish it as
a structure statement, However, such a step is neither neces-
sary or strongly recommended. The ninth and tenth cards com-
plete the mathematical structuring of the problem, The final
three statements merely tell the compller that the program is
finished,

Inorder to evaluate the results obtained by this particular

simulation, the period for this pendulum was evaluated using

n/2
T = (4/*3/1)[ deu
0 / 1-gin? ('i-g')sinze

which is the analytical result for large oscillations. (9)
Using a BO of 60 degrees, the above expression yielded a value

of 2,133 seconds as the length of the period. Using the CSMP



Figure 2.

SIMPLE PENDULUM ACCELERATION,

TIME
0.0
5.00C0F=-02
1.00C0OE-01
1.50C0€-01
2.0CCOE=-01
2.5000E-01
3.0CCOE-0O1
3.5CC0E-01
4.00C0E~01
4.5CC0E-01
5.00C0E-01
5.50C0E-01
6.00CO0E~C1
6.50C0E=01
7.0000€E-01
T.50C0E-01
8.0CC0E~0]
8.50C0E~01
9.00C0E-01
9.50C0E-01
1.00CCE 0O
1.0500E 00
1.10CCE QO
1.15C0E 00
1.20C0E 00
1.25C0E 00
1.3CCOE 00
1.35C0€ 0O
1.4CCOE 00
1.45C0E 0O
1.5CC0E 00
1.55C0E 00
" 1.60C0E 00
l.65C0E 00
1.7CCQE 00
1.T5C0E 00
1.80C0E 0O
1.85C0E 00
1.90C0E 00
1.95C0E QO
2.00COE 00
2.05C0E 00
2.10C0E 00
2.15COE 00
2.20C0E QO
2.25C0E 00
2+.30C0E 0Q
2.35C0E QO
2.40C0E 00
2.45C0E 0O
2.50C0E 00

x200T1
-8.6603E QO
-8.6056E 00
=8.4%366L 00
-8.1382€ 00
-7.6883E 00
-7.0622E QO
-6.23865 00
=5.2067E 0O
=3.9735E 00
~-2.5681F 00
-1.0423E 00
5.3443£-01
2.0849E 00
3.5359E 00
4.8290€ 00
5.9277TE 00
h.81l82F 00
T.5062E 0O
8.0104E 00
8.3551E 00
8.5638E 00
8.6543E 00
8.6350E 00
8.5042E 00
8.2497E 00
T-.8514F 00
T.2849€ 00
6.5269E 00
5.5626F 00
443924F 0O
3.0381F GO
1.5444E 00
~2.4095FE~02
~1«5914F 0O
-3.0817E 0O
—-4,4309E 0O
-5.5950E 0O
-6.5529E 00
-7.3048E 00
~T.8658E 00
=8.2593E 00
-8.5097E 00
-8.6369E 00
-B.6528E 00
-8.5588E 00
=8.3461E 00
=7T.9969E CO
~T.4874E 00
-6.7934E 00
-5.8966E 00
~4.T91L6E CO

VELOCIIY,
xpovy X
0.0 1.0472F 00
=4.3210E-01 1.0364F 00
-8.5866E-01 1.0041F 00
~1.2736E 00 9,5070£-01
=1.6699E 0G0 B.T702E~0L
=2.0395E 00 7.8415E-01
=~2¢3729E 00 6.7367E-01
=2.6599E 00 S5.4764E-01
-2.8901E 00 4.0863E=-01
-3.0543F 00 2.5972E-01
=3.1449E 00 1.0442E-01
=3.1577E 00 =5.3469E-02
-3.0919E 00 -2.1003E-01
-2.9508E 00 -3.,6140E-01
-2.7T410E 00 -~5.0396E~-01
-2+4T12E 00 ~6.3450E~01
=-2.1516E 00 -7.5025E-01
=1.7927E 00 -8.4900E-01
-1.4041E 00 -9,2903E-01
~9.9433E~-01 -9.8906E-01
-5,7083E-01 -1.0282E 00O
292T8BE-01 -1.0422F 00
T217T4E-01 -1.0168E QO
l.1411E 00 -9.T015E-01
l.5443E 00 =-9.0293F-01
1.9235E 00 —-B.1612E-01
242696E 00 =-7.1113F~01
2.5727€E 00 -5,8988c-01
2.8224E 00 -4,5475E-01
3.0088E 00 -3.0B69E-01
3.1238BE 00 =1.5506E-01
3.1620F 00 2.4095E-03
3.1214F 00 1.5982E-01
3.0041E 00 3.1327E-0l
2.8156E 00 4.5904E-01
2.5641E 00 5.9378BE-01
2.2595E 00 7T.1457C-01
1.9123€ 00 B.1902E-01
l«%322EF 00 9.0525E-01
1.1285E 00 9.7185E-01
7.0869E-01 1.0178E 00O
2.T7954E~-01 1.0426E 0O
-1.5316E=-01 1.0457E 00
-5.8391E-01 1.0273E 00
~1.007T1E 00 9.8743E-01
=-1la4162E 00 9.2677E-01
-1.8041lE 00 B.4616E-01
-2.1619E 00 T.468TE-01
-2.4800E 00 6.3063E-01
-2.74BlE 00 4,9970E-01

Printed Output from Pendulum Problem.

