B. S., Navional Maiwan University, 2263

A MASTER'S THESTS

requirements of the degree

MASTER OE SCIENCS
Department of Chemicui zuginecring

KaNSAS SMATE LNIUVERSTCY
Nanhatian, Kursas

1968

Dy $\mathrm{o}^{2} \mathrm{~S}$

KOK－DON KINTC

3．S．，National maiwan Unミversえty，こ263

A MASMER＇S Thasyo

submicted in partiol fulfillment of the

> requirments of the dogree

MASTER OF SCIENCE

Department of Chemical Enginearing

```
KNNEAS SMNRE LNIVIRSIMY
            Manhatcan, Kurcas
            2968
```

 \(\therefore\) Apzoved by:

PART ONE

ANALYSIS AND OPTIMIZATION OF THE MULTIEFFECT MULTISTAGE FLASH DISTILLATION..PROCESS
Page
Chapter 1. INTRODUCTION 1
Chapter 2. PROCESS DESCRIPTION 4
Chapter 3. PROCESS ANALYSIS 9
3-1. Outline of Process Analysis 93-2. Flow Rates of Flashing Brine, Recycle Brine andCondensate Stream12
3-3. Mixing of the Recycle Brine Stream with the Flashing
Brine Stream 13
3-4. The Heat Loads in the Brine Heater and the n-th Effect 13
3-5. Temperature and Composition of the Flashing Brine,
T_{f} vs C_{f} 14
3-6. Average α in the n-th Effect, α_{n} 17
3-7. The Flow Rate of the Cooling Water, R_{4} 19
3-8. The Temperature Difference Between the FlashingBrine and Non-flashing Brine, ΔT, in Section HR-nand $R-n$20
3-9. Average ΔT in the $n-t h$ Effect, ΔT_{n} 23
3-10. The Effective Δt for Heat Transfer in the Brine Heater,Δt_{0}, and in the $n-t h E_{f f e c t,} \Delta t_{n}$. 24

PART ONE

ANALYSIS AND OPTIMIZATION OF THE MULTIEFFECT MULTISTAGE FLASH DISTILLATION..PROCESS
Page
Chapter 1. INTRODUCTION 1
Chapter 2. PROCESS DESCRIPTION 4
Chapter 3. PROCESS ANALYSIS 9
3-1. Outline of Process Analysis 93-2. Flow Rates of Flashing Brine, Recycle Brine andCondensate Stream12
3-3. Mixing of the Recycle Brine Stream with the Flashing
Brine Stream 13
3-4. The Heat Loads in the Brine Heater and the n-th Effect 13
3-5. Temperature and Composition of the Flashing Brine,
T_{f} vs C_{f} 14
3-6. Average α in the n-th Effect, α_{n} 17
3-7. The Flow Rate of the Cooling Water, R_{4} 19
3-8. The Temperature Difference Between the FlashingBrine and Non-flashing Brine, ΔT, in Section HR-nand $R-n$20
3-9. Average ΔT in the $n-t h$ Effect, ΔT_{n} 23
3-10. The Effective Δt for Heat Transfer in the Brine Heater,Δt_{0}, and in the $n-t h E_{f f e c t,} \Delta t_{n}$. 24

TABLE OF CONTENTS (Continued)

Chapter 3. PROCESS ANALYSIS (Continued)3-11. Heat Transfer Area Requirements in the BrineHeater and the $n-t h$ EffectPage27
3-12. Pumping Head for the Recirculation Pump, J_{n} 28
Chapter 4. ECONOMIC ANALYSIS 31
4-1. The. Capital Costs 32
4-2. The Operating Costs 34
4-3. The Water Production Cost, S 36
Chapter 5. OPTIMIZATION 38
5-1. The Performance Equations 38
5-2. Search for Optimum by the Maximum Principle 42
5-3. Parametric Search for Overall Optimum 54
5-4. Overall Optimum by Simplex Method 69
5-5. Comparison of the Two Search Techniques 75
Chapter 6. CONCLUSION 78
NOMENCLATURE 83
PART TWO
ANALYSIS AND OPTIMIZATION OF THE REVERSE OSMOSIS
DESALINATION PROCESS
Chapter 1. INTRODUCTION 89
Chapter 2. PROCESS DESCRIPTION 91
Chapter 3. PROCESS ANALYSIS 94
3-1. The Fresh Water Production Rate W^{n} and W_{f} 96
3-2. The Volumetric Flux of Water Through the Membrane, F 97

TABLE OF CONTENTS (Continued)

Chapter 3. PROCESS ANALYSIS (Continued)3-11. Heat Transfer Area Requirements in the BrineHeater and the $n-t h$ EffectPage27
3-12. Pumping Head for the Recirculation Pump, J_{n} 28
Chapter 4. ECONOMIC ANALYSIS 31
4-1. The. Capital Costs 32
4-2. The Operating Costs 34
4-3. The Water Production Cost, S 36
Chapter 5. OPTIMIZATION 38
5-1. The Performance Equations 38
5-2. Search for Optimum by the Maximum Principle 42
5-3. Parametric Search for Overall Optimum 54
5-4. Overall Optimum by Simplex Method 69
5-5. Comparison of the Two Search Techniques 75
Chapter 6. CONCLUSION 78
NOMENCLATURE 83
PART TWO
ANALYSIS AND OPTIMIZATION OF THE REVERSE OSMOSIS
DESALINATION PROCESS
Chapter 1. INTRODUCTION 89
Chapter 2. PROCESS DESCRIPTION 91
Chapter 3. PROCESS ANALYSIS 94
3-1. The Fresh Water Production Rate W^{n} and W_{f} 96
3-2. The Volumetric Flux of Water Through the Membrane, F 97

TABLE OF CONTENTS (Continued)

Chapter 3. PROCESS ANALYSIS (Continued)
3-3. Inlet and Exit Brine Concentrations of $M S^{n}, x_{i}^{n}$ and x_{e}^{n} 98
3-4. Outlet Brine Concentrations Between Stages;x^{n} and x^{n-1}100
3-5. Reynolds Number Re^{n} and the Recycle Ratio r^{n} 101
3-6. Energy Requirement for the High-Pressure Pump J_{1}^{n} in the $n-t h$ Stage, E_{1}^{n} 102
3-7. Energy Requirement for the Recirculation Pump J_{2}^{n}
in the n -th Stage, $\mathrm{E}_{2}^{\mathrm{n}}$ 103
3-8. Energy Recovery at the Reject Turbine, E_{3} 104
3-9. Simplified Models 105
Chapter 4. ECONOMIC ANALYSIS 113
4-1. The Capital Cost 114
4-2. The Operating Cost 116
4-3. The Water Cost, C_{t} 117
4-4. Water Costs for Models A, B, and C 118
Chapter 5. OPTIMIZATION 121
5-1. Performance Equations 121
5-2. Derivatives of State Variables 127
5-3. Adjoint Variables 139
5-4. Derivatives of Hamiltonians 140
5-5. Computing Procedures 141

TABLE OF CONTENTS (Continued)

Chapter 3. PROCESS ANALYSIS (Continued)
3-3. Inlet and Exit Brine Concentrations of $M S^{n}, x_{i}^{n}$ and x_{e}^{n} 98
3-4. Outlet Brine Concentrations Between Stages;x^{n} and x^{n-1}100
3-5. Reynolds Number Re^{n} and the Recycle Ratio r^{n} 101
3-6. Energy Requirement for the High-Pressure Pump J_{1}^{n} in the $n-t h$ Stage, E_{1}^{n} 102
3-7. Energy Requirement for the Recirculation Pump J_{2}^{n}
in the n -th Stage, $\mathrm{E}_{2}^{\mathrm{n}}$ 103
3-8. Energy Recovery at the Reject Turbine, E_{3} 104
3-9. Simplified Models 105
Chapter 4. ECONOMIC ANALYSIS 113
4-1. The Capital Cost 114
4-2. The Operating Cost 116
4-3. The Water Cost, C_{t} 117
4-4. Water Costs for Models A, B, and C 118
Chapter 5. OPTIMIZATION 121
5-1. Performance Equations 121
5-2. Derivatives of State Variables 127
5-3. Adjoint Variables 139
5-4. Derivatives of Hamiltonians 140
5-5. Computing Procedures 141

TABLE OF CONTENTS (Continued)

Page
NOMENCLATURE 144
ACKNOWLEDGMENT 149
REFERENCES 150
APPENDIX 152

TABLE OF CONTENTS (Continued)

Page
NOMENCLATURE 144
ACKNOWLEDGMENT 149
REFERENCES 150
APPENDIX 152

PART ONE

ANALYSIS AND OPTIMIZATION OF THE MULTIEFFECT
MULTISTAGE FLASH DISTILLATION PROCESS

PART ONE

ANALYSIS AND OPTIMIZATION OF THE MULTIEFFECT
MULTISTAGE FLASH DISTILLATION PROCESS

CHAPTER I

INTRODUCTION

The present study is directed to the System analysis and optimization of a multieffect multistage (MEMS) flash distillation process. The MEMS flash distillation process is a rather recent development in the flash distillation technology and ofrers the most promise in the foreseeable future for producing large quantities of potable water economically from seawater (1).

A better understanding of the MEMS system is obtained by following the developments of the process. Regular distillation is a familiar water purification process. Flash distillation was introduced because of better control of scale formation (2). In the flash distillation process, heated saline water is released into a closed vessel which is maintained at a lower pressure than the vapor pressure of the solution. Since the vapor simply flashes off the warm liquid, the resulting precipitates form in the liquid and not on the heat transfer surface (3).

The brine concentration in a flashing chamber is nearly uniform due to the vigorous mixing resulting from the flashing and is, therefore, equal to that of the discharge stream. In a single stage operation, the feed brine with low concentration is mixed with flashing brine with high concentration. This causes a large aroount of free energy loss due to the irreversible mixing of two solutions with considerable concentration difference. However, the concentration difference between stages in a multistage operation is considerably reduced. Therefore, the thermodynamic efficiency for this operation is greatly improved. This multistage operation is the so-called "single-effect multistage (SEMS)" flash distillation process (4).

CHAPTER I

INTRODUCTION

The present study is directed to the System analysis and optimization of a multieffect multistage (MEMS) flash distillation process. The MEMS flash distillation process is a rather recent development in the flash distillation technology and ofrers the most promise in the foreseeable future for producing large quantities of potable water economically from seawater (1).

A better understanding of the MEMS system is obtained by following the developments of the process. Regular distillation is a familiar water purification process. Flash distillation was introduced because of better control of scale formation (2). In the flash distillation process, heated saline water is released into a closed vessel which is maintained at a lower pressure than the vapor pressure of the solution. Since the vapor simply flashes off the warm liquid, the resulting precipitates form in the liquid and not on the heat transfer surface (3).

The brine concentration in a flashing chamber is nearly uniform due to the vigorous mixing resulting from the flashing and is, therefore, equal to that of the discharge stream. In a single stage operation, the feed brine with low concentration is mixed with flashing brine with high concentration. This causes a large aroount of free energy loss due to the irreversible mixing of two solutions with considerable concentration difference. However, the concentration difference between stages in a multistage operation is considerably reduced. Therefore, the thermodynamic efficiency for this operation is greatly improved. This multistage operation is the so-called "single-effect multistage (SEMS)" flash distillation process (4).

A recirculated SEMS is a single-effect multistage flash distillation with a recycle operation. The main reasons for using a recycle strearn are to increase the total heat capacity of the flashing brine and the percentage conversion of the brine feed into fresh water (5,6). Due to the high latent heat of vaporization of water and the low heat capacity of the aqueous solution, the solution cools off considerably when only a small fraction of the solution is flash evaporated. In the flash distillation process, the highest flashing temperature is limited by the scale formation problem and the lowest temperature is limited by the temperature of the seawater which is used as the coolant. The percentage conversion of a flash distillation process without recycle, which is operated within the temperature range mentioned above, is less than $20 \%(7,8)$. Since the saline water feed stream has to be pumped and pretreated, a low percentage conversion of feed water into fresh water will result in a poor overall economy for the process.

A MEMS process consists of several SEMS plants with recycles connected in series. Each SEMS system is considered as an effect. W. R. Williamson et. al. (7) have sumarized the advantages of the MEMS system as compared to the SEMS system as follows:
(a). Reduces total feed treatment cost by 50%.
(b). Reduces heat transfer surface by at least 20%.
(c). Allows for more stages at the hot end of the plant and. fewer stages at the cold end of the plant.

Thus, a MEMS system lends itself to better control of the operating variables so that a lower water cost can be achieved.

The MEMS process is described in detail in Chapter 2. In Chapter 3 a mathematical model which fairly accurately describes the process is

A recirculated SEMS is a single-effect multistage flash distillation with a recycle operation. The main reasons for using a recycle strearn are to increase the total heat capacity of the flashing brine and the percentage conversion of the brine feed into fresh water (5,6). Due to the high latent heat of vaporization of water and the low heat capacity of the aqueous solution, the solution cools off considerably when only a small fraction of the solution is flash evaporated. In the flash distillation process, the highest flashing temperature is limited by the scale formation problem and the lowest temperature is limited by the temperature of the seawater which is used as the coolant. The percentage conversion of a flash distillation process without recycle, which is operated within the temperature range mentioned above, is less than $20 \%(7,8)$. Since the saline water feed stream has to be pumped and pretreated, a low percentage conversion of feed water into fresh water will result in a poor overall economy for the process.

A MEMS process consists of several SEMS plants with recycles connected in series. Each SEMS system is considered as an effect. W. R. Williamson et. al. (7) have sumarized the advantages of the MEMS system as compared to the SEMS system as follows:
(a). Reduces total feed treatment cost by 50%.
(b). Reduces heat transfer surface by at least 20%.
(c). Allows for more stages at the hot end of the plant and. fewer stages at the cold end of the plant.

Thus, a MEMS system lends itself to better control of the operating variables so that a lower water cost can be achieved.

The MEMS process is described in detail in Chapter 2. In Chapter 3 a mathematical model which fairly accurately describes the process is
developed. Each effect is first assumed to consist of an infinite number of stages (infinite stage operation) and differential equations are set up to obtain the idealized performance equations. Since an actual plant consists of a finite number of stages (finite stage operation), appropriate correction terms are added to the idealized performance equations. The capital and operating cost equations are set up in Chapter 4.

The discrete maximum principle combined with a search technique is used to optimize the MEMS system. Two search techniques are used in this study: the parametric search and the Simplex method. The optimization procedure and numerical results are illustrated and the comparison of the two methods is discussed in Chapter 5. The final optimal policy of the system and the capital and operating costs allocation are given in Chapter 6. The computer program of each method and the sample results are listed in the Appendix.
developed. Each effect is first assumed to consist of an infinite number of stages (infinite stage operation) and differential equations are set up to obtain the idealized performance equations. Since an actual plant consists of a finite number of stages (finite stage operation), appropriate correction terms are added to the idealized performance equations. The capital and operating cost equations are set up in Chapter 4.

The discrete maximum principle combined with a search technique is used to optimize the MEMS system. Two search techniques are used in this study: the parametric search and the Simplex method. The optimization procedure and numerical results are illustrated and the comparison of the two methods is discussed in Chapter 5. The final optimal policy of the system and the capital and operating costs allocation are given in Chapter 6. The computer program of each method and the sample results are listed in the Appendix.

CHAPTER 2

PROC:ESS DESCRIPTION

Figure 1 presents a simplified process flow diagran of a threeeffect multistage flash system and Figure 2 depicts a typical effect, the $n-t h e f f e c t$, of the system. The critical locations of the system are denoted by numbers, $n^{\prime \prime}, n^{\prime \prime}$, and n, which divide the system into various sections, namely sections $H-n, M R-n, H R-n$, and $R-n$. The $n-t h$ effect consists of preheater $H-n$, mixing section $M R-n$, heat recovery section $H R-n$, and heat rejection section $R-n$. From Figure 2 it is easily seen that the preheater of the $n-t h$ effect, $H-n$, coincides with the heat rejection section, $R-(n-1)$, of the $(n-1)-t h$ effect.
F, L, and R_{n} represent respectively the flow rate of the feed brine, flashing brine, and recycle brine in the $n-t h$ effect. W_{n} represents the condensate produced in the $n-t h$ effect. The feed brine and the recycle brine together are referred to as the mon-flashing brine stream. T_{f}, T_{j}, and T_{c} represent respectively the temperature of the flashing brine, non-flashing brine, and condensate. The subscript is used to indicate the location. For example, $\left(T_{f}\right)_{1}$ and $\left(T_{j}\right)_{n}$, are respectively the temperature of the flashing brine at location 1 and temperature of the non-flashing brine at location n^{\prime}.

In Figure 1 , the seawater feed is heated in section $R-3$ and then degasified to remove CO_{2} and other dissolved gases. After being heated successively in sections HR-3, $\mathrm{H}-3, \mathrm{HR}-2, \mathrm{H}-2$, and $H R-1$, it is mixed with the recycle brine R_{1} to form a brine strear which is heated in the brine heater, $H-1$, and then introduced into the first effect as the flashing brine (L) 1 ..

CHAPTER 2

PROC:ESS DESCRIPTION

Figure 1 presents a simplified process flow diagran of a threeeffect multistage flash system and Figure 2 depicts a typical effect, the $n-t h e f f e c t$, of the system. The critical locations of the system are denoted by numbers, $n^{\prime \prime}, n^{\prime \prime}$, and n, which divide the system into various sections, namely sections $H-n, M R-n, H R-n$, and $R-n$. The $n-t h$ effect consists of preheater $H-n$, mixing section $M R-n$, heat recovery section $H R-n$, and heat rejection section $R-n$. From Figure 2 it is easily seen that the preheater of the $n-t h$ effect, $H-n$, coincides with the heat rejection section, $R-(n-1)$, of the $(n-1)-t h$ effect.
F, L, and R_{n} represent respectively the flow rate of the feed brine, flashing brine, and recycle brine in the $n-t h$ effect. W_{n} represents the condensate produced in the $n-t h$ effect. The feed brine and the recycle brine together are referred to as the mon-flashing brine stream. T_{f}, T_{j}, and T_{c} represent respectively the temperature of the flashing brine, non-flashing brine, and condensate. The subscript is used to indicate the location. For example, $\left(T_{f}\right)_{1}$ and $\left(T_{j}\right)_{n}$, are respectively the temperature of the flashing brine at location 1 and temperature of the non-flashing brine at location n^{\prime}.

In Figure 1 , the seawater feed is heated in section $R-3$ and then degasified to remove CO_{2} and other dissolved gases. After being heated successively in sections HR-3, $\mathrm{H}-3, \mathrm{HR}-2, \mathrm{H}-2$, and $H R-1$, it is mixed with the recycle brine R_{1} to form a brine strear which is heated in the brine heater, $H-1$, and then introduced into the first effect as the flashing brine (L) 1 ..

As is shown in Figure 2, the flashing brine at locetion r. is divided into two streams: one stream, (L) n, is fed into thc ($n+1 \cdot$)-th effect and the other stream, R_{n}, is recirculatcd by the recycie pump, J_{n}, heated in scctions $\operatorname{MR}-n$ and $H-n$, and then mixed with, the brine strcan (L) ${ }_{n-1}$ at the mixine point, M_{n}, and thon the combined stream is introduced into the $n-t h$ effect as the brino stream, (J) n.

The feed brine and the recycle brine arc hotad in cach stace by the water vapor evaporatcd from the flashing brinc in that stacc. It is possible to arrange the flow systcm so that the tomperatures of the feed brine and the recycle brine arc equal at any location. In the following discussion, such an arrangement is assumed. As has been described, the feed brine and the recycle brine together are referred to as the non-flashing brine and its temperature is cenoted by m_{j}. The recycie brine, R_{n}, which is a part of the flashing brire at location n, is introduced into the condensing chamber at location $n^{\prime \prime}$ where it becomes a part of the non-flashing orine stream. Thus, the following relation should hold.

$$
\left(T_{j}\right)_{n "}=\left(M_{f}\right)_{n} \quad, \quad n=1,2,3 .
$$

Thereforc, the two brine streams, R_{n+1} and $\left(I_{n}\right.$, which arc mixed at the mixing point, M_{n+1}, are at the same temperature but are at different concentration levels. Because of the rather limited concentration ransc Of approximately from 3.5% to 7% encountered in the process, the heat of mixing duc to concentration differencc is assumed ncgligible. Prom this assumption, one can sce that the temperaturc of the brine stream before ard after mixine must romain unchanced, i.e.,

As is shown in Figure 2, the flashing brine at locetion r. is divided into two streams: one stream, (L) n, is fed into thc ($n+1 \cdot$)-th effect and the other stream, R_{n}, is recirculatcd by the recycie pump, J_{n}, heated in scctions $\operatorname{MR}-n$ and $H-n$, and then mixed with, the brine strcan (L) ${ }_{n-1}$ at the mixine point, M_{n}, and thon the combined stream is introduced into the $n-t h$ effect as the brino stream, (J) n.

The feed brine and the recycle brine arc hotad in cach stace by the water vapor evaporatcd from the flashing brinc in that stacc. It is possible to arrange the flow systcm so that the tomperatures of the feed brine and the recycle brine arc equal at any location. In the following discussion, such an arrangement is assumed. As has been described, the feed brine and the recycle brine together are referred to as the non-flashing brine and its temperature is cenoted by m_{j}. The recycie brine, R_{n}, which is a part of the flashing brire at location n, is introduced into the condensing chamber at location $n^{\prime \prime}$ where it becomes a part of the non-flashing orine stream. Thus, the following relation should hold.

$$
\left(T_{j}\right)_{n "}=\left(M_{f}\right)_{n} \quad, \quad n=1,2,3 .
$$

Thereforc, the two brine streams, R_{n+1} and $\left(I_{n}\right.$, which arc mixed at the mixing point, M_{n+1}, are at the same temperature but are at different concentration levels. Because of the rather limited concentration ransc Of approximately from 3.5% to 7% encountered in the process, the heat of mixing duc to concentration differencc is assumed ncgligible. Prom this assumption, one can sce that the temperaturc of the brine stream before ard after mixine must romain unchanced, i.e.,

$$
\begin{equation*}
\left(T_{f}\right)_{n}=(T)_{(n+1)} \quad, \quad n=1,2 \tag{2}
\end{equation*}
$$

A stage within each effect consists of a flashing chamber ard a condensing chamber and a demister which separates the two chambers. Each stage is maintained at a lower pressure then the preceding one. Brine flows from stage to stage, giving up additional vapor as the pressure drops; the vapor then passes through the demister to the condensing chamber, where it is condensed to heat the non-filashing brine.

$$
\begin{equation*}
\left(T_{f}\right)_{n}=(T)_{(n+1)} \quad, \quad n=1,2 \tag{2}
\end{equation*}
$$

A stage within each effect consists of a flashing chamber ard a condensing chamber and a demister which separates the two chambers. Each stage is maintained at a lower pressure then the preceding one. Brine flows from stage to stage, giving up additional vapor as the pressure drops; the vapor then passes through the demister to the condensing chamber, where it is condensed to heat the non-filashing brine.

CHAPTER 3

PROCESS ANALYSIS

3-1. Outline of Process Analysis
Quantitative relations among the operating variables are derived in the following sections. The performance of a MEMS system is characterized by the temperature - composition diagram for the ($n-1$) th and the n-th effects in Figure 3. The general approach is to obtain idealized performance equations by assuming infinite stage operation in each effect and applying correction terms for the finiteness of the number of stages.

The lines, $a-b-c$, and $d-e-f$, show how the temperature of the flashing brine, T_{f}, decreases as the concentration of the brine, C_{f}, increases in an infinite stage operation in the ($n-1$)-th effect and $n-t h e f f e c t$, respectively. The relations representing these lines are derived in section 3-5. The concentration gaps, between (n-1) and n^{\prime}, n and $(n+1)$, are caused by mixing of brines due to recirculation in the $n-t h$ and ($n+1$) th effects, respectively. The stepped lines along the lines, $a-b-c$ and $d-e-f$, represent the temperature of the flashing brine in the (n-l)-th, and $n-t h$ effects respectively in an actual process where the number of stages in each effect is finite.

The lines, $a^{\prime}-b^{\prime}-c^{\prime}$, and $d^{\prime}-e^{\prime-f}$, show the relations between the condensate temperature, T_{c}, and the flash brine composition, C_{f}, at various locations in the system for an infinite stage operation. The stepped lines along $a^{\prime}-b^{\prime}-c^{\prime}$ and $d^{\prime}-e^{\prime}-f^{\prime}$ again represent an actual finite stage operation.

CHAPTER 3

PROCESS ANALYSIS

3-1. Outline of Process Analysis
Quantitative relations among the operating variables are derived in the following sections. The performance of a MEMS system is characterized by the temperature - composition diagram for the ($n-1$) th and the n-th effects in Figure 3. The general approach is to obtain idealized performance equations by assuming infinite stage operation in each effect and applying correction terms for the finiteness of the number of stages.

The lines, $a-b-c$, and $d-e-f$, show how the temperature of the flashing brine, T_{f}, decreases as the concentration of the brine, C_{f}, increases in an infinite stage operation in the ($n-1$)-th effect and $n-t h e f f e c t$, respectively. The relations representing these lines are derived in section 3-5. The concentration gaps, between (n-1) and n^{\prime}, n and $(n+1)$, are caused by mixing of brines due to recirculation in the $n-t h$ and ($n+1$) th effects, respectively. The stepped lines along the lines, $a-b-c$ and $d-e-f$, represent the temperature of the flashing brine in the (n-l)-th, and $n-t h$ effects respectively in an actual process where the number of stages in each effect is finite.

The lines, $a^{\prime}-b^{\prime}-c^{\prime}$, and $d^{\prime}-e^{\prime-f}$, show the relations between the condensate temperature, T_{c}, and the flash brine composition, C_{f}, at various locations in the system for an infinite stage operation. The stepped lines along $a^{\prime}-b^{\prime}-c^{\prime}$ and $d^{\prime}-e^{\prime}-f^{\prime}$ again represent an actual finite stage operation.

Fig. 3. Temperatures T_{f}, T_{c}, T_{j} vs concentration of flashing brine C_{f} (schematic).

Fig. 3. Temperatures T_{f}, T_{c}, T_{j} vs concentration of flashing brine C_{f} (schematic).

Thc vertical distance bctween the two sets of lines described in the last two paragraphs represents ($T_{f}-T_{c}$) at various Zocations in the system. This difference is cue to the boiling point elevation of the siashing brinc and thc prossure difference across the demister at each location. This difforence will be denotod by α. Tho magnitude of α verics throughout an effect; this is mainly due to the vurying compositicn, and consecquently the varying boiling point elcvation. The average value of α in the $n-t h$ effect is denoted by α_{n} and is derived in section $3-5$.
 relation between non-flashing brine temperature, T_{j}, and flashing brine composition, C_{t}. ΔT is used to represent the temperature difference $\left(T_{f}-T_{j}\right)$. As illustrated in the figure, ΔT, in an infinite stage operation is neaziy constant within a heat recovery section. nowever, it is rot constant within a heat rejection section. For example, Δ varies gradually from $(\Delta T)_{n^{\prime \prime}}$ to $(\Delta T)_{n}$ in the heat rejection section $R-n$. These items are explained further in section 3-8. The average Q in the n-th effect, ΔT_{n}, is derived in section 3-9.

- The heat loads in the brine heater and the n-th effect are derived In section 3-4.. Δt is used to denote the temperature difference recuired for the heat transfer in the various sections. The average values of $A t$ in the brine heater and the $n-t h$ effect are calculated by the relations derived in section 3-20. From thesc, the relations for the heat transfer area requirements are derived in section 3-11. The pumpaz head required for each of the circulating pumps is derived in section 3-12.

Thc vertical distance bctween the two sets of lines described in the last two paragraphs represents ($T_{f}-T_{c}$) at various Zocations in the system. This difference is cue to the boiling point elevation of the siashing brinc and thc prossure difference across the demister at each location. This difforence will be denotod by α. Tho magnitude of α verics throughout an effect; this is mainly due to the vurying compositicn, and consecquently the varying boiling point elcvation. The average value of α in the $n-t h$ effect is denoted by α_{n} and is derived in section $3-5$.
 relation between non-flashing brine temperature, T_{j}, and flashing brine composition, C_{t}. ΔT is used to represent the temperature difference $\left(T_{f}-T_{j}\right)$. As illustrated in the figure, ΔT, in an infinite stage operation is neaziy constant within a heat recovery section. nowever, it is rot constant within a heat rejection section. For example, Δ varies gradually from $(\Delta T)_{n^{\prime \prime}}$ to $(\Delta T)_{n}$ in the heat rejection section $R-n$. These items are explained further in section 3-8. The average Q in the n-th effect, ΔT_{n}, is derived in section 3-9.

- The heat loads in the brine heater and the n-th effect are derived In section 3-4.. Δt is used to denote the temperature difference recuired for the heat transfer in the various sections. The average values of $A t$ in the brine heater and the $n-t h$ effect are calculated by the relations derived in section 3-20. From thesc, the relations for the heat transfer area requirements are derived in section 3-11. The pumpaz head required for each of the circulating pumps is derived in section 3-12.

3-2. Flow Rates of Plashing Brine, Recycle Brine and Condensate streams.

The notation representing the various fluid streams has been defined in Chapter II: The recycle ratio in the notion effect, r_{n}, is defined by

$$
\begin{equation*}
r_{n}=\frac{R_{n}}{(L)_{n-1}}, \quad n=1,2,3, \tag{3}
\end{equation*}
$$

where

$$
(I)_{0}=F .
$$

The flow rate of the brine stream leaving the nth effect, (L) n_{n} is related to its concentration, $\left(C_{f}\right)_{n}$, by the following equation,

$$
\begin{equation*}
(I)_{n}=F \frac{C_{F}}{\left(C_{f}\right)_{n}} \quad, \quad r=2,2,3, \tag{4}
\end{equation*}
$$

where C_{F} i's the salt concentration in the feed. Therefore, by combining equations (3) and (4), the flow rate of the recycle brine stream can be written as

$$
\begin{equation*}
R_{n}=\quad r_{n} F \frac{c_{F}}{\left(c_{f}\right)_{n-1}}, \quad n=1,2,3 . \tag{5}
\end{equation*}
$$

Note that

$$
\left(c_{f}\right)_{0}=c_{F} .
$$

The flow rate of the brine stream entering the $n-t h$ effect is: given by

$$
\begin{equation*}
(L)_{n^{\prime}}=(L)_{n-1}+R_{n}=F \quad \frac{C_{F}}{\left(C_{f}\right)_{n-1}}\left(2+r_{n}\right), n=1,2,3 \tag{6}
\end{equation*}
$$

3-2. Flow Rates of Plashing Brine, Recycle Brine and Condensate streams.

The notation representing the various fluid streams has been defined in Chapter II: The recycle ratio in the notion effect, r_{n}, is defined by

$$
\begin{equation*}
r_{n}=\frac{R_{n}}{(L)_{n-1}}, \quad n=1,2,3, \tag{3}
\end{equation*}
$$

where

$$
(I)_{0}=F .
$$

The flow rate of the brine stream leaving the nth effect, (L) n_{n} is related to its concentration, $\left(C_{f}\right)_{n}$, by the following equation,

$$
\begin{equation*}
(I)_{n}=F \frac{C_{F}}{\left(C_{f}\right)_{n}} \quad, \quad r=2,2,3, \tag{4}
\end{equation*}
$$

where C_{F} i's the salt concentration in the feed. Therefore, by combining equations (3) and (4), the flow rate of the recycle brine stream can be written as

$$
\begin{equation*}
R_{n}=\quad r_{n} F \frac{c_{F}}{\left(c_{f}\right)_{n-1}}, \quad n=1,2,3 . \tag{5}
\end{equation*}
$$

Note that

$$
\left(c_{f}\right)_{0}=c_{F} .
$$

The flow rate of the brine stream entering the $n-t h$ effect is: given by

$$
\begin{equation*}
(L)_{n^{\prime}}=(L)_{n-1}+R_{n}=F \quad \frac{C_{F}}{\left(C_{f}\right)_{n-1}}\left(2+r_{n}\right), n=1,2,3 \tag{6}
\end{equation*}
$$

From the overall material balance over the n-th effect, we obtain the following equation for the flow rate of the condensate produced in the nth effect.

$$
\begin{equation*}
W_{n}=F\left\{\frac{C_{F}}{\left(C_{f}\right)_{n-1}}-\frac{C_{F}}{\left(C_{f}\right)_{n}}\right\} \quad, \quad n=1,2,3 . \tag{7}
\end{equation*}
$$

Therefore, the total water production, ΣW_{n}, is

$$
\begin{equation*}
\Sigma W=\sum_{n=1}^{3} W_{n}=F\left\{1-\frac{C_{F}}{\left(C_{f}\right)_{3}}\right\} \tag{8}
\end{equation*}
$$

3-3. Mixing of the Recycle Brine Strean with the Flashing Brine Stream. As mentioned previously, the brine streams having different compositions are mixed isothermally at mixing points. By making a salt material balance at the mixing point, M_{n}, as shown in Figure 2 , we obtain

$$
(L)_{n-1}\left(C_{f}\right)_{n-1}+R_{n}\left(C_{f}\right)_{n}=(L)_{n} \prime\left(C_{f}\right)_{\Omega}
$$

Substituting equations (4), (5), and (6) into the foregoing equation yields

$$
\begin{equation*}
\left(C_{f}\right)_{n^{\prime}}=\frac{\left(C_{f}\right)_{n-1}+r_{n}\left(C_{f}\right)_{n}}{I+r_{n}} \quad, n=I, 2,3 \tag{9}
\end{equation*}
$$

3-4. The Heat Loads in the Brine Heater and the $n-t h$ Effect. The heat load, q_{s}, in the brine heater, is a very important : operating variable. A large value of q_{s} gives rise to an increased stean cost. But it also gives rise to a large temperature difference Δ t for heat transfer and consequently a low plant cost.

From the overall material balance over the n-th effect, we obtain the following equation for the flow rate of the condensate produced in the nth effect.

$$
\begin{equation*}
W_{n}=F\left\{\frac{C_{F}}{\left(C_{f}\right)_{n-1}}-\frac{C_{F}}{\left(C_{f}\right)_{n}}\right\} \quad, \quad n=1,2,3 . \tag{7}
\end{equation*}
$$

Therefore, the total water production, ΣW_{n}, is

$$
\begin{equation*}
\Sigma W=\sum_{n=1}^{3} W_{n}=F\left\{1-\frac{C_{F}}{\left(C_{f}\right)_{3}}\right\} \tag{8}
\end{equation*}
$$

3-3. Mixing of the Recycle Brine Strean with the Flashing Brine Stream. As mentioned previously, the brine streams having different compositions are mixed isothermally at mixing points. By making a salt material balance at the mixing point, M_{n}, as shown in Figure 2 , we obtain

$$
(L)_{n-1}\left(C_{f}\right)_{n-1}+R_{n}\left(C_{f}\right)_{n}=(L)_{n} \prime\left(C_{f}\right)_{\Omega}
$$

Substituting equations (4), (5), and (6) into the foregoing equation yields

$$
\begin{equation*}
\left(C_{f}\right)_{n^{\prime}}=\frac{\left(C_{f}\right)_{n-1}+r_{n}\left(C_{f}\right)_{n}}{I+r_{n}} \quad, n=I, 2,3 \tag{9}
\end{equation*}
$$

3-4. The Heat Loads in the Brine Heater and the $n-t h$ Effect. The heat load, q_{s}, in the brine heater, is a very important : operating variable. A large value of q_{s} gives rise to an increased stean cost. But it also gives rise to a large temperature difference Δ t for heat transfer and consequently a low plant cost.

If the heat load due to flashing of the condensate stream is neglected, the heat load in the n-th effect can be approximated by the latent heat required for condensate production in the nth effect. Therefore, wo have

$$
\begin{equation*}
q_{n}=w_{n} \lambda=F\left\{\frac{c_{F}}{\left(c_{f}\right)_{n-1}}-\frac{c_{\dot{F}}}{\left(c_{f}\right)_{n}} \cdot\right\} \lambda_{0}, n=1,2,3, \tag{10}
\end{equation*}
$$

where λ is the latent heat of flashing brine.

3-5. Temperature and Composition of the Flashing Brine, T_{f} vs. C_{f}.

In Figure 4, which represents a flashing chamber of an infinite stage system, L, C_{f}, T_{f} and h_{f} are respectively the quantity, concentration, temperature and unit enthalpy of the flashing brine. Let iV be the quantity of water vapor evaporated, and let y_{v} be the unit enthalpy of the vapor. A total material balance gives

$$
L=\Sigma+d L+d V
$$

or

$$
\begin{equation*}
d L=-d V \tag{12}
\end{equation*}
$$

A salt balance gives

$$
L C_{f}=(L+d L)\left(C_{f}+d C_{f}\right),
$$

Neglecting the term dLaC_{f} in this equation yields

$$
\begin{equation*}
\frac{d L}{L}=-\frac{d C_{f}}{C_{f}} \tag{12}
\end{equation*}
$$

The enthalpy balance is
$L h_{f}=(L+d L)\left(h_{f}+d h_{f}\right)+I I_{v} d V$.

If the heat load due to flashing of the condensate stream is neglected, the heat load in the n-th effect can be approximated by the latent heat required for condensate production in the nth effect. Therefore, wo have

$$
\begin{equation*}
q_{n}=w_{n} \lambda=F\left\{\frac{c_{F}}{\left(c_{f}\right)_{n-1}}-\frac{c_{\dot{F}}}{\left(c_{f}\right)_{n}} \cdot\right\} \lambda_{0}, n=1,2,3, \tag{10}
\end{equation*}
$$

where λ is the latent heat of flashing brine.

3-5. Temperature and Composition of the Flashing Brine, T_{f} vs. C_{f}.

In Figure 4, which represents a flashing chamber of an infinite stage system, L, C_{f}, T_{f} and h_{f} are respectively the quantity, concentration, temperature and unit enthalpy of the flashing brine. Let iV be the quantity of water vapor evaporated, and let y_{v} be the unit enthalpy of the vapor. A total material balance gives

$$
L=\Sigma+d L+d V
$$

or

$$
\begin{equation*}
d L=-d V \tag{12}
\end{equation*}
$$

A salt balance gives

$$
L C_{f}=(L+d L)\left(C_{f}+d C_{f}\right),
$$

Neglecting the term dLaC_{f} in this equation yields

$$
\begin{equation*}
\frac{d L}{L}=-\frac{d C_{f}}{C_{f}} \tag{12}
\end{equation*}
$$

The enthalpy balance is
$L h_{f}=(L+d L)\left(h_{f}+d h_{f}\right)+I I_{v} d V$.

Fig. 4. The flashing chamber of a stage in the infinite stage system.

Fig. 4. The flashing chamber of a stage in the infinite stage system.

Neglecting the term dian f and substituting equation (11) into

 the above equation yields$$
I d h_{f}=\left(H_{v}-h_{f}\right) d L
$$

Since $d h_{f}=C_{p} d T_{f}$ and $H_{v}-h_{f}$ can be approximated by the latent heat of vaporization, λ, the above equation becomes

$$
\frac{C_{p}}{\lambda} d T_{i}=\frac{d L}{I}
$$

By slibstituting equation (22) into the foregoing equation, we obtain

$$
\begin{equation*}
\frac{C_{p}}{\lambda} d \dot{I}_{f}=-\frac{d C_{f}}{C_{f}} \tag{13}
\end{equation*}
$$

Assuming that C_{p} / λ is constant and integrating the above equation between locations n^{\prime} and n, we nave

$$
\begin{equation*}
\ln \frac{\left(c_{f}\right)_{n}}{\left(c_{f}\right)_{n^{\prime}}}=\frac{c_{p}}{\lambda}\left\{\left(s_{f}\right)_{n},-\left(s_{f}\right)_{n}\right\} \tag{14}
\end{equation*}
$$

Substituting equation (9) into this equation and noting that

$$
\left.\left(T_{f}\right)_{n},=\left(I_{f}\right)_{n-1}\right)
$$

$\ln \left(c_{f}\right)_{r}=\ln \frac{\left(c_{f}\right)_{n-1}+r_{n}\left(c_{f}\right)_{n}}{1+r_{r}}+\frac{c_{p}}{\lambda} \quad\left\{\left(m_{n}\right)_{n-1}-\left(m_{f}\right)_{n},\right\}$

$$
\begin{equation*}
n=1,2,3 . \tag{15}
\end{equation*}
$$

Fris is the equation of the straight line, d-e-t゙, in Figure 3.

Neglecting the term dian f and substituting equation (11) into

 the above equation yields$$
I d h_{f}=\left(H_{v}-h_{f}\right) d L
$$

Since $d h_{f}=C_{p} d T_{f}$ and $H_{v}-h_{f}$ can be approximated by the latent heat of vaporization, λ, the above equation becomes

$$
\frac{C_{p}}{\lambda} d T_{i}=\frac{d L}{I}
$$

By slibstituting equation (22) into the foregoing equation, we obtain

$$
\begin{equation*}
\frac{C_{p}}{\lambda} d \dot{I}_{f}=-\frac{d C_{f}}{C_{f}} \tag{13}
\end{equation*}
$$

Assuming that C_{p} / λ is constant and integrating the above equation between locations n^{\prime} and n, we nave

$$
\begin{equation*}
\ln \frac{\left(c_{f}\right)_{n}}{\left(c_{f}\right)_{n^{\prime}}}=\frac{c_{p}}{\lambda}\left\{\left(s_{f}\right)_{n},-\left(s_{f}\right)_{n}\right\} \tag{14}
\end{equation*}
$$

Substituting equation (9) into this equation and noting that

$$
\left.\left(T_{f}\right)_{n},=\left(I_{f}\right)_{n-1}\right)
$$

$\ln \left(c_{f}\right)_{r}=\ln \frac{\left(c_{f}\right)_{n-1}+r_{n}\left(c_{f}\right)_{n}}{1+r_{r}}+\frac{c_{p}}{\lambda} \quad\left\{\left(m_{n}\right)_{n-1}-\left(m_{f}\right)_{n},\right\}$

$$
\begin{equation*}
n=1,2,3 . \tag{15}
\end{equation*}
$$

Fris is the equation of the straight line, d-e-t゙, in Figure 3.

3-6. Average α in the n-th Effect, α_{n}.
α is defined as the difference in temperature of the flashing brine and the condensate in a state. α_{n} is' the average value of α in the $n-t h$ effect. The value of α in a stage depends on the boiling point elevation of the brine and the drop. in condensation temperature due to the demister pressure drop. Due to lack of information, the drop in condensing temperature due to the demister pressure drop was assumed to be $1^{\circ} \mathrm{F}$ in each effect.

Figure 5 shows the boiling point elevation of the brine solution as a function of its composition at constant temperature. The average value of the boiling point elevation in each effect was evaluated at the average temperature in the corresponding effect. The average temperatures in the first, second and third effects are assumed to be $225^{\circ} \mathrm{F}, 175^{\circ} \mathrm{F}$ and $125^{\circ} \mathrm{F}$, respectively. For further simplification, the average value of the boiling point elevation in each effect was calculated from the slope of each curve at the appropriate concentration ranges instead of the curve itself.

Therefore, α_{n} can be expressed as functions of the average brine composition in the n-th effect by the following equations,

$$
\begin{align*}
\alpha_{1} & =1.01+\frac{1}{0.03} \frac{\left(C_{f}\right)_{1}+\left(C_{f}\right)_{1}}{2} \\
& =1.01+\frac{1}{0.03}\left\{\frac{\frac{C_{F}+r_{1}\left(C_{f}\right)_{1}}{1+I_{1}}}{2}+\left(C_{f}\right)_{1}\right\} \tag{16}
\end{align*}
$$

3-6. Average α in the n-th Effect, α_{n}.
α is defined as the difference in temperature of the flashing brine and the condensate in a state. α_{n} is' the average value of α in the $n-t h$ effect. The value of α in a stage depends on the boiling point elevation of the brine and the drop. in condensation temperature due to the demister pressure drop. Due to lack of information, the drop in condensing temperature due to the demister pressure drop was assumed to be $1^{\circ} \mathrm{F}$ in each effect.

Figure 5 shows the boiling point elevation of the brine solution as a function of its composition at constant temperature. The average value of the boiling point elevation in each effect was evaluated at the average temperature in the corresponding effect. The average temperatures in the first, second and third effects are assumed to be $225^{\circ} \mathrm{F}, 175^{\circ} \mathrm{F}$ and $125^{\circ} \mathrm{F}$, respectively. For further simplification, the average value of the boiling point elevation in each effect was calculated from the slope of each curve at the appropriate concentration ranges instead of the curve itself.

Therefore, α_{n} can be expressed as functions of the average brine composition in the n-th effect by the following equations,

$$
\begin{align*}
\alpha_{1} & =1.01+\frac{1}{0.03} \frac{\left(C_{f}\right)_{1}+\left(C_{f}\right)_{1}}{2} \\
& =1.01+\frac{1}{0.03}\left\{\frac{\frac{C_{F}+r_{1}\left(C_{f}\right)_{1}}{1+I_{1}}}{2}+\left(C_{f}\right)_{1}\right\} \tag{16}
\end{align*}
$$

$$
\begin{aligned}
& \alpha_{1}=1.01+\frac{1}{0.03}\left(c_{1}\right)^{2}\left(c_{1}\right)_{1} \\
& \alpha_{2}=1.0075+\frac{1}{0.0307} \cdot\left(c_{1}\right)_{2}^{\prime}+\left(C_{1}\right)_{2} \\
& \alpha_{3}=0.32+\frac{1}{0.0315} \cdot \frac{\left(c_{1}\right)_{3}:\left(c_{1}\right)_{3}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{1}=1.01+\frac{1}{0.03}\left(c_{1}\right)^{2}\left(c_{1}\right)_{1} \\
& \alpha_{2}=1.0075+\frac{1}{0.0307} \cdot\left(c_{1}\right)_{2}^{\prime}+\left(C_{1}\right)_{2} \\
& \alpha_{3}=0.32+\frac{1}{0.0315} \cdot \frac{\left(c_{1}\right)_{3}:\left(c_{1}\right)_{3}}{2}
\end{aligned}
$$

$$
\begin{align*}
a_{2} & =1.0075+\frac{1}{0.0347} \frac{\left(c_{f}\right)_{2}+\left(c_{f}\right)_{2}}{2} \\
& =1.0075+\frac{1}{0.0347} \cdot \frac{\frac{\left(c_{f}\right)_{2}+r_{2}\left(c_{f}\right)_{2}}{1+r_{2}}+\left(c_{f}\right)_{2}}{2} \tag{17}\\
a_{3} & =0.32+\frac{1}{0.0375} \cdot \frac{\left(c_{f}\right)_{31}+\left(c_{f}\right)_{3}}{2} \\
& =0.32+\frac{1}{0.0375} \cdot \frac{\left(c_{f}\right)_{2}+r_{3}\left(c_{f}\right)_{3}}{1+r_{3}}+\left(c_{f}\right)_{3} \tag{28}
\end{align*}
$$

3r7. The Flow Rate of the Cooling Water, R_{4}.
An enthalpy balance around the whole system gives

$$
q_{s}+\left(F+R_{4}\right) C_{p}\left(T_{j}\right)_{3: 1}=R_{4} C_{p}\left(T_{j}\right)_{3 "}+W_{f_{p}} C_{p}\left(T_{c}\right)_{3}+(I)_{3} C_{p}\left(T_{2}\right)_{3}
$$

since

$$
\left(T_{j}\right)_{z " \prime}=\left(T_{f}\right)_{z},\left(T_{c}\right)_{z}=\left(T_{f}\right)_{z}-\alpha_{z}, \operatorname{and} F=W_{f}+(I)_{z},
$$

the above equation can be solved for the cooling water flow rate as

$$
\begin{equation*}
r_{4}=\frac{\frac{q_{s}}{c_{0}}+\Sigma w_{n} a_{3}}{\left(T_{2}\right)_{3}-\left(T_{j}\right\rangle_{3}}-F \tag{.19}
\end{equation*}
$$

$$
\begin{align*}
a_{2} & =1.0075+\frac{1}{0.0347} \frac{\left(c_{f}\right)_{2}+\left(c_{f}\right)_{2}}{2} \\
& =1.0075+\frac{1}{0.0347} \cdot \frac{\frac{\left(c_{f}\right)_{2}+r_{2}\left(c_{f}\right)_{2}}{1+r_{2}}+\left(c_{f}\right)_{2}}{2} \tag{17}\\
a_{3} & =0.32+\frac{1}{0.0375} \cdot \frac{\left(c_{f}\right)_{31}+\left(c_{f}\right)_{3}}{2} \\
& =0.32+\frac{1}{0.0375} \cdot \frac{\left(c_{f}\right)_{2}+r_{3}\left(c_{f}\right)_{3}}{1+r_{3}}+\left(c_{f}\right)_{3} \tag{28}
\end{align*}
$$

3r7. The Flow Rate of the Cooling Water, R_{4}.
An enthalpy balance around the whole system gives

$$
q_{s}+\left(F+R_{4}\right) C_{p}\left(T_{j}\right)_{3: 1}=R_{4} C_{p}\left(T_{j}\right)_{3 "}+W_{f_{p}} C_{p}\left(T_{c}\right)_{3}+(I)_{3} C_{p}\left(T_{2}\right)_{3}
$$

since

$$
\left(T_{j}\right)_{z " \prime}=\left(T_{f}\right)_{z},\left(T_{c}\right)_{z}=\left(T_{f}\right)_{z}-\alpha_{z}, \operatorname{and} F=W_{f}+(I)_{z},
$$

the above equation can be solved for the cooling water flow rate as

$$
\begin{equation*}
r_{4}=\frac{\frac{q_{s}}{c_{0}}+\Sigma w_{n} a_{3}}{\left(T_{2}\right)_{3}-\left(T_{j}\right\rangle_{3}}-F \tag{.19}
\end{equation*}
$$

From the foregoing equation we obtain

$$
\begin{equation*}
\frac{R_{4}}{W_{n}}=\frac{\frac{q_{s}}{F} \frac{1}{C_{P}} \frac{1}{1-\frac{C_{F}}{\left(C_{f}\right)_{3}}}+\alpha_{3}}{\left(T_{f}\right)_{3}-\left(T_{j}\right)_{3}}-\frac{1}{1-\frac{C_{F}}{\left(C_{f}\right)_{3}}} . \tag{20}
\end{equation*}
$$

3-8. The Temperature Difference Between the Flashing Brine and Non-Non-Flashing Brine, ΔT, in Sections $H R-n$, and $R-n$.
A) ΔT in Section HR-n.

In Figure 6 a whole stage in the infinite stage system is taken for analysis. The brine feed stream, F, and the recycle brine stream, R_{n}, are introduced to the stage from the right and leave from the left. The condensate, W, and the flashing brine stream enter the stage from the left and leave from the right. The temperature, unit enthalpy, and quantity of each stream per hour are denoted in the figure.

By making an energy balance around this stage, the following relation was obtained.

$$
\begin{aligned}
&\left(F+R_{n}\right)\left(h_{j}+d h_{j}\right)+W h_{c}+L h_{f} \\
&=\left(F+R_{n}\right) h_{j}+(W+d W)\left(h_{c}+d h_{c}\right)+(L+d L)\left(h_{f}+d h_{f}\right) .
\end{aligned}
$$

Since $d h_{c}=d h_{f},-d L=d W$ and $L+W=F+R_{n}$, the above equation becomes

From the foregoing equation we obtain

$$
\begin{equation*}
\frac{R_{4}}{W_{n}}=\frac{\frac{q_{s}}{F} \frac{1}{C_{P}} \frac{1}{1-\frac{C_{F}}{\left(C_{f}\right)_{3}}}+\alpha_{3}}{\left(T_{f}\right)_{3}-\left(T_{j}\right)_{3}}-\frac{1}{1-\frac{C_{F}}{\left(C_{f}\right)_{3}}} . \tag{20}
\end{equation*}
$$

3-8. The Temperature Difference Between the Flashing Brine and Non-Non-Flashing Brine, ΔT, in Sections $H R-n$, and $R-n$.
A) ΔT in Section HR-n.

In Figure 6 a whole stage in the infinite stage system is taken for analysis. The brine feed stream, F, and the recycle brine stream, R_{n}, are introduced to the stage from the right and leave from the left. The condensate, W, and the flashing brine stream enter the stage from the left and leave from the right. The temperature, unit enthalpy, and quantity of each stream per hour are denoted in the figure.

By making an energy balance around this stage, the following relation was obtained.

$$
\begin{aligned}
&\left(F+R_{n}\right)\left(h_{j}+d h_{j}\right)+W h_{c}+L h_{f} \\
&=\left(F+R_{n}\right) h_{j}+(W+d W)\left(h_{c}+d h_{c}\right)+(L+d L)\left(h_{f}+d h_{f}\right) .
\end{aligned}
$$

Since $d h_{c}=d h_{f},-d L=d W$ and $L+W=F+R_{n}$, the above equation becomes

Fig. 6. A stage in the infinite stage system.

