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I. Introduction

The purpose of this report is to present the results of simulations

performed on a frequency compressive receiver. The simulations deal with how

unmatched Sweeping Local Oscillators (S.L.O.) and Dispersive Filters affect

performance. Also examined is how three types of non-ideal input affect

performance. Performance criteria examined were probability of detection,

spectral resolution and frequency determination.

A frequency compressive receiver detects signals by rapidly scanning, or

tuning, the frequency band of interest. It is similar to a spectrum analyzer in

that both are Fourier Transform receivers. However, the frequency

compressive receiver scans faster over larger bands than does the spectrum

analyzer. It is this characteristic which gives the frequency compressive

receiver a higher probability of intercept (P.O.I.) than the spectrum analyzer.

In order to understand the frequency compressive receiver, it is

instructive to examine first how a spectrum analyzer, or scanning receiver,

works. Figure 1 shows a block diagram of a simple spectrum analyzer. The

bandpass filter admits only signals in the band of interest into the analyzer.

The S.L.O. generates a sinusoid whose frequency is a linearly increasing

function of time. The mixer output is a sum and difference term from its

two inputs. The Intermediate Frequency (I.F.) filter is a narrow bandpass

filter which only passes the difference term from the mixer. This filter

determines the spectral resolution of the analyzer.

With the input signal into the mixer being continuous wave (C.W.), the

mixer difference term is a sinusoid whose frequency is linearly decreasing with

time. As the sinusoid's difference frequency sweeps through the passband of

the I.F. filter, the filter's output is envelope detected (magnitude squared).
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This magnitude is the magnitude of the spectral component at that input

frequency. The S.L.O. can be calibrated in frequency to give the frequency of

the spectral component by the position in the scan time. Thus, the spectral

components are sorted in time, and an approximation of the magnitude Fourier

transform of the frequency band is formed.

The rate at which the S.L.O. scans is limited by the bandwidth, or

resolution, of the I.F. filter. If the S.L.O. scans the bandwidth of the I.F.

filter faster than its impulse response, the filter output is impulsive. However,

reducing the scan rate of the S.L.O. reduces the P.O.I, for signals of duration

less than the scan rate.

Unfortunately, the better the spectral resolution, the slower the S.L.O.

must sweep. An approximate relationship is given by the equation [1],

R2B
(1)

where S is the scan rate in Hz/seconds, and B is the I.F. filter bandwidth in

Hz. For narrow band signals, high spectral resolution is desirable. Thus, the

problem is how to scan wide bandwidths with high spectral resolution rapidly.

The frequency compressive receiver overcomes these limitations of the

spectrum analyzer, at least theoretically. The receiver's theoretical basis comes

from the Chirp transform's multiply-convolve-multiply implementation. It can

also be thought of as a matched filter receiver where the filter is matched to

a long C.W. signal.

The key to the frequency compressive receiver is the dispersive filter

which immediately follows the mixer. (See Fig. 2.) It is characterized by a

linear time delay for spectral components as a function of frequency. The
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range of frequencies for which this relationship holds is called the compressive

bandwidth. The delay difference between the highest and lowest frequencies is

called the dispersion time.

The S.L.O. is matched by making its phase the complex conjugate of the

dispersive filter's phase. Representing the S.L.O. output as

q(t) = e-^t2
(2)

the output from the dispersive filter for an input signal s(t) is

s(t) e-J^
2

* e^ = / 3(7) e-J"^ ><* ' ^ dr

^ I s(r) e~^tT
AteJ

(3)

The final expression is the Fourier transform of s(t) with a phase factor. If

only the magnitude transform is of interest, the final multiplication can be

omitted. Thus, the Fourier transform of the input is generated.

Figure 3 details the receiver operation more explicitly. The C.W. signal

s(t) is mixed with the S.L.O. Because the signal has a finite bandwidth, the

effect of the S.L.O. is to "chirp" the spectral components of s(t). The mixer

produces a sum and difference term from its inputs. The slope of the

difference term matches that of the dispersive filter. Therefore, all the energy

from s(t) spectral components arrive at the output of the dispersive filter

simultaneously. It compresses the signal. The sum term from the mixer does

not have the correct slope, so its spectral terms are dispersed in time as they

traverse the filter. Thus, their contribution to the output can be ignored.
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The impulsive output forms the Fourier transform of the dispersive

filter's magnitude response. This magnitude response determines the spectral

resolution of the frequency compressive receiver. Narrowing this response

improves the receiver's spectral resolution. This can be done by widening the

bandwidth of the dispersive filter. Widening the bandwidth of the filter allows

the S.L.O. to sweep much faster, because the impulse response is shorter for a

wideband filter. It also allows the receiver to cover a larger slice of the

spectrum. To summarize, the greater the spectral resolution, the faster the

scan is allowed to sweep. This is exactly opposite to the relation for the

spectrum analyzer.

To fully compress signals which lie near the edge of the compressive

bandwidth, the S.L.O. must sweep over twice the range to insure that the

signal will be fully compressed by the dispersive filter. This also means that

the time required to make one scan of the band is twice the dispersion time.

Input signals which last longer than twice the dispersion time are

"gated" by the S.L.O. to appear to last only one sweep time. Pulses of

shorter duration than one sweep time suffer from reduced compression.



II. Development

This section briefly develops the frequency compressive receiver's

mathematical model and implementation. A more thorough development can

be found in [1], [2] and [3]. The model was implemented on a Digital

Electronic Corp. VAX 11/750 using VAX C.

The equivalent low-pass model was used, so only the passband of the

receiver need be represented instead of the signal carrier. This greatly reduces

the number of data points required to represent the signal completely. The

problem of signal aliasing is avoided if the restriction is observed [2],

T <

4 Bw
(1)

where N is the number of data points, Bw is the compressive bandwidth, and

t is the dispersion time.

The key to the frequency compressive receiver is the matching of S.L.O.

phase response to the complex conjugate of the dispersive filter's phase

response. For the S.L.O., frequency is a linear function of time. Therefore.

f(t) must satisfy the following equations.

f(t)

f(t)

t =

t = r

= a t + b = - B
w ( 2 )

b = -B
B

= a t + b =
(3)

a t + b =



f(t)

t = 2r
a t + b = B

a 2r + b =

(4)

Simultaneously solving these equations gives the coefficients needed. To obtain

the S.L.O.'s phase response, f(t) is integrated with respect to time to yield

tft).

For the filter, time delay is a linear function of frequency. Therefore,

tj(w) must satisfy the conditions

t
d («)

1m(»)

tj(»)

a =

= a a) + b
T

B

+ b= --f

= a w + b =

b =

= a w + b
T

" ~2~

B

a ~!r + b
r

(5)

(6)

(7)

t
d
(w) is also integrated to give the phase response of the dispersive filter.

Then a negative sign must be multiplied through to form the complex

conjugate. Note that the negative frequencies and time delays are a

consequence of using the low-pass model.



In the low-pass model, the input signal is represented as

jw„t
s(t) = Re{ s(t) e

c
}

, (8)

where u>
c

is the carrier frequency of the envelope of s(t). The S.L.O. is

represented as

q(t) = e-^
2

and the dispersive filter as

(9)

H(f) = "4- H( f - f
c ) + -l_S(-f-f

c ) (
10

)

where f
£

is the center frequency of the compressive filter.

Calculations are first performed for the signal with no noise present.

The input signal, s(t), is multiplied by the S.L.O. in the time domain. The

result is then Fourier transformed to the frequency domain. The spectral

terms are multiplied point by point times the dispersive filter transfer function

evaluated at the particular frequency. This result is inverse Fourier

transformed back to the time domain, where it is envelope detected.

Detection occurs when the signal exceeds a certain threshold voltage V , set by

the signal-to-noise ratio and the false alarm rate. Frequency determination

comes from where the signal peak occurred with respect to the scan cycle.

The noise input, n(t), is assumed to be bandpass, stationary and

Gaussian. The low-pass equivalent of n(t) is Gaussian, stationary and

10



complex. All the receiver operations up to the envelope detector are linear, so

the mean of n(t) is scaled. The new variance can be found from

2

"w "n "o'-. = B- N ~ (11)

B
n

= / |
H(f)

|

2
df = f ( ,/ln 2

)

J / 2
(12)

-0.34667(f/f,)
2

H(f)
|

= e
3

(13)

B
n

is the noise bandwidth, N
Q

the noise density, and f
3

is the 3 dB frequency

of the dispersive filter. H(f) is the Gaussian magnitude response.

The probability of detection is given by

P
det = 1 " P( |o>(t)|

2
< V,

t
> (14)

where V
{

is the voltage threshold for detection, and w(t) is the complex

output. In the case of no signal, the complex terms are identically distributed

Gaussian noise terms with the variance of equation (11). Squaring the noise

terms transforms the distribution into a Gamma distribution. Adding the

terms results in an exponential distribution of the form

In 2

F (u) = 1 - e
w

11



To set the detection threshold voltage V., the false alarm rate (FAR)

must be set. This is the number of times per second the voltage threshold

will be exceeded when only noise is present. Once known, the probability of

false alarm is given by

r
F.A. " 2 B, ( 16 )

'lp

where B, is the low-pass equivalent bandwidth of the receiver.

The P
far

is related to V
t
by equation (17). F

y
(V) had previously been

found in equation (17),

+ oo V
t

P
F.A. " / p

(v ) dv = 1 " / P(v) dv = 1 - F
v
(V

t )

- V
t

-00

(17)

so substituting and solving for V. yields

V
t

= -2aw
2

ln(PFA ) (18)

This is threshold voltage for detection for a given false alarm rate.

Evaluation of the probability of detection equation (14) is carried out via

an algorithm developed by Brennan. (See reference [4].) There is no known

closed form for a circular, non-zero mean, bivariate distribution.

12



III. Results

Preliminaries

This section describes the results from the computer simulations. It is

divided into the following parts:

1. Linear Errors

A. Sweeping Local Oscillator
B. Dispersive Filter

2. Non-linear Errors

A. Sweeping Local Oscillator
B. Dispersive Filter

3. Short Pulse Input
A. Ideal Receiver
B. Linear S.L.O. Error

4. Long FSK Input

5. Long PSK Input

The receiver parameters used to generate the plots, unless otherwise

stated, were: compressive bandwidth of 5 MHz, dispersion time of 40

microseconds, a sweeptime of 80 microseconds, and a 3 dB frequency of 1.8

MHz. The false alarm rate was 1 per second, and the signal to noise-density

ratio was 58.3 dB. The input signal, for parts I and II was an 80

microsecond rectangular pulse, which is the ideal input for this receiver. The

peak signal output values were scaled to the ideal or maximum value of the

peak output. Only one part of the receiver was non-ideal at a time. The

remaining parts were ideal.

The three performance criteria, probability of detection, frequency

determination and spectral resolution degradation (SRD) are quantified in the

following manner. The probability of detection is the likelihood that the peak

of the output pulse will exceed threshold and be detected, given a certain

13



signal to noise-density ratio and false-alarm rate. Frequency determination

error is defined to be the difference between the receiver's estimate of the

input frequency and its true value divided by the compressive bandwidth.

This is also reported as a percentage. A negative sign indicates that the

output signal peak was shifted to a lower frequency. Spectral resolution

degradation is defined as a ratio of the non-ideal output, full width at half

maximum (FWHM), divided by ideal output FWHM. It is reported as 10 *

Log of this ratio. A logarithm was used because of the range of the ratios.

The FWHM was graphically determined, so the SRD is only meant to give an

idea of how much the main lobe widened with respect to the ideal.

