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CHAPTER 1

Throughout this thesis we will consider only finite graphs and

hypergraphSo

Let X be a set of n distinct elements where n is a positive

natural number Let x,y e X (x = y is allowed), then define [x,y]

to be a nonordered pair, i.e„, [x,y] = [y,x]. Let

E £=.{[x,y] : x,y e X} where U{{x,y} : [x,y] e E} = X then the pair

(X,E) = G is called a graph .

An element in X is called a vertex and an element [x,y] e E is

called an edge connecting x and y, where x and y are endpoints

of [x,y] .

A loop is an edge of the form [x,x].

A chain of length q_ is a sequence u - (xy > x
q+

-|
) of vertices

of G such that, for i = 1, „„. ,q, [x^ ,x.
+ ^]

e E. We say x^ is the

initial vertex and x .j
is the terminal vertex . Let A(y)*= q.

A cycle is a chain u such that X(y) > 1 , the initial and term-

inal vertices are the same and for x..,x.+.j,Xj and x^.
+ ^

in y, we

have that if x. = x. then x.,, f x.,,.
i J l+l j+1

An elementary cycle is a cycle in which the only vertex in the

cycle that is repeated, is the initial and terminal vertex, which is

repeated only then.

A connected graph is a graph such that for each x,y e X, x f y,

there exists a chain connecting x and y„

Let S be a subset of X, then S is called a stable set if no

edge joins any two distinct vertices in S.
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Let G = (X,E) be a graph and let (S^Sj be a partition of X

where and S
2

are stable sets, then (S^ ,S
2

) is a bicoloring

for G.

Lemma 1.1 Let G be a connected graph with a bicoloring, (S-j,S
2
).

Then for any x e S-j , y e S
2

and chain y connecting x and y, we

have A(y) is odd.

Proof Since G is connected, there is a chain y connecting x

and y. Since (S-j^) is a bicoloring of X, y is of the form

U.ypX-j, ... ,y
p
,x

p
,y) for some p, where each x

i
is in S

1

and

each y. is in S
2

. Hence A(y) = 2p + 1 which is odd.

Proposition 1.2 Let G be a graph with an odd cycle, then G

has ^n elementary odd cycle.

Proof Assume G has an odd cycle, y. If y is elementary then

we are finished. Assume y is not elementary, then u can be decom-

posed as (y 15 y2
) where either y

1
or y

2
is odd. Assume y

]

is

odd. If y
1

is elementary then we are finished. If y is not ele-

mentary, then repeat the above process as many times as possible. Since

y had only finite length, there is only a finite number of times we can

repeat the process. Let y' be the final odd cycle. Then by the def-

inition of elementary cycle, y
1

is an odd elementary cycle.

Lemma 1.3 Let T be a linear transformation from E
n

to K
n

,

then T is onto iff T
_1

exists.

Proof For the proof of this lemma see [Curtis,Theorem 13.10].
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Since any matrix M can be represented as a linear transformation

from E
n

to B
n

and any linear transformation can be represented

as a matrix with respect to some basis, we have the following theorem.

Theorem 1.4 Let M be an integral n x n matrix, then

det M = ±1 iff for each integral x e E
n

there is an integral x
1

e E
n

such that Mx
1

= x.

Proof Let det M = ±1 and M be integral, then M is inte-

gral by the well known Cramers Rule. Let x e E
n

be integral then

x' := M
_1

x is integral such that Mx' = M(M
_1

x) = x. Therefore for

each integral x e E
n

there is an integral x' e E
n

such that

Mx' = x.

Now let M be integral with the property that for each integral

x e E
n

there is an integral x' e B
n

such that Mx' = x.

Define e
i

to be the n-vector that has all zeros except for a

1 in the i position. Then for each i e {1, ... ,n} there is an

x
i

such that Hx. = er Since {e
]

, ... ,e
p

} is a basis for E
n

,

M maps *
n

onto E
n

. Hence by lemma 1.3 ft exists. There-

fore by the hypothesis, H~'e* is integral for each i. Note that

M
1

e
i

is the i
th

column of M"
1

. Hence M
_1

is integral.

Since det M"
1

= (det M)"
1

and M
-1

is integral, det M and

(det M)
1

are integral. However, the only integers with this property

are ±1.

Let X be a set and SCX, then S
c

is denoted to be the

complement of S in X.
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Proposition 1.5 Let P(J) be the power set of J = {1, ... ,n},

then (P(J),+) is a group under "+" where "+" is defined, for

A,B e P(J), by A + B = (A A B
C

) U (B A A
C

) = (A U B) A (A (1 B)
C

.

Proof Clearly for all A,B e P(J), (A + B) e P(J),

A + <j> = <j> + A = A and A + A =
<J>. Therefore P(J) is closed under

"+", there is an identity element and each element has an inverse. Let

A,B,C e P(J), then

(A + B) + C =

[((A A B
C

) U (A
C

B)) A C
C
] U [((A U B) A (A A B)

C
)

C
C] =

[(A /I B
C

r\ C
C

) U(AC
/|B/1 C

C
)] U [((A A B) U (A U B)

C
) A C] =

[(A A B
C
a C

C
) U (A

C
B/l C

C
)] U [(A n B C) U ((A U B)

C
A C)] =

[(A A B
C

fl C
C

) U (A°A B A C
C
)] U [(A fl B /I C) U (C A A

C
A B

C
)] =

[(A A B
C

ft C
C

) U (A A B A C)] U [(A
C
A B A C

C
) U (C A A

C H B
C
)] =

[(A A (B U C)
C

U (A A B A C)] U [A
C

f) ((B A C
c

) U (B
C
O C))] =

[A f] ((B A C) U (B U C)
C
)] U [A

C
A ((B n C

C
) U (B

C
A C))] =

[A A ((B A C) a (B A C)
C

)

C
] U [A

C
n ((B C

C
) U (B

C
f\ C))] =

A + (B + C).

Hence we have associativity. Therefore P(J) is a group under "+".

Let Z
2

:= {0,1} be the field of order 2. Let A e P(J) and

a e Z
2

, then define aA = A if a = 1 and aA =
<p if a = 0.

Proposition 1.6 P(J) is a vector space over 1^ with the

above definitions.

Proof Let A,B,C e P(J) and a, 3 e then (A + B) + C =

A + (B + C), A + B = B + A, A + <j>
= A, A + A =

<j>, a(A + B) = aA + aB,
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(a + 3)A = aA + BA, (a3)A a(0)A and 1«A =A. Therefore P(J) is a

vector space over Z«.

Let A be an n x m integral matrix with J := {1, ..„ ,m}

indexing the columns and I := {1, ... ,n} indexing the rows. Let

K e P(J), then define AK = {i e I : Z. a., is even} and define
J £j\ 1

J

f
A
(K) = (AK)

C
.