Fig. 6. A stage in the infinite stage system.

$$
\begin{align*}
\left(F+R_{n}\right) d h_{j} & =W d h_{c}+h_{c} d W+2 d h_{f}-n_{f} d L \\
& =(L+W) d h_{f}-\left(h_{f}-h_{c}\right) d W \\
& =\left(F+R_{n}\right) d h_{f}-\left(h_{f}-n_{c}\right) d W \tag{21}
\end{align*}
$$

Since the feed brine and the recycle brine receive the heat of condensation of the water vapor, we have
or

$$
-\left(F+R_{n}\right) d h_{j}=\lambda d W
$$

$$
\begin{equation*}
-d W=\frac{\left(F+R_{n}\right) d h_{j}}{\lambda} \tag{22}
\end{equation*}
$$

Substituting equation (22) into equation (21) yields

$$
\begin{equation*}
\left(F+R_{n}\right) d h_{j}=\left(F+R_{n}\right) d h_{i}+\frac{\left(h_{f}-h_{c}\right)\left(F+R_{n}\right) d h_{j}}{\lambda} \tag{23}
\end{equation*}
$$

On rearranging, we obtain

$$
\left(1-\frac{h_{f}-h_{c}}{\lambda}\right) d h_{j}=d h_{f} .
$$

Since

$$
\frac{h_{i}-h_{c}}{\lambda} \ll 1,
$$

equation (24) can be approximated by

$$
\begin{equation*}
d h_{j}=d h_{f} \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{c T T}_{j}=d_{f}^{m} \tag{26}
\end{equation*}
$$

$$
\begin{align*}
\left(F+R_{n}\right) d h_{j} & =W d h_{c}+h_{c} d W+2 d h_{f}-n_{f} d L \\
& =(L+W) d h_{f}-\left(h_{f}-h_{c}\right) d W \\
& =\left(F+R_{n}\right) d h_{f}-\left(h_{f}-n_{c}\right) d W \tag{21}
\end{align*}
$$

Since the feed brine and the recycle brine receive the heat of condensation of the water vapor, we have
or

$$
-\left(F+R_{n}\right) d h_{j}=\lambda d W
$$

$$
\begin{equation*}
-d W=\frac{\left(F+R_{n}\right) d h_{j}}{\lambda} \tag{22}
\end{equation*}
$$

Substituting equation (22) into equation (21) yields

$$
\begin{equation*}
\left(F+R_{n}\right) d h_{j}=\left(F+R_{n}\right) d h_{i}+\frac{\left(h_{f}-h_{c}\right)\left(F+R_{n}\right) d h_{j}}{\lambda} \tag{23}
\end{equation*}
$$

On rearranging, we obtain

$$
\left(1-\frac{h_{f}-h_{c}}{\lambda}\right) d h_{j}=d h_{f} .
$$

Since

$$
\frac{h_{i}-h_{c}}{\lambda} \ll 1,
$$

equation (24) can be approximated by

$$
\begin{equation*}
d h_{j}=d h_{f} \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{c T T}_{j}=d_{f}^{m} \tag{26}
\end{equation*}
$$

Integrating this between location n^{\prime} and $n^{\prime \prime}$ and rearranging gives

$$
\begin{equation*}
(\Delta T)_{n^{\prime}}=\left(T_{f}\right)_{n^{\prime}}-\left(T_{j}\right)_{n^{\prime}}=\left(T_{f}\right)_{n^{\prime \prime}}-\left(T_{j}\right)_{n^{\prime \prime}}=(\Delta T)_{n^{\prime \prime}} \tag{27}
\end{equation*}
$$

This derivation leads to the conclusion that ΔT is nearly constant in the heat recovery sections.
B) ΔT in Section $R-n$.

In the heat rejection section, a derivation similar to that described above leads to the following result,

$$
\begin{equation*}
\left(F+R_{n}\right) d r_{f}=\left(F+R_{n+1}\right) d r_{j} \tag{28}
\end{equation*}
$$

Since both $F+R_{n}$ and $F+R_{n+1}$ are constant, the equation can be integrated between location $\mathrm{n}^{\prime \prime}$ and n to give

$$
\left(F+R_{n}\right)\left\{\left(T_{f}\right)_{n^{\prime \prime}}-\left(T_{f}\right)_{n}\right\}=\left(F+R_{N+1}\right)\left\{\left(T_{j}\right)_{n^{\prime \prime}}-\left(T_{j}\right)_{n}\right\}
$$

Since $\left(T_{f}\right)_{n}=\left(T_{j}\right)_{n^{\prime \prime}}$, the above equation becomes

$$
\begin{equation*}
\left(F+R_{n}\right)\left\{\left(T_{f}\right)_{n^{\prime \prime}}-\left(T_{j}\right)_{n^{\prime \prime}}\right\}=\left(F+R_{n+1}\right)\left\{\left(T_{f}\right)_{n}-\left(T_{j}\right)_{n}\right\} \tag{29}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(F+R_{n}\right)(\Delta T)_{n^{\prime \prime}}=\left(F+R_{n+1}\right)(\Delta T)_{n} \tag{30}
\end{equation*}
$$

Therefore the temperature difference varies gradually from
$(\Delta T)_{n^{\prime \prime}}$ to $(\Delta T)_{n}$, as is shown in Figure 3.

3-9. Average ΔT in the n-th Effect, ΔT_{n}

Integrating this between location n^{\prime} and $n^{\prime \prime}$ and rearranging gives

$$
\begin{equation*}
(\Delta T)_{n^{\prime}}=\left(T_{f}\right)_{n^{\prime}}-\left(T_{j}\right)_{n^{\prime}}=\left(T_{f}\right)_{n^{\prime \prime}}-\left(T_{j}\right)_{n^{\prime \prime}}=(\Delta T)_{n^{\prime \prime}} \tag{27}
\end{equation*}
$$

This derivation leads to the conclusion that ΔT is nearly constant in the heat recovery sections.
B) ΔT in Section $R-n$.

In the heat rejection section, a derivation similar to that described above leads to the following result,

$$
\begin{equation*}
\left(F+R_{n}\right) d r_{f}=\left(F+R_{n+1}\right) d r_{j} \tag{28}
\end{equation*}
$$

Since both $F+R_{n}$ and $F+R_{n+1}$ are constant, the equation can be integrated between location $\mathrm{n}^{\prime \prime}$ and n to give

$$
\left(F+R_{n}\right)\left\{\left(T_{f}\right)_{n^{\prime \prime}}-\left(T_{f}\right)_{n}\right\}=\left(F+R_{N+1}\right)\left\{\left(T_{j}\right)_{n^{\prime \prime}}-\left(T_{j}\right)_{n}\right\}
$$

Since $\left(T_{f}\right)_{n}=\left(T_{j}\right)_{n^{\prime \prime}}$, the above equation becomes

$$
\begin{equation*}
\left(F+R_{n}\right)\left\{\left(T_{f}\right)_{n^{\prime \prime}}-\left(T_{j}\right)_{n^{\prime \prime}}\right\}=\left(F+R_{n+1}\right)\left\{\left(T_{f}\right)_{n}-\left(T_{j}\right)_{n}\right\} \tag{29}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(F+R_{n}\right)(\Delta T)_{n^{\prime \prime}}=\left(F+R_{n+1}\right)(\Delta T)_{n} \tag{30}
\end{equation*}
$$

Therefore the temperature difference varies gradually from
$(\Delta T)_{n^{\prime \prime}}$ to $(\Delta T)_{n}$, as is shown in Figure 3.

3-9. Average ΔT in the n-th Effect, ΔT_{n}

It is known from the last section that ΔT is constant in the heat recovery section of the $n-t h$ effect, that is, $(\Delta T)_{n}=(\Delta T)_{n^{\prime \prime}}$. In the heat rejection section, however, ΔT changes slightly from $(\Delta T)_{n "}$ to $(\Delta T)_{n}$ according to equation (30). However, since the heat recovery section contains as large a number of stages as the heat rejection section does, we may reasonably assume that the ΔT in the heat recovery section is the average ΔT in the effect. Therefore, we have

$$
\begin{equation*}
\Delta T_{n}=(\Delta T)_{n} \prime=(\Delta T)_{n^{\prime \prime}} \tag{31}
\end{equation*}
$$

By applying an enthalpy balance between locations 0 and n ', we obtain

$$
q_{s}+\left(F+R_{n}\right) c_{p}\left(T_{j}\right)_{n^{\prime}}=\left(\sum_{i=1}^{n=1} W_{i}\right) C_{p}\left(T_{c}\right)_{n}+(L)_{n}, C_{p}\left(T_{f^{\prime}}\right)_{n}
$$

Substituting equations (5), (6), and (8) into the above equation and rearranging yields
$\left.\left(T_{f}\right)_{n},-\left(T_{j}\right)_{n},\left(1+\frac{r_{n} C_{F}}{\left(C_{f}\right)_{n-1}}\right)=\frac{q_{s}}{F} \frac{1}{C_{p}}+\left(1-\frac{C_{F}}{\left(C_{f}\right)_{n-1}}\right)\left\{\left(T_{f}\right)_{n},-\left(T_{C}\right)_{n}\right)\right\}$
Since $\left(T_{f}\right)_{n^{\prime}}-\left(T_{c}\right)_{n^{\prime}}=\alpha_{n}$, and $\left(T_{f}\right)_{n},-\left(T_{j}\right)_{n},=\Delta T_{n^{\prime}}$, the foregoing equation becomes

$$
\begin{equation*}
\Delta T_{n}=\frac{\frac{q_{S}}{F} \frac{1}{C_{p}}+\left(1-\frac{c_{F}}{\left(C_{f}\right)_{n-1}}\right)}{1+\frac{r_{n} C_{F}}{\left(C_{f}\right)_{n-1}}} \alpha_{n}, n=1,2,3 \tag{32}
\end{equation*}
$$

3-10. The Effective Δt for Heat Transfer in the Brine Heater, Δt_{0}, and in the $n-t h$ Effect, Δt_{n}.
A) Δt in the brine heater, Δt_{0}

If we let T_{S} be the steam temperature, then

```
\Deltat at the inlet = Ts
\Deltat at the outlet = T IS - (Tf)
```

It is known from the last section that ΔT is constant in the heat recovery section of the $n-t h$ effect, that is, $(\Delta T)_{n}=(\Delta T)_{n^{\prime \prime}}$. In the heat rejection section, however, ΔT changes slightly from $(\Delta T)_{n "}$ to $(\Delta T)_{n}$ according to equation (30). However, since the heat recovery section contains as large a number of stages as the heat rejection section does, we may reasonably assume that the ΔT in the heat recovery section is the average ΔT in the effect. Therefore, we have

$$
\begin{equation*}
\Delta T_{n}=(\Delta T)_{n} \prime=(\Delta T)_{n^{\prime \prime}} \tag{31}
\end{equation*}
$$

By applying an enthalpy balance between locations 0 and n ', we obtain

$$
q_{s}+\left(F+R_{n}\right) c_{p}\left(T_{j}\right)_{n^{\prime}}=\left(\sum_{i=1}^{n=1} W_{i}\right) C_{p}\left(T_{c}\right)_{n}+(L)_{n}, C_{p}\left(T_{f^{\prime}}\right)_{n}
$$

Substituting equations (5), (6), and (8) into the above equation and rearranging yields
$\left.\left(T_{f}\right)_{n},-\left(T_{j}\right)_{n},\left(1+\frac{r_{n} C_{F}}{\left(C_{f}\right)_{n-1}}\right)=\frac{q_{s}}{F} \frac{1}{C_{p}}+\left(1-\frac{C_{F}}{\left(C_{f}\right)_{n-1}}\right)\left\{\left(T_{f}\right)_{n},-\left(T_{C}\right)_{n}\right)\right\}$
Since $\left(T_{f}\right)_{n^{\prime}}-\left(T_{c}\right)_{n^{\prime}}=\alpha_{n}$, and $\left(T_{f}\right)_{n},-\left(T_{j}\right)_{n},=\Delta T_{n^{\prime}}$, the foregoing equation becomes

$$
\begin{equation*}
\Delta T_{n}=\frac{\frac{q_{S}}{F} \frac{1}{C_{p}}+\left(1-\frac{c_{F}}{\left(C_{f}\right)_{n-1}}\right)}{1+\frac{r_{n} C_{F}}{\left(C_{f}\right)_{n-1}}} \alpha_{n}, n=1,2,3 \tag{32}
\end{equation*}
$$

3-10. The Effective Δt for Heat Transfer in the Brine Heater, Δt_{0}, and in the $n-t h$ Effect, Δt_{n}.
A) Δt in the brine heater, Δt_{0}

If we let T_{S} be the steam temperature, then

```
\Deltat at the inlet = Ts
\Deltat at the outlet = T IS - (Tf)
```

and the average Δt for the rout transact in the primo hooter is

$$
\Delta \tau_{0}=m_{s}-\frac{1}{2}\left[\left(T_{j}\right)_{I}+\left(T_{f}\right)_{1}\right]
$$

Since

$$
\Delta T_{1}=\left(T_{f}\right)_{1 .}-\left(T_{j}\right)_{11} ;
$$

the above equation can be rearranged to give

$$
\begin{align*}
\Delta_{0}^{t_{0}} & =T_{s}-\left(T_{f}\right)_{1}+\frac{1}{2} \Delta T_{1} \\
& =T_{s}-\left(T_{f}\right)_{0}+\frac{1}{2} \frac{q_{s} / F}{c_{p}^{\prime}\left(1+r_{1}\right)} \tag{33}
\end{align*}
$$

where

$$
\left(T_{f}\right)_{0}=\left(T_{E}\right)_{1} .
$$

The maximum value of (T_{i}) must generally be limited in order to control scale formation. In this study, the values of T_{s} end (r_{i}) o are assumed to be fixed.
B). Δt in the r-th Effect, $\Delta \bar{u}_{n}$.

Referring to a stage in section, from of Figure 3 , it car be seer.
that the effective $A t$ for heat transfer in the infinite stage operation is given by

$$
\frac{u w+x y}{2}=u w=x y
$$

For N stage operation, the effective Δt becomes
and the average Δt for the rout transact in the primo hooter is

$$
\Delta \tau_{0}=m_{s}-\frac{1}{2}\left[\left(T_{j}\right)_{I}+\left(T_{f}\right)_{1}\right]
$$

Since

$$
\Delta T_{1}=\left(T_{f}\right)_{1 .}-\left(T_{j}\right)_{11} ;
$$

the above equation can be rearranged to give

$$
\begin{align*}
\Delta_{0}^{t_{0}} & =T_{s}-\left(T_{f}\right)_{1}+\frac{1}{2} \Delta T_{1} \\
& =T_{s}-\left(T_{f}\right)_{0}+\frac{1}{2} \frac{q_{s} / F}{c_{p}^{\prime}\left(1+r_{1}\right)} \tag{33}
\end{align*}
$$

where

$$
\left(T_{f}\right)_{0}=\left(T_{E}\right)_{1} .
$$

The maximum value of (T_{i}) must generally be limited in order to control scale formation. In this study, the values of T_{s} end (r_{i}) o are assumed to be fixed.
B). Δt in the r-th Effect, $\Delta \bar{u}_{n}$.

Referring to a stage in section, from of Figure 3 , it car be seer.
that the effective $A t$ for heat transfer in the infinite stage operation is given by

$$
\frac{u w+x y}{2}=u w=x y
$$

For N stage operation, the effective Δt becomes
because tho condensation toniperiture is constant within coach stage.
Therefore, the loss in the offcotive Δt for heat transfer is

$$
\frac{u w+x y}{2}-\frac{v w+x y}{2}=\frac{u w-v w}{2}
$$

In other words, the loss in Δt for heat transfer is one-hejef of
the temperature drop from stage to stage. Since tho average
temperature drop from stage to stage in the neth effect is giver. by

$$
\begin{equation*}
\frac{\left(T_{i}\right)_{n-1}-\left(N_{i}\right)_{r}}{0 N_{n}} \tag{34}
\end{equation*}
$$

where Ni is the number oi stagesin the nth effect, the average joss in effective Δt_{n} for heat transfer is

$$
\begin{equation*}
\Delta t_{n, \mathrm{Zoss}}=\frac{\left(T_{f}\right)_{n-1}-\left(I_{f}\right)_{n}}{2 N_{n}} \tag{35}
\end{equation*}
$$

Therefore, the effective Δt_{n} is given by

$$
\begin{align*}
& \Delta t_{n}=\Delta \sum_{n}-\alpha_{n}-\Delta t_{n, ~ l o s s} \\
& \frac{q_{s}}{F} \frac{1}{C_{p}}+\left(1-\frac{C_{p}}{\left(C_{f}\right)_{n-1}}\right)_{n} \\
& 1+\frac{r_{n} C_{n}}{\left(C_{n}\right)_{n-1}} \\
& -a_{n}-\frac{\left(T_{n}\right)_{n-1}-\left(T_{n}\right)_{n}}{2 n} \\
& n=2,2,3 . \tag{30}
\end{align*}
$$

because tho condensation toniperiture is constant within coach stage.
Therefore, the loss in the offcotive Δt for heat transfer is

$$
\frac{u w+x y}{2}-\frac{v w+x y}{2}=\frac{u w-v w}{2}
$$

In other words, the loss in Δt for heat transfer is one-hejef of
the temperature drop from stage to stage. Since tho average
temperature drop from stage to stage in the neth effect is giver. by

$$
\begin{equation*}
\frac{\left(T_{i}\right)_{n-1}-\left(N_{i}\right)_{r}}{0 N_{n}} \tag{34}
\end{equation*}
$$

where Ni is the number oi stagesin the nth effect, the average joss in effective Δt_{n} for heat transfer is

$$
\begin{equation*}
\Delta t_{n, \mathrm{Zoss}}=\frac{\left(T_{f}\right)_{n-1}-\left(I_{f}\right)_{n}}{2 N_{n}} \tag{35}
\end{equation*}
$$

Therefore, the effective Δt_{n} is given by

$$
\begin{align*}
& \Delta t_{n}=\Delta \sum_{n}-\alpha_{n}-\Delta t_{n, ~ l o s s} \\
& \frac{q_{s}}{F} \frac{1}{C_{p}}+\left(1-\frac{C_{p}}{\left(C_{f}\right)_{n-1}}\right)_{n} \\
& 1+\frac{r_{n} C_{n}}{\left(C_{n}\right)_{n-1}} \\
& -a_{n}-\frac{\left(T_{n}\right)_{n-1}-\left(T_{n}\right)_{n}}{2 n} \\
& n=2,2,3 . \tag{30}
\end{align*}
$$

3-11. Heat Transfer Area Requirements in the Moire floater and the $n-t h$ Effect.

Equations fox the heat loads and temperature eififerenee for heat transfer in the brine heater Δt_{0} and that in the nth cefeet, Δt_{n}, have been developed in sections $5-4$ ane $3-10$, respectively. prese are used to calculate the heat transfer areas by the equation

$$
\begin{equation*}
A=\frac{q}{u(\Delta t)} \tag{37}
\end{equation*}
$$

By assuming u is constant in the brine heater and each effect, and substituting equation (33) into equation (37), the heat transion area in the brine heater A_{0}, ar be obtained as

$$
\begin{equation*}
A_{0}=\frac{q_{s}}{u\left\{T_{s}-\left(T_{f}\right)_{0}+\frac{1}{2} \frac{q_{s} / T}{c_{p}\left(1+r_{q}\right)}\right\}} \tag{38}
\end{equation*}
$$

Substituting equations (22) and (36) into equation (37) yieicis
the heat transfer area in the $n-t h$ effect, A_{n}, as

$$
\begin{aligned}
& F\left[\frac{C_{5}}{\left(C_{-n}\right)_{n-1}}-\frac{C_{F}}{\left(C_{B}\right)_{n}}\right] \lambda \\
& A_{n}=\left\{\begin{array}{l}
\left.\frac{q_{s}}{\vec{F}} \frac{2}{c_{n}}+\left(1-\frac{c_{p}}{\left(c_{f}\right)_{n-1}}\right)_{n}-a_{n}-\frac{\left(n_{f}\right)_{n-2}-\left(q_{2}\right)_{n}}{2+\frac{r_{n} c_{n}}{\left(c_{f}\right)_{n-1}} .}\right\} \\
1
\end{array}\right\}
\end{aligned}
$$

$$
\begin{equation*}
n=1,2,3 . \tag{39}
\end{equation*}
$$

3-11. Heat Transfer Area Requirements in the Moire floater and the $n-t h$ Effect.

Equations fox the heat loads and temperature eififerenee for heat transfer in the brine heater Δt_{0} and that in the nth cefeet, Δt_{n}, have been developed in sections $5-4$ ane $3-10$, respectively. prese are used to calculate the heat transfer areas by the equation

$$
\begin{equation*}
A=\frac{q}{u(\Delta t)} \tag{37}
\end{equation*}
$$

By assuming u is constant in the brine heater and each effect, and substituting equation (33) into equation (37), the heat transion area in the brine heater A_{0}, ar be obtained as

$$
\begin{equation*}
A_{0}=\frac{q_{s}}{u\left\{T_{s}-\left(T_{f}\right)_{0}+\frac{1}{2} \frac{q_{s} / T}{c_{p}\left(1+r_{q}\right)}\right\}} \tag{38}
\end{equation*}
$$

Substituting equations (22) and (36) into equation (37) yieicis
the heat transfer area in the $n-t h$ effect, A_{n}, as

$$
\begin{aligned}
& F\left[\frac{C_{5}}{\left(C_{-n}\right)_{n-1}}-\frac{C_{F}}{\left(C_{B}\right)_{n}}\right] \lambda \\
& A_{n}=\left\{\begin{array}{l}
\left.\frac{q_{s}}{\vec{F}} \frac{2}{c_{n}}+\left(1-\frac{c_{p}}{\left(c_{f}\right)_{n-1}}\right)_{n}-a_{n}-\frac{\left(n_{f}\right)_{n-2}-\left(q_{2}\right)_{n}}{2+\frac{r_{n} c_{n}}{\left(c_{f}\right)_{n-1}} .}\right\} \\
1
\end{array}\right\}
\end{aligned}
$$

$$
\begin{equation*}
n=1,2,3 . \tag{39}
\end{equation*}
$$

3-12. Pumping Heed for the Recirculation Pump, J. ${ }_{n}$.
The recirculation pump, J_{n}, takes in rocyclo brine \mathbb{S}_{n} of concentration $\left(C_{f}\right)_{n}$ at temperature $\left(n_{f}\right)_{n}$, pressurizes it to a pressure sufficiently high so that the recycle brine does not boil within the heating tubes. The highest temperature to which this brine stream is heated is $\left(T_{n}\right)$. Thus, the pumping head $\left(\Delta P_{n}\right) / \rho$ required ion J_{r} can be evaluated as,

$$
\begin{equation*}
\frac{(\Delta P)_{n}}{\rho}=\frac{1}{\rho}\left(1+\eta_{\bar{I}}\right) \quad\left[(\bar{P})_{n-\overline{1}}(\bar{P})_{r}\right], \tag{40}
\end{equation*}
$$

where r_{E} is the fractional excess pumping head required due to friction losses and $(\bar{p})_{n}$ is the vapor pressure of the brine at concentration $\left(C_{f}\right)_{n}$ and temperature $\left(T_{f}\right)_{n}$.

The vapor pressure of brine at a given temperature is less than the vapor pressure of pure water at the same temperature due to the vapor pressure depression of the solution. Thus,

$$
(\bar{F})_{n}=\left(P^{0}\right)_{n}-(\beta)_{n}
$$

ax. ${ }^{2}$

$$
(\bar{P})_{n-1}=\left(P^{0}\right)_{n-1}-(\beta)_{n-1} \text {, }
$$

were $\left(y^{0}\right)_{n}$ and $\left(p^{0}\right)_{n-1}$ are the vapor pressures of pure water at. temperatures $\left(T_{i}\right)_{n}$ and $\left(T_{f}\right)_{n-1}$ respectively and $(B)_{n}$ and (3$)_{n-1}$ are vapor pressure depressions of the brine streams at temperatures (T_{2}) r_{r} and $\left(T_{f}\right)_{r-2}$ and concentrations $\left(C_{f}\right)_{n}$ and $\left(C_{f}\right)_{r-i}$, respectively.

3-12. Pumping Heed for the Recirculation Pump, J. ${ }_{n}$.
The recirculation pump, J_{n}, takes in rocyclo brine \mathbb{S}_{n} of concentration $\left(C_{f}\right)_{n}$ at temperature $\left(n_{f}\right)_{n}$, pressurizes it to a pressure sufficiently high so that the recycle brine does not boil within the heating tubes. The highest temperature to which this brine stream is heated is $\left(T_{n}\right)$. Thus, the pumping head $\left(\Delta P_{n}\right) / \rho$ required ion J_{r} can be evaluated as,

$$
\begin{equation*}
\frac{(\Delta P)_{n}}{\rho}=\frac{1}{\rho}\left(1+\eta_{\bar{I}}\right) \quad\left[(\bar{P})_{n-\overline{1}}(\bar{P})_{r}\right], \tag{40}
\end{equation*}
$$

where r_{E} is the fractional excess pumping head required due to friction losses and $(\bar{p})_{n}$ is the vapor pressure of the brine at concentration $\left(C_{f}\right)_{n}$ and temperature $\left(T_{f}\right)_{n}$.

The vapor pressure of brine at a given temperature is less than the vapor pressure of pure water at the same temperature due to the vapor pressure depression of the solution. Thus,

$$
(\bar{F})_{n}=\left(P^{0}\right)_{n}-(\beta)_{n}
$$

ax. ${ }^{2}$

$$
(\bar{P})_{n-1}=\left(P^{0}\right)_{n-1}-(\beta)_{n-1} \text {, }
$$

were $\left(y^{0}\right)_{n}$ and $\left(p^{0}\right)_{n-1}$ are the vapor pressures of pure water at. temperatures $\left(T_{i}\right)_{n}$ and $\left(T_{f}\right)_{n-1}$ respectively and $(B)_{n}$ and (3$)_{n-1}$ are vapor pressure depressions of the brine streams at temperatures (T_{2}) r_{r} and $\left(T_{f}\right)_{r-2}$ and concentrations $\left(C_{f}\right)_{n}$ and $\left(C_{f}\right)_{r-i}$, respectively.

If we assume that

$$
(\beta)_{n}=(B)_{n-1},
$$

we obtain

$$
(\bar{P})_{n-1}-(\bar{P})_{n}=\left(2^{0}\right)_{n-1}-\left(P^{0}\right)_{n},
$$

and equation (40) becomes

$$
\frac{(\Delta P)_{n}}{p}=\frac{1}{p}\left(1+\eta_{1}\right)\left[\left(P^{0}\right)_{n-1}-\left(P^{0}\right)_{n}\right]
$$

Within the operating temperature range of the NENS system, the vapor pressure of water may be represented by

$$
\ln P^{0}=-\frac{\lambda}{R T}+D
$$

where λ is the latent heat of vaporization and D is an integration constant. On rearranging, we obtain

$$
F^{0}=e^{D} e^{-\frac{\lambda}{R T}}=B^{-\frac{\lambda}{R N}}
$$

 ane :rom the steam table at two temperatures, \mathbf{B}^{\prime} is evaluated to ave a value of $1.523 \times 10^{9} 10 \pm / \mathrm{Et}^{2}$.

If we assume that

$$
(\beta)_{n}=(B)_{n-1},
$$

we obtain

$$
(\bar{P})_{n-1}-(\bar{P})_{n}=\left(2^{0}\right)_{n-1}-\left(P^{0}\right)_{n},
$$

and equation (40) becomes

$$
\frac{(\Delta P)_{n}}{p}=\frac{1}{p}\left(1+\eta_{1}\right)\left[\left(P^{0}\right)_{n-1}-\left(P^{0}\right)_{n}\right]
$$

Within the operating temperature range of the NENS system, the vapor pressure of water may be represented by

$$
\ln P^{0}=-\frac{\lambda}{R T}+D
$$

where λ is the latent heat of vaporization and D is an integration constant. On rearranging, we obtain

$$
F^{0}=e^{D} e^{-\frac{\lambda}{R T}}=B^{-\frac{\lambda}{R N}}
$$

 ane :rom the steam table at two temperatures, \mathbf{B}^{\prime} is evaluated to ave a value of $1.523 \times 10^{9} 10 \pm / \mathrm{Et}^{2}$.

Subsituting equation (42) into equation (42) eives
$\frac{\Delta P_{n}}{\rho}=\frac{B^{\prime}}{\rho}\left(1+n_{f}\right) \quad\left\{\exp \left(-\frac{\lambda}{\left(T_{f}\right)_{n-1}}\right)-\exp \left(-\frac{\lambda}{\left(P_{2}\right)_{n}}\right)\right\}$,

$$
\begin{equation*}
n=1,2,3 . \tag{4,3}
\end{equation*}
$$

Subsituting equation (42) into equation (42) eives
$\frac{\Delta P_{n}}{\rho}=\frac{B^{\prime}}{\rho}\left(1+n_{f}\right) \quad\left\{\exp \left(-\frac{\lambda}{\left(T_{f}\right)_{n-1}}\right)-\exp \left(-\frac{\lambda}{\left(P_{2}\right)_{n}}\right)\right\}$,

$$
\begin{equation*}
n=1,2,3 . \tag{4,3}
\end{equation*}
$$

ECONOMIC ANALXSIS

The water production cost depends primarily on the capital cost and operating cost of the plant. Only those costs which are most significantly affected by changes in the design variables are considered in this study. The cost of the plant site, labor cost, overhead costs and insurance costs are not considered here as they are little affected by changes in the design variables.

The capital cost consists of three items:
(a). The heat transfer area cost,
(b). The recirculation pump cost,
(c). The outer shell cost.

The operating cost consists of four items:
(a). Feed brine cost,
(b). Cooling water cost,
(c). Steam cost,
(d). Power cost for recirculation pumping in each effect.

Each cost item is expressed as the cost per 1000 gallons of fresh water produced in the whole plant. .The following notation is used to represent the various cost items:
$E_{1}=S$ team cost,
$\mathrm{E}_{2}=$ Capital cost of brine heater,
$E_{3}^{n}=$ Capital cost of the heat transfer area in the $n-t h$ effect,
$E_{4}^{n}=$ Power cost for recirculation pumping in the $n-t h$ effect,
$E_{5}^{\pi}=$ Capital cost for recirculation pump in the $n-t h$ effect,
$E_{6}^{n}=$ Capital cost of the outer shell,

ECONOMIC ANALXSIS

The water production cost depends primarily on the capital cost and operating cost of the plant. Only those costs which are most significantly affected by changes in the design variables are considered in this study. The cost of the plant site, labor cost, overhead costs and insurance costs are not considered here as they are little affected by changes in the design variables.

The capital cost consists of three items:
(a). The heat transfer area cost,
(b). The recirculation pump cost,
(c). The outer shell cost.

The operating cost consists of four items:
(a). Feed brine cost,
(b). Cooling water cost,
(c). Steam cost,
(d). Power cost for recirculation pumping in each effect.

Each cost item is expressed as the cost per 1000 gallons of fresh water produced in the whole plant. .The following notation is used to represent the various cost items:
$E_{1}=S$ team cost,
$\mathrm{E}_{2}=$ Capital cost of brine heater,
$E_{3}^{n}=$ Capital cost of the heat transfer area in the $n-t h$ effect,
$E_{4}^{n}=$ Power cost for recirculation pumping in the $n-t h$ effect,
$E_{5}^{\pi}=$ Capital cost for recirculation pump in the $n-t h$ effect,
$E_{6}^{n}=$ Capital cost of the outer shell,
$\mathrm{E}_{7}=\operatorname{Peoc}$ brine cost,
$E_{8}=$ Cooling water cost.
4-1. The Capital Costs.

The capital costs of the principal items of equipment ane evaluated per unit of proủuction in a whit time. The.annuà capitalization charges -or these equipment items are calculated at 0.074 of the initial cost per'year, as recommended in the Office of Saline Water procedures (20). A load factor of 330 on-stream days per year will be assumed. Therefore, the capitalization charge, ψ, is 9.4×10^{-6} of the initial cost per hour on-strean.
(a) Brine Heater. Cost, E_{2}

The brine heater cost is assumed to be proportional to the brine heater area, A0, which is given by equation (38). Therefore, the capital cost per 1000 gallons of water production per hour, Z_{2}, is given by

$$
E_{2}=\frac{\psi C_{B} A_{0} W}{W_{n}}
$$

where

$$
\begin{aligned}
C_{E}= & \text { the capital cost per unit of heat transfer area ar } \\
& \text { the brine heater, } \\
C_{h t}= & \forall C_{B}, \\
W= & \text { mass equivalont to } 1000 \text { gallons of water, } \\
a= & T_{S}, \text { ie., the steam temperature. }
\end{aligned}
$$

Miss cost includes both the hoar transfer area and the outer she: costs.
$\mathrm{E}_{7}=\operatorname{Peoc}$ brine cost,
$E_{8}=$ Cooling water cost.
4-1. The Capital Costs.

The capital costs of the principal items of equipment ane evaluated per unit of proủuction in a whit time. The.annuà capitalization charges -or these equipment items are calculated at 0.074 of the initial cost per'year, as recommended in the Office of Saline Water procedures (20). A load factor of 330 on-stream days per year will be assumed. Therefore, the capitalization charge, ψ, is 9.4×10^{-6} of the initial cost per hour on-strean.
(a) Brine Heater. Cost, E_{2}

The brine heater cost is assumed to be proportional to the brine heater area, A0, which is given by equation (38). Therefore, the capital cost per 1000 gallons of water production per hour, Z_{2}, is given by

$$
E_{2}=\frac{\psi C_{B} A_{0} W}{W_{n}}
$$

where

$$
\begin{aligned}
C_{E}= & \text { the capital cost per unit of heat transfer area ar } \\
& \text { the brine heater, } \\
C_{h t}= & \forall C_{B}, \\
W= & \text { mass equivalont to } 1000 \text { gallons of water, } \\
a= & T_{S}, \text { ie., the steam temperature. }
\end{aligned}
$$

Miss cost includes both the hoar transfer area and the outer she: costs.
(b) Heat Transfer Area Cost in the nth Effect, $\mathrm{L}_{3}^{\mathrm{K}}$.

The heat transfer area for tho neth effect, A_{n}, is fervor. By çuation (39). Therefore, the equation for the capital cost per 1000 gallons of water produced can be represented by

$$
E_{3}^{n}
$$

$=\frac{\psi^{C} \mu_{n} W}{\Sigma W_{n}}$

$$
\left[\frac{C_{F}}{\left(C_{f}\right)_{n-2}}-\frac{C_{F}}{\left(C_{f}\right)_{n}}\right] \lambda
$$

$=C_{c d}$

\underline{W}
$1-\frac{C_{\vec{F}}}{\left(C_{f}\right)_{3}}$
$r=2,2,3$,
where

$$
\begin{aligned}
& C_{E}=\text { tho capital cost per unit of heat transfer er area, } \\
& C_{o d}=\psi C_{H} .
\end{aligned}
$$

(c) Recirculation Pump Cost in the nth Effect, E_{5}^{n}.

The pump cost is assumed to be proportional to its power rato. Since the pumping head in the n-th effect is given by equation (4j), the cost equation for the pump J_{n} can be written as
(b) Heat Transfer Area Cost in the nth Effect, $\mathrm{L}_{3}^{\mathrm{K}}$.

The heat transfer area for tho neth effect, A_{n}, is fervor. By çuation (39). Therefore, the equation for the capital cost per 1000 gallons of water produced can be represented by

$$
E_{3}^{n}
$$

$=\frac{\psi^{C} \mu_{n} W}{\Sigma W_{n}}$

$$
\left[\frac{C_{F}}{\left(C_{f}\right)_{n-2}}-\frac{C_{F}}{\left(C_{f}\right)_{n}}\right] \lambda
$$

$=C_{c d}$

\underline{W}
$1-\frac{C_{\vec{F}}}{\left(C_{f}\right)_{3}}$
$r=2,2,3$,
where

$$
\begin{aligned}
& C_{E}=\text { tho capital cost per unit of heat transfer er area, } \\
& C_{o d}=\psi C_{H} .
\end{aligned}
$$

(c) Recirculation Pump Cost in the nth Effect, E_{5}^{n}.

The pump cost is assumed to be proportional to its power rato. Since the pumping head in the n-th effect is given by equation (4j), the cost equation for the pump J_{n} can be written as
E_{5}^{n}
$=\psi C_{J} \frac{\Delta P_{n}}{\rho} \quad R_{n} \quad \frac{W}{\Sigma W_{n}}$
$=\psi c_{J} \frac{B\left(1+\eta_{f}\right) r_{n} C_{F} W}{\left(1-\frac{C_{F}}{C_{3}}\right)\left(C_{f}\right)_{n-1}}\left\{\exp \left(-\frac{\lambda}{R\left(T_{f}\right)_{n-1}}\right)-\exp \left(-\frac{\lambda}{R\left(T_{f}\right)_{n}}\right)\right\}$

$$
\begin{equation*}
\mathrm{n}=1,2,3 . \tag{46}
\end{equation*}
$$

(d) Outer Shell Cost, E_{6}.

Because of lack of information, E_{6} will be considered to be a constant value.

4-2. The Operating Costs.
(a) Steam Cost, E_{1}.

The amount of steam used in the brine heater is q_{s} / λ_{s}, and the steam cost per 1000 gallons of water procuced is given by

$$
\begin{align*}
E_{1} & =c_{s t} \frac{q_{s} / \lambda s}{\sum W_{n}} \\
& =c_{s t} \frac{q_{s}}{F} \frac{1}{\lambda_{s}} \frac{W}{1-\frac{C_{F}}{\left(C_{f}\right)_{3}}} \tag{47}
\end{align*}
$$

where $\mathrm{C}_{\text {st }}$ is the unit steam cost.
(b) Feed Brine Cost, E_{7}.

The cost of the brine feed to the system is proportional to the quantity of the feed which is given by
E_{5}^{n}
$=\psi C_{J} \frac{\Delta P_{n}}{\rho} \quad R_{n} \quad \frac{W}{\Sigma W_{n}}$
$=\psi c_{J} \frac{B\left(1+\eta_{f}\right) r_{n} C_{F} W}{\left(1-\frac{C_{F}}{C_{3}}\right)\left(C_{f}\right)_{n-1}}\left\{\exp \left(-\frac{\lambda}{R\left(T_{f}\right)_{n-1}}\right)-\exp \left(-\frac{\lambda}{R\left(T_{f}\right)_{n}}\right)\right\}$

$$
\begin{equation*}
\mathrm{n}=1,2,3 . \tag{46}
\end{equation*}
$$

(d) Outer Shell Cost, E_{6}.

Because of lack of information, E_{6} will be considered to be a constant value.

4-2. The Operating Costs.
(a) Steam Cost, E_{1}.

The amount of steam used in the brine heater is q_{s} / λ_{s}, and the steam cost per 1000 gallons of water procuced is given by

$$
\begin{align*}
E_{1} & =c_{s t} \frac{q_{s} / \lambda s}{\sum W_{n}} \\
& =c_{s t} \frac{q_{s}}{F} \frac{1}{\lambda_{s}} \frac{W}{1-\frac{C_{F}}{\left(C_{f}\right)_{3}}} \tag{47}
\end{align*}
$$

where $\mathrm{C}_{\text {st }}$ is the unit steam cost.
(b) Feed Brine Cost, E_{7}.

The cost of the brine feed to the system is proportional to the quantity of the feed which is given by

Therefore, the cost per 1000 gallons of water produced is

$$
\begin{align*}
E_{7} & =p_{c} \quad \frac{\vec{F}}{\sum W_{n}} W^{\prime} \\
& =P_{c} \frac{W}{1-\frac{C_{F}}{\left(C_{f}\right)_{3}}}
\end{align*}
$$

where y_{c} is the unit ${ }^{\prime}$ med water cost.
(c) Cooing Water Cosi, I_{8}.

Cooling water cost is proportional to the amount of the cooling water, R_{4}, which is given by equation (20). Therefore, we have the following equation for E_{8}.
where c_{c} is the unit cooling water cost.
(e) The Power Cost for the Recycle Pump in the roth Picot, zen .
nite pumping head for the recycle pump J_{n}, and the sours or recycle brine arc given ir equations (1+3) and (5) respectively.

Therefore, the cost per 1000 gallons of water produced is

$$
\begin{align*}
E_{7} & =p_{c} \quad \frac{\vec{F}}{\sum W_{n}} W^{\prime} \\
& =P_{c} \frac{W}{1-\frac{C_{F}}{\left(C_{f}\right)_{3}}}
\end{align*}
$$

where y_{c} is the unit ${ }^{\prime}$ med water cost.
(c) Cooing Water Cosi, I_{8}.

Cooling water cost is proportional to the amount of the cooling water, R_{4}, which is given by equation (20). Therefore, we have the following equation for E_{8}.
where c_{c} is the unit cooling water cost.
(e) The Power Cost for the Recycle Pump in the roth Picot, zen .
nite pumping head for the recycle pump J_{n}, and the sours or recycle brine arc given ir equations (1+3) and (5) respectively.

The energy cost per 1000 gallons of water producco associated with the operation of the recycle pump in tho nth offoct car be calculated by the following equation:

$$
E_{4}^{n}=c_{e} \frac{W}{\sum W_{n}} \frac{1}{n_{p}} R_{n} \frac{(\Delta p)_{n}}{\rho}
$$

Where c_{e} is the unit cost of power and η_{p} is the pumping efficiency. By substituting equations (5), (8), and (43) into the above equation, we obtain

4-3. The Water Production Cost, S

The water cost per 1000 gallons of fresh wave z production is the sum of the various cost items we have described, that is
S.
$=\Sigma_{1}^{\prime}+E_{2}+\sum_{n=1}^{3} E_{3}^{n}+\sum_{n=1}^{3} E_{4}^{n}+\sum_{n=1}^{3} E_{5}^{n}+E_{6}+E_{7}+E_{8}$

$$
+z_{6}+p_{c}
$$

$$
1-\frac{c_{\mathrm{F}}}{\left(c_{2}\right)_{3}}
$$

$$
\begin{align*}
& n=1,2,3 . \tag{50}
\end{align*}
$$

The energy cost per 1000 gallons of water producco associated with the operation of the recycle pump in tho nth offoct car be calculated by the following equation:

$$
E_{4}^{n}=c_{e} \frac{W}{\sum W_{n}} \frac{1}{n_{p}} R_{n} \frac{(\Delta p)_{n}}{\rho}
$$

Where c_{e} is the unit cost of power and η_{p} is the pumping efficiency. By substituting equations (5), (8), and (43) into the above equation, we obtain

4-3. The Water Production Cost, S

The water cost per 1000 gallons of fresh wave z production is the sum of the various cost items we have described, that is
S.
$=\Sigma_{1}^{\prime}+E_{2}+\sum_{n=1}^{3} E_{3}^{n}+\sum_{n=1}^{3} E_{4}^{n}+\sum_{n=1}^{3} E_{5}^{n}+E_{6}+E_{7}+E_{8}$

$$
+z_{6}+p_{c}
$$

$$
1-\frac{c_{\mathrm{F}}}{\left(c_{2}\right)_{3}}
$$

$$
\begin{align*}
& n=1,2,3 . \tag{50}
\end{align*}
$$

$$
+\sum_{n=1}^{3} c_{p p} \frac{C_{F}}{\left(C_{A}\right)_{n-1}} r_{n} \frac{B}{\rho}\left\{\exp \left(-\frac{\lambda}{R\left(T_{ \pm}\right)_{n-1}}\right)-\exp \left(-\frac{\lambda}{R\left(T_{2}\right)_{r}}\right)\right\} \frac{W}{1-\frac{C_{n}}{\left(c_{ \pm}\right)_{3}}}
$$

where

$$
\begin{aligned}
c_{p p} & =\frac{c_{e}}{n_{p}}+c_{J} \\
B & =\left(1+n_{f}\right) B^{\prime}
\end{aligned}
$$

$$
+\sum_{n=1}^{3} c_{p p} \frac{C_{F}}{\left(C_{A}\right)_{n-1}} r_{n} \frac{B}{\rho}\left\{\exp \left(-\frac{\lambda}{R\left(T_{ \pm}\right)_{n-1}}\right)-\exp \left(-\frac{\lambda}{R\left(T_{2}\right)_{r}}\right)\right\} \frac{W}{1-\frac{C_{n}}{\left(c_{ \pm}\right)_{3}}}
$$

where

$$
\begin{aligned}
c_{p p} & =\frac{c_{e}}{n_{p}}+c_{J} \\
B & =\left(1+n_{f}\right) B^{\prime}
\end{aligned}
$$

CHAPTLK 5.
 OPTIMTZATION

The performance equations of the MEMS process are described in chapter 3 and the cost equations of the water production are derdved in cinapter 4. Armed with these equations we can proceed by-ici-ng-itumptimization-techatuen to detemmine the optimal conditionsof the process. Since a discrete form of the maximum principle is effective for seeking the oprimal condirione oz a sequential multistage multidecision process, we shall use it in conjuction with search rechniques to optimize the process (11). Two search techniques are used here: one is the parametric search and the other is the simpiex methoc. The results of the numerical solution and the comparision oz the two approaches are given in sections $5-3,5-4$, and $5 \mathbf{5}$. The computer programs For the two methods are presented in the Appendix.

5-1. The Performance Equations
From equation (51) it is known that the water cost S is a Eutction $0=$ thirteen variables: $G_{S} / F, C_{F},\left(C_{f}\right\rangle_{1},\left\langle C_{F}\right\rangle_{2},\left\langle C_{f}\right\rangle_{3}, r_{1}, r_{2}, r_{3},\left\langle r_{f}\right)_{0},\left\langle r_{f}\right\rangle_{-}$, $\left(T_{f}\right\rangle_{2},\left\langle T_{f}\right\rangle_{3}$, and $\left(T_{j}\right)_{3}$. But C_{F}, the brine concentration of sea water feed, is fixed and assumed to be $3.5 \%(5)$, and ($\left.T_{f}\right)_{0}$, the temperature of the brine stream leaving the brine heater, is fixed because of the need for the controling of the scale formation. The sea water temperature ($\left.T_{j}\right)_{3}$ is rarely aianged and is assumed constant. Therefore we have

$$
\begin{equation*}
S=S\left(q_{S} / F,\left(C_{f}\right)_{1},\left(C_{f}\right\rangle_{2},\left(C_{f}\right)_{3},\left(T_{f}\right)_{1},\left(T_{f}\right)_{2},\left(T_{f}\right)_{3}, r_{1}, r_{2},=_{3}\right\rangle \tag{52}
\end{equation*}
$$

However, these ten variables are not all independent; eçuation. (15) gives three relations between these variables. We have then seven incependent variables. According to the maximum principle we classified the variabies into

CHAPTLK 5.
 OPTIMTZATION

The performance equations of the MEMS process are described in chapter 3 and the cost equations of the water production are derdved in cinapter 4. Armed with these equations we can proceed by-ici-ng-itumptimization-techatuen to detemmine the optimal conditionsof the process. Since a discrete form of the maximum principle is effective for seeking the oprimal condirione oz a sequential multistage multidecision process, we shall use it in conjuction with search rechniques to optimize the process (11). Two search techniques are used here: one is the parametric search and the other is the simpiex methoc. The results of the numerical solution and the comparision oz the two approaches are given in sections $5-3,5-4$, and $5 \mathbf{5}$. The computer programs For the two methods are presented in the Appendix.

5-1. The Performance Equations
From equation (51) it is known that the water cost S is a Eutction $0=$ thirteen variables: $G_{S} / F, C_{F},\left(C_{f}\right\rangle_{1},\left\langle C_{F}\right\rangle_{2},\left\langle C_{f}\right\rangle_{3}, r_{1}, r_{2}, r_{3},\left\langle r_{f}\right)_{0},\left\langle r_{f}\right\rangle_{-}$, $\left(T_{f}\right\rangle_{2},\left\langle T_{f}\right\rangle_{3}$, and $\left(T_{j}\right)_{3}$. But C_{F}, the brine concentration of sea water feed, is fixed and assumed to be $3.5 \%(5)$, and ($\left.T_{f}\right)_{0}$, the temperature of the brine stream leaving the brine heater, is fixed because of the need for the controling of the scale formation. The sea water temperature ($\left.T_{j}\right)_{3}$ is rarely aianged and is assumed constant. Therefore we have

$$
\begin{equation*}
S=S\left(q_{S} / F,\left(C_{f}\right)_{1},\left(C_{f}\right\rangle_{2},\left(C_{f}\right)_{3},\left(T_{f}\right)_{1},\left(T_{f}\right)_{2},\left(T_{f}\right)_{3}, r_{1}, r_{2},=_{3}\right\rangle \tag{52}
\end{equation*}
$$

However, these ten variables are not all independent; eçuation. (15) gives three relations between these variables. We have then seven incependent variables. According to the maximum principle we classified the variabies into
statc variables x and decision variables 0 . If we define the concentration $\left(C_{f}\right)_{n}$ and the water cost S as state variables, then the recycle ratio r_{n} añ the brine cemperature ($\left.\mathrm{I}_{\mathrm{f}}\right)_{\mathrm{n}}$ are the decision variables. Therefore we may write

$$
\begin{equation*}
\mathrm{x}_{1}^{\mathrm{n}}=\left(C_{f}\right)_{n} \quad \mathrm{n}=0,1,2,3 . \tag{53}
\end{equation*}
$$

where

$$
\begin{align*}
& x_{1}^{0}=C_{F}, \\
& \theta_{1}^{n}=r_{n}, \quad n=1,2,3, \tag{54}
\end{align*}
$$

and

$$
\begin{equation*}
\theta_{2}^{n}=\left(n_{f}\right)_{n} \quad n=0,1,2,3 . \tag{55}
\end{equation*}
$$

Equation (15) then becomes

$$
\begin{array}{r}
\ln x_{1}^{n}=\ln \frac{x_{1}^{n-1}+\theta_{1}^{n} x_{1}^{n}}{1+\theta_{1}^{n}}+\frac{c_{p}}{\lambda}\left(\theta_{2}^{n-1}-\theta_{2}^{n}\right) \tag{56}\\
n=1,2,3
\end{array}
$$

As this equation includes the previous decision θ_{2}^{n-1}, that is, it has memory in decision, we introduce a new, decision variable θ_{3}^{n} and a new stãe variable x_{3}^{π} such that

$$
\begin{equation*}
\theta_{3}^{n}=\theta_{2}^{n}-\theta_{2}^{n-1}, \quad n=1,2,3, \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{3}^{n}=\theta_{2}^{n}, \quad n=2,2,3, \tag{5S}
\end{equation*}
$$

statc variables x and decision variables 0 . If we define the concentration $\left(C_{f}\right)_{n}$ and the water cost S as state variables, then the recycle ratio r_{n} añ the brine cemperature ($\left.\mathrm{I}_{\mathrm{f}}\right)_{\mathrm{n}}$ are the decision variables. Therefore we may write

$$
\begin{equation*}
\mathrm{x}_{1}^{\mathrm{n}}=\left(C_{f}\right)_{n} \quad \mathrm{n}=0,1,2,3 . \tag{53}
\end{equation*}
$$

where

$$
\begin{align*}
& x_{1}^{0}=C_{F}, \\
& \theta_{1}^{n}=r_{n}, \quad n=1,2,3, \tag{54}
\end{align*}
$$

and

$$
\begin{equation*}
\theta_{2}^{n}=\left(n_{f}\right)_{n} \quad n=0,1,2,3 . \tag{55}
\end{equation*}
$$

Equation (15) then becomes

$$
\begin{array}{r}
\ln x_{1}^{n}=\ln \frac{x_{1}^{n-1}+\theta_{1}^{n} x_{1}^{n}}{1+\theta_{1}^{n}}+\frac{c_{p}}{\lambda}\left(\theta_{2}^{n-1}-\theta_{2}^{n}\right) \tag{56}\\
n=1,2,3
\end{array}
$$

As this equation includes the previous decision θ_{2}^{n-1}, that is, it has memory in decision, we introduce a new, decision variable θ_{3}^{n} and a new stãe variable x_{3}^{π} such that

$$
\begin{equation*}
\theta_{3}^{n}=\theta_{2}^{n}-\theta_{2}^{n-1}, \quad n=1,2,3, \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{3}^{n}=\theta_{2}^{n}, \quad n=2,2,3, \tag{5S}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{3}^{n}=x_{3}^{n-1}+0_{3}^{n} \quad n=2,2,3 . \tag{59}
\end{equation*}
$$

Therefore, equation (56) can be written as

$$
\begin{equation*}
\ln x_{1}^{n}=2 n \frac{x_{1}^{n-1}+\theta_{1}^{n} x_{1}^{n}}{2+\theta_{n}^{n}}-\frac{c_{p}}{\lambda} \theta_{3}^{n}, \quad n \quad n=2,2,3 . \tag{60}
\end{equation*}
$$

From equation (51) the state variable x_{2}^{n} for water cost is defined as follows:

$$
\begin{equation*}
+C_{p p} \frac{C_{F}}{x_{1}^{n-1}} \theta_{1}^{n} \frac{B}{\rho}\left\{\exp \left[-\frac{\lambda}{R x_{3}^{n-1}}\right]-\exp \left[\frac{-\lambda}{R\left(x_{3}^{n-1}+\theta^{n}\right)}\right] \frac{W}{1-\frac{C_{F}}{x_{1}^{3}}},\right. \tag{62}
\end{equation*}
$$

$$
\pi=1,2,3,
$$

$$
\begin{align*}
& x_{2}^{0}=C_{s t} \frac{q_{s}}{F} \frac{1}{\lambda_{s}} \frac{W}{1-\frac{C_{F}}{x_{1}^{3}}}+E_{6} \\
& +c_{h t} \frac{q_{s}}{F} \frac{2}{U\left(a-x_{3}^{0}+\frac{q_{s} / F}{2 C_{p}\left(1+\theta_{1}^{2}\right)}\right)}-\frac{W}{1-\frac{C_{F}}{x_{1}^{3}}}, \tag{61}\\
& x_{2}^{n}=x_{2}^{n-1}+c_{c d} \frac{\left[\frac{C_{P}}{x_{1}^{n-1}}-\frac{c_{F}}{x_{1}^{n}}-\lambda\right.}{\frac{a_{1}}{\frac{1}{C_{p}}+\alpha_{n}\left(1-\frac{c_{F}}{x_{1}-1}\right)}} \frac{1+\theta_{1}^{n} \frac{c_{F}}{x_{1}^{n-1}}}{}-\alpha_{n}+\frac{\theta_{3}^{n}}{2 x^{n}} \quad 1-\frac{C_{F}}{x_{1}^{3}}
\end{align*}
$$

and

$$
\begin{equation*}
x_{3}^{n}=x_{3}^{n-1}+0_{3}^{n} \quad n=2,2,3 . \tag{59}
\end{equation*}
$$

Therefore, equation (56) can be written as

$$
\begin{equation*}
\ln x_{1}^{n}=2 n \frac{x_{1}^{n-1}+\theta_{1}^{n} x_{1}^{n}}{2+\theta_{n}^{n}}-\frac{c_{p}}{\lambda} \theta_{3}^{n}, \quad n \quad n=2,2,3 . \tag{60}
\end{equation*}
$$

From equation (51) the state variable x_{2}^{n} for water cost is defined as follows:

$$
\begin{equation*}
+C_{p p} \frac{C_{F}}{x_{1}^{n-1}} \theta_{1}^{n} \frac{B}{\rho}\left\{\exp \left[-\frac{\lambda}{R x_{3}^{n-1}}\right]-\exp \left[\frac{-\lambda}{R\left(x_{3}^{n-1}+\theta^{n}\right)}\right] \frac{W}{1-\frac{C_{F}}{x_{1}^{3}}},\right. \tag{62}
\end{equation*}
$$

$$
\pi=1,2,3,
$$

$$
\begin{align*}
& x_{2}^{0}=C_{s t} \frac{q_{s}}{F} \frac{1}{\lambda_{s}} \frac{W}{1-\frac{C_{F}}{x_{1}^{3}}}+E_{6} \\
& +c_{h t} \frac{q_{s}}{F} \frac{2}{U\left(a-x_{3}^{0}+\frac{q_{s} / F}{2 C_{p}\left(1+\theta_{1}^{2}\right)}\right)}-\frac{W}{1-\frac{C_{F}}{x_{1}^{3}}}, \tag{61}\\
& x_{2}^{n}=x_{2}^{n-1}+c_{c d} \frac{\left[\frac{C_{P}}{x_{1}^{n-1}}-\frac{c_{F}}{x_{1}^{n}}-\lambda\right.}{\frac{a_{1}}{\frac{1}{C_{p}}+\alpha_{n}\left(1-\frac{c_{F}}{x_{1}-1}\right)}} \frac{1+\theta_{1}^{n} \frac{c_{F}}{x_{1}^{n-1}}}{}-\alpha_{n}+\frac{\theta_{3}^{n}}{2 x^{n}} \quad 1-\frac{C_{F}}{x_{1}^{3}}
\end{align*}
$$

and

$$
\left\{x_{2}^{3}\right\}=x_{2}^{3}+\left(p_{c}-c_{c}\right) \frac{w}{1-\frac{c_{F}}{x_{1}^{3}}}+c_{c} \frac{\frac{q^{5}}{1-\frac{C_{F}}{3}}+\alpha_{3} w}{\left(x_{3}^{2}+\theta_{3}^{3}-54.5\right)},
$$

where

$$
\begin{align*}
& \alpha_{1}=1.01+\frac{1}{0.03} \cdot \frac{\frac{c_{F}+\theta_{1}^{1} x_{1}^{1}}{1+\theta_{1}^{1}}+x_{1}^{1}}{2} \tag{64}\\
& \alpha_{2}=1.0075+\frac{1}{0.0347} \cdot \frac{1+\theta_{1}^{2}}{2}+x_{1}^{2} \tag{65}\\
& \alpha_{3}=0.32+\frac{1}{0.0315} \cdot \frac{x_{1}^{2}+\theta_{1}^{2} x_{1}^{2} x_{1}^{3}}{1+\theta_{1}^{3}}+x_{1}^{3} \tag{66}\\
& 2
\end{align*} .
$$

The sea water temperature is assumed constant and equal to $85^{\circ} \mathrm{F}$ or $545^{\circ} \mathrm{R}$. We must note that x_{1}^{3} appears in nearly every equation. The same is true for q_{s} / F. Therefore the values of x_{1}^{3} and q_{s} / F must be given in advance before we proceed to optimize the cost function. The optimization problem we have imposed is as follows:

Find a sequence of decisions $\theta_{1}^{1}, \theta_{1}^{2}, \theta_{1}^{3}, \theta_{2}^{1}, \theta_{3}^{2}, \theta_{3}^{3}$ to minimize x_{2}^{3} with x_{1}^{3} and q_{s} / F preassigned.
and

$$
\left\{x_{2}^{3}\right\}=x_{2}^{3}+\left(p_{c}-c_{c}\right) \frac{w}{1-\frac{c_{F}}{x_{1}^{3}}}+c_{c} \frac{\frac{q^{5}}{1-\frac{C_{F}}{3}}+\alpha_{3} w}{\left(x_{3}^{2}+\theta_{3}^{3}-54.5\right)},
$$

where

$$
\begin{align*}
& \alpha_{1}=1.01+\frac{1}{0.03} \cdot \frac{\frac{c_{F}+\theta_{1}^{1} x_{1}^{1}}{1+\theta_{1}^{1}}+x_{1}^{1}}{2} \tag{64}\\
& \alpha_{2}=1.0075+\frac{1}{0.0347} \cdot \frac{1+\theta_{1}^{2}}{2}+x_{1}^{2} \tag{65}\\
& \alpha_{3}=0.32+\frac{1}{0.0315} \cdot \frac{x_{1}^{2}+\theta_{1}^{2} x_{1}^{2} x_{1}^{3}}{1+\theta_{1}^{3}}+x_{1}^{3} \tag{66}\\
& 2
\end{align*} .
$$

The sea water temperature is assumed constant and equal to $85^{\circ} \mathrm{F}$ or $545^{\circ} \mathrm{R}$. We must note that x_{1}^{3} appears in nearly every equation. The same is true for q_{s} / F. Therefore the values of x_{1}^{3} and q_{s} / F must be given in advance before we proceed to optimize the cost function. The optimization problem we have imposed is as follows:

Find a sequence of decisions $\theta_{1}^{1}, \theta_{1}^{2}, \theta_{1}^{3}, \theta_{2}^{1}, \theta_{3}^{2}, \theta_{3}^{3}$ to minimize x_{2}^{3} with x_{1}^{3} and q_{s} / F preassigned.

