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Abstract

Strong-field ionization plays a central role in molecules interacting with an intense laser
field since it is an essential step in high-order harmonic generation thus in attosecond pulse
generation and serving as a probe for molecular dynamics through either the sensitivity of
ionization to the internuclear separation or the laser-induced electron scattering. Strong-field
molecular ionization has been studied both theoretically and experimentally, dominantly
through the Born-Oppenheimer approximation and at equilibrium or small reaction dis-
tances. We have extended the theoretical studies of molecular ionization to a much broader
extent. Specifically, due to the difficulty of treating ionization in Born-Oppenheimer rep-
resentation especially for molecular dynamics involving strongly-correlated electron-nuclear
motion, we have investigated an alternative time-independent — adiabatic hyperspherical —
picture for a one-dimensional model of the hydrogen molecule. In the adiabatic hyper-
spherical representation, all the reaction channels — including ionization — for the hydrogen
molecule have been identified in a single set of potential curves, showing the advantage of
studying molecular dynamics involving multiple breakup channels coupled with each other.
We have thus proposed a good candidate to study strongly-correlated molecular dynamics,
such as autoionization and dissociative recombination. Moving to a time-dependent picture
by numerically solving the time-dependent Schrdinger equation (TDSE), we have explored
two extreme classes of strong-field ionization of hydrogen molecule ion: at large internu-
clear distance (R>30 a.u.) and for long-wavelength laser fields. Remarkably, we have found
strong-field two-center effects in molecular ionization beyond the long-standing one-photon
two-center interference as a manifestation of the double-slit interference. In particular,
the total ionization probability at large internuclear distances shows strongly symmetry-
dependent two-center dynamics in homonuclear diatomic molecules and two-center induced
carrier-envelope phase effect in heteronuclear diatomic molecules. Such two-center effects
are expected to generalize to other diatomic systems and could potentially be used to explain
phenomena in multi-center strong-field physics. Moreover, we have theoretically confirmed,
for the first time, the existence of low energy structure in molecular ionization in long-
wavelength laser fields by solving the three-dimensional TDSE. Finally, we have performed
a pump-probe study of the hydrogen molecular ion where a pump pulse first dissociates
the molecule followed by a probe pulse which ionizes the dissociating wave packet, and
surprisingly found a pronounced broad ionization peak at large R or large pump-probe
delay (~150 fs). Numerically, we have developed and implemented new theoretical frame-
works to more accurately and efficiently calculate quantum mechanical processes for small
molecules — hydrogen molecule and its ion — which could readily be adapted to heavier
diatomic systems.
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Chapter 1

Introduction

Over the last three decades, as laser technology and fragment imaging techniques flour-
ished, interactions of atoms and molecules with short, intense laser pulses have been an
active and growing area of research. One reason is that electrons in atoms and molecules
are typically driven by a force induced by the electric field of laser pulses that can easily com-
pete against the binding force from the system itself, thus triggering complicated electronic
dynamics such as the widely-known above threshold ionization [1-3]. Strong-field molecular
ionization, due to its intrinsic multi-center nature, has shown various intriguing dynamical
phenomena, such as enhanced ionization at critical internuclear distances [4, 5], suppressed
ionization for some molecules [6, 7], sensitivity of the ionization to molecular orbitals [8-10],
and interference effects in molecular high-order harmonic generation (HHG) [11, 12]. These
phenomena have made molecular ionization a revealing probe for electronic and nuclear dy-
namics in strong-field processes, therefore providing a means to control molecular dynamics,
and ultimately to control chemical reactions.

To theoretically describe such highly nonperturbative processes in a fully quantitative
manner, the best option is to numerically solve the time-dependent Schrodinger equa-
tion (TDSE). Although there are a number of notable approximate treatments, such the
strong-field approximation (SFA) [13-15], Keldysh-Faisal-Reiss (KFR) theory [16-18], and
molecular ADK [19], the TDSE is still a gold standard to which they are compared. Solv-
ing the multi-dimensional TDSE, however, is typically challenging and unfavorably time-
consuming. Fortunately, due to the advances of the modern high-performance computing
architecture and the development of computational methods, the contradiction between nu-
merical accuracy and demanding computational resources is being reconciled. Nowadays,
due to rising interests in circular and elliptical polarized light and their interactions with
atoms and molecules, people start to solve three-dimensional (3D) TDSE involving strong
fields within the single-active-electron (SAE) approximation, which typically reduces to 3D
or —more commonly — coupled-2D differential equations. For molecular ionizations in this
case, the nuclei are normally fixed at equilibrium or small internuclear distances, thus com-
putationally reducing the molecular ionization to the atomic ionization. However, at large
internuclear distances in molecular ionization, the multi-center Coulomb singularities might
cause numerical problems, which could be either in solving the TDSE or analyzing the wave



1.1. One-dimensional H, in adiabatic hyperspherical representation

function. Thus special care needs to be taken. For strong-field ionization beyond the SAE
approximation, there are many attempts [20-27] at solving the full-dimensional TDSE for
helium — the simplest multi-electron system —which in principle is a six dimensional prob-
lem except it reduces to coupled-2D differential equations after expanding the electronic
wave function into coupled spheroidal harmonics bases. Most of these works [20-22, 24-26],
however, focus on the perturbative or few-photon regimes. When it comes to strong field,
the number of partial waves exponentially increases therefore making the calculation nearly
unfeasible. To our knowledge, such strong-field (800 nm, 10** W /cm?) multi-electron ion-
ization can only be done either through a huge amount of computational resources, which is
about a factor of 1000 heavier than a perturbative calculation for a 40 nm XUV pulse with
the same accuracy [23] — or by sacrificing accuracy of observables [27].

Molecular hydrogen (Hy) and its isotopes(HD/Ds) or ions (Hy /HD'/DJ) as benchmark
systems, have been extensively studied both theoretically and experimentally [28-38], due
to their significant roles in understanding ultrafast molecular dynamics. Such benchmark
systems will be our focus in this dissertation.

1.1 One-dimensional H, in adiabatic hyperspherical
representation

In studies of dissociative ionization of H, in ultrafast laser field, a multi-step Born-
Oppenheimer (BO) picture is often used to understand the dynamics. The first step is
ionization. From the Hy ground state, the Hj nuclear wavepacket is created as a coherent
superposition of HJ vibrational states or as an incoherent Franck-Condon distribution of
the vibrational levels. This picture is based on the fact that ionization occurs on a time
scale much shorter than that of the nuclear vibrations, thus an instantaneous electronic
transition occurs between the Hy ground state and the Hj vibrational levels. In such a
picture, electronic correlations are neglected in the first ionization step, which is necessary
due to the difficulties of treating ionization in BO representation. Recently, however, as
ultrashort laser pulses become available on the electronic (sub-femtosecond) timescales, the
electronic correlations have been found to be significant in electronic dynamics. For instance,
G. Sansone et al. [33] and A. Fischer et al. [34] found that doubly excited states cause a
coherent superposition of two different pathways, which leads to asymmetric ejection of
the ionic fragment in the dissociative ionization of Hy. So, to fully understand molecular
dynamics, one needs to go beyond the Born-Oppenheimer approximation.

The hyperspherical coordinates, since first introduced to study atomic problems in the
late 1950s [39], have been widely used in atomic and molecular physics [40-59]. In atomic
physics, for instance, the electronic correlations and doubly excited states for He atom and
H~ ion have been successfully described in the adiabatic hyperspherical representation [40,
41, 45, 49]. In molecular physics, the hyperspherical approach has been applied to study
molecular vibrations (see Ref. [48] for example) and various scattering processes [47, 56]
for three-body systems. In the field of ultracold collisions, the adiabatic hyperspherical
representation has been particularly successful in studies of three-body recombination [54,
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1.2. Strong-field two-center effects in diatomic molecular ionization

55, 60] and Efimov physics [50, 61-63].

Although the adiabatic hyperspherical representation has been proven very useful, it
has not yet been applied to the electronic and nuclear degrees of freedom for molecules
more complicated than Hj [43, 64]. In Chapter 2, we will present such calculations for
the first time for a one-dimensional (1D) model of Hy. This model, however, is chosen to
exactly reproduce the three-dimensional (3D) Hy and Hy ground Born-Oppenheimer (BO)
potentials. We, therefore, expect the calculations to reproduce quantities like ionization
thresholds, nuclear vibrational energies, and to give — at least — qualitative predictions for
relevant observables, such as the ATI spectrum. Since recent studies [33, 34] have shown
the significance of doubly excited states in strong-field and attosecond processes, one of our
goals here is to identify and understand doubly-excited states [29, 30] in the adiabatic hy-
perspherical representation. We also want to take advantage of the fact that the adiabatic
hyperspherical representation produces well defined and uniquely discretized effective poten-
tials in the ionization channels to help understand processes such as weak-field dissociative
ionization.

1.2 Strong-field two-center effects in diatomic molec-
ular ionization

Since the prediction of molecular two-center interference by Howard Cohen and Ugo
Fano [65] in 1966, a considerable amount of theoretical and experimental effort [66-76] has
been dedicated to the molecular double-slit interference. Resembling Young’s double-slit
experiments, which is regarded as the simplest manifestation of the wave nature of parti-
cles, the molecular double-slit is further intertwined with the fundamental characteristics of
quantum mechanics in the microscopic length scale, such as quantum coherence.

In molecular double-slit experiments, to observe the interference pattern—in the photo-
electron spectrum — the internuclear distance must be comparable to the central wavelength
of the electronic wavepacket, as is similar in classical Young’s double-slit experiments. The
distinction, however, arises from the fact that in molecular double-slit, the electronic wave
packet emitted from one center could interfere with the wavepacket emitted from the other
center or it could interact with the other nuclei with assistance from the laser field, produc-
ing two-center interference or two-center dynamics thus leading to complications in observ-
ables. Molecular double-slit interferences, however, have been directly or indirectly seen in
measurements for the smallest diatomic molecule—H, [66, 68, 69, 71]—and for heavier sys-
tems [67, 70, 72, 74, 76], providing explanations for emerging phenomena in photoelectron
spectroscopy.

Cohen and Fano’s theory [65] predicts interference pattern for the photoelectron spec-
trum in photoionization of homonuclear diatomic molecules. However, for the integral
quantity—the total ionization yield—it predicts no interference pattern. Given that Co-
hen and Fano’s theory effectively assumes one-photon processes, one might question what
happens if the photoionization moves to the multiphoton or tunneling regime? Does two-
center effect play a role in the total ionization yield?
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Previously, studies of diatomic molecular ionization revealed that the ionization proba-
bility could be surprisingly enhanced at critical distances [4, 5]. Such sensitivity of molecular
ionization to the internuclear distance (R) stimulates a series of studies on the time-resolved
molecular fragmentation and ionization [77-81]. It even provides an explanation for ex-
perimental discoveries in atomic clusters [82], suggesting phenomena discovered in small
molecules do affect dynamics in large systems. Despite these, almost all previous studies fo-
cus on the molecular ionization around equilibrium or critical distance. There is essentially
no investigation on strong-field ionization for diatomic molecules at large R(>30 a.u.). One
reason is the non-triviality of the exact ab initio calculations due to the Coulomb singularity
at the nuclei. More importantly, such a regime of R is conceptually neglected. Normally,
one would expect the molecular ionization to reduce to the atomic ionization at such large
R, with no interesting molecular physics involved.

In Chapter 3, we will present, for the first time, the study of strong-field molecular
ionization at large internuclear distances. The Hj, as a benchmark system, is chosen in
this study due to its simplicity for understanding in both theory and experiments. We
focus on the total ionization probability at large R where the Cohen and Fano’s theory [65]
predicts no two-center effects. Surprisingly, we find the strong-field two-center effects in
molecular ionization beyond the one-photon two-center interference. Furthermore, to deepen
our understanding, we examine the low energy photoelectron spectrum as a function of large
R and observe a clear interference pattern. We do expect that the molecular two-center
effects presented here will generalize to other diatomic molecules and could potentially be
used to explain phenomena in multi-center physics. Additionally, to understand how the
strong-field two-center effects behave in practical experiments, in Chapter 5, we will present
a pump-probe study of dissociative ionization of full-dimensional Hf /HD', where a pump
pulse first dissociates the molecule followed by a probe pulse which ionizes the dissociating
wavepacket. The strong-field two center effects at large R are thus convoluted to the large
pump-probe delay.

1.3 Low energy structure in strong-field ionization

Atoms and molecules exposed to an intense laser field might absorb a number of photons
larger than required to ionize the electron, thus showing the photoelectron energy distri-
bution with peaks separated by one photon energy. This so-called above-threshold ioniza-
tion (ATI) was first measured in 1979 [1]. Since then, extensive theoretical and experimental
studies have revealed various features of the ATI spectrum, e.g. plateau and cut-offs [83, 84],
and carrier-envelope phase dependence of the ATI spectrum. (See, for example, Refs. [2, 3]
for reviews.) More recently, a pronounced low energy structure (LES) — peak-like structure
at low energy in the ATI spectrum—was reported by Blaga et al. [85]. Such unexpected
LES, however, could not be reproduced by the widely-used SFA, which has been success-
ful in qualitatively predicting high-energy ATI and HHG spectra [2, 3, 15]. Given that
the SFA neglects the effect of the ion core of the system on the photoelectron, one would
expect effects of the Coulomb potential to play a role in LES. Moreover, the LES cannot
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be reproduced with a circularly polarized pulse [85], showing the LES is a laser ellipticity-
dependent phenomenon. Even though the atomic LES has been extensively studied both
theoretically and experimentally, theoretical studies of molecular LES — especially through
ab initio calculations — are rare.

1.4 Prologue for the work relavant to this dissertation

Before presenting our work for ionization-related studies in diatomic molecules, I will
summarize the contributions I made during my Ph.D. studies.

e Numerical computation

I have implemented or adapted various numerical methods to solve the Schrodinger
equation. The work of one-dimensional (1D) Hj in adiabatical hyperspherical rep-
resentation was done in the B-splines representation (see Appendix C.1 for details)
where large banded matrices in the eigenvalue problem were diagonalized using the
ARPACK package [86], which is based on the Lanczos algorithm [87]. In studies of
photoionization of three-dimensional (3D) Hy, T implemented an iterative short-time
propagator for solving the TDSE, where the exponentials were evaluated via a Padé
approximation and a sparse-direct method called PARDISO [88] was used for the lin-
ear solve. The calculations of dissociative ionization of 1D Hj were performed in the
finite elements discrete variable representation (FEDVR, see Appendix C.2 for de-
tails) where exponential terms in the short-time propagator were evaluated with the
Lanczos algorithm [89]. The solutions of the Schrodinger equation were analyzed by
projecting them to the energy-normalized scattering states which were solved using
the eigenchannel R-matrix method [90]. The results of these works will be discussed
in details in the following chapters and can be found in my following works [91-94].
Among these studies, I have distributed large-scale computations up to 50,000 CPU
hours to calculate the adiabatic hyperspherical potentials for 1D H, and the ionization
probability for 3D Hy . In studies of 1D Hy, I have performed hundreds of calculations
to resolve — sharp — avoided crossings and all the reaction channels with each calcu-
lation compromised of a non-trivial eigenvalue problem for a 2D differential equation.
In studies of the ionization of Hy, the majority of the computational effort was used
to do hundreds of linear solve for a 2D differential equation compromised of large
matrices due to extremely large internuclear distances. The numerical details will be
discussed in Sec. 2.1.4 and Sec. 3.1.5.

e Structure of 1D H,.

We studied the molecular structure of the 1D H, in an alternative adiabatic represen-
tation other than the widely-used Born-Oppenheimer. In the adiabatic hyperspherical
picture, we have identified all the breakup channels in a single picture, making it in-
trinsically convenient for studying molecular dynamics in 1D Hy. The details will be
presented in Chapter 2.
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e Photoionization of 3D Hj.

We studied the photoionization of three-dimensional Hf with nuclei fixed, where we
developed and implemented a sparse-direct TDSE solver in prolate spheroidal coor-
dinates using the B-splines representation. This work could generalize to other two-
center systems within the single-active electron framework. To obtain the momentum
and energy distribution, we developed a formalism to solve for the two-center scatter-
ing states for a single active electron in prolate spheroidal coordinates. They will be
presented in Chapter 3 and 5 and in my following work [92].

e Photodissociation of full-dimensional Hj .

We have investigated the influence of the initial nuclear angular distribution on strong-
field molecular dissociation. Specifically, we examined the dependence of the final
angular distribution, the kinetic energy release spectrum, and the total dissociation
yield on the initial nuclear angular distribution. Numerically, we took advantage of
the linearity of the TDSE by solving it for individual initial angular momentum states
independently and superposing the final states with coefficients defined by the initial
molecular alignment. This way calculations could be perfectly parallelizable. Similar
studies of photodissociation of Hj can be found in my works [95]

e Dissociative ionization of 1D Hj .

In a one dimensional model of Hy with both electronic and nuclear motions included,
we have studied the electron-nuclear correlation and coherence by examing the en-
ergy sharing between the two. The multiphoton electronic-nuclear coherence can be
attributed to the energy-space overlap of the wavepackets generated from each half
cycle. Additionally, we have found that increasing the laser intensity and wavelength
complicates the electronic-nuclear correlation. They will be presented in my following
work [94].

e Complex absorbing potentials.

To handle the boundary reflection and increase the efficiency in solving the TDSE, we
have developed optimized, yet general, complex absorbing potentials (CAP) for ultra-
fast, strong-field problems, where a factor of 3—4 reductions in absorption range was
achieved, compared to other widely used CAPs. They will be presented in Chapter 6
and can be found in my following work [96].

e Studies generalizable to different systems and to predict experiments.

The methods we used in ionization of hydrogen molecular ion can be readily generalized
to other two-center systems, e.g. a diatomic system with short-range potentials, as
will be discussed in Sec. 3.2.1. Our theoretical work can be appropriately adapted to
predict practical experiments, as will be discussed in Chapter 5.



Chapter 2

One-dimensional hydrogen molecule
in adiabatic hyperspherical
representation

2.1 Theory

To solve the four-body Schrodinger equation for one-dimensional Hy in the adiabatic
hyperspherical representation, the first and also the most important step is to solve the
adiabatic equation. Specifically, we calculate the eigenfunctions and eigenvalues of the
adiabatic Hamiltonian in order to extract information about doubly excited states and
ionization for 1D Hs.

2.1.1 Hyperspherical coordinates

In hyperspherical coordinates, one coordinate called the hyperradius is in units of dis-
tance and all other coordinates are angles or so-called hyperangles [51-53]. The hyperradius,
which is treated as an adiabatic parameter in the adiabatic hyperspherical representation,
controls the overall size of the system. The hyperangles can be defined by spatial angles,
relative distance, and momentum of inertia. For 1D H,, four aligned particles can be de-
scribed by four coordinates. One of them is for the center of mass motion. The remaining
three internal coordinates can be represented by the hyperradius R and two hyperangles 6
and ¢. The effect of the permutation operations on the hyperangles depends critically on
the choice of the Jacobi vectors. To connect two pairs of identical particles directly by a
Jacobi vector so that the permutation operators become simple, we choose the “H”-type
Jacobi vectors (pn, pe, p). As illustrated in Fig. 2.1, coordinate py is the inter-nuclear
displacement, p. is the inter-electronic displacement, and p is the displacement between the
center of nuclei and the center of electrons. In 1D, they can be positive or negative.

The hyperspherical coordinates (R, 6, ¢), which maps on to three-dimensional (3D)
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Figure 2.1: Solid arrows (pn, pe, p) are “H’-type Jacobi vectors for our 1D Hy system.
Two of them connect pairs of identical particles, the other one starts from the nuclear center
of mass and ends at the electronic center of mass. All coordinates associated with these
vectors can be positive or negative.

spherical coordinates, for 1D Hy are defined as

&pe = Rsinfsin¢

\/ ]
'u—NpN = Rsinfcos ¢

\/ 1

\/&p: Rcosf (2.1)
i

where iy, pte and p, are reduced masses for the three corresponding coordinates, defined as
UN = MmN /2, fte = Me/2, 1, = 2myme/(my—+me) (m. is the mass of the electron, my is the
mass of a proton), and the four-body reduced mass p is an arbitrary scaling factor which
we choose to be uy for the convenience of comparing adiabatic hyperspherical potentials to
BO potentials. The hyperangle 6 ranges from 0 to 7, and ¢ from 0 to 2.

2.1.2 Time-dependent Schrodinger equation

We write the Schrodinger equation in terms of the scaled wave function ¥ (R, 6, ¢), which
is related to the unscaled solution ¥(R,0,¢) by V(R,0,¢) = RyY(R,0,¢). The volume
element for the scaled wave function is dRsin #dfd¢. The Schrodinger equation for 1D H,
is written as (atomic units are used throughout)
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9
iU = [Hy—d-E(t)]¥ (2.2)

with the dipole operator d and laser field £(t), where we use dipole approximation in the
length gauge. The field-free Hamiltonian is

Hy=— L o +H (2.3)
0 — 2“ 8R2 ad .
A2
H., =
ad 2/LR2 +V(R797¢>

where A? denotes the grand angular momentum operator [49]

19 9 1 8
A2 —_ _ . 3 _ - 2.4
[smeae (Smeae) * sm298¢2] (2.4)

and V(R,0,¢$) =V is the Coulomb interaction between all particles

1 1

V= 1
o] pe2 + b2 (pw)

+Vi+ Vs (2.5)

with
1 1
\/7“,242‘ +a?(pn) \/T2Bi + a?(pn)

where 74;, rp; are inter-particle distance between nuclei and electrons, and a, b are softcore
parameters. The soft-core parameters a(py) [97] and b(py) vary with the internuclear
distance |py| in our calculations (see Fig. 2.2). We adjust soft-core parameter a(py) to
reproduce the 3D 1so, BO potential of Hy and adjust b(px) to reproduce the 3D XlZ;r BO
potential of Hy. By doing this, we can extract energetic information from these potentials
quantitatively, such as the nuclear vibrational levels and the single ionization threshold.
Using soft-core potentials avoids numerical difficulties and unphysical collapse caused by
Coulomb singularities in 1D. In addition, it allows the electrons to bypass the nuclei, as is
allowed in 3D.