Proposition 1 .7 Let A be an n x m integral matrix with J

indexing the columns and I indexing the rows and let f. be defined

as above, then f. is a linear function from P(J) into P(I).

Proof Let S,T e P(J). Then all that need be shown is

f
A
(S + T) = f

A
(S) + f

A
(T).

f
A
(S) + f

A
(T)

(f
A
(S) U f

A
(T)) (\ (f

A
(S) n f

A
(T))

C
=

((AS)
C

U (AT)
C

) ((AS)
C

[\ (AT)
C

)

C
=

((AS) /] (AT))
C
A (((AS) U (AT))

C
)

C
=

(AS U AT) d (AS n AT)
C

=

AS + AT.

Hence all that need be shown is AS + AT = (A(S + T))
c

, since

f
A
(S + T) (A(S + T))

c
. Now since AS + AT = (A(S + T))

c
iff

A(S + T) a (AS + AT) =
<j> and A(S + T) U (AS + AT) = I, all that

need be shown is A(S + T) f) (AS + AT) =
<j> and A(S + T) U (AS + AT)

Let i
Q

e (AS + AT) = (AS (\ (AT)
C

) U (AT f| (AS)
C
). Since

(AS (] (AT)
C

) n (AT f) (AS)
C

) = 4> we have either i e (AS f) (AT)
C

) or

i
Q

e (AT f\ (AS)
C

) but not both. Assume 1 e (AS (] (AT)
C

) then

Zj
eS

a
i

. is even and Z.^ a.
j

is odd. Hence

UjsS
a

i
Q
j

+ Z
jeT

a
i
o
j)

is odd
-

Hence



i' e A((S n T
c

) U (T f] S
C
)) = A(S + T). Similarly, if i

Q
£ (AT f\ (AS)

C
),

then j i A(S + T). Therefore (AS + AT) A(S + T) =
<J>.

Let J e I to prove A(S + T) U (AS + AT) = I.

Case 1 S . c a . • , _ _.
jeS i

Q
j and Ij

eT
a.. .. are both even. Then

(E
je(SnT

c
)

a
i
Q
j

+ Z
j e (S

C
flT)

a
i

Q
j)

is even
'

Hence
I'o

£ A < S + T >°

Case 2 Z.^
^

and Z.^ a
i ^

are both odd. Then

(Z
J£(SAT

C
)

a
i
Q
j

+ Z
j £ (S

C
(U)

a
i j

} is even
-

Hence
'

e A(S + T) -

Case 3 Z
jeS

a. . is even and Z.^ a. . is odd. Then

i
Q

e (AS f\ (AT)
C
). Hence 1

Q
e (AS + AT).

Case 4 Z
jeS

a.
j

is odd and Z.
&J

a.
j

is even. Then

i
Q
e(AT (AS)

C
). Hence i e (AS + AT). Therefore

i

Q
e [(AS + AT) U A(S + T)]. Hence (AS + AT) U A(S + T) = I.

Therefore f
A

is a linear function from P(J) into P(I).

Note that the need for the last three propositions is to help

prove Theorem 3.15.

Lemma 1.8 Let A
n

be an n x n matrix with n > 3 be that

1 1 ... o\
1 1 ...

A
n

=

... 1 1

,1 ... l/,

then det(A
n

) is if n is even or 2 if n is odd.

Proof By expanding along the first column we see that



det A = det
n

A i o o
'0110

\p

1 + (-1)
n-1

1 1

1

+ (-l)
n_1

det

h
110

\o

Hence det A is if n is even or 2 if n is

odd
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Let X be a finite set and let E c P(X) where <p t E and

UE = X, then we call the pair (X,E) = H a hypergraph .

Each element in X is called a vertex and each E e E is called

an edge .

A subhypergraph of H = (X,E) generated by the set A £ X is

defined to be the hypergraph = (A,E^) where E^ :=

{E
A

:= (E f\ A) : E e E and (E f] A) f <f>}.

In a hypergraph H = (X,E) a chain of length 4 is defined to

be a sequence n = (x^x^ ... x
q
E
q
x
q+1

) such that x
]

, ... ,x
q

are

distinct vertices of H, E
]

, ... ,E
q

are distinct edges of H and for

each k e {1, ... ,q}, x
k
,x

k+]
e E^. Let A(n) denote the length of n .

A cycle of length q_ (q > 1) is a chain of length q with

X
l

= X
q+1*

A bi coloring of a hypergraph H = (X,E) is a partition (S^)
of X such that if E e E with |E| > 1 then E<S

]

and E«?tS
2

.

An equitable bi coloring of a hypergraph H = (X,E) is a partition

(Sr S
2

) of X such that, for each E e E,
|
|E fl Sj| - |E/| SJ| < 1.

Proposition 2.1 An equitable bicoloring of a hypergraph

H = (X,E) is a bicoloring of H.

Proof Let (S^S^ be an equitable bicoloring and E e E

with |E| > 1 , then since
|

| E n S
]

|

-
|

E f] SJ \

< 1 and

S
1 f\ S

2
= <J>, E<£ S

1
and E<tS

2
« Therefore (Sr S

2
) is a

bicoloring.

The following example shows that the converse is not true.



Example 2.2 Let X := {1,2,3,4}, E : = {X}, S
]

:= {1,2,3} and

S
2

: = {4}, then (S^S^ is a bicoloring but not an equitable bi-

coloring.

Proof Clearly (S^S^ is a bicoloring and

I

|x n S
1

|

- |X f\ S
2 |

|

= 2.

Let G = (X,E) be a graph. Define C
Q

= {y : y is a cycle of G},

Chg = {y : y is a chain of G}. For each y e Chg, let

E := {x : x is a vertex of y}.
y

Proposition 2.3 Let G = (X,E) be a graph with a bicoloring

(S^Sj. Let E {E^ : y e C
Q
}, then (S-j.Sg) is a bicoloring of

the hypergraph H = (X,E).

Proof Let G be a graph with a bicoloring (S,,S
2
). Let

be any element in C
Q

. Since (S^.Sg) is a bicoloring for G,

E^ t S.| and E^ t S^. Therefore (S^,S
2

) is a bicoloring for H.

A hypergraph H = (X,E) is defined to be unimodular if for each

SCX, where |S| > 2, the subhypergraph H
s

has an equitable bi-

coloring.

Example 2.4 Let X := {1, ... ,n}, n > 2, and

F := {[i,i+l] : 1 < i < n}. Define G = (X,F). Choose C e P(Chg)

such that U r E =X, then for E := {E : y e C} we have
yeC u y

H = (X,E) is a unimodular hypergraph.

Proof Let G be a graph defined as in the hypothesis. Choose

C e P(Ch„) such that U r E = X (such a C exists since
b yeL y

y = (1, ... ,n) is a chain in G). Let S£X, where |S| > 2,
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Define I. {i e S : i < j>, S
]

- U : |Ij| is even} and

S
2

= {j : 1 1. 1 is odd}. Then (S^Sg) is a partition of S.