Once the values of x_{1}^{3} and g_{s} / F are known, the optimal value of θ is sought by the algorithm of the maximum principle, but the optimal values of x_{1}^{3} and q_{S} / p must be found by one of the two search techniques mentioned before.

5-2. Search for Optimum by the Maximum Principle .
(a) Differentiation of State Variables.

The differentiations of the state variables with respect to the decision varidbles and state variables are given below. These are used to determine the adjoint variable and the derivatives of the Hamiltonian funcitons in the following sections.
(1). x_{1}^{n}

$$
\begin{array}{ll}
\frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}=\frac{x_{1}^{n}\left(x_{1}^{n}-x_{1}^{n-1}\right)}{x_{1}^{n-1}\left(1+\theta_{1}^{n}\right)}, & n=1,2,3 \\
\frac{\partial x_{1}^{n}}{\partial \theta_{3}^{n}}=-\frac{c_{p} x_{1}^{n}\left(x_{1}^{n-1}+\theta_{1}^{n} x_{1}^{n}\right)}{\lambda x_{1}^{n-1}}, & n=1,2,3 \\
\frac{\partial x_{1}^{n}}{\partial x_{1}^{n-1}}=\frac{x_{1}^{n}}{x_{1}^{n-1}}, & n=2,3, \\
\frac{\partial x_{1}^{n}}{\partial x_{2}^{n-1}}=0, & n=2,3, \\
\frac{\partial x_{1}^{n}}{\partial x_{3}^{n-1}}=0, & n=2,3 . \tag{71}
\end{array}
$$

Once the values of x_{1}^{3} and g_{s} / F are known, the optimal value of θ is sought by the algorithm of the maximum principle, but the optimal values of x_{1}^{3} and q_{S} / p must be found by one of the two search techniques mentioned before.

5-2. Search for Optimum by the Maximum Principle .
(a) Differentiation of State Variables.

The differentiations of the state variables with respect to the decision varidbles and state variables are given below. These are used to determine the adjoint variable and the derivatives of the Hamiltonian funcitons in the following sections.
(1). x_{1}^{n}

$$
\begin{array}{ll}
\frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}=\frac{x_{1}^{n}\left(x_{1}^{n}-x_{1}^{n-1}\right)}{x_{1}^{n-1}\left(1+\theta_{1}^{n}\right)}, & n=1,2,3 \\
\frac{\partial x_{1}^{n}}{\partial \theta_{3}^{n}}=-\frac{c_{p} x_{1}^{n}\left(x_{1}^{n-1}+\theta_{1}^{n} x_{1}^{n}\right)}{\lambda x_{1}^{n-1}}, & n=1,2,3 \\
\frac{\partial x_{1}^{n}}{\partial x_{1}^{n-1}}=\frac{x_{1}^{n}}{x_{1}^{n-1}}, & n=2,3, \\
\frac{\partial x_{1}^{n}}{\partial x_{2}^{n-1}}=0, & n=2,3, \\
\frac{\partial x_{1}^{n}}{\partial x_{3}^{n-1}}=0, & n=2,3 . \tag{71}
\end{array}
$$

(2). x_{2}^{π}

$$
\begin{align*}
& +C_{p p} \frac{C_{F}}{x_{1}^{n-1}} \cdot \frac{B}{\rho}\left\{\exp \left(-\frac{\lambda}{R x_{3}^{n-1}}\right)-\exp \left[\frac{-\lambda}{R\left(x_{3}^{n-1}+\theta_{3}^{n}\right)}\right]\right\} \frac{W}{1-\frac{C_{F}}{x_{1}^{3}}}, \tag{72}\\
& n=1,2,3 \text {, }
\end{align*}
$$

where

$$
\begin{align*}
& \Delta T^{n}=\frac{\frac{\theta}{F} \cdot \frac{1}{C_{p}}+\alpha_{n}\left[1-\frac{C_{F}}{x_{1}^{n-1}}\right]}{1+\theta_{1}^{n} \frac{C_{F}}{x_{1}^{n-1}}}, \tag{73}\\
& \frac{\partial \Delta n_{1}^{n}}{\partial \theta_{1}^{n}}=\frac{-\Delta r^{n}}{\frac{x_{1}^{n-1}}{C_{F}}+\theta_{1}^{n}}, \tag{74}
\end{align*}
$$

(2). x_{2}^{π}

$$
\begin{align*}
& +C_{p p} \frac{C_{F}}{x_{1}^{n-1}} \cdot \frac{B}{\rho}\left\{\exp \left(-\frac{\lambda}{R x_{3}^{n-1}}\right)-\exp \left[\frac{-\lambda}{R\left(x_{3}^{n-1}+\theta_{3}^{n}\right)}\right]\right\} \frac{W}{1-\frac{C_{F}}{x_{1}^{3}}}, \tag{72}\\
& n=1,2,3 \text {, }
\end{align*}
$$

where

$$
\begin{align*}
& \Delta T^{n}=\frac{\frac{\theta}{F} \cdot \frac{1}{C_{p}}+\alpha_{n}\left[1-\frac{C_{F}}{x_{1}^{n-1}}\right]}{1+\theta_{1}^{n} \frac{C_{F}}{x_{1}^{n-1}}}, \tag{73}\\
& \frac{\partial \Delta n_{1}^{n}}{\partial \theta_{1}^{n}}=\frac{-\Delta r^{n}}{\frac{x_{1}^{n-1}}{C_{F}}+\theta_{1}^{n}}, \tag{74}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial x_{2}^{n}}{\partial \theta_{3}^{n}}=c_{c d} \frac{\lambda}{U} \cdot \frac{W}{1-\frac{C_{F}}{x_{1}^{3}}}\left\{\frac{C_{F} \frac{\partial x_{1}^{n}}{\partial \theta_{3}^{n}}}{\left[x_{1}^{n-}-2-\Delta T^{n}-\alpha_{n}+\frac{\theta_{3}^{n}}{2 N_{n}}\right]}-\frac{\frac{C_{F}}{x_{1}^{n-1}}-\frac{C_{F}}{x_{1}^{n}}}{2 N_{n}\left[\Delta T^{n}-\alpha_{n}+\frac{\theta_{3}^{n}}{2 N_{n}}\right]^{2}}\right\} \\
& -C_{p p} \frac{C_{F}}{x_{1}^{\mathrm{n}-1}} \theta_{1}^{\mathrm{n}} \frac{B}{\rho} \cdot \frac{W}{1-\frac{C_{F}}{x_{1}^{3}}} \cdot \frac{\lambda}{R\left[x_{3}^{n-1}+\theta_{3}^{n}\right]^{2}} \exp \left[-\frac{\lambda}{R\left(x_{3}^{\mathrm{n}-1}+\theta_{3}^{\mathrm{n}}\right)}\right], \\
& \mathrm{n}=1,2,3, \\
& \left\{\frac{\partial x_{2}^{1}}{\partial \theta_{1}^{1}}\right\}=\frac{\partial x_{2}^{1}}{\partial \theta_{1}^{1}}-c_{h t} \cdot \frac{q}{F} \cdot \frac{1}{U} \cdot \frac{\frac{W}{C_{F}}}{1-\frac{\partial \Delta T^{1}}{x_{1}^{3}}} \cdot \frac{\partial \theta_{1}^{1}}{\alpha_{1}\left[a-x_{3}^{0}+\frac{\left.\Delta T^{1}\right]^{2}}{2}\right]^{2}}, \tag{76}\\
& \left\{\frac{\partial x_{2}^{3}}{\partial \theta_{1}^{3}}\right\} \frac{\partial x_{2}^{3}}{\partial \theta_{1}^{3}}-c_{c d} \frac{1}{U} \cdot \frac{W \cdot C_{F} \cdot \frac{\partial x_{1}^{3}}{\partial \theta_{1}^{3}}}{\left[x_{1}^{3}-C_{F-}^{2}\right.} \cdot \frac{\left[\frac{C_{F}}{x_{1}^{2}}-\frac{C_{F}}{x_{1}^{3}} \cdot \lambda\right.}{\left[\Delta T^{3}-\alpha^{3}+\frac{\theta_{3}^{3}}{2 N_{3}}\right]} \\
& -c_{p p} \frac{c_{F}}{x_{1}^{2}} \theta_{1}^{3} \frac{B}{\rho} \cdot \frac{\mathrm{wC}_{F} \frac{\partial x_{1}^{3}}{\partial \theta_{1}^{3}}}{\left[x_{1}^{3}-c_{F}\right]^{2}}\left\{\exp \left[-\frac{\lambda}{R x_{3}^{2}}\right]-\exp \left[\frac{-\lambda}{R\left(x_{3}^{2}+\theta_{3}^{3}\right)}\right] .\right. \tag{77}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial x_{2}^{n}}{\partial \theta_{3}^{n}}=c_{c d} \frac{\lambda}{U} \cdot \frac{W}{1-\frac{C_{F}}{x_{1}^{3}}}\left\{\frac{C_{F} \frac{\partial x_{1}^{n}}{\partial \theta_{3}^{n}}}{\left[x_{1}^{n-}-2-\Delta T^{n}-\alpha_{n}+\frac{\theta_{3}^{n}}{2 N_{n}}\right]}-\frac{\frac{C_{F}}{x_{1}^{n-1}}-\frac{C_{F}}{x_{1}^{n}}}{2 N_{n}\left[\Delta T^{n}-\alpha_{n}+\frac{\theta_{3}^{n}}{2 N_{n}}\right]^{2}}\right\} \\
& -C_{p p} \frac{C_{F}}{x_{1}^{\mathrm{n}-1}} \theta_{1}^{\mathrm{n}} \frac{B}{\rho} \cdot \frac{W}{1-\frac{C_{F}}{x_{1}^{3}}} \cdot \frac{\lambda}{R\left[x_{3}^{n-1}+\theta_{3}^{n}\right]^{2}} \exp \left[-\frac{\lambda}{R\left(x_{3}^{\mathrm{n}-1}+\theta_{3}^{\mathrm{n}}\right)}\right], \\
& \mathrm{n}=1,2,3, \\
& \left\{\frac{\partial x_{2}^{1}}{\partial \theta_{1}^{1}}\right\}=\frac{\partial x_{2}^{1}}{\partial \theta_{1}^{1}}-c_{h t} \cdot \frac{q}{F} \cdot \frac{1}{U} \cdot \frac{\frac{W}{C_{F}}}{1-\frac{\partial \Delta T^{1}}{x_{1}^{3}}} \cdot \frac{\partial \theta_{1}^{1}}{\alpha_{1}\left[a-x_{3}^{0}+\frac{\left.\Delta T^{1}\right]^{2}}{2}\right]^{2}}, \tag{76}\\
& \left\{\frac{\partial x_{2}^{3}}{\partial \theta_{1}^{3}}\right\} \frac{\partial x_{2}^{3}}{\partial \theta_{1}^{3}}-c_{c d} \frac{1}{U} \cdot \frac{W \cdot C_{F} \cdot \frac{\partial x_{1}^{3}}{\partial \theta_{1}^{3}}}{\left[x_{1}^{3}-C_{F-}^{2}\right.} \cdot \frac{\left[\frac{C_{F}}{x_{1}^{2}}-\frac{C_{F}}{x_{1}^{3}} \cdot \lambda\right.}{\left[\Delta T^{3}-\alpha^{3}+\frac{\theta_{3}^{3}}{2 N_{3}}\right]} \\
& -c_{p p} \frac{c_{F}}{x_{1}^{2}} \theta_{1}^{3} \frac{B}{\rho} \cdot \frac{\mathrm{wC}_{F} \frac{\partial x_{1}^{3}}{\partial \theta_{1}^{3}}}{\left[x_{1}^{3}-c_{F}\right]^{2}}\left\{\exp \left[-\frac{\lambda}{R x_{3}^{2}}\right]-\exp \left[\frac{-\lambda}{R\left(x_{3}^{2}+\theta_{3}^{3}\right)}\right] .\right. \tag{77}
\end{align*}
$$

$$
\begin{align*}
&\left\{\frac{\partial x_{2}^{3}}{\partial \theta_{3}^{3}}\right\}=\frac{\partial x_{2}^{3}}{\partial \theta_{3}^{3}}-c_{c d} \frac{1}{U} \frac{W c_{F} \frac{\partial x_{1}^{3}}{\partial \theta_{3}^{3}}}{\left[x_{1}^{3}-c_{F-}{ }^{2}\right.} \cdot \frac{\left[\frac{c_{F}}{x_{1}^{2}}-\frac{c_{F}}{x_{1}^{3}}\right] \lambda}{\left[\Delta r^{3}-\alpha_{3}+\frac{\theta_{3}^{3}}{2 N_{3}}\right]} \\
&-c_{p p} \frac{c_{F}}{x_{1}^{2}} \theta_{1}^{3} \frac{B}{\rho} \cdot \frac{w c_{F} \frac{\partial x_{1}^{3}}{\partial \theta_{3}^{3}}}{\left[x_{1}^{3}-c_{F}\right]^{2}}\left\{\exp \left[-\frac{\lambda}{2 x_{3}^{2}}\right]-\exp \left[\frac{-\lambda}{R\left(x_{3}^{2}+\theta_{3}^{3}\right)}\right]\right\} \tag{78}
\end{align*}
$$

$$
\begin{equation*}
-c_{p p} \frac{c_{F}}{\left(x_{1}^{n-1}\right)^{2}} \theta_{1}^{n} \frac{B}{\rho}\left\{\exp \left[-\frac{\lambda}{\left.R x_{3}^{\mathrm{I}-1}\right]}-\exp \left[-\frac{-\lambda}{R\left(x_{3}^{n-1}+0_{3}^{n}\right)}\right]\right\} \frac{\mathrm{F}}{1-\frac{C_{F}}{\dot{x}_{1}^{3}}}\right. \tag{79}
\end{equation*}
$$

$$
\begin{align*}
&\left\{\frac{\partial x_{2}^{3}}{\partial \theta_{3}^{3}}\right\}=\frac{\partial x_{2}^{3}}{\partial \theta_{3}^{3}}-c_{c d} \frac{1}{U} \frac{W c_{F} \frac{\partial x_{1}^{3}}{\partial \theta_{3}^{3}}}{\left[x_{1}^{3}-c_{F-}{ }^{2}\right.} \cdot \frac{\left[\frac{c_{F}}{x_{1}^{2}}-\frac{c_{F}}{x_{1}^{3}}\right] \lambda}{\left[\Delta r^{3}-\alpha_{3}+\frac{\theta_{3}^{3}}{2 N_{3}}\right]} \\
&-c_{p p} \frac{c_{F}}{x_{1}^{2}} \theta_{1}^{3} \frac{B}{\rho} \cdot \frac{w c_{F} \frac{\partial x_{1}^{3}}{\partial \theta_{3}^{3}}}{\left[x_{1}^{3}-c_{F}\right]^{2}}\left\{\exp \left[-\frac{\lambda}{2 x_{3}^{2}}\right]-\exp \left[\frac{-\lambda}{R\left(x_{3}^{2}+\theta_{3}^{3}\right)}\right]\right\} \tag{78}
\end{align*}
$$

$$
\begin{equation*}
-c_{p p} \frac{c_{F}}{\left(x_{1}^{n-1}\right)^{2}} \theta_{1}^{n} \frac{B}{\rho}\left\{\exp \left[-\frac{\lambda}{\left.R x_{3}^{\mathrm{I}-1}\right]}-\exp \left[-\frac{-\lambda}{R\left(x_{3}^{n-1}+0_{3}^{n}\right)}\right]\right\} \frac{\mathrm{F}}{1-\frac{C_{F}}{\dot{x}_{1}^{3}}}\right. \tag{79}
\end{equation*}
$$

$$
\begin{align*}
\left\{\frac{\partial x_{2}^{3}}{\partial x_{1}^{2}}\right\} & =\frac{\partial x_{2}^{3}}{\partial x_{1}^{2}}-C_{c d} \frac{1}{U} \cdot \frac{W C_{F} \frac{\partial x_{1}^{3}}{\partial x_{1}^{2}}}{\left(x_{1}^{3}-C_{F}\right)^{2}} \cdot \frac{-\frac{C_{F}}{x_{1}^{2}}-\frac{C_{F}}{x_{1}^{3}} \lambda}{\left[\Delta T^{3}-a_{n}+\frac{\theta_{3}^{3}}{2 N_{3}}\right]} \\
& -C_{P P} \frac{C_{F}}{x_{1}^{2}} \theta_{1}^{3} \frac{B}{\theta} \frac{W C_{F} \frac{\partial x_{1}^{3}}{\partial x_{1}^{2}}}{\left(x_{1}^{3}-C_{F}\right)^{2}}\left\{\exp \left(-\frac{\lambda}{R x_{3}^{2}}\right)-\exp \left(\frac{-\lambda}{R\left(x_{3}^{2}+\theta_{3}^{3}\right)}\right)\right. \tag{80}
\end{align*}
$$

where

$$
\begin{align*}
& \frac{\partial \Delta T^{n}}{\partial x_{1}^{n-1}}=\frac{C_{F}\left(c_{n}+\Delta T^{n} \theta_{1}^{n}\right)}{x_{1}^{n-1}\left(x_{1}^{n-1}+\theta_{1}^{n} C_{F}\right)} \cdot \quad n=2,3, \tag{81}\\
& \frac{\partial x_{2}^{n}}{\partial x_{2}^{n-1}}=1, \tag{82}\\
& \frac{\partial x_{2}^{n}}{\partial x_{3}^{n-1}}=C_{p p} \frac{C_{F}}{x_{1}^{n-1}} \theta_{1}^{n} \frac{B}{\partial} \frac{W}{1-\frac{C_{p}}{x_{3}}} \cdot \frac{\lambda}{R}\left\{\frac{1}{\left(x_{1}^{n-1}\right)^{2}} \exp \left(-\frac{\lambda}{R x_{3}^{n-1}}\right)\right. \\
& \\
& -\frac{1}{\left(x_{3}^{n-1}+\theta_{3}^{n}\right)^{2}} \quad \exp \left(\frac{-\lambda}{R\left(x_{3}^{n-1}+\theta_{3}^{n}\right)}\right\},
\end{align*}
$$

$$
\begin{align*}
\left\{\frac{\partial x_{2}^{3}}{\partial x_{1}^{2}}\right\} & =\frac{\partial x_{2}^{3}}{\partial x_{1}^{2}}-C_{c d} \frac{1}{U} \cdot \frac{W C_{F} \frac{\partial x_{1}^{3}}{\partial x_{1}^{2}}}{\left(x_{1}^{3}-C_{F}\right)^{2}} \cdot \frac{-\frac{C_{F}}{x_{1}^{2}}-\frac{C_{F}}{x_{1}^{3}} \lambda}{\left[\Delta T^{3}-a_{n}+\frac{\theta_{3}^{3}}{2 N_{3}}\right]} \\
& -C_{P P} \frac{C_{F}}{x_{1}^{2}} \theta_{1}^{3} \frac{B}{\theta} \frac{W C_{F} \frac{\partial x_{1}^{3}}{\partial x_{1}^{2}}}{\left(x_{1}^{3}-C_{F}\right)^{2}}\left\{\exp \left(-\frac{\lambda}{R x_{3}^{2}}\right)-\exp \left(\frac{-\lambda}{R\left(x_{3}^{2}+\theta_{3}^{3}\right)}\right)\right. \tag{80}
\end{align*}
$$

where

$$
\begin{align*}
& \frac{\partial \Delta T^{n}}{\partial x_{1}^{n-1}}=\frac{C_{F}\left(c_{n}+\Delta T^{n} \theta_{1}^{n}\right)}{x_{1}^{n-1}\left(x_{1}^{n-1}+\theta_{1}^{n} C_{F}\right)} \cdot \quad n=2,3, \tag{81}\\
& \frac{\partial x_{2}^{n}}{\partial x_{2}^{n-1}}=1, \tag{82}\\
& \frac{\partial x_{2}^{n}}{\partial x_{3}^{n-1}}=C_{p p} \frac{C_{F}}{x_{1}^{n-1}} \theta_{1}^{n} \frac{B}{\partial} \frac{W}{1-\frac{C_{p}}{x_{3}}} \cdot \frac{\lambda}{R}\left\{\frac{1}{\left(x_{1}^{n-1}\right)^{2}} \exp \left(-\frac{\lambda}{R x_{3}^{n-1}}\right)\right. \\
& \\
& -\frac{1}{\left(x_{3}^{n-1}+\theta_{3}^{n}\right)^{2}} \quad \exp \left(\frac{-\lambda}{R\left(x_{3}^{n-1}+\theta_{3}^{n}\right)}\right\},
\end{align*}
$$

(3). x_{3}^{n}

$$
\begin{array}{ll}
\frac{\partial x_{3}^{n}}{\partial \theta_{1}^{n}}=0, & n=2,2,3, \\
\frac{\partial x_{3}^{n}}{\partial \theta_{3}^{n}}=1, & n=1,2,3, \\
\frac{\partial x_{3}^{n}}{\partial x_{2}^{n-1}}=0, & n=2,3, \\
\frac{\partial x_{3}^{n}}{\partial x_{2}^{n-1}}=0, & n=2,3, \\
\frac{\partial x_{3}^{n}}{\partial x_{3}^{n-1}}=1, & n=2,3 . \tag{88}
\end{array}
$$

(b) Adjoint Variables z_{i}^{N}

Since

$$
c_{2}=0, \quad c_{2}=1, \quad c_{3}=0
$$

we can wrize

$$
z_{1}^{3}=0, \quad z_{2}^{3}=1, \quad z_{3}^{3}=0
$$

However, since x_{2}^{3} is prefixed,

$$
z_{2}^{3} \neq c_{2}
$$

Then H^{3} becomes
(3). x_{3}^{n}

$$
\begin{array}{ll}
\frac{\partial x_{3}^{n}}{\partial \theta_{1}^{n}}=0, & n=2,2,3, \\
\frac{\partial x_{3}^{n}}{\partial \theta_{3}^{n}}=1, & n=1,2,3, \\
\frac{\partial x_{3}^{n}}{\partial x_{2}^{n-1}}=0, & n=2,3, \\
\frac{\partial x_{3}^{n}}{\partial x_{2}^{n-1}}=0, & n=2,3, \\
\frac{\partial x_{3}^{n}}{\partial x_{3}^{n-1}}=1, & n=2,3 . \tag{88}
\end{array}
$$

(b) Adjoint Variables z_{i}^{N}

Since

$$
c_{2}=0, \quad c_{2}=1, \quad c_{3}=0
$$

we can wrize

$$
z_{1}^{3}=0, \quad z_{2}^{3}=1, \quad z_{3}^{3}=0
$$

However, since x_{2}^{3} is prefixed,

$$
z_{2}^{3} \neq c_{2}
$$

Then H^{3} becomes

$$
\begin{equation*}
H^{3}=z_{2}^{3} x_{1}^{3}+x_{2}^{3} \tag{89}
\end{equation*}
$$

Differentiating H^{3} with respect to θ_{3}^{3} yields

$$
\begin{equation*}
\frac{\partial H^{3}}{\partial \theta_{3}^{3}}=z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial \theta_{3}^{3}}+\frac{\partial x_{2}^{3}}{\partial \theta_{3}^{3}} \tag{90}
\end{equation*}
$$

Setting $\frac{\partial H^{3}}{\partial \theta_{3}^{3}}=0$ yields

$$
\begin{equation*}
z_{1}^{3}=-\frac{\frac{\partial x_{2}^{3}}{\partial \theta_{3}^{3}}}{\frac{\partial x_{1}^{3}}{\partial \theta_{3}^{3}}} \tag{91}
\end{equation*}
$$

(c) Adjoint Variables z_{i}^{2}
z_{i}^{N} derived in the last section is used to calculate z_{i}^{n} in the following equations. In the actual calculation the values of the differantiazion oz the state variables in section (a) are substituted into the equation of z_{i}^{n}.

$$
\begin{align*}
z_{1}^{2} & =z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial x_{1}^{2}}+z_{2}^{3} \frac{\partial x_{2}^{3}}{\partial x_{1}^{2}}=z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial x_{1}^{2}}+\frac{\partial x_{2}^{3}}{\partial x_{1}^{2}} \tag{92}\\
z_{2}^{2} & =z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial x_{2}^{2}}+z_{2}^{3} \frac{\partial x_{2}^{3}}{\partial x_{2}^{2}} \\
& =1, \tag{93}
\end{align*}
$$

$$
\begin{equation*}
z_{3}^{2}=z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial x_{3}^{2}}+z_{2}^{3} \frac{\partial x_{2}^{3}}{\partial x_{3}^{2}}=\frac{\partial x_{2}^{3}}{\partial x_{3}^{2}}, \tag{94}
\end{equation*}
$$

$$
\begin{equation*}
H^{3}=z_{2}^{3} x_{1}^{3}+x_{2}^{3} \tag{89}
\end{equation*}
$$

Differentiating H^{3} with respect to θ_{3}^{3} yields

$$
\begin{equation*}
\frac{\partial H^{3}}{\partial \theta_{3}^{3}}=z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial \theta_{3}^{3}}+\frac{\partial x_{2}^{3}}{\partial \theta_{3}^{3}} \tag{90}
\end{equation*}
$$

Setting $\frac{\partial H^{3}}{\partial \theta_{3}^{3}}=0$ yields

$$
\begin{equation*}
z_{1}^{3}=-\frac{\frac{\partial x_{2}^{3}}{\partial \theta_{3}^{3}}}{\frac{\partial x_{1}^{3}}{\partial \theta_{3}^{3}}} \tag{91}
\end{equation*}
$$

(c) Adjoint Variables z_{i}^{2}
z_{i}^{N} derived in the last section is used to calculate z_{i}^{n} in the following equations. In the actual calculation the values of the differantiazion oz the state variables in section (a) are substituted into the equation of z_{i}^{n}.

$$
\begin{align*}
z_{1}^{2} & =z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial x_{1}^{2}}+z_{2}^{3} \frac{\partial x_{2}^{3}}{\partial x_{1}^{2}}=z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial x_{1}^{2}}+\frac{\partial x_{2}^{3}}{\partial x_{1}^{2}} \tag{92}\\
z_{2}^{2} & =z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial x_{2}^{2}}+z_{2}^{3} \frac{\partial x_{2}^{3}}{\partial x_{2}^{2}} \\
& =1, \tag{93}
\end{align*}
$$

$$
\begin{equation*}
z_{3}^{2}=z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial x_{3}^{2}}+z_{2}^{3} \frac{\partial x_{2}^{3}}{\partial x_{3}^{2}}=\frac{\partial x_{2}^{3}}{\partial x_{3}^{2}}, \tag{94}
\end{equation*}
$$

$$
\begin{align*}
z_{1}^{1} & =z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial x_{1}^{1}}+z_{2}^{2} \frac{\partial x_{2}^{2}}{\partial x_{1}^{1}}+z_{3}^{2} \frac{\partial x_{3}^{2}}{\partial x_{1}^{1}} \\
& =z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial x_{1}^{1}}+\frac{\partial x_{2}^{2}}{\partial x_{1}^{1}} \tag{95}\\
z_{2}^{1} & =z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial x_{2}^{1}}+z_{2}^{2} \frac{\partial x_{2}^{2}}{\partial x_{2}^{1}}+z_{3}^{2} \frac{\partial x_{3}^{2}}{\partial x_{2}^{1}} \\
& =1, \tag{96}
\end{align*}
$$

$$
z_{3}^{1}=z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial x_{3}^{1}}+z_{2}^{2} \frac{\partial x_{2}^{2}}{\partial x_{3}^{2}}+z_{3}^{2} \frac{\partial x_{3}^{2}}{\partial x_{3}^{1}}
$$

$$
\begin{equation*}
=\frac{\partial x_{2}^{2}}{\partial x_{3}^{1}}+z_{3}^{2}, \tag{97}
\end{equation*}
$$

(d) Derivatives of Hamiltonians

$$
\begin{align*}
\frac{\partial H^{1}}{\partial \theta_{1}^{I}} & =z_{1}^{1} \frac{\partial x_{1}^{1}}{\partial \theta_{1}^{I}}+z_{2}^{1} \frac{\partial x_{2}^{1}}{\partial \theta_{1}^{I}}+z_{3}^{1} \frac{\partial x_{3}^{1}}{\partial \theta_{1}^{I}} \\
& =z_{1}^{1} \frac{\partial x_{1}^{1}}{\partial \theta_{1}^{1}}+\frac{\partial x_{2}^{1}}{\partial \theta_{1}^{I}} \tag{98}\\
\frac{\partial \theta_{3}^{1}}{\partial \theta_{3}^{I}} & =z_{1}^{1} \frac{\partial x_{1}^{1}}{\partial \theta_{3}^{I}}+z_{2}^{1} \frac{\partial x_{2}^{1}}{\partial \theta_{3}^{1}}+z_{3}^{1} \frac{\partial x_{3}^{1}}{\partial \theta_{3}^{1}} \\
& =z_{1}^{1} \frac{\partial x_{1}^{1}}{\partial \theta_{3}^{I}}+\frac{\partial x_{2}^{1}}{\partial \theta_{3}^{I}}+z_{3}^{1}, \tag{99}
\end{align*}
$$

$$
\begin{align*}
z_{1}^{1} & =z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial x_{1}^{1}}+z_{2}^{2} \frac{\partial x_{2}^{2}}{\partial x_{1}^{1}}+z_{3}^{2} \frac{\partial x_{3}^{2}}{\partial x_{1}^{1}} \\
& =z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial x_{1}^{1}}+\frac{\partial x_{2}^{2}}{\partial x_{1}^{1}} \tag{95}\\
z_{2}^{1} & =z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial x_{2}^{1}}+z_{2}^{2} \frac{\partial x_{2}^{2}}{\partial x_{2}^{1}}+z_{3}^{2} \frac{\partial x_{3}^{2}}{\partial x_{2}^{1}} \\
& =1, \tag{96}
\end{align*}
$$

$$
z_{3}^{1}=z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial x_{3}^{1}}+z_{2}^{2} \frac{\partial x_{2}^{2}}{\partial x_{3}^{2}}+z_{3}^{2} \frac{\partial x_{3}^{2}}{\partial x_{3}^{1}}
$$

$$
\begin{equation*}
=\frac{\partial x_{2}^{2}}{\partial x_{3}^{1}}+z_{3}^{2}, \tag{97}
\end{equation*}
$$

(d) Derivatives of Hamiltonians

$$
\begin{align*}
\frac{\partial H^{1}}{\partial \theta_{1}^{I}} & =z_{1}^{1} \frac{\partial x_{1}^{1}}{\partial \theta_{1}^{I}}+z_{2}^{1} \frac{\partial x_{2}^{1}}{\partial \theta_{1}^{I}}+z_{3}^{1} \frac{\partial x_{3}^{1}}{\partial \theta_{1}^{I}} \\
& =z_{1}^{1} \frac{\partial x_{1}^{1}}{\partial \theta_{1}^{1}}+\frac{\partial x_{2}^{1}}{\partial \theta_{1}^{I}} \tag{98}\\
\frac{\partial \theta_{3}^{1}}{\partial \theta_{3}^{I}} & =z_{1}^{1} \frac{\partial x_{1}^{1}}{\partial \theta_{3}^{I}}+z_{2}^{1} \frac{\partial x_{2}^{1}}{\partial \theta_{3}^{1}}+z_{3}^{1} \frac{\partial x_{3}^{1}}{\partial \theta_{3}^{1}} \\
& =z_{1}^{1} \frac{\partial x_{1}^{1}}{\partial \theta_{3}^{I}}+\frac{\partial x_{2}^{1}}{\partial \theta_{3}^{I}}+z_{3}^{1}, \tag{99}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial H^{2}}{\partial \theta_{1}^{2}}=z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial \theta_{1}^{2}}+z_{2}^{2} \frac{\partial x_{2}^{2}}{\partial \theta_{1}^{2}}+z_{3}^{2} \frac{\partial x_{3}^{2}}{\partial \theta_{1}^{2}} \\
&=z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial \theta_{1}^{2}}+\frac{\partial x_{2}^{2}}{\partial \theta_{1}^{2}}, \tag{100}\\
& \begin{aligned}
\frac{\partial H^{2}}{\partial \theta_{3}^{2}} & =z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial \theta_{3}^{2}}+z_{2}^{2} \frac{\partial x_{2}^{2}}{\partial \theta_{3}^{2}}+z_{3}^{2} \frac{\partial x_{3}^{2}}{\partial \theta_{3}^{2}} \\
& =z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial \theta_{3}^{2}}+\frac{\partial x_{2}^{2}}{\partial \theta_{3}^{2}}+z_{3}^{2}, \\
\frac{\partial H^{3}}{\partial \theta_{1}^{3}} & =z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial \theta_{1}^{3}}+z_{2}^{3} \frac{\partial x_{2}^{3}}{\partial \theta_{1}^{3}}+z_{3}^{3} \frac{\partial x_{3}^{3}}{\partial \theta_{1}^{3}} \\
& =z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial \theta_{1}^{3}}+\frac{\partial x_{2}^{3}}{\partial \theta_{1}^{3}}
\end{aligned}
\end{align*}
$$

(e) Calculation Procedures

Since x_{1}^{3} and c_{s} / F are known, the optimal decisions θ_{i}^{n} for these fixed values of x_{1}^{3} and q_{s} / F are obtained from the following procecuines:
Step 1. Assume a set of values of $\theta_{1}^{1}, \theta_{1}^{2}, \theta_{1}^{3}, \theta_{3}^{1}, \theta_{3}^{2}$, and $\Delta \theta_{i}^{n}$ as a trial. Step 2. Calculate $x_{1}^{1}, x_{1}^{2}, \theta_{3}^{3}$ from equation (60).
Step 3. Calculate $x_{3}^{1}, x_{3}^{2}, x_{3}^{3}$ from eçuarion (59).
Step 4. Calculate $x_{2}^{0}, x_{2}^{1}, x_{2}^{2}, x_{2}^{3}$ from equations (61) through (oo).

$$
\begin{align*}
& \frac{\partial H^{2}}{\partial \theta_{1}^{2}}=z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial \theta_{1}^{2}}+z_{2}^{2} \frac{\partial x_{2}^{2}}{\partial \theta_{1}^{2}}+z_{3}^{2} \frac{\partial x_{3}^{2}}{\partial \theta_{1}^{2}} \\
&=z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial \theta_{1}^{2}}+\frac{\partial x_{2}^{2}}{\partial \theta_{1}^{2}}, \tag{100}\\
& \begin{aligned}
\frac{\partial H^{2}}{\partial \theta_{3}^{2}} & =z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial \theta_{3}^{2}}+z_{2}^{2} \frac{\partial x_{2}^{2}}{\partial \theta_{3}^{2}}+z_{3}^{2} \frac{\partial x_{3}^{2}}{\partial \theta_{3}^{2}} \\
& =z_{1}^{2} \frac{\partial x_{1}^{2}}{\partial \theta_{3}^{2}}+\frac{\partial x_{2}^{2}}{\partial \theta_{3}^{2}}+z_{3}^{2}, \\
\frac{\partial H^{3}}{\partial \theta_{1}^{3}} & =z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial \theta_{1}^{3}}+z_{2}^{3} \frac{\partial x_{2}^{3}}{\partial \theta_{1}^{3}}+z_{3}^{3} \frac{\partial x_{3}^{3}}{\partial \theta_{1}^{3}} \\
& =z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial \theta_{1}^{3}}+\frac{\partial x_{2}^{3}}{\partial \theta_{1}^{3}}
\end{aligned}
\end{align*}
$$

(e) Calculation Procedures

Since x_{1}^{3} and c_{s} / F are known, the optimal decisions θ_{i}^{n} for these fixed values of x_{1}^{3} and q_{s} / F are obtained from the following procecuines:
Step 1. Assume a set of values of $\theta_{1}^{1}, \theta_{1}^{2}, \theta_{1}^{3}, \theta_{3}^{1}, \theta_{3}^{2}$, and $\Delta \theta_{i}^{n}$ as a trial. Step 2. Calculate $x_{1}^{1}, x_{1}^{2}, \theta_{3}^{3}$ from equation (60).
Step 3. Calculate $x_{3}^{1}, x_{3}^{2}, x_{3}^{3}$ from eçuarion (59).
Step 4. Calculate $x_{2}^{0}, x_{2}^{1}, x_{2}^{2}, x_{2}^{3}$ from equations (61) through (oo).

Step 5. Calculate z_{1}^{3} from equation (91) and equations (68) and (78), and calculate $z_{1}^{2}, z_{2}^{2}, z_{3}^{2}, z_{1}^{1}, z_{2}^{1}, z_{3}^{\frac{1}{3}}$ from equations (92) through (97).

Step 6. Calculate $\frac{\partial H^{1}}{\partial \theta_{1}^{1}} \quad \frac{\partial H^{1}}{\partial \theta_{3}^{1}} \quad \frac{\partial H^{2}}{\partial \theta_{1}^{2}} \quad \frac{\partial H^{2}}{\partial \theta_{3}^{2}} \frac{\partial H^{3}}{\partial \theta_{1}^{3}}$ from equations (98) through (102).

Step 7. If $\frac{\partial H^{n}}{\partial \theta_{i}^{n}}$ are zero or less than the allowable errors preassigned, then the assumed θ_{i}^{n} are the optimal values; otherwise go to the next step.
Step 8. If x_{2}^{3} is greater than that computed in the preceding iteration, then one half of the original $\Delta \theta_{i}^{n}$ is used; otherwise the original $\Delta \theta_{i}^{n}$ is used.

Step 9. The new set of decision variables $\left(\theta_{i}^{n}\right)_{\text {new }}$ is obtained by

$$
\begin{equation*}
\left(\theta_{i}^{n}\right)_{\text {new }}=\left(\theta_{i}^{n}\right)_{o l d} \pm \Delta \theta_{i}^{n} \tag{103}
\end{equation*}
$$

When

$$
\frac{\partial H^{n}}{\partial \theta_{i}^{n}}>0 \quad \text { use }(-) \text { sign }
$$

When

$$
\frac{\partial H^{n}}{\partial \theta_{i}^{n}}<0 \quad \text { use (+) sign }
$$

Then go to step 2 and repeat the computation until the optimum is obtained.

(f) Computer Flow Chart

The numerical values of the various constants involved in the performance equations are summarized in Table 1. These values are

Step 5. Calculate z_{1}^{3} from equation (91) and equations (68) and (78), and calculate $z_{1}^{2}, z_{2}^{2}, z_{3}^{2}, z_{1}^{1}, z_{2}^{1}, z_{3}^{\frac{1}{3}}$ from equations (92) through (97).

Step 6. Calculate $\frac{\partial H^{1}}{\partial \theta_{1}^{1}} \quad \frac{\partial H^{1}}{\partial \theta_{3}^{1}} \quad \frac{\partial H^{2}}{\partial \theta_{1}^{2}} \quad \frac{\partial H^{2}}{\partial \theta_{3}^{2}} \frac{\partial H^{3}}{\partial \theta_{1}^{3}}$ from equations (98) through (102).

Step 7. If $\frac{\partial H^{n}}{\partial \theta_{i}^{n}}$ are zero or less than the allowable errors preassigned, then the assumed θ_{i}^{n} are the optimal values; otherwise go to the next step.
Step 8. If x_{2}^{3} is greater than that computed in the preceding iteration, then one half of the original $\Delta \theta_{i}^{n}$ is used; otherwise the original $\Delta \theta_{i}^{n}$ is used.

Step 9. The new set of decision variables $\left(\theta_{i}^{n}\right)_{\text {new }}$ is obtained by

$$
\begin{equation*}
\left(\theta_{i}^{n}\right)_{\text {new }}=\left(\theta_{i}^{n}\right)_{o l d} \pm \Delta \theta_{i}^{n} \tag{103}
\end{equation*}
$$

When

$$
\frac{\partial H^{n}}{\partial \theta_{i}^{n}}>0 \quad \text { use }(-) \text { sign }
$$

When

$$
\frac{\partial H^{n}}{\partial \theta_{i}^{n}}<0 \quad \text { use (+) sign }
$$

Then go to step 2 and repeat the computation until the optimum is obtained.

(f) Computer Flow Chart

The numerical values of the various constants involved in the performance equations are summarized in Table 1. These values are
taken from references (10) and (12). A computer flow chart based on the procedure we have described in part (e) is given Fig. 7.

Table 1. Numerical Values for the Constants
Symbols
Explanation
Numerical values
a or I_{s} Steam temperature $274.4^{\circ} \mathrm{F}$
B Coefficient of the Clausieus-Clapeyron equation
c_{c}
C_{F}
Unit cost of cooling water
Concentration of sea water feed
$c_{h t}$
Unit cost of brine heater
$1.79 \times 10^{9} 1 b_{f} / f t^{2}$
C Unit cost of cooling water
$4.4875 \times 10^{-7} \$ / 1 b$
0.035 wt. fraction
$3.76 \times 10^{-5} \$ / \mathrm{ft}^{2}$
$1.0 \mathrm{Btu} / 1 \mathrm{~b}^{\circ} \mathrm{F}$
C_{S}
C_{cd}
Unit cost of condensing area
$2.5 \times 10^{-4} \$ / 1 b$
$2.397 \times 10^{-5} \$ / f t^{2}$
C_{pp}
Pc
N^{n}

U
λ
λ_{s}

R
Ideal gas constant
$0.1104 \mathrm{Btu} / 1 \mathrm{~b} .^{\circ} \mathrm{F}$
Density of brine
Temperature of brine entering the first effect
$2.903 \times 10^{-9} \$ / f t-1 b$
$1.1795 \times 10^{-6} \$ / 1 b$
No. of stages in n-th effect
Overall heat transfer coefficient
$23,23,22$
$510 \mathrm{Btu} / \mathrm{hr} \cdot \mathrm{ft}^{2^{\circ}} \mathrm{F}$
$1000 \mathrm{Btu} / 2 \mathrm{~b}$
Latent heat of stean at $274.4^{\circ} \mathrm{F}$ and 45 psia
$62.51 \mathrm{~b} / 4 \mathrm{t}^{3}$
$250^{\circ} \mathrm{F}$
taken from references (10) and (12). A computer flow chart based on the procedure we have described in part (e) is given Fig. 7.

Table 1. Numerical Values for the Constants
Symbols
Explanation
Numerical values
a or I_{s} Steam temperature $274.4^{\circ} \mathrm{F}$
B Coefficient of the Clausieus-Clapeyron equation
c_{c}
C_{F}
Unit cost of cooling water
Concentration of sea water feed
$c_{h t}$
Unit cost of brine heater
$1.79 \times 10^{9} 1 b_{f} / f t^{2}$
C Unit cost of cooling water
$4.4875 \times 10^{-7} \$ / 1 b$
0.035 wt. fraction
$3.76 \times 10^{-5} \$ / \mathrm{ft}^{2}$
$1.0 \mathrm{Btu} / 1 \mathrm{~b}^{\circ} \mathrm{F}$
C_{S}
C_{cd}
Unit cost of condensing area
$2.5 \times 10^{-4} \$ / 1 b$
$2.397 \times 10^{-5} \$ / f t^{2}$
C_{pp}
Pc
N^{n}

U
λ
λ_{s}

R
Ideal gas constant
$0.1104 \mathrm{Btu} / 1 \mathrm{~b} .^{\circ} \mathrm{F}$
Density of brine
Temperature of brine entering the first effect
$2.903 \times 10^{-9} \$ / f t-1 b$
$1.1795 \times 10^{-6} \$ / 1 b$
No. of stages in n-th effect
Overall heat transfer coefficient
$23,23,22$
$510 \mathrm{Btu} / \mathrm{hr} \cdot \mathrm{ft}^{2^{\circ}} \mathrm{F}$
$1000 \mathrm{Btu} / 2 \mathrm{~b}$
Latent heat of stean at $274.4^{\circ} \mathrm{F}$ and 45 psia
$62.51 \mathrm{~b} / 4 \mathrm{t}^{3}$
$250^{\circ} \mathrm{F}$

5-3. Parametric Search for Overall Optimum
A set of grid points of x_{1}^{3} and q_{s} / F is shown in Table 2 . For each grid point the scheme we have described in the last section was used to seek the optimum. Since corresponding to a given x_{1}^{3} we have a set of $\mathrm{q}_{\mathrm{s}} / F$, we can use a graphical method to find an overall optimum for a given x_{1}^{3}. These data are given in Table 3 and the corresponding figures are shown in Figs. 8 through 15. The optimal policies for each x_{1}^{3} are plotted in Fig. 16, from which the optimal condition of the whole system was obtained.

In Table 3 , for given x_{1}^{3} and q_{s} / F, the optimal values of r_{n} and $\left(T_{f}\right)_{n}$, and the water cost, C, are tabulated. For example, for $x_{1}^{3}=0.05$ and $q_{S} / F=16$, the optimal policy is

$$
\begin{aligned}
& r_{1}=0.99 \quad r_{2}=1.30 \quad r_{3}=1.72 \\
& \left(T_{f}\right)_{1}=198^{\circ} \mathrm{F} \quad\left(T_{f}\right)_{2}=151^{\circ} \mathrm{F} \quad\left(T_{f}\right)_{3}=102^{\circ} \mathrm{F} \\
& C=0.2907 \$ / 1000 \mathrm{gaI} .
\end{aligned}
$$

In Figs. 8 through 15, these optimal policies are plotted against q_{s} / E for a fixed x_{1}^{3}.

From Fig. 16, the overall minimum water production cost is found to be $0.2855 \$ / 1000 \mathrm{gal}$., when the system is operated under the following conditions:
salt concentration of the flashing brine leaving the third effect,
the ratio of heat load to seawater feed
recycle ratio in the first effect,
recycle ratio in the second effect

$$
\begin{aligned}
& x_{1}^{3}=0.065 \\
& o_{S} / F=27 \\
& r_{1}=2.14 \\
& r_{2}=2.88 \\
& r_{3}=3.86
\end{aligned}
$$

5-3. Parametric Search for Overall Optimum
A set of grid points of x_{1}^{3} and q_{s} / F is shown in Table 2 . For each grid point the scheme we have described in the last section was used to seek the optimum. Since corresponding to a given x_{1}^{3} we have a set of $\mathrm{q}_{\mathrm{s}} / F$, we can use a graphical method to find an overall optimum for a given x_{1}^{3}. These data are given in Table 3 and the corresponding figures are shown in Figs. 8 through 15. The optimal policies for each x_{1}^{3} are plotted in Fig. 16, from which the optimal condition of the whole system was obtained.

In Table 3 , for given x_{1}^{3} and q_{s} / F, the optimal values of r_{n} and $\left(T_{f}\right)_{n}$, and the water cost, C, are tabulated. For example, for $x_{1}^{3}=0.05$ and $q_{S} / F=16$, the optimal policy is

$$
\begin{aligned}
& r_{1}=0.99 \quad r_{2}=1.30 \quad r_{3}=1.72 \\
& \left(T_{f}\right)_{1}=198^{\circ} \mathrm{F} \quad\left(T_{f}\right)_{2}=151^{\circ} \mathrm{F} \quad\left(T_{f}\right)_{3}=102^{\circ} \mathrm{F} \\
& C=0.2907 \$ / 1000 \mathrm{gaI} .
\end{aligned}
$$

In Figs. 8 through 15, these optimal policies are plotted against q_{s} / E for a fixed x_{1}^{3}.