ANGO DISPLACEMENT

2%
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PENCULUM MOTION PAGE 1
MINTHUM X VERSUS TIME MAX T MUM
-1.0471E a0 1.0472€ 00

TINME X 1 1
0.0 L.0472F 00  ==m——me—a- m———— e S e R e —
5.0C00E-02 la0364E 00  ==———mmmmmmma i SRR i
1.CCCOE=D1 1.0C41E 00 - ——
1.5CCOE-01 9.5070F-01 S———
2.CCCCE~O1 A.7702E-01 e e "
2.50C0E-01 Te8415E=01 e e e "
3.0CCOE-01 6.7367E-01 === S, i
3.5CC0E-01 S.4T64E-01  —-- — +

4,CCCOE-D1 4.0863F-01  =-- -— -t

4.5CC0E-01 2.5972E-01 —--= +

5.CCCOE-01 1.0442E-01 -- +

5.5C00E=01 =5.3469E-02 =~ +

6.CCCO0E=01 =2.1003E-01 === *

6-5CC0E~01 =3,6140E=01  ==—c—mw—e—me———a—- +

7.0C00E=01  ~5.0396F-0]  —==—m————-— -—

7e5CCOE=01  ~6.3450E-01  —=——m—ee= +

B.CCCOE=0OLl  =T7.5025E-01  ———=m=== +

8.5CCOE=01L  -B.4%00E-01 —-==t

9.C{COE=0l  =9,2903E-01 ——+

9.5CCOE-01  =9,.8%06E-01 -+

1.0CCOE 00 ~1.0282E 00 +

1.C500E 00 ~1.0460E 00 +

1.1CCOE 00 =1.0422E 00 +

1.15C0E 00 =-1.0168F 00 +

1.2CCOE 00 =9.7015E-01 -+

1a2500E 00 -9.0293F=01 ===+¢

1.3CCOE 00 =8.1612E=01  ——=ma +

1.3500E 00 =7.1l113E-01  =v=—————s

1.4C00E Q0 =5,898BF-01 —=—=—c————-= +

1.45CC0E 00 =4.5475F-01 ~—ece=ceme-e==- +

1.5CC0E 00  —3.0869E-01  ~——————————oe

1.55C0E 00 =1.5506E-01 ~ -—+

1.6(CDE 00 2.4C95E-03 = +

1.6500E 00 1.5982E~01 -——t

1. 7C00E 00 3o1327E~01  =m—mm e e -—+

1. 75C0E QO 4e5904E=01  =mm—mmm e e e *

1.8(COE QO 5.937BE~-01 —— — - -+

1.8500F 0Q 7Tel4S7E-01  ==—m—m—mmmem e - - ———
1.9CCOE 00 Bel9O02E~01l = e ——————— +
1.95C0E 00 9.0525€-01 ~ -— B +
2.CCCOE 00 9.71856-01 - ——— e e +
2.05C0E 00 L.0L7BF 00 =r e e e e e e e e e S
2.1CCOE 00 1.0426F 00  -- ———————————— +
2.15C0E 00 1.0457F 00 == Pl e +
2.2CCOE 00 l.0273E 00 —m====—- - i Rttt Sl
2.2500E 00 9.8743E-01 —_— — o S il i ~=+
2.3CCOE 00 3.26TTE-CL  —==-=- —— = -+
2.35C0E 00 Ba%El6E-01 ———— e +
2.4CCOE 00 Ta46BTE~0l  ==————v - -4
2.45C0E 00 643063601  ==~—-- ——— - +
2,5CC0E 00 4.99T0E-01 e =

Figure 3. Print-plotted Output from Pendulum Problem.
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program it was determined that the period of the pendulum was
between 2,13 and 2,14 gseconds, By reducing the printing incre-
ment, this result may have been improved, A sample of both the

printed and plotted output of this program is shown on page

Cooling of an Object

The physical problem to be modeled in this example problem
is that of a small object at a given temperature which is placed
in an environment at some lower temperature, For the simulation
problem, it was assumed that the internal conductive resistance
of the object was so small that the object temperature was al-
ways uniform throughout the object at each instance of time,
This simplification is justified when the external thermal re-
sistance between the surface of the system and the surrounding
medium is s0 large compared to the internal resistance of the
cbject that it controls the heat transfer process, Although
there are no materials in nature that would conform to this
assumption exactly, there are several problems which can be
approximated using this analysis. A typical example of this
type of transient heat flow is the cooling of a small metal
casting or a billet in a quenching bath after its removal from

a hot furnace. (10)
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T
e

Object
T

Surroundings

Figure 4. Cooling Problem.

Newton's law of cooling

dT
= = = Bi (T—Te)

describes the time rate change of temperature in the object
under analysis. For the sample problem, the parameter Bi was
assumed constant at a value of 0.1, This factor is referred
to in the heat transfer literature as the Biot number and it is
the dimensionless ratio of the intermal resistance of the object
to the external thermal resistance, The criterion used to es-
tablish the applicability of the analysis outlined here is that
the Biot number be 0,1 or less (10).

The analytical solution of the governing time dependent

differential equation would predict that the temperature the
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test object decreases according to some exponential function,

To complicate this solution and to display one of the mathe-
matical functions of CSMP, the sample problem cooling environ-
ment temperature was defined to remain constant at 100°F for the
first second the object was in it, Then the environment temp-
erature was defined to increase as a ramp function with a slope
of five for the rest of the simulation run.