In the adiabatic hyperspherical representation, the total wave function V(R, 0, ¢,t) is
rigorously represented in the adiabatic basis as

‘/;»:

Li=1,2 (2.6)

U= ZFV(R7t)q)V(Ra 07¢)7 (27)

where F), (R,t) is the time-dependent hyperradial wave function, and the orthogonal adia-
batic basis @, (R; 0, ¢) together with the adiabatic potentials U, (R) are obtained by fixing
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Figure 2.2: Parameters a(py) and b(py) used in the model Coulomb potentials [Eq. (2.5)]
are shown. (see text for details)

R and solving the adiabatic eigenvalue equation
Haa®, (R;0,¢0) = U, (R) ®, (R;0,9). (2.8)

Substituting Eq. (2.7) into Eq. (2.2), the Schrédinger equation reduces to a set of coupled
1D equations

N F,(R,t)
2MdR2 14 v )

0

1 d d .
— ; [ﬂ (Pyy/ﬁ + ﬁpw/ + nyl) — g(t) < @V|d|¢)l/ > FV/(R, t) = ZEFV(R, t)

(2.9)

where P and () are matrices of non-adiabatic couplings [59]. Since the dynamics of a system
are often primarily determined by the adiabatic potentials U, we will focus our following
discussions on these potentials only.

2.1.3 Symmetries

It’s useful at this point to describe symmetries for the four-body system. We notice that
the hyperradius is invariant under identical particle permutations and total parity operation.
Thereby all these symmetries can be carried by the hyperangles. Since these symmetries
are often associated with the symmetry properties of the interaction potentials, we show the
coalescence lines (with zero distance) in the § — ¢ plane in Fig. 2.3. The potentials around
the straight coalescence lines are repulsive whereas those around the curves are attractive.

10
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Figure 2.3: The coalescence lines for the potentials in the hyperangular space with fixed
hyperradius. (see text for details)

Table 2.1: Table with boundary conditions (BC) and symmetry operators.

operators BC(symmetric) BC(anti-symmetric)
Py %, =0 P(p=5)=0
P, g—j¢:0:0 P(p=0)=0

. Py-P, g—‘;‘e:g:o DO =1)=0

One can notice that Fig. 2.3(a) can be symmetrically reduced to one eighth of the whole
space, which is inherently due to the symmetries of the two-electron, two-proton system.
These symmetries correspond to the conserved quantities including permutation symmetries
(Pn, P.) and total parity (II). For singlet/triplet nuclear spin (/), the wave function is
symmetric/anti-symmetric with respect to ¢ = 7/2 , and for singlet/triplet electronic spin
(S), the wave function is symmetric/anti-symmetric with respect to ¢ = 0. The symmetry
with respect to 6 = /2 is the result of the product of three symmetry operators, Py - P, - II.
See Table 2.1 for boundary conditions and the corresponding symmetry operators. We then
reduce the range of the hyperangles to one octant of the whole space, indicated by dashed
line in Fig. 2.3(a), and do calculations with less computational effort.

In general, the channel functions ®,, usually contain the majority of the physical charac-
teristics in the total wave function. We thus can use them to obtain qualitative information
before doing time-consuming time-dependent calculations that also involve the hyperradial
motion. In the work, we solve Eq. (2.8) for singlet nuclear spin (I = 0), singlet electronic
spin (S = 0), and even/odd parity (II = +1/ — 1), which is the focus of this chapter.

11
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2.1.4 Numerical discussion

We use the basis splines (B-splines) method to solve Eq. (2.8). The B-splines method
expresses an unknown wave function as a linear combination of locally defined polynomials.
(See Appendix C.1 for more details.) In our calculation,we use about 900 B-splines in ¢-
direction and about 600 B-splines in 6-direction at R = 20 a.u. for solving Eq. (2.8) for up
to 200 states. The B-spline number, peak memory and cpu hours all roughly scale linearly
with the value of R. The resulting adiabatic hyperspherical potentials are converged to
more than 6 significant digits for 200 states in the range of R from 0.55 to 20 a.u.. Here we
use the ARPACK subroutine [86] to solve the eigenvalue problem in the adiabatic equation,
which is efficient enough when we diagonalize small matrices, such as those with 100 or
smaller B-spline numbers. However, since we apply the direct product basis to construct
the channel function, each sub-matrix within the big matrix is still banded. So in practice,
the big banded matrix that we solve still carries large number of zeros. In this case, the
sparse matrix method should be a better choice, where we expect a factor of 3 or 4 speed-up.

2.2 Adiabatic hyperspherical potentials

In this section, we will analyze the adiabatic hyperspherical potential curves together
with the channel functions, and compare to those in the BO representation. The hyperradius
is a quantity that describes the overall size of our four-body system, so at large R, the
solutions to the adiabatic eigenvalue equation include all possible fragmentation channels
(not considering p + p + e~ + e~ channel):

H(n) + H(n')
H- +H*
Hy (v) + e~
H(n) +p+e”

HQ‘FhW —

See Table 2.2 for the corresponding threshold energies with our softcore interactions.

2.2.1 Adiabatic hyperspherical potentials similar to
Born-Oppenheimer

The adiabatic hyperspherical representation is similar in spirit to the BO representation.
Therefore these adiabatic potentials bear many BO characteristics. We show in Fig. 2.4 the
adiabatic hyperspherical potentials for I = 0, S = 0 and 1T = +1. In Fig. 2.4(a), the
lowest curve at large R asymptotes to the binding energy of two ground hydrogen atoms,
which corresponds to X 12; in the 3D BO notation. The first excited channel possesses a
double minimum, which is closely connected to 3D E + F'S1 BO channel [98]. In terms
of channel function, the 1g2¢g (1D notation without angular momentum and the mirror-
reflection symmetry with respect to the internuclear axes) configuration is the major one
on the plateau right beyond the inner minimum, while the ionic H~ + H™ configuration

12
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Table 2.2: Atomic energies and molecular vibrational levels in our 1D model. H~ has two
bound states compared to one bound state in 3D. All these energies are converged to at least
5 digits. The zero of energies are defined as the thresholds of compete breakup (p+e~ for H
and p+p+e” /p+e +e” for Hy /H™.
energies (a.u.)

energies (a.u.)

H(n = 1) —0.5000000 H(n = 2) —0.2329033

H(n = 3) —0.1338289 H(n = 4) —0.08477790
H-(ground) —0.7079575 H~ (excited) —0.5058103
HJ (v = 0) —0.5973959 Hi(w=1) —0.5874083
HJ (v =2) —0.5780009 Hy (v =3) —0.5691544
Hy (v = 4) —0.5608526 HJ (v = 5) —0.5530821
H (v = 6) —0.5458325 Hf (v ="7) —0.5390963
H (v = 8) —0.5328689 H (v =9) —0.5271488
Hy (v = 10) —0.5219378 Hy (v = 11) —0.5172411
Hy (v = 12) —0.5130679 HJ (v = 13) —0.5094315
Hy (v = 14) —0.5063502 HJ (v = 15) —0.5038476
H (v = 16) —0.5019532 H (v = 17) —0.5007002
HJ (v = 18) —0.5001067 H (v = 19) —0.5000030

dominates on the Coulomb tail of the outer minimum, which asymptotes to the energy
of H™, —0.7079575 a.u.. The ionic contribution to the configuration decreases at large
R due to an avoided crossing between channel H- + HT and channel H(n = 1)+H(n =
2), see Table 2.2 for the energy details. One can also identify higher Rydberg channels
asymptotically according to the thresholds.

A comparison between adiabatic hyperspherical potentials and BO potentials is shown
in Fig. 2.5. All the potentials shown in Fig. 2.5 converge to 6 digits or more. We notice the
adiabatic hyperspherical potentials match the BO ones quite well for the low lying channels,
which is expected since the hyperradius is essentially the same as the inter-nuclear distance
in these channels.

2.2.2 Adiabatic hyperspherical potentials beyond
Born-Oppenheimer

Ionization channels in the adiabatic hyperspherical representation

The adiabatic hyperspherical potentials can represent more than Rydberg channels and
the ionic H™ + HT channels. Beyond the BO approximation, in Fig. 2.4(a), ionization
(dissociative or non-dissociative) channels can also be identified. Their details are shown in
Fig. 2.4(b) and (c). In Fig. 2.4(b), a set of channels with Coulomb tails at large R converge
to the energies of Hy (v) + e~ states. These are non-dissociative ionization channels for 1D
H,. Specifically, around R = 20 a.u., Hj (v) + e~ channels can be identified for up to v = 18

13
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Figure 2.4: The adiabatic hyperspherical potential curves for S =01 =011 = +1 in
terms of hyperradius R (see text for details).

(See Table 2.2 for energies).

In Fig. 2.4(c), it’s not difficult to notice that there are two families of potential curves
above the single ionization threshold (—0.5 a.u.). To identify these adiabatic hyperspherical
potential curves, we analyze the channel functions ®,, shown in Fig. 2.6. We can readily
see that the wave function localizes in one electronic coordinate but spreads in the other
electronic coordinate. We thus conclude that these two families of states are (1g)(eg) and
(2u)(eu) channels where the ionized electron has energy e.

Avoided crossings and doubly excited states

Interestingly but not surprisingly, in Fig. 2.4(a), there are different sets of avoided cross-
ings, especially at small hyperradii (< 10 a.u. or so) where couplings between different
channels are strong. Transitions between different channels occur through these avoided
crossings. Among all these avoided crossings, two families particularly draw our attention.
We emphasize them in Fig. 2.4(d) by adding green and blue backgrounds and thus producing

14
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Figure 2.5: The BO potentials (green dots) plot on top of the adiabatic hyperspherical
potentials (red curves).

“diabatic” channels. One family of the avoided crossings with blue background involves non-
dissociative single ionizations. The other with green background indicates autoionization
(see details below).

First, we focus on the blue “diabatic” channel, which we call dissociative single ion-
ization channel for 1D H,. It is essentially the ground Hj 1g channel in the four-body
representation. The energy of this potential is a little lower than the Hy 1g potential due
to the Coulomb interaction between the ionizing electron and the H;. To have a better
understanding of the role of this “diabatic ” channel in molecular dynamics, we sketch the
wavepacket dynamics scheme in Fig. 2.7. Assuming a wavepacket with high enough energy
is created and propagates on one of the adiabatic hyperspherical potential curves, and comes
across an avoided crossing in the dissociative single ionization channel, it will either go to the
Hy (v) + e~ channel through a non-adiabatic transition and non-dissociatively ionize, or re-
main in a four-body complex and “climb” the “diabatic” channel. Also in the neighborhood
of this “diabatic” channel, there are some avoided crossings between the non-dissociative
ionization channel and the Rydberg channel, which lead part of the wavepacket to populate
the Rydberg channel and to dissociate. Finally, each time the wavepacket goes through
an avoided crossing, it will have similar pathways until it goes higher than the v = 19
Hj +e~ vibrational level, where the wavepacket either dissociates to a Rydberg channel or
dissociatively ionizes, if energetically allowed.

Next, we discuss the green “diabatic” curves in Fig. 2.4(d). We notice that these curves

15



2.2. Adiabatic hyperspherical potentials

0.5
045
04
035
03
025
02 r
0.15 |
0.1
0.05 |

o/m

0.5
045
04
035 r
03
025
02
0.15 |
0.1
0.05

o/m

0.25 0.3 0.35 0.4 0.45 0.5
o/m

Figure 2.6:  Wave function for continuum states at R = 15. (a) is corresponding to
(1g)(eg) channel and (b) is corresponding to (2u)(eu).
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Figure 2.7: Wavepacket dynamics scheme in dissociative single ionization channel.

are quite similar to the potentials of doubly excited states in the BO picture [30]. These
curves cross the (1g)(eg) channels, stay below the (2u)(eu) channels, and asymptote to
the Rydberg channels. At small R (< 5 a.u. or so), these curves connect to the doubly
excited states. We thus call them doubly excited state channels. For the lowest set of
doubly excited states, the configurations are (2u)(nu) (connected to (2po,)(nlo,) in 3D
notation, where [ is the angular momentum of the emitted electron) in the the molecular
basis, where the principle quantum number n > 2 and the total parity is even. To study
the role of the avoided crossings in doubly excited state channels, we again analyze relevant
channel functions, shown in Fig. 2.8. First, we show a channel function ®, of the doubly
excited state channel in Fig. 2.8(a). It’s readily verified that the channel function is relatively
localized and is doubly excited in both electronic coordinates. That’s exactly what we would
expect for doubly excited state channels. When R gets larger, such doubly excited state
channels connect to Rydberg channels, H(n) + H(n'). In the range of energies in Fig. 2.8,
there is another family of curves, the Hj (v) 4+ e, for which we show a channel function in
Fig. 2.8(b). Now assuming a wavepacket on the doubly excited state channel, where the
channel function is shown in Fig. 2.8(a), propagates on the adiabatic potentials and goes
across an avoided crossing, it will either stay in the adiabatic channel and autoionize to the
Hy (v) +e~ continuum, or keep on the “diabatic” doubly excited state channel through non-
adiabatic coupling, with channel function shown in Fig. 2.8(c). Each time the wavepacket
goes through such avoided crossings, it will face the same situation, autoionizing or being
doubly excited. When the system trace down the doubly excited state channels, it will cross
the dissociative single ionization channel (blue “diabatic” one) like we sketch in Fig. 2.7.
Furthermore, two points should be made for these potentials. First, the doubly excited
state channels together with higher break-up channels in the (1u)(eu) configuration, which
belong to the same family, connect to the Rydberg channels asymptotically by non-adiabatic
transitions. These “diabatic” channels are expected to be seen as real channels in a diabatic
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Figure 2.8: We show part of the adiabatic hyperspherical potential curves, emphasizing the
series of avoided crossings on the doubly excited state channel. (a) and (c) show the relevant
channel functions bearing doubly excited characteristics in both electronic coordinates. (b)
is the channel function cooresponding to Hy (v) + e~ configuration.
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2.2. Adiabatic hyperspherical potentials

picture. Thus the ionizations/continuum states we are discussing here only exist for a
specific range of hyperradii. Second, even though we can, in principle, perform hyperradial
calculations that solve Eq. (2.9) to get quantitative results, special care needs to be taken to
deal with sharp avoided crossings. In 1D H, system, the emergence of sharp avoided crossings
can be understood by the fact that the geometric configuration of the four-body system is not
likely to change abruptly. This makes it possible to treat the shape of the system as a slow-
varying parameter to produce a diabatic representation, which is called the shape-diabatic
representation [58]. Such a diabatic basis could possibly remove the sharp avoided crossings,
thus has some advantage in the hyperradial calculation. In our hyperspherical coordinates,
specifically, the hyperangle 6 characterizes such geometric configurations. Therefore one
can treat both R and # as adiabatic parameters and solve 1D equations consecutively to
construct a shape-diabatic basis.

2.2.3 Autoionization for hydrogen molecule

The mostly commonly used theoretical method for dealing with the hydrogenic diatomic
molecules is the BO approach. In the BO representation, one treatment for autoionization
or doubly excited states is based on the Feshbach formalism [29, 30, 99-101]. For instance,
Martin et al use B-spline basis in a box to describe the electronic continuum of two-electron
diatomic molecules [29, 30, 101] and expand the total wave function in terms of two or-
thogonal complementary bases, the non-resonant space P and resonance space (), together
with the ground state. The couplings between these basis functions are included in the
time-dependent Schrodinger equation. The coupling between P and () leads to decay from
the bound states to the continuum states, which is autoionization of a single electron.

In the hyperspherical representation, we obtain “diabatic” channels that characterize
doubly excited states directly by solving the adiabatic equation. To understand the doubly
excited state channel, we again analyze the channel function ®,. We find the doubly excited
state channel functions tend to localize in the right bottom corner around the attractive
coalescence lines in Fig. 2.3(b), where configuration is like H(n) + H(n'). The Hj + e~
channel functions, however, localize on the other side of the same coalescence lines. It
seems that some effective barrier is keeping ®, from populating the area in between. To
get some insights into this “barrier”, one could solve the effective potential along the “ry”
axis by fixing hyperradius and r;. However, in the “K”-type Jacobi coordinates, where the
hyperspherical coordinates are defined as

'u—NpN = Rsinfsin¢
\/ I

ro = Rsinf cos ¢

ry = Rcos#,

B
I
JE
I
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Figure 2.9: Effective potentials U(R,0) in 0 for R = 8. Inset (a) shows Hy electronic
channels, 1so, and 2po,. Inset (b) shows the region of Rydberg states.

we practically fix the hyperradius and € and solve the motion of ¢. The effective potential
Uet (R, 0) for fixed R = 8 a.u. is shown in Fig. 2.9. We only show 6 range from 0 to /2 since
Ut (R, 0) is symmetric with respect to 6 = 7/2. It should be noted that we are essentially
solving two different motions by solving ¢ motion. If § is large or r; is small, we effectively
solve py motion and obtain Rydberg states, which is indicated in Fig. 2.9(b). If 6 is small or
71 is large, we effectively solve electronic motion(ry) and obtain electronic states for Hy . We
see that the 1¢g and 2u channels are recovered in Fig. 2.9(a). We also notice that a barrier,
as we expected, shows up in the lower channel. With the effective potentials, we solve for
the single-channel solutions in the ground and excited channels respectively and get a series
of bound states. The excited states in the excited channel are truly doubly excited states
in the united atom limit. If the doubly excited states lie above the barrier of the lower
channel, they can decay into Hf + e~. We thus can see a series of avoided crossings in
the adiabatic hyperspherical potentials [Fig. 2.4(d)]. These avoided crossings diabatically
form the doubly excited states channels [green curves in Fig. 2.4(d)]. For autoionization,
the distance between the Hi and the ionized electron will be the dominant contribution to
the hyperradius. For lower channels, the doubly excited states are more strongly coupled
to the Hy + e~ vibrational states, where the hydrogen molecule won’t dissociate but ionize.
This type of couplings leads to the other series of the avoided crossings [along blue curve in
Fig. 2.4(d)] in the adiabatic hyperspherical potentials.

We’ve discussed how autoionization is treated in the BO and the hyperspherical repre-
sentation. The hyperspherical representation is in principle exact and complete. While in
the BO picture, electronic continuum states must be discretized with large box size and the
continuum states are not unique in contrast to unique discretization of continuum channels
in the hyperspherical representation. Also in hyperspherical, the hyperspherical coordi-
nates treat all channels including ionization on equal footings, so that we can analyze all
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Figure 2.10: Sketch for transition from vibrational state on the Hy ground channel (dashed

red) for total even parity to the excited states on the lowest fifty channels (solid blue) for
total odd parity.

fragmentation processes in Hy through non-adiabatic transitions.

2.3 Application in ultrafast physics

In this section, we will show a simple example for how these adiabatic hyperspherical
potentials can be useful to study attosecond physics. We apply a weak XUV laser field,
E(t), to Hy. Assuming a vibrational state in the Hy ground channel as the initial state,
wavepackets are generated in the excited channels by a one-photon transition. For I = 0
and S = 0, only II = —1 channels can be populated due to the dipole selection rule.
Such transitions are schematically illustrated in Fig. 2.10, where the dashed red curve is Hy
ground channel for total even parity, whereas the other curves are the lowest fifty channels
for Il = —1.

The total Hamiltonian is written as Hy —d - E(t). [see Eq. (2.2)] The dipole operator is
written asd = p = Rcos0%. Using first-order perturbation theory, the differential transition
probability is written as

dP,,
dE

= |{Foy,2(R)| Dy (R)| B, (R)) P E(E)? (2.10)

where £(E) is the Fourier transform of the electric field, and D, ;i (I?) are the dipole matrix
elements:

Doy (R) = (@, (R;0,0)|d|,, (R: 6,6) (211)
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2.3. Application in ultrafast physics

In general, molecular dynamics can be manipulated by changing the laser parameters
in |£]? [102, 103]. For instance, one can consider to study Hy with a two-color XUV pulse,
using the bandwidth of the pulse to control the number of channels that are populated.
In a two-color study, one can also manipulate the relative CEP between the two colors
to manipulate overlap of the pulse in the frequency domain, thus to gain control over the
wavepacket distribution when the laser is gone. However, in this chapter, we focus on the
structural information and its role in molecular dynamics. We study the dipole matrix
elements D,, ,,(R) to gain some insights in the differential transition probability without
doing sophisticated, time-dependent calculations. We assume the initial state is the lowest
vibrational state in the ground channel, and calculate the dipole matrix elements between
ground channel with =0, S = 0 and II = +1 (dashed red curve in Fig. 2.10) and channels
with / =0, S =0 and II = —1 (solid blue curves in Fig. 2.10).

Previous works [33, 34] have shown that the doubly excited states are significant in
dissociate ionization of Hy, we thus analyze the dipole matrix elements in the vicinity of
doubly excited states, i.e. around the avoided crossings in the doubly excited state channels.
We show in Fig. 2.11(a) the adiabatic hyperspherical potential curves for channels vy = 10
to vy = 22 and the dipole matrix element D, ,_;5,,-1 in Fig. 2.11(b). Since the initial
state is the ground vibrational state, we focus on dipole matrix elements in the vicinity of
the Franck-Condon region. In Fig. 2.11(a), the potential curves have been scaled to better
show the avoided crossings. It can be readily noticed that the absolute value of the dipole
matrix element oscillates at small R, and the oscillation frequency is proportional to the
frequency of the emergence of the avoided crossings. Also it’s surprising that the dipole
matrix elements peaks for the Hf + e~ dominating channels but are minimized for doubly
excited state channels, and vice versa for large R. This can be explained by noting that the
overlap between the ground channel and the H +e~ channels is larger than that between the
ground channel to the doubly excited channels, and again vice versa for large R. So, from
dipole matrix elements we conclude that in our 1D model, at least, the HJ + e~ channels
rather than the doubly excited state channel are more likely to be populated during the
pulse at small R. But one should be aware that after the pulse is gone, initial wavepacket
will propagate among these adiabatic channels, and go across different families of avoided
crossings. Channels with different characters will finally be populated through different
pathways coherently.