The first group of plots, 1-5, are for comparison with later plots. The

S.L.O. and dispersive filter are ideal and the input pulse is long, hence it is

an ideal input. What is varied in these plots is the frequency of the pulse in

the passband. Values of 0, 1.0, 2.0, 2.5 and 3.0 MHz were used. This is to

demonstrate how the output pulse changes as it is moved from the center of

the passband to outside the passband. Note how the magnitude and shape

stay the same until the pulse is moved outside the compression bandwidth

( ± 2.5 MHz ). Then the pulse doesn't receive full compression, and the

magnitude suffers accordingly.

14



Frequency (10
s Hz)

Plot 1 Ideal Frequency Compressive Receiver output with ideal input pulse

at 0.0 MHz in the passband.
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Frequency (10 6 Hz)

Plot 2 Ideal Frequency Compressive Receiver output with ideal input pulse

at 1.0 MHz in the passband.
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Frequency (10 6
Hz)

Plot 3 Ideal Frequency Compressive Receiver output with ideal input pulse

at 2.5 MHz in the passband.
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Frequency (10
6 Hz)

Plot 4 IdeaJ Frequency Compressive Receiver output with ideal input pulse

at 3.0 MHz in the passband.
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J.
Frequency (10 6 Hz)

Plot 5 Ideal Frequency Compressive Receiver output with ideal input pulse

at 4.0 MHz in the passband.
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Section 1

In the theoretical development of the frequency compressive receiver, the

frequency vs. time and time delay vs. frequency relationships for the SLO and

dispersive filter, respectively, are assumed to be linear. In this section,

linearity is maintained, but the slope of the function is deviated from the ideal

by some factor. The non-ideal slope is reported as a factor times the ideal

value.

If the slope is multiplied by an error factor less than one, the S.L.O.

scans too slowly. The output pulse is broadened and delayed, because the

spectral components don't enter the dispersive filter quickly enough to all come

out together. Hence, the output doesn't occur in an impulse but over a

period of the scan. Because it is delayed, the peak is shifted to the right.

Also, the S.L.O. doesn't scan the entire frequency range.

If the error multiplier is greater than one, the S.L.O. scans too rapidly.

Now the spectral components enter the filter too soon with respect to the

previous frequencies. Hence, the output occurs over a period of time much

greater than an impulse. This has the same effect as scanning too slowly,

except the output pulse is shifted to the left, or lower in frequency. Also, the

S.L.O. now scans more than twice the compression bandwidth in the

sweeptime.

Plots 1A 2-7 show the output of the receiver with S.L.O. error

multipliers of 0.50, 0.70, 0.90, 1.10, 1.30, and 1.50 respectively. Plot 1A 1

shows the frequency vs. time relationships for these trials. The solid line in

the middle is the ideal case. Note that as the slope is deviated from the

ideal value (1.0), the output pulse flattens out and moves away from the

center.

20



Plot 1A-1 Frequency vs. Time Relationships used for the S.L.O. Linear

Errors.
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Frequency (10° Hz)

Plot 1A-2 Frequency Compressive Receiver output for S.L.O. Linear

Error of 0.5
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Frequency (10 s Hz)

Plot 1A-3 Frequency Compressive Receiver output for S.L.O. Linear

Error of 0.7
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Frequency (10 6 Hz)

Plot 1A-4 Frequency Compressive Receiver output for S.L.O. Linear

Error of 0.9
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Frequency (10° Hz)

Plot 1A-5 Frequency Compressive Receiver output for S.L.O. Linear

Error of 1.1
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Frequency (10 6
Hz)

Plot 1A-6 Frequency Compressive Receiver output for S.L.O. Linear

Error of 1.3

•J 6



Frequency (10 6 Hz)

Plot 1A-7 Frequency Compressive Receiver output for S.L.O. Linear

Error of 1.5
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7 .9 1.0 1.1 1.3

Linear Error Factor

1.5

Graph 1A-1 Probability of Detection vs. S.L.O. Linear Errors.
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Percentage
Error

Linear Error Factor

Graph 1A-2 Frequency Errors vs. S.L.O. Linear Errors
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Graph 1A-3 S.R.D. vs. S.L.O. Linear Errors.
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Graphs 1A 1-3 show the receiver performance criteria plotted as a

function of error. The probability of detection and S.R.D. graphs show a very

rapid deterioration as the slope moves away from the ideal. The frequency

determination error is assymetrical and roughly linear over part of the range.

It appears it is better to overscan than underscan.

Linear errors in the dispersive filter have the effect of not compressing

the spectral components fully. Therefore, the output is not impulsive. The

linear error is quantified in the same way as was the error for the S.L.O.

The plots for dispersive filter linear errors are shown in plots IB 1-6 for

error multipliers of 0.50, 0.70, 0.90, 1.10, 1.30 and 1.50 respectively. Plot

1B-7 shows the time delay vs. frequency relations used for these trials, the

ideal one being the solid one in the middle. The major difference, with

respect to the linear S.L.O. errors, is that no frequency determination errors

occurred.

Graphs IB 1-2 show the receiver performance criteria plotted against the

linear error of the dispersive filter. These graphs show approximately the

same degradation of performance as did the previous case.
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-20 20

Frequency (10 rad/s)

Plot 1B-1 Time Delay vs. Frequency relationships used for the dispersive

filter linear errors.
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-2 2

Frequency (10 6 Hz)

Plot 1B-2 Frequency Compressive Receiver output for dispersive filter

linear error of 0.5
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Frequency (10 6 Hz)

Plot 1B-3 Frequency Compressive Receiver output for dispersive filter

linear error of 0.7
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Frequency (10
6 Hz)

Plot 1B-4 Frequency Compressive Receiver output for dispersive filter

linear error of 0.9
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Frequency (10 6 Hz)

Plot 1B-5 Frequency Compressive Receiver output for dispersive filter

linear error of 1.1
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Frequency (10 6
Hz)

Plot 1B-6 Frequency Compressive Receiver output for dispersive filter

linear error of 1.3
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Frequency (10 b Hz)

Plot 1B-7 Frequency Compressive Receiver output for dispersive filter

lineax error of 1.5
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Graph 1B-1 Probability of detection vs. Dispersive Filter Linear Error.
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Graph 1B-2 S.R.D. vs. Dispersive Filter Linear Error.
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Section II

This section is for the non-linear relationships between time and

frequency for the S.L.O. and the dispersive filter. The non-linearity used was

a quadratic or second-order polynomial. The form was restricted so that there

were no cross terms and that the end points of the linear relation were

intersected by the polynomial. In other words, the polynomial starts and

stops at the ideal values. The final restriction made was that the polynomial

had to be monotonic over the range of interest.

Polynomials that are concave up and down over the range were used.

Coefficients were found using an interpolating program. Since the two

endpoints were known, the value of the polynomial halfway through the range

specified it entirely. The range of values used were bounded by the

monotonicity restriction on both extremes. The value for the monotonicity

restriction was approximately one-half of the end point value. A percentage

of this value was used to characterize the degree of offset, or non-linearity. A
negative percentage value specifies a concave up curve.

The non-linear error as it has been defined can be thought of as a

two-part linear error. For example, the concave up case is scanning too

slowly the first half and then scans too rapidly the second half. The same is

true of the concave down relationship, just in reverse order.

Plot 2A-1 shows the time delay vs. frequency functions used. The

straight solid line in the middle is the ideal case. Plots 2A 2-7 show the

output for * 100, 50, and 10 percent. Performance characteristics are again

referenced to the ideal case as before.

For the non-linear S.L.O., the effect was similar to that of the linear

errors, although the output was a little more asymetric. The pulse was
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Time (10" S

Plot 2A-1 Frequency vs. Time Relationships used for the non-linear

S.L.O. errors
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Frequency (10 6 Hz)

Plot 2A-2 Frequency Compressive Receiver output for S.L.O. non-linear

error of - 100%.
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Frequency (10 6 Hz)

Plot 2A-3 Frequency Compressive Receiver output for S.L.O. non-linear

error of - 50%.
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Frequency (10 6 Hz)

Plot 2A-4 Frequency Compressive Receiver output for S.L.O. non-linear

error of - 10%.
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Frequency (10 6 Hz)

Plot 2A-5 Frequency Compressive Receiver output for S.L.O. non-linear

error of 10%.
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Frequency (10 6 Hz)

Plot 2A-6 Frequency Compressive Receiver output for S.L.O. non-linear

error of 50%.
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Frequency (10
6 Hz)

Plot 2A-7 Frequency Compressive Receiver output for S.L.O. non-linear

error of 100%.

4S



-100 -50 -10 10 50

Percentage Error

Graph 2A-1 Probability of Detection vs. S.L.O. non-linear error.
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Graph 2A-2 Frequency Error vs. S.L.O. non-linear error.
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widened, reduced in magnitude, and shifted in frequency with increasing

concavity. For the concave up case, the pulse shifted to the right, while

concave down shifted it to the left.

Graphs 2A 1-2 show the receiver performance parameters plotted as a

function of non-linear error. The curve for probability of detection is much

higher for small errors than the linear case, but note that the frequency error

is almost a linear function of non-linear error in the way that it has been

defined. In regard to SRD, the worst case spreading was a factor of 10.

For the non-linear dispersive filter, the same approach was taken as with

the S.L.O. Again, about half the value of the endpoint was the limit to

maintain monoticity, and the error was defined as a percentage of this value

to determine the offset halfway through the scan. Plot 2B-1 shows the

non-linear functions used with the solid line in the middle representing the

ideal case. Plots 2B 2-7 show the output of the receiver for errors of ± 100,

50, and 10 percent.

Graphs 2B 1-2 show the receiver performance curves. Note that the

maximum degradation of peak signal is significantly less than any other case.

Again, the frequency determination error is approximately linear with

increasing non-linear error as it has been defined. Finally, the maximum

spectral resolution degradation was a factor of two.

Examining the performance curves, the quadratic dispersive filter

performed significantly better than the other three cases in probability of

detection. It also had a much smaller maximum S.R.D. and a near linear

relation between frequency error and non-linear error in the way that it has

been defined.
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Frequency (10 6 rod/s)

Plot 2B-1 Time Delay vs. Frequency Relations used for the dispersive

filter non-linear errors.
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Frequency (10 6 Hz)

Plot 2B-2 Frequency Compressive Receiver output for dispersive filter

non-linear error of - 100%.
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Frequency (10 6 Hz)

Plot 2B-3 Frequency Compressive Receiver output for dispersive filter

non-linear error of - 40%.
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Frequency (10 6 Hz)

Plot 2B^ Frequency Compressive Receiver output for dispersive filter

non-linear error of - 10%.
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Frequency (10 6 Hz)

Plot 2B-5 Frequency Compressive Receiver output for dispersive filter

non-linear error of 10%.
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Frequency (10
6 Hz)

Plot 2B-6 Frequency Compressive Receiver output for dispersive filter

non-linear error of 40%.
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Frequency (10° Hz)

Plot 2B-7 Frequency Compressive Receiver output for dispersive filter

non-linear error of 100%.
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Graph 2B-1 Probability of Detection vs. Dispersive Filter non-linear error.
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Graph 2B-2 Frequency Errors vs. Dispersive Filter non-lineax error.
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Section III

The previous trials were performed using long pulses, which are the ideal

input, because the dispersive filter is matched to them. Several trials were

run for an ideal S.L.O. and dispersive filter with the pulse less than the

dispersion time. Although by convention any pulse that is shorter than twice

the dispersion time is a short pulse, a pulse less than the dispersion time

demonstrates more clearly the difficulties which arise.

The problem with short pulses is, depending on where in the S.L.O. scan

they occur, they can either be partially compressed or not at all. This is

because for each frequency, there is a total time equal to the dispersion time,

where the mixer terms of the input signal are completely outside the I.F.

compressive bandwidth. If the pulse falls completely outside of the

compressive I.F. bandwidth, it will not be detected. If part or all of a short

pulse is within the compressive bandwidth, the resulting output pulse will have

a greatly reduced probability of detection and suffer from assymetries and

increased S.R.D.