The sample program for modeling the cooling of an object
is shown below. As before and in all CSMP programs, those
statements which begin with an asterisk as the first symbol
.are merely comment statements, These cards in the program have
information for the programmer about the structure of the pro-

gram and are ignored by the CSMP program translator.

* *%**COOLING SIMULATION*%*
*
* **DATA STATEMENTS**
*
CONST BI=0.1
INCON TIC=500.0
*
* **EXECUTION CONTROL STATEMENTS*#*
*®
TIMER PRDEL=0.,05,0UTDEL=0,05,FINTIM=10,0
METHOD RECT
*
* #**QUTPUT CONTROL STATEMENTS**
*
PRINT T,TDOT,TSUR,Y
PRTPLT T,TDOT,TSUR,Y
®
* **STRUCTURE STATEMENTS#**
b3
TDOT=-BI%* (T-TSUR)
T=INTGRL(TIC,TDOT)
Y=RAMP(1.0)
"TSUR=100,0-5,0*Y 1

® **TRANSLATION CONTROL STATEMENTS*%*

O Ww o~
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*
END

STOP
ENDJOB

Card number one begins the problem definition. This card
defines the value to be assocliated with the symbol BI through-
out the simulation run, The next card sets the initial con-
ditions to be used for temperature, Card number three sets
the increment for printing and plotting output as well as the
time at which the rumn is to be terminated, The METHOD card
defined the particular numerical integration technique to be
employed during the simulation, PRINT and PRTPLT designate
those variables which are to be listed for each time increment
and those which are to be print-plotted. The first statement
after the comment, STRUCTURE STATEMENTS, is the governing
differential equation., The following statement integrates the
governing differential equation, Statement number 9 is an
application of one of the CSMP function blocks., In this case
it is a ramp function, This statement indicates that Y is to
be assigned the ordinate value of a ramp function with time
as the independent value beginning at TIME=1.,0, Thus Y is a
45° line passing through the point 1.0 on the time axis. The
10th statement defines the environment temperature as 100°F
plus five times the current value of Y, The last three state-

ments indicate that the source program 1s complete.



35

Table 2: Comparison of execution times for CSMP integration
methods used in the object cooling problem.

Integration Method Execution Time (min,)
RKS .67
TRAPZ 3.16
MILNE 2.88
SIMP 3.23
RECT 3.07
ADAMS 3.00
RKSFX 3.11

Table 3; Comparison of Temperaturea at various times for
the cooling problem using the seven numerical
integration techniques,

Time RKS TRAPZ MILNE SIMP RECT ADAMS RKSFX
0.0 500,40 500.0 500.0 500.0 500.0 500.0 500,0
1.0 461,9 461,9 461.9 461.9 461.9 461.9 461.9
2.0 427.7 427.7 427.7 427.7 427,7 427,7 427,7
3.0 397.3 3972 397.3 397.2 397,2 397.2 397.2
4,0 370.,2 370.1 370.2 370.1 370.0 370.1 370,1
5.0 346.1 346.0 346.1 346.0 346,0 346.,0 346,0
6.0 324,38 324,7 324,8 324,7 324.7 324,7 324.7
7.0 306.1 305.,9 306.9 305,9 305.9 305.9 305.9
8.0 289.5 289.4 289.5  289.,4 289.4 289.4 289.4
9.0 275.1 274.9 275.1 274,9 274.,9 274,9 274.9

10.0 262,5 262,3 262.4 262,3 262,2 262.3 262.3
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As a comparison of the effect of the use of the various
kinds of numerical integration available with CSMP, this sample
program was run using each kind., The results of these runs
are compared in tables 1 and 2 which are on page . As one
may observe frpm the tabulated results, the filfth order Milne
predictor corrector method had the best execution time, A
general conclusion about the speed or accuracy of these various
techniques cannot be drawn from this test, Each individual
simulation would require some investigation of this type to
determine the best method for the particular problem, The
CSMP program will use RKSFX if a method is not specified and
for most short problems and initial attempts at simulation this
method will suffice,.

Stability Study of a Rotating Shaft
with Unsymmetrical Cross Section

The problem simulated by this sample program was that of
a shaft with a concentrated mass on the free end whose cross
section had different principal moments of inertia, Simulation
runs were carried out to determine the range of speeds at which
the vibratory motion became unstable, A cross-section of the
shaft is shown in figure 3., 1In magnitude, the moment of inertia
with respect to the x axis exceeded the moment of inertia with

respect to the y axis.
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Figure 5. Shaft Cross-section with Fixed and Rotating
Coordinate Systems,

Procedurally the solution consisted of programming the
governing differential equations, mathematically displacing
the shaft from equilibrium, stepping the solution out through
time for a wide range of shaft speeds, and observing where the
amplitude of the vibrations grew. The unstable region was
then defined as being those shaft speeds which caused the dis-
placements to keep growing in magnitude as time progressed in

each simulation,
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lx/%

Figure 6, Frontal View of the Shaft,

Bolotin (l1l) predicted that the unstable region would be
between the exciting frequencies which were numerically equal
to the natural frequencies of the shaft acting as a cantilever
beam in single degree of freedom vibration along the y axis,
for one bound and the x axis for the other. That is to say if
one looks at the shaft as a cantilever beam with the mass as a
load supported at the free end, then the natural frequency
associated with that system will be equivalent to the frequency
that defines the boundary of the unstable region for the two
degree of freedom problem, Since the shaft can move either
along y or x axis, then one obtains the two boundary points
necessary to define the region., Algebraically these natural

frequencies are:
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" JEI
upper - LS
3 EI
wlower
m L3

These equations were developed by considering the shaft as having
a spring constant of 3EI/L3 and plugging this spring constant
into the expression for the natural frequency of a spring-mass
system, /ETE.