Let E e E
$

. If |E| is even then by the definition of and S
2

and the structure of each chain in G, |E A S-j |
- |E Sgl » 0. Also

by the same reasoning, if |E| is odd, then
|

| E f\ S-j
|

- | E (\ S
2 1

|

= 1

Hence for each E e E$J
|

|E (\ S
]

|

- |E A S
2 | |

< 1. Therefore (S^)

is an equitable bicoloring for Therefore for each S C X, H
s

has an equitable bicoloring. Therefore H is a unimodular hypergraph.

Proposition 2.5 If H is a unimodular hypergraph, then each

subhypergraph of H is also unimodular.

Proof Let H be a unimodular hypergraph and S ^ X, |S| >, 2,

then for any T £ S, |T| > 2, we have (H
S

)
T

= H-p which has an

equitable bicoloring. Hence H
s

is unimodular. Therefore each

subhypergraph is unimodular.

Theorem 2.6 Let G = (X,E) be a graph with no odd cycles,

then G has a bicoloring.

Proof Case 1 G is connected.

Let x' e X, then define = {y e X : there is a chain of odd

length connecting x' and y} and S = {y e X : there is a chain

of even length connecting x
1 and y} U {x

1

}.

Claim (SpS^) is a bicoloring of X„

Proof of claim Clearly if x' e S-| , G would have an odd cycle.

If x' f y e (S-j S
2

) then there exist chairs \x, and °^

minimal length such that connects x' to y, y
2

connects y

to x
1

,
A(y, ) is odd and A(y„) is even. Then y = (y,,y9 ) is a
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cycle with A(y) = A(^) + X^) which is odd. But G has no odd

cycles, so S
]
A S

2
=

<f>. Hence (S^Sg) is a partition of X.

Let
y-j »y

2
£ S

1
(the argument for S

2
is similar) and assume

Cyi»y2 ] e E« Then there exists chains and y
2

of minimal

length such that y
]

connects x' to y
}

, u
2

connects y
£

to x'

and both A^) and A(y
2

) are odd. Then u = (y
]
,y ,y

2
,vu) is

a cycle such that A(y) = A^) + 1 + a(u
2

) which is odd. But

G has no odd cycles, so [y^l^E. Therefore (SpSJ is a

bicoloring of G.

Case 2 G is not connected.

Define S
]

= U(S
i]

) and S
2

= U(S.
2

) where (S^.S^) is

a bicoloring for the i
th

connected component of G which exist

since each connected component is a connected graph with no odd

cycles. Then (Sj.Sg) is a bicoloring for G.

The following theorem gives a sufficient condition for a hyper-

graph to be unimodular.

Theorem ZJ_ If H = (X,E) is a hypergraph without odd cycles,

then H is unimodular.

Proof Let H have no odd cycles, then each subhypergraph of

H has no odd cycles. For, if H has an odd cycle,
* *

(a
l
E

l
a
2n+l

E
2n+l

a
l

} where {ar ••• a
2n+l

} ^ S ^ x and

for each i, E* = (S E.) e E
$

for some E. e E, then

(a
l

E
l

a
2n+l

E
2n+l

a
l

5 wou1d be an odd cycle of H. Hence, by the

definition of a unimodular hypergraph, we need only show that a hyper-

graph H without odd cycles has an equitable bicoloring.
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Let f be a 1-1 and onto map from I := {1, ... ,
|E|} to

E. For each i e I, denote E! = f(i). For each i e I, let f. be

a 1-1 and onto map from O, ... ,r.} to Ei, where \E\\ = r.. If

r. is even define F. =
i l

{[f
i
(l),f

i
(2)],Cf

i
(3),f.(4)] 1 ... ,[f

i

(rr l),f.(r
i
)]}.

Tf r. is odd then define F. =
* l i

{[f
i
(l),f

i
(2)],[f

i
(3),f.(4)] s ... ,[f

i

(r
i

-2),f
i
(r

i

-l)],[f
i

(r
i

),f.(r.)]}.

Define E = U{F. : i e I}, then consider the graph G = (X,E ).

Suppose that G contains an elementary odd cycle, y =

(a-j, ... > a2p+i

'

a
]

) » ^or some positive integer p. We may assume that

y contains two disjoint edges from the same class, F.. If not,

then there would exist a cycle ( a-j
E-j

a
2 p+i^2p+l

a
l

^ which 15

odd and hence contradicting the fact that H has no odd cycles.

Without loss of' generality, let these two edges be t a
s

> a
s
+-|^ anc'

[a
t
,a
t+

.|]. Transform F. by changing the above two edges into

'-
a
s'

a
t+l-'

and
'-
a
t'

a
s+l-'*

Re P 1ace u by either the sequence u
1

=

(a-j
,

... »^5»a^+]> ••• ' a
2p+l

' a
l

'
or ^" =

^ as+T
a
s+2'

"** ' a
t'

a
s+l^

eac '1 o^whicf191"6 elementary cycles of odd

length.

Repeat this process as many times as possible. Since y had

only finite length, this process will terminate. At the final step,

the cycle will be elementary and odd. As stated above, this odd

cycle will determine an odd cycle in H, which is a contradiction.

Therefore G contains no elementary odd cycles. Proposition 1 2

implies that if G has odd cycles, then G has elementary odd cycles.,

Hence G contains no odd cycles.

Define S-j and S
2

as in the proof of Theorem 2.6 then there
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is a bicoloring (S.|,S
2

) of the vertices of G. Since any vertex

in S
1

is adjacent only to itself and from the way in which E was

constructed, we have
|

| E f\ S
]

|

-
| E f| S

2 1

| < 1 for all E e E. Hence

(S-j,S
2

) is an equitable bicoloring of H.

The following example shows that a unimodular hypergraph can

have odd cycles.

Example 2.8 Define X = {1,2,3,4}, E
]

= {1,2} , E
£

= {2,3},

E
3

= {3,4}, E
4

= {4,1}, E
5

= X and E = {E
]
.E^.E^Eg}. then

H = (X,E) is unimodular and has odd cycles.

Proof Let SCX with |S| = 2. Let (SpSg) be a partition

of S, then for all i ,
|

| E . f] S
]

|

-
| E . (\ S

2 1

|
< 1

.

Suppose |S| = 3, then partition S into (S^) where S
]

=

{1,3} or S
]

= {2,4}. Clearly for i f 5, ||E. (\ S
]

|

-
|E.fl S ||

= 0.

Now for i = 5 we have |E
g

(\ S
}
[

- |E
g

f\
= 2 - 1 = 1.

Finally, suppose S = X, then partition S into (S,,S
2

) where

S
]

:= {1,3} and S
£

:={2,4}. Then for each i, |E. f| S
]

|

= lE^Sj.
Hence for each S CX, where |S| > 2, H

$
has an equitable bicoloring.