The pulse used was a 10 microsecond rectangular pulse centered in the

passband at MHz. The timing of the rising edge of the pulse with respect

to the beginning of the scan time was adjusted, so the pulse fell in different

places in the I.F. compressive bandwidth. The positions were: dead center,

half in and half out on both edges, and between the two previous positions on

both sides. These positions correspond to time delaying the pulse 35, 15, 55,

25, and 45 microseconds respectively. With the I.F. compressive bandwidth

timing window 40 microseconds wide, even if all the input pulses I.F. terms

fall in the bandwidth, it only occupies one fourth the space. This results in a

reduction in peak magnitude.
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Plots 3A 1-5 show the output pulses for the above cases. Note how

wide the output pulses are and how slowly they fall off. The best case

probability of detection for this particular input was 5.6 percent for the pulse

delayed 35 microseconds.

Plots 3B 1-5 show the same inputs, but with a linear S.L.O. error of 0.9

percent. Now an additional problem appears in that a frequency determination

error appears. In short, short pulses are difficult to receive.
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Frequency (10 6 Hz)

Plot 3A-1 Frequency Compressive Receiver output for a short pulse

delayed 35 microseconds.
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Frequency (10 6 Hz)

Plot 3A-2 Frequency Compressive Receiver output for a short pulse

delayed 15 microseconds.
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Frequency (10 6 Hz)

Plot 3A-3 Frequency Compressive Receiver output for a short pulse

delayed 55 microseconds.
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Frequency (10 6 Hz)

Plot 3A-4 Frequency Compressive Receiver output for a short pulse

delayed 25 microseconds.
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Frequency (10 6 Hz)

Plot 3A-5 Frequency Compressive Receiver output for a short pulse

delayed 45 microseconds.
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Frequency (10 6 Hz)

Plot 3B-1 Output for a Frequency Compressive Receiver with a S.L.O.

linear error of 0.9 for a short pulse delayed 35 microseconds.

68



-2 2

Frequency (10 s
Hz)

Plot 3B-2 Output for a Frequency Compressive Receiver with a S.L.O.

linear error of 0.9 for a short pulse delayed 15 microseconds.
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Frequency (10 s Hz)

Plot 3B-3 Output for a Frequency Compressive Receiver with a S.L.O.

linear error of 0.9 for a short pulse delayed 55 microseconds.
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Frequency (10 6
Hz)

Plot 3B^t Output for a Frequency Compressive Receiver with a S.L.O.

linear error of 0.9 for a short pulse delayed 25 microseconds.

71



-2 2

Frequency (10 6
Hz)

Plot 3B-5 Output for a Frequency Compressive Receiver with a S.L.O.

linear error of 0.9 for a short pulse delayed 45 microseconds.
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Section IV

This section describes simulation results for long FSK (Frequency Shift

Keying
) pulses as inputs to an ideal frequency compressive receiver. No short

pulses were simulated, although the capability exists. The performance criteria

examined were probability of detection and frequency determination.

The FSK signal was generated by dividing the input pulse into N regions

of equal duration. Each region was then modulated by the desired carrier

frequency. One would expect the different frequencies of the input signal to

be separated by the dispersive filter and appear as distinct pulses on the

output. Plot 4-1 does indeed show two distinct output pulses for the two

input frequencies of -2.5 and 2.5 MHz. Note that the output peaks are of the

same magnitude as a simple long CW input in plot 1.

The second plot is for frequencies of -2.5, 0, and 2.5 MHz respectively.

Again, plot 4-2 show the expected spectral sorting. However, now the

magnitudes of the output pulses are not the same. Although each carrier

frequency receives an equal amount of time in the input, the middle frequency

has the highest peak. This can be explained by recalling that for full

compression, an input pulse for a given frequency must be present for a period

of time r over a specific range of the sweep in order for all of its IF

components to fall within the dispersive filter's IF bandwidth. For an input

pulse of a frequency at the lower compressive band edge, this time is from

to r. The time for a pulse with a frequency on the upper band edge is from

t to 2 t. If the scan time were only divided for these two frequencies, then

both would experience full compression as in plot 4-1. However, the third

pulse at the center frequency upsets this. For the center frequency to be fully

compressed, it must be present from 1/2 r to 3/2 r. Assuming the scan rate
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Frequency (10 6 Hz)

Plot 4-1 Frequency Compressive Receiver output for an FSK input of -2.5

and 2.5 MHz.
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Frequency (10

6 Hz)

Plot 4-2 Frequency Compressive Receiver output for an FSK input of -2.5,

0.0, and 2.5 MHz.
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is divided equally into three regions, more of the center frequency's IF terms

fall within the IF bandwidth of the dispersive filter, at the expense of the two

adjacent frequencies. This accounts for the disparity in output pulse peaks.

Plots 4-3 and 4-4 further illustrate the problem. An input signal with

three frequency shifts is the input to the receiver as in plot 4-2, only the

frequency order is changed. Plot 4-3 shows the output for a frequency order

of 0, -2.5, and 2.5 MHz. Note the reduction of the peaks for -2.5 and

MHz. This is because very little of the IF terms for these frequencies fall

within the IF bandwidth. Finally, plot 4-4 shows the output for a frequency

order of 2.5, 0, and -2.5 MHz. The ± 2.5 MHz signals are undetectable

because none of their IF terms fell within the IF bandwidth of the

compressive filter.

In order to determine all the frequencies used in an FSK signal, one

sweep is inadequate. First assume the receiver has adequate spectral resolution

to pick out the different frequency components and that each frequency used

has an equal probability of occuring. Depending on the number of frequency

transitions per sweep and the order the frequencies occur in with respect to

the sweep, some frequencies are less likely to be detected than others for a

given sweep. Detection of some frequencies for a given sweep may be

impossible, as shown in plot 4-4. Therefore, multiple sweeps of an FSK signal

are needed to insure that all frequencies used are detected.
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Frequency (10
6 Hz)

Plot 4-3 Frequency Compressive Receiver output for an FSK input of 0.0,

-2.5 and 2.5 MHz.
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Frequency (10 s Hz)

Plot i-A Frequency Compressive Receiver output for an FSK input of 2.5,

0.0 and -2.5 MHz.
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Section V

This section describes the simulation results for long PSK (Phase Shift

Keying) pulse inputs to an ideal frequency compressive receiver. No short

pulses were simulated, although the capability existed. The only performance

criterion reported was the probability of detection which was referenced to the

ideal output pulse shown in plot 1.

The PSK pulse was generated by dividing equally the scan time by the

desired number of phase values. The phase of the region was superimposed by

setting the baseband signal's complex components to the corresponding

trignometric ratio. Although the phase could be set to any arbitrary value, it

was alternated between zero and the phase shift under simulation. For

example, BPSK (Bi PSK) values were 0, 180, 0, 180 ••• degrees. 8-PSK

phase values were 0, 45, 0, 45 • • • degrees.

The first group of plots shows how probability of detection was affected

by PSK inputs. The input PSK pulse had three phase values at center band.

Plots 5-1 through 5^ show the receiver output for phase shifts of 22.5, 45, 90

and 180 degrees, corresponding to 16-PSK, 8-PSK, QPSK, and BPSK
respectively. Graph 5-1 shows probability of detection vs. phase shift. Note

that as the amount of phase shift increased, the peak of the output pulse fell

and its base became broader. As the phase shift becomes smaller, the output

pulse approached the ideal output. The effect of varying the phase was to

broaden the signal's spectrum.

The next group of plots are similar to the previous ones, except that

now two phase transitions occur over the scan time. Plots 5-5 through 5-8

show the resulting frequency compressive receiver output for phase shifts of

16-PSK, 8-PSK, QPSK, and BPSK respectively. Graph 5-2 shows the
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Frequency (10 6 Hz)

Plot 5-1 Frequency Compressive Receiver output for a three transition

16PSK input.
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Frequency (10 6 Hz)

Plot 5-2 Frequency Compressive Receiver output for a three transition SPSK

input.
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Frequency (10° Hz)

Plot 5-3 Frequency Compressive Receiver output for a three transition QPSK
input.
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Frequency (10 6 Hz)

Plot 5-4 Frequency Compressive Receiver output for a three transition BPSK

input.
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Phase Angle (degrees)

Graph 5-1 Probability of Detection vs. Phase Shift for three transition PSK.
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Frequency (10 6 Hz)

Plot 5-5 Frequency Compressive Receiver output for a two transition 16PSK

input.
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Frequency (10 6 Hz)

Plot 5^ Frequency Compressive Receiver output for a two transition SPSK
input.
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Frequency (106 Hz)

Plot 5-7 Frequency Compressive Receiver output for a two transition QPSK

input.
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Frequency (10 6 Hz)

Plot 5-8 Frequency Compressive Receiver output for a two transition BPSK

input.
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Probability of Detection

Graph 5-2 Probability of Detection vs. Phase Shift for two transition PSK.
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probability of detection vs. phase shift. These plots are different from the

previous group in that a notch appeared in the output pulse and increased in

depth with increasing phase shift. At 180 degrees, the notch completely

divided the pulse in half.

By experimenting with the simulation, it was determined that a notch

appears whenever the frequency of the input signal corresponds to the position

of the phase transition. That is, the position on the input time domain axis

where the phase transition occured corresponds to the same position on the

time domain scale on the output, which is calibrated in frequency as a

function of time. For example, if the input frequency of the previous group of

plots had been ± 1.67 MHz, a similar notch would have appeared.

The notch may be explained analytically in the following way. First, the

dispersive filter is broken into a cascade of two sections. The first section was

an ideal dispersive filter with a flat magnitude response. The second section is

the Gaussian magnitude response with no phase shift. Now recall that for the

low pass model, both positive and negative frequencies are used. For an ideal

long CW pulse with no phase shift, the time domain output of the mixer is

shown in plot 5-9. The positive frequencies on the left hand side are delayed

and the negative frequencies on the right hand side are accelerated. Thus, the

energy of the positive frequencies comes out in an impulse as does the energy

of the negative frequencies. These two impulses combine to form a single

large impulse. This impulse then shocks the magnitude response filter and its

impulse response is the receiver output.

Now consider the case when the long CW pulse undergoes an 180 degree

phase shift half way through the S.L.O. sweep. The mixer output is the same

as before for the first half of the sweep, but now plot 5-10 shows how the
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lime (TCP 6 sec)

Plot 5-9 .Mixer Output in the time domain for a constant phase CW input.
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time (10
-6

sec)

Plot 5-10 Mixer Output in the time domain for a CW input with a 180

degree phase shift half way through the sweep.
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output for the second half of the sweep is inverted from the previous plot.

The positive and negative frequencies are delayed as before, but now the

impulses generated by the positive and negative frequencies are of opposite sign

when they meet in the middle. In network analysis, this is called a doublet.

The resulting output for when a filter is shocked by doublet is shown

analytically here. The output of the magnitude response filter section to the

doublet input is given by equation (19),

y(t) = g(t) * h(t)
( 19)

where y(t) is the filter output, h(t) is the filter's time domain response and

g(t) is the doublet input. The doublet input, g(t), can be represented

graphically as in figure 4 when c goes to zero. Convolving g(t) and h(t)

yields equation (20). Graphically, this appears as figure 5.

y(t) = f h(r) g(t - r) At

Equation (20) can now be rewritten as

(20)

t + c

y(t
'

=
~jr f h(0 dr + -\ f h(r) dr

t~€ f
t

(21)

As e approaches zero, the integration may be approximated as in figure 6.

Now, y(t) in equation (21) can be approximated as equation (22).
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Figure 4 The doublet, g(t), as a limit.
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Figure 5 Convolution of h(t) and g(t).
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y(t) Z_l_
h

[

t _^_] f + -Jjk[f -§-] « (22)

Taking the limit as e goes to zero yields

lim y(t) = —

1

i—i 1 fL_L = h
.