To do the CSMP analysis of the two degree of freedom prob-
lem, the coupled differential equations were derived using a
rotating coordinate system which was fixed on the equilibrium
center line of the shaft. The coordinate system rotated with
the angular speed of the forcing device. The derivation is a
straight forward application of dynamics and since it is not
the main topic, it is presented in the appendix., The resulting

differential equations from the derivation were:

a + b cos2dt % + b sin2¢t ¢ = O
2 2 2 2
a -=-b a =-b

X +

% bzsinZ%E < + & -2b co;2¢t y = 0
a =-b> a - b
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where
) m(u2+ul) . . m(uz-al)
a 2 ; 2
. L3 o .3
1" 3EL, ; 2 " 3EI,

As mentioned earlier in this report, to program these
equations using CSMP it 18 necessary to set them up so that the
highest order differential appears on the left of both equation
This procedure transforms the differential equations into the

following form.
w2 + b cos2ét % ok bsin(2¢t) y

% I b2 _ 42

0 b in2-t a - b c052$t
y = ;55___%H X & b2 2 Y
- a - a

The sample program for this problem is listed below.

***SHAFT SIMULATION®*%

**INITIALIZATION OF PHYSICAL PARAMETERS**

L

INTT
C3=(CLl*CLl)~((C2%C2)/4.0)
C4=((CL*CL1)*C2) /4.
C5=(C1l*%4) /2,
C6=C2/(2.%C1)
IXP=(C2/6.,)*(C3-=3)+C4*(C3*%*,5)+C5*ARSIN(CH)
IYP=-(C2/2,)*%(C3%*1,5)+C4*(CI**x 5)+C5%ARSIN(C6)
ALPHAl=(L**3) /(3,*E*IYP)
ALPHA2=(L**3) /(3,%¥E*IXP)
A=M* { (ALPHA1+ALPHA2)/2.)
B=M* ( (ALPHA2~-ALPHAl1)/2.)
DEM=(B*B)-(A*A)

DYNAM

8.

W~ P



41

%

® *%*DATA STATEMENTS**

*

CONST C1=0,1875,C2=0,2500,,.. 14
L=, 300E8,M=0,0060103,L=10,20 15

PARAM PHIDOT=(103,4,1%,1) 16

INCON XIC=1l,0,YIC=0,0,XDOTIC=0,0,YDOTIC=0,0 17

%*

% **EXECUTION CONTROL STATEMENTS*%

*

TIMER PRDEL=,05,FINTIM=30,0 18

RANGE X,Y 19

METHOD RKSFX 20

*

* *%*QUTPUT CONTROL STATEMENTS**

*

PRINT X,Y 21

TITLE X AND Y DISPLACEMENTS 22

*

* **STRUCTURE STATEMENTS**

*
C=C0S(2,0%*PHIDOT*TIME) 23
S=SIN(2,0*PHIDOT*TIME) 24
MULTX1= (A+B*C) /DEM 25
MULTX2=(B-S) /DEM : 26
MULTY1l=(A-B*C) /DEM 27
MULTY2=MULTX2 28
X2DOT=MULTX1*X+MULTY2*Y 29
Y2DOT=MULTX2*X+MULTY1*Y 30
XDOT=INTGRL(XDOTIC,X2DOT) 31
YDOT=INTGRL(YDOTIC,Y2DOT) 32
X=INTGRL(XIC,XDOT) 33
Y=INTGRL(YIC,YDOT) 34

TERMIN 35
PERIOD=((2,0%3,1415927)/PHIDOT)*1000,0 36
WRITE(6,1)PERIOD 37
FORMAT(20X,13H***PERIOD=El4,6 ,12HMILLISECOND) 38

END 39

PARAM PHIDOT={(76.0,10,%,1) 40

END 41

STOP 42

ENDJOB 43

The section of the program that is started by INIT and
ended by DYNAM is an initialization section. 1Its operations were
performed before the simulation run began, Tt was used in this
program to calculate the moments of inertia and the constants

Gy, Gy, @ and b,
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Cards numbered 14 and 15 were used to define certain
physical constants of the system. Cl and C2 were dimensions
of the shaft, E is the Modulus of Elasticity, M is the mass
concentrated at the shaft's end, and L is the shaft's length.
The definition of constants is continued from card 14 to card
15 by the three periods after C2, The next card in the data
statements section is a PARAM card which defines the shaft
speeds to be used in the simulation runs. This example starts
with PHIDOT equal to 103.4 and preforms one more simulation with
PHIDOT equal to 103.5., The statement specifies that after the
first simulation using PHIDOT = 103,4, the value ia to be
incremented once by 0,1, The rest of the statements in this
program down to TERMIN are similar to those that appeared in
the first two examples,