Therefore H is unimodular with a cycle (lE^E^Egl) which is odd.
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A submatrix of a matrix A is a marix formed by deleting

rows and columns of A.

A total l,y unimodular matrix is a matrix such that every square

submatrix has determinant 0,1 or -1.

Proposition 3.1 If A is totally unimodular, then each a..
^ J

is either 0,1 or -1.

Proof (a..) is a lxl square submatrix of A.
1 J

Let A. and C. denote the i row and j column, re-
J

spectively, of the matrix A.

For the remainder of the thesis, the same letter will be used

to denote a set of rows or columns and the matrix formed by these

rows or columns. The context in which each will be used should

cause no confusion.

Let n £ m and let S be an n x m integral matrix then for

{d : d is a determinant for some n x n submatrix of S} := D

define

if D = {0}

otherwise.

r

GCD S = <
greatest common divisor of

all the elements in D

Lemma 3.2 Let m and n be relatively prime integers then

there exists integers a and b such that ah + bm = 1.
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Proof The proof can be found in [Hernstein, Lemma 1.3 J].

Lemma 3.3 Let S be an n x m integral matrix then

S = UDV where U,D and V are integral, U is n x n, D is

n x m, V is m x m, | det U| =
| det V| = 1 and D is diagonal.

Proof The proof will be by induction on n + m. Since the

smallest n + m can be is 2 we will start the induction at 2.

Let n + m = 2, then n = 1 and m = 1. Then U := 1^,

D := S and V := 1^ have the desired properties.

Assume that for each (n + m) e {2, ... ,p} we have shown that

there exists U,D and V with the desired properties.

Now assume n + m = p + 1

.

Case I m > 1

*
Define S to be the first p columns of S, then by the in-

duction hypothesis we can write S = U D V , where U ,D and V

have the desired properties corresponding to S . Let

*
V

I,

and C/ := (U*)
-1

C
m

where C
m

is the m
th

column of S. Then

is integral and S = U*(D*,C
iJ)

)V ' . Let J
1

:
=

{j : d*. f and cj
m

f 0}. For each j e J 1

, let := gcd(d*.,c

then by Lemma 3.2 there exists integers a^ and b^ such that

Vjj
+
Vjm =U For each J' e J ' let
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V

j-1

a.

b

-c'. /k.
\

m-j-1

then V, is integral and det V. = ±1. Let I :=
J J

4- 1_

{i : is the only nonzero element in the i row) and for each

r e |I|> I'. let k« := gcd(c! , ... ,c« J where
r

i

Q
< 1

1
< ... < 1

p
and for each i e I\{1

Q
, ... ,i

r
>, 1 < i.

By Lemma 3.2 we have for each r e I' there exists integers a^,

and t>; such that ajkj^/k' + bj.0' ^k' = 1, where k

For each r e 1
1 let

i ._ _

i

-

1()
m

\
n-1

Q
-l

-c- m/k"
-i

r
m' r

b'
r

k' ,/k'/,
r-1 r;

'

then U
r

is integral and det U 55 ±1.

If i
Q

< min{m,n} then let P be the permutation matrix per-

muting column i
Q

with column m. Otherwise let P be the per-

mutation matrix permuting row i'q with row m.

For the following, the product over the empty set is the identity

matrix. If i
n

< min{m,n} then U : U (n Uj" 1

,

V := (n
jEj , V.fVv and (H^,. U

r
)«D\<£))(Iw ,

V.)P

have the desired properties. If i > min{m,n} then
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U := uV(n
reI ,

U
r

)

_1
, V := (n. £jl VjJ^V and

D : = P( n
reI .

U
r
)((D*,C^))(nj£jl V.) have the desired properties.

Case II n > 1

By Case I there exist U,D and V, with the desired properties,

such that S* = UDV. Hence U' := V
t

, D' := D
t

and V := U
l

have

the desired properties for S. Hence by induction, S has the desired

factorization.

Lemma 3.4 Let S be an n x m integral matrix with n < m

and let B be an n x n integral matrix such that det B = ±1

then GCD S = GCD BS.

Proof Let S' := BS and for 1 < k < n let S. and S!

th 1k lk

be the i'

k
columns of S and S', respectively. Now since

S! = BS, , (S! , ... ,S' ) = B(S. , ... ,S. ) and
]

k \ n \ ^ \
| det (S! , ... ,S! )| =

| det (S. , ... ,S. )|. Therefore by the
M 'n

n
l \

definition of GCD, GCD S = GCD BS.

Lemma 3.5 Let S be an integral n x m matrix with

GCD S = 1 and let A be an integral m x m matrix with

det A = ±1 and SA diagonal, then GCD SA = 1

.
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Proof Let M := {{S. , ... ,S. }o S : S. is the i

th

1 n 'j J

column of S and {S. , ... ,S } is a set of n distinct elements},
H 'n

then GCD S = greatest common divisor of {det M : M e M }
n

"

Let d
-|

d
n

be the diagonal elements of SA, then since

GCDS f (which implies GCD SA f 0), we have that for each

i e {1, ... ,n}, d
i

f 0. Hence one sees that the first n rows of

A ^ must be

'
an /d

i •;•
a
lm

/cV

k

a
nl

/d
n

a
nm

/d
n.

Since det A = ±1 we have by the well known Cramers Rule that A
-1

is integral. Hence for each i, d. divides every element in the

i row of S.

Let M e M then det M =
n

/ra
11
/d

1
... m

1n
/d

;

(nd^det •

N nl n nn n

Since fore each i, d. divides every element in the i
th

row of S,

/mn /d
i

••• n
ln
/d
^

det ( |

\mnl /d n
m
nn

/dm
is integral. Therefore nd. divides det H for all M e M

1 n*

Hence nd. divides GCD S. But GCD S =
1 , so 1^. = ±1. Since for

each i, d. is integral, we have d. = ±1. Therefore GCD SA = 1.

Corollary 3j6 Let S be an n x m integral matrix with n < m.

Let UDV be a factorization of S by Lemma 3.3, and let GCD s =
1

,

then GCD D = 1.
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Proof Since U
_1

is integral with det U
_1

= ±1 we have by

Lemma 3.4, GCD U
_1

S = GCD S. Therefore, since V
-1

is integral with

-1 1 1 1

det V = ±1, U" SV" = D is diagonal and GCD US = GCD S = 1,

we have by Lemma 3.5 GCD D = 1.

Let x,y £ E
n

then define x > y if for each i e {1, ... ,n},

Xf>yj» where x
i

and y. are the i

th
component of x and y

respectively.

Let A be any m x n matrix and b e E
m

, then define

P(b) := {x e E
n

: Ax > b}. Notice that P(b) is not necessarily

bounded. For example, let A be the lxl matrix (l) then

P(2) = {x e E : (l)x > 2} is clearly unbounded.