We show in Fig. 2.12(b) the dipole matrix elements for v; = 1 to 6, and also show
revelant adiabatic hyperspherical potential curves in Fig. 2.12(a). We notice that the dipole
matrix element for vy = 1, the HT + H™ channel, maximizes in the vicinity of the outer
minimum of the final state potential, where the ionic geometric configuration dominates.
This is not surprising since the ionic character bears large classical dipole moment. We
also see that at large R the dipole matrix element for channel H(1) + H(2) (dashed green)
is much larger than other Rydberg channels such as H(1) + H(3) (dashed blue). This is
also expected since the ground state H(n = 1) is more likely to generate a large dipole
moment with the odd parity atomic state H(n = 2) than with those atomic states bearing
even parity. Also the H(n = 2) atomic state carries a more localized wave function than
the other Rydberg states, such as H(n = 4). So the dipole matrix element associated to
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Figure 2.11: (a) The 10th-22th adiabatic hyperspherical potential curves for I =0, S =0

and IT = —1. (b) Absolute value of the dipole matriz elements between the ground channel
and the 15th channel in (a). The dot dashed lines indicate the Franck-Condon region.
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H(1) + H(2) is larger than that associated with H(1) + H(4) (dashed black) at large R.
Another point we want to make through Fig. 2.12 is that the dipole matrix elements for v
corresponding to Hj (v) + e states are vanishingly small. Take the third channel (dashed
blue) for example, the dipole matrix element is approximately zero between the two arrows,
where Hy (v = 1) 4+ e~ character shows up. Similarly, on the right side of the second arrow,
the dipole matrix elements vanish for the fourth channel, which also bears Hy (v = 1) + e~
character. This is due to the fact that the overlaps between the HJ (v)+e~ channel functions
and the ground channel function are almost zero. Furthermore, if the dynamics start from a
much higher vibrational state where the size of the wavepacket can be extended to around 5
a.u. instead of ground state in the Franck-Condon region, one would expect, from Fig. 2.12,
that direct ionization from the ground channel as the first step will be negligible.

2.4 Summary

To summarize, we use the adiabatic hyperspherical representation, for the first time,
to treat a one-dimensional model of the hydrogen molecule. Effective potentials for all
ionization channels and doubly excited states can be identified. We also propose an exemplar
application of these adiabatic potentials in ultrafast physics and study the relevant dipole
matrix elements, where we get qualitative insights in the diatomic molecular dynamics.
For instance, information about the initial wavepacket distribution when the pulse is gone
can be obtained by studying the magnitudes of dipole matrix elements. Our study shows
that the adiabatic hyperspherical approach is a good candidate to study strongly correlated
molecular dynamics.
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Chapter 3

Strong-field two-center effects in
diatomic molecular ionization

In this chapter, we move to studies of molecular dynamics, where we would like to solve
the time-dependent Schrodinger equation in three spatial dimensions. In this case, including
all degrees of freedom is simply not feasible considering current computational capability.
We thus solve the diatomic molecular ionization in the fixed-nuclei framework.

3.1 Theoretical formalism

Previously, spheroidal coordinates have been proven useful in solving two-center prob-
lems, for both time-independent [104] and time-dependent studies [105, 106].

3.1.1 Time-dependent Schrodinger equation

The full-dimensional time-dependent Schrodinger equation (TDSE) for Hy , where the
nuclei are fixed along the laser polarization direction, is written as

@+Amﬂkf+v
24

i%\I/(R;r,t) = < ) U(R;r,t) (3.1)
where p = —iV and r are the electron’s momentum and position relative to the center of
the nuclei, A is the vector potential for the laser field, and V is the electron’s Coulomb
interaction with the nuclei. Atomic units are used throughout this section unless otherwise
stated. Since the wavelengths we will consider are 800 nm or more—which is much longer
than the size of the system —and the intensities are weak enough to neglect the effect of the
magnetic field of the laser, we can use the electric dipole approximation, i.e. A(r,t) = A(t).
Under this approximation, the term A?(t) can be eliminated by a simple time-dependent
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3.1. Theoretical formalism

phase. Eq. (3.1) thus becomes the velocity gauge TDSE

0
ia\ll(r, t) = (Ho+W)¥(r,t) (3.2)
where the field-free Hamiltonian Hy = —ﬁvz + V and the interaction W = Affz'p .

We solve Eq. (3.2) in prolate spheroidal coordinates (PSC), which have proven suitable
for two-center problems [104-106]. In particular, for two-center Coulomb problems as in this
work, the Coulomb singularities are located at the boundaries in PSC, thus reconciling the
numerical difficulty. See the book by Flammer [107] for details about spheroidal coordinates
and wave functions. The prolate spheroidal coordinates for Hy in the center-of-mass frame
are thus defined as

_TA—|—7“3
R

rAa—7TB

§

, 1<§<o0

n= ) -1 S n < 17
where 74,5 is the distance between the electron and proton A/B, and the azimuthal angle
x ranges from 0 to 2w. The 3D volume element is

RB

dV = (& = n*)dgdndx

and the electronic Laplacian has the prolate spheroidal definition

, 4 0.5 00,0 1 1
V= me —p loe® Vot ey e nae tao o) Y

The Coulomb interaction between the electron and nuclei is

ZA ZB 2<ZA+ZB>£—|—2(ZB—ZA)T]
VEn) =—-——-—=- — . (3.4)
ra T R(& —1n?)
where the charge could be generalized to other diatomic systems. The time-dependent
interaction reads

1 )
We choose A(t) = A(t)z. Because

L oo
V=Vl (3.6)
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the interaction term W thus becomes

_ D ke g ke B
W= = At =~ A@)(7% 2] = - A7 56 (3.7)
with z = %577, and
y R 2 [ 1 9 ¢ 9
9 Reil = 20 | e €~ Vgt~ g€ - D
2 1 9 , D N0 ) O
el et gt 0| 69

The vector potential A(¢) for the electric field is expressed as
At) = C et sin(wt + ¢)Z. (3.9)
w

We use pulses with a full width of the intensity at half maximum (FWHM), mewama~7Vv21n 2,
of 10 fs and a wavelength of 780 nm. The intensity is taken as 1 x 10" W/cm?. The carrier-
envelope phase (CEP) is set ¢ = 0 unless stated otherwise.

In Eq. (3.2), the azimuthal angle x-dependence in ¥ could be separated by

A

Thus Eq. (3.2) reduces:

%&;n,) (Hy +W)Wa(E,m, 1), (3.11)
where,
a2 (O 0,0 50
Hy = (R (€2 — 2 (85(62 1)85 + 877(1 772)877
A? A?
@e-1n) (1-n) + nR(Za+ Zp)§ + pR(Zp — ZA)77> : (3.12)

Since the laser pulse is linearly polarized along z-axis, the azimuthal quantum number
A = 0—for the ground state—is conserved. Therefore, we will not discuss the azimuthal
angle in our work.

Equation (3.11), as a partial differential equation in two spatial dimensions, could be
solved in various discretized representations, such as discrete variable representation [105,
106, 108], finite difference [109, 110], or B-splines [104, 111]. We choose B-splines (see
Appendix C.1 for details) for this work.
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In B-splines representation, the wave function W, is expanded as

(6. t) = cii(t)ui(§)vs(n). (3.13)

ij
By projecting out the basis splines, Equation (3.11) can then be written as a matrix form
iS¢ = He (3.14)

where the Hamiltonian matrix H = H) + W has matrix elements evaluated as
oo 1
<H6\>ij,i’j’ :/ df/ dn(&* — nz)ui(g)vj(n)HOUi’(£>Uj’(77)
1 -1
2 / o ou; ou;
S (— & )
e { 1 oe & Y % (

-1
! v, 9, 0V;jr
+/1dn <_@_77( AT UJU])

+ / " wpR(Za + Zp)eusS, + / dn v () (ZB—ZA)UUJ'Sg} (3.15)
1

where
1
(Sp)jj = /_ldﬁ VU1,
and
(e’ 1
Wz’j,i/j/:/I d§ » d77(52—772>ui(f)vj<77)wui/(f)“j’(’?) (3'16)
A [ ! o)
- 22 [T e [ anut@nn o (g€ - g - g€ - )
0 0 0 0
. (7“ ) g = (1~ 772)3—77)] e (€0 (1) (3.17)
At & ouy  Ou,
2L s [ e e~ 1% - i — ]
! 5 0V Ov; >
w [ oo -5 - S| [ deuen | (318)

Note Eq. (3.18) is derived from Eq. (3.17) through integral by parts.
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The elements of the overlap matrix S are
00 1
Sijirgr I/ df/ d77(52 - 772)%(5)%-(77)%'(£)vjf(n) (3.19)
1 ~1

00 1
= / d¢ Euuy S, — / dn n*vjvjSe (3.20)
1 —1
The kinetic energy matrix elements above are derived from the weak form (see Appendix C.2
for details) of the variational principle. This is also the case for any kinetic energy matrix
elements evaluated in this thesis.

Note that Eq. (3.1) has also been solved in the length gauge (see Appendix D for details)
for validation of the formalism and the code as well.

3.1.2 Coordinate transformation

The W (&, 1) in Eq. (3.11) become non-analytic at £ = 1, n = £1 for odd A’s— behaving

as (&2 —1)2 e (1—n )‘ ‘ Thus, they cannot be represented by polynomial bases such as B-

splines. To resolve this issue, we transform £ and 7 to some other variables, i.e.

0 (3.21)

& = cosh x 0
0 , (3.22)

7 = cosy

//\ //\
//\ //\

even though only A = 0 is considered in this work. Such treatment could also work for the
scaled radial wave function in PSC when solving for the scattering states since the scaled
radial solution also behaves as (€2 — 1)2. (one could easily derive the radial equation for
scaled radial function in PSC. In Sec. 3.1.6, though, we will only solve for the unscaled
radial function)

After the coordinate transformation, the Hamiltonian matrix elements are evaluated as

2 > au 6u-/ A2
A . 7 i
(HO )ij,i’j’ :W (A dl‘ Slnh [E[ 83; % + muzul/]&] (323)

i v Qv A
—l—/o dy Slny[a By + 7 yv]v]]Sg)

204+ 7
B (LB)/ dx sinhx cosh xu;uy S,
R 0
2(Zp = Za) [T
— %/ dy siny cos yv;v;Se, (3.24)
0
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and
At 4 o Ouy  Ou; .
Wijirjr = —% [/0 dyv; siny cos yvj//o dx sinh x <ul sinh x ;x - 81 sinh :mw)
T . . 8%‘/ avj . o .
+ [ dysiny | vj(—siny)—=- — —(—siny)v; dx sinh z cosh zuuy |, (3.25)
0 dy dy 0
where
(Se)ir :/ d€ usuy :/ dx sinh xu;uy (3.26)
i .
(Sn)jj :/ dn vjv; :/ dy sinyv;vj, (3.27)
1 0

and the overlap matrix elements are

Sijitg :/0 dx sinh x cosh? xuiui/Sn—/O dy siny cos® yvv;0Se. (3.28)

3.1.3 Iterative propagation

We solve Eq. (3.14) over one time step 0 using a Padé [1/1] approximation [112] to the
short-time propagator

. 5,617 5.6
et +0) = e HITe(4) = [S +iH (t + 5)5] [S —iH(t + 5)5] c(t). (3.29)
where H(t + 0) = Ho + W (t + §/2). Treating W(t + 6/2) as a perturbation, the matrix
inversion in Eq. (3.29) is obtained via a power series [113-115].
Specifically, the inversion in Eq. (3.29) adapts a matrix-splitting method called Neumann
expansion

(A+B)' = i(—A‘lB)"A‘l, (3.30)

n=0

where the convergence requires the maximum eigenvalue of A='B to have an absolute value
less than 1. Thus the explicit form for the inversion in Eq. (3.29) is

seimes D] SSS - (s idm) w| (seilm) T ey
(4 5/9 = 2 22 0 Z2 Z2 0 .

with a maximum order of ny., (typically less than 10), which is adjusted dynamically at
each iteration by requiring that the norm of the wave function is unitary to the machine
precision, i.e. 16 digits. Importantly, the inversion on the right-hand-side of Eq. (3.31) only
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involves time-independent matrices, thus the factorization in the linear solve only needs
to be done once. The back substitutions and matrix-vector multiplications, however, are
required for each iteration in Eq. (3.31).

As noted in Ref. [113], this propagation scheme has a clear advantage over the split-
operator approach used in our previous work [116]. It avoids the well-known commutator
errors that require a smaller 0t to compensate.

Although the matrix-splitting method — Eq. (3.31) — allows accurate solutions, the over-
all accuracy of the propagation scheme is limited by the O(§t3) error induced by the short-
time propagator. Note the interaction matrix W in Eq. (3.14) involves R~ thus dt can
be relaxed to a larger number with increasing R. This feature seems favorable. However,
due to Coulomb singularities at the nuclei, more points will be needed on the spatial grid
close to the nuclei as R increases. In practice, we search numerical parameters for a desired
accuracy at small R’s say R = 50, then increase the 0t as well as the number of grid points
for larger R.

The initial state in the propagation is solved using the same numerical method stated
in Sec.2.1.4.

3.1.4 Complex absorption potential and ionization yield

In solving Eq. (3.11), we apply a complex absorbing potential (CAP) at the grid bound-
aries to absorb the outgoing electronic flux. The CAP is added into the field-free Hamil-
tonian Hy. The form of the CAP is systematically designed to achieve certain absorption
criteria, as discussed in Chapter 6. The specific form of th CAP used in this work is called
“double-sinh”:

Vi) = — h_2 a? h? ol

_—
2m 2 sinh(”%’;fr) 2m 4 sinh? (rmngr)

(3.32)

with r being the electronic radial coordinate and 7y, being the grid boundary. We use
a? = 0.296 + 0.0308i, a3 = 0.707 — 0.06427, and 3 = 1.97. Detail discussions about CAP in
general can be found in Chapter 6.

To apply the CAP to prolate spheroidal coordinates, we simply transform the spherical
radial coordinate r to (§,n) by

r= g\/((g? —1)(1 —n?) + &2 (3.33)

Due to the benefit from the CAP, the box size required to obtain the total ionization yield is
tremendously reduced — more than a factor of 2—since the wavepacket getting absorbed at
the boundary is counted as part of the ionization. The total ionization yield is thus written
as

P=1-) P, (3.34)
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where P, is the bound state population remained at the end of the pulse.

3.1.5 Numerical discussion

For the iterative propagation in Sec. 3.1.3, the matrix-vector products are computed via
an Intel MKL [117] sparse BLAS routine, namely zcsrgemuv, where the matrix is stored in the
CSR format. The linear solve is done via the Intel MKL PARDISO (Parallel Direct Sparse
Solver) [118]. The propagation has also been done using a banded matrix solver, which
takes advantage of the Intel MKL banded matrix routines. However, by comparing these
two, we find at least a factor of 2 speedup for the sparse solver (matrix-vector multiply
plus linear solve) in present calculations. Unfortunately, the sparse-direct solver-PARDISO
does not parallelize as well as the banded solver. In general, for a Hamiltonian bearing a
banded structure, such as in B-splines as discussed in Sec. 2.1.4, the higher the dimension,
the sparser the matrix, thus the more advantage of the sparse solver over the banded one.

The efficiency of the TDSE solver is further improved by optimizing the (£, n) grid.
First, the maximum value of £ could be defined by the radial distance of the electron in
spherical coordinates centered at one of the nuclei, 7.y, as

QTmaX

T (3.35)

gmax:1+

where 7. should be large enough that the wave function of the atomic state with the
largest hydrogenic principal quantum number n is contained within the distance. Such a
quantum number, however, is not available a priori since the Rydberg states populated
during the pulse are unknown. In practice, we treat ry.. as a convergence parameter. In
the calculations, we have chosen the & grid distribution to be quadratic at small values to
resolve fast oscillations due to the Coulomb potential, and linear at large distance. The
71 distribution is chosen to be linear over the whole range, except for extra points added
around 1 = £1—the positions of two nuclei. Overall, the calculations require 7., > 400
a.u. (including the absorbing range) and about 800 splines in ¢ and 80 splines in 1. The
propagation time step is about 0.04 a.u.. Without fine tuning of numerical parameters,
each calculation for single R and single initial state takes about 10 to 20 CPU hours for
a 3.50GHz Intel Xeon CPU (E5-2637 v3), single threaded. All the ionization yields shown
in this work are converged to at least two digits (<1%) with respect to the grid size as
well as the other parameters. The validity of the formalism is verified by performing a test
calculation for the ionization of atomic hydrogen and comparing the ionization yield to a
result generated by an independent atomic code in spherical coordinates. They agree to 3
significant digits, which is also the convergence level.

3.1.6 Energy analysis

In this subsection, we analyze the solution of the Schrédinger equation in Sec. 3.1.1 to
obtain the momentum distribution and the energy spectrum. The formalism is adapted
from the free-particle version in the book by Flammer [107]. We also followed previous
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3.1. Theoretical formalism

work [119] for parts of the derivation and found a few issues with it that we resolved in our
derivation below.

Separation of variables in prolate spheroidal coordinates

We want to solve for the energy normalized scattering states for the diatomic molecule
in prolate spheroidal coordinates with the nuclei fixed. The Schrodinger equation is written
as:

(—%VQ +V - E> U(E,m,x) =0, (3.36)

with the Laplacian V2 given in Eq. (3.3) and the Coulomb interaction V' in Eq. (3.4). Again,
the x-dependence is of no significance for A = 0 in this work. It is separated from ¥ by

Eq. (3.10). Then Eq. (3.36)—reads

2 0, 4 Jg 0 o O
S/ (55(5 Uae o, oy
A? A?
o~ e R+ 26 (2 - z,m) (€)= EUA(En). (337
The wave function W, takes the form W, = Rj(£)Sx(n), in which we call the “radial”
wave function R, (€) and the “angular” wave function Sx(n). By separation of variables,
Eq. (3.37) reduces to

0, .4 0 A? 9.9
(8_5(5 - 1)8_5 G + uR(Za+ Zp)§ + € — AA) Rp(§) =0 (3.38)
and
0 0 A?
<3_77(1 - 772)(9_77 ) +puR(Zp — Za)n — i + AA) Sa(n) =0, (3.39)

where ¢ = % and k = 2ukE.

Angular equation

The separation constant A, is obtained by solving the eigenvalue problem —with £ > 0
specified beforehand —in the “angular” equation Eq. (3.39), which is re-written as

Hé\SAn(n) = AnnSan(n), (3.40)
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where the “angular” Hamiltonian is

0 0 A?
HY = — (1 — )=

5 — WR(Zp — Za)n + P, (3.41)

and n is the quantum number for Hé‘.
In B-splines representation,

San(n) = Z civi(n). (3.42)

Then, the matrix elements for the Hamiltonian are written as

! ov; ov; A?
Ay Y1 222 ) _ _ 2,2 .
(H,)ij /o dn {377 (1—n )877 +; (1 — uR(Zp — Za)n+cn ) vj} (3.43)

or

3 0v; 0v;
HYNy = [ dy|si L
( 77).7 /0v y [Slnyay ay

A2
+v; < —— — uR(Zp — Z)sinycosy + ¢* sin y cos® y> vj} (3.44)
sin y

for the angle-like coordinate. The overlap matrix is evaluated as in Eq. (3.27).

Radial equation

To solve the radial equation

0 o 0 N »
(8_5(5 - 1)8_5 BCENN R(Za+ Zp)§ + ¢ — AAn> Ran(§) =0, (3.45)
where n indicates the state from Eq. (3.40), we use the eigenchannel R-matrix method [90],
which, however, has to be modified since the standard R-matrix formalism is in spherical
coordinates.

In the eigenchannel R-matrix approach, we calculate the eigenstates for the R-matrix.
This means that for each such eigenstate, the solution has a constant logarithmic derivative
at the boundary:

1 dRp,
b=— . 3.46

The variational principle for b can be derived easily as in Ref. [90], starting from the exact
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expression for electronic energy,

dER, HA Ry,
_ & ot 2 (3.47)
where
HY (5— )Q—A—2+R(z +Zp)E— A (3.48)
© 7\ NGRS |
With integration by parts and a little algebra,
fdé [ aRAn (€ — 1>aRAn +R;, (c < 22+ R(ZA+ Zp)E — 52 - AM> RM] (3.49)
RAn(é-Q - 1>RAn|£ma:c .
In B-splines representation, R}, = >, c;u; and Ry, = Zj cjuj, Eq. (3.49) becomes
2y cigily
b(c;) = =2——, (3.50)
> i Cicili
where
ou; Ou; A?
= [ded == - 1)L 4y |32 Za+7Zp)é — —— — Apnn| U,
/f{ 35(5 )8§ +u [C§+R( A+ B)f &1 A]uj}
:/0 dz sinh {—ZZ’%
A2
+ <02 cosh® x + R(Z4 + Zg) coshx — Ap, — —2) uj] , (3.51)
sinh” x
and
Aij = UZ(§2 — 1)Uj|£max = U; Sil’lh2 .Z‘Uj|xmax. (352)

Using % = 0, we arrive at the generalized eigenvalue problem for b, which is given in matrix
form by

I = bAG (3.53)

Using the streamlined formulation [90], the I' and A matrices are divided into open and
closed spaces according to the behavior of the basis function on the boundary, i.e. “closed”
means the basis function is zero at the boundary. The eigenvector is thus divided into open
and closed spaces

&= (d,,d,). (3.54)
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The eigenvalue b can be written as

(3.55)

where Q,, =1T',, — FOCFC_CII‘CO. Note that A,, is the only non-zero element in matrix A. The
main computational step is to evaluate I' ;31. Let I‘;}I‘co = B.,, and solve linear equation
I'..B., =T.. The “closed” eigenvector is then given by

d, = —B,od,, (3.56)

where d, is obtained by matching the asymptotic solution of radial equation.
Now, we need to know the asymptotic behavior for Ry,. With a little algebra, Eq. (3.38)
reads

82 25 a §2 € AAn
(o6 + o+ R By~ 52—1 )
X Ran(€) =0 (3.57)
and, with some simplification,
82 [2 L]0 R(Zi+Z5)  Aan . B
{852 i {g Lo )] e >}RM<£> —0. (359)

Neglecting O(£73) as for asymptotic behavior, we have Coulomb-like equation

e T T e T

With & = ¢ and Ry, = R}, /s, Eq. (3.59) is

{ 0? 20 2 R(ZA + ZB) Ann } RAn<€) = 0. (3.59)

# . RZa+Ze) Aw] e .
gt A g e = (350
thus,
R(Za+ Zp) z*

R}, (c) i N sin(c€ + In(2c£) —

+ O'l*) (361)

where o+ is the Coulomb phase and [* is defined as I*(I* + 1) = Ap,. The &-dependent
term w In(2¢€) indicates that the wavelength of the Coulomb wave approaches the
asymptotic limit 27 /c very slowly, due to the long range nature of the Coulomb poten-

tial. Note that N is the normalization constant, which satisfies the energy normalization
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asymptotically:

3 /
/d§%§2RAn(C/§)RAn(C§) — /d§ ¢ 2 Ran(C€) Ri,(c€)

€ c§
N'N
N _520052; (c=¢)

_ RN'Nrdk

T2 Kk 2dc

N’N7r

= —o(k — K
k'k 25( )

=0(F — E)
dk

—ﬁé(k’ k")

0 :
= ok — 1), (3.62)

5k — k)

leading to the normalization constant

20k
N =4/ (3.63)

T

which is different from the normal constant in spherical coordinates due to the factor c.
Therefore, the open space function is

[2pk 1
do = Rnle=gpax = ch R, e=¢max

1 2uk
e
where Fj« and G« are the regular and irregular Coulomb functions, and Ay is the phase
shift.