(t) (23)

But this is simply the derivative of the magnitude response h(t).

Assuming h(t) has the general form in equation (24),

h(t) = K e
-**

(24)

the derivative of h(t) is

2

h'(t) = - 2ckt e
-"

(25)

Squaring yields the magnitude response. Plot 5-11 shows the output of the

frequency compressive receiver to a bi-phase long cw input as derived above.

Note the resemblance to plot 5-8.

This result helps to explain some of the observed results. For phase

shifts of less than 180 degrees, an "unbalanced" doublet is produced, because

the positive and negative frequencies don't produce opposite impulses. This

can be thought of as a combination of a weak doublet and a single impulse.

The resulting output is an addition of their combined responses. Thus the

notch is partially filled in. If the phase transition doesn't occur in the middle,
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Figure 6 Approximation of the area under the integral.
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Plot 5-11 Theoretical Magnitude Response of Frequency Compressive Receiver

to a BPSK input.
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again an unbalanced doublet results because the opposing phases don't have

equal energy. Finally, moving the input frequency to where the phase

transition occurs in the input has the effect of re-centering the phase shift in

the mixer output. Any receiver imperfections, such as the errors previously

investigated, which prevent the formation of impulses will greatly affect the

generation of a notched output.

The last group of plots show the receiver output pulse for an input pulse

with three phase shifts of 0, 180 and degrees. What is varied is the

frequency of the input pulse, or the position of the phase transition in the

mixer output. Plots 5-12 through 5-19 show the receiver output for input

carrier frequencies of ± 1.67, 1.3, 1.0, and 0.5 MHz. This shows how unequal

divisions of phase affect the output pulse. Graph 5-3 shows probability of

detection vs. frequency.

The phase notch presents a potential problem in detecting PSK pulses

with a frequency compressive receiver. If the phase transitions somehow

synchronize with the receiver's scanning, detection of weak PSK pulses,

especially BPSK, could be difficult because of the peak reduction by the notch.

Additionally, a slight frequency error occurs because the two peaks don't occur

at the center of the dispersive filter response.

Without apriori knowledge, identifying the type of modulation, if any,

used for a particular input signal could be difficult. This is because of the

similarity in appearance of CW, PSK and narrowband FSK.
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Frequency (10 6 Hz)

Plot 5-12 Frequency Compressive Receiver output for a three phase transition

BPSK input at -1.67 MHz.
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Frequency (10 6 Hz)

Plot 5-13 Frequency Compressive Receiver output for a three phase transition

BPSK input at -1.3 MHz.
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Frequency (10 6 Hz)

Plot 5-14 Frequency Compressive Receiver output for a three phase transition

BPSK input at -1.0 MHz.
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Frequency (10 6 Hz)

Plot 5-15 Frequency Compressive Receiver output for a three phase transition

BPSK input at -0.5 MHz.
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Frequency (10 6 Hz)

Plot 5-16 Frequency Compressive Receiver output for a three phase transition

BPSK input at 0.5 MHz.
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Frequency (10 6 Hz)

Plot 5-17 Frequency Compressive Receiver output for a three phase transition

BPSK input at 1.0 MHz.
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Frequency (10 6 Hz)

Plot 5-18 Frequency Compressive Receiver output for a three phase transition

BPSK input at 1.3 MHz.
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Frequency (10 6 Hz)

Plot 5-19 Frequency Compressive Receiver output for a three phase transition

BPSK input at 1.67 MHz.
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Graph 5-3 Probability of Detection vs. Frequency for three phase transition

BPSK.
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Appendix A

User's Guide to Simulation Software

This is a user's guide to the frequency compressive receiver simulation

program. It describes overall features as well as user inputs and program

outputs. An example simulation run is given at the end.

The original program was written in VAX C under the VMS operating

system. This user's guide applies to the version modified for Microsoft C

version 5.0 under MSDOS. In this program, many input variables and

receiver parameters are hard coded into the mainline source code, rx.c. An

attempt was made to throughly document all these variables, should

subsequent modifications be desired.

The simulation creates two optional output files per run. The first one

writes the output of the square law detector, the receiver output, to a file in

the same directory as the executable file. Because the display and plotting

capabilities of the user are unkown, the user can read this file and adapt

Iris/her plotting routine accordingly. The file format is an integer on one line,

followed by pairs of doubles on succesive lines. The integer is the number of

complex data pairs that follow. The second output is a text file, also written

to the executable's directory. It contains all the receiver parameters and

simulation results and is in the same format as the screen output.

After starting the simulation, rx.exe, the first prompt asks for the

number of phase values to apply to the input signal. This value, from 1 to

10, divides the input pulse into equal regions. It doesn't matter if the input

pulse is long, short, rectangular, trapezoidal, or triangular. After the value
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has been entered, the user is then asked for the phase values, in degrees, for

each region. The phases are applied in the order they are entered. If a PSK

input is desired, this is where you set the phase values.

The next prompt is for the number of frequencies (1 - 10)to use to

modulate the input signal. This is similar to the phase case. The frequencies

for the regions are entered in Hertz. Again, the frequencies are used to

modulate in the order they are entered. If an FSK input is desired, this is

where the frequencies would be set.

The next group of inputs are receiver characteristic parameters. The key

to the operation of the frequency compressive receiver is that the slopes of the

sweeping local oscillator and dispersive filter match. The S.L.O. and the

dispersive filter have the same three options for the slope used. The prompts

occur for the SLO first and then the dispersive filter. The first option lets

the user use the ideal, or theoretical slope for the S.L.O. and dispersive filter.

It is based on receiver parameters set in the mainline. The second option

allows the user to use an arbitrary polynomial with order of zero to 10. If

this option is chosen, the user is asked for the order of the polynomial and

then the coefficients in ascending power order. After entry, the polynomial is

then integrated before use. The third and final option allows the user to

enter a factor to multiply the ideal slope of the ideal equation by.

At this point, the receiver has generated a complex array output from

the square law detector which represents the output of the receiver. The user

is asked if the output data are to be saved, and if so, under what filename.

If display or plotting of this output is desired, it needs to be saved because no

plotting routine has been provided with this version of the program. Note
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that the program has already stored the information it needs to continue the

simulation, so not saving has no effect on continued execution.

Now the program prepares to take into account the effect of noise on the

input. The user is asked for the signal-to-noise density ratio in dB and for

the false alarm rate in false alarms per second. Now the program begins to

print the receiver parameters, all the input signal parameters, the SLO and

dispersive filter parameters and finally the output statistics.

Since this is a lot of information all at once, the user may instruct the

program to save this output to a data file. If the decison is yes, the user is

further prompted for a file name and comments. The comments are to

facilitate keeping track of different simulations results. Up to 80 characters

can be entered as comments.

The final prompt asks if you would like to calculate a new probability of

detection based on a new signal-to-noise ratio and false-alarm rate. This

way, only part of the simulation has to be rerun for a given receiver input

with changing noise levels. Answering "no" to this question terminates

program execution.

For an example, let's say you wanted to have an input that was a long

PSK pulse with phase values of 45 and 234 degrees ( arbitrary values ) at an

input frequency of -1.5 MHz. Further, you want to use an ideal SLO and a

dispersive filter with a quadratic time delay vs. frequency relationship.

Finally, the signal to noise density ratio is 60 dB and the false alarm rate is

1 per minute. The output parameters are to be saved but not the signal

itself.

The computer's screen output is enclosed in < > and the user's response

immediately follows. Starting the program, you see:
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< Frequency Compressive Receiver Program >

< Enter number of phase values 1 - 10 >
2

< Enter phase for region 1 >
45

< Enter phase for region 2 >

234

< Enter number of frequency values 1 - 10 >

< Enter frequency for region 1 >

-1.5e6

< Select the case for Inst, frequency vs. time
1. Ideal Case
2. Arbitrary Polynomial
3. Vary ideal slope by a const, multiplier >

< Polynomial used:
degree = 2

0.0
-3.14e7
3.39ell

< Select the case for time delay vs. frequency
1. Ideal Case
2. Arbitrary Polynomial
3. Vary ideal slope by a const, multiplier >

< Enter the order of the polynomial >
2

< Enter the coefficient for the power >
c

< Enter the coefficient for the 1 power >
b

< Enter the coefficient for the 2 power >
c

< Polynomial used:
degree = 3

y

y

y„
y[3

0.0
= c
= b/2
= c/3 >

Note: A B and C are just arbitrary values. Program integrates all
arbitrary polynomials.
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< Do you wish to save the receiver output ? y/n >

< Enter the signal to noise density ratio in dB >

60

< Enter the false alarm rate >

1

< Then a lot of output about parameters used... >

< Do you wish to save the results ? y/n >

y
< Enter the filename to save under >

trial. one
< Enter any comments for the file >

Wow, my first ever output file!!!!

< Enter 1 to calculate a new probability >

9

< End program >
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Appendix B

Computer Programs

Programs in order of appearance .

rx.c Mainline code. Calls other routines and finds probability

of detection. Also outputs to results to a file.

pulse.c Generates passband input.

mixer.

c

Time domain signal mixer.

filter.c Sets up filtering operation.

gauss_flt.c Gaussian magnitude filter.

s_law_det.c Square law detector. Also finds peak signal and its

frequency.

coverage.c Find probability of detection using Brennen's algorithm.

fcr.h Header file used by all routines.

poly_op.c Polynomial operations. Evaluation and integration.

fft.c Fast Fourier Transform.

plot_op.c Set up titles, etc., for plots.

simple_plot.c Plotting routine.
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*

* SOURCE FILE: rx.c

DESCRIPTION: This is the mainline code for the frequency
compressive receiver project.

FUNCTIONS
CALLED:

pulse
mixer
fft
filter
s_law_det
prob_of_det
simple_plot

Phillip Fry* AUTHOR:
*

*

* DATE CREATED: 26JAN88 VERSION: 1.0

^include "fcr.h"
#include time

double
char
long

coverage ()

;

*ctime() ;

*time();

main()

{

FILE *out_f,
*fopen()

;

COMPLEX X[MAX_SIZE],
y[MAX_SIZE]

;

POLYNOMIAL slo,

fit,

theta,
freq;

int i,

devnum,
tics,
n = 1024;

double comp_bw = 5E6,
tau = 4E-5,

/* Holds complex */
/* signal information */

/* Looping variable */

/* VAX time in seconds.*/
/* Number of points. */

/* Compression bw */
/* Dispersion time. */
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/* Compressive filter characteristics */
cfbw = 1.8E6, /* RF bandwidth */
cf_td = O.O, /* constant time delay */
cf_theta = 0.0 , /* constant phase delay*/
wsigma2, /* Variance of */

/* compressive filter */
/* output. */

/* Input pulse characteristics,
tw =10E-6, /* Pulse width,
tr =0-0, /* Rise time of pulse
td =35E-6, /* Delay time of pulse

/* in L.P. model.

t_step,
scan_rate,
rw,

sndr,

sndrdb,
sweepjtime,
fa_rate,
prob_fa,

threshold,

pk_signal,
prob_det,

W3,
bnrf,
no,

pk_freq,

ft,

/* Time inc per sample */
/* Rate of LO scan hz/s*/
/* scan rate in radians*/

/* S/N density ratio */
/* sndr in dB */
/* time to cover bw */
/* False alarm rate. */
/* Probability of a */
/* false alarm. */
/* Voltage that yields */
/* desired prob of FA */
/* Peak signal value */
/* Prob. of detection */

/* L.P. equiv 3dB bw */
/* equiv. noise bw */
/* Noise density. */

/* Freq of filter pk */
/* Factor of SLO slope */
/* Factor of fit slope.*/

x_axis[MAX_SIZE]