Let A be an m x n matrix, b e B
m

and S a subset of the

rows of A, then define F
$

= F
$
(b) = {x £ E

n
: Ax > b and A^ = b.

if A. £ S}, L (b) = {x £ E
n

: A.x = b. for all A. e S} and

G
s

= the subspace of B
n

spanned by the rows of S.

If F
s

is not empty, then it is called a face of P(b). If

F- and F- are such that F c cF. , then F c is called a
b

l
b
2

b
l
~ b

2
S

l

subface of F
Q .

b
2

Lemma 3.7 Let A be an m x n matrix, b e B
m

and let S,S* <~

be subsets of the rows of A such that S f^S*; moreover let F
$

*

and F
s

be faces, then:

1) F
S
^F

S
*

ii) F
s

is a minimal face iff G^ = G
$

, i.e., iff S has the

same rank as A.

Proof of j) Let S cS* and x £ F * then for all A. £ S,
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AjX = b^. Hence x e F
s>

Therefore F
S
*CF

$
.

*
Proof of ii) Let S be all rows of A in which G = G *

S S

then A. is a linear combination ofthe A. e S iff A e S*

Therefore what must be proved is that G
$

= G
ft

iff S* = A.

The first implication is proven by proving the contrapositive.
* *

If S f A, there is at least one row A
k

e A\S . Then there is a

vector y such that A.y = for all A. e S and A
R
y < 0.

Let x' e F
$

. As A^' > b
k

, there is a number A
R

> 0, for

which A
k
(x' + A

R
y) = b.. For every A. e A\S* such that A.y < 0,

the equation A.(x' + Ay) = h has a nonnegative solution. Let A

•

J J J

be that solution. Define A = min {A.} and let j' be a value such
J

that \ = \y. Since A
k

exists, there is at least one A^, so A

exists. By the definition of A, we have:

A(x' + Ay) > b,

A^x' + Ay) = b
i

for all A
i

e S and

Ajl (x' + Ay) = bjt .

Tnus F
( S y A j

is not empty, and is therefore a proper subface

of F
s

, since A^.x' > b.,. Hence F
$

is not minimal.

The second implication is also proven by proving the contrapositive.

Let F<. not be minimal, then it has some proper subface

F
(S U A.)*

HenCe there exists x
i»

x
2

e F
s

such that A - X
i

= b - and

A
j
X
2

> bj* Tnerefore AjX varies as x ranges over F
s

. But for

A, e S, A.x = b. is constant as x varies over F c . Hence A.'ii S j

cannot be a linear conbination of the A. e S, so A. e ASS*. Hence
* *

1 J

S f A. Therefore S = A iff G
$

= G.

.

If b is an m-tuple and S is a set of r linearly independ-
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ent rows of A, then let t>

s
be the "subvector" consisting of the

r components of b which correspond to the rows of S. Let t>

always represent an r-tuple. The components of t> and b
$

will

be indexed by the indices used for the rows of S, not by the integers

1 to r.

Lemma 3.8 Suppose S is a set of r linearly independent rows

of A, where r = rank A, then for any b there is a b such that:

El b<- = b and,

E2 is a minimal face of P(b).

Proof As S is a set of linearly independent rows, the equa-

tion Sx = b has at least one solution, call it y. Define b

as follows:

b =
|b\ if A. e S

jA.y] if a! S.

Hence b<»= ft and b is integral. Also y z F^, so F
$

f <j>. By

Lemma 3.7, F is a minimal face, so E2 is satisfied.

*
Lemma 3.9 Suppose S is a set of rows of a matrix A that

*
has the same rank as A, and S £ S is a set of r := rank A lin-

early independent rows of A. Then for any b such that F
$
* is a

face, F
s
* = L<..

Proof Let y be a fixed element in F<.* and let x be any

*
element of L<.. Since for all A. £ S we have A.y = b., F * c L.

5 l l i s — s

Since S had rank r, any row A
k

£ A can be expressed as

a linear combination of rows A. £ S, i.e., A, = Ea. A.
i k k > '

Since A.x = A.y = b for all A. e S, A, x = A.x =it i k k.j i

Za
k
A.y = A

k
y. Hence L

$
^F

s
*. Therefore F

$
* = L

$
.
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Lemma 3.10 Let A be an m x n matrix and b e B
m

, then any

minimal face of P(b) can be expressed in the form F<. where S

is a set of r := rank A linearly independent rows of A.

it

Proof Assume the face is F
s
*. By Lemma 3.7, S must have

rank r. Let S be a set of r linearly independent rows of S*.

By Lemma 3.8 F
$
* = L

$
= F

$
.

Lemma 3.11 Let A be an m x n integral matrix. Let S be

a set of linearly independent rows of A and let S have the same

rank as A, then the following are equivalent:

i) Ls(fr) contains an integral point for every intergral

ii) GCD S = 1

Proof By Lemma 3.3 there exists integral matrices U,D and

V such that S = UDV, | det U| =
| det V| = 1 and D is diagonal.

By Lemma 3.6 GCD S = GCD D. Clearly GCD D = Id^- ... >d
|

where r := rank A. Hence ii) is equivalent to the condition that

for 1 e {1, ...r}j d^. = ±1.

Suppose that d.. = k > 1 for some j. Without loss of gen-
J J

erality we may assume that j = 1. Let e be the r-tuple

(1,0, ... ,0)*, let b:= Ue and let x e L
$
(£). Then

Sx = UDVx = b = Ue. Hence DVx = e*. Clearly the first component of

y = Vx is 1/k. Hence y is not integral. Therefore x cannot

be integral. Therefore F
s
(fr) contains no integral point. Hence

if GCD S f 1 then i) cannot hold.

Assume = ±1 for i e {1, ... ,r}. Let x e L
$

(Id) and

set Vx = (yr ... ,y
r
,yp+1 y

p
). Then U

_1
b = DVx =
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^ d
ll
y
l'

*•* ' drrV' and S0 y
l*

'y
r

are inte9ra1 -
Let

y = (y., ... ,y
r
,0, ... ,0), then V'^y is integral. Since

Dy = DVx, S(V
_1

y) = UDV(V
_1

y) = UDy = UDVx = ft. Thus V
_1
y e L-(ft).

Therefore ii) implies i).

Theorem 3.12 If A is totally unimodular, b is integral and

P(b) is nonempty, then P(b) contains an integral point.

Proof Let F<.* be some minimal face of P(b). By Lemma 3.10

this face can be expressed as F<. where S consists of r := rank A

linearly independent rows of A. By Lemma 3.9, F<.(b) = L<.(b<.).

Since A is totally unimodular and S is of full rank we have

GCD S = 1. By Lemma 3.11, L^ft) must contain an integral point.

Therefore P(b) contains an integral point.

Let A be an m x n matrix, b,b' e I
m

and c,c' e S
n

where

b < b' and c < c' then define P(b,b';c,c') =

{x e S
n

: b < Ax < b ' and c < x < c ' }

.