With the closed-space function obtained through Eq. (3.56). We have thus arrived at
the energy normalized radial solution.

~

[Fpx (Ney ¢Emax) COS(Apap ) + G (Ne, CEmax) SIn(App)] - (3.64)

Momentum distribution

In spherical coordinates, the pure Coulomb wave satisfying the outgoing-wave (incoming
plane wave, outgoing spherical wave) boundary condition is written as [120]

\Ij(CJr)(,r.) Z<21+ )l lUlWP[(COSQ), (365)
l

In a half collision problem, the Coulomb wave needs to satisfy the incoming-wave bound-
ary condition (outgoing plane wave, incoming spherical wave), where we take the complex
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conjugate of the boundary condition for \II(CH (r) in Eq. (3.65) and change the direction of

k. We thus obtain \If(g ) satisfying the desired boundary condition

W) = Yo+ )ie T b o)

= Z(Ql + 1)ile’“’lMB(cos 6)
z kr
=4r )y z’le—wl—)m(l%)nm(f). (3.66)

Including the short-range scattering for the two centers, the full scattering wave function
asymptotically is expressed as

efi(krfn In 2kr)

v () =05 () + f (k) ————, (3.67)

r

with f’(7) as the scattering amplitude induced by the short range potential.
In prolate spheroidal coordinates, however, the plane wave can also be expanded as [107]

eik~'r‘ = 47 Z 'Lnyj;n(nka Xk)yAn (777 X)RAn(Cg) (368)
An

where Ry, (&) is a spheroidal radial function of the first kind, and the “spheroidal harmonic”
Yan(n, x) is defined as

6'L'AX

Van(n, X) = SAn(U)\/—Q—Wa (3.69)

with Sa,(n) as the prolate spheroidal angular function of the first kind with order A and
degree n = 0,1,2,.... The Ya,(7n, x) are normalized according to

1 27
/ dn / dX V0 (1, X)Yarn (1, X) = s Opnr- (3.70)
—1 0

Asymptotically, ¢€ — kr, the spheroidal radial solution becomes the spherical radial so-
lution. Thus similar to that in spherical coordinates, the spheroidal Coulomb wave corre-
sponding to Eq. (3.65) is

N
(2m)?

If the internuclear distance is R = 0, I* reduces to integer n, and Sj,(n) reduces to the
associated Legendre function.

eiUl* E* (7707 Cf)

£—00
v () = <

4y i Vi (0 X)) Yan (7, %) (3.71)
An
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To satisfy the incoming-wave boundary condition as for Eq. (3.66), we have
—ioy* Fi (7]67 Cg)

_ o N
v (r) = A ) Vi (=1 Xo + ) Van(n, X
5 (WZA i+ )V 0) (1) 7 S
—iox E* (7767 Cé—)
%4 Z — 1)V ey X0) Vn (1, X)) (=) e %
N * Fi- (770 Cé)
= ™ —1)* y*n Mhe> Xk)Van (1, X : : 3.72
PR DS e UMY Cg (3.72)
where N is the normalization constant, same as before
Therefore, the full asymptotic scattering wave can be written as
—i[ct— BZAYZR) 1(9¢e))
_ 0o _ (& 2¢c
Wi (r) = WG )+ f € , (3.73)
where again f’ is the scattering amplitude resulting from the short range potential. The
outgoing part is expressed as
E—o0 4 N
> = Zy/\n Mhes Xi) Yan (1, X)
i L et 7

=
out
x (—1 ——
(=1) c€ 21
On the other hand, the numerical two-center Coulomb scattering wave is expanded on
(3.75)

ZBAnyAn 77 X)RAn(Cg)

the spheroidal harmonics

\I/( )
Asymptotically,
Ran(c€) = % = sin(c€ + w In(2c€) — ' + op + App) (3.76)
) is written as
(3.77)

where Ay, is the phase shift. The outgoing part of ¥
N 21 [e&%ln(%&)f%’wcﬁwml

<\1/SE_)> o, ZBAnyAn (n,x)— o
By matching Eq. (3.74) and Eq. (3.77), we have the desired boundary condition and B, is
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obtained
BAn — (_1)n+l*il*e—i(O'l*-i-AAn)an(nk’ Xk) (378)

Finally, the full scattering solution satisfying the outgoing-wave boundary condition is

Wy (r) =Y (—1) T e A YL (30 Yan (0, X) Ran(c€). (3.79)

An

To get the scattering solution —energy or momentum normalized — we simply take, respec-

tively
2uk 2
N:\/LorN:k:\/i (3.80)
T T
in Eq. (3.76).

Therefore, we obtain the momentum distribution by projecting the wave function in
Eq. (3.11) to the energy normalized scattering states:

a%];e / Ay (V9 (t)) |2=l;<MAnSAn<n>RAn<5>m<g,n,tf>>|2 (3.81)

where My, = (=1)"* " emilor+2an) S5 (1), and Wy (€, 7, ;) is the time-dependent wave
function at the end of the pulse. Note again that the azimuthal quantum number A = 0 is
conserved.

Expanding the wave functions in the B-splines bases,

Ran(€) = Z e (€)
San(n Z ctvj(n

S 777tf ZCZJ tf uz U] 77)

Eq. (3.81) reduces to

oP
2555 = <Z My, Z v Z ciu;| Z cij (L) ugvyr)
n j i i',g'

2
= Z Z Mxn(Q)C?*C?*Ci/j/ (tf)Sij,i’j’ , (382)
i7,4'j" n

with the overlap matrix § evaluated in Eq. 3.20.
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3.2. Strong-field two-center effects beyond double-slit interference

Energy spectrum

The energy spectrum can thus be obtain by integrating the momentum distribution over
angles:

dr _
75 = [ @)
S Y )Y 0 Ran ) (1)

Z// dndxy,
An

Z(‘I’(tf) (1) e AN Y (e, o) Ve (0, X) R (§)>] . (3:83)

A'n/!

X

Given the orthogonality of the spheroidal harmonics, i.e. Eq. (3.70), the energy spectrum
can be simplified as

Z_Z - Z ‘<(_1>n+l*il*671‘(0—[*+AA")SAH(77)RA7L(C£)|\I/A(tf>>|2‘ (3.84)

2

Again, in B-Spline representation, Eq. (3.81) becomes
dP n n
95 = > 1O Guim) Y ul€) Y oy (tp)us(E)vy(n)
no | i i"j’

_ R
=

n

2

> e ey (t)Sijay (3.85)

igi'g’

with §;;;» evaluated in Eq. 3.20.
Note that the correctness of the energy analysis formalism is verified by reproducing an
independent atomic photoelectron energy distribution in a test example.

3.2 Strong-field two-center effects beyond double-slit
interference

3.2.1 Two center interference effect: homonuclear diatomic
molecules

In this section, we focus on the ionization of Hy at large internuclear separations—
30 < R < 150 a.u.— where two lowest states are essentially degenerate and the linear
combinations of the atomic orbitals (LCAO) almost exactly approximate the molecular
states. In such cases, intuitively, one would not expect molecular physics to play a significant
role, especially when it approaches the high end of R (~150 a.u.).
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3.2. Strong-field two-center effects beyond double-slit interference

In Fig. 3.1, however, we show the total ionization yield as a function of R for the gerade
and ungerade initial electronic states for Hj, i.e. P, and P,. First, the well-known enhanced
ionization at critical distance [4, 5] of Hj is reproduced for intermediate R range from 4 to 16
a.u., as shown in the inset. Interestingly, one can notice such enhanced ionization is strongly
symmetry-dependent. For the case of the ungerade initial state, the enhancement peak
moves to somewhat smaller R for the same set of laser parameters, and the enhancement is
much higher than that of the gerade initial state. This is partially due to the fact that the
ionization potential for the ungerade initial state is smaller than that of the gerade initial
state. However, it does not explain the ionization yield at other R, for example the yield
for 2po, is smaller than that for 1so, at R = 11 a.u..

0.024 -
0.022 4
0.020 -

Q
0.018 A

0.016 A

0.014 ~

0.012 : : .
0.03 1 Py —Pg Py +Py

0.02 4
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0.00{ _- - R i ettt e

-0.01

30 50 70 90 110 130 150
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Figure 3.1: lonization probability as a function of R for the gerade-F, and ungerade-P,
initial states (upper) and the decomposition of P,(R) (lower), for a Gaussian pulse with the
FWHM of 10 fs, an intensity of 10** W/cm?, and the wavelength of 780 nm.

Surprisingly, in the large- R region in Fig. 3.1, a pronounced interference feature is found
in the total ionization yield, which oscillates dramatically as a function of R. Such inter-
ference, however, fades away as R increases, which is expected because as the internuclear
separation gets larger the central wavelength of the electronic wavepacket becomes negligible
compared to R. A good example sharing similar physical footing is the study of the photo-
electron spectrum for diatomic molecular ionization [70], where the photoelectron scatter-
ing intensity loses its interference as the momentum increases, i.e. the wavelength decreases
away from the bond length of the nuclei. Such loss in interference in the photoelectron spec-

trum can also be confirmed by Cohen and Fano’s prediction (~ 1+ 32£) [65]. Moreover, for
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3.2. Strong-field two-center effects beyond double-slit interference

R > 30 a.u. in Fig. 3.1, the ionization yield shows an even stronger symmetry-dependence
compared to that at the critical distance. Further, the ionization yield oscillates as a func-
tion of R in the opposite direction for gerade and ungerade initial states at >30 a.u.. The
oscillation of the total ionization yield as a function of R can also be found in the S-matrix
based KFR theory [18, 121] for Hy , where ionization yield with different initial symmetries
oscillates in the opposite direction. Besides these two features, the KFR theory, however,
completely fails to predict the magnitude of the total yield, and does not match the TDSE
solution even qualitatively. Another interesting point for the R-dependent yield in Fig. 3.1
is the broad peak of ionization for R ranging from 40 to 60 a.u. for the ungerade initial state,
which could be potentially measured in experiments (will be discussed more in Chapter 5).

Apparently, the rich structures in Fig. 3.1 at large R come from the molecular nature.
For diatomic molecular ionization, one would probably think of the two-center nature of
the system. Most of the previous studies of two-center effect in molecular ionization follow
Cohen and Fano’s picture [65] of molecular two-center interference, which is essentially
a single-photon process. It predicts oscillation behavior for differential quantities, such
as the photoelectron spectrum. However, for integral quantities such as the total yield,
such formalism does not predict any interference pattern. Therefore, in the following, we
numerically explore the strong-field two-center effect by examining the interference term in
the total ionization yield at large internuclear distances.

For HJ , we start from gerade/ungerade initial wave functions

U, (ts) = % (@4(Rir) + Dp(R:r)] (3.86)

where g/u indicates the 1so,/2po, electronic channels, and ® 4,5 is simply the atomic orbital
centered at A/B. Such LCAO represents ¥/, almost exactly for the large R’s concerned in
the present work. The final state is thus written as

\113/“ = Ut )y m(t;) (3.87)

with U as the time-evolution operator. The ionization probability reads

o f ()

~ [ ai B (BIU@L)F + 3 {EUD5)F & Rel(EU®0)" (BIUD)], (3.89)

where |E> indicates the energy normalized molecular scattering states. Note the actual
ionization probability is obtained through projecting out the bound states, as discussed in
Sec. 3.1. Including scattering states here is for simplicity.

Since the broad ionization peak observed in Fig. 3.1 is for the 2po, channel, we thus
decompose the P, into two components: the first one includes two absolute square terms in
Eq. (3.88), which is called “single-center” component, and the second component involves
the interference term in Eq. (3.88), which is called “two-center” interference component.
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3.2. Strong-field two-center effects beyond double-slit interference

Thus the single-center component is
-1 s 1 5 1
A5 (EIU®A) + 5 (EIU®s) = (P + By, (389)
while the two-center interference component is
/ dF — Re[(BU®5)" (BJU®z)] = S(Pu ~ P,). (3.90)

These two components in P, are shown in the lower pannel in Fig. 3.1, where one
can see the single-center contribution is fairly structureless as one might expect since it
approximates the atomic ionization. The strong interference in P, over all range of R
mainly comes from the two-center interference. Moreover, the broad ionization peak at
40 S R < 60 a.u. remains in the two-center component. We thus conclude that the broad
peak of ionization at large R for the ungerade initial state is attributed to strong-field
two-center interference effect. Note that the broad ionization peak in ungerade state is
accompanied by a suppression in the gerade state.

To have a detailed picture of the strong-field two-center effect in molecular ionization
of Hy in Fig. 3.2—on the 2nd row — we show the photoelectron spectrum as a function of
internuclear distances for both initial symmetries, below which the total yields are shown
for comparison. For the low energy spectrum, one can clearly see three different photon
bands evolve as a function of R. It is due to the change in the ionization potential. By
comparing the total yield and the photoelectron spectrum, it is not difficult for one to tell
that the interference pattern in the total yield mainly comes from the low energy spectrum,
where most of the ionization peaks in P,/P, correspond to peaks in the first photon band
of the photoelectron spectrum.

To directly distinguish the strong-field two-center interference from the one-photon two-
center interference, we extracted the interference term in the Cohen and Fano’s picture —
1 + sinkr/(kr)—as plotted on the top panel in Fig. 3.2. Remarkably, the simple “strip”
structure in one-photon two-center interference can still be seen in the strong-field calcula-
tion, which is marked by a series of black curves on the “strong-field” low energy spectrum
for 1so, state. Similar structure can also be found for 2po,, state. This also confirms that
the interference pattern in the photoelectron spectrum does exist for strong-field molecular
ionization at fixed R. Besides the “strip” structure, it is difficult to find more commonality
between these two. Due to highly nonperturbative processes, the strong-field two-center
interference bears much more complicated features, e.g. “strip” structures are coupled with
each other and hard to distinguish.

Two-center interference in the independent-atom model

The intriguing dynamics in Fig. 3.1 can be attributed to the strong-field two-center ef-
fect, which intrinsically involves two mechanisms: two-center interference and two-center
dynamics. Generally, when it comes to two-center interference, one refer to the Young’s
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Figure 3.2: Low energy spectrum (2nd row) and the total ionization yield (3rd row) cal-
culated by TDSE as a function of R for a Gaussian pulse with the FWHM of 10 fs, an
intensity of 10" W/em?, and the wavelength of 780 nm, and the low energy spectrum as a
function of R extracted from Cohen and Fano’s picture (1st row), for initial state 1so, (left)
and 2po,, (right).
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double-slit experiment, where the waves produced from two separated sources interfere with
each other as they propagate, generating an interference pattern. In such a picture, there
are no dynamics involved, i.e. one wave—as it propagates— does not interact with the
other source. For the molecular double slit, however, things are more complicated. The
electronic wavepacket generated from one atomic center, with the assistance of the laser
field, most likely will interact with the other center. For Hj, specifically, the electronic
wavepacket ionized from one proton could interact with the other proton during the field,
producing complicated two-center dynamics. For example, electronic recombination can oc-
cur where the electronic wavepacket is driven back to the bound states during the interaction
with the other center. Normally, such a two-center dynamics is not quite distinguishable
from the commonly understood two-center interference, especially in experiments, given no
observables exist to distinguish these two processes.

However, here we propose a case which is closest to the normal two-center interfer-
ence where the atomic ionization at two centers separated by R are superposed—in-phase
or out-of-phase—to mimic the diatomic molecular ionization. The in-phase superposition
matches the 1so, scenario while the out-of-phase one matches 2po, for Hy . In such a model
calculation, the final wavefunction reads

(W(ts)gr) = |a(ty)) £ |@5(ty)) = Uilty, i) |@4 () £ Up(ty. ti) |95(t)),  (3.91)

where U*(ty,1;) are atomic time evolution operator and |®} p(;)) is the ground state of
atomic H located at center A /B. The total ionization yield is then obtained by projecting the
final state onto the molecular scattering states, as in the case of full two-center calculation
above,

P~ [ dE (B9 P
= [ [ RS + 5 B £ Rel(Elose) (Blose)]]. (392

In this case, the electronic wavepacket generated from two centers interfere with each other,
as in the normal two-center interference. Since there is no other center involved during
the ionization, the wavepacket produced from one-center does not interact with the other
center, thus preventing the two-center dynamics.

The total ionization yield is shown in the upper panel in Fig. 3.3. By comparing such
model for molecular ionization to the one shown in Fig. 3.1, one can tell that they both share
strong symmetry dependence, i.e. yields with different symmetries oscillate as a function
of R in the opposite direction. Otherwise, there are basically no common characteristics
between the two. The overall shapes in two cases are quite different. There are much
more oscillation structures in Fig. 3.3. The lack of correlation between the model ionization
yield and the full two-center ionization yield indicates that the two-center dynamics play a
significant role in the ionization process. This also suggests that the standard way to think
about two-center interference in homonuclear diatomic molecular ionization is not enough
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Figure 3.3: Upper: total ionization yield obtained by superposing—in-phase or out-of-
phase—the atomic ionization — with laser parameters as in Fig. 5.1 — separated by R to
mimic the two-center interference without two-center dynamics involved. Lower: decompo-
sition of P,.

when strong fields are involved. The two-center dynamics should be taken into account.
The lower panel in Fig. 3.3 shows the decomposition of P, as in the Fig. 3.1. One
might notice that the average of P, and P, are basically flat within the accuracy level of
calculations, and the average ionization yield (/0.0159) matches well with the “asymptotic”
value at 7 = 300 fs in Fig. 3.1. This agreement actually confirms the expectation that the
“single-center” component in the ionization of Hj approximates the atomic ionization yields.

Short-range potential

We have shown surprising strong-field two-center effect for the ionization of Hy at large
R. Being a Coulomb system, one might think this is due to the long-range Coulomb effect.
In this section, however, we perform the same study but replacing the Coulomb potential
with a short-range Yukawa potential in the form

670.17'

Vi = -5 (3.93)

r

where r is the distance between electron and nuclei. In Fig. 3.4, we show the ionization
yield as a function of R for initial electronic states 1so, and 2po, (P, and P,), as well as
the decomposition of P,. In general, the ionization behavior for the short-range potential
is similar to that for Coulomb potential. Strong oscillations as a function of R can still be
found in systems with short-range potentials. Ionization yields with different initial sym-
metries oscillate in the opposite direction. Moreover, the interference gradually decays with
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Figure 3.4: Upper: ionization probability — calculated wusing laser parameters as in
Fig. 3.1 — as a function of R for short-range potentials for gerade (P,) and ungerade (P,)
initial states. Lower: decomposition of P,.

increasing R. The difference though, lies in the details of the structure in the ionization
yield, e.g. peak positions, peak width, etc.. Note that for the particular Yukawa potential
we choose, seeing complicated structures along the R range in Fig. 3.4 is even more sur-
prising since the two centers are completely separated, with sizes of the bound states much
less than R. Therefore, the strong-field two-center effect presented here is independent
of whether the system is Coulombic or not, which makes the result more generalizable to
larger systems, which typically involve interactions more complicated than Coulomb, such
as atomic clusters.

3.2.2 Two center induced CEP effect: heteronuclear diatomic
molecules

To investigate the strong-field two-center effect in a heteronuclear molecule, we study
the R-dependent ionization yield for HD™, where the initial state is centered at either the
proton or the deuteron. Note that since the nuclei are fixed, there is no mass effect on
the ionization yield. Therefore, the proton and deuteron are essentially the same, and will
be labeled by A and B in the following discussion. The only difference though between
ionization of HDT and ionization of Hy with fixed internuclear distance is the initial state.
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For HD™, the initial states are obtained by superposing g and u states of HJ
QJA/B - q”sag iz{p?pﬂu' (3.94)

Such difference, however, captures one of the key heteronuclear characteristics of HD™:
H+D* or H"+D, assuming the molecule is oriented.

In Fig. 3.5, we show the R-dependent ionization yield for HD*. One interesting ob-
servation is that much less interference is found in the R-dependent yield for HD* than
that for Hy, which indicates that the two-center dynamics are less involved in HD* than
Hj given that the fine oscillations, as discussed in Sec. 3.2.1, are attributed to the two-
center dynamics. One should note the results in Fig. 3.5 are exactly the two components:
Py = [dikL[(E|UD )| and Pg = [ dk3 |(E|U®g)|* in Eq. 3.88, which is also two compo-
nents of (P, + P,)/2 in Fig. 3.1.

Different from the case of H , where strong symmetry dependence of ionization is found,
the symmetry for the initial electronic states is broken for heteronuclear HD*. For large
R, one typically would not expect any effects of the initial state on the ionization yield
of HD* since the yield in CW lasers should be invariant to initial electronic localization.
Surprisingly, as seen in Fig. 3.5, the total ionization yield still depends on the initial state.
For instance, 20% contrast is found for the yield at R ~ 50 a.u.. Furthermore, we found this
strong initial-state dependence is due to the CEP effect, which is not so expected in such
case. Because for 800 nm, the CEP effect for such a long pulse — with a FWHM of 10 fs—is
negligible for photodissociation of HJ [36]. We thus do not expect it to play a significant
role in the ionization of HJ, which is in fact confirmed by doing calculations in Fig. 3.1
with different CEP’s. However, by checking the CEP dependence of the ionization yield of
HD* we found the initial-state dependence of the ionization yield is essentially the CEP
dependence, i.e., the yield corresponding to initial-localization on one center approximates
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the yield for initial-localization on the other center, but with a CEP differed by 7. Further,
such CEP dependence becomes weaker with increasing pulse length, e.g. the 20% contrast
at R =~ 50 a.u. in Fig. 3.5 drops to few percent for a longer — 20 fs— pulse. This is expected
since again there should not be any CEP effect in the CW-laser induced ionization. Given
that such a CEP effect is due to the two-center nature of the molecule, we call it the two-
center induced CEP effect. Note that by confirming such two-center induced CEP effect in
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= He*(n=2) + H*, CEP=mt - - - -
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Qa 035 i
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Figure 3.6: Ionization probability as a function of R for HeH'™  with initial state
Het (n=2)+H*", and CEP of 0 and w. The laser parameters are the same as for HD*.

another heteronuclear molecule, i.e. HeH™™ as shown in Fig. 3.6, we thus expect it to exist
in other heteronuclear systems, which do require oriented molecules.

To examine contributions other than the two-center induced CEP effect in Fig. 3.5,
CEP averaging is necessary. Here we direct the readers to Fig. 3.1, where the component
(P, + P,)/2 is simply a two-points (0,m) CEP averaging of the ionization yield for certain
initial electronic localization. One could tell, after the CEP averaging, that the two-center
interference almost disappears at large R, which again indicates that there are negligible
two-center dynamics in heteronuclear diatomic molecular ionization.