,

y_axis[MAX_SIZE]

;

/* Data arrays for the */
/* plotting fn. */

char choice, /* Decision variable. */
fn t 15 ]/ /* Filename of output. */
destination[30] = /* Directory for record*/

{"ee: [fry.records]"},
comments[80]

;

/* pile comments. */

117



printf ("\7\n Frequency Compressive Receiver Program")

;

printf ("\nenter 4014, 7475 or for no plot\n")

;

scanf ( "%d" , &devnum)

;

tw = 80e-6;
tr = 0.0;

td = 0.0;

sweep_time = 2 * tau;
scan_rate = camp_bw / tau;
t_step = sweep_time / n;
rw = 2 * PI * scan_rate;
w3 = PI * cfbw;

pulse(&x,n,&freq,&theta,tw,tr,td,sweep_time,t_step)

;

mixer (&x,n,scan_rate,sweep_time,t_step,rw,Sslo,&s_f)

;

fft(&x,&y,n, FORWARD)

;

filter (&y , n,w3 , rw, cf_td, cf_theta, sweep_time, &fIt, &f_f )

;

fft(Sy,&x,n,REVERSE)

;

if ( devnum != )

plot_op(S(X,n,comp_hw,devnum) ;

s_law_det (&x, n, Spk_signal , comp_bw, &pk_freq)

;

/* v
/* Begin performance calculations. */
/* y

printf ( "\7 " );
do

{

choice = getchar()

;

printf ("\n\nEnter the signal to noise density ratio:\n");
scanf ( "%E" , isndrdb)

;

printf ("\nEnter the false alarm rate:\n")

;

scanf ( "%E" , &fa_rate)

;

sndr = pow(10.0, (sndrdb / 10.0))

;

no = AMPLITUDE * AMPLTIUDE / (2.0 * sndr) ;

bnrf = (cfbw / 2.0) * sqrt(PI / log(2.0));
wsigma2 = no * bnrf

;

prob_fa = fa_rate/bnrf

;

threshold - -2.0 * wsigma2 * log(prob_fa)

;

prob_det = 1.0 - coverage ( sqrt (threshold)

,

sqrt(pk_signal),wsigma2,ERR )

;
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printf ("Receiver Parameters :\n")

;

printf ("Number of data pts: %d\n",n)

;

printf ("Camp B.W. (Hz) : %E\n" , camp_bw)

;

printf ("Dispersion time : %e\n" , tau)

;

printf ("Scan rate (Hz/s) :%E\n",scan_rate)

;

printf ("Sweep time (sees) :%e\n",sweep_time)

;

printf ("3 dB RF BW (Hz) :%E\n",w3)

;

printf ("\nlnput Pulse parameters
: \n" )

;

printf ("fsk values\n")

;

for ( i = 0; i < freq. degree ; ++i )

printf ("freq[%d]=%e (Hz) \n",i,freq.a[i]);
printf ("\npsk values\n") ;

for ( i = 0; i < theta. degree ; ++i )

printf ("theta[%d] (Degrees) :%e\n",i, theta. a [i] );

printf ("\nPulse delay (s) :%e\n",td)

;

printf (" \" width (s) :%e\n",tw)

;

printf (" \" rise time :%e\n",tr);

printf ("\nTrial Parameters and results\n")

;

printf ("S/N density ratio: %e\n", sndr)

;

printf ("False Alarm Pate:%f \n",fa_rate)

;

printf ("Prob. false alarm: %e\n", prob_fa)

;

printf ("Threshold (Volts) :%f\n", threshold)

;

printf ("Pk signal (volts) :%f\n",pk_signal)

;

printf ("Freq of peak(Hz) :%E\n",pk_freq)

;

printf ("Prob of det :%7.6f\n",prob_det)

;

printf ("\n Save results ?? y/n \n")

;

choice getchar()

;

choice = getcharQ ;

scanf ("%c", choice)

;

choice = 'y 1

;

if ( choice = 'y'
)

(

printf ("Enter Filename to save under\n")

;

scanf ("%s", fn)

;

printf ("Enter any comments for the file\n")

;

gets(&comments)

;

gets(Scomments)

;

strcat (destination, fn)

;

out_f = fopen(destination,"w")

;

if ( out_f != NULL )

(

time (Sties)

;

fprintf (out_f , "\n%s\n", destination)

;

fprintf(out_f,"%s\n", ctime( Sties) )

;

for ( i = 0; i < 80 ; ++i )

fprintf (out_f,"%c", commentsfi] )

;

fprintf (out_f , "\n\n")

;
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fprintf (out_f, "Receiver Parameters : \n" )

;

fprintf (out_f, "Number of data pts: %d\n",n)

;

fprintf (out_f, "Camp B.W. (Hz) : %E\n" , camp_bw)

;

fprintf (out_f, "Dispersion time:%e\n",tau)

;

fprintf (out_f, "Scan rate (Hz/s) : %E\n" , scanjrate)

;

fprintf (out_f, "Sweep time (sees) :%e\n",
sweep_time)

;

fprintf (out_f, "3 dB RF BW (Hz) :%E\n",w3)

;

fprintf (out_f , "\nlnput Parameters : \n" )

;

fprintf (out_f,"FSK values used.\n") ;

for ( i = 0; i < freq.degree ; ++i )

fprintf (out_f, "freq[%d]=%e (Hz) \n", i, freq.a[i] )

;

fprintf (out_f , "\npsk values\n")

;

for ( i = 0; i < theta. degree ; ++i )

fprintf (out_f,"theta[%d] (Degrees) :%e\n",i, theta. a[i] );

fprintf (out_f , "\nPulse delay (s) :%e\n",td)

;

fprintf (out_f," \" width (s) :%e\n",tw)

;

fprintf (out_f," \" rise time :%e\n",tr);

fprintf (out_f , "\nSIO slope factor %f\n",s_f)

;

fprintf (out_f , "\nPolvnomial for SLO: degree=%d\n"
,slo. degree )

;

for (i = 0; i <= slo.degree ; ++i )

fprintf (out_f,"%E ",slo.a[i] )

;

fprintf (out_f,"\n\n")

;

fprintf (out_f, "FILTER slope factor %f\n",f_f);

fprintf (out_f , "\nPolynomial for filter:");
fprintf (out_f," degree=%d\n", fit. degree )

;

for (i = 0; i <= fit.degree ; ++i )

fprintf (out_f,"%E ",flt.a[i] )

;

fprintf (out_f, "\n")

;

fprintf (out_f , "\nTrial Parameters & results\n")

;

fprintf (out_f,"S/N density ratio : %e\n", sndr)

;

fprintf (out_f, "False Alarm Rate:%e \n",fa_rate)

;

fprintf (out_f,"Prob. false alarm: %f\n",prob_fa)

;

fprintf (out_f, "Threshold Volts:%f\n", threshold)

;

fprintf (out_f,"Pk signal volts:%f\n",pk_signal)

;

fprintf (out_f,"Freq of peak (Hz) :%E\n",pk_freq) ;

fprintf (out_f,"Prob of det :%7.6f\n",prob_det)

;

fclose (out_f);

)

else

(

printf("\n Error in file write. ")

;

printf ("or disk space. \n\n")

;

)

);
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printf ("\n\nEnter 1 to calculate a new probability\n")

;

scanf ( "%c" , Schoice)

;

scanf ( "%c" , Schoice)

;

)

while ( choice = ' 1
' )

;

printf ("\n End program")

;

retum(O) ;
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/A***************************************************************
*

* SOURCE FILE: pulse.

c

*

*

* FUNCTION: pulse(x,n / diff_freq,theta,tw,tr,td,sweep_tiroe)

*

* DESCRIPTION: This function generates an array of sampled
* points from a trapezoidal pulse.
*

ARGUMENTS:
X (output) *COMPLEX

Complex data array with time domain pulse.

* n (input) int
* Number of data points in x.

*

diff_freq (output) POLYNOMIAL
Frequency offsets for pulse in low pass model.
The degree is the number of phase values in
the coeffecient array. In degrees.

*

*

*

* theta (output) POLYNOMIAL
The values used for the phase of the pulse.
The degree is the number of frequency values
in the coeffeceint array. In Hertz.

*

* tw (input) double
* Width of pulse.
*

* tr (input) double
* Rise time of pulse.
*

* td (input) double
* Pulse delay.
*

* sweep_time (input) double
Time in seconds for one sweep of twice

* compressive bandwidth.

* tstep (input) double
Time increment per data point.

* RETURN: Void.

*

* FUNCTIONS
* CALLED: cmult()
* cmagO
* cmplx()
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*

* AUTHOR: Phillip Fry
*

*

* DATE CREATED: 26JAN88 VERSION: 3.0
*

*

* REVISIONS: 14JUL88 Added CW or ESK pulse option.
*

* 24AUG88 Added M-Ary PSK for any type pulse.

* 07SEP88 Added FSK option.

^include "fcr.h"

void pulse(x,n,diff_freq,theta,tw,tr,td,sweep_time,tstep)

COMPLEX *x;
POLYNOMIAL *diff_freq,

*theta;
int n;
double tw,

tr,

td,

sweep_time,
tstep;

{

int i,

1,
start,
stop,

inc;

double arg,

Inag/ /* value of lp envelop */
temp,

re_factor,
im factor;

char choice;

choice = getchar()

i

printf ("\n Enter number of phase values 1 - 10\n")
scanf ("%d",&theta->degree)

;
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for ( i = 0; i < theta-xJegree; ++i )

{

printf("\riEnter phase for transition %d\n",i+l),
scanf ("%E",&theta->a[i] );

)

printf ("\n Enter number of frequency values 1 - 10\n")

;

scanf ("%d",&diff_freq->degree)

;

for ( i = 0; i < diff_freq-xjegree; ++i )

{

printf ("\nEnter frequency for transition %d\n",i+l);
scanf ("%E",&diff_freq->a[i] );

}

/* Initial zero. */
/*

i = 0;

while
( (i * tstep) < td

{

x[i].re = 0.0;
x[i].im = o.O;
++i;

};

'/

/
/* Generate rising edge.
/*—

while
( (i * tstep) < (tr + td) )

{

mag = (AMPLITUDE / tr) * (i * tstep - td)

;

x[i].re = mag;
x[i].im = mag;
++i;

);

/* Generate plateau. J.
/* /

while
( (i * tstep) < (tw + td) )

x[i].re = AMPLITODE;
x[i].im = AMPLITUDE;
++i;

);
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/* V
/* Generate falling edge. */

/* */

while ( (i * tstep) < (tw + td + tr) )

{

mag = (tw + tr + td-i* tstep) * (AMPLITUDE / tr) ;

x[i].re = mag;
x[i].im = mag;
++i;

};

/* V
/* Generate zero tail */
/* */

while ( (i * tstep) < sweep_time)

{

x[i].re = x[i].im = 0.0;
++i;

};

/* v
/* Superimpose M-Ary PSK pattern. */
/* v

if ( choice != 'c' )

{

i = 0;

while ( x[i].re = 0.0 )

++i;
start = i;

while ( x[i].re != 0.0 )

++i;
stop = i - 1;

inc = (int) ( 1 + (( stop - start )/ theta->degree) ) ;

for ( i = 0; i < theta->degree ; ++i )

{

re_factor = oos( theta->a[i] * PI/180 );
im_factor = sin( theta->a[i] * PI/180 ) ;

for ( j = start ; j < start + inc ; -H-j )

{

x[j].im = im_factor * x[j].re;
x[j].re *= re_factor;

)

start += inc;

)

}

125



/* v
/* Set frequency of low pass waveform. */

/* */

i = 0;

while ( x[i].re = 0.0 )

++i;
start = i;

inc = (int) (1 + ((stop - start) /diff_freq->degree))

;

for (i = 0; i < diff_freq-xJegree ; ++i)

{

temp = 2 * PI * diff_freq->a[i] * tstep;
for ( j = start; j < start + inc; ++j )

{

arg = temp * j;
x[j] = cmult( x[j], cmplx( cos (arg), sin (arg)

) );

}

start += inc;

)

I

return;
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*

* SOURCE FILE: mixer.

c

* FUNCTION: mixer (x,n,scan_rate,sweep_time,tstep,rw,vst,
* factor)
*

DESCRIPTION: Mixes input pulse with SID. There are 5

options for SID source.
1. Ideal
2. Polynomial model
3. Data point model using polynomial

interpolation.
4. Linear slope error.
5. S.L.O. phase noise.