Theorem 3.13 A is totally unimodular iff for every integral

b,b',c and c' such that P(b,b';c,c') is nonempty, then

P(b,b';c,c') contains an integral point.

Proof Assume A is totally unimodular and P(b,b';c,c') is

nonempty. Consider A^ :=
j . Clearly A+ is totally unimodular.

w
For x e P(b,b' ;c,c' ) , b < Ax < b' and c < x < c' iff Ax < b,

-Ax < -b', x < c and -x < -c'. Hence P(b s b';c,c') =
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P*((b-|, ••• >t>
m
»-bj, ... ,-b^»C| , ... ,c

n
,-c^, ... >~ c

n
) )•

Since P*(*) is nonempty, we have by Theorem 3.12 P(b,b';c,c*)

contains an integral point.

Suppose A is integral but not totally unimodular. Since A is

*
not totally unimodular there is a p x p submatrix A of A such

*
that det A f or 1 . Hence by Theorem 1.4, there is a non-

d *
integral x e V such that A x is integral. Let I,K be the sets

*
of indices that indexes the rows and columns, respectively, of A . Define

(c. = [x ] i e K
:

-J

1 1
and c

1
:

[c
i

= i t K Lcj = i t K.

Then b,b',c and c' are integral and P(b,b';c,c') is well defined

and nonempty.

Define A' = (A. e A : i e I}. Since det A ^ and

*
A x = b^, = A'x' and by the definition of c and c', we have

{x
1

} P(b,b' ;c,c' ) . Hence P(b,b';c,c') contains no integral

points
- Therefore there are

integral b,b',c and c' such that P(b,b';c,c') is nonempty and

does not contain any integral points.

Lemma 3J4 Let A be an m x n totally unimodular matrix

then for all x e {0,1, -l}
n

there exists a vector y e {0,1, -l}
n

such that y = x(mod 2) and for each A. e A,

(A.y = if A.x = 0(mod 2)
1 1

A^y = ± 1 otherwise

Proof Let x e {0,1, -1}
n

and Ax = a. Define d
v

for v = 1,2
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to be

if x. s 0(mod 2)

d
i

=

t
1/2 < x

i
" ]

)
if x

i
= Hmod 2) and v = 1

l/2(x. +1) if x
i

= l(mod 2) and v = 2.

Define b
V

for v = 1,2 to be

f
l/2(a.) if a. = 0(mod 2)

b^ = jl/2(a. - 1) if a
i

s 1 (mod 2) and v = 1

J/2(a
i
+1) if a. = l(mod 2) and v = 2.

Note that b
1

< l/2(a) < b
2

and d
1

< l/2(x) < d
2

. Hence

l/2(x) e P^.b^.d2
). Therefore by Theorem 3.13 there exists

x' e {0,l,-l}
n
(O P(b\b

2
;d\d

2
). Set y=x-2x',then

y = x(mod 2) and A.y = A.(x - 2x') = a. - 2(l/2(a.)) = if

a. e 0(mod 2), A.y = a. - 2(l/2(a. - 1)) = 1 if a. = b]

A.y = a. - 2(l/2(a
i
+!))=-! if a. = b

2
.

and

Theorem 3.15 Let A be a 0,1 m x n matrix with I in-

dexing the rows and K indexing the columns, then A is totally

unimodular iff for each JcK there exists a partition (J-j,^)

of J such that for each i e I, |Z. . a.. - Z.
, a..|<l.

1 jeJ
1

ij jeJ
2

ij
1 =

Proof Assume A is totally unimodular, then let A* be any

submatrix of A, then clearly A* is totally unimodular. So all

that is needed to be shown is that for A
?
there are Kj.K-C K

such that for each i e I, Iz. . a. . - 2. , a..l<l

The proof will be by induction on p = |K|.

Let p = 2 then clearly there exists x e {1,-1} P
such that

Ax e {0,1, -l}
m

.

Suppose that for any m x p totally unimodular matrix, where
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2 < p < n, there exists x e {1,-1} P such that Ax e {0,1, -I}™.

Assume that A is an m x n totally unimodular matrix. Then

n 1
for (C| , ... »C

n
_-|) there exists an x z {1,-1} " such that

m
(Cr ... ,C

n _ 1

)x e {0,1,-1}'". Define

x! = x.j for i = 1 , ... , n - 1

x' = 1 otherwise

If Ax e {0,1, -l}
m

then we are finished. Suppose not, then by

Lemma 3.14 there exists aye {l,-l}
n

such that Ay e {0,1, -l}
m

.

Therefore by induction any m x p totally unimodular matrix A is

such that there exists x e {1,-1} P such that Ax e {0,1, -l}
m

.

Let A be an m x n totally unimodular matrix and x e {l,-l}
n

such that Ax e {0,1, -l}
m

. Define J
]

= {j : x. » 1} and

J
2

= ^ : x
j

= If eitner J-j or is empty then clearly

there is another choice for x. Assume neither nor J
2

are

empty, then (J-|,J,>) is a partition of J and for each i e I

|lj , a. . - Z. . a. .1 < 1.

Assume that for each JCK there are JyJ^c J such that

(J.|,J
2

) is a partition of J and for each i z I

I. , a. .
- I. , a . . < 1

.

Suppose A contains a square submatrix, A*, such that the

determinant of any square submatrix of A*, but not equal to A*,

*
1S 0,1 or -1 and det A f 0,1 or -1. Let I index the

*
o

rows of A and K
q

index the columns of A .

Let f
A
* :

p (K ) * P(I
Q

) as in Chapter 1.

Suppose f * is not 1-1, then there exists J C k such thath — o

f
A
*(J)=*. Hence AJ = I

q
. Since there exists J^J^cj such that
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J,,J 9 partition J and for each i e I , 1z. . a.. - Z. , a .1 <12 o* ' jeJ
1

ij jed
2

°ij I i

and &J = I , we have for each i e I ,
Z a .. _ E. a.. = 0.

o' j£J
]

ij j£J
2

ij

Define

fx -1 JU
x = x. = -1 j E J

2

x. = otherwise,
* J

then A x = 0. But since x f 0, this contradicts the fact that

det A* f 0.

Suppose f * is 1-1, then for some i el, there exists a« oo
unique J c. K

q
such that f

A
*(J) Cl >. Since there exists a par-

tition (J^Jg) of J such that for each i e i

^jeJ-j
a
ij

" Z
j£J

2

a
ij' - ]

'
we have for each

1
e I » 1 t i .