3.3 Summary

To summarize, we have investigated molecular ionization at large internuclear separa-
tions and surprisingly discovered two classes of strong-field two-center effects. Specifically,
we have shown a strong symmetry-dependent two-center interference in photoionization of
homonuclear diatomic molecules and the two-center induced CEP effect for heteronuclear
diatomic molecular ionization, both in terms of the total ionization probability. Even though
we mainly study a specific molecule—H; /HD™—in this work, we do expect such strong-field
two-center effects to be carried over to other diatomic systems and potentially be observed
in multi-center physics. Due to the two-center dynamics, such strong-field two-center effects
could lead to system-dependent features, e.g. broad ionization peak at large R in HJ , which
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3.3. Summary

could potentially be measured in practical experiments. Discussions about the application
of the strong-field two-center effects in experiments will be presented in Chapter 5.
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Chapter 4

Low energy structure in strong-field
ionization

The advance of producing few-cycle pulses of infrared wavelengths in experiments has
accelerated the investigation of strong-field ionization in atoms and molecules at laser wave-
length longer than 1 pum [122]. The general understanding of the photoelectron spectra
involves the “direct” and “rescattered” electrons. The “direct” electrons are ionized and
driven by the laser field without re-entering the parent ion and gain a kinetic energy up to
twice the ponderomotive energy (U,). This is what contributes to the low energy spectrum.
Some electrons — moving in the field — may re-collide with the parent ion, thus gaining more
energy — up to 10U,. They are called “rescattered” electrons. The energy span from 2U,, to
10U, is thus the “plateau” in the photoelectron spectra [83, 84]. According to the classical
tunneling model [123], the spectrum for “direct” electrons should smoothly decay at small
photoelectron energies. When it goes to long wavelength regime (>1 pm), the classical
model should be more appropriate to describe the photoelectron spectra than that in the
standard Ti:sapphire laser (wavelength=780 nm). Surprisingly, more recent studies [85, 124]
reported a remarkable peak structure at low energy —normally about few eV —in in the
photoelectron spectra— called the low energy structure (LES)— contradicting the under-
standing of the “direct” electrons in the classical picture.

Previously, the LES has been measured in experiments for molecular ionization, typically
as shown in Fig. 1 in Ref. [85], where a peak-like structure is shown at low photoelectronic
energy (<6 eV). Similar LES are normally expected for atomic and molecular ionization with
laser wavelengths ranging from 1 ym to 3 ym and intensity ranging from tens of TW/cm?
to hundreds of TW/cm?.

In this chapter, we will present, for the first time, an ab initio study of molecular LES by
solving the 3D time-dependent Schrodinger equation. The wavelength dependence, initial-
symmetry dependence as well as dimensionality dependence of the LES will be discussed.
Note that the results shown in this chapter are preliminary and still in progress.
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4.1. Molecular low energy structure

4.1 Molecular low energy structure

We solve the full-dimensional TDSE for H using methods discussed in Sec. 3.1. The final
wave function at the end of the pulse is analyzed by applying the energy analysis documented
in Sec. 3.1.6. In fact, at the first attempt, the photoelectron energy distribution was obtained
by field-free propagating the final wave function of the TDSE — where the bound states are
projected out —followed by a autocorrelation or a Fourier transform to momentum space.
This approach in principle seems smooth and easy. Nevertheless, we found various numerical
issues in the practical implementation, for example the numerical integral involving fast
oscillations in the Fourier transform is barely accurate and the selection of the Fourier
transform window is tricky. Even though, we managed to get the photoelectron spectrum
eventually. It can only reproduce the result for certain perturbative test example. The
accuracy cannot be guaranteed for all kinds of spectra and is rather unstable. We thus
move to the complicated yet exact analysis scheme, as discussed in Sec. 3.1.6.

Since the molecular ionization could be dramatically enhanced at critical distance [4, 5],
we choose the internuclear distance R=10 a.u., where the molecular nature could potentially
be maximized. For laser parameters, we select wavelengths of 1200 nm and 1600 nm, an
intensity of 10 W/cm? for a Gaussian pulse with a FWHM of 2 optical cycles, or 8 fs
for 1200 nm and 10 fs for 1600 nm. As presented in Sec. 3.2.1, the diatomic molecular
ionization bears a strong initial-symmetry dependence. We thus include different initial
symmetries—1so, and 2po,—as well in the discussion.

In Fig. 4.1, we show the normalized photoelectron spectrum at low electronic energy for
Hj. One can see that the calculated photoelectron spectrum for Hi with fixed R at long
wavelength shows clear ATI peaks with dramatic oscillation amplitude. Such pronounced
ATT peaks however might either not show up or show up with a much weaker oscillation am-
plitude in practical experiments. This could be attributed to the finite width of the nuclear
wave function. Assume molecular ionization mainly occurs at small internuclear distances
in experiments where the ionization potential could change dramatically for different R,
therefore averaging the photoelectron spectrum for different internuclear distances would
probably wash out the ATI peaks. Another reason comes from the bandwidth of the pulse.
A shorter pulse typically would reduce the oscillation amplitudes of the ATI peaks.

The existence of the ATI peaks in the spectrum, however, makes it difficult to identify
the LES. To resolve such issue, we smooth the photoelectron spectrum with a Gaussian
kernel. The smoothed spectrum is written as

P(E) =

1 _(B-E)?

/ AEP(B) e a5 (A1)

where P(F) is the actual photoelectron spectrum and AFE equals fiw. As shown in Fig. 4.1,
the smoothed spectrum follows the overall shape of the actual photoelectron spectrum, as
it should be. By examining the smoothed spectra in Fig. 4.1, one could clearly see peak-like
structures at low photoelectron energies (few eV), i.e. the LES are found in the molecular
photoelectron spectra. It is true for different symmetries, and different wavelengths consid-
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Figure 4.1: Comparison of the photoelectron energy distribution for Hy for different initial
states (upper), and for different wavelength(lower). The photoelectron energy distributions
are normalized so that the mazimum value is 0.8. Dashed lines indicate photoelectron spectra
smoothed with Gaussian kernels (see text for details).
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4.1. Molecular low energy structure

ered in this work. The position of the LES can also be readily identified in the smoothed
spectra, which are indicated by arrows in Fig. 4.1. One can easily see, in the upper panel,
the position of the LES for 2po, (~2 eV) somewhat moves to a smaller energy than that
for 1so, (~4 eV). This might be due to the strong-field two-center effect, as discussed in
Sec. 3.2.1, but exact explanation is still not clear.

In general, the position of the LES does depend on the pulse shape [85, 125]. We thus
move to the lower panel in Fig 4.1 for different wavelengths, where both 1200 nm and
1600 nm with a 1so, initial state shows a peak structure at small energy, around 3-4 eV.
The overall shape of the LES is similar in both cases, especially the position of the LES.
One should note though that the LES for 1600 nm is broader than that for 1200 nm, which
coincides with previous experiments of atomic LES [85].

A quantum-orbit—or saddle-point—study [125] of the LES, including the Coulomb effect,
suggested that the main contribution of the LES comes from the quantum trajectory where
the electron’s transverse/lateral momentum is reversed, which confirms the conclusion of
another work [126] that the change of the electrons’ transverse momenta plays a important
role in the understanding of the LES. This suggests that the LES is a dimensionality-
dependent phenomenon, which means at least two dimensions are required in the calculation
to produce the LES.

To examine such dimensionality dependence, we solve a reduce-dimensional TDSE using
the 1D solver in Sec. 6.6. The photoelectron spectrum is obtained by projecting the TDSE
solution onto the energy normalized scattering states. The scattering states are numerically
solved using the R-matrix formalism adapted from Sec. 3.1.6. In Fig. 4.2, we show the ATI
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Figure 4.2: Photoelectron energy distribution for atomic hydrogen restricted to move in
one dimension for 2000 nm, 13.3 fs (2 cycles), 5x 102 W/cm?, with ground initial state.

spectrum for one-dimensional hydrogen at low energy. Overall, one can see the ATI peaks

smoothly decrease without any pronounced peak structure at low energy, which differs from
the 3D calculation. (See Fig. 4 in Ref. [85] for a 3D calculation of the LES for argon.) This
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4.2. Future works for molecular LES

is expected and consistent with previous studies [125, 126] stated above. Note that there are
no clear ATI peaks in Fig. 4.2. This might be an artifact of the 1D model. Generally, atoms
are much easier to ionize in 1D than that in 3D, thus could potentially produce artificial
nonlinearity in the photoelectron spectrum.

To examine the dimensionality dependence of the molecular ionization in Fig. 4.1, a 1D
calculation with similar laser parameters is underway.

4.2 Future works for molecular LES

Due to the sensitivity of molecular ionization to the internuclear distance, either at
critical distance or at large R, it would be interesting to see how the LES evolves as a
function of R. Specifically, such picture will provide an answer to the question: how does
the strong-field two center effect influence the LES? Such a question among others will be
addressed in future works.
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Chapter 5

Pump-probe study of dissociative
ionization of hydrogen molecular ions

As one of the simplest techniques to directly probe electronic and nuclear dynamics on
different time scales, pump-probe spectroscopy is widely used to study ultrafast molecular
structure and dynamics [77-82, 127-130]. In particular, for diatomic molecular ionization,
the pump-probe approach —see Ref. [77, 81] for two examples— has been successfully used
to observe enhanced ionization at critical distances [4, 5].

As discussed in Chapter 3, we have found pronounced strong-field two-center effects at
large internuclear distances for the differential as well as the integral observables in molecular
ionization, providing a new mechanism for the time-resolved dissociative dynamics in laser-
matter interactions. In this chapter, we will perform a pump-probe study of dissociative
ionization of both homo- and hetero-nuclear diatomic molecules, comparing theory with
practical experiments. In the pump-probe scheme, a weak pump pulse is first applied
to dissociate the molecule generating a dissociating wavepacket sitting on the 2po, /2po
channels for Hf /HD™ through one-photon dissociation. This is followed by a probe pulse
delayed by 7 which ionizes the dissociating wavepacket. Large delays—typically in hundreds
of femtoseconds—thus qualitatively correspond to the large internuclear separations. It is
based on the fact that the pump pulse is selected to generate a relatively narrow wavepacket
in space, i.e. with a width of about 10 a.u..

The work in this chapter together with Chapter 3 will appear in our work [92].

5.1 Two-channel dissociation through 3D time-
dependent Schrodinger equation

To calculate the dissociating wavepacket, we solve the 3D time-dependent Schrodinger
equation for Hj /HD™ using methods described in our previous works [104, 116, 131]. Here
a brief summary is provided for completeness. First, the BO potentials and dipole matrix
elements are calculated using the formulation in Ref. [104]. Then, the total wave function
U(R,r,t) is expanded on the BO basis, and the nuclear rotation is treated via an expansion
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5.2. Convolution from R to delay

over symmetrized Wigner D-functions, which reduce to spherical harmonics in this work.
For our pulse parameters, retaining only the 1so, and 2po, channels is a good approxima-
tion [116]. In this case, both the Coriolis and non-Born-Oppenheimer couplings are zero.
The TDSE thus reduces to the coupled radial equations

) (_1 0> J(J+1)

g (L
! 21 OR? + 21 R?

F,—&- D, F., 1
ot +U,B> « 8 Z ac’Laly (5 )

a/

where F,, = F,(R,t) is the nuclear radial wave function. The index « collectively represents
the quantum numbers fJM with J and M the total orbital angular momentum and its
lab-frame z-projection, respectively, and [ the electronic channel label, in this work, § =
1so,, 2po, for Hy or 1so,2po for HDT. Note that non-Born-Oppenheimer terms-— see
Ref. [104] for details—are included in Eq. (5.1) for HD*. The precise form of the dipole
matrix elements D, is given in Ref. [116]. We use a Gaussian pulse polarized along the lab-
frame z-direction, as for the probe pulse, with a full width of the intensity at half maximum
rwam Of 20 fs, a wavelength of 780 nm, and a intensity of 1 x 10 W /cm?.

To solve Eq. (5.1), we use the 5th-order B-Splines on a WKB grid for the radial coor-
dinate, and the iterative method described in Ref. [115] and Sec. 3.1.3 for the time evolu-
tion [113]. The WKB grid uses 5 splines per WKB wavelength, with a maximum energy of
0.15 a.u. resolved. The grid extends from R=0.5 a.u. to R=200 a.u.. Time evolution starts
at tyin when the pulse envelope first reaches 10 W/cm? and ends at ty when it reaches
10 W/cm?, with a time step of 0.02 a.u.. The probability density is calculated every 10 fs
from 7=0 to 7=300 fs. All the dissociation results shown in this work are tested to be
converged to at least 4 significant digits.

5.2 Convolution from R to delay

With the dissociating wavepacket calculated as a function of R and 7, we then perform
the convolution from the R-dependent ionization yield for H /HD™ — shown in Chapter 3 —
to the 7-dependent yield. The final wave function at the end of the probe pulse is written
as

Uy = 3 Fos(Ror) Yo (0)B4(Rs . 1) (5.2)
JB

where v indicate initial vibrational state, CIDg(R;'r) is the final electronic wave function with
nuclei fixed for the initial electronic state 5. Note that we assume frozen nuclei during the
ionization. Therefore, in Eq. 5.2, only @’;(R;r, t) propagates in the probe pulse. The total
ionization yield as a function of R and 7, therefore, is written as:

PAR7.0 = 0) = [ dBI Y FusalR.)Yao(0) B[ (Rir) (5.3)
JpB
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5.2. Convolution from R to delay

where |E> is the energy normalized scattering state with fixed nuclei. Note the angular cut
for 6 has been taken — 6 = 0 — along the laser polarization since nuclear angular information
is not available in calculations for the ionization process. However, we do not expect such
approximation to make a qualitative change for the final observables. Because first, the
field-free rotational dynamics effect after the pump pulse is small (~4%). (See panel (b) in
Fig. 5 in Ref. [132]), and second we estimate pump-pulse induced alignment to be <cos?0>~
0.5x, with which we do not have special expectation that the angular cut—or isotropic
assumption — will not work.

For Hj, there is only one channel involved in the dissociation process, namely 2po, or
u. Eq. (5.3) can thus be simplified,

Py(R,7,0 =0) = | > Fonu(R,7)Ys(0) / dE|(E|®4(R;r))[? (5.4)
J

The total yield as a function of 7 can be obtained by integrating over R in Eq. (5.4) and
averaging the initial vibrational states with the Franck-Condon distribution,

P(r)=> FC, / dRP,(R, 7,0 = 0) (5.5)

where F'C, is the Franck-Condon factor for initial vibrational states.

For HD™, however, the heteronuclear nature does complicate things. First, due to non-
adiabatic couplings between the 1so and 2po, both channels are populated during the
dissociation. Thus Eq. (5.3) can not be simplified. The 7-dependent ionization yield is
obtained through Eq. (5.5) but with P,(R,7,6 = 0) evaluated directly from Eq. (5.3).
Second, the two-center induced CEP effect on the R-dependent ionization yield, as discussed
in Chapter 3, indicates that a CEP averaging is necessary for HD*. We thus perform a two-
point — ¢ = 0, 7 — CEP averaging for 7-dependent yield in Eq. 5.5.

Also, by assuming an isotropic angular distribution of the dissociating wavepacket, the
orientation effect must be taken into account for HD*, which is not an issue for H. For-
tunately, the orientation averaging—6 = 0, 7 —in this case coincides with the two-point —
¢ = 0,7— CEP averaging. Therefore, after the CEP averaging, the orientation effect no
longer exists.

In Fig. 5.1, we show the 7-dependent ionization probability for both Hf and HDT.
Surprisingly, we see broad ionization peaks at large delay — from about 120 fs to 220 fs—
for both cases. The peak of the ionization yield is about 10%~15% higher than the yield at
7 = 300 fs, the largest delay considered in this work. The broad peak in the ionization yield
for HD™ is shifted to larger delays than that for Hy due to the heavier mass moving slower.
For Hy, it is not difficult to connect the broad ionization peak at large delay in Fig. 5.1
to that at large R for P, in Fig. 3.1. However, the strong-field two-center interference in
R-direction does not survive in the 7-dependent ionization yield, partially due to the finite
width of the dissociating wavepacket, which is comparable to the oscillation period in R-
dependent yield. Also the Franck-Condon averaging, to some extent, helps wash out the
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Figure 5.1: Ionization yield as a function of pump-probe delay T for Hy and HD™.

interference pattern in the convolution.

For HD™", surprisingly, the broad ionization peak remains even though both channels are
involved in the ionization process due to non-adiabatic couplings. Coherent superposition
of the two channels are carried out in the convolution from R to 7. The observation of the
final time-resolved ionization yield possessing a broad peak in HD™ might be attributed to
the strong-field two-center effect in general. Yet, the details are unclear. This should be
regarded as an open question for the readers.

5.3 Comparison with experiments

The pump-probe experiment for the dissociative ionization of HDT was done by Dr.
Ben-Itzhak’s group at J.R. Macdonald Laboratory, Kansas State University. A detailed
description of the experimental method can be found in Ref. [133]. The experiments in-
volved linear polarized 23 fs, 790 nm pulses, and the pump- and probe-pulse intensities were
7.6x10 and 3.3x 10 W/cm?, respectively. In experiments, however, there are two differ-
ent ionization channels during the probe: ionization of the bound electronic wavepacket and
ionization of the dissociating wavepacket, where the latter one is the focus of this work. The
experimental results are shown in Fig. 5.2, where signals of the nuclear ion are measured to
represent the ionization yield.

By comparing the theory in Fig. 5.1 and experiments in Fig. 5.2(c), one can readily
identify a broad ionization peak between 100 fs and 300 fs in both cases, which is fairly
impressive given the ionization occurs at such large internuclear distances, where molecular
physics is not so expected, as discussed in Chapter 3. To move beyond such qualitative
agreement, we further examine the peak position of the broad ionization peak, where theory
predicts 7 & 170 fs while experiment locates the ionization peak at 7 &~ 250 fs. We also note
that the enhancement between 7 = 100 fs and 7 = 300 fs are different between experiments
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Figure 5.2: (a,b) The yield of H* + D' events mapped as a function the pump-probe
delay and KER. The high-KER component is due to the ionization of bound HD'. The
tail extending to lower KER is due to ionization of the dissociating HD' wavepacket, and
it exhibits a broad enhancement around 250fs. (c¢) The integrated yield in “tail” associated
with ionization of the dissociating wavepacket indicates a 1.75 = 0.33 times enhancement in
the ionization of the dissociating wavepacket between 200 and 300-fs delay.

and theory.

To explain such discrepancy, it is now a good time to review those approximations in
calculations, which might provide hints for what one should expect for experiments. First,
the nuclei are fixed in the ionization calculation, assuming the nuclei are moving much slower
than the electron, which should be reasonable from a qualitative perspective. However,
during the probe pulse —with a FWHM of 10 fs and a total propagation time of 41 fs—the
nuclei could still have an appreciable displacement. We show, in Fig. 5.3, a dissociating
wavepacket —on the 2po, channel —for the dominant initial vibrational state v = 9 in
Hj dissociation, where different pump-probe delays are shown. One could readily notice
that the wavepacket moves about 13 a.u. during the probe pulse. If the nuclear motion is
included in the ionization process, we would expect the broad peak in the delay-dependent
ionization yield in Fig. 5.1 to be even broader.

The second approximation in the calculation is that we do not include the nuclear angular
dependence in the ionization process, where we simply take an angular cut along the laser
polarization direction. This indicates that the ionization for lower effective intensity are
not included in the calculation. Another intensity-relevant mismatch between experiments
and theory is the intensity averaging, which is omitted due to limited computing resources.
This also leads us to lower intensities. To our knowledge, changing the intensity could
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shift the peak position of the ionization yield in Fig. 5.1. In fact, we have tried one other
higher intensity for the ionization calculations and seen the ionization peak slightly moving
to smaller 7. Our calculation also indicates that the enhancement of ionization at large 7
is sensitive to the pulse length. With these factors in mind, we would therefore expect the
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Figure 5.3: Dissociation wavepacket on 2po,, channel with the initial vibrational state v =9,
by a Gaussian pulse with a FWHM of 20 fs, a wavelength of 780 nm, and an intensity of
1 x 10" W/em?, at delay 7 = 220, 230, 240, 260 fs.

width, the position and the enhancement of the ionization peak in term of 7 to be different in
experiments from theory, which—to some extent —explains the quantitative gap between
the theory (Fig. 5.1) and experiments (Fig. 5.2)(c).

Finally, in theory — as stated above — the oscillation feature found in Fig. 3.1 is washed
out in the 7-dependent yield after taking the dissociating wavepacket and Franck-Condon
averaging into account. In Fig. 5.2(c), however, some oscillation structures can be found
in the 7-dependent yield in the experiment, which should be attributed to the strong-field
two-center effects if they are physical since the error bar in this experiment is comparable to
the oscillation amplitude. We note, in principle, such strong-field two-center interference in
the total yield can be measured by a sophisticated experimental apparatus, e.g. selecting a
pump pulse with much smaller bandwidth—thus significantly reduced wavepacket width—in
a vibronic-resolved experiment.
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Chapter 6

An optimized absorbing potential for
ultrafast, strong-field problems

6.1 An introduction to absorbing potentials

To theoretically describe highly nonperturbative interactions—such as strong-field
physics —in a fully quantitative manner, the best option is usually to numerically solve
the time-dependent Schrédinger equation (TDSE). One of the most popular approaches
to practically solving the TDSE represents the wave function on a finite spatial grid with
boundary conditions applied at its edges. In general, such a grid needs to be large enough
so that there are no reflections from the boundaries which behave as infinitely hard walls.
Otherwise, the reflections might lead to unphysical changes in the observables. For example,
an ionized wavepacket reflected from the boundary back to the origin might be driven by
the laser field into bound states, thus reducing the total ionization yield.

The most direct way to avoid such spurious reflections is to move the boundary further
away. Since the grid density is fixed physically by the highest energy, however, this requires
more grid points which, in turn, incurs a greater computational cost. In fact, the large
grids required to describe current experiments have become a key bottleneck to improving
the numerical efficiency of solving the TDSE, especially as laser wavelengths push beyond
800 nm.

Fortunately, if the wave function at large distances can easily be reconstructed or is
not of interest, it can be absorbed at a sufficiently large distance that it does not affect the
dynamics at small distances. Applying such absorption techniques, one can generally reduce
the box size significantly. The absorb-and-reconstruct strategy was probably first developed
by Heather and Metiu [134] which they demonstrated for strong-field dissociation. Their
work has been adopted in hundreds of papers since. A new implementation following this
philosophy [135, 136] has proven similarly effective.