From Fig. 16, the overall minimum water production cost is found to be $0.2855 \$ / 1000 \mathrm{gal}$., when the system is operated under the following conditions:
salt concentration of the flashing brine leaving the third effect,
the ratio of heat load to seawater feed
recycle ratio in the first effect,
recycle ratio in the second effect

$$
\begin{aligned}
& x_{1}^{3}=0.065 \\
& o_{S} / F=27 \\
& r_{1}=2.14 \\
& r_{2}=2.88 \\
& r_{3}=3.86
\end{aligned}
$$

Table 2: Grid Points for Parametric Scarch

$\mathrm{C}_{\mathrm{s} / \mathrm{F}} \mathrm{x}^{3}$. 0.05	0.06	0.07	- 0.08	0.09	0.20	0.12	0.22
14	X			.	.			
16	X							
17.	X							
18	X							
20°	X	x						
23		X						
24		X	-					
25		X	x					
28			X	x				
29			$\mathrm{X}^{\text {- }}$					
30		X	x^{\prime}		x			
32			X	x				
33				X				
34				X	:	x		
35			x	X	X		X	
- 36					X			
37					x			x
38				X.	x ;	X		
39						x		
40.						x	x	
41						X	x	
42							x	
43							X	\because
4.			,		.			x
45					X	X		\therefore
46								x
48							x	
50								X

Table 2: Grid Points for Parametric Scarch

$\mathrm{C}_{\mathrm{s} / \mathrm{F}} \mathrm{x}^{3}$. 0.05	0.06	0.07	- 0.08	0.09	0.20	0.12	0.22
14	X			.	.			
16	X							
17.	X							
18	X							
20°	X	x						
23		X						
24		X	-					
25		X	x					
28			X	x				
29			$\mathrm{X}^{\text {- }}$					
30		X	x^{\prime}		x			
32			X	x				
33				X				
34				X	:	x		
35			x	X	X		X	
- 36					X			
37					x			x
38				X.	x ;	X		
39						x		
40.						x	x	
41						X	x	
42							x	
43							X	\because
4.			,		.			x
45					X	X		\therefore
46								x
48							x	
50								X

FabIc 3（continucd）

	0.11	0.22
35	$\begin{aligned} & 5=3.30,2=5.59 .3=1.93 \\ & (7,)_{2}=257,(5,)_{2}=237,(4)_{3}=90 \\ & c=0.3055 \$ 11000 \mathrm{Ea1} . \end{aligned}$	
37		
40	$\begin{aligned} & \mathrm{r}=3.05, \mathrm{r}_{2}=5.75,5_{3}=8.34 \\ & \left(\mathrm{~S}_{3}\right)_{2}=287,\left(\mathrm{~m}_{2}\right)_{2}=138,\left(\mathrm{~N}_{2}\right)_{3}=102 \\ & \mathrm{c}=0.2942 \mathrm{~B} / 2000 \mathrm{ean} . \end{aligned}$	
41		
42		
43	$\begin{aligned} & r_{1}=3.80, r_{2}=5.82,=3.59 \\ & \left(\mathrm{~m}_{2}=288,(\mathrm{r}-)_{2}=138,(\mathrm{~m})_{3}=104\right. \\ & c=0.2931 \$ / 2000 \mathrm{ga1} . \end{aligned}$	
44		
45		
$\therefore 6$		
42		
50	，	

FabIc 3（continucd）

	0.11	0.22
35	$\begin{aligned} & 5=3.30,2=5.59 .3=1.93 \\ & (7,)_{2}=257,(5,)_{2}=237,(4)_{3}=90 \\ & c=0.3055 \$ 11000 \mathrm{Ea1} . \end{aligned}$	
37		
40	$\begin{aligned} & \mathrm{r}=3.05, \mathrm{r}_{2}=5.75,5_{3}=8.34 \\ & \left(\mathrm{~S}_{3}\right)_{2}=287,\left(\mathrm{~m}_{2}\right)_{2}=138,\left(\mathrm{~N}_{2}\right)_{3}=102 \\ & \mathrm{c}=0.2942 \mathrm{~B} / 2000 \mathrm{ean} . \end{aligned}$	
41		
42		
43	$\begin{aligned} & r_{1}=3.80, r_{2}=5.82,=3.59 \\ & \left(\mathrm{~m}_{2}=288,(\mathrm{r}-)_{2}=138,(\mathrm{~m})_{3}=104\right. \\ & c=0.2931 \$ / 2000 \mathrm{ga1} . \end{aligned}$	
44		
45		
$\therefore 6$		
42		
50	，	

$x_{1}^{3}=0.05$

sub. opilmizotion
$x_{1}^{3}=0.05$

sub. opilmizotion

$-$
$x_{1}^{3}=0.06$

$-$
$x_{1}^{3}=0.06$

$x_{1}^{3}=0.09$

$x_{1}^{3}=0.09$

for sub-optinizalion

for sub-optinizalion
$x_{i}=0.11$
(
$x_{i}=0.11$
(
$x_{1}^{3}=0.12$.

$x_{1}^{3}=0.12$.

0.12
$=\begin{gathered}\overline{0} \\ = \\ =0\end{gathered}$

-8
$\underset{0}{0}$
oone o.sii
14 (2)11)
200
-8
$00!5$
coci,
Fig. 16. Ho

0.12
$=\begin{gathered}\overline{0} \\ = \\ =0\end{gathered}$

-8
$\underset{0}{0}$
oone o.sii
14 (2)11)
200
-8
$00!5$
coci,
Fig. 16. Ho

temperature of the flashing brine leaving the first effect,

$$
\left(T_{f}\right)_{1}=196^{\circ} \mathrm{F},
$$

temperature of the flashing brine leaving the second effect,

$$
\left(T_{f}\right)_{2}=148^{\circ} \mathrm{F},
$$

temperature of the flashing brine leaving the third effect,

$$
\left(I_{f}\right)_{3}=103^{\circ} \mathrm{F} .
$$

5-4. Overall Optimum by the Simplex Method
It has been shown that the discrete version of the maximum principle can be applied to find the optimal condition for a sub-optimization problem with a set of given values for x_{1}^{3} and q_{s} / F. If a multidimensional search technique is combined with the sub-optimization procedure using the maximum principle to minimize the objective function depending on the two variables, x_{1}^{3} and q_{s} / F, which are fixed in each sub-optimization step, the overall optimal policy of the system can be obtained in a straight-forward manner by using one complete computer program.

A number of multi-dimensional search techniques are available, such as Powell's method (13), Box's method (16), Smith's method (15), etc. Powells method is known to be an efficient method for finding the minimum of an objective function or simply a function without calculating its derivatives. However, Nelder and Mead (14) have recently developed the so-called "simplex method" which is reported to perform more efficiently than Powell's method. It is said that, for two-dimensional search problems, the efficiency of the simplex method far exceeds that of Powell's method. The simplex method was used in this study.

The general concept of this method for the minimization of a function of n variables is to set up a simplex of $(n+1)$ vertices, that is, to select $(n+1)$
temperature of the flashing brine leaving the first effect,

$$
\left(T_{f}\right)_{1}=196^{\circ} \mathrm{F},
$$

temperature of the flashing brine leaving the second effect,

$$
\left(T_{f}\right)_{2}=148^{\circ} \mathrm{F},
$$

temperature of the flashing brine leaving the third effect,

$$
\left(I_{f}\right)_{3}=103^{\circ} \mathrm{F} .
$$

5-4. Overall Optimum by the Simplex Method
It has been shown that the discrete version of the maximum principle can be applied to find the optimal condition for a sub-optimization problem with a set of given values for x_{1}^{3} and q_{s} / F. If a multidimensional search technique is combined with the sub-optimization procedure using the maximum principle to minimize the objective function depending on the two variables, x_{1}^{3} and q_{s} / F, which are fixed in each sub-optimization step, the overall optimal policy of the system can be obtained in a straight-forward manner by using one complete computer program.

A number of multi-dimensional search techniques are available, such as Powell's method (13), Box's method (16), Smith's method (15), etc. Powells method is known to be an efficient method for finding the minimum of an objective function or simply a function without calculating its derivatives. However, Nelder and Mead (14) have recently developed the so-called "simplex method" which is reported to perform more efficiently than Powell's method. It is said that, for two-dimensional search problems, the efficiency of the simplex method far exceeds that of Powell's method. The simplex method was used in this study.

The general concept of this method for the minimization of a function of n variables is to set up a simplex of $(n+1)$ vertices, that is, to select $(n+1)$
points in the spacc of in variables and calculate values of the function at the selectcd points. Then, by comparing thc calculatcd vilues of the function among themsclves, the vartex with the highcst value (i.c. the worst point in minimization) is replaced by another point with a lower value of the function, Which is determined according to certain operations to be described later. The simplex method forces the function to approach the minimum by, at eacio stage of operation, discarding the worst point of a simplex and aciapting a : better point to form a new simplex. This procedure is repeated until the minimum point is achieved.

For the problem in hand, the simplex can be represented by a triangle as shown in Fig. 17. P_{2}, P_{2}, and P_{3} are the points in the two dimensional space of x_{1}^{3} and q_{s} / F, which define the current "simplez." We define
$y_{\text {II }}=$ the value of the objective Eunction or the water cost x_{2}^{3} at the point, P_{n},
$P_{1}=$ the vertex with the lowes: value of the objective funcrion (y_{2}) in the simplex,
$\mathbf{P}_{3}=$ the vertex with the highest value of the objective zurctoo.. (y_{3}) in the simplex,
$P_{2}=$ the vcrtex at which the corresponoing value of the objective function $\left(y_{2}\right)$ lies berween $\left(y_{1}\right)$ and $\left(y_{3}\right)$,
$P_{4}=$ the centroid of the verrices, P_{1} and P_{2}, with the value of ti.e objective function $\left(y_{4}\right)$.

Whe operations, through which a new point witi a lower value oz zine objective function is found, are reミlection, expansion and contraction. Thie reflection of the worst point, P_{3}, with respect to centroid, ? ${ }_{4}$, is deno=ed by ${ }_{5}$ and its co-ordinates are defined by the rclation
points in the spacc of in variables and calculate values of the function at the selectcd points. Then, by comparing thc calculatcd vilues of the function among themsclves, the vartex with the highcst value (i.c. the worst point in minimization) is replaced by another point with a lower value of the function, Which is determined according to certain operations to be described later. The simplex method forces the function to approach the minimum by, at eacio stage of operation, discarding the worst point of a simplex and aciapting a : better point to form a new simplex. This procedure is repeated until the minimum point is achieved.

For the problem in hand, the simplex can be represented by a triangle as shown in Fig. 17. P_{2}, P_{2}, and P_{3} are the points in the two dimensional space of x_{1}^{3} and q_{s} / F, which define the current "simplez." We define
$y_{\text {II }}=$ the value of the objective Eunction or the water cost x_{2}^{3} at the point, P_{n},
$P_{1}=$ the vertex with the lowes: value of the objective funcrion (y_{2}) in the simplex,
$\mathbf{P}_{3}=$ the vertex with the highest value of the objective zurctoo.. (y_{3}) in the simplex,
$P_{2}=$ the vcrtex at which the corresponoing value of the objective function $\left(y_{2}\right)$ lies berween $\left(y_{1}\right)$ and $\left(y_{3}\right)$,
$P_{4}=$ the centroid of the verrices, P_{1} and P_{2}, with the value of ti.e objective function $\left(y_{4}\right)$.

Whe operations, through which a new point witi a lower value oz zine objective function is found, are reミlection, expansion and contraction. Thie reflection of the worst point, P_{3}, with respect to centroid, ? ${ }_{4}$, is deno=ed by ${ }_{5}$ and its co-ordinates are defined by the rclation

$$
\begin{equation*}
P_{5}=P_{4}+a^{\prime}\left(P_{4}-P_{3}\right) \tag{104}
\end{equation*}
$$

where a^{\prime} is a positive constant, the reflection coeffictent. Tinus P_{5} is on the line joining P_{3} and P_{4}, on the far side of P_{4} from P_{3} with $\overline{F_{5} P_{4}}=\sqrt{\prime} \overline{3_{3} P_{4}}$.

The reflected point P_{5} may be expanded to P_{6} by the relation

$$
\begin{equation*}
P_{6}=P_{4}+\gamma^{\prime}\left(P_{5}-P_{4}\right) \tag{105}
\end{equation*}
$$

The expansion coefficient γ^{\prime}, which is greater than unity, is the ratio of the distance $\overline{\mathrm{P}_{6} \mathrm{P}_{4}}$ to $\overline{\mathrm{P}_{5} \mathrm{P}_{4}}$.

The contraction of the worst point, P_{3}, with respect to the centroit, P_{4}, is represented by P_{6}^{\prime} and defined by the relation

$$
\begin{equation*}
P_{6}^{\prime}=P_{4}+\beta^{\prime}\left(P_{3}-P_{4}\right) \tag{206}
\end{equation*}
$$

where β^{\prime} is a positive number between 0 and 1 and is the ratio of the distance $\overline{P_{6}^{1 P}}$ to $\overline{P_{3} P_{4}}$. The values of these coefficients considered best by Neleer anc Mead (14) are

$$
\alpha^{\prime}=1, \quad \beta^{\prime}=\frac{1}{2}, \quad \text { and } \quad \gamma^{\prime}=2 .
$$

The details of the procedure for using the method are described as follows:
First, P_{3} is reflected to P_{5}, and in y_{5} lies between y_{1} and y_{3}, \ddagger.an P_{3} is replaced by P_{5} and we start the procedure again with a new simpiex.

If $y_{5}<y_{1}$, that is, if the reflection has produced a now minimum, then we expand P_{5} to P_{6}. If $y_{6}<y_{1}$, we replace P_{3} by P_{6} and restart the process. Rut if $y_{6}>y_{1}$, then we have a failed expansion, and we replace P_{3} by $?_{5}$ before restarting.

$$
\begin{equation*}
P_{5}=P_{4}+a^{\prime}\left(P_{4}-P_{3}\right) \tag{104}
\end{equation*}
$$

where a^{\prime} is a positive constant, the reflection coeffictent. Tinus P_{5} is on the line joining P_{3} and P_{4}, on the far side of P_{4} from P_{3} with $\overline{F_{5} P_{4}}=\sqrt{\prime} \overline{3_{3} P_{4}}$.

The reflected point P_{5} may be expanded to P_{6} by the relation

$$
\begin{equation*}
P_{6}=P_{4}+\gamma^{\prime}\left(P_{5}-P_{4}\right) \tag{105}
\end{equation*}
$$

The expansion coefficient γ^{\prime}, which is greater than unity, is the ratio of the distance $\overline{\mathrm{P}_{6} \mathrm{P}_{4}}$ to $\overline{\mathrm{P}_{5} \mathrm{P}_{4}}$.

The contraction of the worst point, P_{3}, with respect to the centroit, P_{4}, is represented by P_{6}^{\prime} and defined by the relation

$$
\begin{equation*}
P_{6}^{\prime}=P_{4}+\beta^{\prime}\left(P_{3}-P_{4}\right) \tag{206}
\end{equation*}
$$

where β^{\prime} is a positive number between 0 and 1 and is the ratio of the distance $\overline{P_{6}^{1 P}}$ to $\overline{P_{3} P_{4}}$. The values of these coefficients considered best by Neleer anc Mead (14) are

$$
\alpha^{\prime}=1, \quad \beta^{\prime}=\frac{1}{2}, \quad \text { and } \quad \gamma^{\prime}=2 .
$$

The details of the procedure for using the method are described as follows:
First, P_{3} is reflected to P_{5}, and in y_{5} lies between y_{1} and y_{3}, \ddagger.an P_{3} is replaced by P_{5} and we start the procedure again with a new simpiex.

If $y_{5}<y_{1}$, that is, if the reflection has produced a now minimum, then we expand P_{5} to P_{6}. If $y_{6}<y_{1}$, we replace P_{3} by P_{6} and restart the process. Rut if $y_{6}>y_{1}$, then we have a failed expansion, and we replace P_{3} by $?_{5}$ before restarting.

If, after reflection, we find that $y_{5}>y_{1}$ and $y_{5}>y_{2}$, then we define a new P_{3} to be either the old P_{3} or P_{5}, depending on whichever has the lower y_{n} value, and then contract P_{3} to P_{6}^{\prime}. We then accept P_{6}^{\prime} for P_{3} and restart the procedure, unless $y_{6}^{\prime}>y_{3}$, that is, the contracted point is worse than P_{3}. For such a failed contraction, we replace P_{2} and P_{3} by $\frac{\left(P_{2}+P_{1}\right)}{2}$ and $\frac{\left(P_{3}+P_{1}\right)}{2}$ respectively and restart the process.

A flow diagram of the method is given in Fig. 18, and a complete computer program for the simplex method together with the sub-optimization program by means of the discrete form of the maximum principle is given in Table A3 of the Appendix.

The optimal water production cost obtained by using this method is $\$ 0.2855 / 1000 \mathrm{gal}$. and the corresponding optimal operating conditions are as follows:
salt concentration of the flashing brine
leaving the third effect,
the ratio of heat load to seawater feed recycle ratio in the first effect, recycle ratio in the second effect recycle ratio in the thirc effect temperature of the flashing brine leaving the first effect,
temperature of the flashing brine leaving
the second effect,
temperature of the flashing brine leaving the third effect,

The same procedures used here for the two dimensional search can be extenced to the n-dimensional problem (14). The worst point of a simplex with ($n+1$)

If, after reflection, we find that $y_{5}>y_{1}$ and $y_{5}>y_{2}$, then we define a new P_{3} to be either the old P_{3} or P_{5}, depending on whichever has the lower y_{n} value, and then contract P_{3} to P_{6}^{\prime}. We then accept P_{6}^{\prime} for P_{3} and restart the procedure, unless $y_{6}^{\prime}>y_{3}$, that is, the contracted point is worse than P_{3}. For such a failed contraction, we replace P_{2} and P_{3} by $\frac{\left(P_{2}+P_{1}\right)}{2}$ and $\frac{\left(P_{3}+P_{1}\right)}{2}$ respectively and restart the process.

A flow diagram of the method is given in Fig. 18, and a complete computer program for the simplex method together with the sub-optimization program by means of the discrete form of the maximum principle is given in Table A3 of the Appendix.

The optimal water production cost obtained by using this method is $\$ 0.2855 / 1000 \mathrm{gal}$. and the corresponding optimal operating conditions are as follows:
salt concentration of the flashing brine
leaving the third effect,
the ratio of heat load to seawater feed recycle ratio in the first effect, recycle ratio in the second effect recycle ratio in the thirc effect temperature of the flashing brine leaving the first effect,
temperature of the flashing brine leaving
the second effect,
temperature of the flashing brine leaving the third effect,

The same procedures used here for the two dimensional search can be extenced to the n-dimensional problem (14). The worst point of a simplex with ($n+1$)
(20:
(20:
vertices is reflected, expanded or contracted in the same manner with respect to the centroid of the remaining n vertices until the minimum point is attained.

5-5. Comparison of Results from the U'se of the Two Search Iechnicues
The optimal policies from the two search techniques are tabulated ta Table 4. Both in the sub-optimization stage and in the search stage, a criterior. is adoped to test if the minimum point of the objective function is atcanee and no further iteration is needed. Theoretically when the objective Eunctions attain their minimum points, it is necessary that the velues of the derivetives of the corresponding Hamiltonian functions, $\frac{\partial H}{\partial \theta}$, in the sub-opti-ization step and the "standard error" defined by

$$
\sqrt{\sum_{i=1}^{3}\left(y_{i}-y_{4}\right)^{2} / 3}
$$

where $y_{i}, i=1,2,3$, and y_{4} ara the values of the objective finetion at the vertices and centroid of the simplex respectively, in the search step are bots equal to zero. In the actual calculation, these values are compared to some pre-set values or, criteria and the iteration stops. when they falr beiow such criteria. In the computer code developed, the criterion for $\frac{\partial H}{\partial \hat{j}}$ is desisnazed by ER and that for the "standard error" by ERROR.

The numerical results in column (a) of Table 4 from the parametric searin are obtained by setting $E R=1 \times 10^{-4}$; in column (b) from the simplex metiou by setting $\mathrm{ER}=1 \times 10^{-4}$ and $\mathrm{ERRO}=\mathrm{I}^{-} \times 10^{-4}$; in colum (c) from the simplex method by setting $E R=0.5 \times 10^{-4}$ and $\operatorname{ERT} 0 R=0.5 \times 10^{-4}$.

From the closeness of the numerical values of the various ope:ation variables between columns (a) and (b), it can be concluded that the parametrie search and the simplex method both lead to the same optimum point in the same criterion is used. However, for the parametric search, tedinous exhausive numerical andor graphical search procedures must be carriad out. But by usting
vertices is reflected, expanded or contracted in the same manner with respect to the centroid of the remaining n vertices until the minimum point is attained.

5-5. Comparison of Results from the U'se of the Two Search Iechnicues
The optimal policies from the two search techniques are tabulated ta Table 4. Both in the sub-optimization stage and in the search stage, a criterior. is adoped to test if the minimum point of the objective function is atcanee and no further iteration is needed. Theoretically when the objective Eunctions attain their minimum points, it is necessary that the velues of the derivetives of the corresponding Hamiltonian functions, $\frac{\partial H}{\partial \theta}$, in the sub-opti-ization step and the "standard error" defined by

$$
\sqrt{\sum_{i=1}^{3}\left(y_{i}-y_{4}\right)^{2} / 3}
$$

where $y_{i}, i=1,2,3$, and y_{4} ara the values of the objective finetion at the vertices and centroid of the simplex respectively, in the search step are bots equal to zero. In the actual calculation, these values are compared to some pre-set values or, criteria and the iteration stops. when they falr beiow such criteria. In the computer code developed, the criterion for $\frac{\partial H}{\partial \hat{j}}$ is desisnazed by ER and that for the "standard error" by ERROR.

The numerical results in column (a) of Table 4 from the parametric searin are obtained by setting $E R=1 \times 10^{-4}$; in column (b) from the simplex metiou by setting $\mathrm{ER}=1 \times 10^{-4}$ and $\mathrm{ERRO}=\mathrm{I}^{-} \times 10^{-4}$; in colum (c) from the simplex method by setting $E R=0.5 \times 10^{-4}$ and $\operatorname{ERT} 0 R=0.5 \times 10^{-4}$.

From the closeness of the numerical values of the various ope:ation variables between columns (a) and (b), it can be concluded that the parametrie search and the simplex method both lead to the same optimum point in the same criterion is used. However, for the parametric search, tedinous exhausive numerical andor graphical search procedures must be carriad out. But by usting

Table 4. Optimal Policy, Operating Conditions, and Cost from the Two Search Techniques

I tem	Symbol	Unit	Parametric Search (a)	Simplex Method	
				(b)	(c)
Maximum allowable error	ER		1×10^{-4}	1×10^{-4}	0.5×10^{-4}
	ERROR		----	1×10^{-4}	0.5×10^{-4}
exit brine conc. of the 3rd effect	x_{1}^{3}	Wt.fxac.	0.065	0.065	0.06475
ratio of heat load to seawater feed	9 S $/ \mathrm{F}$	Btu/1b	27.0	27.0	26.64
recycle ratio in the 1st effect	r_{1}		2.14	2.139	2.125
recycle ratio in the 2nd effect	r_{2}		2.88	2.877	2.841
recycle ratio in the 3rd effect	r_{3}		3.86	3.861	3.819
exit brine temp. of the Ist effect	$\left(\mathrm{r}_{f}\right)_{1}$	${ }^{\circ} \mathrm{F}$	196.0	195.9	195.85
exit brine temp. of the and effect	$\left(\mathrm{T}_{\mathrm{f}}\right)_{2}$	${ }^{\circ} \mathrm{F}$	148.0	147.7	147.72
exit brine temp. of the 3 rd effect	$\left(T_{f}\right)_{3}$	${ }^{\circ} \mathrm{F}$	103.0	103.0	103.0
water production cost	$\begin{array}{r} 3 \\ x_{2} \\ \hline \end{array}$	$\begin{aligned} & \$ / 1000 \\ & \text { gal. } \\ & \hline \end{aligned}$	0.2855	0.2855	0.2855

Table 4. Optimal Policy, Operating Conditions, and Cost from the Two Search Techniques

I tem	Symbol	Unit	Parametric Search (a)	Simplex Method	
				(b)	(c)
Maximum allowable error	ER		1×10^{-4}	1×10^{-4}	0.5×10^{-4}
	ERROR		----	1×10^{-4}	0.5×10^{-4}
exit brine conc. of the 3rd effect	x_{1}^{3}	Wt.fxac.	0.065	0.065	0.06475
ratio of heat load to seawater feed	9 S $/ \mathrm{F}$	Btu/1b	27.0	27.0	26.64
recycle ratio in the 1st effect	r_{1}		2.14	2.139	2.125
recycle ratio in the 2nd effect	r_{2}		2.88	2.877	2.841
recycle ratio in the 3rd effect	r_{3}		3.86	3.861	3.819
exit brine temp. of the Ist effect	$\left(\mathrm{r}_{f}\right)_{1}$	${ }^{\circ} \mathrm{F}$	196.0	195.9	195.85
exit brine temp. of the and effect	$\left(\mathrm{T}_{\mathrm{f}}\right)_{2}$	${ }^{\circ} \mathrm{F}$	148.0	147.7	147.72
exit brine temp. of the 3 rd effect	$\left(T_{f}\right)_{3}$	${ }^{\circ} \mathrm{F}$	103.0	103.0	103.0
water production cost	$\begin{array}{r} 3 \\ x_{2} \\ \hline \end{array}$	$\begin{aligned} & \$ / 1000 \\ & \text { gal. } \\ & \hline \end{aligned}$	0.2855	0.2855	0.2855

the simplex method, the same results are obtained in a straight forward mancr without employing such tedious procedures. For example, if criteria for stopping the iteration are changed from one set of valuecto another, the only thing that should be done for the simplex method is just to change the inptt data for the criteria to the corresponding new value. In contras= to this, the parametric search requires rather laborofis procecures, such as tire preparation of a new set of nine figures similar to Figs. 8 throurg 16 .

However, the great advantage of the parametric search İes orn tie Eac= that it gives insight into the MEMS system and gives detailed informa=ion aiout the influences of the variables unce: search; namely x_{1}^{3} and q_{s} / \equiv, or the water production cost and the other optimal policies. From Figs. 8 through 25, 士t is seen that both the values of the recycle ratio r_{n} and the brine femperature ($\left.T_{i}\right)_{n}$ vary linearly and slightly with the value of q_{S} / F. But the waEer production cost changes considerably with the value of cis. From Fig. 16, it is seen again that the values of $\left(T_{f}\right)_{n}$ are nezrly constanif however, they vary slightly and linearly with the value of x_{2}^{3}. On the other hand, tine optimal recycle ratio r_{n} and the optimal ratio of the heat load to seawaこez yeed $\mathrm{c}_{\mathrm{s}} / \mathrm{F}$ and the water production cost vary greatly with the value of x_{1}^{3}.

The resules can then be summarized as follows:
(1) The optimum temperature of the flashing brine leaving each aEfect, ("a), varies only slightly with the values of c_{s} / F anc x_{1}^{3}.
(2) The optimal recycle ratio in each effect, r, depends on x_{1}^{3} buv vawies only slightly with q_{s} / F.
(3) The optimal ratio of the heat load to seawater Eeed, q_{s} / F, varies sigaificantly with x_{1}^{3}.
(4) The water production cost varies greatly with the values of x_{2}^{3} and $\varsigma_{s} /$.
the simplex method, the same results are obtained in a straight forward mancr without employing such tedious procedures. For example, if criteria for stopping the iteration are changed from one set of valuecto another, the only thing that should be done for the simplex method is just to change the inptt data for the criteria to the corresponding new value. In contras= to this, the parametric search requires rather laborofis procecures, such as tire preparation of a new set of nine figures similar to Figs. 8 throurg 16 .

However, the great advantage of the parametric search İes orn tie Eac= that it gives insight into the MEMS system and gives detailed informa=ion aiout the influences of the variables unce: search; namely x_{1}^{3} and q_{s} / \equiv, or the water production cost and the other optimal policies. From Figs. 8 through 25, 士t is seen that both the values of the recycle ratio r_{n} and the brine femperature ($\left.T_{i}\right)_{n}$ vary linearly and slightly with the value of q_{S} / F. But the waEer production cost changes considerably with the value of cis. From Fig. 16, it is seen again that the values of $\left(T_{f}\right)_{n}$ are nezrly constanif however, they vary slightly and linearly with the value of x_{2}^{3}. On the other hand, tine optimal recycle ratio r_{n} and the optimal ratio of the heat load to seawaこez yeed $\mathrm{c}_{\mathrm{s}} / \mathrm{F}$ and the water production cost vary greatly with the value of x_{1}^{3}.

The resules can then be summarized as follows:
(1) The optimum temperature of the flashing brine leaving each aEfect, ("a), varies only slightly with the values of c_{s} / F anc x_{1}^{3}.
(2) The optimal recycle ratio in each effect, r, depends on x_{1}^{3} buv vawies only slightly with q_{s} / F.
(3) The optimal ratio of the heat load to seawater Eeed, q_{s} / F, varies sigaificantly with x_{1}^{3}.
(4) The water production cost varies greatly with the values of x_{2}^{3} and $\varsigma_{s} /$.

In this study a detailed analysis of a MEMS process has been made and quantitative solutions between the operating variables have been obtained. The operating variables of the system are the heat input to the brine heater, the recycle ratio in each effect, the brine concentration and temperature leaving each effect, and the number of stages in each effect.

A mathematical model of the MEMS system containing these operating variables have been developed. The quantitative relations of the model, which contain the operating variables, are used to set up cost equations which relate the performance of the system to the unit cost of product water. These equations are then employed in the optimization study by means of the discrete maximum principle. The parametric search techniques and simplex method are used in conjunction with the maximum principle to find the overall optimal condition.

While the simplex method gives rise directly to the optimum point, the parametric search gives detailed information about the influences of the individual parameters on the water cost and the other operating variables. It is obvious from Fig. I6 that the brine temperature changes little as we change x_{1}^{3}. On the other hand the recycle ratio r_{n} and q_{S} / F do change considerably.

The overall optimal operating conditions are summarized in
Table 5, and the corresponding capital and operating costs, the various cost items, and their contributions to the overall fresh water cost on a percentage basis are given in Table 6.

In this study a detailed analysis of a MEMS process has been made and quantitative solutions between the operating variables have been obtained. The operating variables of the system are the heat input to the brine heater, the recycle ratio in each effect, the brine concentration and temperature leaving each effect, and the number of stages in each effect.

A mathematical model of the MEMS system containing these operating variables have been developed. The quantitative relations of the model, which contain the operating variables, are used to set up cost equations which relate the performance of the system to the unit cost of product water. These equations are then employed in the optimization study by means of the discrete maximum principle. The parametric search techniques and simplex method are used in conjunction with the maximum principle to find the overall optimal condition.

While the simplex method gives rise directly to the optimum point, the parametric search gives detailed information about the influences of the individual parameters on the water cost and the other operating variables. It is obvious from Fig. I6 that the brine temperature changes little as we change x_{1}^{3}. On the other hand the recycle ratio r_{n} and q_{S} / F do change considerably.

The overall optimal operating conditions are summarized in
Table 5, and the corresponding capital and operating costs, the various cost items, and their contributions to the overall fresh water cost on a percentage basis are given in Table 6.

Table 5. The Ovcrall Optimal Operating Conditions

Symbols
Itcms
Numerical values
(1) Concentrations $\left(C_{f}\right)_{n}$

C_{F}	concentration of sea water fced	0.035 wt. fraction
$\left(C_{f}\right)_{1}$,	brine conc. entering thc 1st cffect	0.0397 wt. fraction
$\left(c_{f}\right)_{1}$	brine conc. leaving thc lst effect	0.0419 wt. fraction
$\left(C_{f}\right)_{2}$	brine conc, entering thc 2nd effcct	0.0488 wt.
$\left(c_{f}\right)_{2}$	brinc conc. lcaving the 2nd cffcct	0.0512 wt. fraction
$\left(c_{f}\right)_{3}$	brine conc. cntering th	.0622 wt. fraction
$\left(\mathrm{C}_{1}\right)_{3}$	brine conc. leaving the 3rd effect	0.065 wt. fraction

(2) Temperature $\left(T_{f}\right)_{n}$

$\left(T_{f}\right)_{1}$	brine temp. leaving the 1 st effect	$196^{\circ} \mathrm{F}$
$\left(T_{f}\right)_{2}$	brinc temp. leaving the 2nd effect	$148^{\circ} \mathrm{F}$
$\left(T_{f}\right)_{3}$	brine temp. leaving the 3rd cffcct	$103^{\circ} \mathrm{F}$
$\left(T_{f}\right)_{0}$	brine tcmp. entering the $1 s t$ effect	$250^{\circ} \mathrm{F}$
$\left(T_{j}\right)_{3}$	sea water temperature	$85^{\circ} \mathrm{F}$

(3) Recycle Ratios r_{n}

r_{1}	recycle ratio in the 1 st effect	2.14
r_{2}	recycle ratio in the 2 nd effcct	2.88
r_{3}	recycle ratio in the $3 r d$ effect	3.86

Table 5. The Ovcrall Optimal Operating Conditions

Symbols
Itcms
Numerical values
(1) Concentrations $\left(C_{f}\right)_{n}$

C_{F}	concentration of sea water fced	0.035 wt. fraction
$\left(C_{f}\right)_{1}$,	brine conc. entering thc 1st cffect	0.0397 wt. fraction
$\left(c_{f}\right)_{1}$	brine conc. leaving thc lst effect	0.0419 wt. fraction
$\left(C_{f}\right)_{2}$	brine conc, entering thc 2nd effcct	0.0488 wt.
$\left(c_{f}\right)_{2}$	brinc conc. lcaving the 2nd cffcct	0.0512 wt. fraction
$\left(c_{f}\right)_{3}$	brine conc. cntering th	.0622 wt. fraction
$\left(\mathrm{C}_{1}\right)_{3}$	brine conc. leaving the 3rd effect	0.065 wt. fraction

(2) Temperature $\left(T_{f}\right)_{n}$

$\left(T_{f}\right)_{1}$	brine temp. leaving the 1 st effect	$196^{\circ} \mathrm{F}$
$\left(T_{f}\right)_{2}$	brinc temp. leaving the 2nd effect	$148^{\circ} \mathrm{F}$
$\left(T_{f}\right)_{3}$	brine temp. leaving the 3rd cffcct	$103^{\circ} \mathrm{F}$
$\left(T_{f}\right)_{0}$	brine tcmp. entering the $1 s t$ effect	$250^{\circ} \mathrm{F}$
$\left(T_{j}\right)_{3}$	sea water temperature	$85^{\circ} \mathrm{F}$

(3) Recycle Ratios r_{n}

r_{1}	recycle ratio in the 1 st effect	2.14
r_{2}	recycle ratio in the 2 nd effcct	2.88
r_{3}	recycle ratio in the $3 r d$ effect	3.86

Table 5. The Overall Optimal Operating Conditions (Continued)

Symbols
Items
Numerical Values
(4) Flow Rates of Various Streams*
F flow rate of sea water feed . $2170 \mathrm{gal} . / \mathrm{hr}$.
(L) $)_{1}$, brine stream entering the lst effect $6810 \mathrm{gal} / \mathrm{hr}$.
(L) $)_{1}$ brine stream leaving the lst effect $1810 \mathrm{gal} / \mathrm{hr}$.
R_{I} recycle flow rate in the $1 s t$ effect $4640 \mathrm{gal} / \mathrm{hr}$.
$(L)_{2}$, brine stream entering the 2nd effect $7025 \mathrm{gal} / \mathrm{hr}$.
(L) $)_{2}$ brine stream leaving the 2nd effect $1485 \mathrm{gal} / \mathrm{hr}$. R_{2} recycle flow rate in the 2nd effect $5215 \mathrm{gal} . / \mathrm{hr}$.
(L) 3^{\prime} brine stream entering the 3 rd effect $7210 \mathrm{gal} / \mathrm{hr}$. $(\mathrm{L})_{3}$ brine stream leaving the 3rd effect $1170 \mathrm{gal} . / \mathrm{hr}$. R_{3} recycle flow rate in the 3 rd effect $5725 \mathrm{gal} . / \mathrm{hr}$.
R_{4} cooling water flow rate $1220 \mathrm{gal} . / \mathrm{hr}$.
$W_{1} \quad$ water production in the $1 s t$ effect 360 gal./hr.
$W_{2} \quad$ water production in the 2nd effect 325 gal./hr.
W_{3} water production in the 3rd effect $315 \mathrm{gal} . / \mathrm{hr}$.
(5) Heat Loads in the Brine Heater*

q_{S}	heat load in the brine heater	$4.87 \times 10^{5} \mathrm{Btu} / \mathrm{hr}$.
$\mathrm{q}_{5} / \mathrm{F}$	ratio of q_{s} and F	27
$\mathrm{q}_{\mathrm{s}} / \lambda_{\mathrm{s}}$	steam consumption in the brine heater $524 \mathrm{lbs} / \mathrm{hr}$.	
$\Sigma \mathrm{W} /\left(\mathrm{q}_{5} / \lambda_{S}\right)$	lbs. of fresh water produced per	
	lb. of steam consumed	16

[^0]Table 5. The Overall Optimal Operating Conditions (Continued)

Symbols
Items
Numerical Values
(4) Flow Rates of Various Streams*
F flow rate of sea water feed . $2170 \mathrm{gal} . / \mathrm{hr}$.
(L) $)_{1}$, brine stream entering the lst effect $6810 \mathrm{gal} / \mathrm{hr}$.
(L) $)_{1}$ brine stream leaving the lst effect $1810 \mathrm{gal} / \mathrm{hr}$.
R_{I} recycle flow rate in the $1 s t$ effect $4640 \mathrm{gal} / \mathrm{hr}$.
$(L)_{2}$, brine stream entering the 2nd effect $7025 \mathrm{gal} / \mathrm{hr}$.
(L) $)_{2}$ brine stream leaving the 2nd effect $1485 \mathrm{gal} / \mathrm{hr}$. R_{2} recycle flow rate in the 2nd effect $5215 \mathrm{gal} . / \mathrm{hr}$.
(L) 3^{\prime} brine stream entering the 3 rd effect $7210 \mathrm{gal} / \mathrm{hr}$. $(\mathrm{L})_{3}$ brine stream leaving the 3rd effect $1170 \mathrm{gal} . / \mathrm{hr}$. R_{3} recycle flow rate in the 3 rd effect $5725 \mathrm{gal} . / \mathrm{hr}$.
R_{4} cooling water flow rate $1220 \mathrm{gal} . / \mathrm{hr}$.
$W_{1} \quad$ water production in the $1 s t$ effect 360 gal./hr.
$W_{2} \quad$ water production in the 2nd effect 325 gal./hr.
W_{3} water production in the 3rd effect $315 \mathrm{gal} . / \mathrm{hr}$.
(5) Heat Loads in the Brine Heater*

q_{S}	heat load in the brine heater	$4.87 \times 10^{5} \mathrm{Btu} / \mathrm{hr}$.
$\mathrm{q}_{5} / \mathrm{F}$	ratio of q_{s} and F	27
$\mathrm{q}_{\mathrm{s}} / \lambda_{\mathrm{s}}$	steam consumption in the brine heater $524 \mathrm{lbs} / \mathrm{hr}$.	
$\Sigma \mathrm{W} /\left(\mathrm{q}_{5} / \lambda_{S}\right)$	lbs. of fresh water produced per	
	lb. of steam consumed	16

[^1]Table 6. Capital and Operating Cost Allocation

Symbols	bols Items	cost (\$/1000 gal)	Percentage (\%)
(1)	Capital cost	0.10805	37.838
E_{2}	brine heater	0.00125	0.439
	heat transfer area	0.08470	29.661
ΣE_{5}^{n}	5 pump	0.00130	0.455
E_{6}	outshell	0.02080	7.283
(2)	Operating cost	0.17752	62.162
E_{1}	stearn	0.13131	45.979
E_{7}	feed brine	0.03247	11.370
$E_{8}$$\Sigma E_{4}^{n}$	cooling water	0.00568	1.991
	pumping power	0.00806	2.822
(3) Total water production cost		0.28557	100.000

Remarks:

I. Basis: 1000 gallon fresh water production per hour.
2. Feed brine cost: $\$ 0.015 / 1000 \mathrm{ga1}$. of sea water.
3. Cooling water cost: $\$ 0.005 / 1000 \mathrm{gal}$. of sea water.

Table 6. Capital and Operating Cost Allocation

Symbols	bols Items	cost (\$/1000 gal)	Percentage (\%)
(1)	Capital cost	0.10805	37.838
E_{2}	brine heater	0.00125	0.439
	heat transfer area	0.08470	29.661
ΣE_{5}^{n}	5 pump	0.00130	0.455
E_{6}	outshell	0.02080	7.283
(2)	Operating cost	0.17752	62.162
E_{1}	stearn	0.13131	45.979
E_{7}	feed brine	0.03247	11.370
$E_{8}$$\Sigma E_{4}^{n}$	cooling water	0.00568	1.991
	pumping power	0.00806	2.822
(3) Total water production cost		0.28557	100.000

Remarks:

I. Basis: 1000 gallon fresh water production per hour.
2. Feed brine cost: $\$ 0.015 / 1000 \mathrm{ga1}$. of sea water.
3. Cooling water cost: $\$ 0.005 / 1000 \mathrm{gal}$. of sea water.

If a more realistic water production cost is required, we merely have to incorporate the updated cost Gata and cost equation into the scheme and apply the optimization techniques developed in this study for the MEMS system. Obviously this optimization technique can be applied to the other sequential multistage and multidecision processes.

If a more realistic water production cost is required, we merely have to incorporate the updated cost Gata and cost equation into the scheme and apply the optimization techniques developed in this study for the MEMS system. Obviously this optimization technique can be applied to the other sequential multistage and multidecision processes.

NOMENCMAR Ere

a - Staci temperature, ${ }^{\circ} \mathrm{R}$
$A=$ heat transfer area, It^{2}
$3^{\prime}=$ coefisicient in the clausius-clapeyron equation, $20_{2} / z^{2}$
$S=\left(1+\eta_{i G}\right) B^{\prime}$
$C_{B}=$ capital cost per unit oi heat transfer area ir. the brine beater, $s / f t^{2}$
$c_{c}=$ unit cooing water cost, S/1b
$c_{c \alpha}=\mathcal{C}_{H}, S / \tau^{2}{ }^{2}$
$c_{e}=$ unit, power cost, s / n p
$\left(C_{Z}\right)_{n}=\operatorname{salt}$ concentration of flashing brine at location n, wi. $\%$
$c_{H}=$ capital cost per uni of heat transfer area in the condensing chamber, $\$ / \mathrm{st}^{2}$
$C_{E E}=\psi C_{Z}, \varepsilon / E \tau^{2}$
$c_{J}=$ capital cost per horsepower for the recycle pumps, s/ip
$C_{F}=$ said concentration in the seawater feed, wt. \%
σ_{p} = neat. capacity of water per pound, Btu/ $10,{ }^{\circ} \mathrm{F}$.
$c_{F D}=c_{J}+c_{C} / \eta_{p}, 8 / 2 t-2 b$
$c_{s t}=u n i t$ steam cost, $s / 20$
$z_{c}=$ unit pretreatment cost for seawater feed, $s / 20$
$\bar{Z}=$ various cost items
$z=$ Fin cw rate of seawater lined, $20 / 50$

NOMENCMAR Ere

a - Staci temperature, ${ }^{\circ} \mathrm{R}$
$A=$ heat transfer area, It^{2}
$3^{\prime}=$ coefisicient in the clausius-clapeyron equation, $20_{2} / z^{2}$
$S=\left(1+\eta_{i G}\right) B^{\prime}$
$C_{B}=$ capital cost per unit oi heat transfer area ir. the brine beater, $s / f t^{2}$
$c_{c}=$ unit cooing water cost, S/1b
$c_{c \alpha}=\mathcal{C}_{H}, S / \tau^{2}{ }^{2}$
$c_{e}=$ unit, power cost, s / n p
$\left(C_{Z}\right)_{n}=\operatorname{salt}$ concentration of flashing brine at location n, wi. $\%$
$c_{H}=$ capital cost per uni of heat transfer area in the condensing chamber, $\$ / \mathrm{st}^{2}$
$C_{E E}=\psi C_{Z}, \varepsilon / E \tau^{2}$
$c_{J}=$ capital cost per horsepower for the recycle pumps, s/ip
$C_{F}=$ said concentration in the seawater feed, wt. \%
σ_{p} = neat. capacity of water per pound, Btu/ $10,{ }^{\circ} \mathrm{F}$.
$c_{F D}=c_{J}+c_{C} / \eta_{p}, 8 / 2 t-2 b$
$c_{s t}=u n i t$ steam cost, $s / 20$
$z_{c}=$ unit pretreatment cost for seawater feed, $s / 20$
$\bar{Z}=$ various cost items
$z=$ Fin cw rate of seawater lined, $20 / 50$


```
    third cricets rospectiveny
```



```
    and thirg erfects respoctivoly
\mp@subsup{r}{c}{}= unit enthalpy per pound of concensatc, Stiu/2b
```



```
i}\mp@subsup{j}{j}{}=\mathrm{ unit enthalpy per pound of nor-itashing orine, Etu/iL
tv
```



```
                                    ef゙\eçts respectively
L = INow rate of the Elashing brine, Ib/hr
```



```
                                    ひざects respectively
NH, N
        eEzects respectively
Pa = the vertex of a.simplex with the lowest function vãile, y=
```



```
P
    point of the simglex
F
```



```
\mp@subsup{\overline{F}}{6}{\prime}= tite point obtuined aftcr expansion of ? ?
"G' = the point obtaincd arter contraction o\ ? ?
```



```
    third cricets rospectiveny
```



```
    and thirg erfects respoctivoly
\mp@subsup{r}{c}{}= unit enthalpy per pound of concensatc, Stiu/2b
```



```
i}\mp@subsup{j}{j}{}=\mathrm{ unit enthalpy per pound of nor-itashing orine, Etu/iL
tv
```



```
                                    ef゙\eçts respectively
L = INow rate of the Elashing brine, Ib/hr
```



```
                                    ひざects respectively
NH, N
        eEzects respectively
Pa = the vertex of a.simplex with the lowest function vãile, y=
```



```
P
    point of the simglex
F
```



```
\mp@subsup{\overline{F}}{6}{\prime}= tite point obtuined aftcr expansion of ? ?
"G' = the point obtaincd arter contraction o\ ? ?
```

```
\(p^{0}\) - vapor pressuro or purc waver, \(20 / 5 t^{2}\)
```



```
    \(q=\) heat transics ratc, Btioh
    \(G_{s}=\) haat input por unit time in the brine hoaner, zulu/h
    \(R=\) ideal gas constant, \(3 t u / 2 b,{ }^{\circ} \mathrm{R}\)
```


second and tinnd e土tects rospectively
$\bar{R}-1, \mathrm{R}-2$ and $\mathrm{R}-3=$ the heat rejection sections in the Einsu, secoud
anc thirc ez̃ects respectiveay
$\bar{n}_{L}=\mathrm{A}$: ow rate oz cooling water, $2 \mathrm{~b} / \mathrm{hm}$
r_{2}, r_{2} and $r_{z}=$ the rcoycle ratios in the first, seconi ari tionc
eざさんcts raspectiveZy
$s=$ the objective tunction, s/ho00ga:.
$m_{c}=$ corvensing temperature, ${ }^{\circ} R$
$\left(\right.$ 土f $_{n}=$ vemperaturc ci the İashing brine at Iocation n, os.
$M_{i}=$ tcinerature of the ron-z゙aushing brince, of
$M_{s}=s$ eaut temperature at the orine heatcon, or
$\left(\Delta^{m}\right)=T \underset{i}{ }-T_{i}, 0$
$(\omega t)=m_{c}-m_{j}, \circ ?$

V = vajor rate, : $0 / \mathrm{sin}$

seccnd and thirċ enects respectiveny, $=0 / \mathrm{m}$

```
\(p^{0}\) - vapor pressuro or purc waver, \(20 / 5 t^{2}\)
```



```
    \(q=\) heat transics ratc, Btioh
    \(G_{s}=\) haat input por unit time in the brine hoaner, zulu/h
    \(R=\) ideal gas constant, \(3 t u / 2 b,{ }^{\circ} \mathrm{R}\)
```


second and tinnd e土tects rospectively
$\bar{R}-1, \mathrm{R}-2$ and $\mathrm{R}-3=$ the heat rejection sections in the Einsu, secoud
anc thirc ez̃ects respectiveay
$\bar{n}_{L}=\mathrm{A}$: ow rate oz cooling water, $2 \mathrm{~b} / \mathrm{hm}$
r_{2}, r_{2} and $r_{z}=$ the rcoycle ratios in the first, seconi ari tionc
eざさんcts raspectiveZy
$s=$ the objective tunction, s/ho00ga:.
$m_{c}=$ corvensing temperature, ${ }^{\circ} R$
$\left(\right.$ 土f $_{n}=$ vemperaturc ci the İashing brine at Iocation n, os.
$M_{i}=$ tcinerature of the ron-z゙aushing brince, of
$M_{s}=s$ eaut temperature at the orine heatcon, or
$\left(\Delta^{m}\right)=T \underset{i}{ }-T_{i}, 0$
$(\omega t)=m_{c}-m_{j}, \circ ?$

V = vajor rate, : $0 / \mathrm{sin}$

seccnd and thirċ enects respectiveny, $=0 / \mathrm{m}$

בh $=$ total watcr production rate，2i／hr
$x_{1}^{0}=\theta_{z}, W_{*}^{*}$
$x_{2}^{n}=\left(C_{n}\right)_{n}$ ，wt．\％

$x_{j}^{\check{O}}=(T=)_{n}, 0 R$
 こざざect，•R
$y_{r}=$ the sunction value or water cost at poist P_{2}
$z_{i}^{n}=$ the adjoint variable jx association with state variabiae x

GRESK EEMNDRS

$$
\dot{u}=T \sum_{c}, M^{0}
$$

$$
\alpha_{n}=\text { the averate of } x \text { in the n-th ejiect }
$$

$$
\alpha^{\prime}=\text { reilection coestioient, } 1
$$

$$
f=\text { vapor messure depression of orire streams, } 20 / 5^{2}
$$

β^{\prime}－contraction coeジi
$y^{\prime}=$ exparsion coez̃さicient， 2

$\eta_{p}=$ züд efisiciercy
$G_{0}^{n}=r_{n}$, recycie ratio in the $x-i t$ oftect
$E_{2}^{r_{2}}=\binom{m}{A_{2}}_{n}$

בh $=$ total watcr production rate，2i／hr
$x_{1}^{0}=\theta_{z}, W_{*}^{*}$
$x_{2}^{n}=\left(C_{n}\right)_{n}$ ，wt．\％

$x_{j}^{\check{O}}=(T=)_{n}, 0 R$
 こざざect，•R
$y_{r}=$ the sunction value or water cost at poist P_{2}
$z_{i}^{n}=$ the adjoint variable jx association with state variabiae x

GRESK EEMNDRS

$$
\dot{u}=T \sum_{c}, M^{0}
$$

$$
\alpha_{n}=\text { the averate of } x \text { in the n-th ejiect }
$$

$$
\alpha^{\prime}=\text { reilection coestioient, } 1
$$

$$
f=\text { vapor messure depression of orire streams, } 20 / 5^{2}
$$

β^{\prime}－contraction coeジi
$y^{\prime}=$ exparsion coez̃さicient， 2

$\eta_{p}=$ züд efisiciercy
$G_{0}^{n}=r_{n}$, recycie ratio in the $x-i t$ oftect
$E_{2}^{r_{2}}=\binom{m}{A_{2}}_{n}$

$\lambda=1$ ainnt haut os vaporization, Jum/ab

$p=$ dersity ot water, Ib/cu.at.
$\gamma=c a p i t a y i z a t i o n ~ c h a r z e$
$\lambda=1$ ainnt haut os vaporization, Jum/ab

$p=$ dersity ot water, Ib/cu.at.
$\gamma=c a p i t a y i z a t i o n ~ c h a r z e$

PART TWO

ANALYSIS AND OPTTMIZAMION OF THE REVERSE
OSVOSIS DESALINARION PROCESS

PART TWO

ANALYSIS AND OPTTMIZAMION OF THE REVERSE
OSVOSIS DESALINARION PROCESS

CHAPTER 1

INTRODUCTION

The fugacity of the solvent in a solution is always lowex than that of the pure solvent under the same pressure as the solution (17). If there is a semipermeable membrane present"between the solution and pure solvent, which will pass solvent molecules preferentially or exclusively, there will be a net flow of pure solvent into the solution. At an equilibriun state the fugacities of the solvent in the solution and in the pure state become equal, and therefore there is no net solvent flow into the solution. This state of equilibrium can be brought about by raising the pressure of the solution to irs osmotic pressure (18). If the pressure on the solution is raised above the equilibrium osmotic pressure then the pure solvent will flow out of the solution. This is the reverse of the osmotic process or the socalled reverse osmosis process. This method requires no phase change, therefore, it has an inherent advantage over distillation and rieezing desalination processes from the point of view of energy reouirement. However, progress on reverse osmosis depends greatly on the availability of a suitable semipermeable membrane which can stand up well over time to the required pressures and still give an appreciable flow of potable water. It was not until recently that such a synthetic membrane was developed and serious consideration was given to the use of reverse osmosis in desalination.

Much attention has been drawn to the improvement of membrane fabrication techniques (19), but only little attention has been

CHAPTER 1

INTRODUCTION

The fugacity of the solvent in a solution is always lowex than that of the pure solvent under the same pressure as the solution (17). If there is a semipermeable membrane present"between the solution and pure solvent, which will pass solvent molecules preferentially or exclusively, there will be a net flow of pure solvent into the solution. At an equilibriun state the fugacities of the solvent in the solution and in the pure state become equal, and therefore there is no net solvent flow into the solution. This state of equilibrium can be brought about by raising the pressure of the solution to irs osmotic pressure (18). If the pressure on the solution is raised above the equilibrium osmotic pressure then the pure solvent will flow out of the solution. This is the reverse of the osmotic process or the socalled reverse osmosis process. This method requires no phase change, therefore, it has an inherent advantage over distillation and rieezing desalination processes from the point of view of energy reouirement. However, progress on reverse osmosis depends greatly on the availability of a suitable semipermeable membrane which can stand up well over time to the required pressures and still give an appreciable flow of potable water. It was not until recently that such a synthetic membrane was developed and serious consideration was given to the use of reverse osmosis in desalination.

Much attention has been drawn to the improvement of membrane fabrication techniques (19), but only little attention has been
directed to the system analysis of the process itself. Merten, et. al., has given an extensive cost analysis of a single stage system (20). Investigators at Kansas State University (21, 22, 23) have proposed a completely mixed model of the multi-stage sequential system based on the assumption of uniform salt concentration inside the osmosis unit, and the optimization of this model has been carried out by the same group (21, 22,23). In the present study, the plug flow model is proposed by taking into account the concentration change inside the tubular osmosis unit. The proposed plug flow model of a multi-stage sequential system is described in Chapter 2. The quantitative relations between operating variables are derived in Chapter 3. Various cost functions of the system are established in Chapter 4. The outline of the optimization procedure of the system is described in Chapter 5 .
directed to the system analysis of the process itself. Merten, et. al., has given an extensive cost analysis of a single stage system (20). Investigators at Kansas State University (21, 22, 23) have proposed a completely mixed model of the multi-stage sequential system based on the assumption of uniform salt concentration inside the osmosis unit, and the optimization of this model has been carried out by the same group (21, 22,23). In the present study, the plug flow model is proposed by taking into account the concentration change inside the tubular osmosis unit. The proposed plug flow model of a multi-stage sequential system is described in Chapter 2. The quantitative relations between operating variables are derived in Chapter 3. Various cost functions of the system are established in Chapter 4. The outline of the optimization procedure of the system is described in Chapter 5 .

CHAPTER 2

PROCESS DESCRIPTION

A simplified flow diagran of a N-stage reverse osmosis system is shown in Fig. 1. The principal components of the system are listed in Fig. 1. Each stage consists of a mombrane separator unit, MS; a high pressure pump, J_{1}; and a recirculation pump, J_{2}. q, R, and W xepresent respectively the flow rate of brine stream, recycle brine, and water produced. Superscript n is used to indicate the quantity referred to the $\pi-t h$ stage. However, the subscripts i and e refer respectively to the inlet and exit quantities to the membrane separator. In addition, the blowdown turbine at the end of the process is represented by J_{3}.