Statements that appear between TERMIN and END are executed
only at the end of each simulation run., The statements in the
TERMIN section calculated the period associated with the shafts
circular frequency. Then this value was written out along with
regular output using a standard Fortran WRITE statement, An
END statement terminates the TERMIN section as well as the
specifications for the simulation run,

After the first END statement, a PARAM card is used to
set new values for PHIDOT, This card calils for eleven more runs,
each with a different value of PHIDOT, All the statements and
variables accept PHIDOT stay the same for this set of rums. If

other statements would have appeared between the two END statements
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they would have replaced the original statements in the second
set of simulation runs., The last three cards tell the processor

that the source program is completed.
Pole Vaulter

The problem simulated in this example is that of a person
engapged in pole vaulting, Simulation begins the instant the
vaulter plants his pole in the pit and continues until he has
cleared the bar.,. Inorder to mathematically describe the forces
in the pole, the Theory of the Elastica (l4) was used. The
vaulter was described as a body with time varying radius between
its center of rotation (the point where the vaulter holds the
pole) and its center of gravity., Also the vaulter was considered
to have a moment of inertia about his center of gravity which
was time dependent, Purely arbitrary curves where used to
portray these time dependent properties., Complete investigation
of this non-linear problem would necessitate several runs with
different sets of the time dependent curves to improve the
mathematical model., However, mathematical analysis 1is not the
objective of this report and further discussion of the model
will not be presented here. A brdef outline of the model de-
velopment is presented in the Appendix for the readers consid-

eration.
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With CSMP, the programmer has considerable leeway in
attacking initial value problema, that 1is there are several
alternate ways of handling various problems, For that reason,
this problem was worked out using two different methods. The
sample programs used in these different approaches are listed
below. They are referred to as programsa one or two and will be
referenced according to that notation, The reader may observe
that these programs call for access to Fortran subroutines
CAL, CALC, ROOT. As a point of clarification, the subroutine
ROOT further calls another subroutine FUN, These subroutines

are written in Fortran 1V, level E, and appear in the Appendix.

Program 1

AFGEN CURVE1=0,,20,,.05,20.,.1,20,,,15,19,,.2,17.,.25,8.,.3,6.,...
.35,8.,.4,14,,.45,18,,.5,20,,.55,20,,.6,20.,465,20,,.7,20.,.4.
.75,20,,.8,20,,.85,20.,.9,20,,.95,20.,1,,20.

AFGEN CURVE2=0.,3.5,.2,3.5,.25,3.4,.3,3.1,.35,2.7,.4,2.,.45,1.,...
05,.5,.55,.5,.6,2.7,.65,3.5,.7,3.5,1.,3.5

CONST LL=14,0,BETA=7000,,W=200,,6=32,174,PI=3,1415926

INCON XIC=9,57,XDOTIC=-27,3,YIC=4,83,YDOTIC=10,0,0IC=,872,0D0TIC=3,57

o BN

TIMER PRDEL=,05,0UTDEL=,05,FINTIM=1,0,DELT=,05 8
PRINT X,Y,I,C1,ETA,RAD,ICG,0,IDOT,KK,FX,FY 9
M=W/G 10
ICG=AFGEN(CURVEL, TIME) 11
RAD=AFGEN(CURVE2 ,TIME) 12
I,1p0T,C1,ETA,DEM1,=CAL(ICG,RAD,0,Y,X M,DELT,TIME) 13
L=SQRT(DEM1) 14
KK1=ROOT(L,LL) ' 15
KK=KK1*PI/2, 16
FORCE= (4, *BETA*KK*KK) / (LL*LL*L) 17
FX=FORCE*C1 18
FY=FORCE*ETA 19
Y2DOT=FY/M-G 20
X2DOT=FX/M 21
02D0T=(1./I)*(FY*(C1l-X)=-FX*(ETA-Y)-IDOT*0DOT) 22
YDOT=INTGRL{YDOTIC,Y2DOT) 23

XDOT=INTGRL (XDOTIC,X2DGOT) 24



ODOT=INTGRL(ODOTIC,02DOT)
Y=INTGRL(YIC,YDOT)
X=INTGRL(XIC,XDOT)
O=INTGRL(OCI,ODOT)

END

STOP

ENDJOB

Program 2

CONST LL=14.0,BETA=7000, ,W=200,,6=32,172,PI=3,.1415926

INCON XIC9.57,XDOTIC=-27,3,YIC=4,83,YDOTIC=10,0,0IC=,872,0D0TIC=3,5

TIMER PRDEL=,05,0UTDEL=,05,FINTIM=1,0,DELT=,05
PRINT X,Y,0,XDOT,YDOT,0DOT,IDOT,I,C1,ETA,ICG,RAD
PRTPLT X,Y,0,C1,ETA
M=W/G
1,IDOT,C1,ETA,DEM1,1CG,RAD=CALC(0,Y X M)
L=SQRT(DEM1)
KK1=ROOT(L,LL)
KK=KK1*PI/2,
FORCE= (4, *BETA*KK*KK)/ (LL*LL*L)
FX=FORCE#*(C1 ‘
FY=FORCE*ETA
Y2DOT=FY/M~-G
X2DOT=FX/M
02DOT=(1./I)*(FY*(Cl-X)-FX*(ETA-Y)-IDOT*0ODOT)
YDOT=INTGRL (YDOTIC,Y2DOT)
XDOT=INTGRL (XDOTIC,X2DOT)
ODOT=INTGRL (ODOTIC,02DOT)
Y=INTGRL(YIC,YDOT)
X=INTGRL (XIC,XDOT)
0=INTGRL(0OIC,0DOT)
END
STOP
ENDJOB