Among the various methods to effect absorption at the boundary, the most widely used —
and probably the simplest —method is the complex absorbing potential (CAP) [137-150]
or the closely related masking function [151]. Another increasingly popular absorbing-
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6.1. An introduction to absorbing potentials

boundary technique is exterior complex scaling [152-156], where one rotates the coordi-
nate into the complex plane at large distances. Other, less common, methods to treat the
boundary reflection include time-dependent coordinate scaling [157-159], the interaction
representation [160-162], and Siegert-state expansions [163]. While these methods are lo-
cal in time and vary from exact to approximate, it is also possible to construct a perfectly
transparent boundary using Feshbach projection techniques [146]. The disadvantage of such
methods is that they require the wave function from previous times and are thus nonlocal
in time. In this work, we will focus on the CAP due to its popularity and the simplicity of
its implementation. Our goals are to make it both more efficient and more effective.

Although the CAPs utilized in previous studies are predominantly polynomials [141,
142, 145-147, 149, 150], other types of absorbing potentials such as cos? [148], Pschl-Teller
(1/ cosh?)[137], and a pseudo-exponential [exp(—2~")] [138, 139] have also been used. In
most of these works, the CAP’s performance is examined by studying the dependence of the
reflection R and transmission T coefficients on the energy. Riss and Meyer [141], for instance,
carefully investigated the properties of R and T for polynomial CAPs, finding some difficulty
in treating low energies. They characterized their optimized potential parameters in terms
of the absorbed energy ratio Eyax/FEmin, where Eny, and Ep.x indicate the minimum and
maximum energies, respectively, for which absorption exceeds a given value. The maximum
ratio they considered, 30, is too small, however, for typical strong-field electronic dynamics.
We will, for instance, consider Epax/Fmin=500. Vibok and Balint-Kurti [138, 139] presented
a more optimal CAP —the exp(—z~") type — for heavy particles, but the range of absorbed
energies was still insufficient for strong-field problems.

Even though R and T provide a clear, quantitative measure of performance, studies of
CAPs in strong-field problems utilizing them can hardly be found. Their absence is likely
due to the inherent time-dependent nature of the strong-field problem and the authors’
consequent focus on wavepacket behavior, losing track of the connection with R and 7. In
contrast, we will adopt R as the figure of merit for designing our absorbing potentials for the
strong-field problem, incorporating it as a critical piece in our systematic CAP construction
method.

The major advantage of the CAP is its simplicity. The major disadvantage is that it
has required a relatively large spatial range to be effective, thus consuming non-negligible
computational resources. In this chapter, we improve the performance of the CAP and sys-
tematically design a more optimal —yet general —CAP for strong-field processes. Specifi-
cally, we provide an optimized CAP with a factor of 3-4 reduction in the absorption range
compared to some widely-used CAPs [146]. Our optimized CAP absorbs at a prescribed
level over a large enough energy range to be useful for strong-field processes.

To be clear, while we optimize our CAP for the strong-field problem, it can be readily
adapted and re-optimized for other problems following the procedures we outline below.
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Figure 6.1: The scheme used to characterize a CAP and determine its reflection coeffi-
cient. The edge of the grid is taken to be x = 0, and we require )(x=0) = 0 as is typical in
solving the TDSE. We assume incidence from the right as indicated. We define the absorp-
tion range xgr from the distance at which the absorbing potential decreases beyond a cutoff
value V, and can be neglected, |V (xg)| = V..

6.2 Theoretical background

Since a time-dependent wavepacket can always be written as a superposition of the
time-independent scattering states, we use the time-independent reflection coefficient as
a quantitative tool for characterizing and designing an optimal CAP. We will require the
CAP’s reflection coefficient to remain below a cutoff value R., R < R,, over a given energy
range Eoin < F < Fhax. Since the spatial region devoted to the CAP near the edge of the
grid is unphysical, we wish to minimize the computing resources it consumes as much as
possible. Therefore, in this work, our optimization efforts focus on reducing the absorption
range rg, as defined in Fig. 6.1, while meeting the absorption criteria above.

We study one-dimensional CAPs since they can be easily adapted to higher dimensions,
obtaining the reflection coefficient R by solving the Schrédinger equation,

h? d?
- - F 1
s V()| v = By, (61)
as indicated schematically in Fig. 6.1. We consider the potential V' (z) to be one of the CAPs
listed in Table 6.1. The shapes of all the CAPs considered are generically as in Fig. 6.1 and
are controlled by the following parameters: a? is the strength of the potential, 3 mainly
determines its width, and z is a shift. These are the parameters that will be varied to
optimize the CAPs.
The JWKB-based CAP obtained by Manolopoulos [144] —labeled M-JWKB in Ta-
ble 6.1 —is qualitatively different from the others, however, in that it requires no opti-
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6.2. Theoretical background

Table 6.1: The CAPs considered in this work, both from the literature and proposed in this

work.
CAP type V(x) (units of h?/2m)
quadratic [141, 146] —ia?(z — x0)?
cosine masking function [151] —ia? log{sec [(zo — z)/B]}
M-JWKB [144] k2. e(x)
quartic [141, 146] —ia?(z — x9)?
pseudo-exponential [138] —ia2e A/ (@0=2)
Poschl-Teller [137] —ia®sech?®|(z + x0) /]
single-exponential (present) —a?e /8
double-exponential (present) —a2e®/28) —jae=/B
double-sinh (present) —a?/(2sinh[z/(28)]) — ia2/(2sinh[z/(28)])?

mization. This simplicity is certainly one of its strengths and derives from the fact that its
reflection coefficient effectively decreases monotonically from unity at zero energy to e~ V2r/s
at infinite energy. Its explicit expression is in terms of the Jacobi elliptic function cn(u, k),

() = /e [26 ki (w0 — 2)/V2,1/VZ] — 1, (6.2)

with 0=2.622/(20kmin) [144] where kpin=+/2mEmm/h?. One simply chooses § from the
condition R(Fuyin) = Re.

The first five CAPs in the table are defined to be non-zero only for 0 < x < xg and
to vanish identically for x > x,. The remaining CAPs are defined for all x, but vanish
exponentially with z. The first four CAPs are some of the most commonly used, with the
cosine masking function recast as a CAP using eV @A ~ cos'/8[(z — 2¢)/8].

We include the Poschl-Teller potential because it is well known to be reflectionless for
specific real values of ia?, suggesting that it might have advantageous properties as a CAP.
It can be shown analytically, however, that this property no longer holds for complex ia?.
In the process of optimizing it for the present purposes, we found that shifting its center off
the grid minimized xg, leaving only its exponential tail on the grid. This result suggested
using instead the simpler family of exponential CAPs included in the table.

We calculate the reflection coefficient numerically using the finite-element discrete-
variable representation (FEDVR) [164, 165] and eigenchannel R-matrix method [90]. See
Appendix C.2 and Sec. 3.1.6 for details. The reflection coefficient can also be calculated
analytically for several of the potentials in Table 6.1. However, we give the analytic solu-
tions (derivations in the appendices) only for the CAPs we propose —namely, the single-
exponential and double-exponential CAPs. The double-sinh potential has no analytic solu-
tion to the best of our knowledge. In these cases, we confirmed that the R-matrix reflection
coefficients agreed with the analytical R to several significant digits.

Since our primary goal is to systematically design an absorbing potential for the strong-
field ionization problem with predetermined properties, we will use atomic units for the
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remainder of our discussion. Our results can be readily applied to other problems, though,
using the derivations in the appendices in which the masses and SI units are explicitly
retained.

6.3 Optimization of proposed CAPs

We demonstrate our optimization procedure in detail below first for the single-
exponential CAP since it is the simplest to optimize. It also establishes a few key results
important for the optimization of our recommended CAPs: the double-exponential and
double-sinh potentials. Whether the solution is analytical or numerical, the procedure we
describe for optimization is the same and can be applied to other CAPs as well. In fact,
this is what we have done for the comparison in Sec. 6.4.

The values of R., Funin, and E., that we will focus on for this discussion are

R. =103, Epim = 0.006a.u., and Eyax = 3a.u. (6.3)

We chose this energy range to cover 0.1hw < E < 14U, for an 800-nm laser pulse at
10" W /em® (U, is the pondermotive energy: U, = I/4w? with I the intensity and w the
laser frequency). This energy range includes essentially all photoelectrons one would expect
to be produced in this typical pulse. In momentum, which is more convenient for the
analytical R, this range corresponds to

kmin = 0.110 a.u. and k. = 2.45 a.u. (6.4)

Note that 14U, exceeds the highest-energy electrons one would normally expect in a strong-
field problem, but we will show below that this choice has little effect on the resulting xpy.
Finally, we use V,=10"*a.u. to define zg from |V (zg)|=V..

6.3.1 Single-exponential CAP
We take the single-exponential CAP to have the form

h2a?

2m

V(iz) = ———e /" (6.5)

Its reflection coefficient, as shown in Appendix A.1, is

2

s (20 , (6.6)

J_2irc (2X)

R= e4K arg \2

where the unitless momentum is K = kf with k = v/2F and the unitless potential strength
is A = af. To achieve our goal of minimizing xr, we must find the optimal A and /.
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Figure 6.2: FEzamples of the reflection coefficient R(K) for a single-exponential CAP with
different potential strengths. The predicted small-K behavior, e=*™%  is shown for compari-
son. The unitless limits Ky, and Kyax for which R(K) < R, holds are also indicated.

Purely imaginary potential

For a purely imaginary potential, \? o 7, Fig. 6.2 shows the behavior of R as a function
of K. As the figure suggests, one can show from Eq. (6.6) that

R—>K - e 2K, (6.7)
—

As can also be seen in the figure, increasing the strength |\?| of the CAP means this
exponential decrease continues to larger K and the large-K tail decreases.
We can thus use Eq. (6.7) to write

K = —% log R., (6.8)
giving
Kiyin = 1.10
for R, = 1073, From Kpin = kminf3, the scale 8 is therefore determined:
Kinin

kmin

=10.0a.u..

b=
We can now find the required \? from

kmax
R<KmaX) = R(k ] Kmin) = Rc (69)
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since K ax=Fmax/3. Solving this equation gives
M\ =84.7i and vz = 83.4a.u. (6.10)

This example illustrates the fact that zxz can only be substantially decreased if [ is
decreased. Thus, K, and k.;, determine zgr, and K, is set by the form of the CAP
and its parameters. In general, the smaller k,,;, is, the more difficult absorption becomes.
Roughly speaking, this behavior can be traced to the need for xr to be large enough for the
potential to contain the longest wavelength to be absorbed.

Complex potential

Given k., decreasing (8 further requires decreasing K,,;,. This is not possible with a
purely imaginary single-exponential CAP, so we must allow A? to be complex.

The reflection coefficient in Eq. (6.6) still holds for complex A\? and looks generically like
those displayed in Fig. 6.2 — with the exception that

R 6747rK+4Karg/\2. (611)
K—0

This small- K behavior suggests that the best way to reduce K,,;, —and thus f and xp—is
to make arg A\? small (since arg A must be positive to have absorption). That is, we should
make Re A\? much larger than Im A2, The fastest decay one can achieve with this approach
is e7#™K which, in turn, sets the limit on how small K., can be.

The physical origin of this faster low-K decrease is clear: the real part of the poten-
tial is attractive and accelerates the wave before it encounters the imaginary part of the
potential [146]. Absorption thus occurs at a shorter wavelength where absorption can be
efficient with a much smaller 2. Since Im A? must be large enough for sufficient absorption,
however, arg \> cannot be zero. The optimum value will be a compromise between these
two factors.

To determine the magnitude of the improvement in xp, we use A = |Ae™X and the
small- K behavior in Eq. (6.11) to write

log R,

Kmin = s -
4(2x — )

(6.12)

From this, we can find $ and K, for a given y. Combining everything and simplifying
reduces the problem to solving Eq. (6.9) for |A| with R(K) from Eq. (6.6). The resulting
xr as a function of x is shown in Fig. 6.3.

The figure shows that the optimization problem has been reduced to a one-dimensional
minimization of xz with respect to y. As expected, the solution,

rp = 5H7.1la.u. (6.13)

at x=0.055m (with |A\?| = 165), lies at small x. Adding a real part to the absorbing potential
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Figure 6.3: Absorption range and potential depth for a single-exponential CAP, showing
their dependence on the complex phase of X. The magnitude of X is determined at each x
by solving Eq. (6.9).

has thus reduced the absorption range by 32% over the purely imaginary single-exponential
CAP.

Figure 6.3 also shows that at the optimal xg, the potential is 2.62a.u. deep. This is
roughly equal to E.., leading to local kinetic energies of approximately 2F, ., and thus
requiring a much denser spatial grid in the absorption region. Guided by the figure, however,
we see that a modest few-percent increase in xp to 58.9a.u. (A2 = 97¢"™/%) reduces |V (0)]
to 1.25 a.u., making it more computationally attractive. Further reduction in |V'(0)| can, of
course, be achieved —at the expense of xp.

Figure 6.4 shows the optimum R for both the purely imaginary single-exponential CAP
of the previous section and the complex single-exponential CAP of the present section. The
coefficients satisfy R < R, for different ranges of the scaled momentum K but the same
range of the physical momentum k. The range of K covered by the complex CAP is smaller
than for the imaginary CAP by the ratio of their respective Kp,’s.

6.3.2 Double-exponential CAP

It has long been known, of course, that adding a real potential improves CAP perfor-
mance [146]. And, given the improvement to the single-exponential CAP afforded by doing
s0, it is natural to ask whether we can do even better with a more flexible complex potential.

Since we want to retain the ability to calculate R analytically and since the real part
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Figure 6.4: The optimum reflection coefficients for purely imaginary and complex single-
exponential CAPs as a function of the unitless momentum.

must have longer range than the imaginary part, we choose the CAP to be

h*a? h*a
Vig) = ———"Le—2/28 _ ;2 2 —z/f
(x) o € g€ : (6.14)

The reflection coefficient, as shown in Appendix A.2, can be written in terms of the confluent
hypergeometric function as

VFi(n 4 20K, 1+ 4iK, —493),) |2

- 1
B 1Fi(n —2iK,1 — 4K, —4~3),) (6.15)
where
K:k’ﬁ )\lzalﬁ >\2:a26
. )\2 1
— i /4 _ Al Y
v=e€ o 0 ] y

A1 and )\; independent

Given the extra potential parameter, optimizing the double-exponential CAP is clearly
more challenging than for the single-exponential CAP. And, the complicated expression for
R only exacerbates the task. It would therefore be convenient to find a regime in which \;
and A are independent since this would greatly simplify the optimization.

To this end, we show in Fig. 6.5 the dependence of R on A\; and \,. Generally speaking,
A1 — the coefficient of the longer-ranged, real part of V' — controls the low-energy behavior,
while Ay — the coefficient of the shorter-ranged, imaginary part of V' — controls the high-
energy behavior. The underlying physical reasons for these connections are the same as
discussed for the single-exponential CAP.
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Figure 6.5: Illustration of the dependence of R for a double-exponential CAP on the po-
tential strength: (a) A\ dependence for \3 = 28, and (b) Ny dependence for \2 = 1.
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Figure 6.5 also shows that for A\; and A, large enough,
R — e 5K (6.16)

for R ~ R.. This behavior immediately shows the benefit of the double exponential since it
falls faster than is possible with a single exponential, Eq. (6.11), leading to a smaller K,
and thus a smaller xg.

In the regime that Eq. (6.16) holds, K, is independent of A\; and Ay and takes the value

1

Kmin -
8w

log R,. (6.17)
For R,.=1073, Kynin=0.275 which is indeed much smaller than was possible with the single-
exponential CAP.

Minimizing xg now requires fixing A\; to a large enough value that Eq. (6.16) holds
(A2 > 6 is typically sufficient) and solving Eq. (6.9) for Ay. Using R from Eq. (6.15) and

~Y

K ax=06.125, we find, for instance,
A} =6 and \5 = 22.6, leading to zp = 42.4a.u. (6.18)

and the reflection coefficient shown in Fig. 6.6. There are, however, any number of com-
binations of A; and A\, that satisfy Eq. (6.9). Since zg for the double-exponential CAP is
determined to a very good approximation by A; alone, though, one would typically choose
the smallest possible A\; to obtain the smallest possible xi. At the same time, it should be
noted that xpr o< log A1, so it is not terribly sensitive to small changes in A;. Choosing the
smallest A1, however, also ensures that |V (0)| is minimized, thereby keeping the numerical
cost down.

A1 and A\; not independent

Although zg=42.4a.u. is a significant improvement over the single-exponential result,
rr=57.1a.u., we can do better. The way to do this is to consider smaller A\? where there
are particular combinations of A\; and Ay for which R falls off faster than Eq. (6.16). Such
behavior permits smaller K, and thus smaller zgz. Of course, A\; and Ay are no longer
independent in this regime, but it is still true that \; largely —but not as completely as
above — controls Ky, and Ao, Kax.

Figure 6.6 illustrates the small-K behavior that we want to take advantage of. For this
combination of \; and A, R dips below the exponential from Eq. (6.16) for R ~ R, as seen
in the figure. At this and other such parameter combinations, a local minimum develops in
R at K near K, as shown in the figure. In practice, one searches for these \; combinations
to minimize K ,;, while simultaneously ensuring that the local maximum in R remains below
R..

To find the minimum value of K ;,, we take advantage of its weak dependence on A,
by first minimizing with respect to A; for some reasonable choice of A\s. With this value
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Figure 6.6: The optimum reflection coefficient as a function of the unitless momentum
for the double-exponential CAP with Ay and Ay both independent and not independent.

of A;, we then solve Eq. (6.9) for Ay. Since there is a weak dependence on A, though,
K nin must be re-minimized for A\; with this new A\,. Then, Eq. (6.9) must again be solved
and the iteration continued until sufficient convergence in A\; and \; is obtained. Typically,
only a handful of iterations are necessary to find 3 digits. More sophisticated methods of
performing the constrained minimization of xg(A1, A2) could, of course, be employed as well.

As above, there are many combinations of A\; and Ay that give the smallest K, Kunin =
0.197. But, our ultimate goal of minimizing xy leads us to choose the smallest A\; possible.
One convenient example for the optimal values is

A =2.69 and \2 = 16.3,
which leads to
S =1"79a.u. and xr = 29.9a.u..

The corresponding R is shown in Fig. 6.6. Although difficult to prove, this choice appears
to be the global optimum for this choice of Fi,, Enax, and R..

6.3.3 Double-sinh CAP

While straightforward, the optimization procedure outlined above for achieving such a
substantial reduction in x g is somewhat tedious. Fortunately, it needs to be done only once
for a given R, and ratio Eyax/Fmin. Should one wish to change R. or only one of the energy
limits, however, re-optimization is required. It turns out, though, that the latter limitation
can be lifted without compromising on xg.

In general, one expects the reflection coefficient to be unity for £ = 0 and £ — oo, and
this is the behavior displayed by all the reflection coefficients we have shown. Consequently,
the reflection coefficient necessarily satisfies R(E) = R, at both low and high energies. As
mentioned in Sec. 6.2, however, the M-JWKB CAP [144] produces an R that decreases
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Figure 6.7: Optimal R for the double-sinh CAP along with the optimal R for the double-
exponential CAP for comparison using parameters in Table 6.2, both as a function of the
unitless momentum.

more-or-less monotonically to a value controllably less than unity at infinite energy. Its
parameters thus do not depend on FE,,,,, removing the need for re-optimizing with changes
in either F;, or Fy... Unfortunately, g for the M-JWKB CAP turns out to be 118 a.u.
because its R falls off relatively slowly at low energies, leading to a large K ,.

To retain both the small g found for the double-exponential CAP and the advantageous
high-energy behavior of the M-JWKB CAP, we have designed the double-sinh CAP:
o3 CR* Al

Vi) = 2m 2 sinh% 22m 4 sinhQ% ' (6.19)
At large distances, this CAP reduces exactly to the double-exponential CAP, thus possessing
its nice long-wavelength, low-energy properties. At short distances, this CAP is dominated
by the —ia2/z? divergence of the second term. It is this behavior that is inspired by the
M-JWKB CAP and that leads to similarly desirable high-energy behavior.

Unlike the single- and double-exponential CAPs, R for the double-sinh potential is not
analytic as far as we know (unless a;=0—in which case, it reduces to one-half of the gener-
alized Péschl-Teller potential [166]). We must thus calculate R numerically, and the optimal
result is shown in Fig. 6.7 along with the optimal double-exponential result for comparison.
Their absorption ranges are xp=28.8a.u. and rp=29.9a.u., respectively, confirming that
there is no compromise on xr. We note that the qualitative behavior of the double-sinh R
shown is typical for this CAP.

From the figure, the similarity of the two reflection coefficients at low energies is evident.
Specifically, the value of K,,;, — which has the biggest influence on xr —is nearly identical
between the two. In fact, the optimal values of A; from the double-exponential CAP provide
a very good initial guess for the optimization of the double-sinh CAP.

Also evident from Fig. 6.7 is the difference in the two CAPs’ R at high energies. Where
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the double-exponential R rises back towards unity at high energies, the double-sinh R asymp-
totes to a value less than unity. This value can be approximately calculated, by considering
only the —ia3/z?* behavior of V, to be

R o/, (620
K—o00
consistent with the limiting behavior found in Ref. [144].

Given the discussion in Sec. 6.3.1, one might wonder whether allowing the \; to be
complex —rather than real as assumed so far — could improve the CAPs’ performance even
further. The simple answer is that it can. In fact, the double-sinh CAP plotted in Fig. 6.7
has complex ;. We could not, however, find a more optimal double-exponential CAP by
allowing \; to be complex for the present En, Emax, and R. (see, however, Sec. 6.5.2).

Incidentally, Eq. (6.20) gives the reflection coefficient at all energies for a CAP that has
the form —ia3/z? everywhere (see Appendix A.3). In particular, the reflection coefficient is
not unity at zero energy like the other CAPs we consider and thus corresponds to K,;,=0.
In many ways, such a CAP would be ideal —no optimization would be necessary and A,
could simply be calculated by setting Eq. (6.20) to R.. Unfortunately, xg=110a.u. for such
a CAP, rendering it uncompetitive with our best CAP — although better than the quadratic
CAP often used in the literature (see Table 6.2).