Sea water is first brought through a prefilter and is introduced into the first stage as the brine stream, q°. It is then pumped by the high pressure pump, J_{1}^{l}, to an operating pressure in excess of its osmotic pressure and then mixcd with recycle brine, R^{1}, at the mixing point, M^{1}. The resulting combined strean, q_{1}^{1}, is carried through the membrane separator unit, MS by means of the recirculation pump, J_{2}^{1}. The membrane separator is a shell-and-tube arrangement. The solvent water of the brine stream under a pressure higher than its osmotic pressure migrates across the semipermeable membrane tube to the lower pressure shell side of the separator. The collected water product from the shell side of the first stage, W^{1}, is then introduced and stored in the fresh-water reservoir.

The exit brine stream of the first membrane separator, q_{e}^{1}, is divided into two streams. One stream, q^{1}, is fed into the second stage

CHAPTER 2

PROCESS DESCRIPTION

A simplified flow diagran of a N-stage reverse osmosis system is shown in Fig. 1. The principal components of the system are listed in Fig. 1. Each stage consists of a mombrane separator unit, MS; a high pressure pump, J_{1}; and a recirculation pump, J_{2}. q, R, and W xepresent respectively the flow rate of brine stream, recycle brine, and water produced. Superscript n is used to indicate the quantity referred to the $\pi-t h$ stage. However, the subscripts i and e refer respectively to the inlet and exit quantities to the membrane separator. In addition, the blowdown turbine at the end of the process is represented by J_{3}.

Sea water is first brought through a prefilter and is introduced into the first stage as the brine stream, q°. It is then pumped by the high pressure pump, J_{1}^{l}, to an operating pressure in excess of its osmotic pressure and then mixcd with recycle brine, R^{1}, at the mixing point, M^{1}. The resulting combined strean, q_{1}^{1}, is carried through the membrane separator unit, MS by means of the recirculation pump, J_{2}^{1}. The membrane separator is a shell-and-tube arrangement. The solvent water of the brine stream under a pressure higher than its osmotic pressure migrates across the semipermeable membrane tube to the lower pressure shell side of the separator. The collected water product from the shell side of the first stage, W^{1}, is then introduced and stored in the fresh-water reservoir.

The exit brine stream of the first membrane separator, q_{e}^{1}, is divided into two streams. One stream, q^{1}, is fed into the second stage

and the other strearn, R^{1}, is recirculated by the pump J_{2}^{1}, and then mixed with the sea-water feed at the mixing point M^{1}. The operation of the subsequent stages is similar to that of the first stage except at the last stage, where the brine strean, q^{N}, is allowed to blow down through a recovery turbine before it is rejected as waste. The system configuration and operation described here are not necessarily optimal. Several versions of the model are presented in chapter 3. The best model can only be decided from an optimization study of each.
and the other strearn, R^{1}, is recirculated by the pump J_{2}^{1}, and then mixed with the sea-water feed at the mixing point M^{1}. The operation of the subsequent stages is similar to that of the first stage except at the last stage, where the brine strean, q^{N}, is allowed to blow down through a recovery turbine before it is rejected as waste. The system configuration and operation described here are not necessarily optimal. Several versions of the model are presented in chapter 3. The best model can only be decided from an optimization study of each.

Abstract

A fairly general model of a sequential reverse osmosis desalination system will be set up first. The first several sections are devoted to the derivation of the system equations of such a model. Three simplified versions of such a model are then proposed in the last section.

A schematic representation of this model is shown in Fig. I and the $n-t h$ stage of this model is depicted in Fig. 2. Each stage consists of a membrane separator unit, a recirculation pump and a high pressure pump. The last stage, however, includes, in addition, a blowdown turbine.

The flow rates of the brine stream, q, recycle brine, R, and water production, W, and the superscript and subscript representations have been defined in chapter 2. Definitions of several other symbols employed in the derivation are listed below:

```
x
    n-th stage,
xi}=\mathrm{ the mass fraction of salt in the brine strean entering the
    membrane separator of the n-th stage,
xe}=\mathrm{ the mass fraction of salt in the brine stream leaving the
    merubrane separator of the n-th stage,
q}\mp@subsup{q}{}{\circ}=\mathrm{ the mass flow rate of the sea water feed (lbm}/\textrm{hr})
x' = the mass fraction of salt in the sea water feed,
\mp@subsup{r}{}{n}= the recycle ratio in the n-th stage defined as the ratio of
    Rn}\mathrm{ and }\mp@subsup{q}{}{n-1}\mathrm{ ,
```


Abstract

A fairly general model of a sequential reverse osmosis desalination system will be set up first. The first several sections are devoted to the derivation of the system equations of such a model. Three simplified versions of such a model are then proposed in the last section.

A schematic representation of this model is shown in Fig. I and the $n-t h$ stage of this model is depicted in Fig. 2. Each stage consists of a membrane separator unit, a recirculation pump and a high pressure pump. The last stage, however, includes, in addition, a blowdown turbine.

The flow rates of the brine stream, q, recycle brine, R, and water production, W, and the superscript and subscript representations have been defined in chapter 2. Definitions of several other symbols employed in the derivation are listed below:

```
x
    n-th stage,
xi}=\mathrm{ the mass fraction of salt in the brine strean entering the
    membrane separator of the n-th stage,
xe}=\mathrm{ the mass fraction of salt in the brine stream leaving the
    merubrane separator of the n-th stage,
q}\mp@subsup{q}{}{\circ}=\mathrm{ the mass flow rate of the sea water feed (lbm}/\textrm{hr})
x' = the mass fraction of salt in the sea water feed,
\mp@subsup{r}{}{n}= the recycle ratio in the n-th stage defined as the ratio of
    Rn}\mathrm{ and }\mp@subsup{q}{}{n-1}\mathrm{ ,
```

$$
\begin{aligned}
N= & \text { the total number of stagcs in the sequence of the process, } \\
W_{f}= & \text { the total mass flow rate of the fresh water produced from } \\
& \text { the whole system }\left(1 b_{m} / \mathrm{hr}\right) \text {, i.e. }
\end{aligned}
$$

$$
W_{f}=\sum_{n=1}^{N} W^{n}
$$

$p^{n}=$ operating pressure at the $n-t h$ stage (psi),
$\Delta P^{n}=$ the pressure difference across the membrane of the n-th stage (psi),
$s^{n}=$ the membrane arca of the $n-t h$ stage $\left(f t^{2}\right)$.

3-1. The Fresh Water Production Rate W^{n} and W_{f}. The material balance around the n-th stage is

$$
\begin{equation*}
q^{n-1}=W^{n}+q^{n} \quad n=1,2, \ldots, N . \tag{1}
\end{equation*}
$$

The material balance for the process as a whole is

$$
\begin{equation*}
q^{0}=w_{f}+q^{N} \tag{2}
\end{equation*}
$$

A salt material balance for the first n stages gives

$$
\begin{equation*}
q^{n}=\frac{q^{0} x^{0}}{x^{n}} \quad n=1,2, \ldots, N \tag{3}
\end{equation*}
$$

Substituting equations (3) into equation (1), yields

$$
\begin{equation*}
w^{n}=q^{0} x^{0}\left(\frac{1}{x^{n-1}}-\frac{1}{x^{n}}\right) \tag{4}
\end{equation*}
$$

Substituting equation (3) into equation (2) yields

$$
\begin{equation*}
W_{f}=q^{0}\left(1-\frac{x^{0}}{x^{N}}\right) \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
N= & \text { the total number of stagcs in the sequence of the process, } \\
W_{f}= & \text { the total mass flow rate of the fresh water produced from } \\
& \text { the whole system }\left(1 b_{m} / \mathrm{hr}\right) \text {, i.e. }
\end{aligned}
$$

$$
W_{f}=\sum_{n=1}^{N} W^{n}
$$

$p^{n}=$ operating pressure at the $n-t h$ stage (psi),
$\Delta P^{n}=$ the pressure difference across the membrane of the n-th stage (psi),
$s^{n}=$ the membrane arca of the $n-t h$ stage $\left(f t^{2}\right)$.

3-1. The Fresh Water Production Rate W^{n} and W_{f}. The material balance around the n-th stage is

$$
\begin{equation*}
q^{n-1}=W^{n}+q^{n} \quad n=1,2, \ldots, N . \tag{1}
\end{equation*}
$$

The material balance for the process as a whole is

$$
\begin{equation*}
q^{0}=w_{f}+q^{N} \tag{2}
\end{equation*}
$$

A salt material balance for the first n stages gives

$$
\begin{equation*}
q^{n}=\frac{q^{0} x^{0}}{x^{n}} \quad n=1,2, \ldots, N \tag{3}
\end{equation*}
$$

Substituting equations (3) into equation (1), yields

$$
\begin{equation*}
w^{n}=q^{0} x^{0}\left(\frac{1}{x^{n-1}}-\frac{1}{x^{n}}\right) \tag{4}
\end{equation*}
$$

Substituting equation (3) into equation (2) yields

$$
\begin{equation*}
W_{f}=q^{0}\left(1-\frac{x^{0}}{x^{N}}\right) \tag{5}
\end{equation*}
$$

3-2. The Volumetric Flux of Water Through the Membrane, F
The volumetric flux of water, f, through a membrane of constant permeability has been reported $(21,22,23)$ as

$$
\begin{equation*}
F=\frac{K(\Delta P-12,000 x)}{1+3.05 \times 10^{5} \frac{K}{(S c)^{1 / 3} D_{a}} \frac{x}{R e^{7 / 8}}} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
F & =\text { water flux },\left(\frac{f t^{3}}{f t^{2}-h r}\right), \\
K & =\text { the membrane constant, }\left(\frac{f t^{3}}{f^{2}-h r-p s i}\right), \\
\Delta P & =\text { the pressure difference across the membrane }(p s i), \\
S_{c} & =\text { Schmidt number, } \\
d & =\text { diameter of the membrane tube (ft) }, \\
R e & =\text { Reynolds number, } \\
x & =\text { mass fraction of salt in the brine stream, } \\
D_{a} & =\text { diffusivity of } N a C l \text { in water }\left(\mathrm{cm}^{2} / \mathrm{sec} .\right) .
\end{aligned}
$$

This equation can be written as

$$
\begin{equation*}
F=\frac{K \Delta P+b x}{1+c-\frac{x}{\operatorname{Re}{ }^{7 / 8}}} \tag{7}
\end{equation*}
$$

where

$$
b=-12,000 \mathrm{~K}
$$

$c=3.05 \times 10^{5} \frac{\mathrm{Kd}}{(\mathrm{Sc})^{1 / 3} \mathrm{D}_{\mathrm{a}}}$

3-2. The Volumetric Flux of Water Through the Membrane, F
The volumetric flux of water, f, through a membrane of constant permeability has been reported $(21,22,23)$ as

$$
\begin{equation*}
F=\frac{K(\Delta P-12,000 x)}{1+3.05 \times 10^{5} \frac{K}{(S c)^{1 / 3} D_{a}} \frac{x}{R e^{7 / 8}}} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
F & =\text { water flux },\left(\frac{f t^{3}}{f t^{2}-h r}\right), \\
K & =\text { the membrane constant, }\left(\frac{f t^{3}}{f^{2}-h r-p s i}\right), \\
\Delta P & =\text { the pressure difference across the membrane }(p s i), \\
S_{c} & =\text { Schmidt number, } \\
d & =\text { diameter of the membrane tube (ft) }, \\
R e & =\text { Reynolds number, } \\
x & =\text { mass fraction of salt in the brine stream, } \\
D_{a} & =\text { diffusivity of } N a C l \text { in water }\left(\mathrm{cm}^{2} / \mathrm{sec} .\right) .
\end{aligned}
$$

This equation can be written as

$$
\begin{equation*}
F=\frac{K \Delta P+b x}{1+c-\frac{x}{\operatorname{Re}{ }^{7 / 8}}} \tag{7}
\end{equation*}
$$

where

$$
b=-12,000 \mathrm{~K}
$$

$c=3.05 \times 10^{5} \frac{\mathrm{Kd}}{(\mathrm{Sc})^{1 / 3} \mathrm{D}_{\mathrm{a}}}$

3-3. Inlet and Exit Brine Concentrations of $M s^{n}, x_{i}^{n}$ and x_{e}^{n}. From the steady state material balance for an infinitesimal element of the membrane tube as shown in Fig. 3 we obtain

$$
\begin{equation*}
d q=-d W=-F P d S \tag{8}
\end{equation*}
$$

salt material balance for the same element gives

$$
\begin{aligned}
\mathbf{x q} & =(q+d q)(x+d x) \\
& =s q+q d x+x d q+d x d q
\end{aligned}
$$

if it is assumed that no salt passes through the membrane.

Neglecting the term dxdq yields

$$
\begin{equation*}
\frac{d x}{x}=-\frac{d q}{q} \tag{9}
\end{equation*}
$$

Integration of equation (9) from the inlet of the tube to an arbitrary point along the tube gives

$$
\begin{equation*}
q=\frac{x_{i} q_{i}}{x} \tag{10}
\end{equation*}
$$

where the i subscript represents the quantity of the inlet stream.
Substituting equations (8) and (10) into equation (9) yields

$$
\begin{equation*}
x_{i} q_{i} \frac{d x}{x^{2}}=F P d S \tag{11}
\end{equation*}
$$

Substituting equation (7) into equation (11) yields

$$
x_{i} q_{i} \frac{1+-\frac{x}{(R e)^{7 / 3}}}{x^{2}(X \Delta F+b x)} d x=\rho d S
$$

3-3. Inlet and Exit Brine Concentrations of $M s^{n}, x_{i}^{n}$ and x_{e}^{n}. From the steady state material balance for an infinitesimal element of the membrane tube as shown in Fig. 3 we obtain

$$
\begin{equation*}
d q=-d W=-F P d S \tag{8}
\end{equation*}
$$

salt material balance for the same element gives

$$
\begin{aligned}
\mathbf{x q} & =(q+d q)(x+d x) \\
& =s q+q d x+x d q+d x d q
\end{aligned}
$$

if it is assumed that no salt passes through the membrane.

Neglecting the term dxdq yields

$$
\begin{equation*}
\frac{d x}{x}=-\frac{d q}{q} \tag{9}
\end{equation*}
$$

Integration of equation (9) from the inlet of the tube to an arbitrary point along the tube gives

$$
\begin{equation*}
q=\frac{x_{i} q_{i}}{x} \tag{10}
\end{equation*}
$$

where the i subscript represents the quantity of the inlet stream.
Substituting equations (8) and (10) into equation (9) yields

$$
\begin{equation*}
x_{i} q_{i} \frac{d x}{x^{2}}=F P d S \tag{11}
\end{equation*}
$$

Substituting equation (7) into equation (11) yields

$$
x_{i} q_{i} \frac{1+-\frac{x}{(R e)^{7 / 3}}}{x^{2}(X \Delta F+b x)} d x=\rho d S
$$

Fig. 3. A tubular reactor represertam: inside the memberene seporcio:

Fig. 3. A tubular reactor represertam: inside the memberene seporcio:

Integrating the above equation from x_{i} to x_{e} and from 0 to S gives

$$
\begin{gather*}
x_{i} q_{i}\left\{\left(\frac{c}{K(R e)^{7 / 8 P}}-\frac{b}{\left.K^{2} \Delta P^{2}\right)^{n}} \frac{x_{e}\left(K \Delta P+b x_{i}\right)}{x_{i}\left(K \Delta P+b x_{e}\right)}\right.\right. \\
\left.\quad+\frac{1}{K \Delta P}\left(\frac{1}{x_{i}}-\frac{1}{x_{e}}\right)\right\}=P S \tag{12}
\end{gather*}
$$

In carrying out this integration, the values of ΔP and $R e$ were assumed constant in the range of the whole tube.

After changing the notation from x_{i} to x_{i}^{n}, q_{i} to $q_{i}^{n}, \Delta P$ to ΔP^{n}, Re to $R e^{n}$, and x_{e} to x_{e}^{n}, we have the following equation for the n-th stage,

$$
\begin{align*}
x_{i}^{n} q_{i}^{n}\left\{\left(\frac{c}{K\left(R e^{n}\right)^{7 / 8} \Delta P^{n}}\right.\right. & \left.-\frac{b}{K^{2}\left(\Delta P^{n}\right)^{2}}\right) \ln \frac{x_{e}^{n}\left(K \Delta P^{n}+b x_{i}^{n}\right)}{x_{i}^{n}\left(K \Delta P^{n}+b x_{e}^{n}\right)} \\
& \left.+\frac{1}{K \Delta P^{n}}\left(\frac{1}{x_{i}^{n}}-\frac{1}{x_{e}^{n}}\right)\right\}=P S^{n} \tag{13}
\end{align*}
$$

3-4. Outlet Brine Concentrations Between Stages, x^{n} and x^{n-1}.
In Fig. 2 a material balance around the mixing point M^{12} is

$$
\begin{equation*}
q_{i}^{n}=\left(1+I^{n}\right) q^{n-1} \tag{14}
\end{equation*}
$$

salt material balance around point M^{n} is

$$
\begin{equation*}
x^{n-1} q^{n-1}+x^{n} r^{n} q^{n-1}=x_{i}^{n} q_{i}^{n} \tag{15}
\end{equation*}
$$

Integrating the above equation from x_{i} to x_{e} and from 0 to S gives

$$
\begin{gather*}
x_{i} q_{i}\left\{\left(\frac{c}{K(R e)^{7 / 8 P}}-\frac{b}{\left.K^{2} \Delta P^{2}\right)^{n}} \frac{x_{e}\left(K \Delta P+b x_{i}\right)}{x_{i}\left(K \Delta P+b x_{e}\right)}\right.\right. \\
\left.\quad+\frac{1}{K \Delta P}\left(\frac{1}{x_{i}}-\frac{1}{x_{e}}\right)\right\}=P S \tag{12}
\end{gather*}
$$

In carrying out this integration, the values of ΔP and $R e$ were assumed constant in the range of the whole tube.

After changing the notation from x_{i} to x_{i}^{n}, q_{i} to $q_{i}^{n}, \Delta P$ to ΔP^{n}, Re to $R e^{n}$, and x_{e} to x_{e}^{n}, we have the following equation for the n-th stage,

$$
\begin{align*}
x_{i}^{n} q_{i}^{n}\left\{\left(\frac{c}{K\left(R e^{n}\right)^{7 / 8} \Delta P^{n}}\right.\right. & \left.-\frac{b}{K^{2}\left(\Delta P^{n}\right)^{2}}\right) \ln \frac{x_{e}^{n}\left(K \Delta P^{n}+b x_{i}^{n}\right)}{x_{i}^{n}\left(K \Delta P^{n}+b x_{e}^{n}\right)} \\
& \left.+\frac{1}{K \Delta P^{n}}\left(\frac{1}{x_{i}^{n}}-\frac{1}{x_{e}^{n}}\right)\right\}=P S^{n} \tag{13}
\end{align*}
$$

3-4. Outlet Brine Concentrations Between Stages, x^{n} and x^{n-1}.
In Fig. 2 a material balance around the mixing point M^{12} is

$$
\begin{equation*}
q_{i}^{n}=\left(1+I^{n}\right) q^{n-1} \tag{14}
\end{equation*}
$$

salt material balance around point M^{n} is

$$
\begin{equation*}
x^{n-1} q^{n-1}+x^{n} r^{n} q^{n-1}=x_{i}^{n} q_{i}^{n} \tag{15}
\end{equation*}
$$

Substituting equations (14), (16) and (3) into equation (13) and noting that $x_{e}^{n}=x^{n}$, we then have

$$
\begin{align*}
& \left(x^{n-1}+r^{n} x^{n}\right)\left\{\left(\frac{c}{k\left(R e^{n}\right)^{7 / 8} \Delta P^{n}}-\frac{b}{k^{2}\left(\Delta P^{n}\right)^{2}}\right)\right. \\
& \left.\ln \frac{x^{n}\left[K \Delta P^{n}\left(1+x^{n}\right)+b\left(x^{n-1}+r^{n} x^{n}\right)\right]}{\left(x^{n-1}+r^{n} x^{n}\right)\left(k \Delta p^{n}+b x^{n}\right)}+\frac{1}{k \Delta P^{n}}\left(\frac{1+r^{n}}{x^{n-1}+r^{n} x^{n}}-\frac{1}{x^{n}}\right)\right\} \\
& =\frac{\rho}{x^{0}} x^{n-1} \frac{\left(S^{n}\right)}{q^{0}} \tag{17}
\end{align*}
$$

3-5. Reynolds Number $\operatorname{Re}^{\mathrm{n}}$ and the Recycle Ratio r^{n}.
The cross-sectional area through which the brine stream passes at the n-th stage, A^{n} is given by

$$
\begin{equation*}
A^{n}=\frac{m^{n} \pi(d)^{2}}{4} \tag{18}
\end{equation*}
$$

where m^{n} is the number of tubes in the $n-t h$ stage.
The fluid velocity inside the tubes of the n-th stage is

$$
\begin{align*}
u^{n} & =\frac{q_{i}^{n}}{A^{n} \varphi} \tag{19}\\
& =\frac{4 q^{n-1}\left(1+r^{n}\right)}{m^{n} \pi d^{2} \mu}
\end{align*}
$$

The Reynolds' number is defined by

$$
\begin{align*}
R e^{n} & =\frac{d u^{n \rho} \rho}{\mu} \\
& =\frac{4 q^{n-1}\left(1+r^{n}\right)}{m^{n} \pi d \mu} \tag{20}
\end{align*}
$$

Substituting equations (14), (16) and (3) into equation (13) and noting that $x_{e}^{n}=x^{n}$, we then have

$$
\begin{align*}
& \left(x^{n-1}+r^{n} x^{n}\right)\left\{\left(\frac{c}{k\left(R e^{n}\right)^{7 / 8} \Delta P^{n}}-\frac{b}{k^{2}\left(\Delta P^{n}\right)^{2}}\right)\right. \\
& \left.\ln \frac{x^{n}\left[K \Delta P^{n}\left(1+x^{n}\right)+b\left(x^{n-1}+r^{n} x^{n}\right)\right]}{\left(x^{n-1}+r^{n} x^{n}\right)\left(k \Delta p^{n}+b x^{n}\right)}+\frac{1}{k \Delta P^{n}}\left(\frac{1+r^{n}}{x^{n-1}+r^{n} x^{n}}-\frac{1}{x^{n}}\right)\right\} \\
& =\frac{\rho}{x^{0}} x^{n-1} \frac{\left(S^{n}\right)}{q^{0}} \tag{17}
\end{align*}
$$

3-5. Reynolds Number $\operatorname{Re}^{\mathrm{n}}$ and the Recycle Ratio r^{n}.
The cross-sectional area through which the brine stream passes at the n-th stage, A^{n} is given by

$$
\begin{equation*}
A^{n}=\frac{m^{n} \pi(d)^{2}}{4} \tag{18}
\end{equation*}
$$

where m^{n} is the number of tubes in the $n-t h$ stage.
The fluid velocity inside the tubes of the n-th stage is

$$
\begin{align*}
u^{n} & =\frac{q_{i}^{n}}{A^{n} \varphi} \tag{19}\\
& =\frac{4 q^{n-1}\left(1+r^{n}\right)}{m^{n} \pi d^{2} \mu}
\end{align*}
$$

The Reynolds' number is defined by

$$
\begin{align*}
R e^{n} & =\frac{d u^{n \rho} \rho}{\mu} \\
& =\frac{4 q^{n-1}\left(1+r^{n}\right)}{m^{n} \pi d \mu} \tag{20}
\end{align*}
$$

The membrane area S^{n} is given.by

$$
s^{n}=m^{n} d \pi L
$$

where L is the length of the separator unit.
Substituting the above equation and equation (3) into equation (20) yields

$$
\begin{equation*}
R e^{n}=\frac{49^{0} x^{0} d}{\mu}\left(\frac{L}{d}\right) \frac{\left(1+r^{n}\right)}{s^{n} x^{n-1}} \tag{21}
\end{equation*}
$$

As is mentioned before, the Reynolds number Re is assumed to be constant inside a stage in the derivation of equations (12) and (13). From equations (29) and (20) one can see that $R e^{n}$ is defined as the value of Re at the inlet of the membrane separator in the n-th stage. If higher accuracy is required or percentage conversion of brine to water in any stage becomes very high, some other representation of $R e^{n}$ such as the average value of Re between the inlet and outlet in the stage. must be made.

3-6. Energy Requirement for the High-pressure Pump J_{1}^{n} in the $n-t h$ Stage, E_{l}^{n}

The pumping work E_{l}^{n} is primarily used to increase the pressure from P^{n-1} to P^{n}. Since the velocity difference between the two successive stages is small, the kinetic energy losses and friction losses can be included in the pump efficiency. Thus the power requirement for the high-pressure pump at the $n-t h$ stage can be written as

$$
E_{1}^{n}=\frac{1+\eta_{f}}{\eta_{m}} \frac{p_{p}^{n}-p^{n-1}}{\varphi} q^{n-1}
$$

The membrane area S^{n} is given.by

$$
s^{n}=m^{n} d \pi L
$$

where L is the length of the separator unit.
Substituting the above equation and equation (3) into equation (20) yields

$$
\begin{equation*}
R e^{n}=\frac{49^{0} x^{0} d}{\mu}\left(\frac{L}{d}\right) \frac{\left(1+r^{n}\right)}{s^{n} x^{n-1}} \tag{21}
\end{equation*}
$$

As is mentioned before, the Reynolds number Re is assumed to be constant inside a stage in the derivation of equations (12) and (13). From equations (29) and (20) one can see that $R e^{n}$ is defined as the value of Re at the inlet of the membrane separator in the n-th stage. If higher accuracy is required or percentage conversion of brine to water in any stage becomes very high, some other representation of $R e^{n}$ such as the average value of Re between the inlet and outlet in the stage. must be made.

3-6. Energy Requirement for the High-pressure Pump J_{1}^{n} in the $n-t h$ Stage, E_{l}^{n}

The pumping work E_{l}^{n} is primarily used to increase the pressure from P^{n-1} to P^{n}. Since the velocity difference between the two successive stages is small, the kinetic energy losses and friction losses can be included in the pump efficiency. Thus the power requirement for the high-pressure pump at the $n-t h$ stage can be written as

$$
E_{1}^{n}=\frac{1+\eta_{f}}{\eta_{m}} \frac{p_{p}^{n}-p^{n-1}}{\varphi} q^{n-1}
$$

where η_{m}, η_{p} and η_{f} are the mechanical and pump efficiency and the friction loss factor.

Substituting equation (3) into the above equation and noting that

$$
P^{n}-P^{n-1}=\left(P^{n}-P^{o}\right)-\left(P^{n-1}-P^{0}\right)=\Delta P^{n}=\Delta P^{n-1}
$$

we obtain

$$
\begin{equation*}
E_{1}^{n}=\frac{1+\eta f}{\eta m \eta P} \frac{\Delta P^{n}-\Delta P^{n-1}}{\rho} \frac{q^{0} x^{0}}{x^{n-1}} \tag{22}
\end{equation*}
$$

Thus, the energy requirement for the high-pressure pump at the n-th stage per unit water production can be given in terms of the brine concentration as

$$
\begin{equation*}
\frac{E_{1}^{n}}{W_{f}}=\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\Delta P^{n}-\Delta P^{n-1}}{\rho} \frac{x^{0}}{x^{n-1}\left(1-\frac{x^{0}}{x^{N}}\right)} \tag{23}
\end{equation*}
$$

3-7. Energy Requirement for the Recirculation Pump J_{2}^{n} in the $n-t h$ Stage, E_{2}^{n}

The energy required, E_{2}^{n}, includes the energy of circulating $q^{n-1} r^{n} 1 b_{m} / h r$ of the recycle brine and that of the q^{n-1} flow work. The friction loss comes largely from the fluid flowing in the membrane separator unit. This lost work based on unit time is

$$
\begin{equation*}
E_{2}^{n}=4 f \frac{\left(u^{n}\right)^{2}}{2 g_{c}} \quad\left(\frac{L}{d}\right) \quad q_{i}^{n} \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \tag{24}
\end{equation*}
$$

where f is the friction factor.
where η_{m}, η_{p} and η_{f} are the mechanical and pump efficiency and the friction loss factor.

Substituting equation (3) into the above equation and noting that

$$
P^{n}-P^{n-1}=\left(P^{n}-P^{o}\right)-\left(P^{n-1}-P^{0}\right)=\Delta P^{n}=\Delta P^{n-1}
$$

we obtain

$$
\begin{equation*}
E_{1}^{n}=\frac{1+\eta f}{\eta m \eta P} \frac{\Delta P^{n}-\Delta P^{n-1}}{\rho} \frac{q^{0} x^{0}}{x^{n-1}} \tag{22}
\end{equation*}
$$

Thus, the energy requirement for the high-pressure pump at the n-th stage per unit water production can be given in terms of the brine concentration as

$$
\begin{equation*}
\frac{E_{1}^{n}}{W_{f}}=\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\Delta P^{n}-\Delta P^{n-1}}{\rho} \frac{x^{0}}{x^{n-1}\left(1-\frac{x^{0}}{x^{N}}\right)} \tag{23}
\end{equation*}
$$

3-7. Energy Requirement for the Recirculation Pump J_{2}^{n} in the $n-t h$ Stage, E_{2}^{n}

The energy required, E_{2}^{n}, includes the energy of circulating $q^{n-1} r^{n} 1 b_{m} / h r$ of the recycle brine and that of the q^{n-1} flow work. The friction loss comes largely from the fluid flowing in the membrane separator unit. This lost work based on unit time is

$$
\begin{equation*}
E_{2}^{n}=4 f \frac{\left(u^{n}\right)^{2}}{2 g_{c}} \quad\left(\frac{L}{d}\right) \quad q_{i}^{n} \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \tag{24}
\end{equation*}
$$

where f is the friction factor.

From rearranging equation (19), the flow rate of the brine stream entering the membrane separator in the n-th stage can be written as follows

$$
\begin{equation*}
q_{i}^{n}=m^{n} \frac{\pi d^{2}}{4} u^{n} \rho \tag{25}
\end{equation*}
$$

For turbulent flow the friction factor can be approximated by

$$
f=\frac{0.046}{\left(R e^{n}\right)^{0.2}}
$$

Substituting the above equation and equation (25) into equation (24) yields

$$
\begin{equation*}
E_{2}^{n}=0.023 \frac{1+\eta_{f}}{\eta_{\mathrm{m}} \eta_{\mathrm{p}}} \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{3}\left(\mathrm{Re}^{\mathrm{n}}\right)^{2.8} \mathrm{~s}^{\mathrm{n}} \tag{26}
\end{equation*}
$$

where $S^{n}=\mathfrak{m}^{n} L \pi d$, the membrane area in the $n-t h$ stage.
The energy requirement per unit water production is

$$
\begin{equation*}
\frac{E_{2}^{n}}{W_{f}}=0.023 \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{3}\left(R e^{n}\right)^{2.8} \frac{s^{n}}{q^{0}\left(1-\frac{x^{0}}{x^{N}}\right)} \tag{27}
\end{equation*}
$$

3-8. Energy Recovery at the Reject Brine Turbine, E_{3}
The energy recovery from depressurizing the high-pressure brine stream from P^{N} to P° (discharge pressure) is given by

$$
E_{3}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{p^{N}-p^{0}}{\rho} q^{N}
$$

From rearranging equation (19), the flow rate of the brine stream entering the membrane separator in the n-th stage can be written as follows

$$
\begin{equation*}
q_{i}^{n}=m^{n} \frac{\pi d^{2}}{4} u^{n} \rho \tag{25}
\end{equation*}
$$

For turbulent flow the friction factor can be approximated by

$$
f=\frac{0.046}{\left(R e^{n}\right)^{0.2}}
$$

Substituting the above equation and equation (25) into equation (24) yields

$$
\begin{equation*}
E_{2}^{n}=0.023 \frac{1+\eta_{f}}{\eta_{\mathrm{m}} \eta_{\mathrm{p}}} \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{3}\left(\mathrm{Re}^{\mathrm{n}}\right)^{2.8} \mathrm{~s}^{\mathrm{n}} \tag{26}
\end{equation*}
$$

where $S^{n}=\mathfrak{m}^{n} L \pi d$, the membrane area in the $n-t h$ stage.
The energy requirement per unit water production is

$$
\begin{equation*}
\frac{E_{2}^{n}}{W_{f}}=0.023 \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{3}\left(R e^{n}\right)^{2.8} \frac{s^{n}}{q^{0}\left(1-\frac{x^{0}}{x^{N}}\right)} \tag{27}
\end{equation*}
$$

3-8. Energy Recovery at the Reject Brine Turbine, E_{3}
The energy recovery from depressurizing the high-pressure brine stream from P^{N} to P° (discharge pressure) is given by

$$
E_{3}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{p^{N}-p^{0}}{\rho} q^{N}
$$

Noting that $P^{N}-P^{\circ}=\Delta P^{N}$ and substituting equation (3) inte the abovc equation, we obtain

$$
\begin{equation*}
E_{3}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \quad \frac{\Delta p^{N}}{\rho} \frac{x^{0} q^{0}}{x^{N}} \tag{28}
\end{equation*}
$$

The energy recovery per unit water production can be written as

$$
\begin{equation*}
\frac{E_{3}}{W_{f}}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{\Delta p^{N}}{\rho} \frac{x^{0}}{x^{N}-x^{0}} \tag{29}
\end{equation*}
$$

3-9. Simplified Models

Three simplified models A, B, and C are presented here. Model A is essentially similar to the general model except that it has the same membrane area in each stage (i.e. $S^{n}=S$). Model B is a sequential system without recirculation pump in each stage (i.e. $r^{n}=0$) and is depicted in Fig. 4. Model C is a scquential system with only one pump in the first stage and is shown in Fig. 5..

The model A has been suggested by the fact that it is often economical to use an identical unit at each stage for a multistage system.

For a sequential multi-stage system, if the cost function is in the linear form, the system with recycle operation is often an optimal configuration (23, 28). However, if the cost function is in the nonlinear form, this may not be true. This has given rise to model B. It also appears that it may not be necessary to use a high-pressurc pump in each stage but just to let the pressure of the brine strear decrease successively in each stage. Thercfore, the model C, which is simpler than the model B is proposed.

Noting that $P^{N}-P^{\circ}=\Delta P^{N}$ and substituting equation (3) inte the abovc equation, we obtain

$$
\begin{equation*}
E_{3}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \quad \frac{\Delta p^{N}}{\rho} \frac{x^{0} q^{0}}{x^{N}} \tag{28}
\end{equation*}
$$

The energy recovery per unit water production can be written as

$$
\begin{equation*}
\frac{E_{3}}{W_{f}}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{\Delta p^{N}}{\rho} \frac{x^{0}}{x^{N}-x^{0}} \tag{29}
\end{equation*}
$$

3-9. Simplified Models

Three simplified models A, B, and C are presented here. Model A is essentially similar to the general model except that it has the same membrane area in each stage (i.e. $S^{n}=S$). Model B is a sequential system without recirculation pump in each stage (i.e. $r^{n}=0$) and is depicted in Fig. 4. Model C is a scquential system with only one pump in the first stage and is shown in Fig. 5..

The model A has been suggested by the fact that it is often economical to use an identical unit at each stage for a multistage system.

For a sequential multi-stage system, if the cost function is in the linear form, the system with recycle operation is often an optimal configuration (23, 28). However, if the cost function is in the nonlinear form, this may not be true. This has given rise to model B. It also appears that it may not be necessary to use a high-pressurc pump in each stage but just to let the pressure of the brine strear decrease successively in each stage. Thercfore, the model C, which is simpler than the model B is proposed.

Feed $\frac{j_{1}^{\prime}}{-2}$
Feed $\frac{j_{1}^{\prime}}{-2}$

Reasons for proposing different models may not be entirely valid. They ean only be verified through an optimization study of eaeh model using both linear and non-linear representations of the cost function.

The energy requirements for each model are derived below. The seeond subseripts a, b, and e in the various energy terms, $E_{i a}^{n}, E_{i b}^{n}$, and $E_{i e}^{n}$ are used to represent the various energy terms of the models A, B, and C respeetively. There is no sueh additional subseript attaehed to the general model.

Mode1 A.

The basie assumption of this model is to use the same number of tubes in eaeh, stage. Since

$$
\begin{align*}
& m^{n}=m, \quad n=1,2, \ldots \ldots . N, \\
& s^{n}=m^{n} d \pi L=m d \pi L=S, \quad n=1,2, \ldots \ldots N \tag{30}\\
& A^{n}=\frac{m^{n} \pi(d)^{2}}{4} \cdot \frac{m \pi(d)^{2}}{4}=A, n=1,2, \ldots \ldots N \tag{31}
\end{align*}
$$

After ehanging s^{n} to S, equations (17), (21), (26), and (27)

beeome

$$
\begin{align*}
& \left(x^{n-1}+r^{n} x^{n}\right)\left\{\left(\frac{c}{K\left(R e^{n}\right)^{7 / 8} \Delta P^{n}}-\frac{b}{K^{2}\left(\Delta P^{n}\right)^{2}}\right) .\right. \\
& \left.\ln \frac{x^{n}\left[K \Delta P^{n}\left(1+r^{n}\right)+b\left(x^{n-1}+r^{n} x^{n}\right)\right]}{\left(x^{n-1}+r^{n} x^{n}\right)\left(K \Delta P^{n}+b x^{n}\right)}+\frac{1}{k \Delta P^{n}}\left(\frac{1+r^{n}}{x^{n-1}+r^{n} x^{n}}-\frac{1}{x^{n}}\right)\right\} \\
& =\frac{p}{x^{0}} x^{n-1}\left(\frac{S}{q^{0}}\right) \tag{32}
\end{align*}
$$

Reasons for proposing different models may not be entirely valid. They ean only be verified through an optimization study of eaeh model using both linear and non-linear representations of the cost function.

The energy requirements for each model are derived below. The seeond subseripts a, b, and e in the various energy terms, $E_{i a}^{n}, E_{i b}^{n}$, and $E_{i e}^{n}$ are used to represent the various energy terms of the models A, B, and C respeetively. There is no sueh additional subseript attaehed to the general model.

Mode1 A.

The basie assumption of this model is to use the same number of tubes in eaeh, stage. Since

$$
\begin{align*}
& m^{n}=m, \quad n=1,2, \ldots \ldots . N, \\
& s^{n}=m^{n} d \pi L=m d \pi L=S, \quad n=1,2, \ldots \ldots N \tag{30}\\
& A^{n}=\frac{m^{n} \pi(d)^{2}}{4} \cdot \frac{m \pi(d)^{2}}{4}=A, n=1,2, \ldots \ldots N \tag{31}
\end{align*}
$$

After ehanging s^{n} to S, equations (17), (21), (26), and (27)

beeome

$$
\begin{align*}
& \left(x^{n-1}+r^{n} x^{n}\right)\left\{\left(\frac{c}{K\left(R e^{n}\right)^{7 / 8} \Delta P^{n}}-\frac{b}{K^{2}\left(\Delta P^{n}\right)^{2}}\right) .\right. \\
& \left.\ln \frac{x^{n}\left[K \Delta P^{n}\left(1+r^{n}\right)+b\left(x^{n-1}+r^{n} x^{n}\right)\right]}{\left(x^{n-1}+r^{n} x^{n}\right)\left(K \Delta P^{n}+b x^{n}\right)}+\frac{1}{k \Delta P^{n}}\left(\frac{1+r^{n}}{x^{n-1}+r^{n} x^{n}}-\frac{1}{x^{n}}\right)\right\} \\
& =\frac{p}{x^{0}} x^{n-1}\left(\frac{S}{q^{0}}\right) \tag{32}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Re}^{n}=\frac{4 q^{0} x^{o} d}{\mu} \quad \frac{(L)}{d} \frac{\left(1+r^{n}\right)}{S x^{n-1}} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}_{2 \mathrm{a}}^{\mathrm{n}}=0.023 \frac{1+\eta_{\mathrm{f}}}{\eta_{\mathrm{m}} \eta_{\mathrm{p}}} \frac{\rho}{g_{c}}\left(\frac{\mu}{c_{\rho}}\right)^{3}\left(R e^{n^{2}}\right)^{2.8} \mathrm{~s} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{E_{2 a}^{n}}{W_{f}}=0.023 \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{3}\left(R e^{n}\right)^{2.8} \frac{s}{q^{0}\left(1-\frac{x^{0}}{x^{N}}\right)} \tag{35}
\end{equation*}
$$

respectively.

Equations (22), (23), (28), anc (29) are still valid for this
model. Therefore,

$$
\begin{align*}
& E_{l_{a}}^{n}=E_{1}^{n}=\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\Delta p^{n}-\Delta p^{n-1}}{\rho} \frac{q^{0} x^{0}}{x^{n-1}} \tag{36}\\
& \frac{E_{1 a}^{n}}{W_{f}}=\frac{E_{1}^{n}}{W_{f}}=\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\Delta p^{n}-\Delta p^{n-1}}{\rho} \frac{x^{0}}{x^{n-1}\left(1-\frac{x^{0}}{x^{N}}\right)} \tag{37}\\
& E_{3 a}=E_{3}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{\Delta p^{N}}{\rho} \frac{x^{0} q^{0}}{x^{N}} \tag{38}\\
& \frac{E_{3 a}}{W_{f}}=\frac{E_{3}}{W_{f}}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{\Delta p^{N}}{\rho} \frac{x^{0}}{x^{N-} x^{0}} \tag{39}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Re}^{n}=\frac{4 q^{0} x^{o} d}{\mu} \quad \frac{(L)}{d} \frac{\left(1+r^{n}\right)}{S x^{n-1}} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}_{2 \mathrm{a}}^{\mathrm{n}}=0.023 \frac{1+\eta_{\mathrm{f}}}{\eta_{\mathrm{m}} \eta_{\mathrm{p}}} \frac{\rho}{g_{c}}\left(\frac{\mu}{c_{\rho}}\right)^{3}\left(R e^{n^{2}}\right)^{2.8} \mathrm{~s} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{E_{2 a}^{n}}{W_{f}}=0.023 \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{3}\left(R e^{n}\right)^{2.8} \frac{s}{q^{0}\left(1-\frac{x^{0}}{x^{N}}\right)} \tag{35}
\end{equation*}
$$

respectively.

Equations (22), (23), (28), anc (29) are still valid for this
model. Therefore,

$$
\begin{align*}
& E_{l_{a}}^{n}=E_{1}^{n}=\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\Delta p^{n}-\Delta p^{n-1}}{\rho} \frac{q^{0} x^{0}}{x^{n-1}} \tag{36}\\
& \frac{E_{1 a}^{n}}{W_{f}}=\frac{E_{1}^{n}}{W_{f}}=\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\Delta p^{n}-\Delta p^{n-1}}{\rho} \frac{x^{0}}{x^{n-1}\left(1-\frac{x^{0}}{x^{N}}\right)} \tag{37}\\
& E_{3 a}=E_{3}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{\Delta p^{N}}{\rho} \frac{x^{0} q^{0}}{x^{N}} \tag{38}\\
& \frac{E_{3 a}}{W_{f}}=\frac{E_{3}}{W_{f}}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{\Delta p^{N}}{\rho} \frac{x^{0}}{x^{N-} x^{0}} \tag{39}
\end{align*}
$$

Model B

As is shown in Fig. 4, only a high-pressure pump is used in each stage instead of a high pressure pump and a recirculation pump. The velocity of the brine strean in each stage may be adjusted by using a different menbrane area in each stage.

After dropping the recycle ratio r^{n} in equations (17) and (21) we obtain

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(\frac{c}{K\left(R e^{n}\right)^{7 / 8} \Delta P^{n}}-\frac{b}{k^{2}\left(\Delta P^{n}\right)^{2}}\right)^{\ln } \frac{x^{n}\left(K \Delta P^{n}+b x^{n-1}\right)}{x^{n-1}\left(K \Delta P^{n}+b x^{n}\right)} \\
\left.+\frac{1}{K \Delta P^{n}}\left(\frac{1}{x^{n-1}}-\frac{1}{x^{n}}\right)\right\}=\frac{\rho}{x^{0}}\left(\frac{s^{n}}{q^{0}}\right)
\end{array}, l\right.
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Re}^{n}=\frac{40^{0} x^{0} d}{M}\left(\frac{L}{d}\right) \frac{1}{S^{2} x^{n-1}} \tag{41}
\end{equation*}
$$

Equations (28) and (29) are still correct for this model. Therefore, we have

$$
\begin{align*}
& E_{3 b}=E_{3}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{\Delta p^{N}}{\rho} \frac{x^{0} q^{\circ}}{x^{N}} \tag{42}\\
& \frac{E_{3 b}}{W_{f}}=\frac{E_{3}}{W_{f}}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{\Delta p^{N}}{\rho} \frac{x^{\circ}}{x^{N}-x^{0}} \tag{43}
\end{align*}
$$

For this model, the energy requirement for the high pressure pump in the $n-t h$ stage $E_{l b}^{n}$ includes not only the energy used to increase the pressure from P^{n-1} to P^{n} but also that of the punping head to overcome friction in the $n-t h$ stage. Therefore, the following expressions are adeçuate "

Model B

As is shown in Fig. 4, only a high-pressure pump is used in each stage instead of a high pressure pump and a recirculation pump. The velocity of the brine strean in each stage may be adjusted by using a different menbrane area in each stage.

After dropping the recycle ratio r^{n} in equations (17) and (21) we obtain

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(\frac{c}{K\left(R e^{n}\right)^{7 / 8} \Delta P^{n}}-\frac{b}{k^{2}\left(\Delta P^{n}\right)^{2}}\right)^{\ln } \frac{x^{n}\left(K \Delta P^{n}+b x^{n-1}\right)}{x^{n-1}\left(K \Delta P^{n}+b x^{n}\right)} \\
\left.+\frac{1}{K \Delta P^{n}}\left(\frac{1}{x^{n-1}}-\frac{1}{x^{n}}\right)\right\}=\frac{\rho}{x^{0}}\left(\frac{s^{n}}{q^{0}}\right)
\end{array}, l\right.
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Re}^{n}=\frac{40^{0} x^{0} d}{M}\left(\frac{L}{d}\right) \frac{1}{S^{2} x^{n-1}} \tag{41}
\end{equation*}
$$

Equations (28) and (29) are still correct for this model. Therefore, we have

$$
\begin{align*}
& E_{3 b}=E_{3}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{\Delta p^{N}}{\rho} \frac{x^{0} q^{\circ}}{x^{N}} \tag{42}\\
& \frac{E_{3 b}}{W_{f}}=\frac{E_{3}}{W_{f}}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{\Delta p^{N}}{\rho} \frac{x^{\circ}}{x^{N}-x^{0}} \tag{43}
\end{align*}
$$

For this model, the energy requirement for the high pressure pump in the $n-t h$ stage $E_{l b}^{n}$ includes not only the energy used to increase the pressure from P^{n-1} to P^{n} but also that of the punping head to overcome friction in the $n-t h$ stage. Therefore, the following expressions are adeçuate "

$$
\begin{align*}
E_{1 b}^{n} & =E_{1}^{n}+E_{2}^{n} \\
& =\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\Delta p^{n}-\Delta p^{n-1}}{\rho} \frac{q^{0} x^{0}}{x^{n-1}} \\
& +0.023 \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{3}\left(R e^{n}\right)^{2.8} s^{n} \tag{44}\\
\frac{E_{1 b}^{n}}{W_{f}} & =\frac{E_{1}^{n}}{W_{f}}+\frac{E_{2}^{n}}{W_{f}} \\
& =\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\Delta p^{n}-\Delta p^{n-1}}{\rho} \frac{x^{\circ}}{x^{n-1}\left(1-\frac{\left.x^{0}\right)}{x^{N}}\right.} \\
& +0.023 \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{3}\left(R e^{n}\right)^{2.8} \frac{s^{n}}{q^{\circ}\left(1-\frac{x^{0}}{x^{N}}\right)} \tag{45}\\
E_{2 b}^{n} & =0 \tag{46}\\
E_{2}^{n} & \frac{2 b}{W_{f}} \tag{47}
\end{align*}
$$

Model C
Model C is shown in Fig. 5. In this model only one high pressure pump is used in the first stage, i.e., no pumps are used in the remaining stages. Since pressure changes along the tube in each stage, an exact solution involves a complicated intergration. An approximate solution can be obtained if we assume constant pressure inside each stage but changes from stage to stage abruptly. Therefore equations (40) and (41) of model B are adequate here, but the pressures between the $n-t h$ and the $(n-1)-t h$ stage can be related by the following relation:

$$
\begin{align*}
E_{1 b}^{n} & =E_{1}^{n}+E_{2}^{n} \\
& =\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\Delta p^{n}-\Delta p^{n-1}}{\rho} \frac{q^{0} x^{0}}{x^{n-1}} \\
& +0.023 \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{3}\left(R e^{n}\right)^{2.8} s^{n} \tag{44}\\
\frac{E_{1 b}^{n}}{W_{f}} & =\frac{E_{1}^{n}}{W_{f}}+\frac{E_{2}^{n}}{W_{f}} \\
& =\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\Delta p^{n}-\Delta p^{n-1}}{\rho} \frac{x^{\circ}}{x^{n-1}\left(1-\frac{\left.x^{0}\right)}{x^{N}}\right.} \\
& +0.023 \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{3}\left(R e^{n}\right)^{2.8} \frac{s^{n}}{q^{\circ}\left(1-\frac{x^{0}}{x^{N}}\right)} \tag{45}\\
E_{2 b}^{n} & =0 \tag{46}\\
E_{2}^{n} & \frac{2 b}{W_{f}} \tag{47}
\end{align*}
$$

Model C
Model C is shown in Fig. 5. In this model only one high pressure pump is used in the first stage, i.e., no pumps are used in the remaining stages. Since pressure changes along the tube in each stage, an exact solution involves a complicated intergration. An approximate solution can be obtained if we assume constant pressure inside each stage but changes from stage to stage abruptly. Therefore equations (40) and (41) of model B are adequate here, but the pressures between the $n-t h$ and the $(n-1)-t h$ stage can be related by the following relation:

$$
\begin{equation*}
\Delta P^{n}=\Delta P^{n-1}-H_{f s} P \tag{48}
\end{equation*}
$$

where

$$
H_{f s}=4 \frac{L}{d} \frac{\left(u^{n}\right)^{2}}{2 g_{c}}
$$

Substituting the friction factor as given in Section 3-7 into the above equation yields

$$
\begin{equation*}
\Delta P^{n}=\Delta P^{n-1}-0.092\left(\frac{L}{d}\right) \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{2}\left(R e^{\dot{n}}\right)^{2} \tag{49}
\end{equation*}
$$

The energy equations necessary for this model are

$$
\begin{align*}
& E_{1 c}^{1}=E_{1}^{1}=\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\Delta p^{1}}{\rho} q^{\circ} \tag{50}\\
& E_{1 c}^{n}=0, \quad n=2,3, \ldots \ldots \ldots, N \tag{51}\\
& E_{2 c}^{n}=0, \quad n=1,2,3, \ldots \ldots \ldots, N \tag{52}\\
& E_{3 c}=E_{3}=\eta_{p} \eta_{m}\left(1-\eta_{f}\right) \frac{\Delta p^{N}}{\rho} \frac{x^{\circ} q^{\circ}}{x^{N}} \tag{53}\\
& \frac{E_{1 c}^{1}}{W_{f}}=\frac{E_{1}^{1}}{W_{f}}=\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\Delta p^{1}}{\rho} \frac{1}{\left(1-\frac{x^{0}}{x^{N}}\right)} \tag{54}\\
& \frac{E_{1 c}^{n}}{W_{f}}=0, \tag{55}\\
& \frac{E_{2 c}^{n}}{W_{f}}=0, \quad n=1,2,3, \tag{56}\\
& \frac{E_{3 c}}{W_{f}}=\frac{E_{3}}{W_{f}}=\eta_{p} \eta_{m}\left(1-\eta_{f}\right) \quad \frac{\Delta p^{N}}{\rho} \frac{x^{0}}{x^{N}-x^{\circ}} \tag{57}
\end{align*}
$$

$$
\begin{equation*}
\Delta P^{n}=\Delta P^{n-1}-H_{f s} P \tag{48}
\end{equation*}
$$

where

$$
H_{f s}=4 \frac{L}{d} \frac{\left(u^{n}\right)^{2}}{2 g_{c}}
$$

Substituting the friction factor as given in Section 3-7 into the above equation yields

$$
\begin{equation*}
\Delta P^{n}=\Delta P^{n-1}-0.092\left(\frac{L}{d}\right) \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{2}\left(R e^{\dot{n}}\right)^{2} \tag{49}
\end{equation*}
$$

The energy equations necessary for this model are

$$
\begin{align*}
& E_{1 c}^{1}=E_{1}^{1}=\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\Delta p^{1}}{\rho} q^{\circ} \tag{50}\\
& E_{1 c}^{n}=0, \quad n=2,3, \ldots \ldots \ldots, N \tag{51}\\
& E_{2 c}^{n}=0, \quad n=1,2,3, \ldots \ldots \ldots, N \tag{52}\\
& E_{3 c}=E_{3}=\eta_{p} \eta_{m}\left(1-\eta_{f}\right) \frac{\Delta p^{N}}{\rho} \frac{x^{\circ} q^{\circ}}{x^{N}} \tag{53}\\
& \frac{E_{1 c}^{1}}{W_{f}}=\frac{E_{1}^{1}}{W_{f}}=\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\Delta p^{1}}{\rho} \frac{1}{\left(1-\frac{x^{0}}{x^{N}}\right)} \tag{54}\\
& \frac{E_{1 c}^{n}}{W_{f}}=0, \tag{55}\\
& \frac{E_{2 c}^{n}}{W_{f}}=0, \quad n=1,2,3, \tag{56}\\
& \frac{E_{3 c}}{W_{f}}=\frac{E_{3}}{W_{f}}=\eta_{p} \eta_{m}\left(1-\eta_{f}\right) \quad \frac{\Delta p^{N}}{\rho} \frac{x^{0}}{x^{N}-x^{\circ}} \tag{57}
\end{align*}
$$

Cost of the plant may be divided into the two major parts: the capital cost and the operating cost. The capital cost consists of three items:
(a) Pump cost,
(b) Turbine cost,
(c) Membrane area cost.

The operating cost includes four items:
(a) Power cost for the high pressure pump,
(b) Powe: cost for the circulation ptap,
(c) Energy recovery from the reject turbine,
(d) Feed brine cost.

Other costs such as labor cost, insurance cost, etc., are rot considered here as they have little effect on the water cost witer the opera=ing conditions are changed.