45

25
26
27
28
29
30
31

-
OV o~

PO O DO RN PO b s e s e b
W N O WO L B



46

The two programs just presented differ only in the way
they handle the data for the time dependent moment of inertia,
ICG, and the time dependent distance between the center of
gravity and the hands of the vaulter, RAD, Program one used
the arbitrary function generation capability of CSMP for this
purpose while program two read the data from punched cards,

The first statement of program one is started with the
card label AFGEN, This symbol indicates that the numbers fol-
lowing the label define a curve to be used later in the program,
This curve 1is given the name, CURVEl and is set up with a value
of the independent variable, TIME, followed by the associated
value of the dependent variable, ICG. A comma separates each
of the data points. The curve is read by noting that the initial
value of TIME is 0.0 and the associated value of ICG is 20,0,
One may note that the data poimts in this curve are continued
on two moré cards by the usual three periods. A similar set
of statements start with card 4 and define the function for
ICG.

Statements in the example program down to statement 12
add nothing new to the information presented in the previous
problems, Statements 12 and 13 indicate that the variables
ICG and RAD are to be assigned a value for the current value of
TIME by linearly interpolating between the points of the curves

presented in statements 1 through 6.
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The rest of this sample program is made up of previously
discussed structure statements, Two exceptions to this
generalization, are statements 14 and 16, These two statements
indicate that the variable appearing to the left of the equal
signs in those statements are to be evaluated in the Fortran
subroutines CAL and ROOT,

Program number two sets up another way to carry out the
slmulation of the pole vaulter, Basically, the statements 1in this
program are the same as in program one, However, this progran
calls for a Fortran subroutine to read the data for ICG and RAD
off of data cards. This subroutine shown in the appendix, 1is
written so that at each time step another card 1is read and thus
determines the current value of the variables, The reader
will note the use of a variable in the subroutine by the name
of KEEP, This is a CSMP control variable which is set equal
to 1 each time the program is to print output. Subroutine
CALC tests the value of KEEP at each iteration of the solution
and when KEEP equals 1 a new data card is read. These data
cards are placed directly ahead of the ENDJOB card at the time
the program is processed, Using this technique allows the
programmer to change data points by adding a new card with the
point in question instead of having to replace the entire data
set.

The two programs certainly don't exhaust the ways in which
this p;oblem could have been programmed but further discussion

would lead to repetition of previously discussed CSMP statements.
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For example, ICG and RAD could have been defined in a table
data statement, However, the intent of this section on the
pole vaulter was merely to point out that there was more than

one way to simulating a given problem with CSMP,.
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CHAPTER 4
CONCLUSION AND RESULTS

Several conclusions about CSMP can be drawn from sample
programs used to simulate the problems discussed in Part III of
this report., The first conclusion that one may draw is that
programming differential equations for solution with CSMP can
be done quickly if the programmer has some basic knowledge of
the CSMP language, Secondly, there is a wide range of mathe-
matical functions available in the CSMP language to use in
modeling problems. Accurate solutions of linear and non-linear
initial value problems can be obtained with CSMP with reason-
able computer run times. CSMP has shown itself to be a flexible
tool for solution of initial value problems with several over-
lapping avenues of approach to these types of problems.

Also conclusions about using CSMP can be drawn from the
experience gained in investigating the sample problems in Part
III of the report. A basic knowledge of Fortran programming
would seem to be beneficial to a person wanting to use CSMP.
Terminology used to describe CSMP features parallels those
terms used in Analog computer literature,

Two extensions of this report that may provide useful
information can be stated, First, IBM suggests in their
literature that CSMP can be used for programming two point
boundary problems. This process involves an iterative technique

in which final values of a simulation run are compared against
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boundary values to determine the starting conditions for the
next simulation. An investigation in to this procedure should
prove informative., Alsoc a comparison of the features of CSMP
with other digital simulation languages should be of benefit,
This comparison might be along the lines of the complexity of
the digital simulation language, features available in the

language, input-output procedures, and computer run times for

similar problems.
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APPENDIX A

A LIST OF MATHEMATICAL FUNCTIONS
AVAILABLE IN CSMP

CSMP NAME FUNCTION

INTGRL Integration

DERIV Differentiation

DELAY Define a dead time

ZHOLD Zero-order hold

IMPL Iterate an implicit function

MODINT Mode-controlled integrator

REALPL lst order lag(real pole)

LEDLAG Lead-lag

CMPXPL ‘ 2nd order lag(comples pole)

FCNSW Function switch

INSW Input switch (relay)

OUTSwW OQutput switch

COMPAR Comparator

RST Resetable Flip-Flop

AFGEN Linear interpolation

NLFGEN Quadratic interpolation

LIMIT Limiter

QNTZ Quantizer

DEADSP Dead Space

HSTRSS Hysteresis loop

STEP Step function

RAMP Ramp function

IMPULS Impulse generator

PULSE Pulse generator

SINE Trigonometric sine wave with delay,
amplitude, and phase parameters

GAUSS Nolse generator with normal dis-
tribution

RNDGEN Noise generator with uniform

distribution
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APPENDIX B
Development of equations for Rotating Shaft Problem