Z
jeJ

1

a
ij

" Z
jeJ

2

a
ij

=
°* Witnout ^ss of generality we may assume

Z
jeJ

1

a
i
oj

~ Z
jeJ

2

a
i
Q
j
=1

- Let IK
q

I
and define

*
(Cp ... ,C

k
)

= A . Without loss of generality we may assume

1 e J and 1=1. Then for C, := Z. , c. - Z C c* = 1

* 1 J jeJ
2

j' 11
1

and c^ = otherwise. Hence det A = det (C, , ... ,C.) =
I K

. ,

f r
* . ** **

aet \\.y ... .c^J = det A , where A is formed by deleting the

first row and column of A . But since A is a square submatrix

of A and is not equal to A*, det A** = 0,1 or -1. But this

contradicts the fact that det A* f 0,1, or -1.

Hence f
A
* is both 1-1 and not 1-1, which is absurd. There-

fore every submatrix of A has determinant 0,1 or -1. Therefore

A is totally unimodular.

Note that the totally unimodular matrix A in Theorem 3.14

cannot be a 0,1,-1 matrix, since



is totally unimodular and |a^ " =
"

= 2 * reac*er

should notice that Berge incorrectly states this theorem in his book

for this reason,,

Corollary 3.16 The incidence matrix of a unimodular hypergraph

is totally unimodular.

Proof Let H = (X,E) be a unimodular hypergraph then for each

S £ X, |S| >2, there exists S^S^S such that S^^ ,S
2

partition

S and for each E. e E,
|
|E.. ft SJ - |E

1
p\ S

2 |
|
< 1. Let A be the

incidence matrix of H. Let I index the rows of A and K index

the columns of A. Then there exists K such that each j e J

corresponds to an x e S. Hence there exists J-^d^C J such that

J, ,J„ partition J and for each \ e I we have IE. f\ S. I
= E. , a. .

1 L 11 J£ J
J^

'J

and lE./ISJ = Z. a... Hence for each i e I, there is an E. e E
1 l JEJ2 1

such that 1 >
I
|E. (] S

x I

-
I Ei H S

2 1
1
=

I E.^ a
i;j

- E.^ a. . |

.

Since S was any subset of X, we have for every J f- K there exists

^1*^2 ^ ^ suc^ t ^iat
^l'^2

Petitions ^ anc
'

f°r eacn i e I>

|Z. , a.. - Z.
n

a..| < 1. Therefore, by Theorem 3.15, A is
1 jeJ

1
ij jeJ

2
ij

1 =

totally unimodular.

Define l
n
>0

n
e ' to be such that every component of l

n
is

1 and every component of
n

is 0.

Corollary 3.17 Let H be unimodular and A its incidence

matrix, then the extreme points of P(l ,1 ;0 ,1 ) are integral.



29

Proof This follows directly from Theorem 3.13.

Proposition 3.18 Let H = (X,E) be a hypergraph and A its

incidence matrix, then every point in p ( 1
m

» 1

m
»

n
» 1

n
) is a convex

combination of the extreme points of p
( 1

m
' 1
m' n'^n^

"

Proof Let {y
1

, ... ,y^} be the extreme points of P(')

and x e P(*)° Clearly P(«) is contained in the linear span of

its extreme points. Hence x = a^y-j + ... + ct^y^. Since

{x.y^ ... ,y
k
} C P(«), z\ a. = 1. Therefore every point in P(-)

is a convex combination of the extreme points of P(»).

Using Corollary 3.16 we have the following theory.

Let H = (X,E) be a hypergraph and

M '•- (y
-j

-

v
k
E
k
y
l^

be a cyc1e of H
'

then y is said to be

a T-cycle of H if for Y := {y
]

, ... ,y
k
) , | Y fl E

i
|
* 2 for

i
—

1 > ••• » k •

Theorem 3.19 Let H = (X,E) be a unimodular hypergraph,

then H has no odd T-cycles.

Proof Suppose H has an odd T-cycle, (y^-^ •••
•
v
k
E
k
yl^*

Let A be the incidence matrix for H and A
1

be the incidence

matrix of H
1 = (Y,{E, A Y, ... ,E

k
f[ Y}). Clearly A' is a

submatrix of A and by Lemma 1.8 |det A'l = 2. But this

contradicts the fact that A is totally unimodular.
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Let u be a function mapping X into [0,1] and H = (X,E)

be a hypergraph, then co is called a state on H if for all

E e E, £
X£;E

w(x) = 1. Define = {x e X : uj(x) > 0}, then X^

is called the support of u>. Two states oj-j and co
2

are said to

be equal if for all x e X, (jo-j(x) = co
2
(x). Define

fi(H) = {co : 03 is a state on H}

Proposition 4.1 Let H = (X,E) be a hypergraph and A be

its incidence matrix, then ft(H) is isomorphic to p ( 1

m » 1
m
'°

n
» 1

n
)'

Proof Define * : fi(H) - P(-) by = (oo^), ... ,oj(x
n
))

t
.

Let UV|,(02 e ft(H) where w-j t then by the definition of two

states not being equal we have $(to. ) = (w,(x. )l, ... ,co.j(x
n
))

t
f

(^(x^), ... ,oo
2
(x ^ = $((1)2). Hence $ is 1-1. Let y e P(»)

and define Uy(x^) = y. . By the definition of y, oj^ is a state on

H. Hence $ is onto.

Let a,b e E be such that a > 0, b > and a + b = 1. Define

© , to be such that for all to, ,co„ e ft(H), co, © . co =
a,D id ia,bt

aco
1

+ bco,,. Hence $(co^ ®
a b

co

2
)

= $(aco
1

+ bov,) =

((aw
1

+ bco
2
)(x

1
), ... ,(au>. + bco

2
)(x

n
))

t
=

a(oJ
1

(x
1
), ... ,co

1

(x
n
))

t
+ b(co

2
(x

1
), ... ,oj

2
(x

n
))

t
= a$(co

1
) + b<J>U

2
)

=

©
a b

$(w
2
). Hence 3> is an isomorphism. Therefore fi(H) is

isomorphic to P(»).

Let H = (X,E) be a hypergraph, then a set T is called a

transversal of H if for all E e E, T f) E f cj>.

A transversal T of H is said to be thin
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if for all E e E, |T f] E| = 1 . A state, V, on H is said to be

dispersion free if for all x e X, ¥(x) e {0,1}.

Lemma 4.2 Let H = (X,E) be a hypergraph, then each dis-

persion free state corresponds to some thin transversal and each

thin transversal corresponds to some dispersion free state.

Proof Let H have a thin transversal T, then define

fl if x e T

*(x)

(0 if x t T.

Since T is thin, we have that for all E e E, z «?(x) = 1.

Suppose there exists a dispersion free state, ¥, then define

T = {x e X : ^(x) = 1}. Since ¥ is dispersion free, we have that

for all E e E, |T f] E| = 1.

Lemma 4.3 Let H = (X,E) be unimodular and A be the incidence

matrix, then every extreme point in P(l ,1 ;0 ,1 ) corresponds tom m n n

a dispersion free state of H.

Proof This follows from Proposition 4.1, Corollary 3.17 and

Lemma 4.2.