The symbols which represent the cost items mentioned above are listed below. The first subscripts are referred to the various cost items and the second the various models.

$$
\begin{aligned}
C_{1}, C_{1 a}, C_{1 b}, C_{1 c}= & \text { the capital costs of the pumps for the gene:al } \\
& \text {.model, and mojels } A, B \text {, and } C \text {, respectively. } \\
C_{2}, C_{2 a}, C_{2 b}, C_{2 c}= & \text { the capital costs of the turbine for tion ganeral } \\
& \text { model, and models } A, B \text {, and } C \text {, nespectively. }
\end{aligned}
$$

Cost of the plant may be divided into the two major parts: the capital cost and the operating cost. The capital cost consists of three items:
(a) Pump cost,
(b) Turbine cost,
(c) Membrane area cost.

The operating cost includes four items:
(a) Power cost for the high pressure pump,
(b) Powe: cost for the circulation ptap,
(c) Energy recovery from the reject turbine,
(d) Feed brine cost.

Other costs such as labor cost, insurance cost, etc., are rot considered here as they have little effect on the water cost witer the opera=ing conditions are changed.

The symbols which represent the cost items mentioned above are listed below. The first subscripts are referred to the various cost items and the second the various models.

$$
\begin{aligned}
C_{1}, C_{1 a}, C_{1 b}, C_{1 c}= & \text { the capital costs of the pumps for the gene:al } \\
& \text {.model, and mojels } A, B \text {, and } C \text {, respectively. } \\
C_{2}, C_{2 a}, C_{2 b}, C_{2 c}= & \text { the capital costs of the turbine for tion ganeral } \\
& \text { model, and models } A, B \text {, and } C \text {, nespectively. }
\end{aligned}
$$

$$
\begin{aligned}
& C_{3}, C_{3 a}, C_{30}, C_{3 c}=\text { the capital cost of the membrano separatoz } \\
& \text { unit for the gearrul modul, and models } A, E \text {, } \\
& \text { and } C \text {, respectively. } \\
& C_{4}, C_{4 a}, C_{40}, C_{4 c}=\text { the power cost of the hith prussure pump fur the } \\
& \text { gencral model, and models } A, B \text {, ard } C \text {, zespoctively. } \\
& C_{5}, C_{5 a}, C_{5 b}, C_{5 c}=\text { the power costs of the circulation , pump Eor the } \\
& \text { general model, and models } A, E \text {, and } C \text {, respectively. } \\
& C_{6}, C_{6 a}, C_{6 b}, C_{6 c}=\text { the energy costs recovered from the reject turbine } \\
& \text { for the general model, and model } A, 2, \text { and } C \text {, } \\
& \text { respectively. } \\
& c_{7}, c_{7 a}, c_{7 b}, c_{7 c}=\text { the feed brine costs for the general model, and } \\
& \text { models } A, B \text {, and } C \text {, respectively. } \\
& C_{\tau}, C_{t a}, C_{t b}, C_{r c ̣}=\text { the total water costs per unit mass of procuction. } \\
& \text { for the general mocel, and models } A, B \text {, and } C \text {, } \\
& \text { respectively. }
\end{aligned}
$$

4-1. The Capital Cost

The annual capitalization charge for the eçupment items is Eaken to be 0.074 of the imitial cost per year, as recommended in the osfice of Saline Water Report (12). An assumpzion of a load factor of 330-0:stream day per year gives a capitalization charge, ψ, of 9.4×10^{-6} of the initial cost per hour on stream.

```
    The power rule relating the capital cost and the equipmene capacizy
as suggested by Chilton (27) is
```

 \(C=k T^{a}\)
 $$
\begin{aligned}
& C_{3}, C_{3 a}, C_{30}, C_{3 c}=\text { the capital cost of the membrano separatoz } \\
& \text { unit for the gearrul modul, and models } A, E \text {, } \\
& \text { and } C \text {, respectively. } \\
& C_{4}, C_{4 a}, C_{40}, C_{4 c}=\text { the power cost of the hith prussure pump fur the } \\
& \text { gencral model, and models } A, B \text {, ard } C \text {, zespoctively. } \\
& C_{5}, C_{5 a}, C_{5 b}, C_{5 c}=\text { the power costs of the circulation , pump Eor the } \\
& \text { general model, and models } A, E \text {, and } C \text {, respectively. } \\
& C_{6}, C_{6 a}, C_{6 b}, C_{6 c}=\text { the energy costs recovered from the reject turbine } \\
& \text { for the general model, and model } A, 2, \text { and } C \text {, } \\
& \text { respectively. } \\
& c_{7}, c_{7 a}, c_{7 b}, c_{7 c}=\text { the feed brine costs for the general model, and } \\
& \text { models } A, B \text {, and } C \text {, respectively. } \\
& C_{\tau}, C_{t a}, C_{t b}, C_{r c ̣}=\text { the total water costs per unit mass of procuction. } \\
& \text { for the general mocel, and models } A, B \text {, and } C \text {, } \\
& \text { respectively. }
\end{aligned}
$$

4-1. The Capital Cost

The annual capitalization charge for the eçupment items is Eaken to be 0.074 of the imitial cost per year, as recommended in the osfice of Saline Water Report (12). An assumpzion of a load factor of 330-0:stream day per year gives a capitalization charge, ψ, of 9.4×10^{-6} of the initial cost per hour on stream.

```
    The power rule relating the capital cost and the equipmene capacizy
as suggested by Chilton (27) is
```

 \(C=k T^{a}\)

where

$C=$ the capital cost of the equipment
$T=$ the capacity of the equipment
$k=a$ proportionality constant
$a=a$ positive constant less than 1.0.
This rule is used where the capital costs of the equipment are concerned.
(a) Pump and Turbine Cost, C_{1} and C_{2}

The proportionality constants in the power rule for the high pressure pump, recirculation pump, and turbine are represented respectively by k_{I}, k_{2}, and k_{t}. According to the power rule mertioned above, the pump and the turbine costs are given respectively by

$$
\begin{equation*}
c_{1}=\psi \sum_{n=1}^{N}\left\{\frac{k_{1}\left(E_{1}^{n}\right)^{a}+k_{2}\left(E_{2}^{n}\right)^{2}}{W_{1}}\right\} \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{2}=\psi k_{t} \frac{\left(E_{3}\right)^{a_{3}}}{w_{f}} \tag{60}
\end{equation*}
$$

where a_{1}, a_{2}, and a_{3} are the power rule coefficients for the high pressure pump, the circulation pump, and turbine, respectively.
(B) Membrane Separator Cost, C_{3}

The mass of the membrane separator for the n-th stage is given by (20)

where

$C=$ the capital cost of the equipment
$T=$ the capacity of the equipment
$k=a$ proportionality constant
$a=a$ positive constant less than 1.0.
This rule is used where the capital costs of the equipment are concerned.
(a) Pump and Turbine Cost, C_{1} and C_{2}

The proportionality constants in the power rule for the high pressure pump, recirculation pump, and turbine are represented respectively by k_{I}, k_{2}, and k_{t}. According to the power rule mertioned above, the pump and the turbine costs are given respectively by

$$
\begin{equation*}
c_{1}=\psi \sum_{n=1}^{N}\left\{\frac{k_{1}\left(E_{1}^{n}\right)^{a}+k_{2}\left(E_{2}^{n}\right)^{2}}{W_{1}}\right\} \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{2}=\psi k_{t} \frac{\left(E_{3}\right)^{a_{3}}}{w_{f}} \tag{60}
\end{equation*}
$$

where a_{1}, a_{2}, and a_{3} are the power rule coefficients for the high pressure pump, the circulation pump, and turbine, respectively.
(B) Membrane Separator Cost, C_{3}

The mass of the membrane separator for the n-th stage is given by (20)

$$
\begin{equation*}
W_{s}^{n}=\frac{\rho_{m} d}{\sigma_{m}} s^{n} \Delta p^{n}\left(1.62+\frac{0.54}{L / D}+\frac{0.189}{L / D} \sqrt{\frac{\sigma_{m}}{\Delta p^{n}}}\right) \tag{6I}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{s}^{n}=\frac{\rho_{m} d}{\sigma_{m}} \frac{S^{n} \Delta p^{n}}{q^{0}\left(1-\frac{x^{0}}{x^{N}}\right)} \quad\left(1.62+\frac{0.54}{L / D}+\frac{0.189}{L / D} \sqrt{\left.\frac{\sigma_{m}}{\Delta p^{n}}\right)}\right. \tag{62}
\end{equation*}
$$

where

$$
\begin{aligned}
W_{s}^{m}= & \text { the mass of the membrane separator for the } n-t h \text { stage }\left(I b_{m}\right), \\
\rho_{m}= & \text { the density of the material of the construction }\left(1 b_{m} / f^{3}\right), \\
\sigma_{m}= & \text { the allowable stress of the material of construction (psi), } \\
L / D= & \text { the overall length-to-dianeter ratio of the membrane } \\
& \text { separator }
\end{aligned}
$$

The proportionality constant in the power rule for membrane separator is represented by k_{s}. The membrane separator cost, c_{3}, can then be written as

$$
\begin{equation*}
c_{3}=k_{s} \sum_{n=1}^{N} \frac{\left(W_{s}^{n}\right)^{a_{4}}}{W_{f}} \quad(\$ / I b m) \tag{63}
\end{equation*}
$$

where a_{4} is the power rule constant for the membranc separator.

Since we have assumed certain constant values for L, d, and $\left(\frac{L}{D}\right)$, this gives rise to an inequality constraint, $\left(\frac{L}{d}\right) D^{2} \pi>S^{n}$ that must be satisfied in the selection of s^{n}.

4-2. The Operating Cost
The unit electrical power cost is represcnted by $c_{e}, \$ / p s i-f t^{3}$. The power cost for the high pressure pump C_{4}, for the circulation pump C_{5}, and the energy cost recovered from the reject turbine C_{6} arc given by

$$
\begin{equation*}
W_{s}^{n}=\frac{\rho_{m} d}{\sigma_{m}} s^{n} \Delta p^{n}\left(1.62+\frac{0.54}{L / D}+\frac{0.189}{L / D} \sqrt{\frac{\sigma_{m}}{\Delta p^{n}}}\right) \tag{6I}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{s}^{n}=\frac{\rho_{m} d}{\sigma_{m}} \frac{S^{n} \Delta p^{n}}{q^{0}\left(1-\frac{x^{0}}{x^{N}}\right)} \quad\left(1.62+\frac{0.54}{L / D}+\frac{0.189}{L / D} \sqrt{\left.\frac{\sigma_{m}}{\Delta p^{n}}\right)}\right. \tag{62}
\end{equation*}
$$

where

$$
\begin{aligned}
W_{s}^{m}= & \text { the mass of the membrane separator for the } n-t h \text { stage }\left(I b_{m}\right), \\
\rho_{m}= & \text { the density of the material of the construction }\left(1 b_{m} / f^{3}\right), \\
\sigma_{m}= & \text { the allowable stress of the material of construction (psi), } \\
L / D= & \text { the overall length-to-dianeter ratio of the membrane } \\
& \text { separator }
\end{aligned}
$$

The proportionality constant in the power rule for membrane separator is represented by k_{s}. The membrane separator cost, c_{3}, can then be written as

$$
\begin{equation*}
c_{3}=k_{s} \sum_{n=1}^{N} \frac{\left(W_{s}^{n}\right)^{a_{4}}}{W_{f}} \quad(\$ / I b m) \tag{63}
\end{equation*}
$$

where a_{4} is the power rule constant for the membranc separator.

Since we have assumed certain constant values for L, d, and $\left(\frac{L}{D}\right)$, this gives rise to an inequality constraint, $\left(\frac{L}{d}\right) D^{2} \pi>S^{n}$ that must be satisfied in the selection of s^{n}.

4-2. The Operating Cost
The unit electrical power cost is represcnted by $c_{e}, \$ / p s i-f t^{3}$. The power cost for the high pressure pump C_{4}, for the circulation pump C_{5}, and the energy cost recovered from the reject turbine C_{6} arc given by

$$
\begin{equation*}
c_{4}=c_{e} \sum_{n=1}^{N} \quad \frac{E_{1}^{n}}{W_{f}} \quad(\$ / 1 \mathrm{bm}) \tag{64}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{5}=c_{e} \sum_{n=1}^{N} \frac{E_{2}^{n}}{W_{f}} \quad(\$ / 1 b i n) \tag{65}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{6}=c_{e} \frac{E_{3}}{W_{f}} \quad(\$ / 1 \mathrm{bm}) \tag{66}
\end{equation*}
$$

respectively.

The cost of the brine feed per unit water production can be given by

$$
\begin{equation*}
c_{7}=c_{F} \quad \frac{q^{\circ}}{w_{f}} \quad(\$ / 1 \mathrm{bm}) \tag{67}
\end{equation*}
$$

where C_{F} is the unit cost of the brine feed.

Substituting equation (5) into the above equation yields

$$
\begin{equation*}
c_{7}=c_{F} \frac{x^{N}}{x^{N}-x^{0}} \tag{63}
\end{equation*}
$$

4-3. The Water Cost, C_{t}
The total water cost per unit water production is the sur of the various cost items, i.e.,

$$
c_{t}=c_{1}+c_{2}+c_{3}+c_{4}+c_{5}-c_{6}+c_{7}
$$

$$
\begin{equation*}
c_{4}=c_{e} \sum_{n=1}^{N} \quad \frac{E_{1}^{n}}{W_{f}} \quad(\$ / 1 \mathrm{bm}) \tag{64}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{5}=c_{e} \sum_{n=1}^{N} \frac{E_{2}^{n}}{W_{f}} \quad(\$ / 1 b i n) \tag{65}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{6}=c_{e} \frac{E_{3}}{W_{f}} \quad(\$ / 1 \mathrm{bm}) \tag{66}
\end{equation*}
$$

respectively.

The cost of the brine feed per unit water production can be given by

$$
\begin{equation*}
c_{7}=c_{F} \quad \frac{q^{\circ}}{w_{f}} \quad(\$ / 1 \mathrm{bm}) \tag{67}
\end{equation*}
$$

where C_{F} is the unit cost of the brine feed.

Substituting equation (5) into the above equation yields

$$
\begin{equation*}
c_{7}=c_{F} \frac{x^{N}}{x^{N}-x^{0}} \tag{63}
\end{equation*}
$$

4-3. The Water Cost, C_{t}
The total water cost per unit water production is the sur of the various cost items, i.e.,

$$
c_{t}=c_{1}+c_{2}+c_{3}+c_{4}+c_{5}-c_{6}+c_{7}
$$

4-4. Water Costs for Mociels A, B, and C
The derivation of the cost equations for models A, B, and C is similar to that for the general model. The cost equations for the various models are listed below:
(A) Model A

$$
\begin{align*}
& \text { Model A } \tag{70}\\
& c_{1 a}=\psi \sum_{n=1}^{N}\left\{\frac{k_{1}\left(E_{1 a}^{n}\right)^{a}+k_{2}\left(E_{2 a}^{n}\right)^{a}}{W_{f}}\right\} \tag{71}\\
& c_{2 a}=\psi k_{t} \frac{\left(E_{3 a}\right)^{a_{3}}}{W_{f}} \tag{72}\\
& c_{3 a}=\psi k_{s} \sum_{n=1}^{N} \frac{\left(W_{s a}^{n}\right)^{a_{4}}}{W_{f}}
\end{align*}
$$

where

$$
\begin{align*}
& W_{s a}^{n}=\frac{P_{m} d}{\sigma_{m}} s \Delta P^{n}\left(1.62+\frac{0.54}{L / D}+\frac{0.189}{L / D} \sqrt{\frac{\sigma_{m}}{\Delta P^{n}}}\right) \tag{73}\\
& c_{4 a}=c_{e} \sum_{n=1}^{N} \frac{E_{1 a}^{n}}{W_{f}} \tag{74}\\
& c_{5 a}=c_{e} \sum_{n=1}^{N} \frac{E_{2 a}^{n}}{W_{f}} \tag{75}\\
& c_{6 a}=c_{e} \frac{E_{3 a}}{W_{f}} \tag{76}\\
& c_{7 a}=c_{F} \frac{x^{N}}{x^{N}-x^{\circ}} \tag{77}\\
& c_{t a}=c_{1 a}+c_{2 a}+c_{3 a}+c_{4 a}+c_{5 a}-c_{6 a}+c_{7 a} \tag{78}
\end{align*}
$$

4-4. Water Costs for Mociels A, B, and C
The derivation of the cost equations for models A, B, and C is similar to that for the general model. The cost equations for the various models are listed below:
(A) Model A

$$
\begin{align*}
& \text { Model A } \tag{70}\\
& c_{1 a}=\psi \sum_{n=1}^{N}\left\{\frac{k_{1}\left(E_{1 a}^{n}\right)^{a}+k_{2}\left(E_{2 a}^{n}\right)^{a}}{W_{f}}\right\} \tag{71}\\
& c_{2 a}=\psi k_{t} \frac{\left(E_{3 a}\right)^{a_{3}}}{W_{f}} \tag{72}\\
& c_{3 a}=\psi k_{s} \sum_{n=1}^{N} \frac{\left(W_{s a}^{n}\right)^{a_{4}}}{W_{f}}
\end{align*}
$$

where

$$
\begin{align*}
& W_{s a}^{n}=\frac{P_{m} d}{\sigma_{m}} s \Delta P^{n}\left(1.62+\frac{0.54}{L / D}+\frac{0.189}{L / D} \sqrt{\frac{\sigma_{m}}{\Delta P^{n}}}\right) \tag{73}\\
& c_{4 a}=c_{e} \sum_{n=1}^{N} \frac{E_{1 a}^{n}}{W_{f}} \tag{74}\\
& c_{5 a}=c_{e} \sum_{n=1}^{N} \frac{E_{2 a}^{n}}{W_{f}} \tag{75}\\
& c_{6 a}=c_{e} \frac{E_{3 a}}{W_{f}} \tag{76}\\
& c_{7 a}=c_{F} \frac{x^{N}}{x^{N}-x^{\circ}} \tag{77}\\
& c_{t a}=c_{1 a}+c_{2 a}+c_{3 a}+c_{4 a}+c_{5 a}-c_{6 a}+c_{7 a} \tag{78}
\end{align*}
$$

(B) Model B

$$
\begin{align*}
& c_{1 b}=\psi k_{I_{n=1}}^{N} \frac{\left(E_{2 b}^{n}\right)^{a_{2}}}{W_{f}} \tag{79}\\
& c_{2 b}=\psi k_{t} \frac{\left(E_{3 b}\right)^{a_{3}}}{W_{I}} \\
& c_{3 b}=\psi k_{S_{n=1}^{N}}^{N} \frac{\left(W_{s}^{n}\right)^{a_{4}}}{W_{f}} \\
& c_{4 b}=c_{e} \sum_{n=1}^{N} \frac{E_{1 b}^{n}}{W_{f}^{n}} \\
& c_{5 b}=0 \tag{83}
\end{align*}
$$

$c_{6 b}=c_{e} \frac{E_{3 b}}{W_{f}}$
$c_{7 b}=c_{F} \frac{x^{N}}{x^{N}-x^{0}}$

$$
\begin{equation*}
c_{t b}=c_{1 b}+c_{2 b}+c_{3 b}+c_{4 b}-c_{6 b}+c_{7 b} \tag{SE}
\end{equation*}
$$

(C) Kodel C

$$
\begin{equation*}
c_{1 c}=\psi k_{2} \frac{\left(E_{2 c}^{1}\right)^{a_{1}}}{w_{E}} \tag{87}
\end{equation*}
$$

(B) Model B

$$
\begin{align*}
& c_{1 b}=\psi k_{I_{n=1}}^{N} \frac{\left(E_{2 b}^{n}\right)^{a_{2}}}{W_{f}} \tag{79}\\
& c_{2 b}=\psi k_{t} \frac{\left(E_{3 b}\right)^{a_{3}}}{W_{I}} \\
& c_{3 b}=\psi k_{S_{n=1}^{N}}^{N} \frac{\left(W_{s}^{n}\right)^{a_{4}}}{W_{f}} \\
& c_{4 b}=c_{e} \sum_{n=1}^{N} \frac{E_{1 b}^{n}}{W_{f}^{n}} \\
& c_{5 b}=0 \tag{83}
\end{align*}
$$

$c_{6 b}=c_{e} \frac{E_{3 b}}{W_{f}}$
$c_{7 b}=c_{F} \frac{x^{N}}{x^{N}-x^{0}}$

$$
\begin{equation*}
c_{t b}=c_{1 b}+c_{2 b}+c_{3 b}+c_{4 b}-c_{6 b}+c_{7 b} \tag{SE}
\end{equation*}
$$

(C) Kodel C

$$
\begin{equation*}
c_{1 c}=\psi k_{2} \frac{\left(E_{2 c}^{1}\right)^{a_{1}}}{w_{E}} \tag{87}
\end{equation*}
$$

$$
\begin{align*}
& c_{2 c}=\psi k_{t} \frac{\left(L_{3 c}\right)^{a_{3}}}{W_{f}^{1}} \\
& c_{3 c}=\psi k_{s} \sum_{n=1}^{N} \frac{\left(W_{s}^{n_{3}}\right)_{4}^{a}}{W_{f}} \tag{89}\\
& c_{4 c}=c_{e} \quad \frac{E_{1 c}^{1}}{W_{E}} \\
& c_{5 c}=0
\end{align*}
$$

$$
\begin{equation*}
c_{6 c}=c_{e} \quad \frac{E_{3 c}}{W_{E}} \tag{92}
\end{equation*}
$$

$$
\begin{equation*}
c_{7 c}=C_{F} \quad \frac{x^{N}}{x^{N}-x^{0}} \tag{93}
\end{equation*}
$$

$$
\begin{equation*}
c_{i c}=c_{1 c}+c_{2 c}+c_{3 c}+c_{4 c}-c_{6 c}+c_{7 c} \tag{94}
\end{equation*}
$$

$$
\begin{align*}
& c_{2 c}=\psi k_{t} \frac{\left(L_{3 c}\right)^{a_{3}}}{W_{f}^{1}} \\
& c_{3 c}=\psi k_{s} \sum_{n=1}^{N} \frac{\left(W_{s}^{n_{3}}\right)_{4}^{a}}{W_{f}} \tag{89}\\
& c_{4 c}=c_{e} \quad \frac{E_{1 c}^{1}}{W_{E}} \\
& c_{5 c}=0
\end{align*}
$$

$$
\begin{equation*}
c_{6 c}=c_{e} \quad \frac{E_{3 c}}{W_{E}} \tag{92}
\end{equation*}
$$

$$
\begin{equation*}
c_{7 c}=C_{F} \quad \frac{x^{N}}{x^{N}-x^{0}} \tag{93}
\end{equation*}
$$

$$
\begin{equation*}
c_{i c}=c_{1 c}+c_{2 c}+c_{3 c}+c_{4 c}-c_{6 c}+c_{7 c} \tag{94}
\end{equation*}
$$

Equations (17) and (21) show the relations among the various quantities of the $n-t h$ stage such as the brine concentration x^{n}, the recycle ratio r^{n}, the pressure difference across the membrane $\Delta \mathrm{P}^{\mathrm{n}}$, the Reynolds number Re^{n}, and the membrane area S^{n}. The water production cost is a function of these $5 N$ variables and is given by equation (69). However, the 2 N relationships given by equations (17) and (21) reduce the number of independent variables from $5 N$ to $3 N$. Since the brine concentration leaving the last stage, x, must be prefixed in order to calculate the energy requirements in each stage, the total number of independent variables becomes $3 \mathrm{~N}-\mathrm{I}$.

A discrete version of the maximum principle is powerful for searching the optimum condition of a multi-stage multi-decision process. For the process in hand, which is an N-stage 3-decision process, the performance equations are summarized in section 5-1. The derivatives of the state variables are listed in section 5-2. The adjoint variables and derivatives of the Hamiltonian functions are determined respectively in sections $5-3$ and $5-4$. The computing procedures are described in section 5-5.

Similarly, the same procedures can be applied to the simplified models.

5-1. Performance Equations
Equation (17) can be rewritten with the aid of equation (5) as

Equations (17) and (21) show the relations among the various quantities of the $n-t h$ stage such as the brine concentration x^{n}, the recycle ratio r^{n}, the pressure difference across the membrane $\Delta \mathrm{P}^{\mathrm{n}}$, the Reynolds number Re^{n}, and the membrane area S^{n}. The water production cost is a function of these $5 N$ variables and is given by equation (69). However, the 2 N relationships given by equations (17) and (21) reduce the number of independent variables from $5 N$ to $3 N$. Since the brine concentration leaving the last stage, x, must be prefixed in order to calculate the energy requirements in each stage, the total number of independent variables becomes $3 \mathrm{~N}-\mathrm{I}$.

A discrete version of the maximum principle is powerful for searching the optimum condition of a multi-stage multi-decision process. For the process in hand, which is an N-stage 3-decision process, the performance equations are summarized in section 5-1. The derivatives of the state variables are listed in section 5-2. The adjoint variables and derivatives of the Hamiltonian functions are determined respectively in sections $5-3$ and $5-4$. The computing procedures are described in section 5-5.

Similarly, the same procedures can be applied to the simplified models.

5-1. Performance Equations
Equation (17) can be rewritten with the aid of equation (5) as

$$
\begin{align*}
& \left(x^{n-1}+x^{n} x^{n}\right)\left\{\left(\frac{c}{(R e)^{7 / 8} \Delta p^{n}}-\frac{b}{k^{2}\left(\Delta P^{n}\right)^{2}}\right) \ln \frac{x^{n}\left(k \Delta p^{n}\left(1+r^{n}\right)+b\left(x^{n-1}+r^{n} x^{n}\right)\right.}{\left(x^{n-1}+z^{n} x^{n}\right)\left(K \Delta P^{n}+b x^{n}\right)}\right. \\
& \left.+\frac{1}{K \Delta P}\left(\frac{1+r^{n}}{x^{n-1}+x^{n} x^{n}}-\frac{1}{x^{n}}\right)\right\}=\frac{\rho}{W_{f} x^{0}}\left(1-\frac{x^{0}}{x^{N}}\right) x^{n-1} s^{n}(95) \tag{95}\\
& n=1, \ldots, N
\end{align*}
$$

Rearrangement of equation (21) gives

$$
\begin{equation*}
I^{n}=\frac{\mu\left(1-\frac{x^{0}}{x^{N}}\right) x^{n-1} R^{n} s^{n}}{4 x^{0} d(L / d) W_{f}}-1 \quad n=1, \ldots, N \tag{96}
\end{equation*}
$$

Substituting the various equations into equation (69) yields

$$
\begin{equation*}
\frac{x^{0}}{x^{N}-x^{0}} \tag{97}
\end{equation*}
$$

$$
\begin{aligned}
& c_{t}=\frac{\psi}{W_{f}} \sum_{n=1}^{N}\left\{k_{1}\left(\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \cdot \frac{\Delta P^{n}-\Delta P^{n-1}}{\rho} \frac{x^{0} W_{f}}{\left(1-\frac{x^{0}}{x^{0}}\right) x^{n-1}}\right) a_{1}\right. \\
& \left.+k_{2}\left\{0.023 \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{3}\left(R e^{n}\right)^{2.0} s^{n}\right\}^{a_{2}}\right\} \\
& +\frac{\psi_{t}}{W_{f}}\left[\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{\Delta P^{N}}{\rho} \frac{x^{0} W_{f}}{\left(1-\frac{x^{0}}{x^{N}}\right)_{x}}\right]^{a_{3}} \\
& +\frac{k_{s}}{W_{f}} \sum_{n=1}^{N}\left(\frac{\rho_{m} d}{\sigma_{m}} S^{n} \Delta p^{n}\left(1.62+\frac{0.54}{L / D}+\frac{0.189}{L / D} \sqrt{\frac{\sigma_{m}}{\Delta p^{n}}}\right)^{4}\right. \\
& +c_{e} \sum_{n=1}^{N}\left[\frac{1+\eta_{1}}{\eta_{m} \eta_{p}} \frac{\Delta p^{n}-\Delta p^{n-1}}{\rho} \frac{x^{0}}{x^{n-1}\left(1-\frac{x^{0}}{x^{0}}\right.}+0.023 \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\rho}{g_{c}}\left(\frac{\mu}{c \rho}\right)^{3}\right. \\
& \left.\left(\operatorname{Re}^{n}\right)^{2.8} \frac{S^{n}}{W_{f}}\right]-c_{e} \eta_{m} \eta_{p}\left(1-\eta_{f}\right) \quad \frac{\Delta \rho^{N}}{\rho} \frac{x^{0}}{x^{N}-x^{0}}+c_{F} \cdot
\end{aligned}
$$

$$
\begin{align*}
& \left(x^{n-1}+x^{n} x^{n}\right)\left\{\left(\frac{c}{(R e)^{7 / 8} \Delta p^{n}}-\frac{b}{k^{2}\left(\Delta P^{n}\right)^{2}}\right) \ln \frac{x^{n}\left(k \Delta p^{n}\left(1+r^{n}\right)+b\left(x^{n-1}+r^{n} x^{n}\right)\right.}{\left(x^{n-1}+z^{n} x^{n}\right)\left(K \Delta P^{n}+b x^{n}\right)}\right. \\
& \left.+\frac{1}{K \Delta P}\left(\frac{1+r^{n}}{x^{n-1}+x^{n} x^{n}}-\frac{1}{x^{n}}\right)\right\}=\frac{\rho}{W_{f} x^{0}}\left(1-\frac{x^{0}}{x^{N}}\right) x^{n-1} s^{n}(95) \tag{95}\\
& n=1, \ldots, N
\end{align*}
$$

Rearrangement of equation (21) gives

$$
\begin{equation*}
I^{n}=\frac{\mu\left(1-\frac{x^{0}}{x^{N}}\right) x^{n-1} R^{n} s^{n}}{4 x^{0} d(L / d) W_{f}}-1 \quad n=1, \ldots, N \tag{96}
\end{equation*}
$$

Substituting the various equations into equation (69) yields

$$
\begin{equation*}
\frac{x^{0}}{x^{N}-x^{0}} \tag{97}
\end{equation*}
$$

$$
\begin{aligned}
& c_{t}=\frac{\psi}{W_{f}} \sum_{n=1}^{N}\left\{k_{1}\left(\frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \cdot \frac{\Delta P^{n}-\Delta P^{n-1}}{\rho} \frac{x^{0} W_{f}}{\left(1-\frac{x^{0}}{x^{0}}\right) x^{n-1}}\right) a_{1}\right. \\
& \left.+k_{2}\left\{0.023 \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{3}\left(R e^{n}\right)^{2.0} s^{n}\right\}^{a_{2}}\right\} \\
& +\frac{\psi_{t}}{W_{f}}\left[\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{\Delta P^{N}}{\rho} \frac{x^{0} W_{f}}{\left(1-\frac{x^{0}}{x^{N}}\right)_{x}}\right]^{a_{3}} \\
& +\frac{k_{s}}{W_{f}} \sum_{n=1}^{N}\left(\frac{\rho_{m} d}{\sigma_{m}} S^{n} \Delta p^{n}\left(1.62+\frac{0.54}{L / D}+\frac{0.189}{L / D} \sqrt{\frac{\sigma_{m}}{\Delta p^{n}}}\right)^{4}\right. \\
& +c_{e} \sum_{n=1}^{N}\left[\frac{1+\eta_{1}}{\eta_{m} \eta_{p}} \frac{\Delta p^{n}-\Delta p^{n-1}}{\rho} \frac{x^{0}}{x^{n-1}\left(1-\frac{x^{0}}{x^{0}}\right.}+0.023 \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\rho}{g_{c}}\left(\frac{\mu}{c \rho}\right)^{3}\right. \\
& \left.\left(\operatorname{Re}^{n}\right)^{2.8} \frac{S^{n}}{W_{f}}\right]-c_{e} \eta_{m} \eta_{p}\left(1-\eta_{f}\right) \quad \frac{\Delta \rho^{N}}{\rho} \frac{x^{0}}{x^{N}-x^{0}}+c_{F} \cdot
\end{aligned}
$$

The $3 N$ decision variables and $2 N$ state variables are defined as follows:

$$
\begin{array}{ll}
\theta_{1}^{n}=R^{n} & n=1, \ldots, N \\
\theta_{2}^{n}=\Delta P^{n} & n=1, \ldots, N . \\
\theta_{3}^{n}=s^{n} & n=1, \ldots, N \\
x_{1}^{n}=x^{n} & n=1, \ldots, N \\
x_{2}^{N}=c_{t} &
\end{array}
$$

After such transformations equations (95) and (90) become

$$
\begin{align*}
& \left(x_{1}^{n-1}+r^{n} x_{1}^{n}\right)\left\{\left(\frac{c}{k\left(\theta_{1}^{n}\right)^{7 / 8} \theta_{2}^{n}}-\frac{b}{k^{2}\left(\theta_{2}^{n}\right)^{2}}\right) \ln \frac{x_{1}^{n}\left[k \theta_{2}^{n}\left(1+r^{n}\right)+b\left(x_{2}^{n-1}+r^{n} x_{2}^{n}\right)\right]}{\left(x_{1}^{n-1}+r^{n} x_{1}^{n}\right)\left(x \theta_{2}^{n}+b x_{1}^{n}\right)}\right. \\
& \left.\quad+\frac{1}{K \theta_{2}^{n}}\left(\frac{1+r^{n}}{x_{1}^{n-1}+r^{n} x_{1}^{n}}-\frac{1}{x_{1}^{n}}\right)\right\}=B_{1}\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}\right) x_{1}^{n-1} \theta_{3}^{n} \quad(103) \tag{103}
\end{align*}
$$

where

$$
\mathrm{B}_{1}=\frac{\rho}{x_{1}^{0} W_{f}} \quad \mathrm{n}=1, \ldots, \mathrm{~N}
$$

and

$$
\begin{equation*}
r^{n}=B_{2}\left(1-\frac{x_{1}^{\circ}}{x_{1}^{N}}\right) \theta_{1}^{n} \theta_{3}^{n} x_{1}^{n-1}-1 \quad n=1, \ldots, N \tag{104}
\end{equation*}
$$

The $3 N$ decision variables and $2 N$ state variables are defined as follows:

$$
\begin{array}{ll}
\theta_{1}^{n}=R^{n} & n=1, \ldots, N \\
\theta_{2}^{n}=\Delta P^{n} & n=1, \ldots, N . \\
\theta_{3}^{n}=s^{n} & n=1, \ldots, N \\
x_{1}^{n}=x^{n} & n=1, \ldots, N \\
x_{2}^{N}=c_{t} &
\end{array}
$$

After such transformations equations (95) and (90) become

$$
\begin{align*}
& \left(x_{1}^{n-1}+r^{n} x_{1}^{n}\right)\left\{\left(\frac{c}{k\left(\theta_{1}^{n}\right)^{7 / 8} \theta_{2}^{n}}-\frac{b}{k^{2}\left(\theta_{2}^{n}\right)^{2}}\right) \ln \frac{x_{1}^{n}\left[k \theta_{2}^{n}\left(1+r^{n}\right)+b\left(x_{2}^{n-1}+r^{n} x_{2}^{n}\right)\right]}{\left(x_{1}^{n-1}+r^{n} x_{1}^{n}\right)\left(x \theta_{2}^{n}+b x_{1}^{n}\right)}\right. \\
& \left.\quad+\frac{1}{K \theta_{2}^{n}}\left(\frac{1+r^{n}}{x_{1}^{n-1}+r^{n} x_{1}^{n}}-\frac{1}{x_{1}^{n}}\right)\right\}=B_{1}\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}\right) x_{1}^{n-1} \theta_{3}^{n} \quad(103) \tag{103}
\end{align*}
$$

where

$$
\mathrm{B}_{1}=\frac{\rho}{x_{1}^{0} W_{f}} \quad \mathrm{n}=1, \ldots, \mathrm{~N}
$$

and

$$
\begin{equation*}
r^{n}=B_{2}\left(1-\frac{x_{1}^{\circ}}{x_{1}^{N}}\right) \theta_{1}^{n} \theta_{3}^{n} x_{1}^{n-1}-1 \quad n=1, \ldots, N \tag{104}
\end{equation*}
$$

where

$$
B_{2}=\frac{\mu}{4 x_{1}^{\circ} d(L / D) W_{E}}
$$

x_{2}^{n} is defined as follows:

$$
\begin{align*}
x_{2}^{n} & =x_{2}^{n-1}+B_{3}\left[B_{4} \frac{\theta_{2}^{n}-\theta_{2}^{n-1}}{x_{1}^{n-1}\left(1-\frac{x_{1}^{0}}{x N}\right)^{a_{1}}}\right)^{0}+B_{13}\left[B_{5}\binom{n}{1}^{2.8} \theta_{3}^{n}\right]^{a_{2}} \\
& +B_{6}\left[\theta_{3}^{n} \theta_{2}^{n}\left(B_{7}+B_{8}\left(\theta_{2}^{n}\right)^{-\frac{1}{2}}\right)\right]^{a_{4}} \\
& +B_{9} \frac{\theta_{2}^{n}-\theta_{2}^{n-1}}{x_{1}^{n-1}\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}+B_{10}\left(\theta_{1}^{n}\right)^{2.8} \theta_{3}^{n}\right.} \tag{105}
\end{align*}
$$

$$
\begin{align*}
n & =1, \cdots, N-1 \\
x_{2}^{N} & =x_{2}^{N-1}+B_{3}\left[B_{4} \frac{\theta_{2}^{N}-\theta_{2}^{N-1}}{x_{1}^{N}\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}\right.}\right]^{a_{1}}+B_{13}\left[B_{5}\left(\theta_{1}^{N}\right)^{2.8} \theta_{3}^{N}\right)^{a_{2}} \\
& +B_{6}\left[\theta_{3}^{N} \theta_{2}^{N}\left(B_{7}+B_{8}\left(\theta_{2}^{N}\right)^{-\frac{1}{2}}\right]^{a_{4}}+B_{9} \frac{\theta_{2}^{N}-\theta_{2}^{N-1}}{x_{1}^{N-1}\left(1-\frac{x_{1}^{0}}{N}\right)}\right. \\
& +B_{10}\left(\theta_{1}^{N}\right)^{2.8} \theta_{3}^{N} \\
& +B_{14}\left[B_{11} \frac{\theta_{1}^{N}}{x_{1}^{N}-x_{1}^{0}}\right]^{a_{3}}-B_{12} \frac{\theta_{2}^{N}}{x_{1}^{N}-x_{1}^{0}}+c_{F} \frac{x_{1}^{N}}{x_{1}^{N}-x_{1}^{0}} \tag{106}
\end{align*}
$$

where

$$
B_{2}=\frac{\mu}{4 x_{1}^{\circ} d(L / D) W_{E}}
$$

x_{2}^{n} is defined as follows:

$$
\begin{align*}
x_{2}^{n} & =x_{2}^{n-1}+B_{3}\left[B_{4} \frac{\theta_{2}^{n}-\theta_{2}^{n-1}}{x_{1}^{n-1}\left(1-\frac{x_{1}^{0}}{x N}\right)^{a_{1}}}\right)^{0}+B_{13}\left[B_{5}\binom{n}{1}^{2.8} \theta_{3}^{n}\right]^{a_{2}} \\
& +B_{6}\left[\theta_{3}^{n} \theta_{2}^{n}\left(B_{7}+B_{8}\left(\theta_{2}^{n}\right)^{-\frac{1}{2}}\right)\right]^{a_{4}} \\
& +B_{9} \frac{\theta_{2}^{n}-\theta_{2}^{n-1}}{x_{1}^{n-1}\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}+B_{10}\left(\theta_{1}^{n}\right)^{2.8} \theta_{3}^{n}\right.} \tag{105}
\end{align*}
$$

$$
\begin{align*}
n & =1, \cdots, N-1 \\
x_{2}^{N} & =x_{2}^{N-1}+B_{3}\left[B_{4} \frac{\theta_{2}^{N}-\theta_{2}^{N-1}}{x_{1}^{N}\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}\right.}\right]^{a_{1}}+B_{13}\left[B_{5}\left(\theta_{1}^{N}\right)^{2.8} \theta_{3}^{N}\right)^{a_{2}} \\
& +B_{6}\left[\theta_{3}^{N} \theta_{2}^{N}\left(B_{7}+B_{8}\left(\theta_{2}^{N}\right)^{-\frac{1}{2}}\right]^{a_{4}}+B_{9} \frac{\theta_{2}^{N}-\theta_{2}^{N-1}}{x_{1}^{N-1}\left(1-\frac{x_{1}^{0}}{N}\right)}\right. \\
& +B_{10}\left(\theta_{1}^{N}\right)^{2.8} \theta_{3}^{N} \\
& +B_{14}\left[B_{11} \frac{\theta_{1}^{N}}{x_{1}^{N}-x_{1}^{0}}\right]^{a_{3}}-B_{12} \frac{\theta_{2}^{N}}{x_{1}^{N}-x_{1}^{0}}+c_{F} \frac{x_{1}^{N}}{x_{1}^{N}-x_{1}^{0}} \tag{106}
\end{align*}
$$

where

$$
\begin{aligned}
& x_{2}^{0}=0 \\
& B_{3}=\frac{\Psi^{k_{1}}}{W_{1}} \\
& B_{4}=\frac{1+\eta_{1}}{\eta_{m} \eta_{p}} \cdot \frac{x_{1} W_{1}}{\rho} \\
& B_{5}=0.023 \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{3} \\
& B_{6}=\frac{\psi k_{s}}{W_{f}} \\
& B_{7}=\frac{\rho_{m} d}{\sigma_{m}}\left(1.62+\frac{0.54}{L / D}\right) \\
& B_{B}=0.139 \frac{P_{m} d}{L / D_{N} \sqrt{\sigma}} \\
& B_{9}=c_{e} \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{x_{1}^{0}}{\rho} \\
& B_{10}=C_{e} B_{5} / W_{1} \\
& B_{11}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{x_{1}^{0} w_{f}}{\rho} \\
& B_{12}=c_{e} B_{11} / W_{f} \\
& B_{13}=\frac{\psi k_{2}}{W_{f}} \\
& B_{14}=\frac{\psi k_{t}}{W_{f}}
\end{aligned}
$$

where

$$
\begin{aligned}
& x_{2}^{0}=0 \\
& B_{3}=\frac{\Psi^{k_{1}}}{W_{1}} \\
& B_{4}=\frac{1+\eta_{1}}{\eta_{m} \eta_{p}} \cdot \frac{x_{1} W_{1}}{\rho} \\
& B_{5}=0.023 \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{\rho}{g_{c}}\left(\frac{\mu}{d \rho}\right)^{3} \\
& B_{6}=\frac{\psi k_{s}}{W_{f}} \\
& B_{7}=\frac{\rho_{m} d}{\sigma_{m}}\left(1.62+\frac{0.54}{L / D}\right) \\
& B_{B}=0.139 \frac{P_{m} d}{L / D_{N} \sqrt{\sigma}} \\
& B_{9}=c_{e} \frac{1+\eta_{f}}{\eta_{m} \eta_{p}} \frac{x_{1}^{0}}{\rho} \\
& B_{10}=C_{e} B_{5} / W_{1} \\
& B_{11}=\eta_{m} \eta_{p}\left(1-\eta_{f}\right) \frac{x_{1}^{0} w_{f}}{\rho} \\
& B_{12}=c_{e} B_{11} / W_{f} \\
& B_{13}=\frac{\psi k_{2}}{W_{f}} \\
& B_{14}=\frac{\psi k_{t}}{W_{f}}
\end{aligned}
$$

Equations (105) and (106) contain the term Θ_{2}^{n-1}, that is, it has decision in menory. To avoid this, x_{3}^{n} is introduced as (11)

$$
\begin{equation*}
x_{3}^{n}=\theta_{2}^{n} \quad n=1, \ldots, N \tag{107}
\end{equation*}
$$

Then equations (105) and (106) can be rewritten as

$$
\begin{align*}
& x_{2}^{n}=x_{2}^{n-1}+B_{3}\left[B_{4} \frac{\theta_{2}^{n}-\theta_{3}^{n-1}}{x_{1}^{n-1}\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}\right.}\right]^{a_{1}}+B_{13}\left[B_{5}\left(\theta_{1}^{n}\right)^{2.8} \theta_{3}^{n}\right]^{a_{2}} \\
& +B_{6}\left[\theta_{3}^{n} \theta_{2}^{n}\left(B_{7}+B_{8}\left(\theta_{2}^{n}\right)^{-\frac{1}{2}}\right)\right]_{4}^{a_{4}}+B_{9} \frac{\theta_{2}^{n}-x_{3}^{n-1}}{x_{1}^{n-1}\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}\right)} \\
& +B_{10}\left(\theta_{1}^{n}\right)^{2.8} \theta_{3}^{n} \quad n=1, \ldots, N \tag{108}\\
& x_{2}^{N}=x_{2}^{N-1}+B_{3}\left[B_{4} \frac{\theta_{2}^{N}-x_{3}^{N-1}}{x_{1}^{N-1}\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}\right.}\right]^{a_{1}}+B_{13}\left(B_{5}\left(\theta_{1}^{N}\right)^{2.8} \theta_{3}^{N}\right)^{a_{2}} \\
& +B_{6}\left[\theta_{3}^{N} \theta_{2}^{N}\left(B_{7}+B_{8}\left(\theta_{2}^{N}\right)^{-\frac{1}{2}}\right)\right)^{a_{4}}+B_{9} \frac{\theta_{2}^{N}-x_{3}^{N-1}}{x_{1}^{N-1}\left(1-\frac{\left.x_{1}^{0}\right)}{x_{1}^{N}}\right.} \\
& +B_{10}\left(\theta_{1}^{N}\right)^{2.8} \theta_{3}^{N}+B_{14}\left(B_{11} \frac{\theta_{2}^{N}}{x_{1}^{N}-x_{1}^{0}}\right)^{a_{3}}-B_{12} \frac{\theta_{2}^{N}}{x_{1}^{N}-x_{1}^{0}} \\
& +c_{F} \frac{x_{1}^{N}}{x_{1}^{N}-x_{1}^{0}}
\end{align*}
$$

Equations (105) and (106) contain the term Θ_{2}^{n-1}, that is, it has decision in menory. To avoid this, x_{3}^{n} is introduced as (11)

$$
\begin{equation*}
x_{3}^{n}=\theta_{2}^{n} \quad n=1, \ldots, N \tag{107}
\end{equation*}
$$

Then equations (105) and (106) can be rewritten as

$$
\begin{align*}
& x_{2}^{n}=x_{2}^{n-1}+B_{3}\left[B_{4} \frac{\theta_{2}^{n}-\theta_{3}^{n-1}}{x_{1}^{n-1}\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}\right.}\right]^{a_{1}}+B_{13}\left[B_{5}\left(\theta_{1}^{n}\right)^{2.8} \theta_{3}^{n}\right]^{a_{2}} \\
& +B_{6}\left[\theta_{3}^{n} \theta_{2}^{n}\left(B_{7}+B_{8}\left(\theta_{2}^{n}\right)^{-\frac{1}{2}}\right)\right]_{4}^{a_{4}}+B_{9} \frac{\theta_{2}^{n}-x_{3}^{n-1}}{x_{1}^{n-1}\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}\right)} \\
& +B_{10}\left(\theta_{1}^{n}\right)^{2.8} \theta_{3}^{n} \quad n=1, \ldots, N \tag{108}\\
& x_{2}^{N}=x_{2}^{N-1}+B_{3}\left[B_{4} \frac{\theta_{2}^{N}-x_{3}^{N-1}}{x_{1}^{N-1}\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}\right.}\right]^{a_{1}}+B_{13}\left(B_{5}\left(\theta_{1}^{N}\right)^{2.8} \theta_{3}^{N}\right)^{a_{2}} \\
& +B_{6}\left[\theta_{3}^{N} \theta_{2}^{N}\left(B_{7}+B_{8}\left(\theta_{2}^{N}\right)^{-\frac{1}{2}}\right)\right)^{a_{4}}+B_{9} \frac{\theta_{2}^{N}-x_{3}^{N-1}}{x_{1}^{N-1}\left(1-\frac{\left.x_{1}^{0}\right)}{x_{1}^{N}}\right.} \\
& +B_{10}\left(\theta_{1}^{N}\right)^{2.8} \theta_{3}^{N}+B_{14}\left(B_{11} \frac{\theta_{2}^{N}}{x_{1}^{N}-x_{1}^{0}}\right)^{a_{3}}-B_{12} \frac{\theta_{2}^{N}}{x_{1}^{N}-x_{1}^{0}} \\
& +c_{F} \frac{x_{1}^{N}}{x_{1}^{N}-x_{1}^{0}}
\end{align*}
$$

Now, the optimization problem may be formulated as this:
Find a set of decision variables $\theta_{1}^{n}, \theta_{2}^{n}$, and $\theta_{3}^{n}(n=1,2, \ldots N)$ to minimize the water cost x_{2}^{N} with x_{1}^{N} prefixed.

5-2. Derivatives of State Variables
For convenience the symbols g_{n}^{n} and h_{n}^{n} are used to represent the various combinations of the state variables x_{i}^{n}, decision variables θ_{i}^{n}, and constants B_{n} as defined before. The two symbols are Iisted respectively in Tables. 1 and 2 .
(1) x_{1}^{n}

$$
\begin{align*}
& \frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}=\frac{g_{43}^{n}}{g_{41}^{n}} \tag{110}\\
& \frac{\partial x_{1}^{N}}{\partial \theta_{1}^{N}}=\frac{g_{43}^{N}}{g_{42}^{N}} \tag{111}\\
& \frac{\partial x_{1}^{n}}{\partial \theta_{2}^{n}}=\frac{g_{44}^{n}}{g_{41}^{n}} \tag{112}\\
& \frac{\partial x_{1}^{N}}{\partial \theta_{2}^{N}}=\frac{g_{44}^{N}}{g_{42}^{N}} \tag{113}\\
& \frac{\partial x_{1}^{n}}{\partial \theta_{3}^{n}}=\frac{g_{45}^{n}}{g_{41}^{n}} \tag{114}\\
& \frac{\partial x_{1}^{N}}{}=\frac{g_{45}^{N}}{\partial \theta_{3}^{N}} \tag{115}\\
& g_{42}^{N}
\end{align*} \quad n=1,2, \ldots, N, N-1
$$

Now, the optimization problem may be formulated as this:
Find a set of decision variables $\theta_{1}^{n}, \theta_{2}^{n}$, and $\theta_{3}^{n}(n=1,2, \ldots N)$ to minimize the water cost x_{2}^{N} with x_{1}^{N} prefixed.