One possible solution would be to simply cut the —ia3/z?* CAP off at some zy. Intu-
itively, this should affect the low-energy behavior of R for wavelengths comparable to and
larger than . The reflection coefficient in this case is again analytic (see Appendix A.3),
and it can be seen after some exploration that while this expectation is true, R falls off
at small k& more-or-less like 1/(kxg)* rather than like the exponential decrease of our best
CAPs. Since one chooses zq for this CAP from

R(k;minxO) ~ 1/(kminwO)4 = Rm (621)

2o — and thus xz — winds up being large. For instance, xz=>57 a.u. for R, = 1073, which is
about double that for our best CAP.

In the context of this discussion, the double-sinh CAP can be seen as providing a smooth
cutoff of the —iaZ/z*> CAP and similarly leads to modifications of Eq. (6.20) at small
energies.

Fall-to-the-center problem

Whenever an attractive 1/z% potential is used, one must take care to consider the “fall-
to-the-center” problem. The real-valued version of such potentials are known [167] to have
an infinite number of bound states with energies stretching to —oo—a fact reflected in the
wave function’s oscillating an infinite number of times as x — 0—so long as the potential
strength exceeds a critical value. This is the quantum-mechanical analog of the classical fall-
to-the-center problem in such potentials. Moreover, this effect is possible even for potentials
that are only 1/2? for small z like our double-sinh CAP.
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6.3. Optimization of proposed CAPs

No finite numerical representation —such as the grid methods common for TDSE
solvers— can represent the infinity of oscillations in the fall-to-the-center regime, and any
attempt to accurately represent even a finite number of them will be very costly computa-
tionally.

To understand how to avoid this regime, we must examine the small-x behavior of the
wave function. From Appendix A.3 and using its notation, we see that

w —_— Z%—F(GT_'C’”JD/\/? exp [Zw log Z:| .

z—0 \/§

This solution assumes a, > |a;| and shows that even for a nearly purely imaginary CAP,
a;=0, the wave function oscillates an infinity of times as z — 0. Empirically, choosing
a, > |a;| so that the first term above suppresses the wave function for z — 0 is sufficient
to prevent numerical difficulties. Consequently, we have chosen a;=0, which is equivalent to

N=a2—i/4.

6.3.4 Complex boundary condition

We have so far assumed that the wave function vanishes on the boundary at =z = 0 as is
typical for most TDSE solvers. But, if the numerical method used to solve the TDSE is flex-
ible enough to allow complex log-derivative boundary conditions, then additional absorption
can be built in at very little additional cost.

The effect of the complex boundary condition,

1 dy

——=5b 6.22
can be most easily illustrated for a free particle. If one imposes Eq. (6.22) at =0 as in
Fig. 6.1, but with no potential, one obtains the reflection coefficient (see Appendix B for

more details, including the effect on bound-state energies)

B+iK|?

with B = b5. To have absorption, we must have Im B < 0; to have maximum absorption,
we must have Re B=0. Thus, setting B = —iK, we see that R = 0 at K = K,. Such a
boundary condition therefore makes the boundary perfectly transparent to an incident plane
wave of momentum K, and partially transparent to other momenta. Moreover, it does so
with xz=0.

Unfortunately, this boundary condition by itself cannot compete with the CAPs since
R cannot be made small enough over a large enough energy range. Since implementing it,
in principle, requires no change in the spatial grid, though, the possibility of combining it
with a CAP and reducing xg further is worth exploring.

At low energies, the CAP will dominate the behavior of R, and the boundary condition
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Figure 6.8: Reflection coefficient as a function of the unitless momentum for a single-
exponential CAP with complex boundary conditions: purely imaginary \*> and complex \2.

will have little influence. Therefore, one should try to use the boundary condition to modify
the high-energy R where it can dominate the behavior. In general, choosing B ~ —iK .«
is a good initial guess and allows the reduction of A\—and therefore xg.

It should be noted that a complex boundary condition cannot be used with the double-
sinh CAP due to its singularity at the boundary. Like the centrifugal potential that it
resembles, the double-sinh CAP has one regular solution that vanishes at the boundary and
one irregular solution that diverges at the boundary [144]. Therefore, it is not possible to
form the necessary linear combinations to satisfy Eq. (6.22).

Single-exponential CAP

The reflection coefficient for a single-exponential CAP with a complex boundary condi-
tion is again analytic and is given in Eq. (B.9). The CAP parameters must be re-optimized
along with the value of b, and the procedure is largely the same as described above. The fact
that K., is essentially unaffected by the addition of the complex boundary condition —so
long as |B| ~ |Kpax| —simplifies the process.

Examples of optimal choices are shown in Fig. 6.8 for a purely imaginary CAP and a
complex CAP. Comparison with the reflection coefficients shown in Sec. 6.3.1 shows the effect
of the complex boundary condition through the appearance of the high-energy minimum
close to K = |B|. In both cases, the complex boundary condition has produced a roughly
15% reduction in zp to 71.7a.u. and 48.1 a.u., respectively.

Double-exponential CAP

Adding a complex boundary condition to the double-exponential CAP also produces an
analytic expression for R as given in Eq. (B.10). Re-optimizing the parameters yields the
reflection coefficient shown in Fig. 6.9. As with the single-exponential CAPs, the boundary
condition has introduced a high-energy minimum near K = |Im B|. Unlike the single-
exponential CAPs, though, the minimum z g was found for Re B # 0.
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Figure 6.9: Optimum reflection coefficient as a function of the unitless momentum for a
double-exponential CAP with complex boundary conditions.

This optimum double-exponential CAP continues the pattern that has emerged as we
have found improved CAPs: namely, that we add more structure to R and decrease the
absorption for the mid-range of K. The double-exponential-CAP reflection coefficients in
Fig. 6.6, for instance, have comparatively little structure — mainly a minimum in R. More-
over, this minimum is relatively broad and orders of magnitude lower than R.. The R shown
in Fig. 6.9, in contrast, has three narrower minima only one order of magnitude or so lower

than R..

6.4 Optimal CAP

To determine which CAP — among those listed in Table 6.1 —is the best, we numerically
searched for their optimal parameters, assuming they are purely imaginary potentials. From
the discussion above, we know that each could be improved by including a real potential
and a complex boundary condition, but we expect —and confirmed with spot tests — that
the relative performance of the CAPs will remain qualitatively the same. As mentioned
previously, we selected the CAPs to compare based on their apparent popularity in the
literature or on the claims made for their performance.

In optimizing these CAPs, we follow the principles described in previous sections that
the width of the CAP determines the long-wavelength absorption; and the depth, the short-
wavelength. The optimization is then reasonably straightforward once we identify the pa-
rameters corresponding to the width and depth.

In Table 6.2, we list the optimal parameters we have found for our F.,, Fmax, and
R.. The table includes the resulting values of xr, and we expect that they are the optimal
values to within a few percent. Note that we used =0.1 for the M-JWKB CAP based on
the solution of R(Fpn,) = R. taken from Fig. 3 of Ref. [144]. We show in Fig. 6.10 the
corresponding reflection coefficients.

The cosine masking function should be regarded as a polynomial CAP since its behavior
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6.4. Optimal CAP

Table 6.2: Comparison of the optimal absorption ranges for all the CAPs considered. The
optimal parameters are given for the electron in our strong-field application — see Eqs. (6.3)
and (6.4) — so that all quantities are in atomic units.

CAP type a? or (a2, a3) b 5 Tg IR
quadratic 1.21 x 107° — 129 124
cosine masking function 15.9 810 128 124
M-JWKB — — 119 118
quartic 2.40 x 107° — 112 95
pseudo-exponential 4.54 x 10° 3.27 x 103 240 88
Poschl-Teller 11.0 20.3 40.0 85
single-exponential 0.849: 10.0 — 84
single-exponential+BC 0.260z —2.047 10.0 — 72
single-exponential 5.24¢10-11m 5.62 — o7
single-exponential+BC 1.35¢%0-117 —2.29¢ 5.45 — 48
double-exponential (0.839,5.09) 1.79 — 30
double-sinh (0.298¢0-1047 () 71 ¢0-09067) 1.97 — 29
double-exponential+BC (0.463,1.42) 2.19¢~ 137 1.80 — 28

Ry quadratic - - - - - |
S0 cosine masking - - - - - 1

/ 4 quartic
a pseudo-exponential E

A
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7 [ v A single-exponential --- ---
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Figure 6.10: Optimal reflection coefficients for all CAPs as a function of the electron’s
momentum using the parameters from Table 6.2. They all satisfy the criteria that R < R,
for 0.006 < E < 3 a.u., as required.
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6.5. Other absorption criteria

in 0 < x < z¢ for the optimal parameters of Table 6.2 is largely indistinguishable from the
quadratic CAP —thus its xy is identical to the quadratic CAP. Similarly, for the optimal
parameters we found, only the exponential tail of the Poschl-Teller potential remained on
the grid, making its performance essentially identical to that of the purely imaginary single-
exponential CAP.

The absorption ranges x g listed in Table 6.2 display a surprisingly large range — more
than a factor of 4. Comparing only the purely imaginary potentials, the exponential and
Poschl-Teller forms are more than 30% more efficient than the quadratic CAP. They are
also more efficient than the quartic CAP. So, while the exponential form generally seems
better, the majority of the disparity in Table 6.2 arises from adding a real part to the CAP
and imposing a complex boundary condition.

From Table 6.2, the best performance is found for the double-exponential and double-
sinh CAPs, outperforming the next-best CAP (the complex-valued, complex-boundary-
condition, single-exponential CAP) by roughly 40%. Compared to the next-best purely
imaginary CAP, they hold nearly a factor of 3 advantage in zi. For reference, we tested
the strategy of adding a real part and a complex boundary condition to the quadratic CAP
and found x i shrank only to about 70a.u. So, while pursuing this strategy with the other
CAPs in the table would reduce their xg, we believe the double-exponential and double-
sinh CAPs would remain the best. Interestingly, since the de Broglie wavelength at k.
is 57 a.u., our best CAP manages its efficient absorption in a range of only about half this
longest wavelength.

Our recommendation, therefore, is to use the double-sinh CAP when its singularity at
the boundary causes no numerical difficulties. In the cases that it does, then the double-
exponential CAP is the best choice. The remainder of our discussion will thus focus on
these two CAPs.

6.5 Other absorption criteria

The discussion and optimization so far has centered on the E.;,, Fma.x, and R. from
Eq. (6.3). Other choices may well be needed, however, for other choices of laser parameters
or calculational goals. We thus present in this section the optimal parameters for the double-
exponential and double-sinh CAPs for a selection of likely changes in E.in, Fuax, and R..

6.5.1 Different energy range
Changing F,ax

Computationally, the main challenges in solving the TDSE — especially for current and
future laser parameters of experimental interest —are that in the course of its strongly-
driven dynamics, the electron travels far from the nucleus and gains substantial energy. In
particular, we still expect Eyax < U, o< I/w?, so that it will grow either with increasing
intensity or increasing wavelength —both of which are certainly of interest. While Ei;,
does not change in this case, Fy.x does, and the CAP must accommodate it.
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6.5. Other absorption criteria

Table 6.3: Optimal parameters for the double-exponential CAP for an electron exposed to
longer wavelengths. Per the discussion in the text, the only impact of wavelength here is on
Enaz- All quantities are in atomic units unless otherwise specified.

A (nm) Eoin Eoox ol a3 B TR
800 0.006 3 0.839 5.09 1.79 29.9
1600 0.006 8.8 1.07 8.37 1.79 30.7
2400 0.006 20 1.31 124 1.79 31.5

Under these conditions, the double-sinh CAP from Table 6.2 works without change since
it has no E,.,. In fact, this is its primary advantage. The double-exponential CAP, on the
other hand, must be re-optimized for each F,... As discussed in Sec. 6.2, Ay needs the
greatest changes— but should have minimal impact on xr—and these expectations are
reflected in the optimal parameters shown in Table 6.3 for two longer wavelengths. These
parameters were found following the same procedure as above with the same k;, and R,
and with Eyax=10U, at 10 W/cm?. They were found assuming ¢» = 0 on the boundary,
but parameters could certainly be found for a complex boundary condition as well. Note
that xr changes less than about 10% as expected.

Changing E,in

In our optimization scheme above, we set E;, to 0.1 Aw for 800-nm light. This choice
was motivated by the need to ensure that the entire ionized electron wavepacket is absorbed
by the CAP. However, the CAP is often placed at a large distance from the nucleus so that
these very slow electrons may not have time to reach the CAP during the propagation. In
this case, Fi, can be increased, thereby decreasing zg.

Modifications to E.,;, for the double-sinh CAP are straightforward and do not require re-
optimization — again, thanks to the lack of an F,.x. Changing k,;, just means recalculating
B using 8 = Kpin/kmin since K, is fixed. Figure 6.11 shows the x g that results as a function
of kmin. The figure shows that for modest increases in kp;, from our choice in Eq. (6.4),
xgr can be decreased substantially. For example, for k,;, above about 0.3 a.u., xr is smaller
than 10a.u. for R,=1073. For knm above about 0.4 a.u., the z for R,.=10"1? is equal to or
smaller than the original zzr=28.8 a.u. for the double-sinh CAP.

For a double-exponential CAP, it is still true that the larger k., the smaller A\; and
Ao, and the smaller xz. However, re-optimization is required to obtain the smallest z . For
instance, if one can accept doubling k,,;, to 0.22 a.u., then we can have

A =2.00 and A3 = 9.11, so that zpz = 17.0a.u. (6.24)

with 5=0.90 a.u.

On the other hand, the double-exponential CAP can be adjusted just like the double-sinh
CAP if a less-than-optimal zp can be tolerated. Specifically, the values of A\? can be kept,
so that K, does not change, and § can be recalculated from 5 = Ky, /kmin. In this case,
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Figure 6.11: Absorption range xr as a function of k. for the double-sinh CAP. The
parameters for R, < 1073 can be found in Table 6.4.

kmax Erows to kmin Kmax/ Kmin, guaranteeing absorption at the prescribed level beyond Ejax.
The resulting zp looks very much like those in Fig. 6.11, except that xp for R.=1072 does
not go below 10a.u. until k,;,=0.45a.u. For comparison, rr=17.4a.u. at ky;,=0.22a.u.
and is thus slightly worse than the fully re-optimized result in Eq. (6.24).

6.5.2 Different R,

One of the primary design goals of a CAP is to leave the physical wave function —the
wave function outside the absorption region — unaffected. Of course, this goal can only be
achieved to a given accuracy, and that accuracy is controlled by R.. To see the relation,
consider the physical wave function written in Fig. 6.1 from which R is extracted,

Y(x) = e 4 VRee*® x> ap. (6.25)

The second term is precisely the unwanted contribution from reflection, and it is limited
by R < R. by design. Given that this is just one component of the time-dependent wave
function, this error is always relative to the first term. In other words, if one desires n digits
to be accurate, then one should choose R,=10"2".

We thus provide in Table 6.4 the optimal parameters for the double-exponential and
double-sinh CAPs with =0 on the boundary, assuming F,,;;=0.006 a.u. and F.,=3a.u.
as before, for several smaller R.. These results show that the absorption range for each
type of CAP is comparable, with the double-sinh CAP tending to be a few percent smaller.
Qualitatively, the reflection coefficients as a function of K resemble those shown previously
for R,=1073. As with the other CAP parameters we have given, we expect these to produce
xrr within a few percent of the global optimum.

Note that the probability density corresponding to the wave function in Eq. (6.25),

1(z)]? =1+ R+ 2V Rcos(2kz + ¢), (6.26)
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Table 6.4: Optimal parameters for double-exponential and double-sinh CAPs for R, <
1073,

Double exponential Double sinh
A2 A2 B(au.) rg(an) R, xg(au.) A2 A2 B (a..)
2.69 16.3 1.79 29.9 1073 28.8 1.16e%1%4 2,75 — 0.25¢ 1.97

4.83e01870 3100968 277 44,7 107% 404 1.78e%%% 4.30 — 0.25i  2.90
721901860 57 6704111 338 54.5 1075 52.6 2.66e%316" 6.82 — 0.25i  3.87
16.1e79219%80.0 4.02 684 1075 64.2 3.8€0360 9.67 —0.250 4.77
19.4e0-135™ 14170073 6,64 102 1078 89.4 6.75e%160 17.2 —0.25i 6.77
30.8¢0132m 232702040 8 48 130 10719 109 11.85¢%14 26.9 — 0.25;  8.02
48 3556703280 9,04 144 10712 132 16.1e%21 38.7 — 0.25¢  9.77

can be useful for diagnosing issues with the CAP in a time-dependent calculation. In
particular, the last term above is the source of the telltale ripples in the probability density
near the edge of a grid. The ripples’ size is limited by v/R. and identifying their wavelength
via Eq. (6.26) in a time-dependent wave function reveals the offending energy.

6.6 Time-dependent demonstration

To verify that the improved performance of our recommended CAPs does indeed carry
over to the time-dependent problem and its numerical solution, we solve the TDSE for
free-electron wavepacket propagation. The wavepacket we use possesses a broad momen-
tum distribution comparable to the target momentum range from Eq. (6.4), as shown in
Fig. 6.12(a).

We again use FEDVR as the spatial representation and propagate the wave function
using the short-time evolution operator

P(x,t+6) = e My(x,t) (6.27)
where the Hamiltonian includes the CAP V (z),

H=Hy+V, (6.28)

and H, is merely the kinetic energy in the present case. We evaluate e~*#° using the split-
operator form [168]

o L 7 8
e ZH&%@ ZV2€ ’LH056 ZVQ. (629)

Since V is diagonal in FEDVR, e *V%/2 can be easily evaluated and applied. Moreover,
in this form, the singularity in the double-sinh CAP causes no problems whatsoever. The
action of the remaining term in H, is calculated via a Padé approximation [112].

Equation (6.29) is a simple and convenient way to add a CAP to any propagator. In
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Figure 6.12: (a) Momentum distribution of the free wavepacket, covering 0.11 < k <
2.45 a.u. (b) Demonstration of the R.=10"% double-sinh CAP using a free wavepacket. Solid
lines show the with-CAP wavepacket, calculated for —600 < z < 600 a.u.; and dashed lines,
the without-CAP wavepacket, calculated for —600 < x < 1200 a.u. Inset: Erpanded view of
the absorption region 536 < x < 600 a.u. for clearer comparison.

86



6.7. Summary

many cases, the alternative, keeping the CAP in H, would require modifications of the
propagation algorithm or parameters to handle its non-Hermiticity or the singularity of the
double-sinh CAP —or both. These issues were discussed somewhat in Sec. 6.3.3 and more
in Ref. [144]. Using Eq. (6.29) avoids these concerns and is more than sufficient for the
application of the CAP.

The FEDVR element distribution is uniform in the range —600a.u. < x < 1200a.u.,
and we require ¢ = 0 at the boundaries. Given that the wavepacket is initially centered
near x = 0, this box is large enough for the wavepacket to propagate for 10fs without
significant reflection at the boundaries even without CAPs. This will be our reference
solution. We carry out a second, identical propagation but apply the double-sinh CAP at
536 a.u. < z < 600 a.u.. For this example, we choose the CAP designed to have R, = 107°
using the parameters shown in Table 6.4. We thus compare the wavepacket with and without
applying the CAP. All the results have been tested to be converged to at least 3 digits with
respect to all numerical parameters.

Figure 6.12 shows the two wavepackets at different times. It is clear that the CAP is
performing as expected since the wavepacket decays in the absorbing region without any of
the characteristic oscillations of reflections visible—at least without enlarging the plot by a
factor of four or five. For comparison, the wavepacket without a CAP equally clearly shows
the reflection oscillations at t=13.1fs for reflections from the boundary at x=1200 a.u.

In addition, the with-CAP wavepacket is numerically unaffected before entering the
absorbing region, agreeing with the without-CAP wavepacket to at least 3 digits for x <
536 a.u. for all times, even as more than 70% of the wavepacket has been absorbed. This
agreement shows that the absorption range zy defined in the time-independent study is
consistent with the results from the time-dependent propagation.

Enlarging Fig. 6.12 by a factor of at least four or five will reveal the tiny reflection ripples
in the with-CAP wavepacket near and in the absorption region. Their relative magnitude
is about 1072=+y/R, as expected. Per the discussion in Sec. 6.5.2, such oscillations are
unavoidable with a CAP and testing with other CAPs and values of R, further support the
conclusions there. For example, the oscillation for R.=1072 becomes fairly noticeable, which
suggests that R, should in practice be no larger than 107*—i.e., two digits in the wave
function — to provide quantitatively reliable results. Finally, we note that the roughly 15-fs
propagation time is comparable to a typical strong-field calculation, bringing some realism
to this simple demonstration.

6.7 Summary

We have presented a systematic study to boost the performance of complex absorbing
potentials. Based on the time-independent reflection coefficient, we were able to quanti-
tatively design the most optimal absorbing potential of a given form. In particular, for
ultrafast, strong-field TDSE solvers, the optimal CAP parameters should be determined by
the absorbing energy range required for the laser parameters and by the desired accuracy
of the TDSE solutions.
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6.7. Summary

We proposed two new CAPs—namely, the double-sinh CAP and the double-exponential
CAP — that significantly outperform the CAPs currently in standard use. Their superior-
ity was demonstrated through comparison with optimized versions of most of the CAPs
commonly found in the literature. Both of our proposed CAPs overcome the primary im-
pediment to efficient performance — absorption of long wavelengths — while also absorbing
a large range of energies that covers basically all strong-field processes. Because we quan-
tified the CAP’s performance and identified zi as the figure of merit for their efficiency,
we could show that using an exponential CAP already improved on the common quadratic
CAP’s performance by one third. A further factor of almost three was gained, however, by
adding a real part to the CAP —a strategy well known in other uses of CAPs, but not in
strong-field applications.

We highly recommend the double-sinh CAP for local spatial representations, such as
FEDVR where the potential is diagonal. It is efficient, easy to use, and easy to adapt to
different absorption criteria—i.e., energy range and level of absorption. Incorporating it
into the time propagation via split-operator methods is easy and effective.