ARGUMENTS:
x

scan rate

(input/output) *COMPLEX
Signal in, I.F. out.

(input) int
Number of points in x.

(input) double
Rate of ID scan, Hz/sec.

sweepjtime (input) double
Time to cover compressive bandwidth.

tstep (input) double
Time increment per sample.

rw (input) double
Scan rate in radians.

vst (output) *P0LYNOMIAL
Polynomial used to calculate the phase.

factor (output) *double
A value that multiplies the slope of t vs f

.

*

*

RETURN: Void.

*

*

*

*

*

FUNCTIONS
CALLED: cmultO

atplx()

*

* AUTHOR: Phillip Fry
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* DATE CREATED: 30JAN88 VERSION: 1.0

* REVISIONS: 15JUN88 Added options on SLO source.
* 22JUN88 Added slope factor option.
* 30SEP88 Added phase noise option.
*

#include "fcr.h"

double eval_poly()

;

void mixer (x, n, scan_rate, sweepjtime, tstep, rw,vst, factor)

POLYNOMIAL - *vst;
COMPLEX *x;

int n;

double scan_rate,
sweep_time,
tstep,
factor.
rw;

{

int i,

seed;

double phi,
mean,
var;

COMPLEX noise [1024];

char choice;

/* Looping variable. */

/* Quadratic phase term. */

/* Decision variable. */

choice = getchar()

;

choice = getchar()

;

printf ("\nSelect the case for Inst, freq vs time \n")

;

printf (" 1. Ideal \n 2. Arbitrary Polynomial")

;

printf ("\n 3. Polynomial from interpolated data points\n")

i

printf (" 4. Vary ideal slope by a constant multiplier\n")

;

printf (" 5. Gaussian phase noise added to ideal S.L.O.\n");
scanf ("%c",Schoice)

;

scanf ("%c",&choice)

;

switch ( choice )

{

case '3':

/* call subroutine that returns a polynomial */
integ_poly(vst)

;

break;
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case '2':

printf ("Enter the order of the polynamial\n")

;

scanf ("%d",&vst->degree)

;

printf ("\n")

;

for ( i = 0; i <= vst->degree ; ++i )

{

printf ("Enter coeffecient for %dth power\n" , i)

;

scanf ("%E" , &vst->a [ i ])

;

}

integ_poly(vst) ;

break;
case '4'

:

printf ("\nEnter the slope factor. \n")

;

scanf ("%E", factor);
case '1':

case '5'

:

if ( choice != '4'
)

*factor = 1.0;
vst->degree = 2; /* already in integrated form */
vst->a[0] = 0.0;
vst->a[l] = -scanjrate * sweepjtime * PI;
vst->a[2] = .5 * rw * (*factor)

;

break;
default:

printf ("invalid input\n")

;

return;
break;

}

printf ("\npolynomial used\n degree = %d\n",vst->degree)

;

for ( i = 0; i <= vst->degree; -H-i )

printf ("y[%d] = %E\n",i,vst->a[i] );

if ( choice = '5'
)

(

printf ("\n\nEnter mean and variance \n")

;

scanf ( "%E%E" , Smean , ivar)

;

printf ("Enter seed for random number generator\n")

;

scanf ("%d", seed)

;

phase_noise(&noise,n,var,mean,seed)

;

else

{

for ( i = 0; i < n; ++i )

noise[i] = cmplx( 0.0, 0.0 )

;

)

for (i = 0; i < n; -H-i)

{

phi = eval_poly(vst, i * tstep ) ;

x[i] = cmult( x[i],cmplx( cos(phi + noise [i]. re ),
-sin (phi + noise [i].im) ));

return;
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* SOURCE FILE: filter.c
*

*

* FUNCTION: filter(x,n,w3,rw,cf_td,cf_theta, factor)

* DESCRIPTION: This function calls a Gaussian filter. There
* are 3 choices for a time delay vs t function.
* 1. Ideal

2. Arbitrary polynomial.
3. Polynomial from interpolated data points.

*

*

*

*

* ARGUMENTS:
* x (input/output) *COMPLEX
* Complex data array holding the signal

i (input) int
Number of data points in x.

*

*

* w3 (input) double
L.P. 3dB equivalent bandwidth.

* rw (input) double
* Scan frequency in radians.

* cfjtd (input) double
Compressive filter time delay.

* cf_theta (input) double
Compressive filter phase shift.

* y (output) *POLYNOMIAL
Polynomial used for time delay vs freq.

* factor (output) *double
Used to vary the slope of w vs td by a

* constant factor.
*

*

* RETURN: Void.

FUNCTIONS
CAUED:

gauss_flt()
cmultO
integ_poly()

* AUTHOR: Phillip Fry
*

*
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* DATE CREATED: 03FEB88 VERSION: 1.0

* REVISIONS: 15JUN88 Added polynomial opts.
* 21JUN88 Revised t.d. calc. loop for
* assyraetrical fhs.
* 22JUN88 Added slope variation option.
*

^include "fcr.h"

COMPLEX gauss_flt()

;

double eval_poly()

;

void filter (x, n,w3 , rw, cf_td, cfjtheta, sweep_time,y, factor)

POLYNOMIAL *y;
COMPLEX *x;

int n;
double w3

,

rw,

cf_td,
cf_theta,
sweep_time,
*factor;

{

int i,

devnum;

double w,

xax[1024],
yax[1024];

char choice;

/* Loop variable.

/* Frequency of delay time.

V

V

printf ("\nSelect the case for time delay vs frequency. \n")

;

printf("\n 1. Ideal Case \n 2. Arbitrary Polynomial");
. printf ("\n 3. Polynomial from interpolated data points. \n" )

;

printf (" 4. Vary ideal slope by a constant factor. \n")

;

scanf ( "%*c%c" , Schoice)

;

switch (choice)

{

case '3'

:

/* call subroutine that returns a poly */
integ_poly(y)

;

break;
case '2':

printf ("\nEnter the order of the polynomial\n")

;

scanf ("%d",&y->degree)

;

printf ("\n");
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for (i = 0; i <= y->degree ; ++i )

{

printf ("Enter coeffecient for %dth power\n",i)

;

scanf ( "%E" , &y->a [ i
] )

;

)

integ_poly(y)

;

break;
case '4'

:

printf ("\nEnter slope factor\n" )

;

scanf ("%E", factor);
case '1'

:

if ( choice != '4'
)

*factor = 1.0;
y->degree = 2;

y->a[0] = cf_theta;
y->a[l] = cf_td;
y->a[2] = *factor * 1.0 / ( -2.0 * rw )

;

break;
default:

printf ("\nlnvalid choice \n")

;

return;
break;

}

printf ("\ndegree - %d\n",y->degree )

;

for ( i = 0; i <= y->degree; ++i)
printf ("y[%d] = %E\n",i,y->a[i] );

/* Positive frequencies evaluated. */
for (i = 0; i <= (n/2) ; ++i)

(

w = i * ( 2.0 * PI / sweep_time )

;

x[i] = crault( x[i], gauss_flt( w,w3,y) )

;

/* Negative frequencies evaluated. */
for ( i = n-1 ; i >= (int) (l + (n/2)) ; i— )

w = -( n - i ) * ( 2.0 * PI
) / sweep_time;

x[i] = cinult( x[i], gauss_flt( w,w3,y) );
) i

return;
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*

* SOURCE FTIE: gauss_flt.c

* function: gauss_fIt (w, w3 , x)

* DESCRIPTION: This function models an ideal Gaussian filter.

ARGUMENTS:
w

w3

(input) double
Frequency, in rads, at which to evaluate
at.

(input) double
L.P. 3dB bandwidth equivalent frequency.

(output) *POLYNCMIAL
Polynomial used for time delay.

* RETURN:

FUNCTIONS
CALLED:

AUTHOR:

Complex
Response of filter at w.

cmplx()
eval_poly()

Phillip Fry

* DATE CREATED: 02FEB88
*

*

* REVISIONS: 15JUN88

VERSION 1.0

Passing a poly for time delay.

|include "fcr.h"

double eval_poly()

;

COMPLEX gauss_flt(w,w3,x)
POLYNOMIAL *x;

double

(

w,

w3;

double arg,
scale;

/* Quadratic phase response term. */
/* Magnitude response. */
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COMPLEX temp;

int i;

arg = eval_poly(x,w)

;

scale = exp( -.346574 * ((w * w)/(w3 * w3)));

temp = cmplx( scale * cos(arg) , scale * sin(arg) ) ;

return (temp)

;
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*

* SOURCE FILE: s_law_det.c
*

*

* FUNCTION: s_law_det(x,n,pk_signal,conp_bw,pk_freq)

*

* DESCRIPTION: Square law detector of filter ouput. Finds
* the peak output value and the frequency
* where it occurs.

* ARGUMENTS:
* x (input/output) *CCMPLEX
* Data to be magnitude squared.

* n (input) int
* Number of data points in x.

* pk_signal (output) *double
The square root of the largest value

* that x attains.
*

* comp_bw (input) double
* Bandwidth of frequency compression.
*

* pk_freq (output) *double
* Frequency where pk_signal occurs.

* RETURN: Void.
*

*

* MACRO
* CALLED: MAX()

* AUTHOR: Phillip Fry

*

* DATE CREATED: 30JAN88 VERSION: 1.0
*

*

* REVISIONS: 15JUN88 Added pk_freq operation.

*

#include "fcr.h"

void s_law_det (x, n, pk_signal , coirpbw,pk_freq)

COMPLEX *x;
int n;
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double *pk_signal,
*pk_freq,
comp_bw;

(

int i;

for (i = 0; i < n ; ++i)

{

x[i].re = pow( cmag(x[i]) , 2.0);
*pk_signal MAX(*pk_signal,x[i] .re)

;

x[i].im = 0.0;

};

i = 0;

while ( (i < n) AND (*pk_signal != x[l].re) )

++i;

*pk_freq = 2.0 * (( -i%/2.0) + i) * coitp_bw / (double)

n

return;
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*

* SOURCE FILE: coverage.

c

* FUNCTION: coverage (rad , disp, wsimga2 , err

)

* DESCRIPTION:
*

*

*

This function caluculates the coverage
function as defined in Patel and Read,
Handbook of the Norma Distribution. The
results are used to find probability of
detection.

ARGUMENTS:
rad (input) double

Radius of cover circle.

disp

sigma2

*

*

*

*

* err
*

*

* RETURN:
*

*

*

* AUTHOR:
*

*

* DATE CREATED:
*

*

* REVISIONS:

(input) double
Displacement of circle center from origin.