Corollary 4.4 Let H = (X,E) be unimodular and n(H) t <j>,

then for co e n(H), co = p.T. where p. = 1, for each i, p. >

and y is dispersion free.

Proof This follows from Proposition 3J8 and Lemma 4.3.

Let A be an n x n matrix, then A is called bistochastic if

n

for each i we have that £ a.. = 1 and for each j we have
j=l 1J
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n

that £ a.. = 1 and for each i and j, a.. > 0.

i=l
1J J

Corollary 4.5 Let A be a bistochastic matrix, then

A = I, p where, for each i , < p
i

< 1 and P.. is a per-

mutation matrix.

Proof Let X = , ••• »x
ln

, ... , ... ,x
nn

> and

E = {E
i5

F. : E
i

= {x^, ... ,x
in

>, F. = {x^., ... ,x
ni

}}, then

H = (X,E) is a hypergraph. Hence for i f j, E. (1 E. =
if and

F. {] F. - <j>. Also for each i and j, E./l F. = {x-.}. Therefore
3 3*3

H contains no odd cycles. By Theorem 2,7, H is unimodular.

Let A be bistochastic, then the function oj(x)
y

where

w(x.jj) :=a
-jj>

1S a state on H. By Corollary 4.4 oj(x) = p^.U)

where for each i, we have < p. < 1 and is a dispersion

k
free state and E, p. = 1. Note that for * to be a state, we have

that if 1 < i < n is fixed, then for some 1 < j < n, ¥ (x. . )
= 1— O — = J

o = q i J
*

and for j f j
Q ,

^
q
(x

i
j)

= 0. Similarly if 1 < j < n is fixed

for some 1 < i < n, ¥ (x.*.*) = 1 and for i f 1 , f (x..*) = 0.
q i J q U

Therefore the matrix formed by ( (y(x ..)).. ) is a permutation matrix.
H ' J 3

Clearly the matrix formed by ((co(x. .)) . .) is A. By the above
3 "l 3

A (fc(X
1J

))
1J

) (( ^ P,*,^)),,) - ^ P^J^Hy)

k

p^P^ where for each q, P
q

is the permutation matrix given by

((* (x. .))..).

Note that this corollary is a result of P. Hall quoted in

G. Berkhoff's paper.
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Let H =(X,E) be a hypergraph and x,y e X with x f y, then

define x
J_ y if for some E e E, {x,y} c E. Let £2(H) f <p and

S C fi(H) then S is said to be ful

1

if, for any x,y e X where

x t y» x
J_ y iff co(x) + co(y) > 1 for some w e S. Let V

denote the set of all dispersion free states of Q(H).

Example 4.6 Let H = (X,E) be the hypergraph represented by

Figure 1 where each line is an edge of H. Then 8(H) is full and

V is not full.

a

f

h / \i

t

c e d

m\ / n

/°\

Figure 1

E

Proof Suppose 4* is a dispersion free state on H where

^(a) = V(b) = 1. Then Y(c) = V(d) = 1. However Z^* f(x) = 2,

which is a contradiction. Hence V is not full.

Using Chart 1 below by picking any 2 vertices, x and y,

such that x
j_ y, you will find a row which represents a state on H

such that w(x) + co(y) > 1. Hence n(H) is full.
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Proposition 4.7 Let H = (X,E) be a hypergraph with

S ^n(H) full, then ft(H) is full.

Proof Let x,y e X where x f y and x
J_ y, then since

S is full there exists some co e S fi(H) such that

w(x) + w(y) > 1.

Theorem 4.3 Let H = (X,E) be unimodular then V is

full iff x,y e X, where x /y and x f y, implies there is some

thin transversal containing x and y.

Proof This is immediate from Lemma 4.2.

Example 4.9 Let H be the hypergraph represented by

Figure 2, where each line in Figure 2 is an an edge f H.

Then V is full and H is not unimodular.

\1/

Figure 2

Proof Use Table 2 as in Example 4.6 to see that V is

full. Consider the incidence matrix of the subhypergraph H n -

By Lemma 1.8 this matrix has determinant 2. Hence H is not uni
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Hence unimodularity does not imply a full set of dispersion

free states. Note that the quest for finding what conditions

need to be on a hypergraph in order that it have a full set of

dispersion free states still continues.

Proposition 4.10 Let H be a hypergraph with V full,

then there is a state to e n(H) such that to(x) > for all

x e X.

Proof Let V = &y ... ^ then clearly u = (l/k)zf y.

is a state on H and for all xeX, to(x) > 0.

The next example shows the converse is not true.

Example 4.11 Let H be the hypergraph represented by

Figure 3, where each line is an edge of H, then V is not full

and there exists a state to e n(H) such that to(x) > for

all x e X.

1h . u

, u

i <

> 1

Figure 3

Proof Suppose <f is a state such that ¥(6) = «P(2) = 1,

then ¥(3) + f(8) = 0, which contradicts the fact that ¥ is a

state. Hence V is not full. Define oj by
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u>(4) = oj(5) = u>(3) = w(8) = 1/2 and u>(l) = uj(2) = lo(6) = oi(7) = 1/4,

then to is a state on H with the desired properties.

Theorem 4.12 Let H = (X,E) be a hypergraph such that for

* *
each E e E there exists an x e E such that for all E e E {E},

* *
x t E , then V is full.

Proof Let x,y e X, x f y and x \_ y. Let f bea 0,1

function where T(x) = Y(y) =1. For each E e E such that

x t E or y ?! E choose an x* e E and let ¥(x*) := 1. Then

clearly ¥ is a dispersion free state. Therefore V is full.
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ABSTRACT

Chapter 1 covers the essential theory of graphs and linear

algebra that is necessary for the theory of unimodular hyper-

graphs.

Chapter 2 introduces the hypergraph and unimodular hyper-

graph. Two of the most important results of this chapter are:

i) each subhypergraph of a unimodular hypergraph is

unimodular;

ii) if a hypergraph has no odd cycles, then it is unimodular.

Chapter 3 contains the three main theorems of this thesis,,

The first one is a theorem by Hoffman and Kruskal that char-

acterizes an m x n totally unimodular matrix by a polyhedron

in F
n

. The second is a theorem by Ghouila-Houri that char-

acterizes a 0,1 totally unimodular matrix by being able to

partition the columns into two sets in such a way that for any

row, if you sum over one set of columns and subtract that from

the sum over the other set of columns then that difference is

less than or equal to 1 in absolute value. The last theorem is

by Berge and is a corollary to the first two theorems that allows

us to tap into the theory of totally unimodular matrices and

use it to better characterize unimodular hypergraphs.

Chapter 4 deals with the applications to the theory

developed in Chapter 3. The main theorem in this chapter says that

any state on a unimoldular hypergraph can be writen as a convex

combination of dispersion free states. A corollary to this theorem is

that any bistochastic matrix can be written as a convex combination

of permutation matrices.