For other spatial representations, the double-sinh and the double-exponential CAPs are
equally recommended. However, care might need to be taken for the double-sinh singularity
close to the boundary. In case the double-sinh singularity is a problem for the propagator, the
double-exponential CAP should be chosen. Although optimization of the double-exponential
CAP is more involved than for the double-sinh CAP, it is still fairly straightforward. Its
optimization procedure, along with that for the double-sinh CAP, is detailed in this work.
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Chapter 7

Conclusive Remarks and Outlook

In this dissertation, we have developed/implemented new numerical frameworks to
more accurately and efficiently study ultrafast, strong-field molecular ionization by solv-
ing the time-independent/time-dependent Schrédinger equations. We have investigated a
time-independent picture: structure of the one-dimensional hydrogen molecule in adiabatic
hyperspherical representation, where all breakup channels — including ionization — can be
identified in a single picture, showing its advantage to study strongly correlated molecular
dynamics with different breakup channels coupled with each other. We have also presented
time-dependent studies of molecular ionization by numerically solving the TDSE, where
various computational efforts have been dedicated to an efficient TDSE solver, such as
choosing an appropriate coordinate system to prevent potential numerical hurdles, design-
ing an optimal complex absorbing potential to reduce the spatial box size, and implementing
a sparse-direct linear solver to take full advantage of the sparsity of the TDSE. Molecular
ionization has been studied at large internuclear distances, where we have found strong-
field two-center effects beyond both Young’s double-slit interference and Cohen and Fano’s
picture of one-photon molecular two-center interference. Such a study suggests that molec-
ular two-center dynamics have to be taken into account for studies of diatomic molecular
ionization. Furthermore, a pump-probe study comparing experiments and theory has re-
vealed a pronounced broad ionization peak at large pump-probe delays, which is partially
attributed to the strong-field two-center effects, indicating the strong-field two-center effects
in molecular ionization can be measured in experiments, even though its details might be
system-dependent. Moreover, we have shown for the first time the low energy structure in
molecular ionization in long wavelength lasers by solving the TDSE.

In the future, a few works along the lines of projects studied in this thesis are worth
further exploring. For example, it would be interesting to observe molecular low energy
structure coupled with the strong-field two-center effects by showing the low energy photo-
electron spectrum as a function of large R’s. Another possibility is to include nuclear motion
in the molecular ionization, where one could study the non Born-Oppenheimer effect in the
low energy structure in molecular ionization. One could also examine the impact of nuclear
motion on the strong-field two-center effects. Including nuclear motion in strong-field molec-
ular ionization involving 3D electron, however, is a non-trivial, computationally demanding

89



task. With a workstation similar to the one used in this thesis, it would be almost un-
feasible unless further improvements being made within our current numerical framework.
Fortunately, there are a couple of things one could try to optimize the one-electron TDSE
solver, such as applying dynamical grid on any “radial” coordinates, using high-order prop-
agation scheme to increase the time step, and modifying the matrix representation to take
full advantage of parallel architectures.
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Appendix A

Reflection coefficients

A.1 Reflection coefficient for single-exponential CAP

We start from the Schrodinger equation for the single-exponential CAP:

Setting z = x/ gives
d? 2 -z 2

{—@—)\ } = K-, (A.2)

where A = aff and K = k. We define
£ =2 e %2,
so that Eq. (A.2) becomes
§d52+§d5+§ +4K*| ¢ = 0. (A.3)

This is Bessel’s equation; the general solution is thus

Y = Cloir(§) + DJ 2k (). (A.4)

To obtain the reflection coefficient, we need C' and D and we need to analyze the asymp-
totic behavior of these solutions. Starting with the latter, the 2 — oo (z — o0) behavior
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A.2. Reflection coefficient for double-exponential CAP

can be found from the £ — 0 expansions,

)\2iK -
Jaixc (§) 200 (1 + 2iK)
' )\721'[( s
J—QZK(é-) . (A5)

cooo D(1— 2iK)°

To find C' and D, we impose the x = 0 boundary condition,

Pl =0)=1¢(z=0)=9(E =21 =0 (A.6)
Thus,
. JQ,K(Q/\)
D= —ma (A.7)

Finally, the asymptotic solution reads

)\21’K ik )\—21’K JQiK(2>\)

\ _ iKz
v 2300 ¢ 1+ QiK)e I'(1 - 2iK) J_QiK(Q)\)e } ' (A.8)

From this expression, the reflection coefficient can be found to be

2

Joirc (2X)
J_9irc (2X)

R= 64K arg A2

Note that if A is real, then R = 1 as it should with no absorption.

A.2 Reflection coefficient for double-exponential CAP

As in App. A.1, we start from a unitless Schrodinger equation,

d2 —z . —z
ke Me /2 —i\le7 | = K. (A.10)
with
Z = B )\1 = 0415 )\2 = Oégﬁ K= kﬁ (All)
We assume both \; are real, making the longer-range potential real in accord with the
discussion in the text. That is, the real potential accelerates the wave before it encounters
the absorbing potential.
Defining
%

£=2Xe 2 and A ,
Az

(A.12)
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A.3. Reflection coefficient for —ia3/z* CAP

we get
[§2d—2 + fi + 24 4462 + 4K2] =0 (A.13)
T Tz i = .
This form of the equation makes clear the motivation for our choice of potential: having
one potential being the square of the other (in form) produces the polynomial in £ seen in
the equation. Since the polynomial is quadratic, the equation has analytic solutions.

Setting v = €"™/* and 1 = 1 — 7/, the solution can be written as
P = ) e Ing [(J Un+ 20K, 1+ 4K, —27°¢) + D LY 2iK(—273§)] : (A.14)

where U and L are the confluent hypergeometric and Laguerre functions, respectively.
Analyzing the asymptotic behavior, we have

(200) BT (=4 K) . (20g) 274K~ KD (44K e

3 .
e E+2i1K h’l{U

e T(n—2K) ¢ T(n+ 2iK)
(VPEHAK IE - (2)\2)21'1(&@'53%1((0)6—1'[(,2' (A.15)

The boundary condition ¢(x = 0) = 0 gives

Uy + 2K, 1+ 4K, —4\py?
p- YT 2R 1T 4R, ~A07) (A.16)
L—n—2u<(_4)\27 )

The reflection coefficient can now be extracted, and a little algebra applied, to give

VB (4 20K, 1+ 4iK, —493)) [P

R =
1F1(7] — ZZK, 1— 4ZK, —4’)/3>\2)

(A.17)

For a purely real V (i.e., Ay — 0), we recover R = 1 as we should. For A\; = 0, R reduces
to the single-exponential expression Eq. (A.9) with A purely imaginary.

A.3 Reflection coefficient for —ia3/2?> CAP

We start from the Schrodinger equation

R d? R id®+ % h?
—_—— - — = — k%), A18
[ 2mdx?  2m  a? } 4 2m ¥ ( )
Defining z = kx, we must solve
?  ia’+ 4
—— = ). Al
{ K } b= (A.19)
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A.3. Reflection coefficient for —ia3/z* CAP

The general solution is
Y = \/E{C'Ja/v(z) + DJ_a/V(z)] (A.20)

/4 as before. Since we require 1/(0)=0, we need the small-z behavior of the Bessel

J(z) — F(%M(g)y (A.21)

For the general case of complex a, a = a, + ia;, one can show that requiring the real part of
the potential to be attractive and the imaginary part to be absorbing leads to

with y=e
functions

a, >0 and a; < 0 with |a,| > |a;|. (A.22)

These conditions, together with Eq. (A.21), require us to set D=0.
Finally, using the large-z behavior of the Bessel function,

2 T am
V2day(2) =\ - cos (Z - % z), (A.23)
allows us to extract the reflection coefficient,
R = ¢ V2r(ar—a), (A.24)

Keeping in mind that a; < 0 under the conditions we have assumed, this equation shows that
both the real and imaginary parts of the CAP contribute to decreasing the final absorption.
We also see that this equation is identical to Eq. (6.20) once the conversion from a to g is
made.

Effect of truncation

If we are willing to sacrifice the energy independence of R at small energies by truncating
the CAP at x,

_ﬁi(z%ri <
V = { 2m  x? TS To , (A25)
0 T > Ty

then one can again obtain an analytic expression for the reflection coefficient.
The wave function is

AF(z) z < 2
= ) . A .26
v {ce—wz—zw LDt 2> 2 (4.26)
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A.3. Reflection coefficient for —ia3/z* CAP

with 2o = kzg and F(z) = \/2J,/,(2). The reflection coefficient is thus

2

h_ ‘ g _ EEZO) — iF'(z) |? (A.27)

20) + iF"(2)

The notation F” indicates a derivative with respect to z, F' = dF'/dz, and the log-derivative
of F at zy is
F/

_1-2a/y  Jop-1(2)
F

z=20 22,’0 Ja/’Y<Z0) .

A plot of the reflection coefficient from Eq. (A.27) looks qualitatively like the double-
sinh reflection coefficients in Figs. 6.7 and 6.10. However, instead of falling exponentially
with & at small k, it falls more slowly —like 1/z5 = 1/(kzo)*. In addition, because of the

sharp cutoff in the potential, R oscillates in zy with minima separated by m at positions
corresponding roughly to zy = kxy = n.

(A.28)
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Appendix B

Complex boundary condition

B.1 Zero potential

It is easiest to understand the effect of the complex boundary condition (b is complex)

1 dy
——=5b B.1
Ode (B.1)
from the free-particle equation
d2
- — Y =K? B.2
T = K% (5.2)
in the same unitless notation as in the previous appendices. In this notation, we must
require
1 dy
—— =B B.3
TE =D (B.3)
where B = b3. The solution is, as usual,
w — C«eiKz 4 DefiKz. (B4)
When combined with the boundary condition, one finds
B+iK|?
R = : B.5
‘B —iK (B.5)

As discussed in the text, this R goes to zero at K = Ky when B = —iK,. Physically,
this condition corresponds to setting an outgoing-wave boundary condition (on the left
boundary) for an incident momentum K,. The boundary is thus perfectly transparent at
this momentum, but imperfectly so at other momenta.
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B.2. Effect on bound states

B.2 Effect on bound states

It is natural to ask what effect such a boundary condition might have on the energies of
any bound states in the system. One general way to answer this question is to consider an
arbitrary potential at z = 0 and write

= {AF(z) z < 2 (B.6)

Ce=r(z=20) 4 DerE=20) 5 > 2

with K = 54/2m|E|/h? and F(z) the energy-dependent solution appropriate to the arbitrary
potential satisfying the required boundary condition at z = 0. Although this specific de-
scription assumes a short-range potential, a similar argument can be made for the Coulomb
potential.

The wave function in Eq. (B.6) must satisfy the log-derivative boundary condition from
Eq. (B.3) at z = 2z, —this is why the exponentially-growing solution must be retained.
Imposing this boundary condition leads to the following transcendental equation for the
energy of the bound state:

B+ k&

F'(20) + kF(20) = -

[F'(20) — KF(29)] e 21770, (B.7)

This equation should be compared with the physical quantization condition
F'(z0) + KF(2) = 0, (B.8)

to which Eq. (B.7) reduces in the z; — oo limit as it should.

Since in any practical numerical solution of the TDSE the boundary of the numerical grid
must be large compared to the size of the bound state, we will have z; > zy. Therefore, so
long as B —k # 0, the exponential term on the right-hand-side of Eq. (B.7) will dominate —
and thus make Eq. (B.7) a very good approximation to Eq. (B.8) — guaranteeing that the
real part of the energy found with the complex boundary condition will be very close to
the physical energy. To be sure, it will acquire a small imaginary part reflecting the decay
of the ground state due to the complex boundary condition, but it should be completely
negligible.

This result for the bound-state energies is completely consistent with the intuitive notion
that the effect of the complex boundary condition —indeed the CAPs, too—on the bound
states should be negligible so long as the bound-state wave function is vanishingly small at
the boundary z = z; (or in the absorbing region of the CAP).

B.3 Single- and double-exponential CAPs

The reflection coefficient for the single-exponential CAP with a complex boundary con-
dition is still analytical. It is found by imposing Eq. (B.3) on the general solution for the
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B.3. Single- and double-exponential CAPs

single-exponential CAP from Eq. (A.4). After a little algebra, one obtains

. (B.9)

_ AR arg X (B + iK) Jairc (2N) — M 1y2ir (2))

R .
(B - ZK)J_QZ'K(Q/\) - )\Jl_QiK(Q/\)

The same procedure can be carried out for the double-exponential CAP using the general
solution from Eq. (A.14) to find

(B+iK +7°X2) 1F1 (n+2i K, 14+4iK, =493 X2) — 293 Ao (n+2iK) 1 Fy (n+2iK +1,2+4iK, —4+3X2) /(1 +4iK) |*

R= - - - - - -
(B+iK +93X2)1Fi1(n — 2iK,1 — 4iK, —4v3X2) — 20K 1 F1(n — 21K, —4iK, —4v3)2)

. (B.10)

Note that both Eq. (B.9) and Eq. (B.10) reduce to the reflection coefficient with ¢ = 0
in the B — oo limit as they should.
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Appendix C

Spatial representations

C.1 Basis splines representation

Using the B-splines representation to solve the Schrédinger equation has already been
detailedly documented previously [111, 169]. Here we will provide a brief summary. The
basic idea of the B-splines method is to represent the unknown wave function by a linear
combination of locally defined polynomials, the splines. For example, a two-dimensional
wave function W(x,y) could be written as

V(z,y) = ZCijUz‘(z)Uj(y) (C.1)

]

where wu;/v; are the splines. For nth-order splines, the local polynomials are defined such
that the function and its derivative up to n — 1 orders are continuous. An example of
the bth-order splines are shown in Fig. C.1 on a 11-points grid uniformly distributed for
0 < x < 1. The thick spline in Fig. C.1 is identically zero for x < 0.2 and = > 0.8, and
its function and up to 4th-order derivatives are continuous within the range 0.2 < x < 0.8.
By applying Eq. (C.1) to the time-dependent Schrédinger equation (TDSE) in Sec.3.1 and
projecting out the two-dimensional splines, one derives the Schrodinger equation in B-splines
representation. The matrix form of the resulting equation reads like Eq. (3.14).

In B-splines, each spline only interacts with the nearest n (the order) splines. This
special property leads to banded matrices for the Hamiltonian and the overlap, making the
eigenvalue problem in the time-independent Schrédinger equation or the linear equation
in the time-dependent Schrodinger equation readily solvable either using ARPACK banded
matrix routines [86], or LAPACK banded matrix routines [170].

Finally, we need to address the imposition of boundary conditions, which is straightfor-
ward in B-splines. We only consider three cases: no boundary, Psi = 0, and Psi’ = 0. First,
no boundary condition requires no action, as in Fig. C.1. Second, for zero wave function
boundary condition, one simply remove the left-most or the right-most spline. Finally, for
zero derivative boundary condition, last two splines on the boundary need to be replaced
with one spline—the average of the two.
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C.2. Finite-element discrete variable representation

0.8

0.6

un(x)

0.4

0.2

X

Figure C.1: The basis splines u,(x) on a uniform grid. The thick line indicates the spline
that is nonzero only for 0.2 < x < 0.8.

C.2 Finite-element discrete variable representation

The contents in this section are adapted from a note originally from Brett Esry. One
other similar version has appeared in the PhD thesis by Christian Madsen [171].

We want to write down the details of using finite-element discrete variable representation
(FEDVR) to solve one-dimensional time-independent Schrédinger equation, as in Sec. 6.2.
It’s trivial to adapt it to the time-dependent Schrodinger equation. The generalization to
higher dimensions using the direct-product form for the wave function is also straightforward.

The idea of FEDVR is to take a domain [a,b] and split it into a number of elements,
N.. Then, within each element, expand the solution on a cardinal function basis giving
the discrete variable representation (DVR). The solution will be matched at each boundary
between elements, but we will only match the function, not the derivative. The book on
spectral elements—the engineering term for FEDVR—by Boyd [172] has many details, but
we will give the ones specific to our applications. First, the basis functions, or the cardinal
functions are required to have the property

Un (Ti) = Opi (C.2)

where ¢ runs from 1 to N over the grid points in a given element, and n runs from 1 to
N over all elements of basis. For the following discussions, we will assume each element
[z;,2j41] has been mapped to the logical domain [—1,+1] using

Tiv1 =% L1 T T

p— C_ . .
T YT T ,y C[-1,1] (C.3)
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C.2. Finite-element discrete variable representation

We write our basis function as

(1 =9y o)
L —32)pn—2(yn))' (Y — yn)’

where the ¢,’s are the orthogonal polynomials of the Gauss-Lobatto quadrature (see Page
888 of Ref. [173]) with the end points fixed at +1. The grid points y, are chosen as the
zeros of one of the ¢,,’s. This connection is what makes this a DVR approach and is also
what it ties to Lobatto quadrature.

To solve the Schrodinger equation, we need to expand the wave function as

() = 3 eyt (a) (C.5)

un(y) = 7 (C4)

where j is the element label to indicate where the wu,, is defined. Note that U(zl) = cj,.
Continuity of the wave function at element boundaries requires

‘Ij|r:mj_ = \Ij|m:mj+, thus CiN = Cj411 (06)
So,
Ne—1 [N-1 . ' N N-1
U = Z cintid 4+ cin(ulhy +ul T | + Z CNL UL - Z Clnll), (C.7)
j=2 [n=2 n=2 n=1

Applying the variational principle for the ¢’s gives
Hc = ESc (C.8)
The overlap matrix is

L .
Sep = < Ul |ul >=0;; < ul,|ul, >

Tj41 . ) . _ .
=0j1; / dad ()l () pl) = 8

J 5 W PrOn/n (C.9)

with p as the volume element and w as the weights of the Gauss-Lobatto quadrature. This
applies to all cases except n =1 or N. In these cases, we need

Sap =< Uy +ul " ul, >= 8 —LwnpnOun + 01— 5 L w1 p10n1 (C.10)
and,
! +1, j j+1 Lj+1 — Ly Lj+2 — Lj+1
Sag =< ’LL?V + Ujl + |U§V + u{ >= @g%w]\;pN + (5]'/]'%101,01 (Cll)

Inspection of these expressions and the form of W shows that the overlap matrix consists
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C.2. Finite-element discrete variable representation

of diagonal N x N block matrices in one element, and they overlap at the corners due to
continuity.

Next,we evaluate the Hamiltonian which consists of the kinetic energy matrix and the
potential energy matrix. The kinetic energy matrix elements can be evaluated within each
element, then the total matrix constructed as

T, = < up|Tluy > 1/%6[ @)L (oL (@) (C.12)
o= < Uy | T |uy >= —— LU (2)—— (p—)u,(x )
v 21 ot P pdx -
L 2 e )un(1) — Sl (1))
=— —————— 0 np(@jp1)Uun(l) — O p(T))Ups (—
2M$j+1—13j NP\Zj+1 1P\ T
1 2 1 L
+ —— [ pdyu,u, (C.13)
2pxip —xj )y

The question is whether the surface terms survive when we build the full kinetic energy
matrix. To answer this question, the argument generally proceeds as follows: if one integrate
the kinetic energy by parts on the whole domain boundaries [z1,zx, 1], all bases satisfy
u =0 or v’ = 0 at the domain boundaries (or p = 0) so the surface terms at z; and zy, 4 do
vanish. The kinetic energy matrix elements are then simply taken to be the above results
minus the surface terms. This is called the weak form of the differential equation, while the
second derivative—as in Eq. (C.12) —is the strong form. The weak form is used for basis
functions with discontinuous first derivatives. Thus

1 2

2/L LTj41 — Ty

S bt (i), () (C.14)

i=1

T, =

n'n

and the full kinetic energy matrix is composed of these elemental T-matrices. Finally the
potential energy is simply

Tjr1 — T

like the overlap matrix.
We thus have Eq. C.8 with S diagonal and H banded. We convert this to a standard
eigenvalue problem using Cholesky decomposition

S=LL" L= (C.16)
So,
Hec=FESc= L 'HL "L"¢ = EL"c = Hd = Ed (C.17)
with H =L 'HL™" andd = L"¢.

One last thing need to be addressed is the boundary conditions. We again consider three
cases: ¥ =0, ¥ = 0, and no boundary condition (for p = 0). To impose ¥ = 0, we simply
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C.3. Comparing B-splines and FEDVR

leave out u; in the left-most or uy in the right-most. For W' = 0, we impose no boundary
conditions since Lobatto quadrature is used. When p = 0, we also make no restrictions on
¥, but use Radau quadrature instead of Lobatto. The reason is that p = 0 introduces a
singularity via S, and we don’t want a grid point where p = 0 (Radau includes y = 1 but
not y = —1).

C.3 Comparing B-splines and FEDVR

The B-splines representation and FEDVR are similar in several aspects. They are both
grid methods involving high-order local polynomials. In principle, they are both more
accurate than low-order methods, such as finite difference. In solving the Schrodinger equa-
tion, the Hamiltonian in both representations are banded matrices. Such banded-matrix
property makes the numerical scaling in terms of the dimensionality more preferable than
dense matrices. Further, for multi-dimensional Schrodinger equation, the Hamiltonian ma-
trix quickly becomes sparse, where one could take advantage of the sparse solvers, such as
PARDISO [88, 118].

One of the drawback for B-spline is its non-orthogonality for the basis functions, which
means the overlap matrix must be evaluated and B-splines typically requires a bit more
operations than that in FEDVR. In FEDVR, due to the diagonal potential matrix, it’s
more convenient to handle the non-separable potentials than that in B-spline. However,
due to the non-continuity of the derivatives at each element boundary, the FEDVR could
potentially cause some stability issue in practical implementation. Despite of the difference,
the overall efficiency comparing these two methods, according to our established experience,
is more or less comparable. Both methods work smoothly for the calculations performed in
this dissertation.
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Appendix D

Time-dependent Schrodinger
equation for H; in length gauge

Starting from Eq. (3.1), the time-dependent Schrodinger equation for Hy is

2

0 e e
(R, t) = (Hy+ —A-
e (R;r,t) ( 0+,ucA P+ e

A2) U(R;r,1). (D.1)

In the dipole approximation, the electric field is given by

1dA(t)
E(t) = ———. D.2
0= (D2)
With the transformation WE(r,¢) = e*AOTU(r ¢), the new time-dependent Schrodinger
equation for ¥, becomes

z’%\IIL(R;r, t) = (Ho+ W) U*(R;r,t), (D.3)
which is said to be in the length gauge since the interaction term W = e€(t) - r couples the
electric field to the position operator. Since the dipole operator is D = —er, the interaction
is also written as W = —&(t) - D.

To solve Eq. D.3 in prolate spheroidal coordinates, one should follow the same formalism
as in Sec. 3.1.1 except the interaction term in Eq. 3.2 now becomes

W —E(t) -1 =)z = E(t)ggn, (D.4)

where E(t) = %d“ggt). Thus in B-splines representation, the interaction matrix in Eq. 3.14 is
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evaluated as
00 1
L = 2 — 2 . . . .
Wy = [ de [ anle? =) postnW s €)os ()

= [ e [ an(e - e g eme @

e 1 00 1
- %(t) (/ d¢ uif?’ui// dn vinvj —/ d¢ uifui// dn UjT]S'UjI) (D.5)
1 -1 1 -1
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