Assume that the shaft rotates with angular velocity ¢ and

that I < I,
y b3

P
/ | ) 5 x
O ’
] 4
1-5 Y
X
Py
| xl
y Yy
y
Figure 7a. Relation of De- Figure 7b. Relation of
flections in the x and ¥y Rotating and Fixed Coordinates.
Directions to the Fixed
Coordinate System.
For a cantilever beam
3
PL
§ 35T aP [1]
(P is the force in the direction of &)
Now
'ﬂ ; p %
P P cosdt + Py singt {21}
P ' = -P sinét + P_ cosét 3
v 5 Sine¢ y ¢ (3]
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Then
' - - ’
5 o (P cos¢t + PY sing¢t) (4]
1 - i 2 5 '
S, a, (=P singt + P, cos¢t) (5]
where
L 3
1~ 3EL_' v ®2 % 3EIL_°
y x
'
Also
- i » _ ' L] )
& § ' cos¢t GY singt [6]
éy = & ' singt + By' cospt (7]

§ = al(chos¢t + Pysin¢t)cos¢t - az(-szin¢t + Pys1n¢t)sin¢t

(8]

- (P 3 ’ - _ . . &
§ ag LF_cosét + Pysin¢t)sin¢t + az( szin¢t + Pycos¢t)cos¢t
(9]

which reduces to,

(al+u2)Px (a waz)P 0, =a

l x , l 2 *
6, = 5 4 5 cos2¢t + (= )PY sin2¢t [10]
o, +o (a,~a,) (a,~a .
1 "2 1 "2 : 1 "2
Gy ( 7 )Py - 3 Py cos2ét + 5 P sin2¢t [11]



From Newton's law

substituting

oL ta Og =0 6,=a
1l "2 1 "2 @ o 1 N
m [ 5 + 5 cos2¢t]5x té, +m 5 sin2¢t Gy = 0
o, +o o, - a., -0
1 2 1 72 > s 1 72 L
m( 3 - 5 5082¢c]5y + GY + m 5 sin2¢t ﬁx 0
For convenience let
a,+a o ] a
m( 3 ) = a and m( 22 l) = b

Then

{(a-h c052¢t)6x - (bain2¢t)6y + Gx =
(—bsin2¢t)§x + (a+b coszgt)ay + Gy a (
Now by appropriate algebraic manipulation, one may transform

equations 15 and 16 into the form which is required for CSMP

programing,

k bZ_az ((a+b c032¢t)5x + (bain2¢t)6y]
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(12]

[13]

[14]

[15]

(16]

(17]
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.o l

§, ™ sgie

¥ 7 ((bsin2¢t)6x + (a=b coden:)&y] [18]
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APPENDIX C

Block Diagran
For Shaft Simulation

TALTION
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APPENDIX D

Outline of Developement of the Equations Used in Analyzing
the Pole Vaulter

Point where the pole
vaulter grabs the

L ' pole

1

/ r
//// v center or gravity of the

(x,y) pole vaulter

Figure 8, Schematic Representation of Pole Vaulter
Problem,

The moment of inertia (I) of the pole vaulter about his
center of gravity and the distance from where he grabs the pole
to his center gravity (r) can be given either as functions of

position or time., Applying Newton's second law to the vaulter:

T Y = Fxy,0) - w (1]
% X = F_(x,y,8) (2]

16 + BI = Fy r cosf = F T sino® [3]
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Fos Fv are the x and y components of the force exerted on the
vaulter by the pole.

The straight line distance from one end of the pole to the

other is derived by using the theorem of Pythagoreous,

L = //(x+r cose)2 + (y+r sin6)2

= //xz + y2 + £ + 2xr cosb + 2yr sin® (4]

From the theory of the Elastica (l4) for a free-pinned
beam the following expressions for the distance between ends of

the pole and the force in the pole were used.

i __— #/2
_ 2 1-2k°sin%¢ . _ _2 _
1, el db 2[ /1~k291n2¢ dé

YEIB 1o Y1-x%s1n2s YEIB | g
/2 .

J f.__.df_____ [5]
0 TEL RS

where k¥ = sina/2 and a is the initial angular displacement

2
n/2
F = B[ %- J 21 [6]
c ‘0 Jl-kzsin2¢

where Lc is the poles length.
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These elliptical integrals were converted to polynomial approxi-
mations for numeric evaluation using the following relationships

from the Handbook of Mathematical Functions (15).

/2
12y o do - I e1.2,2 .1,3.2. 4 .1,3.5,2 6
KL —— " 2 (14 K+ (FEP T G TR
0 1-k"sin ¢
(7]
n/2
P O —_— o Tfqo(ly2,2_,1.3,2 4 ,1,3.5,2 6_
E{k") J /l_kzain2¢ dé 2(1 (2) k (2.“) k (572730 k ...]
0
(8]

When these relationships were combined with equations 5 and 6,

the following resulted.