(input) double
Variance of distribution, (bivariate)

(input) double
Stopping criteria.

double
P( input < Threshold

)

Kiillip Fry

04FEB88 VERSION: 1.0

#include "fcr.h"

'/

double coverage (rad, disp, sigma2, err)

double rad,

disp,
sigma2,
err;

double
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<3, /* Recursive summation terms*/
k,

sum, /* Resulting probability. */
r2, /* New radius. */
d2, /* New displacement. */
er2, /* Frob fa ?????? */
temp; /* Intermediate summation */

/* term. */

int i< /* Looping variables */
n,

nli /* Value on n to meet error */
nstop; /* Overflow value of n. */

r2 = pow(rad, 2.0)/(2.0 * sigma2)

;

er2 = exp(-r2);
d2 = pow(disp,2.0)/(2*sigma2);
nstop = (int) (38.0 / Iogl0(r2));
nl = (int)((rad * disp) / (sqrt(2.0) * sigma2 )) + 1;

/*
printf ("\n\nnl = %d: nstop = %d",nl, nstop)

;

printf ("\nr2 = %f: er2 = %f : d2 = %f\n",r2,er2,d2)

;

nstop = 400;

if ( nl > nstop
)

{

printf ("\nRequired iterations exceeds %d", nstop)

;

printf ("\nError = %f", g*Jc );
return (sum)

;

);

g = 1.0 - er2;
k = exp(-d2);
sum = g*k;

if ( k < 1.0e-38 ) /* VAX Fortran restriction ? */
{

printf ("\nUnderflow error on K - disp too larqe")

i

return( 0.0 );

>;

/* Series error aproxrmation invalid until n > nl */
for ( n=l; n <= nl ; ++n)

{

temp = 1.0;
for ( i=l; i <= n; ++i)

temp *= r2/i;
g — er2 * temp;
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k *= d2/n;
sum += g*k;

);

for ( n= rtf-1; n <= nstop; ++n)

{

temp = 1.0;

for ( i=l; i <= n; ++i)

temp *= r2/i;

g — er2 * temp;
k *= d2/n;
sum +" g*k;
if ( g*k < err )

{

printf ("\nNormal termination: n=%d",n);
printf ("\n sum = %7.6f",sum)

;

return (sum)

;

};

};

printf ("\nRequired iterations exceeds %d", nstop);

printf ("\nError = %f", g*k )

;

return (sum)

;
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/****************************************************************
*

* SOURCE FTIE: fcr.h

* DESCRIPTION: This is the header file used with the
* frequency compressive receiver project for
* Motorola Goverment Electronics.

* AUTHOR:
*

*

* DATE CREATED:

Fhillip Fry

26JAN88 VERSION: 1.0

* REVISIONS:
*

********************************

Iinclude <stdio.h>
#include <math.h>
linclude "complex. h"

linclude "p_plot.h"

********************************/

#define
Idefine
Idefine
Idefine
#define
Idefine
Idefine

PI
MAX SIZE
MAX DEG
FORWARD
REVERSE
AMPLITUDE
ERR

3.141592654
9000
20
1

-1

.1

1E-8

Idefine AND &&

Idefine
Idefine

MIN( a,b )

MAX( a,b )

(((a)

(((a)

< (b)) ? (a)

> (b)) ? (a) :

: (b))

!
(b))

typedef struct polynomial

int deqi ee;

double a[MAX_DEG]

;

} POLYNOMIAL;
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*

* SOURCE FILE: poly_op.c
*

* FUNCTIONS:
*

integ_poly(x)
eval_poly(x,k)

* DESCRIPTION:

*

*

* ARGUMENTS:
* X

The first function integrates the polynomial
x. The second function evaluates the
polynomial x for the value k.

(input/output) *POLYNOMIAL
The polynomial to be operated on.

(input) double
The value to be used to evaluate x.

RETURN: Void:
double:

integ_poly()

.

Result of eval_poly()

.

* AUTHOR: Phillip Fry

VERSION: 1.0* DATE CREATED: 14JUN88
*

#include "fcr.h"

'/

void integ_poly(x)
POLYNOMIAL *x;

{

int i;

for ( i = x->degree; i >= 0; i— )

x->a[ i + l ] = x->a[i]/ (double) ( i + 1 )

;

x->a[0] = 0.0;
x->degree++;

return;

double eval_poly(x,k)
POLYNOMIAL *x;
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double k;

{

int i;

double sum;

for ( i = x->degree - 1, sum = x->a[ x->degree] ; i>=0; i— )

sum = x->a[i] + sum * k;

return (sum)

;

}
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****************************************************************

SOURCE FILE: fft.c

FUNCTION: fft (x,y, length, sign)

DESCRIPTION: Performs the Fast-Fourier Transform (FFT) on a
sequence of data. Also, the Inverse Fast-
Fourier Transform (IFFT) can be performed.

DOCUMENTATION
FILES: None.

ARGUMENTS:

x (input) *CCMPLEX
Input data sequence to be manipulated.

(output) *COMPLEX
Resulting output sequence after a FFT or an
IFFT has been performed on the data x.

length (input) int
Length of complex data arrays x and y.

sign

*

*

* RETURN:

(input) int
Desired transformation choice.
1 => forward fft -1 => inverse fft

int
NORMAL : no errors were detected during the

transformation.
ERR_FFT : an error has occurred during the

transformation

.

FUNCTIONS
CALLED: None

.

AUTHOR: Khiem D. Dao and Phillip Fry

DATE CREATED: 14FebS8 VERSION: 2.0
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* REVISIONS: 26FEB88 Revised to handle complex array
* input and output.
*

**************************************************************** i

#include "fcr.h"

int fft (x,y, length, sign)
OOMPIEX *x,*y;
int length , sign

;

{

int i,

3,

K
m,

n,

mmax,

q,
istep;

double wr,
wi,

wpr,
wpi,
wtemp,
theta,
data[2*MAX_SIZE]

,

tempr,
tempi;

n = 2 * length;

J = i;

/* . .

/* Changing input data format to original complex number format. */
/*

for (k = 0, q = 0; k < n; k 4= 2, ++q)

data[k] = x[q].re;
data[k+l] = x[q].im;
)

/*
V/* Begin FFT
"/

Vfor (i = l; i <= n; i +=2)
(

if (j > i)
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{

tempr = data[j-l];
tempi = data[j];
data[j-l] = data[i-l];
data[j] data[i];
data[i-l] = tempr;
data[i] = tempi;

}

m = n / 2;

while ((m >= 2) AND (j > m)

)

{

j = j - m;
m = m / 2;

);

j = j + m;

)

mmax = 2;
while (n > mmax)

{

istep = 2 * mmax;
theta = (2.0 * PI) / ((double) (sign * mmax));
wpi = sin (theta)

;

wpr = - 2.0 * sin(theta / 2.0) * sin(theta / 2.0)

;

wr = 1.0;
wi = 0.0;

for(m = 1; m <= mmax; m+=2)
{

for(i = m; i <= n; i += istep)

j = i + mmax;
tempr = (wr * data[j-l]) - (wi * data[j]);
tempi = (wr * data[j]) + (wi * data[j-l])

;

data[j-l] = data[i-l] - tempr;
data[j] = data[i] - tempi;
data[i-l] = datafi-1] + tempr;
data[i] = data[i] + tempi;

wtemp = wr;
wr = (wr * wpr) - (wi * wpi) + wr;
wi = (wi * wpr) + (wtemp * wpi) + wi;

mmax = istep;

}

/*

/* Performs scaling by 1/length if necessary and converts format.*/
' ~

'

*

*/
If ( sign = FORWARD

)

'

for(k = 0, q = 0; k < n ; k 4= 2, ++q)
y[q] = cmplx(data[k], data[k+l]);
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else
for(k = 0, q = 0; k < n ; k += 2, ++q)

y[q] = odiv(cnplx(data[k], data[k+l]),
cmplx ( ( (double) length) ,0.0));

return;
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*

* SOURCE FILE: plot_op.c

* FUNCTION: plot_op (x, n , comp_bw, dev)

* DESCRIPTION:
*

This function handles the control of simple
plot and other plotting bookkeeping.

* ARGUMENTS:
* X

comp_bw

dev

*

*

* RETURN:
*

*

* FUNCTIONS
* CALLED:
*

*

*

* AUTHOR:

(input) *COMPLEX
Input data from the filter output, time
domain.

(input) int
Number of points in x.

(input) double
Frequency range of rx.

(input) int
Device number to specify destination.

4014 for CRT 7475 for HP plotter.

Void.

simple_plot()
cmag()

Phillip Fry

* DATE CREATED: 15JUN88 VERSION: 1

§include "fcr.h"

double cmag()

;

void plot_op(x,n,comp_bw,dev)

COMPLEX *x;
double comp_bw;
int n,

dev;

(

int i;
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char title[30];

double xaxis[MAX_SIZE],
yaxis[MAX_SIZE];

printf ("\nEnter the plot title\n")

;

gets(&title);
gets(Stitle)

;

for ( i = 0; i < n; ++i )

{

xaxis[i] = 2.0 * (( -n/2.0) + i ) * conp_bw / (double) n;
yaxis[i] = cmag( x[i] )

;

}

sinplejplot (n,xaxis
,
yaxis ("Frequency" , "Hz" , "Magnitude"

,

"Volts", title, l,dev)

;

return;
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*

* SOURCE FILE: SIMPLE PI0T.C

* FUNCTION: SIMPLE_PLDT (num_pts , x_data ,y_data , x_axis_title

,

x_axis_units
,y_axis_title

,

y_axis_units
,plot_title , plot_type

,

device)

DESCRIPTION: THIS FUNCTION RECEIVES X Y DATA AND GRAPHS THE
DATA ON EITHER THE VT100 OR TO AN HP PLOTTER.
THE FUNCTION AUTOMATICALLY SCALES THE DATA AS
TO FILL THE GRAPH. FOUR KINDS OF PLOT FORMATS
ARE AVAIIABLE: LINEAR, LOG_LLNEAR, LINEAR_LOG
AND LOG LOG.

DOCUMENTATTON
FILES: NONE.

ARGUMENTS:

num_pts (input) int
Number of X and Y data points

x_data (input) double
Pointer to an array of X axis data

y_data (input) double
Pointer to an array of Y axis data

x_axis_title (input) char
An array that holds the X axis title label

x_axis_units (input) char
An array that holds the X axis units label

y_axis_title (input) char
An array that holds the Y axis title label

y_axis_units (input) char
An array that holds the Y axis units label

plot_title (input) char
An array that holds the title for the plot

plottype (input) int
A number that specifies the plot type

LINEAR 1

LOG LLNEAR 2
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devnum

*

*

*

*

*

*

*

*
*

*

*

* RETURN:
*
*

*

*

*

*

*

LXNEARJXG
LOG IDG

(input) int
Specifies the plotting device used.

PLOTTING DEVICE: DEVICE NUMBER ( = DEVNUM)
HP 7475 PLOTTER 7475
HP 7470 PLOTTER 7470
TEKTRONIX 4014 DISPLAY 4014

int
SLMPLE_PLOT() returns a flag, indicating a
succesful functon execution or that a problem
was encountered during execution. Problems
that set the flag are: plotter initialization
error, negative numbers in a logarithmic plot
or undefined plot type.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

FUNCTIONS
CALLED:

<« NOTE: additional info on the following functions can be »
«< found in the P_PIOT documentation »

p_init
p_clrsc
p_clansi
p_stvel
p_orig
p_linsc
p_axis
p_linlin
p_logsc
p_lgaxis
p_loglin
p_linlog
p_loglog
P_j3ltcnr
p_stchr
p_textc
p_closp

AUTHOR: PHILLIP FRY

DATE CREATED: 20SEP87 :VERSION 1.00

REVSIONS:

240CT87 Added plotting device to argument list.

12N0V87 Incresed DES TTCSP to 2.50 cm
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* Suppresed first label on Y axis.

* 16N0V87 Added in function error messages.
*

* 09MAR88 Updated to handle new p_plot formats.