5-2. Derivatives of State Variables
For convenience the symbols g_{n}^{n} and h_{n}^{n} are used to represent the various combinations of the state variables x_{i}^{n}, decision variables θ_{i}^{n}, and constants B_{n} as defined before. The two symbols are Iisted respectively in Tables. 1 and 2 .
(1) x_{1}^{n}

$$
\begin{align*}
& \frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}=\frac{g_{43}^{n}}{g_{41}^{n}} \tag{110}\\
& \frac{\partial x_{1}^{N}}{\partial \theta_{1}^{N}}=\frac{g_{43}^{N}}{g_{42}^{N}} \tag{111}\\
& \frac{\partial x_{1}^{n}}{\partial \theta_{2}^{n}}=\frac{g_{44}^{n}}{g_{41}^{n}} \tag{112}\\
& \frac{\partial x_{1}^{N}}{\partial \theta_{2}^{N}}=\frac{g_{44}^{N}}{g_{42}^{N}} \tag{113}\\
& \frac{\partial x_{1}^{n}}{\partial \theta_{3}^{n}}=\frac{g_{45}^{n}}{g_{41}^{n}} \tag{114}\\
& \frac{\partial x_{1}^{N}}{}=\frac{g_{45}^{N}}{\partial \theta_{3}^{N}} \tag{115}\\
& g_{42}^{N}
\end{align*} \quad n=1,2, \ldots, N, N-1
$$

$$
\begin{array}{ll}
\frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}=\frac{g_{46}^{n}}{g_{41}^{n}} & n=1,2, \ldots, N-1 \\
\frac{\partial x_{1}^{N}}{\partial x_{1}^{N-1}}=\frac{9_{46}^{N}}{9_{42}^{N}} & \\
\frac{\partial x_{1}^{n}}{\partial x_{2}^{n-1}}=0 & n=1,2, \ldots, N \tag{118}
\end{array}
$$

(2) $\quad x_{2}^{n}$

$$
\begin{equation*}
\frac{\partial x_{2}^{n}}{\partial \theta_{1}^{n}}=h_{7}^{n}+n_{8}^{n} \quad n=1,2, \ldots, N-1 \tag{120}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial x_{2}^{N}}{\partial \theta_{1}^{N}}=h_{7}^{N}+h_{8}^{N}+h_{16}^{N} \tag{121}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial x_{2}^{n}}{\partial \theta_{2}^{n}}=n_{17}^{n}+n_{18}^{n}+{ }_{19}^{n} n=1,2, \ldots, N-1 \tag{122}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial x_{2}^{N}}{\partial \theta_{2}^{N}}=h_{17}^{N}+h_{18}^{N}+h_{19}^{N}+h_{20}^{N}+h_{21}^{N} \tag{123}
\end{equation*}
$$

$$
\begin{array}{ll}
\frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}=\frac{g_{46}^{n}}{g_{41}^{n}} & n=1,2, \ldots, N-1 \\
\frac{\partial x_{1}^{N}}{\partial x_{1}^{N-1}}=\frac{9_{46}^{N}}{9_{42}^{N}} & \\
\frac{\partial x_{1}^{n}}{\partial x_{2}^{n-1}}=0 & n=1,2, \ldots, N \tag{118}
\end{array}
$$

(2) $\quad x_{2}^{n}$

$$
\begin{equation*}
\frac{\partial x_{2}^{n}}{\partial \theta_{1}^{n}}=h_{7}^{n}+n_{8}^{n} \quad n=1,2, \ldots, N-1 \tag{120}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial x_{2}^{N}}{\partial \theta_{1}^{N}}=h_{7}^{N}+h_{8}^{N}+h_{16}^{N} \tag{121}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial x_{2}^{n}}{\partial \theta_{2}^{n}}=n_{17}^{n}+n_{18}^{n}+{ }_{19}^{n} n=1,2, \ldots, N-1 \tag{122}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial x_{2}^{N}}{\partial \theta_{2}^{N}}=h_{17}^{N}+h_{18}^{N}+h_{19}^{N}+h_{20}^{N}+h_{21}^{N} \tag{123}
\end{equation*}
$$

$$
\begin{array}{ll}
\frac{\partial x_{2}^{n}}{\partial \theta_{3}^{n}}=h_{22}^{n}+h_{23}^{n}+h_{24}^{n} & n=1,2, \ldots, N-1 \\
\frac{\partial x_{2}^{N}}{\partial \theta_{3}^{N}}=h_{2}^{N}+h_{23}^{N}+h_{24}^{N}+n_{25}^{N} \\
\frac{\partial x_{2}^{n}}{\partial x_{1}^{n-1}}=h_{26}^{n} & n=1,2, \ldots, N_{1} \\
\frac{\partial x_{2}^{N}}{\partial x_{1}^{N-1}}=h_{26}^{N}+h_{27}^{N} & n=1,2, \ldots, N \\
\frac{\partial x_{2}^{n}}{\partial x_{2}^{n-1}}=1 & \\
\frac{\partial x_{2}^{n}}{\partial x_{3}^{n-1}}=h_{29}^{n} & n=1,2, \ldots, N
\end{array}
$$

(3) x_{3}^{n}

$$
\begin{array}{ll}
\frac{\partial x_{3}^{n}}{\partial \theta_{1}^{n}}=0 & n=1,2, \ldots, N \\
\frac{\partial x_{3}^{n}}{\partial \theta_{2}^{n}}=1 & n=1,2, \ldots, N
\end{array}
$$

$$
\begin{array}{ll}
\frac{\partial x_{2}^{n}}{\partial \theta_{3}^{n}}=h_{22}^{n}+h_{23}^{n}+h_{24}^{n} & n=1,2, \ldots, N-1 \\
\frac{\partial x_{2}^{N}}{\partial \theta_{3}^{N}}=h_{2}^{N}+h_{23}^{N}+h_{24}^{N}+n_{25}^{N} \\
\frac{\partial x_{2}^{n}}{\partial x_{1}^{n-1}}=h_{26}^{n} & n=1,2, \ldots, N_{1} \\
\frac{\partial x_{2}^{N}}{\partial x_{1}^{N-1}}=h_{26}^{N}+h_{27}^{N} & n=1,2, \ldots, N \\
\frac{\partial x_{2}^{n}}{\partial x_{2}^{n-1}}=1 & \\
\frac{\partial x_{2}^{n}}{\partial x_{3}^{n-1}}=h_{29}^{n} & n=1,2, \ldots, N
\end{array}
$$

(3) x_{3}^{n}

$$
\begin{array}{ll}
\frac{\partial x_{3}^{n}}{\partial \theta_{1}^{n}}=0 & n=1,2, \ldots, N \\
\frac{\partial x_{3}^{n}}{\partial \theta_{2}^{n}}=1 & n=1,2, \ldots, N
\end{array}
$$

$$
\begin{array}{ll}
\frac{\partial x_{3}}{\partial \theta_{3}^{n}}=0 & n=1,2, \ldots, N \\
\frac{\partial x_{3}^{n}}{\partial x_{1}^{n-1}}=0 & n=1,2, \ldots, N \\
\frac{\partial x_{3}^{n}}{\partial x_{2}^{n-1}}=0 & n=1,2, \ldots, N \\
\frac{\partial x_{3}^{n}}{\frac{n}{n}}=0 & n=1,2, \ldots, N
\end{array}
$$

$$
\begin{array}{ll}
\frac{\partial x_{3}}{\partial \theta_{3}^{n}}=0 & n=1,2, \ldots, N \\
\frac{\partial x_{3}^{n}}{\partial x_{1}^{n-1}}=0 & n=1,2, \ldots, N \\
\frac{\partial x_{3}^{n}}{\partial x_{2}^{n-1}}=0 & n=1,2, \ldots, N \\
\frac{\partial x_{3}^{n}}{\frac{n}{n}}=0 & n=1,2, \ldots, N
\end{array}
$$

Table 1. Symbol Representation of g_{n}^{n}

$$
\begin{aligned}
& g_{1}^{n}=x_{1}^{n-1}+x^{n} x_{1}^{n} \\
& g_{2}^{n}=\frac{c}{k \theta_{2}^{n}\left(\theta_{1}^{n}\right)^{7 / 8}}
\end{aligned}
$$

$$
g_{3}^{n}=\frac{b}{K^{2}\left(\theta_{2}^{n}\right)^{2}}
$$

$$
g_{4}^{n}=x_{1}^{n}\left[k \theta_{2}^{n}\left(1+x^{n}\right)+b g_{1}\right]
$$

$$
g_{5}^{n}=k \theta_{2}^{n}+b x_{1}^{n}
$$

$$
g_{6}^{n}=\frac{1}{K \theta_{2}^{n}}\left(\frac{1+x^{n}}{g_{1}^{n}} \frac{1}{x_{1}^{n}}\right)
$$

$$
g_{7}^{n}=B_{1}\left(1-\frac{x_{1}^{\circ}}{x_{1}^{N}}\right)
$$

$$
g_{8}^{n}=B_{2}\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}\right)
$$

$$
g_{9}^{n}=\left(g_{2}^{n}-g_{3}^{n}\right) \quad \text { in } \frac{g_{4}^{n}}{g_{1}^{n} g_{5}^{n}}+g_{6}^{n}
$$

$$
g_{10}^{n}=g_{8}^{n} \theta_{3}^{n} x_{1}^{n-1}
$$

Table 1. Symbol Representation of g_{n}^{n}

$$
\begin{aligned}
& g_{1}^{n}=x_{1}^{n-1}+x^{n} x_{1}^{n} \\
& g_{2}^{n}=\frac{c}{k \theta_{2}^{n}\left(\theta_{1}^{n}\right)^{7 / 8}}
\end{aligned}
$$

$$
g_{3}^{n}=\frac{b}{K^{2}\left(\theta_{2}^{n}\right)^{2}}
$$

$$
g_{4}^{n}=x_{1}^{n}\left[k \theta_{2}^{n}\left(1+x^{n}\right)+b g_{1}\right]
$$

$$
g_{5}^{n}=k \theta_{2}^{n}+b x_{1}^{n}
$$

$$
g_{6}^{n}=\frac{1}{K \theta_{2}^{n}}\left(\frac{1+x^{n}}{g_{1}^{n}} \frac{1}{x_{1}^{n}}\right)
$$

$$
g_{7}^{n}=B_{1}\left(1-\frac{x_{1}^{\circ}}{x_{1}^{N}}\right)
$$

$$
g_{8}^{n}=B_{2}\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}\right)
$$

$$
g_{9}^{n}=\left(g_{2}^{n}-g_{3}^{n}\right) \quad \text { in } \frac{g_{4}^{n}}{g_{1}^{n} g_{5}^{n}}+g_{6}^{n}
$$

$$
g_{10}^{n}=g_{8}^{n} \theta_{3}^{n} x_{1}^{n-1}
$$

Table 1. Symbol Representation of g_{n}^{n} (Continued)
$g_{11}^{n}=x_{1}^{n} g_{9}^{n} g_{10}^{n}$
$g_{12}^{n}=\frac{0.875 \mathrm{cg}_{1}^{n}}{k \theta_{2}^{n}\left(\theta_{1}^{n}\right)^{15 / 8}}$ in $\frac{g_{1}^{n}}{g_{1}^{n} g_{5}^{n}}$
$g_{13}^{n}=-\frac{g_{1}^{n}\left(g_{2}^{n}-g_{3}^{n}\right) x_{1}^{n}}{\cdot g_{4}^{n}} g_{5}^{n_{1}^{n}} \quad$.
$g_{14}^{n}=\left(g_{2}^{n}-g_{3}^{n}\right) x_{1}^{n} g_{10}^{n}$
$g_{15}^{n}=\frac{g_{10}^{n}}{K \theta_{2}^{n} g_{1}^{n}}\left(1+r^{n}\right) x_{1}^{n}-g_{1}^{n}$
$g_{16}^{n}=r^{n} g_{9}^{n}$
$g_{17}^{n}=\frac{g_{1}^{n}\left(g_{2}^{n}-g_{3}^{n}\right)}{g_{4}^{n}}\left(\frac{g_{4}^{n}}{x_{1}^{n}}+b x_{1}^{n} r^{n}\right)$
$g_{18}^{n}=\frac{-\left(g_{2}^{n}-g_{3}^{n}\right)}{g_{5}^{n}}\left(g_{5}^{n} r^{n}+b g_{1}^{n}\right)$
$g_{1 g}^{n}=\frac{g_{1}^{n}}{k \theta_{2}^{n}}\left[\frac{1}{\left(x_{1}^{n}\right)^{2}}-\frac{\left(1+r^{n}\right)}{\left(g_{1}^{n}\right)^{2}} r^{n}\right]$
$g_{20}^{n}=\frac{g_{1}^{n}\left(g_{2}^{n}-2 g_{3}^{n}\right)}{\theta_{2}^{n}} \ln \frac{g_{4}^{n}}{g_{1}^{n} g_{5}^{n}}$

Table 1. Symbol Representation of g_{n}^{n} (Continued)
$g_{11}^{n}=x_{1}^{n} g_{9}^{n} g_{10}^{n}$
$g_{12}^{n}=\frac{0.875 \mathrm{cg}_{1}^{n}}{k \theta_{2}^{n}\left(\theta_{1}^{n}\right)^{15 / 8}}$ in $\frac{g_{1}^{n}}{g_{1}^{n} g_{5}^{n}}$
$g_{13}^{n}=-\frac{g_{1}^{n}\left(g_{2}^{n}-g_{3}^{n}\right) x_{1}^{n}}{\cdot g_{4}^{n}} g_{5}^{n_{1}^{n}} \quad$.
$g_{14}^{n}=\left(g_{2}^{n}-g_{3}^{n}\right) x_{1}^{n} g_{10}^{n}$
$g_{15}^{n}=\frac{g_{10}^{n}}{K \theta_{2}^{n} g_{1}^{n}}\left(1+r^{n}\right) x_{1}^{n}-g_{1}^{n}$
$g_{16}^{n}=r^{n} g_{9}^{n}$
$g_{17}^{n}=\frac{g_{1}^{n}\left(g_{2}^{n}-g_{3}^{n}\right)}{g_{4}^{n}}\left(\frac{g_{4}^{n}}{x_{1}^{n}}+b x_{1}^{n} r^{n}\right)$
$g_{18}^{n}=\frac{-\left(g_{2}^{n}-g_{3}^{n}\right)}{g_{5}^{n}}\left(g_{5}^{n} r^{n}+b g_{1}^{n}\right)$
$g_{1 g}^{n}=\frac{g_{1}^{n}}{k \theta_{2}^{n}}\left[\frac{1}{\left(x_{1}^{n}\right)^{2}}-\frac{\left(1+r^{n}\right)}{\left(g_{1}^{n}\right)^{2}} r^{n}\right]$
$g_{20}^{n}=\frac{g_{1}^{n}\left(g_{2}^{n}-2 g_{3}^{n}\right)}{\theta_{2}^{n}} \ln \frac{g_{4}^{n}}{g_{1}^{n} g_{5}^{n}}$

Table 1. Symbol Representation of g_{n}^{n} (Continued)
$g_{21}^{n}=-\frac{g_{1}^{n}\left(g_{2}^{n}-g_{3}^{n}\right)}{g_{4}^{n}} k x_{1}^{n}\left(1+r^{n}\right)$
$g_{22}^{n}=\frac{K g_{1}^{n}\left(g_{2}^{n}-g_{3}^{n}\right)}{g_{5}}$
$g_{23}^{n}=\frac{g_{1}^{n} g_{6}^{n}}{\theta_{2}^{n}}$
$g_{24}^{n}=g_{8}^{n} \theta_{1}^{n} x_{1}^{n-1}$
$g_{25}^{n}=g_{7}^{n} x_{1}^{n-1}-x_{1}^{n} g_{9}^{n} g_{24}^{n}$
$g_{26}^{n}=\frac{g_{1}^{n}\left(g_{2}^{n}-g_{3}^{n}\right)}{g_{4}^{n}} x_{1}^{n} g_{24}^{n} g_{5}^{n}$
$g_{27}^{n}=\left(g_{2}^{n}-g_{3}^{n}\right) x_{1}^{n} g_{24}^{n}$
$g_{28}^{n}=-\frac{g_{24}^{n}}{k \theta_{2}^{n} g_{1}^{n}}\left[g_{1}^{n}-x_{1}^{n}\left(1+r^{n}\right)\right]$
$g_{2 g}^{n}=g_{8}^{n} \theta_{1}^{n} \theta_{3}^{n}$
$g_{30}^{n}=1+x_{1}^{n} g_{2 g}^{n}$
$g_{31}^{n}=g_{7}^{n} \theta_{3}^{n}-g_{9}^{n} g_{30}^{n}+\left(g_{2}^{n}-g_{3}^{n}\right) g_{30}^{n}$

Table 1. Symbol Representation of g_{n}^{n} (Continued)
$g_{21}^{n}=-\frac{g_{1}^{n}\left(g_{2}^{n}-g_{3}^{n}\right)}{g_{4}^{n}} k x_{1}^{n}\left(1+r^{n}\right)$
$g_{22}^{n}=\frac{K g_{1}^{n}\left(g_{2}^{n}-g_{3}^{n}\right)}{g_{5}}$
$g_{23}^{n}=\frac{g_{1}^{n} g_{6}^{n}}{\theta_{2}^{n}}$
$g_{24}^{n}=g_{8}^{n} \theta_{1}^{n} x_{1}^{n-1}$
$g_{25}^{n}=g_{7}^{n} x_{1}^{n-1}-x_{1}^{n} g_{9}^{n} g_{24}^{n}$
$g_{26}^{n}=\frac{g_{1}^{n}\left(g_{2}^{n}-g_{3}^{n}\right)}{g_{4}^{n}} x_{1}^{n} g_{24}^{n} g_{5}^{n}$
$g_{27}^{n}=\left(g_{2}^{n}-g_{3}^{n}\right) x_{1}^{n} g_{24}^{n}$
$g_{28}^{n}=-\frac{g_{24}^{n}}{k \theta_{2}^{n} g_{1}^{n}}\left[g_{1}^{n}-x_{1}^{n}\left(1+r^{n}\right)\right]$
$g_{2 g}^{n}=g_{8}^{n} \theta_{1}^{n} \theta_{3}^{n}$
$g_{30}^{n}=1+x_{1}^{n} g_{2 g}^{n}$
$g_{31}^{n}=g_{7}^{n} \theta_{3}^{n}-g_{9}^{n} g_{30}^{n}+\left(g_{2}^{n}-g_{3}^{n}\right) g_{30}^{n}$

Table 1. Symbol Representation of g_{n}^{n} (Continued) $g_{32}^{n}=\frac{g_{1}^{n}\left(g_{2}^{n}-g_{3}^{n}\right) x_{1}^{n}}{g_{4}^{n}}\left(k \theta_{2}^{n} g_{29}^{n}+b 9_{30}^{n}\right)$
$g_{33}^{n}=\frac{g_{29}^{n} g_{1}^{n}-\left(1+r^{n}\right) g_{30}^{n}}{k \theta_{2}^{n} g_{1}^{n}}$
$g_{34}^{n}=\theta_{3}^{n} x_{1}^{n-1} \frac{x_{1}^{o}}{\left(x_{1}^{n}\right)^{2}}$
$g_{35}^{n}=B_{2} \theta_{1}^{n} g_{34}^{n}$
$g_{36}^{n}=B_{1} g_{34}^{n}$
$g_{37}^{n}=g_{9}^{n} g_{35}^{n} x_{1}^{n}-g_{36}^{n}$
$g_{38}^{n}=\frac{g_{1}^{n}\left(g_{2}^{n}-g_{3}^{n}\right)}{g_{4}^{n}} \times{ }_{1}^{n} g_{5}^{n} g_{35}^{n}$
$g_{39}^{n}=-\left(g_{2}^{n}-g_{3}^{n}\right) x_{1}^{n} g_{35}^{n}$
$g_{40}^{n}=\frac{g_{35}^{n} 9_{1}^{n}-\left(1+x^{n}\right) x_{1}^{n}}{k \theta_{2}^{n} g_{1}^{n}}$
$g_{41}^{n}=g_{16}^{n}+g_{17}^{n}+g_{18}^{n}+g_{19}^{n}$

Table 1. Symbol Representation of g_{n}^{n} (Continued) $g_{32}^{n}=\frac{g_{1}^{n}\left(g_{2}^{n}-g_{3}^{n}\right) x_{1}^{n}}{g_{4}^{n}}\left(k \theta_{2}^{n} g_{29}^{n}+b 9_{30}^{n}\right)$
$g_{33}^{n}=\frac{g_{29}^{n} g_{1}^{n}-\left(1+r^{n}\right) g_{30}^{n}}{k \theta_{2}^{n} g_{1}^{n}}$
$g_{34}^{n}=\theta_{3}^{n} x_{1}^{n-1} \frac{x_{1}^{o}}{\left(x_{1}^{n}\right)^{2}}$
$g_{35}^{n}=B_{2} \theta_{1}^{n} g_{34}^{n}$
$g_{36}^{n}=B_{1} g_{34}^{n}$
$g_{37}^{n}=g_{9}^{n} g_{35}^{n} x_{1}^{n}-g_{36}^{n}$
$g_{38}^{n}=\frac{g_{1}^{n}\left(g_{2}^{n}-g_{3}^{n}\right)}{g_{4}^{n}} \times{ }_{1}^{n} g_{5}^{n} g_{35}^{n}$
$g_{39}^{n}=-\left(g_{2}^{n}-g_{3}^{n}\right) x_{1}^{n} g_{35}^{n}$
$g_{40}^{n}=\frac{g_{35}^{n} 9_{1}^{n}-\left(1+x^{n}\right) x_{1}^{n}}{k \theta_{2}^{n} g_{1}^{n}}$
$g_{41}^{n}=g_{16}^{n}+g_{17}^{n}+g_{18}^{n}+g_{19}^{n}$

Table I. Symbol Representation of g_{n}^{n} (Continued)

$$
\begin{aligned}
& g_{42}^{n}=g_{41}^{n}+g_{37}^{n}+g_{33}^{n}+g_{39}^{n}+g_{40}^{n} \\
& g_{43}^{n}=g_{11}^{n}+g_{12}^{n}+g_{13}^{n}+g_{14}^{n}+g_{15}^{n} \\
& g_{44}^{n}=g_{20}^{n}+g_{21}^{n}+g_{22}^{n}+g_{23}^{n} \\
& g_{45}^{n}=g_{25}^{n}+g_{26}^{n}+g_{27}^{n}+g_{28}^{n} \\
& g_{46}^{n}=g_{31}^{n}+g_{32}^{n}+g_{33}^{n}
\end{aligned}
$$

Table I. Symbol Representation of g_{n}^{n} (Continued)

$$
\begin{aligned}
& g_{42}^{n}=g_{41}^{n}+g_{37}^{n}+g_{33}^{n}+g_{39}^{n}+g_{40}^{n} \\
& g_{43}^{n}=g_{11}^{n}+g_{12}^{n}+g_{13}^{n}+g_{14}^{n}+g_{15}^{n} \\
& g_{44}^{n}=g_{20}^{n}+g_{21}^{n}+g_{22}^{n}+g_{23}^{n} \\
& g_{45}^{n}=g_{25}^{n}+g_{26}^{n}+g_{27}^{n}+g_{28}^{n} \\
& g_{46}^{n}=g_{31}^{n}+g_{32}^{n}+g_{33}^{n}
\end{aligned}
$$

Table 2. Symbol Representation of n_{n}^{n}

$$
\begin{aligned}
& n_{1}^{n}=\frac{\theta_{2}^{n}-\theta_{3}^{n-1}}{x_{1}^{n-1}\left(1-\frac{x_{1}^{Q}}{x_{1}^{N}}\right.} \\
& n_{2}^{n}=\left(\theta_{1}^{n}\right)^{2 \cdot 8} \theta_{3}^{n} \\
& n_{3}^{n}=\theta_{3}^{n}\left(\theta_{2}^{n}\right)^{\frac{1}{2}} \\
& h_{4}^{n}=B_{8}+B_{7}\left(\theta_{2}^{n}\right)^{\frac{1}{2}} \\
& h_{5}^{n}=\frac{\theta_{2}^{N}}{x_{1}^{N}-x_{1}^{o}} \\
& h_{6}^{n}=\frac{x_{1}^{N}}{x_{1}^{N}-x_{1}} \\
& h_{7}^{n}=2.8 a_{2} B_{13} B_{5} \theta_{3}^{n}\left(\theta_{1}^{n}\right)^{1.8}\left(3_{5} n_{2}^{n}\right)^{a_{2}-1} \\
& h_{8}^{n}=2.8 B_{10}\left(\theta_{1}^{n}\right)^{1 \cdot 8} \theta_{3}^{n} \\
& h_{9}^{n}=\frac{-x_{1}^{0}}{\left(x_{1}^{n}-x_{1}^{0}\right)^{2}} \\
& h_{10}^{n}=\frac{\theta_{2}^{n}-x_{3}^{n-1}}{x_{1}^{n-1}} \cdot n_{9}^{n}
\end{aligned}
$$

Table 2. Symbol Representation of n_{n}^{n}

$$
\begin{aligned}
& n_{1}^{n}=\frac{\theta_{2}^{n}-\theta_{3}^{n-1}}{x_{1}^{n-1}\left(1-\frac{x_{1}^{Q}}{x_{1}^{N}}\right.} \\
& n_{2}^{n}=\left(\theta_{1}^{n}\right)^{2 \cdot 8} \theta_{3}^{n} \\
& n_{3}^{n}=\theta_{3}^{n}\left(\theta_{2}^{n}\right)^{\frac{1}{2}} \\
& h_{4}^{n}=B_{8}+B_{7}\left(\theta_{2}^{n}\right)^{\frac{1}{2}} \\
& h_{5}^{n}=\frac{\theta_{2}^{N}}{x_{1}^{N}-x_{1}^{o}} \\
& h_{6}^{n}=\frac{x_{1}^{N}}{x_{1}^{N}-x_{1}} \\
& h_{7}^{n}=2.8 a_{2} B_{13} B_{5} \theta_{3}^{n}\left(\theta_{1}^{n}\right)^{1.8}\left(3_{5} n_{2}^{n}\right)^{a_{2}-1} \\
& h_{8}^{n}=2.8 B_{10}\left(\theta_{1}^{n}\right)^{1 \cdot 8} \theta_{3}^{n} \\
& h_{9}^{n}=\frac{-x_{1}^{0}}{\left(x_{1}^{n}-x_{1}^{0}\right)^{2}} \\
& h_{10}^{n}=\frac{\theta_{2}^{n}-x_{3}^{n-1}}{x_{1}^{n-1}} \cdot n_{9}^{n}
\end{aligned}
$$

Table 2. Symbol Representation of h_{n}^{n} (Continued)

$$
\begin{aligned}
& h_{11}^{n}=a_{1} B_{3}\left(B_{4} h_{1}^{n}\right)^{a_{1}-1} h_{10}^{n} B_{4} \\
& h_{12}^{n}=B_{9} h_{10}^{n}
\end{aligned}
$$

$$
n_{13}^{n}=\frac{a_{3} B_{14} B_{11}\left(B_{11} h_{5}^{n}\right)^{a_{3}^{-1}} \theta_{2^{n}}^{n_{9}^{n}}}{x_{1}^{0}}
$$

$$
n_{14}^{n}=c_{F} h_{9}^{n} \cdot \frac{B_{12} \theta_{2}^{N_{h}^{n}}}{x_{1}^{0}}
$$

$$
h_{15}^{n}=n_{11}^{n}+n_{12}^{n}+h_{13}^{n}+n_{14}^{n}
$$

$$
h_{16}^{n}=h_{15}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}
$$

$$
h_{17}^{n}=\frac{a_{1} B_{3} B_{4} h_{6}^{n}\left(B_{4} n_{1}^{n}\right)^{a_{1}-1}}{x_{1}^{n-1}}
$$

$$
h_{18}^{n}=\frac{a_{4} B_{6}\left(h_{3} h_{4}\right)^{a_{4}^{-1}}\left(h_{4}^{n}+B_{7} h_{3}^{n}\right)}{2\left(\theta_{2}^{n}\right)^{\frac{1}{2}}}
$$

$$
h_{19}^{n}=\frac{B_{9}^{n_{6}^{n}}}{x_{1}^{n-1}}
$$

$$
h_{20}^{n}=h_{15}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{2}^{n}}
$$

Table 2. Symbol Representation of h_{n}^{n} (Continued)

$$
\begin{aligned}
& h_{11}^{n}=a_{1} B_{3}\left(B_{4} h_{1}^{n}\right)^{a_{1}-1} h_{10}^{n} B_{4} \\
& h_{12}^{n}=B_{9} h_{10}^{n}
\end{aligned}
$$

$$
n_{13}^{n}=\frac{a_{3} B_{14} B_{11}\left(B_{11} h_{5}^{n}\right)^{a_{3}^{-1}} \theta_{2^{n}}^{n_{9}^{n}}}{x_{1}^{0}}
$$

$$
n_{14}^{n}=c_{F} h_{9}^{n} \cdot \frac{B_{12} \theta_{2}^{N_{h}^{n}}}{x_{1}^{0}}
$$

$$
h_{15}^{n}=n_{11}^{n}+n_{12}^{n}+h_{13}^{n}+n_{14}^{n}
$$

$$
h_{16}^{n}=h_{15}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}
$$

$$
h_{17}^{n}=\frac{a_{1} B_{3} B_{4} h_{6}^{n}\left(B_{4} n_{1}^{n}\right)^{a_{1}-1}}{x_{1}^{n-1}}
$$

$$
h_{18}^{n}=\frac{a_{4} B_{6}\left(h_{3} h_{4}\right)^{a_{4}^{-1}}\left(h_{4}^{n}+B_{7} h_{3}^{n}\right)}{2\left(\theta_{2}^{n}\right)^{\frac{1}{2}}}
$$

$$
h_{19}^{n}=\frac{B_{9}^{n_{6}^{n}}}{x_{1}^{n-1}}
$$

$$
h_{20}^{n}=h_{15}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{2}^{n}}
$$

Table 2. Symbol Representation of h_{n}^{n} (Continued)

$$
\begin{aligned}
& n_{21}^{n}=\frac{1}{x_{1}^{N}-x_{1}^{0}}\left\{a_{3} B_{14} B_{11}\left(B_{11} n_{5}^{n}\right)^{a_{3}-1}-B_{12}\right\} \\
& h_{22}^{n}=a_{2} B_{13}\left(B_{5} h_{2}^{n}\right)^{a_{2}-1} B_{5}\left(\theta_{1}^{n}\right)^{2.8} \\
& h_{23}^{n}=a_{4} B_{6}\left(h_{3}^{n_{4} n_{4}}\right)^{a_{4}-1}\left(\theta_{2}^{n}\right)^{\frac{1}{2} h_{4}^{n}} \\
& n_{24}^{n}=B_{10}\left(\theta_{1}^{n}\right)^{2.8} \\
& h_{25}^{n}=h_{15}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{3}^{n}} \\
& h_{26}^{n}=-\frac{n_{1}^{n}}{x_{1}^{n-1}}\left[B_{9}+B_{1} B_{3} B_{4}\left(B_{4} h_{1}^{n}\right)^{a_{1}-1}\right] \\
& h_{27}^{n}=h_{15}^{n} \frac{\partial x_{1}^{n}}{\partial x_{1}^{n-1}} \\
& h_{28}^{n}=\frac{-1}{x_{1}^{n-1}+\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}\right.} \\
& h_{29}^{n}=h_{28}^{n}\left\{B_{9}+a_{1} B_{3} B_{4}\left(B_{4} h_{1}^{n}\right)^{a_{1}-1}\right\}
\end{aligned}
$$

Table 2. Symbol Representation of h_{n}^{n} (Continued)

$$
\begin{aligned}
& n_{21}^{n}=\frac{1}{x_{1}^{N}-x_{1}^{0}}\left\{a_{3} B_{14} B_{11}\left(B_{11} n_{5}^{n}\right)^{a_{3}-1}-B_{12}\right\} \\
& h_{22}^{n}=a_{2} B_{13}\left(B_{5} h_{2}^{n}\right)^{a_{2}-1} B_{5}\left(\theta_{1}^{n}\right)^{2.8} \\
& h_{23}^{n}=a_{4} B_{6}\left(h_{3}^{n_{4} n_{4}}\right)^{a_{4}-1}\left(\theta_{2}^{n}\right)^{\frac{1}{2} h_{4}^{n}} \\
& n_{24}^{n}=B_{10}\left(\theta_{1}^{n}\right)^{2.8} \\
& h_{25}^{n}=h_{15}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{3}^{n}} \\
& h_{26}^{n}=-\frac{n_{1}^{n}}{x_{1}^{n-1}}\left[B_{9}+B_{1} B_{3} B_{4}\left(B_{4} h_{1}^{n}\right)^{a_{1}-1}\right] \\
& h_{27}^{n}=h_{15}^{n} \frac{\partial x_{1}^{n}}{\partial x_{1}^{n-1}} \\
& h_{28}^{n}=\frac{-1}{x_{1}^{n-1}+\left(1-\frac{x_{1}^{0}}{x_{1}^{N}}\right.} \\
& h_{29}^{n}=h_{28}^{n}\left\{B_{9}+a_{1} B_{3} B_{4}\left(B_{4} h_{1}^{n}\right)^{a_{1}-1}\right\}
\end{aligned}
$$

5-3. Adjoint Variables
(a) Adjoint Variables z_{i}^{N}

Since X_{2}^{N} is the total cost function, we have

$$
\begin{equation*}
c_{1}=0, \quad c_{2}=1, \quad c_{3}=0 \tag{136}
\end{equation*}
$$

and we can write (11)

$$
\begin{equation*}
z_{1}^{N}=0, \quad z_{2}^{N}=1, \quad z_{3}^{N}=0 \tag{137}
\end{equation*}
$$

However, since x_{1}^{N} is prefixed,

$$
\begin{equation*}
z_{1}^{N} \neq c_{1} \tag{138}
\end{equation*}
$$

Then H^{N} becomes

$$
H^{N}=z_{1}^{N} x_{1}^{N}+x_{2}^{N}
$$

Differentiating H^{N} with respect to θ_{3}^{N} yields

$$
\frac{\partial H^{N}}{\partial \theta_{3}^{N}}=z^{N} 1 \frac{\partial x_{1}^{N}}{\partial \theta_{3}^{N}}+\frac{\partial x_{2}^{N}}{\partial \theta_{3}^{N}}
$$

Setting $\frac{\partial H^{N}}{\partial \theta_{3}^{N}}=0$ yields

$$
\begin{equation*}
z_{1}^{N}=\frac{-\frac{\partial x_{2}^{N}}{\partial \theta_{3}^{N}}}{\frac{\partial x_{1}^{N}}{\partial \theta_{3}^{N}}} \tag{139}
\end{equation*}
$$

5-3. Adjoint Variables
(a) Adjoint Variables z_{i}^{N}

Since X_{2}^{N} is the total cost function, we have

$$
\begin{equation*}
c_{1}=0, \quad c_{2}=1, \quad c_{3}=0 \tag{136}
\end{equation*}
$$

and we can write (11)

$$
\begin{equation*}
z_{1}^{N}=0, \quad z_{2}^{N}=1, \quad z_{3}^{N}=0 \tag{137}
\end{equation*}
$$

However, since x_{1}^{N} is prefixed,

$$
\begin{equation*}
z_{1}^{N} \neq c_{1} \tag{138}
\end{equation*}
$$

Then H^{N} becomes

$$
H^{N}=z_{1}^{N} x_{1}^{N}+x_{2}^{N}
$$

Differentiating H^{N} with respect to θ_{3}^{N} yields

$$
\frac{\partial H^{N}}{\partial \theta_{3}^{N}}=z^{N} 1 \frac{\partial x_{1}^{N}}{\partial \theta_{3}^{N}}+\frac{\partial x_{2}^{N}}{\partial \theta_{3}^{N}}
$$

Setting $\frac{\partial H^{N}}{\partial \theta_{3}^{N}}=0$ yields

$$
\begin{equation*}
z_{1}^{N}=\frac{-\frac{\partial x_{2}^{N}}{\partial \theta_{3}^{N}}}{\frac{\partial x_{1}^{N}}{\partial \theta_{3}^{N}}} \tag{139}
\end{equation*}
$$

(b) Adjoint Variables z_{i}^{n}

From the definition of adjoint variables (11) and the known values of z_{i}^{N} and the derivative of state variables in section $5-2$, we obtain the following expression for z_{i}^{n}

$$
\begin{align*}
& z_{1}^{n-1}=z_{i}^{n} \frac{\partial x_{1}^{n}}{\partial x_{1}^{n-1}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial x_{1}^{n-1}} \quad n=1,2, \ldots, N \tag{140}\\
& z_{2}^{n-1}=z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial x_{2}^{n-1}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial x_{2}^{n-1}}=z_{2}^{n} n=1,2, \ldots, N \tag{141}\\
& z_{3}^{n-1}=z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial x_{3}^{n-1}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial x_{3}^{n-1}}=z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial x_{3}^{n-1}} n=1,2, \ldots, N \tag{142}
\end{align*}
$$

5-4. Derivatives of Hamiltonians
From the definition of the Hamiltonian (11) and the known value of the derivative of the state variables in Section 5-2 and z_{i}^{n} in Section 5-3, we have

$$
\begin{align*}
\frac{\partial H^{n}}{\partial \theta_{1}^{n}} & =z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial \theta_{1}^{n}}+z_{3}^{n} \frac{\partial x_{3}^{n}}{\partial \theta_{1}^{n}} \\
& =z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial \theta_{1}^{n}} \tag{143}
\end{align*}
$$

$$
\mathrm{n}=1,2, \ldots, \mathrm{~N}
$$

(b) Adjoint Variables z_{i}^{n}

From the definition of adjoint variables (11) and the known values of z_{i}^{N} and the derivative of state variables in section $5-2$, we obtain the following expression for z_{i}^{n}

$$
\begin{align*}
& z_{1}^{n-1}=z_{i}^{n} \frac{\partial x_{1}^{n}}{\partial x_{1}^{n-1}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial x_{1}^{n-1}} \quad n=1,2, \ldots, N \tag{140}\\
& z_{2}^{n-1}=z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial x_{2}^{n-1}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial x_{2}^{n-1}}=z_{2}^{n} n=1,2, \ldots, N \tag{141}\\
& z_{3}^{n-1}=z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial x_{3}^{n-1}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial x_{3}^{n-1}}=z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial x_{3}^{n-1}} n=1,2, \ldots, N \tag{142}
\end{align*}
$$

5-4. Derivatives of Hamiltonians
From the definition of the Hamiltonian (11) and the known value of the derivative of the state variables in Section 5-2 and z_{i}^{n} in Section 5-3, we have

$$
\begin{align*}
\frac{\partial H^{n}}{\partial \theta_{1}^{n}} & =z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial \theta_{1}^{n}}+z_{3}^{n} \frac{\partial x_{3}^{n}}{\partial \theta_{1}^{n}} \\
& =z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial \theta_{1}^{n}} \tag{143}
\end{align*}
$$

$$
\mathrm{n}=1,2, \ldots, \mathrm{~N}
$$

$$
\begin{align*}
\frac{\partial H^{n}}{\partial \theta_{2}^{n}} & =z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{2}^{n}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial \theta_{2}^{n}}+z_{3}^{n} \frac{\partial x_{3}^{n}}{\partial \theta_{2}^{n}} \\
& =z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{3}^{n}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial \theta_{2}^{n}}+z_{3}^{n} \quad n=1,2, \ldots, N \tag{144}\\
\frac{\partial r^{n}}{\partial \theta_{3}^{n}} & =z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{3}^{n}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial \theta_{3}^{n}}+z_{3}^{n} \frac{\partial x_{3}^{n}}{\partial \theta_{3}^{n}} \\
& =z_{1}^{n} \frac{\partial x_{1}^{n}}{n^{n}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{n^{n}}
\end{align*}
$$

5-5. Computing Procedures

A suggested computational procedure to seek the optimal decisions喑 for a fixed $\times{ }_{1}^{N}$ is as follows:

Step 1. Assume a set of values of $\theta_{i}^{n}(n=1, \ldots, N) \theta_{2}^{n}(n=1, \ldots, N)$, $\theta_{3}^{n}(n=1, \ldots, N-1)$, and $\Delta \theta_{i}^{n}$ as a trial.

Step 2. Calculate $x_{1}^{n}(n=1, \ldots, N-1)$ and Q_{3}^{N} from equations (103) and (104).

Step 3. Calculate $x_{2}^{n}(n=1, \ldots, N-1)$ and x_{2}^{N} from equations (108) and (109).

Step 4. Calculate x_{3}^{n} from equation (107)
Step 5. Calculate $z_{1}^{N}, z_{1}^{n-1}, z_{2}^{n-1}$, and $z_{3}^{n-1}(n=1,2, \ldots, N)$ from equations (139) and (142).

$$
\begin{align*}
\frac{\partial H^{n}}{\partial \theta_{2}^{n}} & =z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{2}^{n}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial \theta_{2}^{n}}+z_{3}^{n} \frac{\partial x_{3}^{n}}{\partial \theta_{2}^{n}} \\
& =z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{3}^{n}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial \theta_{2}^{n}}+z_{3}^{n} \quad n=1,2, \ldots, N \tag{144}\\
\frac{\partial r^{n}}{\partial \theta_{3}^{n}} & =z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{3}^{n}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial \theta_{3}^{n}}+z_{3}^{n} \frac{\partial x_{3}^{n}}{\partial \theta_{3}^{n}} \\
& =z_{1}^{n} \frac{\partial x_{1}^{n}}{n^{n}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{n^{n}}
\end{align*}
$$

5-5. Computing Procedures

A suggested computational procedure to seek the optimal decisions喑 for a fixed $\times{ }_{1}^{N}$ is as follows:

Step 1. Assume a set of values of $\theta_{i}^{n}(n=1, \ldots, N) \theta_{2}^{n}(n=1, \ldots, N)$, $\theta_{3}^{n}(n=1, \ldots, N-1)$, and $\Delta \theta_{i}^{n}$ as a trial.

Step 2. Calculate $x_{1}^{n}(n=1, \ldots, N-1)$ and Q_{3}^{N} from equations (103) and (104).

Step 3. Calculate $x_{2}^{n}(n=1, \ldots, N-1)$ and x_{2}^{N} from equations (108) and (109).

Step 4. Calculate x_{3}^{n} from equation (107)
Step 5. Calculate $z_{1}^{N}, z_{1}^{n-1}, z_{2}^{n-1}$, and $z_{3}^{n-1}(n=1,2, \ldots, N)$ from equations (139) and (142).

Step 6. Calculate $\frac{\partial H^{n}}{\partial \theta_{1}^{n}}, \frac{\partial H^{n}}{\partial \theta_{2}^{n}}, \frac{\partial H^{n}}{\partial \theta_{3}^{n}}$ from equations (143) through (145).

Step 7. If $\frac{\partial H^{n}}{\partial \theta_{i}^{n}}$ are zero or less than the allowable errors preassigned, then the assumed $\theta_{\dot{I}}^{n}$ are the optimal values, otherwise go to the next step.

Step 8. If x_{2}^{N} is greater than that computed in the preceding iteration, then one half of the originals $\Delta \theta_{i}^{n}$ is used; otherwise the original $\Delta \theta_{i}^{n}$ is used.

Step 9. The new set of decision $\left(\theta_{i}^{n}\right)$ new is obtained by

$$
\begin{equation*}
\left(\theta_{i}^{n}\right)_{\text {new }}=\left(\theta_{i}^{n}\right)_{o l d} \pm \Delta \theta_{i}^{n} \tag{146}
\end{equation*}
$$

when

$$
\frac{\partial H^{n}}{\partial \theta_{i}^{n}}<0 \quad \text { use (-) sign }
$$

when

$$
\frac{\partial H^{n}}{\partial \theta_{i}^{n}}>0 \text { use (+) sign }
$$

Then return to step 2 and repeat the computation until the optimum is obtained.

The computational procedure described here is similar to that in Section 5-2 of PART ONE. From the experience in PART ONE, it is believed that the same procedure can be applied to determination of

Step 6. Calculate $\frac{\partial H^{n}}{\partial \theta_{1}^{n}}, \frac{\partial H^{n}}{\partial \theta_{2}^{n}}, \frac{\partial H^{n}}{\partial \theta_{3}^{n}}$ from equations (143) through (145).

Step 7. If $\frac{\partial H^{n}}{\partial \theta_{i}^{n}}$ are zero or less than the allowable errors preassigned, then the assumed $\theta_{\dot{I}}^{n}$ are the optimal values, otherwise go to the next step.

Step 8. If x_{2}^{N} is greater than that computed in the preceding iteration, then one half of the originals $\Delta \theta_{i}^{n}$ is used; otherwise the original $\Delta \theta_{i}^{n}$ is used.

Step 9. The new set of decision $\left(\theta_{i}^{n}\right)$ new is obtained by

$$
\begin{equation*}
\left(\theta_{i}^{n}\right)_{\text {new }}=\left(\theta_{i}^{n}\right)_{o l d} \pm \Delta \theta_{i}^{n} \tag{146}
\end{equation*}
$$

when

$$
\frac{\partial H^{n}}{\partial \theta_{i}^{n}}<0 \quad \text { use (-) sign }
$$

when

$$
\frac{\partial H^{n}}{\partial \theta_{i}^{n}}>0 \text { use (+) sign }
$$

Then return to step 2 and repeat the computation until the optimum is obtained.

The computational procedure described here is similar to that in Section 5-2 of PART ONE. From the experience in PART ONE, it is believed that the same procedure can be applied to determination of
the optimal condition of the process. However, the numerical result
is yet to be detemined by the actual computer computation.
the optimal condition of the process. However, the numerical result
is yet to be detemined by the actual computer computation.

NOMENCLATURE

a $=$ a positive exponent of power rule for capital cost of equipment; a_{1}, a_{2}, a_{3}, and a_{4} are the exponents for the high pressure pump, the recirculation pump, the turbine, and the membrane separation unit, respectively.
$A^{n}=$ cross-section area of the membrane separator unit in the $n-t h$ stage, $f t^{2}$.
$c=3.05 \times 10^{5} \frac{\mathrm{~K} d}{(\mathrm{Sc})^{1 / 3} \mathrm{Da}}$ constant, $f t^{3}-f t-\mathrm{sec} / \mathrm{ft} \mathrm{t}^{2}-\mathrm{hr}-\mathrm{psi}-\mathrm{cm}^{2}$
$c_{e}=$ electrical-power cost, $\$ / p s i-f t^{3}$
$C_{F}=$ the unit cost of brine feed, $\$ / 1 b_{m}$
$C_{t}=$ the total water cost per unit water production, $\$ / 1 b_{m}$
$C_{n}=$ the various cost items $(n=1, \ldots, 7) \$ / 1 b_{m}$
d $=$ the diameter of the membrane tube, ft
$D_{a}=$ molecular diffusivity of salt, $\mathrm{cm}^{2} / \mathrm{sec}$.
$E_{I}^{n}=$ the pumping work of the high pressure pump at the $n-t h$ stage for the general model; models A, B, and C are represented respectively by $E_{I a}^{n}, E_{I b}^{n}$, and $E_{I c}^{n}$, psi-ft $t^{3} / h r$.
$E_{2}^{n}=$ the pumping work of the recirculation pump at the n-th stage for the general model; models A, B, and C are denoted by $E_{1 a}^{n}, E_{2 b}^{n}$, and $E_{2 c}^{n}$, respectively, psi-ft/hr

NOMENCLATURE

a $=$ a positive exponent of power rule for capital cost of equipment; a_{1}, a_{2}, a_{3}, and a_{4} are the exponents for the high pressure pump, the recirculation pump, the turbine, and the membrane separation unit, respectively.
$A^{n}=$ cross-section area of the membrane separator unit in the $n-t h$ stage, $f t^{2}$.
$c=3.05 \times 10^{5} \frac{\mathrm{~K} d}{(\mathrm{Sc})^{1 / 3} \mathrm{Da}}$ constant, $f t^{3}-f t-\mathrm{sec} / \mathrm{ft} \mathrm{t}^{2}-\mathrm{hr}-\mathrm{psi}-\mathrm{cm}^{2}$
$c_{e}=$ electrical-power cost, $\$ / p s i-f t^{3}$
$C_{F}=$ the unit cost of brine feed, $\$ / 1 b_{m}$
$C_{t}=$ the total water cost per unit water production, $\$ / 1 b_{m}$
$C_{n}=$ the various cost items $(n=1, \ldots, 7) \$ / 1 b_{m}$
d $=$ the diameter of the membrane tube, ft
$D_{a}=$ molecular diffusivity of salt, $\mathrm{cm}^{2} / \mathrm{sec}$.
$E_{I}^{n}=$ the pumping work of the high pressure pump at the $n-t h$ stage for the general model; models A, B, and C are represented respectively by $E_{I a}^{n}, E_{I b}^{n}$, and $E_{I c}^{n}$, psi-ft $t^{3} / h r$.
$E_{2}^{n}=$ the pumping work of the recirculation pump at the n-th stage for the general model; models A, B, and C are denoted by $E_{1 a}^{n}, E_{2 b}^{n}$, and $E_{2 c}^{n}$, respectively, psi-ft/hr

```
    E E = the energy recovery from the blowdown turbine at the end of
        the process for the general model; models A, B, and C are
        denoted by E E3a, E E 3b, and E E c, respectively, psi-ft /hx.
    E = Fanning friction factor.
    F = the volumetric flux of water through the membrane, ft % /ft ' -hr.
    H
    Jn}=\mathrm{ the high pressure pump at the n-th stage.
    Jn}=\mathrm{ the recirculation pump at the n-th stage.
    J = the reject turbine at the last stage.
    k = the proportionality constant in the power rule cost expression
        for the equipment and }\mp@subsup{k}{1}{},\mp@subsup{k}{2}{},\mp@subsup{k}{t}{}\mathrm{ and }\mp@subsup{k}{s}{}\mathrm{ such proportionality
        constant for the high pressure pump, the recirculation pump,
        the turbine, and the membrane separator, respectively.
K = the membrane constant, ft % /ft ' -hx-psi
L/D = the overall length-to-diameter ratio of the membrane separator.
Mn}=\mathrm{ the mixing point in the n-th stage.
m
        the n-th stage.
MS }\mp@subsup{}{}{n}=\mathrm{ the membrane separator unit at the n-th stage
N= the total number of stages in the system
```

```
E [3 = the energy recovery from the blowdown turbine at the end of
        the process for the general model; models A, B, and C are
        denoted by E}\mp@subsup{E}{3a}{},\mp@subsup{E}{3b}{},\mathrm{ and }\mp@subsup{E}{3c}{},\mathrm{ respectively, psi-ft/hr.
    { = Fanning friction factor.
    F = the volmmetric flux of water through the membrane, ft }\mp@subsup{}{}{3}/\mp@subsup{f}{t}{}\mp@subsup{}{}{2}-hr
    H
    J
    J2
    J3 = the reject turbine at the last stage.
    k = the proportionality constant in the power rule cost expression
        for the equipment and }\mp@subsup{k}{1}{},\mp@subsup{k}{2}{},\mp@subsup{k}{t}{}\mathrm{ and }\mp@subsup{k}{s}{}\mathrm{ such proportionality
        constant for the high pressure pump, the recirculation pump,
        the turbine, and the membrane separator, respectively.
    K = the membrane constant, ft % /ft 2-hr-psi
    L/D = the overall length-to-diameter ratio of the membrane separator.
    M}\mp@subsup{M}{}{n}=\mathrm{ the mixing point in the n-th stage.
    m
        the n-th stage.
MS }\mp@subsup{}{}{n}=\mathrm{ the membrane separator unit at the n-th stage
N = the total number of stages in the system
```

```
p
    psi.
    PO = atmosphere pressure, 14.7 psi.
\Delta\mp@subsup{P}{}{n}}=\mathrm{ pressure difference across the membrane at the n-th stage,
        psi.
q}\mp@subsup{|}{}{n}=\mathrm{ mass flow rate of brine solution discharged from the n-th
        stage, Ib m/hr.
q}\mp@subsup{q}{i}{n}=\mathrm{ mass flow rate the brine entering the membrane separatoz of
        the n-th stage, }\mp@subsup{\textrm{lb}}{\textrm{m}}{}/\textrm{hz}\mathrm{ .
q}\mp@subsup{q}{e}{n}=\mathrm{ mass flow rate of the brine leaving the membrane separator of
        the n-th stage, lb m}/\textrm{hx}\mathrm{ .
qo = mass flow rate of brine feed, lbm/hr.
R
\mp@subsup{r}{}{n}=}\mathrm{ the recycle ratio at the n-th stage.
Re}\mp@subsup{}{}{n}=\mathrm{ Reynolds number at the n-th stage.
sn}=\mathrm{ membrane area at the n-th stage, ft }\mp@subsup{}{}{2
Sc = Schmidt number.
T = the capacity of the equipment
W}\mp@subsup{W}{}{n}=\mathrm{ flow of fresh-water produced from the n-th stage, lbm
```

```
p
    psi.
    PO = atmosphere pressure, 14.7 psi.
\Delta\mp@subsup{P}{}{n}}=\mathrm{ pressure difference across the membrane at the n-th stage,
        psi.
q}\mp@subsup{|}{}{n}=\mathrm{ mass flow rate of brine solution discharged from the n-th
        stage, Ib m/hr.
q}\mp@subsup{q}{i}{n}=\mathrm{ mass flow rate the brine entering the membrane separatoz of
        the n-th stage, }\mp@subsup{\textrm{lb}}{\textrm{m}}{}/\textrm{hz}\mathrm{ .
q}\mp@subsup{q}{e}{n}=\mathrm{ mass flow rate of the brine leaving the membrane separator of
        the n-th stage, lb m}/\textrm{hx}\mathrm{ .
qo = mass flow rate of brine feed, lbm/hr.
R
\mp@subsup{r}{}{n}=}\mathrm{ the recycle ratio at the n-th stage.
Re}\mp@subsup{}{}{n}=\mathrm{ Reynolds number at the n-th stage.
sn}=\mathrm{ membrane area at the n-th stage, ft }\mp@subsup{}{}{2
Sc = Schmidt number.
T = the capacity of the equipment
W}\mp@subsup{W}{}{n}=\mathrm{ flow of fresh-water produced from the n-th stage, lbm
```

$W_{f}=$ the total water production from the system, $1 b_{m} / \mathrm{hr}$.
$W_{s}^{n}=$ the mass of the sheII-and-tube membrane separator unit of the n-th stage for the general model; models A, B, and C are denoted by $W_{s a}^{n}, W_{s b}^{n}$, and $W_{s c}^{n}$, respectively, $I b_{m}$.
$x^{n}=$ the mass fraction of salt component in the brine solution leaving the n-th stage.
$x_{i}^{n}=$ the mass fraction of salt component in the brine solution entering the membrane separator of the n-th stage.
${ }^{n}=$ the mass fraction of salt component in the brine solution leaving the membrane separator of the $n-t h$ stage.
$x^{n}=x^{n}$
$x_{2}^{n}=$ accumulated water cost at the first n stages and $x_{2}^{\mathbb{N}}=c_{t}$.
$x_{3}^{n}=\theta_{2}^{n}$
$\mathbf{z}_{i}^{n}=$ adjoint. variables in association with stage variables x_{i}^{n}

Greek Letters
$\eta_{f}=$ loss factor
$\eta_{m}=$ mechanical efficiency
$\eta(p=$ pump efficiency
$\theta_{1}^{n}=R_{e}^{n}$
$W_{f}=$ the total water production from the system, $1 b_{m} / \mathrm{hr}$.
$W_{s}^{n}=$ the mass of the sheII-and-tube membrane separator unit of the n-th stage for the general model; models A, B, and C are denoted by $W_{s a}^{n}, W_{s b}^{n}$, and $W_{s c}^{n}$, respectively, $I b_{m}$.
$x^{n}=$ the mass fraction of salt component in the brine solution leaving the n-th stage.
$x_{i}^{n}=$ the mass fraction of salt component in the brine solution entering the membrane separator of the n-th stage.
${ }^{n}=$ the mass fraction of salt component in the brine solution leaving the membrane separator of the $n-t h$ stage.
$x^{n}=x^{n}$
$x_{2}^{n}=$ accumulated water cost at the first n stages and $x_{2}^{\mathbb{N}}=c_{t}$.
$x_{3}^{n}=\theta_{2}^{n}$
$\mathbf{z}_{i}^{n}=$ adjoint. variables in association with stage variables x_{i}^{n}

Greek Letters
$\eta_{f}=$ loss factor
$\eta_{m}=$ mechanical efficiency
$\eta(p=$ pump efficiency
$\theta_{1}^{n}=R_{e}^{n}$

```
0
0
\mu = viscosity of the brine solution, lbf/in}\mp@subsup{}{}{2}
\rho= density of brine solution, }1\mp@subsup{b}{m}{}/f\mp@subsup{t}{}{3}
\rho
\sigmam}=\mathrm{ allowable stress of materials of construction, psi.
\Psi = capitalization charge of initial cost per hour in stream,
    bx -1
```

```
0
0
\mu = viscosity of the brine solution, lbf/in}\mp@subsup{}{}{2}
\rho= density of brine solution, }1\mp@subsup{b}{m}{}/f\mp@subsup{t}{}{3}
\rho
\sigmam}=\mathrm{ allowable stress of materials of construction, psi.
\Psi = capitalization charge of initial cost per hour in stream,
    bx -1
```


ACINOWLEDCAENTS

The author wishes to express his sincere appreciation to Dr. Liang-Tseng Fan for his constant enthusiasm and advice during the process of this work; Dr. Larry E. Erickson and Dr. C. Y. Cheng for their suggestions and assistance; Dr. Ching-lai Huang and Dr. Willian H. Honstead for their help and encouragement; Dr. S. T. Parker for reading the manuscript; the Kansas State University Computing Center for the use of their facilities; and the K.S.U. Engineering Experiment Station and Office of Saline Water for supporting this work.