2 2 2

L = [2 E{(k") - K(k")] {9]
/FTB

F o= iﬁf k2 (k%) [10]

ol

(o

The x and y components of the force were:

x+rcost
F = F( L ) (11]
Fy - F(z+riin8) [12]
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These relationships then yielded sufficient information to carry

out the simulation.
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APPENDIX E

FORTRAN SUBROUTINE CAL USED WITH PROGRAM
1 IN THE POLE VAULTER ANALYSIS

SUBROUTINE CAL{ICG+RAD+OsyY s XsMeDELTyTIME,I+IDDT+C1l4ETALDEML)
REAL ICG.ICURLILASTI.IDAOT M ;
ICUR=TCG+M*RAD%®RAD

IFITIME) 24243 .
ILAST=ICUR

GO 10 4

TLAST=SAVE

CONTINUE

I=ICUR

[DOT=(ICUR-TLAST)/DELT

Cl=RAD%COS{0)+X

ETA=RAD*SIN{Q)+Y
DEML=X%X+Y%Y+RADSRAD+2. ¥ X*RAD®COS(0)+2.%Y*RADXSIN(O)
SAVE=ICUR

RETURN

END



COMMON

OO0

APPENDIX F

FURTRAN SURROUTINL CALC USED WITH PROGRAMN
2 IN THE POLC VAULTER ANALYSIS

SUBROUTINE CALCIOs Yo XsMy T IDUTyCLIETAyDEML,ICGsRAD)
MEM

REAL 1CG+ICURGILAST1,100T M

FQUIVALENGF (C(1),TIME)

FORMAT(2+M12.8)

TF(TIMLY 23,723,221

[FIKECP=-L) 22423422

RETURN

3 CNNTTINUE

RFEFADIL, 1) ICG,RAD

DATA FOR 0.0 MUST B& CNTEREUL THREE TIMES
THAT TS THREF CARDS WITH THE SAME DATA MUST
COME AT THE BEGINNING GF THE DATA

TCUR=ICG+M*RAD®RAD
IFITIMEY} 24243
ILAST=TCUR

GO 10 4

[ILAST=5AVE

CONTINUE

I=TCUR
100T=(ICUR=ILAST}/.05
Cl=RAD*COS(0)4 X
FTA=RADXSIN(O}+Y
OEM=XEX+YHY+RADRRAO+2 « ¥ XA XRADXCOAS(0)
DFMI=DEM+ 2 ¥YRRAD*SIN(O)
SAVE=TCUR

RETURN

EMD
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APPENDIX G

FORTRAN SUBROUTINE USED IN POLE VAULTER ANALYSIS

FUNCTTION ROOT(L,LL)}
REAL KKyLosLLsKZERDyKLAST
DEL=.1 '
KIZERO=.1
KLAST=.00001

98 CONTINUE
TEST=KZERO-KLAST
IF(TEST-.001) 100,100,1

1 CONTINUE
CALL FUNIKLAST,LL,LoHsKK])
[IF(H-.001) 99,99,2
2 CONTINUE

KLAST=KZERO
KZERO=KLAST+DEL
GO TO 98

99 DEL=DEL/4.0
KZERO=KLAST+DEL
GO TO 98

100 ROOT=KK
RETURN
END
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APPENDIX

FORTRAN SUBROUTINE USED IN

SUBROUTINE FUN({K,LLsbLeHsKK)
REAL KSQeKyLLysLsKK

SUMK=1.

SUME=1le.

SAVEK=0.

SAVEE=0.

XK=1l.

KSQ=K®K

£=0.

|
s
]

DO MO D
|

F=0/E

XKK=XK#K5Q
SUMK=SUMK+D*XK
SUME=SUME~-F=XK
T=ABS(SUMK-SAVEK])
U=ADS{SUME~-SAVEE)
IF(T-.00001) 101,101,1
CONTINUE

[F{U-.00001) 101,101l,2
CONYVINUE

H=LL* (2% (SUME/SUMK)=1.])-L
KK=5SUMK

RETURN

SAVEK=SUMK

SAVEE=SUME

GC YO 100

RETURN

END

H

POLE VAULTER ANALYSIS
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of digital computer program is defined in much the same
terms as analog computer equipment thus causing the digital
computer to solve many of the initial value problems pre-
viously relegated to analog computers, There are several
different digital simulation languages in use today. This
study deals with a simulation language developed by Inter-
national Business Machines called Continuous System Modeling
Program (CSMP).

The study was carried out by solving four sample prob-
lems with CSMP, These example problems were: non-linear
simple pendulum; cooling of a uniform temperature body;
stability analysis of a whirling shaft; and simulation of
a pole vaulter, A Program for each of these sample problems
was written and run on an IBM system 360/50 computer, Where
available numerical results were compared to analytical re-
sults. Several of the various features of CSMP were em-

ployed in the sample programs., Two of the problems were



programmed in different ways to check the versitility of
CSMP.,

Findings and Conclusions: The results of these sample problems
indicated that CSMP provides a rapid method of programming
initial value problems for digital solution, In the
estimation of the author, a basic knowledge of Fortran
programming is necessary for efficient use of C5MP. CSHMP
provides a wide range of mathematical functions necessary
to simulation, Accurate answers are readily attainable,.
CSMP is quite flexible, that is it allows several avenues
to be persued in solving initial value problems CSMP ter-
minology closely parallels that used in Analog computer
literature thus allowing those familiar with Amalogs to

adapt rapidly to CSMP,