***************************************************************** ,

/* REQUIRED EXTERNAL FILES FOR FUNCTION OPERATION

#include

iinclude
<stdio.h>
"p_plot.h"

/* OONTRDL CODES USED IN THE FUNCTION AND THE CALLING ROUTING */

#define
#define
#define
#define
#define
#define

ERROR 1

NORMAL
LINEAR 1

LOG_LTNEAR 2

LINEAR_LOG 3

LOG LOG 4

/* VALUE RETURNED ON ERROR CONDX*/
/* VALUE RETURNED ON NORMAL CNDX*/
/* PLOT TYPE OONTRDL CODES */

/* INTNTTIALIZATTON OF plotting DEVICE parameters

#define
#define
^define
#define
#define

FACTOR
SIZE
PFILE
SYMBOL
VELOCITY

1.0
'A'

".DEF"
i i

5.0

/* SCALING FACTOR OF USER UNITS */
/* SIZE OF PLOTTING PAPER */
/* SENDS PLOT DIRECTLY TO DEVICE */
/* PLOTTING SYMBOL (IF DESIRED) */
/* VELOCITY OF PLOTTING PEN CM/S */

/* PARAMETERS FOR THE GRAPH'S PHYSICAL IAYOUT V
#define
#define
#define
^define
Idefine
^define
#define
#define

P_X_ORIG
P_Y_ORIG
XjDRIG
Y_ORIG
X_AXIS_LEN
Y_AXIS_LEN
X_ANGLE
Y ANGLE

4.1
4.1
0.0
0.0
18.0
12.0
00.0
90.0

/* PHYSICAL X ORIGIN LOCATION */
/* PHYSICAL Y ORIGIN LOCATION */
/* USER UNITS X ORIGIN LOCATION */
/* USER UNITS Y ORIGIN LOCATION */
/* X AXIS LENGTH IN CM */
/* Y AXIS LENGTH IN CM */
/* ANGLE OF X AXIS IN DEGREES */
/* ANGLE OF Y AXIS IN DEGREES */

^define SPACING
#define
#define
#define
#define
#define

DESjncSP
SYM__CNTL

CHRJKIDTH
CHR_HEIGHT
CHR ANGLE

2.0

.6

.8

00.0

/* NO. PTS SKIPPED BETWEEN DATA */
/* DESIRED SPACING OF TICS IN CM*/
/* COMMAND FOR A LINE GRAPH */
/* WIDTH OF LETTERS IN TTTLE(CM)*/
/* HEIGHT OF LETTERS TN CM */
/* ANGLE OF LETTERS IN DEGREES */
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#define TITLE X 9.0 /* TITLE X O0ORD. IN USER UNITS */
#define TITLE X 12.5 /* TITLE Y COORD. IN USER UNITS */

#define AND &&

int simple_plot (numj?ts,x_data,y_data,x_axis_title,
x_axis_units ,y_axis_title ,

y_axis_units

,

plot_title
,plot_type , devnum)

int num_pts,plot_type, devnum;

double xjdata
[ ] ,

y_data
[ ]

;

char x_axis_units
[ ] , x_axis_title

[ ] ,y_axis_units [ ]

,

y_axis_title [ ] ,
plotjtitle

[ ]

;

double first_x, /* VALUE USED TO IABEL THE 1ST */
first_y, /* POINT ON AN AXIS. */
delta_x, /* VALUE USED AS AN INCREMENT */
delta_y, /* BETWEEN ADJACENT TICS. */
x_tic_space, /* VALUE IN USER UNITS OF THE */
y__tic_space; /* SPACING BETWEEN TIC. */

/*
/*

/*
/*
/*
/*

/* THIS BLOCK INITIALIZES THE PLOTTING DEVICE AND CHECKS FOR */
/* INIALIZATION ERRORS. IT THEN CLEARS THE TERMINAL'S SCREEN */
/* OR SETS THE PEN PLOTTER VELOCITY, DEPENDING ON THE PLOTTING */
/* DEVICE CHOSEN. FINALLY, THE PHYSICAL X AND Y ORIGINS ARE */
/* SET FOR THE SUBSEQUENT PLOTTING OPERATIONS. */

*/
*/

V
if ( (devnum != 4014) AND (devnum != 7475) AND (devnum != 7470))

printf ("\n Incorrect device type selected")

;

return (ERROR)

;

);

if (NORMAL != p_init (devnum ,PFILE , FACTOR ,SIZE))

printf ("\n Device initialization error: check plotter")

;

return (ERROR)

;

);
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if (devnum = 4014
)

{

p_clrsc ( )

;

p_clansi
( )

;

}

else
p_stvel ( VELOCITY )

;

p_orig ( P_X_ORIG , P_Y_ORIG)

;

/* */
/* */
/* IKES BLOCK DIRECTS THE PI0T DATA TO THE CORRECT PLOT TYPE */
/* OPERATION. EACH OPERATION PERFORMS SCALING ON THE X AND Y */
/* DATA, PRODUCES THE SCALED AND LABELED AXES AND THEN CALLS */
/* THE APPROPIATE PLOTTING FUNCTION. AN ERROR IS RETURNED IF */
/* NEGATIVE DATA IS ENCOUNTERED DURING A LOG SCALE OR IF AN */
/* INVALID PLOT TYPE CODE IS RECEIVED. */

V
V

switch (plot_type)

{

case LINEAR:
p_linsc(x_data ,num_pts ,SPACING ,X_AXIS_LEN ,TS ADT,

DESjncsp ,&first_x ,&delta_x , &x_tic_space) ;

p_linsc(y_data ,num_pts , SPACING ,Y_AXIS_LEN ,TS ADJ,
DES_TICSP ,&first_y ,&delta_y , Sy_tic_space)

;~~

p_axis(X_ORIG ,Y_ORIG , x_axis_title ,x_axis_units,
TL_CW ,DP_AUTO ,LS_NO ,TTC_CW ,TS_NO,ST NO,
X_AXIS_LEN ,X_ANGLE ,first_x ,delta X,
x_tic_space)

;

p_axis(X_ORIG ,Y_ORIG ,y_axis_title ,y_axis_units,
TL_CCW ,DP_AUTO ,LS_FTR ,TTC_CCW ,TS NO ,ST YES,
Y_AXIS_LEN ,Y_ANGLE ,first_jy ,delta_y,
y_tic_space)

;

p_linlin(num_pts ,x_data , SPACING ,first_x , delta x,
x_tic_space ,y_data , SPACING ,first_jy , delta y,
y_tic_space , SYM_CNTL , SYMBOL)

;

break;

case LOG_LTNEAR:
p_linsc(x_data ,num_pts , SPACING ,X_AXIS LEN ,TS ADJ

DES_TICSP
, Sfirstx , &delta_x , &x_tic_space") ;

'

if (NORMAL != p_logsc(y_data ,numjpts , SPACING ,

Y_AXIS_LEN ,TS_ADJ ,&first_jy , Sy_tic_space)

)
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{

printf ("\n Bad data for LOG_LINEARM )

;

return (ERROR)

;

);

p_axis(X_ORIG ,Y_ORIG , x_axis_title ,x_axis_units,
TL_CW ,DP_AUTO ,LS_NO ,TIC_CW, TS_NO ,ST_YES ,

X_AXIS_I£N, X_ANGLE ,first_x , delta_x ,x_tic_space) ;

pJLgaxs (XJDRIG ,Y_ORIG
, y_axis_title ,y_axis_units,

TL_CCW ,LS_FIR ,TIC_CCW ,TS_NO ,ST_YES ,Y_AXIS_LEN,
Y_ANGLE ,first_y ,y_tic_space)

;

P_loglin(numjpts ,x_data .SPACING ,first_x ,delta_x,
x_tic_space ,y_data , SPACING ,first_y ,y_tic_space,
SYM_CNTL , SYMBOL);

break;

case LTNEAR_LOG:
if (NORMAL != pJLogsc (x_data ,nura_pts , SPACING,

X_AXIS_LEN ,TS_ADJ ,Sfirst x ,Sx tic space))
{

printf ("\n Bad data for LINEAR_LOG")

;

return (ERROR)

;

);

p_linsc(y_data ,num_pts , SPACING ,Y_AXIS_LEN ,TS_ADJ,
DESJITCSP ,Sfirstjy ,&delta_y , &y_tic_space)

;

p_lgaxs(X_ORIG ,Y_ORIG , x_axis_title ,x_axis_units,
TL_CW ,LS_NO ,TIC_CW ,TS_NO ,ST_YES ,X_AXIS LEN,
X_ANGLE ,first_x , x_tic_space)

;

p_axis(X_ORIG ,Y_ORIG ,y_axis_title ,y_axis_units,
TL_CCW ,DP_AUTO ,LS_FTR ,TIC_CCW ,TS_NO , ST YES,
Y_AXIS_LEN ,Y_ANGLE ,first_y ,delta_y,
y_tic_space)

;

p_linlog(num_pts ,x_data , SPACING ,first_x ,x_tic_space,
y__data , SPACING ,first_y ,delta_y ,y_tic space,
SYM_CNTL .SYMBOL);

break;

case LOG_LOG:
if (NORMAL != p_logsc(x_data ,num_pts , SPACING,

X_AXIS__I£N ,TS_ADJ ,&first_x , &x_tic_space)

)

printf ("\n Data error X LOG_LOG")

;

return (ERROR);
);

if (NORMAL != p_lcgsc(y_data ,num_pts , SPACING,
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Y_AXIS_LEN ,TS_ADJ ,&firstjy ,&y tic space))
{

printf ("\n Data error Y LOG_LOG")

;

return (ERROR) ;

};

p_lgaxs(X_OKEG ,Y_ORIG , x_axis_title ,x_axis_units,
TL_CW ,LS_NO ,TIC_CW ,TS_NO ,ST_YES ,X_AXIS_LEN,
X_ANGLE ,first_x ,x_tic_space)

;

p_lgaxs(X__ORIG ,Y_ORIG ,y_axis_title ,y_axis_units,
TLJXW ,LS_FIR ,TIC_OCW ,TS_NO ,ST_YES ,Y_AXIS LEN,
Y_ANGLE , firstly ,y_tic_space)

;

p_loglog(num_j3ts ,x_data , SPACING ,first_x ,x_tic_space,
y_data , SPACING ,first_y ,y_tiq_space,
SYM_CNTL .SYMBOL);

break;

default:

{

printf ("\n Plot type select error")

;

return (ERROR)

;

);

}

-*/
/*
/* THIS BLOCK PLOTS THE TTTLS OF THE GRAPH AT THE TOP OF THE */
/* GRAPH AND CLOSES THE PLOTTING DEVICE. IT THEN RETURNS TO */
/* CALLING PROGRAM. /,

/* '

/* V

pjpltncr(TTTLE_X ,TTTLE_Y ,UP) ;

p_stchr(CHR_WIDrH ,CHR_HEIGHT ,CHR ANGLE) ;

p_textc(plot_title) ;

p_clcsp() ;

return (NORMAL)

;
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ABSTRACT

This thesis presents the results of computer simulations performed on a

frequency compressive receiver. The simulation introduced non-idealities into

receiver components and inputs one at a time to determine the effect upon

performance.

Non-ideal models for the sweeping local oscillator and the dispersive filter

were implemented. Linear and non-linear errors were introduced into these

component's frequency vs. time relationships. All errors resulted in a reduced

probability of detection and reduced spectral resolution. All but the linear

dispersive filter error resulted in frequency determination errors. Non-linear

dispersive filter errors had the least detrimental effect on performance.

Three classes of non-ideal ( ideal is a long CW pulse ) inputs were

modeled: short CW pulses, long FSK pulses and long PSK pulses. Short

pulses resulted in low probability of detection and reduced spectral resolution.

FSK input pulses, depending on the frequency and timing, can have greatly

reduced energy per output peak. Therefore, a potential problem exists in

detecting all the frequencies used. PSK input pulses that undergo a phase

transition during the sweep resulted in a notch in the output pulse when the

timing was right. A mathematical derivation was used to explain this effect.
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