ACINOWLEDCAENTS

The author wishes to express his sincere appreciation to Dr. Liang-Tseng Fan for his constant enthusiasm and advice during the process of this work; Dr. Larry E. Erickson and Dr. C. Y. Cheng for their suggestions and assistance; Dr. Ching-lai Huang and Dr. Willian H. Honstead for their help and encouragement; Dr. S. T. Parker for reading the manuscript; the Kansas State University Computing Center for the use of their facilities; and the K.S.U. Engineering Experiment Station and Office of Saline Water for supporting this work.

1．Gaunt，R．E．，＂Experience in Multi－stage Flash Process＂，Presurted in the First International Symposium on Water Desalination，Wastington， D．C．，October， 1965.

2．＂Survey of Current Economics of Natunal and Desaltec Water ith the United States＂，pp．18－32，Edison Electric Institute，New York， 1965.

3．Brice，D．B．，and C．R．Townsend，＂Advances in．Chemistry Serics＂， 27，pp．147－155， 1960 ．

4．Frankel，A．，Proc．Institution of Mech．Engrs：，174，No．7，pp．3：2－ 324， 1960.

5．Spiegler，K．S．，＂Sale Water Purification＂，pp．52－60 and 151，John Wily Co．，New York， 1962.

6．Cadwallader，E．A．，in 1964 Saline Water Conversior Repore，O．S．W．， pp．137－141， 1964.

7．Williamson，W．R．，F．W．Gilbert，and I．R．Scanlan，＇Mulたシーミミたe Multi－stage Flash Distillation＂，Presented in the First Intemationad Symposium on Water Desalination，Washington，D．C．，October，ìेठS．

8．Silver，R．S．，Principles of Desalimation，adited by K．S．SpミezZEと， dcademic Press， 1966.

9．Van－Berkel，F．C．d．，J．W．Van Hasselt，and J．H．Van der Morzen， ＂Experiences with Large Sea－Water Slash Evaporators＂，Presented in the First International Symposium on Water Desalination，Washingtor， D．C．，October， 1965.

10．Bechtel Corporation，＂Cost Studies of Large Multi－stage Flash Saline Water Conversion Plants＂，Research and Development Progress Repor No．116，Office of Saline Water，Washington，D．C．， 1964.

11．Fan，L．T．，and C．S．Wang，＂The Discrete Kaximum Principle－A Sucy of Multistage Systems Optimization＂，John Wiley Co．，New York，296́．

12．＂A Standard Procedure for Estimating Costs of Saline Water Conversion＂， O．S．W．Research and Development Progress Repori，25．261375，March， 2965.

13．Powell，M．J．D．，＂An Efficient Method for Fincing the Vinimion ó－ Tunction of Several Variables without Calculating Derivazives＂，The Computer Journal，I，p．155， 1964.

14．Nelder，J．A．，and R．Mead，＂A Simplex Method Zor Function Kinさmizetion＂， Zae Computer Journal，2，p．308， 1965.

1．Gaunt，R．E．，＂Experience in Multi－stage Flash Process＂，Presurted in the First International Symposium on Water Desalination，Wastington， D．C．，October， 1965.

2．＂Survey of Current Economics of Natunal and Desaltec Water ith the United States＂，pp．18－32，Edison Electric Institute，New York， 1965.

3．Brice，D．B．，and C．R．Townsend，＂Advances in．Chemistry Serics＂， 27，pp．147－155， 1960 ．

4．Frankel，A．，Proc．Institution of Mech．Engrs：，174，No．7，pp．3：2－ 324， 1960.

5．Spiegler，K．S．，＂Sale Water Purification＂，pp．52－60 and 151，John Wily Co．，New York， 1962.

6．Cadwallader，E．A．，in 1964 Saline Water Conversior Repore，O．S．W．， pp．137－141， 1964.

7．Williamson，W．R．，F．W．Gilbert，and I．R．Scanlan，＇Mulたシーミミたe Multi－stage Flash Distillation＂，Presented in the First Intemationad Symposium on Water Desalination，Washington，D．C．，October，ìेठS．

8．Silver，R．S．，Principles of Desalimation，adited by K．S．SpミezZEと， dcademic Press， 1966.

9．Van－Berkel，F．C．d．，J．W．Van Hasselt，and J．H．Van der Morzen， ＂Experiences with Large Sea－Water Slash Evaporators＂，Presented in the First International Symposium on Water Desalination，Washingtor， D．C．，October， 1965.

10．Bechtel Corporation，＂Cost Studies of Large Multi－stage Flash Saline Water Conversion Plants＂，Research and Development Progress Repor No．116，Office of Saline Water，Washington，D．C．， 1964.

11．Fan，L．T．，and C．S．Wang，＂The Discrete Kaximum Principle－A Sucy of Multistage Systems Optimization＂，John Wiley Co．，New York，296́．

12．＂A Standard Procedure for Estimating Costs of Saline Water Conversion＂， O．S．W．Research and Development Progress Repori，25．261375，March， 2965.

13．Powell，M．J．D．，＂An Efficient Method for Fincing the Vinimion ó－ Tunction of Several Variables without Calculating Derivazives＂，The Computer Journal，I，p．155， 1964.

14．Nelder，J．A．，and R．Mead，＂A Simplex Method Zor Function Kinさmizetion＂， Zae Computer Journal，2，p．308， 1965.

15．Fletcher，R．，＂Function Mrimization without Evaluating Derivatives－ A Review＂，The Computer Jourmal，ㄱ，149， 1965.

16．Box，M．J．，＂A New Vethod of Constrained Optimization and a Compzziscn with Other Methods＂，The Computer Joumal，3，42， 1965.

17．Dembigh，ה̌nmeth，＂The Principles of Chemical Equilibrium．＂，Second edition，Cambridge University Press，1966．．

18．Hecht，Charles E．，＂Desalinzation of Water by Reverse Osmosis＂， Journal of Chemical Education，44，No．1，2．53， 1967.

19．Gentry，Robert E．，＂Revarse Osmosis＂，Enviromental Science añ Zecì－ nology，1，No．2，p．124， 1967.

20．Merten，et．al．，＂Reverse Osmosis for Water Desalination＂，Research and Development Process Report No．111，Office of Saline Wa：er， 2964.

21．Chen，Yung－chuan，＂A Comparative Stucy of the Vaximum Zainciple and the Multi－level System Theory and their Applications＂，Kaster＇s Thesis， Department of Chemical Engineering，Kansas State University，Nannatean， Kansas， 1960.

22．Ho，Lewis Yuh－shu，＂Optimization Stucies of Activateć Slučge and Reverse Osmosis Water Purification Processes＂，Mascer＇s Thesis，Departana＝0ミ Cnemical Engineering，Kansas State University，Kanhattan，Kansas， 1967.

23．Fan，L．T．，et：al．，＂Analysis and Optimizaticn oz a Reverse Osmosis Water Purification System＂，Kansas Zngineering Expeximent Saa＝ion， Repori No．73，Manhattan，Kansas， 1967.

24．Perry，J．E．，＂Chemical Engineer＇s Handbook＂，Fourth edition，pp．シーン9， McGraw－Hill，New York， 1963.

25．MeAdams，W．H．，＂Heat Transmission＂，p．155，McGraw－Hill，New Yoci，2954．
26．KcCabe and Smith，＂Unit Operations of Chemical Engineering＂，Vocraw－\＃ill， New York， 1956.

27．Chilton，Cecil K．，＂Cost Engineering in the Process Inciustこえ土 Eill，N゙ew York， 1960.
 stage Flash Distillation System＂，Ransas Engineering Experimen Stazion， Report No．74，Mamattan，Kansas， 1967.

15．Fletcher，R．，＂Function Mrimization without Evaluating Derivatives－ A Review＂，The Computer Jourmal，ㄱ，149， 1965.

16．Box，M．J．，＂A New Vethod of Constrained Optimization and a Compzziscn with Other Methods＂，The Computer Joumal，3，42， 1965.

17．Dembigh，ה̌nmeth，＂The Principles of Chemical Equilibrium．＂，Second edition，Cambridge University Press，1966．．

18．Hecht，Charles E．，＂Desalinzation of Water by Reverse Osmosis＂， Journal of Chemical Education，44，No．1，2．53， 1967.

19．Gentry，Robert E．，＂Revarse Osmosis＂，Enviromental Science añ Zecì－ nology，1，No．2，p．124， 1967.

20．Merten，et．al．，＂Reverse Osmosis for Water Desalination＂，Research and Development Process Report No．111，Office of Saline Wa：er， 2964.

21．Chen，Yung－chuan，＂A Comparative Stucy of the Vaximum Zainciple and the Multi－level System Theory and their Applications＂，Kaster＇s Thesis， Department of Chemical Engineering，Kansas State University，Nannatean， Kansas， 1960.

22．Ho，Lewis Yuh－shu，＂Optimization Stucies of Activateć Slučge and Reverse Osmosis Water Purification Processes＂，Mascer＇s Thesis，Departana＝0ミ Cnemical Engineering，Kansas State University，Kanhattan，Kansas， 1967.

23．Fan，L．T．，et：al．，＂Analysis and Optimizaticn oz a Reverse Osmosis Water Purification System＂，Kansas Zngineering Expeximent Saa＝ion， Repori No．73，Manhattan，Kansas， 1967.

24．Perry，J．E．，＂Chemical Engineer＇s Handbook＂，Fourth edition，pp．シーン9， McGraw－Hill，New York， 1963.

25．MeAdams，W．H．，＂Heat Transmission＂，p．155，McGraw－Hill，New Yoci，2954．
26．KcCabe and Smith，＂Unit Operations of Chemical Engineering＂，Vocraw－\＃ill， New York， 1956.

27．Chilton，Cecil K．，＂Cost Engineering in the Process Inciustこえ土 Eill，N゙ew York， 1960.
 stage Flash Distillation System＂，Ransas Engineering Experimen Stazion， Report No．74，Mamattan，Kansas， 1967.
 notations and their expanations are summarized in Matie A-I. Fae gosandi computer program (1) for the discrete maximum pritcizio Az presented in Table t-2; the FORRRAN computem program (2) zof ine
 resuits For the computer program (2) aro presented in Fable a-4.
 notations and their expanations are summarized in Matie A-I. Fae gosandi computer program (1) for the discrete maximum pritcizio Az presented in Table t-2; the FORRRAN computem program (2) zof ine
 resuits For the computer program (2) aro presented in Fable a-4.

Brosiam
Explanation

Symioos

i Steam tomperature, $274.4^{\circ} \mathrm{s}$
$A R(n)$ Conconsing arca cost in the n-th eifect
a, or ${ }^{m}=$
\sum_{3}^{2}
E . Cocfificicnt of the Clatisius-Cayeyron eguation
3
includirg tho friction Ioss, $1.79 \times 10^{9} 2 \mathrm{E}_{\mathrm{z}} / \mathrm{Et}^{2}$
cc cooling water unit cost, $5.9875 \times 10^{-7} \mathrm{~s} / \mathrm{Zb}$. \hat{c}_{0}
cov Unit coss oi condensine area, $2.357 \times 10^{-5} 8 / \Xi^{2}$
CEM This cosi of brine heater, $3.76 \times 10^{-5} \mathrm{~s} / \mathrm{st}^{2} \quad$ C.
CP Feat capacity of water, 2.03tu/:00, or
CPF Jrit pumping cost, $2.903 \times 10^{-9} \$ / 5 t-16$
csT. Unit sieam cost, $2.5 x: 0^{-4} \mathrm{~s} / 20$
05 Corstruction cost, $2.08 \times 10^{-2} 8 / 1000$ gan.
2 Density oí water, $62.5 \mathrm{Ib} / \mathrm{cu} . \hat{\mathrm{I}} \mathrm{L}$.
JE(x) Incremeri ci decision variables

Zuncitich $y_{s}{ }^{\prime}$
\therefore Leterit heat of finash buine, $=0002 \mathrm{tu} / \mathrm{i}$
 920.9 5tu/20

UR Unit cost of protreatmont, $2.796 \times 10^{-6} \$ / 20$

$23: 00$.

λ
λ_{s} :

Brosiam
Explanation

Symioos

i Steam tomperature, $274.4^{\circ} \mathrm{s}$
$A R(n)$ Conconsing arca cost in the n-th eifect
a, or ${ }^{m}=$
\sum_{3}^{2}
E . Cocfificicnt of the Clatisius-Cayeyron eguation
3
includirg tho friction Ioss, $1.79 \times 10^{9} 2 \mathrm{E}_{\mathrm{z}} / \mathrm{Et}^{2}$
cc cooling water unit cost, $5.9875 \times 10^{-7} \mathrm{~s} / \mathrm{Zb}$. \hat{c}_{0}
cov Unit coss oi condensine area, $2.357 \times 10^{-5} 8 / \Xi^{2}$
CEM This cosi of brine heater, $3.76 \times 10^{-5} \mathrm{~s} / \mathrm{st}^{2} \quad$ C.
CP Feat capacity of water, 2.03tu/:00, or
CPF Jrit pumping cost, $2.903 \times 10^{-9} \$ / 5 t-16$
csT. Unit sieam cost, $2.5 x: 0^{-4} \mathrm{~s} / 20$
05 Corstruction cost, $2.08 \times 10^{-2} 8 / 1000$ gan.
2 Density oí water, $62.5 \mathrm{Ib} / \mathrm{cu} . \hat{\mathrm{I}} \mathrm{L}$.
JE(x) Incremeri ci decision variables

Zuncitich $y_{s}{ }^{\prime}$
\therefore Leterit heat of finash buine, $=0002 \mathrm{tu} / \mathrm{i}$
 920.9 5tu/20

UR Unit cost of protreatmont, $2.796 \times 10^{-6} \$ / 20$

$23: 00$.

λ
λ_{s} :

Ta゙き A-1 (Coñinnca)

Symboss

そjoisc：

Qr（n）The vaiue of Q at veriex ？
₹ İeal gas corstart， $0.2: 04 \mathrm{StL} / 20,0 \mathrm{~N}$
$S(n)$ Number 0 stuges in the n－th ettect
जg（x）Averagexin the n－th eisect． \ddot{n}
2EST Standard error＝unction $y_{s}^{\prime}, \sqrt{\sum_{i=2}^{5}\left(y_{i}-y_{4}\right)^{2} / 3}$ V_{s}^{\prime}

TVイス Direction．o：cecision increment
ミこソ：

 ※゚ンソ32

こerivative 0 ªmilicnian E^{2} with respect to $\hat{\theta}_{1}^{2}$ $\frac{32^{2}}{3 \hat{y}^{2}}$
？2X：2， ジ2ゾ22

U Overail heat transier coeviscient，

V Unit positive sumiocr， 1

Ta゙き A-1 (Coñinnca)

Symboss

そjoisc：

Qr（n）The vaiue of Q at veriex ？
₹ İeal gas corstart， $0.2: 04 \mathrm{StL} / 20,0 \mathrm{~N}$
$S(n)$ Number 0 stuges in the n－th ettect
जg（x）Averagexin the n－th eisect． \ddot{n}
2EST Standard error＝unction $y_{s}^{\prime}, \sqrt{\sum_{i=2}^{5}\left(y_{i}-y_{4}\right)^{2} / 3}$ V_{s}^{\prime}

TVイス Direction．o：cecision increment
ミこソ：

 ※゚ンソ32

こerivative 0 ªmilicnian E^{2} with respect to $\hat{\theta}_{1}^{2}$ $\frac{32^{2}}{3 \hat{y}^{2}}$
？2X：2， ジ2ゾ22

U Overail heat transier coeviscient，

V Unit positive sumiocr， 1

Tablo A－1（Conizunci）

prosent
Deがanatior．

Symbolo

WPR（ n ）Water production ratc ir the rovin effoct
WO，Water cost，$\$ / 1000 \mathrm{gai}$ ．
X $3(4) \quad$
W_{0}
woy（n）Function vaiue or water cost at vortex $\bar{y}_{n} \quad \gamma$

$X P(n) \quad\left(O_{2}\right)_{3}$ at vertex P_{n}

X2（n＋1）iccumbated water production cost in the first
x_{2} \therefore－in efiects，$\$ / 2000$ gai．

XIY $(x-2)$ Zerivative of x_{2}^{n} with respect to 0%

XIYシ（n－2）Derivative os x_{n}^{n} with respect θ_{z}^{n}

$2 \pi \%(r-2)$ Derivative of 4^{n} with rospective to $x_{2}^{n-2} \quad \frac{2 x}{3}$ ス2\％ン（r－i）Zcrivative of $x_{2}^{r i}$ witt respective to $\theta_{1}^{\%}$

Tablo A－1（Conizunci）

prosent
Deがanatior．

Symbolo

WPR（ n ）Water production ratc ir the rovin effoct
WO，Water cost，$\$ / 1000 \mathrm{gai}$ ．
X $3(4) \quad$
W_{0}
woy（n）Function vaiue or water cost at vortex $\bar{y}_{n} \quad \gamma$

$X P(n) \quad\left(O_{2}\right)_{3}$ at vertex P_{n}

X2（n＋1）iccumbated water production cost in the first
x_{2} \therefore－in efiects，$\$ / 2000$ gai．

XIY $(x-2)$ Zerivative of x_{2}^{n} with respect to 0%

XIYシ（n－2）Derivative os x_{n}^{n} with respect θ_{z}^{n}

$2 \pi \%(r-2)$ Derivative of 4^{n} with rospective to $x_{2}^{n-2} \quad \frac{2 x}{3}$ ス2\％ン（r－i）Zcrivative of $x_{2}^{r i}$ witt respective to $\theta_{1}^{\%}$

```
Tub20 A-: (Conef%uod)
```

$p=0,520 . \pi$
Explaxation

Symicois
-y

X2Yj(n-2) Denivative o: x_{2}^{n} with respoct to. $\hat{\theta}_{3}^{n}$

$$
z \because 2 \quad \text { Adjoint väiajole, } z 2
$$

$$
z: 2
$$

$$
\text { Acjoint variabie, } z_{-}^{2}
$$

$$
2: 3
$$

$$
\text { Adjoint variabie, } z_{?}^{3}
$$

$$
z, 2 \quad \text { dijoint variable, } z_{3}^{2}
$$

$$
\begin{aligned}
& \frac{2 \%}{30} \\
& \frac{\partial x_{2}}{0 x-} \\
& \frac{3 x_{2}^{\%}}{3 \times 2} \\
& a^{\prime} \\
& \epsilon^{\prime} \\
& \because \prime \\
& \theta 2 \\
& \hat{\theta}_{2}^{*}-\hat{\theta}_{2}^{\approx}
\end{aligned}
$$

```
Tub20 A-: (Conef%uod)
```

$p=0,520 . \pi$
Explaxation

Symicois
-y

X2Yj(n-2) Denivative o: x_{2}^{n} with respoct to. $\hat{\theta}_{3}^{n}$

$$
z \because 2 \quad \text { Adjoint väiajole, } z 2
$$

$$
z: 2
$$

$$
\text { Acjoint variabie, } z_{-}^{2}
$$

$$
2: 3
$$

$$
\text { Adjoint variabie, } z_{?}^{3}
$$

$$
z, 2 \quad \text { dijoint variable, } z_{3}^{2}
$$

$$
\begin{aligned}
& \frac{2 \%}{30} \\
& \frac{\partial x_{2}}{0 x-} \\
& \frac{3 x_{2}^{\%}}{3 \times 2} \\
& a^{\prime} \\
& \epsilon^{\prime} \\
& \because \prime \\
& \theta 2 \\
& \hat{\theta}_{2}^{*}-\hat{\theta}_{2}^{\approx}
\end{aligned}
$$


```
ミここッ隹(7Eこ心.3:
ミごハバ{5E:2.5)
=ご心バ(OEZ2.5)
```



```
    !ここここご, 1:
```



```
    ₹EMS{,,4;SS{:),OS(2;,OS(3),DS:4;,OS(5),ER
```



```
7. :=:
    まこそこ!ニ:ッシ
7: ジ:;=:.v
- シこ 42:=2, こ
```



```
ミここッ隹(7Eこ心.3:
ミごハバ{5E:2.5)
=ご心バ(OEZ2.5)
```



```
    !ここここご, 1:
```



```
    ₹EMS{,,4;SS{:),OS(2;,OS(3),DS:4;,OS(5),ER
```



```
7. :=:
    まこそこ!ニ:ッシ
7: ジ:;=:.v
- シこ 42:=2, こ
```



```
Tablo s-2 (cominmuca)
```



```
    20 i% !=2,\therefore
    <<3(:)=\3(:-\)+Y3::)
```



```
    N\alpha=*/: .- - \: (:)/X:{4))
    S2=こんT*O*WA/? \* (A-X3(1)+0.5*O゙(2)))
    C:=CSこッ0*W/A/HTS
    \lambda2::)=C2+C5+こう
    0こ 44:=2,4
```



```
    <2::)=人2(:-2)-AR{!; +Pu:: )
```



```
    CT=:(心x!乐-Tこ(3)*(!)/ET
    Sも-:つこーここ;mW&゙CC*CT
```



```
    AR:: = =AR(2)-AR:シ)+AN゙{4)
```



```
    こちょ二ち5*:00.1イ264)
    ~くも=Cí*OC.1ス264j
```

```
Tablo s-2 (cominmuca)
```



```
    20 i% !=2,\therefore
    <<3(:)=\3(:-\)+Y3::)
```



```
    N\alpha=*/: .- - \: (:)/X:{4))
    S2=こんT*O*WA/? \* (A-X3(1)+0.5*O゙(2)))
    C:=CSこッ0*W/A/HTS
    \lambda2::)=C2+C5+こう
    0こ 44:=2,4
```



```
    <2::)=人2(:-2)-AR{!; +Pu:: )
```



```
    CT=:(心x!乐-Tこ(3)*(!)/ET
    Sも-:つこーここ;mW&゙CC*CT
```



```
    AR:: = =AR(2)-AR:シ)+AN゙{4)
```



```
    こちょ二ち5*:00.1イ264)
    ~くも=Cí*OC.1ス264j
```



```
    #5:=x3(:1-ג`3:2)
    :22=^``"?)-入゙3:3)
    `ごう=入う!う!-גう:4,
```



```
    AT=PT**:Y:\3)
```



```
    O人 45 i=3,4
    N=:-2
```



```
    2ジニッス人う:2!
```



```
    2ま:-К2人う!:!r<32
```



```
    #5:=x3(:1-ג`3:2)
    :22=^``"?)-入゙3:3)
    `ごう=入う!う!-גう:4,
```



```
    AT=PT**:Y:\3)
```



```
    O人 45 i=3,4
    N=:-2
```



```
    2ジニッス人う:2!
```



```
    2ま:-К2人う!:!r<32
```



```
Mablo 4-2 (Continco)
```

```
    H3Y:3=2: 3*х:Y2(3)-ג2Y:(3)
    :F{M-2100,50,5%
```



```
    M=N+?
    心こ ここ 4!
```



```
    47 :F(A.SS(H:Y31)-ER)4S,4S,52
    4き:ミ{AミS(42Y:2)-Eत)49,42,5?
    49:F(NJS!H2Y32)-ER\50,50,5ミ
    ジ:Fi^3SiRSY13)-ER\5ड,63,5:
    5: I: iN:Y::, :37,:37,238
:37 TV{:)=-?..
-30:% (h2Y12) 239,239.240
:39 TV(2)=-:.
:OU :F :H3Y:3) 142,142,242
#- -V彷=-!:
<42:E 1H:Y3:1 143.143,244
```



```
44:= (r2Y32):45,:445,146
-5 TV!5:=-2.
:40:F:,年-*2{4:/36,30,35
    3 20 57 :={,5
    37 05::)=0.5*0S::%
    Y:(2)=Y:1T
    Y::シ!=YミZて
    Y!{4)=Y:3T
    ソミ!こ!こソミ:T
    Y゙ご=Yご2%
    心ごこ ふむ
```



```
三こ \because::T=Y:\2)
    \2%=Y:!3:
    Y:ST=Y:(4)
    ソま:マ=Yミ{2)
    Yミ2?=Yミ{3 
    Y:!こう=Y::2)-TV{2)*0S6:)
    Y:6j=Y:(3)-TV(2)*DS(2)
    Y:\4;=Y!(4)-TV号;*DS(3)
    Y:こ,=`3(2:-TV:4;*3S(4)
```



```
    心こここ %!
幺う 促:ここ(シ,5)
ちう ~R:ここ!シ,25:X:(4),0,*264)
```

```
Mablo 4-2 (Continco)
```

```
    H3Y:3=2: 3*х:Y2(3)-ג2Y:(3)
    :F{M-2100,50,5%
```



```
    M=N+?
    心こ ここ 4!
```



```
    47 :F(A.SS(H:Y31)-ER)4S,4S,52
    4き:ミ{AミS(42Y:2)-Eत)49,42,5?
    49:F(NJS!H2Y32)-ER\50,50,5ミ
    ジ:Fi^3SiRSY13)-ER\5ड,63,5:
    5: I: iN:Y::, :37,:37,238
:37 TV{:)=-?..
-30:% (h2Y12) 239,239.240
:39 TV(2)=-:.
:OU :F :H3Y:3) 142,142,242
#- -V彷=-!:
<42:E 1H:Y3:1 143.143,244
```



```
44:= (r2Y32):45,:445,146
-5 TV!5:=-2.
:40:F:,年-*2{4:/36,30,35
    3 20 57 :={,5
    37 05::)=0.5*0S::%
    Y:(2)=Y:1T
    Y::シ!=YミZて
    Y!{4)=Y:3T
    ソミ!こ!こソミ:T
    Y゙ご=Yご2%
    心ごこ ふむ
```



```
三こ \because::T=Y:\2)
    \2%=Y:!3:
    Y:ST=Y:(4)
    ソま:マ=Yミ{2)
    Yミ2?=Yミ{3 
    Y:!こう=Y::2)-TV{2)*0S6:)
    Y:6j=Y:(3)-TV(2)*DS(2)
    Y:\4;=Y!(4)-TV号;*DS(3)
    Y:こ,=`3(2:-TV:4;*3S(4)
```



```
    心こここ %!
幺う 促:ここ(シ,5)
ちう ~R:ここ!シ,25:X:(4),0,*264)
```

```
Tib20 A-2 (COKH2%mOC)
```

```
    WR:TE:J,S)Y:(2),Y:(%:,Y:(6)
```



```
    &&:゙ヒ65,j)X!(:), X2(2), 人2(3)
    W!:TE(3.9)0%(2).07:3).07:4)
    20 心&:=2.4
04 x5:::=236:)-400.
```



```
    NR:?己(3.1:)X2(1).x2!2), X2(3)
    WR:TE(3,:2)-\Y:1,H2Y12, H3Y:3
```



```
    \forallR:TE\3:26:OS(:).OS(2).OS:3),OS(4).OS(5)
    NR:TE(3,:4)
    Nス:7E:3,\5:C:,PC:
    WN:TE:3,\5)G2,PC2
    N゙R:下E:3,:7)MR(I),PC3
```



```
    *R:7E{3,:2:C5,PC5
    WR:7E:3,20,CÓPCS
    !\mp@code{:ここ:3,21)}
    NR:.こ:5,22.10:.T02.TO3
    \R:TE(3,23)WPR\IJ,WPR:2),WलR{3)
    '^R:`E(3,27)MR62).AR(3),AR(4)
    *ス:`E:3, 23:P\cup(2),PU(3), PU:&)
    NR:TE:S,29)TE(2),TE!2),TE(3)
    #N:「こ(2,24!
    心ごこ 40
    ENこ
```

```
Tib20 A-2 (COKH2%mOC)
```

```
    WR:TE:J,S)Y:(2),Y:(%:,Y:(6)
```



```
    &&:゙ヒ65,j)X!(:), X2(2), 人2(3)
    W!:TE(3.9)0%(2).07:3).07:4)
    20 心&:=2.4
04 x5:::=236:)-400.
```



```
    NR:?己(3.1:)X2(1).x2!2), X2(3)
    WR:TE(3,:2)-\Y:1,H2Y12, H3Y:3
```



```
    \forallR:TE\3:26:OS(:).OS(2).OS:3),OS(4).OS(5)
    NR:TE(3,:4)
    Nス:7E:3,\5:C:,PC:
    WN:TE:3,\5)G2,PC2
    N゙R:下E:3,:7)MR(I),PC3
```



```
    *R:7E{3,:2:C5,PC5
    WR:7E:3,20,CÓPCS
    !\mp@code{:ここ:3,21)}
    NR:.こ:5,22.10:.T02.TO3
    \R:TE(3,23)WPR\IJ,WPR:2),WलR{3)
    '^R:`E(3,27)MR62).AR(3),AR(4)
    *ス:`E:3, 23:P\cup(2),PU(3), PU:&)
    NR:TE:S,29)TE(2),TE!2),TE(3)
    #N:「こ(2,24!
    心ごこ 40
    ENこ
```

FLASH DISTILLATICN BY SIMPLEX METHCU ANU MAXIMUM PRINCIPLE DIMENSION Y1（4），Y3（4），X1（4），X2（4），X3（4），DT（4），X1Y1（3），S（4） DIMENSION X1Y3（3），X2Y1（3），DTY1（3），XIY3（3）， $0 T \times 1(2), X 2 \times 3(2), \times 2 \times 1(2)$ DIMENSI 2N WPR（4），DS（5），TV（5），PU，4），AR（4），TE（3）， $\operatorname{QF}(6), X F(6), \operatorname{ACI}(6)$ DIMENSION QF（6），XF（6），WCI（6）
1 FERMAT（10F7．1）
2 FERMAT（TE10．3）
3 FORMAT（5E12．5）
4 FERMAT（6E12．5）
5 FERMAT $(2 x, 3$ THTHE FOLLCWING ARE OPTIMUN こUTPUT DATA， 1$)$
6 FORMAT $(2 X, 6 H Y 1(2)=E 12.5,7 X, 6 H Y 1(3)=E 12.5,7 X, 6 H Y 1(4)=E 12.5)$
FORMAT $\left(2 X, 6 \mathrm{HY}_{3}(2)=E 12.5,7 \mathrm{X}, 6 \mathrm{HY} 3(3)=E 12.5,7 \mathrm{X}, 6 \mathrm{HY} 3(4)=512.5\right)$
FこRMAT $\left(2 X, 6 H_{X I}(1)=E 12.5,7 \mathrm{X}, 6 \mathrm{HXI}(2)=E 12.5,7 \mathrm{X}, 6 \mathrm{HXI}(3)=E 12.5\right)$
F FCRMAT $(2 x, 6$ HDT $(2)=E 12.5,7 X, 6 H D T(3)=E 12.5,7 X, 6 H O T(4)=E 12.5)$
10 FこRMAT $(2 X, 6 H \times 2(2)=E 12.5,7 X, 6 H \times 2(3)=E 12.5,7 X, 6 H \times 2(4)=E 12.5)$
11 FERMAT $(2 X, 6 H X 3(1)=E 12.5,7 X, 6 H X 3(2)=E 12.5,7 X, 6 H \times 3(3)=E 12.5)$
12 FERMAT $(2 X, 6 H H 1 Y 11=E 12.5,7 X, 6 H H 2 Y 12=E 12.5,7 X, 6$ HH 3 Y $13=512.5$ ）
13 FERMAT $(2 X, 6 H H 1 Y 31=E 12.5,7 X, 6 H H 2 Y 32=E 12.5,7 X, 2 H W=E 12.5, /)$
14 FORMAT（ $2 \mathrm{X}, 5$ HTERMS， $20 \mathrm{X}, 7 \mathrm{HCOST}(\$), 7 \mathrm{X}, 1$ IHPERCENTAGE，／）
15 FERMAT $(2 X, 5$ HSTEAM， $15 \mathrm{X}, \mathrm{E} 12.5,5 \mathrm{X}, \mathrm{E} 12.5)$
16 FCRMAT（ 2 X, GHHEATER， 14 X, E12．5，5X，E12．5）
17 FCRMAT $(2 X, 15$ HCONDENSING AREA， 5 X, E12．5，5X，E12．5）
18 FתRMAT $(2 X, 7 H P U M P I N G, 13 X, E 12.5,5 X, E 12.5)$
19 FERMAT（ $2 \mathrm{X}, 12$ HCONSTRUCTION， $8 \mathrm{X}, \mathrm{E} 12.5,5 \mathrm{x}$, E12．5）
20 F ORMAT（ $2 x, 12$ HPRETREATMENT， $8 \mathrm{X}, \mathrm{E} 12 \cdot 5,5 \mathrm{x}, \mathrm{E} 12.5,1)$
21 FCRMAT $2 X, 5 H T E R M S, 12 X, 11 H 1$ ST EFFECT， $6 X, 11 H 2$ ND EFFECT， $6 X, 11 H 3$ RD 1EFFECT，／1
22 FERMAT（ $2 x, 1$ HHTEMP．DRSP， $6 \mathrm{X}, \mathrm{E} 12.5,5 \mathrm{X}$, E12．5，5X，E12．5）
23 F ORMAT $2 x, 11$ HWATER PRCD．， $5 x, E 12.5,5 X, E 12.5,5 X, E 12.5,11$
24 FERMAT（ $2 X, 26$ HREAD NEW OPTIMIZATION DATA）
25 FRRMAT $(2 X, 6 H X 1(4)=.E 12.5,11 X, 2 H Q=E 12.5,7 X, 6 H \times 2(4)=E 12.5)$
26 FORMAT（ $2 \mathrm{X}, \mathrm{E} 12.5,2 \mathrm{X}, \mathrm{E} 12.5,2 \mathrm{X}, \mathrm{E} 12.5,2 \mathrm{X}$, E12． $5,2 \mathrm{X}, \mathrm{E} 12.5,1)$
27 F SRMAT $(2 X, 10 H C O N D$ ．COST， $6 X, E 12.5,5 X, E 12.5,5 X, E 12.5)$
28 FORMAT（2X，10HPUMP．COST， $6 \mathrm{X}, \mathrm{E} 12.5,5 \mathrm{X}$, E12． $5,5 \mathrm{X}, \mathrm{E} 12.5)$
29 FCRMAT（ $2 \mathrm{X}, 8 \mathrm{HB} . \mathrm{P}$ ．EL．$, 8 \mathrm{X}, \mathrm{E} 12.5,5 \mathrm{X}, \mathrm{E} 12.5,5 \mathrm{X}, \mathrm{E} 12.5,1)$
31 FCRMAT $(2 X, 6 H X 1(4)=E 12.5,2 X, 2 \mathrm{HO}=E!2.5,2 \mathrm{X}, 3 \mathrm{HTN}=E 12.5)$
33 FORMAT $(2 X, 6 H X F(I)=E 12.5,2 X, 6 H Q F(I)=E 12.5,2 X, 7 H W C I(I)=E 12.5,1)$
34 F $こ R M A T(2 X, 3 H T N=F 4.1)$
123 FGRMAT $(2 X, 6 \mathrm{HXI}(4)=\mathrm{E} 12.5,2 \mathrm{X}, 2 \mathrm{HO}=\mathrm{E} 12.5,2 \mathrm{X}, 3 \mathrm{HTX}=\mathrm{E} 12.5)$
124 FORMAT（3E12．5）
71 READ $4, T X, T N, T A, T B, T R, T Z$
125 RFAD 124，X1（4），Q，22
126 READ 3，NC，TE（1），TE（2），TE（3），ER
READ $3, Y 1(2), Y 1(3), Y 1(4), Y 3(2), Y 3(3)$
READ 3，（DS（I），I＝1，5）
READ 4，（TV（I），I＝1，5）， 22
READ 1，U，A，HT，HTS，X3（1），D，S（2），S（5），S（4），V
READ 2，R，X1（1），CST，W，CHT，CCD，CPP
READ $4, B, C 5, P C, C P, C C, E R R O R$
$M=1$
$L=1$
41 DO $42 \mathrm{I}=2,3$
$X=\operatorname{EXPF}(-C P * Y 3(I) / H T)$
$42 \times 1(I)=(X * X 1(I-1)) /(1 .+Y 1(I)-Y 1(I) * X)$
Y3（4）＝HT＊LSGF $((X 1(3)+Y 1(4) * X 1(4)) /(X 1(4) *(1 .+Y 1(4)))) / C P$
DC $43 \mathrm{I}=2,4$
$X 3(I)=X 3(I-1)+Y 3(I)$
43 DT（I）＝（0／CP＋TE（I－1）＊（1．－X1（1）／X1（I－1）））／（1．＋Y1（I）＊X1（I）／X1\｛（－1））

FLASH DISTILLATICN BY SIMPLEX METHCU ANU MAXIMUM PRINCIPLE DIMENSION Y1（4），Y3（4），X1（4），X2（4），X3（4），DT（4），X1Y1（3），S（4） DIMENSION X1Y3（3），X2Y1（3），DTY1（3），XIY3（3）， $0 T \times 1(2), X 2 \times 3(2), \times 2 \times 1(2)$ DIMENSI 2N WPR（4），DS（5），TV（5），PU，4），AR（4），TE（3）， $\operatorname{QF}(6), X F(6), \operatorname{ACI}(6)$ DIMENSION QF（6），XF（6），WCI（6）
1 FERMAT（10F7．1）
2 FERMAT（TE10．3）
3 FORMAT（5E12．5）
4 FERMAT（6E12．5）
5 FERMAT $(2 x, 3$ THTHE FOLLCWING ARE OPTIMUN こUTPUT DATA， 1$)$
6 FORMAT $(2 X, 6 H Y 1(2)=E 12.5,7 X, 6 H Y 1(3)=E 12.5,7 X, 6 H Y 1(4)=E 12.5)$
FORMAT $\left(2 X, 6 \mathrm{HY}_{3}(2)=E 12.5,7 \mathrm{X}, 6 \mathrm{HY} 3(3)=E 12.5,7 \mathrm{X}, 6 \mathrm{HY} 3(4)=512.5\right)$
FこRMAT $\left(2 X, 6 H_{X I}(1)=E 12.5,7 \mathrm{X}, 6 \mathrm{HXI}(2)=E 12.5,7 \mathrm{X}, 6 \mathrm{HXI}(3)=E 12.5\right)$
F FCRMAT $(2 x, 6$ HDT $(2)=E 12.5,7 X, 6 H D T(3)=E 12.5,7 X, 6 H O T(4)=E 12.5)$
10 FこRMAT $(2 X, 6 H \times 2(2)=E 12.5,7 X, 6 H \times 2(3)=E 12.5,7 X, 6 H \times 2(4)=E 12.5)$
11 FERMAT $(2 X, 6 H X 3(1)=E 12.5,7 X, 6 H X 3(2)=E 12.5,7 X, 6 H \times 3(3)=E 12.5)$
12 FERMAT $(2 X, 6 H H 1 Y 11=E 12.5,7 X, 6 H H 2 Y 12=E 12.5,7 X, 6$ HH 3 Y $13=512.5$ ）
13 FERMAT $(2 X, 6 H H 1 Y 31=E 12.5,7 X, 6 H H 2 Y 32=E 12.5,7 X, 2 H W=E 12.5, /)$
14 FORMAT（ $2 \mathrm{X}, 5$ HTERMS， $20 \mathrm{X}, 7 \mathrm{HCOST}(\$), 7 \mathrm{X}, 1$ IHPERCENTAGE，／）
15 FERMAT $(2 X, 5$ HSTEAM， $15 \mathrm{X}, \mathrm{E} 12.5,5 \mathrm{X}, \mathrm{E} 12.5)$
16 FCRMAT（ 2 X, GHHEATER， 14 X, E12．5，5X，E12．5）
17 FCRMAT $(2 X, 15$ HCONDENSING AREA， 5 X, E12．5，5X，E12．5）
18 FתRMAT $(2 X, 7 H P U M P I N G, 13 X, E 12.5,5 X, E 12.5)$
19 FERMAT（ $2 \mathrm{X}, 12$ HCONSTRUCTION， $8 \mathrm{X}, \mathrm{E} 12.5,5 \mathrm{x}$, E12．5）
20 F ORMAT（ $2 x, 12$ HPRETREATMENT， $8 \mathrm{X}, \mathrm{E} 12 \cdot 5,5 \mathrm{x}, \mathrm{E} 12.5,1)$
21 FCRMAT $2 X, 5 H T E R M S, 12 X, 11 H 1$ ST EFFECT， $6 X, 11 H 2$ ND EFFECT， $6 X, 11 H 3$ RD 1EFFECT，／1
22 FERMAT（ $2 x, 1$ HHTEMP．DRSP， $6 \mathrm{X}, \mathrm{E} 12.5,5 \mathrm{X}$, E12．5，5X，E12．5）
23 F ORMAT $2 x, 11$ HWATER PRCD．， $5 x, E 12.5,5 X, E 12.5,5 X, E 12.5,11$
24 FERMAT（ $2 X, 26$ HREAD NEW OPTIMIZATION DATA）
25 FRRMAT $(2 X, 6 H X 1(4)=.E 12.5,11 X, 2 H Q=E 12.5,7 X, 6 H \times 2(4)=E 12.5)$
26 FORMAT（ $2 \mathrm{X}, \mathrm{E} 12.5,2 \mathrm{X}, \mathrm{E} 12.5,2 \mathrm{X}, \mathrm{E} 12.5,2 \mathrm{X}$, E12． $5,2 \mathrm{X}, \mathrm{E} 12.5,1)$
27 F SRMAT $(2 X, 10 H C O N D$ ．COST， $6 X, E 12.5,5 X, E 12.5,5 X, E 12.5)$
28 FORMAT（2X，10HPUMP．COST， $6 \mathrm{X}, \mathrm{E} 12.5,5 \mathrm{X}$, E12． $5,5 \mathrm{X}, \mathrm{E} 12.5)$
29 FCRMAT（ $2 \mathrm{X}, 8 \mathrm{HB} . \mathrm{P}$ ．EL．$, 8 \mathrm{X}, \mathrm{E} 12.5,5 \mathrm{X}, \mathrm{E} 12.5,5 \mathrm{X}, \mathrm{E} 12.5,1)$
31 FCRMAT $(2 X, 6 H X 1(4)=E 12.5,2 X, 2 \mathrm{HO}=E!2.5,2 \mathrm{X}, 3 \mathrm{HTN}=E 12.5)$
33 FORMAT $(2 X, 6 H X F(I)=E 12.5,2 X, 6 H Q F(I)=E 12.5,2 X, 7 H W C I(I)=E 12.5,1)$
34 F $こ R M A T(2 X, 3 H T N=F 4.1)$
123 FGRMAT $(2 X, 6 \mathrm{HXI}(4)=\mathrm{E} 12.5,2 \mathrm{X}, 2 \mathrm{HO}=\mathrm{E} 12.5,2 \mathrm{X}, 3 \mathrm{HTX}=\mathrm{E} 12.5)$
124 FORMAT（3E12．5）
71 READ $4, T X, T N, T A, T B, T R, T Z$
125 RFAD 124，X1（4），Q，22
126 READ 3，NC，TE（1），TE（2），TE（3），ER
READ $3, Y 1(2), Y 1(3), Y 1(4), Y 3(2), Y 3(3)$
READ 3，（DS（I），I＝1，5）
READ 4，（TV（I），I＝1，5）， 22
READ 1，U，A，HT，HTS，X3（1），D，S（2），S（5），S（4），V
READ 2，R，X1（1），CST，W，CHT，CCD，CPP
READ $4, B, C 5, P C, C P, C C, E R R O R$
$M=1$
$L=1$
41 DO $42 \mathrm{I}=2,3$
$X=\operatorname{EXPF}(-C P * Y 3(I) / H T)$
$42 \times 1(I)=(X * X 1(I-1)) /(1 .+Y 1(I)-Y 1(I) * X)$
Y3（4）＝HT＊LSGF $((X 1(3)+Y 1(4) * X 1(4)) /(X 1(4) *(1 .+Y 1(4)))) / C P$
DC $43 \mathrm{I}=2,4$
$X 3(I)=X 3(I-1)+Y 3(I)$
43 DT（I）＝（0／CP＋TE（I－1）＊（1．－X1（1）／X1（I－1）））／（1．＋Y1（I）＊X1（I）／X1\｛（－1））
$W A=W /(1 .-X 1(1) / \times 1(4))$
$\mathrm{C} 2=\mathrm{CHT*Q*WA/(U*}(A-X 4(1)+0.5 * D T(2)))$
CI=CST*Q*WA/HTS
$\times 3(1)=C 2+C 5+C 1$
(こ $44 \mathrm{I}=2,4$
W PR(I-1) $=W A * \times 1(1) *(1 . / \times 1(I-1)-1 \cdot / \times 1(1))$
$X=W P R(I-1) * H T / U$
AR(I) =CCD*X/(DT(I)-TE(I-1)+Y3(I)/(2**S(I)))
$Y=E X P F(-H T /(R * \times 3(I-1)))-E X P=(-H T /(R * * \times 3(I-1)+Y 3(I))))$
$P U(I)=C P P * X I(I) * Y I(I) * B * Y * W A /(D * X I(I-1))$
$X 2(I)=X 2(I-1)+A R(I)+P U(I)$
$X 1 Y 1(I-1)=X 1(I) *(X I(I)-X I(I-1): /(X 1(I-1) *(1++Y I(I)))$
$X 1 Y 3(I-1)=-C P * X I(I) *(X I(I-1)+Y I(I) * X I(I)) /(H T * X I(I-1))$
DTY1(I-1)=-DT(I)/(XI(I-1)/X1(I)+YI(I))
$X B I=X 1(1) * X 1 Y 1(I-1) /((X 1(I) * * 2) *(D T(I)-T E(I-1)+0.5 * Y 3(I) / S(I)))$
$\times 83=\times 1(1) * \times 2 Y 1(I-1) *(1 \cdot / X 1(I-1)-1 \cdot / X 1(I))$
$X B 2=X B 3 /((D T(I)-T E(I-1)+0.5 * Y 3(I) / S(I)) * * 2)$
$D T(1)=C C D * H T * W A *(X B 1-X B 2) / U$
YA1 =EXPF $(-H T /(R * X 3(I-1)))-E X P F(-H T /(R *(X 3(1-1)+Y 3(I)))$
$Y 1(1)=C P P * X I(1) * B * Y A 1 * W A /(D * X 1(1-亡))$
$X 2 Y 1(I-1)=\operatorname{DT}(1)+Y 1(1)$
$X B 1=X I(1) * X I Y 3(I-1) /((X 1(I) * * 2) *(X 2(I)-T E(I-1)+0.5 * Y 3(I) / S(I)))$
$\times 83=\times 1(1) *(1 \cdot / X 1(I-1)-1 \cdot / X 1(1))$
$X B 2=X B 3 /(2.0 * S(I) *(D T(I)-T E(I-1)+0.5 * Y 3(I) / S(I)) * * 2)$
$X A=H T * E X P F(-H T /(R *(X 3(I-1)+Y 3(I)))) /(R *(X 3(I-1)+Y 3(I)) * * 2)$
$44 \times 2 Y 3(I-1)=C C D * H T * W A *(X B I-X B 2) / U+Y$
$B T=X 2(3)+Y 3(4)-545$.
$C T=(Q * W A+T E(3) * W) / B T$
$C 6=(P C-C C) * W A+C C * C T$
$\times 2(4)=X 2(4)+C 6$
$\operatorname{AR}(1)=A R(2)+\operatorname{AR}(3)+\operatorname{AR}(4)$
$P \cup(1)=P \cup(2)+P U(3)+P \cup(4)$
WPR (4) $=W P R(1)+W P R(2)+W P R(3)$
$\mathrm{PCl}=C 1 * 100.1 \times 2(4)$

- $P C 2=C 2 * 100 \cdot 1 \times 2(4)$
$P C 3=A R(1) * 100 \cdot 1 \times 2(4)$
$P(4=P U(1) * 100 \cdot 1 \times 2(4)$
$P C 5=C 5 * 100 . / \times 2(4)$
PC6 $=(6 * 100.1 \times 2(4)$
$T D 1=\times 3(1)-\times 3(2)$
$T D 2=\times 3(2)-\times 3(3)$
TD $3=\times 3(3)-\times 3(4)$
$\times 81=-C C D * W * X 1(1) * \times 1 Y 1(3) * V * H T * X 1(1) *(1 . / X 1(3)-1 . / \times 1(4)) / U$
) $32=X B 1 /(((X 1(4)-X 1(1)) * * 2) *(D T(4)-T E(3)+0.5 * v 3(4) / 5(4)))$
$\lambda 5 A=-C P P * X 1(1) * Y 1(4) * B * X 1(1) * \times 1 Y 1(3) * W /((X 1(4)-X I(1)) * * 2)$
$X 2 Y 1(3)=X 2 Y 1(3)+X 82+X 5 A * Y A I /(D * X I(3))$
$P T=-W A * X 1(1) /(X 1(4) *(X 1(4)-X 1(1))$
$A T=P T * X 1 Y 1$ (3)
$X 2 Y 1(3)=X 2 Y 1(3)+(P C-C C) * A T+C C * Q * A T / B T$
$X 2 Y 1(1)=X 2 Y 1(1)-C H T * Q * W A * D T Y 1(1) /(U * T E(1) *(A-X 3(1)+0.5 * D T(2) * * 2)$
$X B 1=X 1(1) *(1 . U / X 1(3)-1.0 / X 1(4)) * H T /(D T(4)-T \in(3)+0.5 * Y 3(4) / S(4))$
$\times 82=-(W * \times 1(1) * X 1 Y 3(3) * V /((X 1(4)-X 1(1)) * * 2)) * X b 1 * C C D / U$
$X=W * X I(1) * X I Y 3(3) * Y A 1 * B * X 1(1) * Y 1(4) /((X 1(4)-X I(1)) * * 2)$
$X 2 Y 3(3)=X 3 Y 2(3)+X 82-C P P * X /(D * X 1(3))$
$\times 2 Y 3(3)=\times 2 Y 3(3)+(P C-C C) * P T * X I Y 3(3)+C C *(Q * P T * X 1 Y 3(\hat{3}) / E T-C T / \Delta T)$
DC $45 \quad I=3,4$
$K=I-2$
$X Q=1.0 * X 1(1) *(T E(I-1)+D T(I) * Y 1(I))$
$W A=W /(1 .-X 1(1) / \times 1(4))$
$\mathrm{C} 2=\mathrm{CHT*Q*WA/(U*}(A-X 4(1)+0.5 * D T(2)))$
CI=CST*Q*WA/HTS
$\times 3(1)=C 2+C 5+C 1$
(こ $44 \mathrm{I}=2,4$
W PR(I-1) $=W A * \times 1(1) *(1 . / \times 1(I-1)-1 \cdot / \times 1(1))$
$X=W P R(I-1) * H T / U$
AR(I) =CCD*X/(DT(I)-TE(I-1)+Y3(I)/(2**S(I)))
$Y=E X P F(-H T /(R * \times 3(I-1)))-E X P=(-H T /(R * * \times 3(I-1)+Y 3(I))))$
$P U(I)=C P P * X I(I) * Y I(I) * B * Y * W A /(D * X I(I-1))$
$X 2(I)=X 2(I-1)+A R(I)+P U(I)$
$X 1 Y 1(I-1)=X 1(I) *(X I(I)-X I(I-1): /(X 1(I-1) *(1++Y I(I)))$
$X 1 Y 3(I-1)=-C P * X I(I) *(X I(I-1)+Y I(I) * X I(I)) /(H T * X I(I-1))$
DTY1(I-1)=-DT(I)/(XI(I-1)/X1(I)+YI(I))
$X B I=X 1(1) * X 1 Y 1(I-1) /((X 1(I) * * 2) *(D T(I)-T E(I-1)+0.5 * Y 3(I) / S(I)))$
$\times 83=\times 1(1) * \times 2 Y 1(I-1) *(1 \cdot / X 1(I-1)-1 \cdot / X 1(I))$
$X B 2=X B 3 /((D T(I)-T E(I-1)+0.5 * Y 3(I) / S(I)) * * 2)$
$D T(1)=C C D * H T * W A *(X B 1-X B 2) / U$
YA1 =EXPF $(-H T /(R * X 3(I-1)))-E X P F(-H T /(R *(X 3(1-1)+Y 3(I)))$
$Y 1(1)=C P P * X I(1) * B * Y A 1 * W A /(D * X 1(1-亡))$
$X 2 Y 1(I-1)=\operatorname{DT}(1)+Y 1(1)$
$X B 1=X I(1) * X I Y 3(I-1) /((X 1(I) * * 2) *(X 2(I)-T E(I-1)+0.5 * Y 3(I) / S(I)))$
$\times 83=\times 1(1) *(1 \cdot / X 1(I-1)-1 \cdot / X 1(1))$
$X B 2=X B 3 /(2.0 * S(I) *(D T(I)-T E(I-1)+0.5 * Y 3(I) / S(I)) * * 2)$
$X A=H T * E X P F(-H T /(R *(X 3(I-1)+Y 3(I)))) /(R *(X 3(I-1)+Y 3(I)) * * 2)$
$44 \times 2 Y 3(I-1)=C C D * H T * W A *(X B I-X B 2) / U+Y$
$B T=X 2(3)+Y 3(4)-545$.
$C T=(Q * W A+T E(3) * W) / B T$
$C 6=(P C-C C) * W A+C C * C T$
$\times 2(4)=X 2(4)+C 6$
$\operatorname{AR}(1)=A R(2)+\operatorname{AR}(3)+\operatorname{AR}(4)$
$P \cup(1)=P \cup(2)+P U(3)+P \cup(4)$
WPR (4) $=W P R(1)+W P R(2)+W P R(3)$
$\mathrm{PCl}=C 1 * 100.1 \times 2(4)$
- $P C 2=C 2 * 100 \cdot 1 \times 2(4)$
$P C 3=A R(1) * 100 \cdot 1 \times 2(4)$
$P(4=P U(1) * 100 \cdot 1 \times 2(4)$
$P C 5=C 5 * 100 . / \times 2(4)$
PC6 $=(6 * 100.1 \times 2(4)$
$T D 1=\times 3(1)-\times 3(2)$
$T D 2=\times 3(2)-\times 3(3)$
TD $3=\times 3(3)-\times 3(4)$
$\times 81=-C C D * W * X 1(1) * \times 1 Y 1(3) * V * H T * X 1(1) *(1 . / X 1(3)-1 . / \times 1(4)) / U$
) $32=X B 1 /(((X 1(4)-X 1(1)) * * 2) *(D T(4)-T E(3)+0.5 * v 3(4) / 5(4)))$
$\lambda 5 A=-C P P * X 1(1) * Y 1(4) * B * X 1(1) * \times 1 Y 1(3) * W /((X 1(4)-X I(1)) * * 2)$
$X 2 Y 1(3)=X 2 Y 1(3)+X 82+X 5 A * Y A I /(D * X I(3))$
$P T=-W A * X 1(1) /(X 1(4) *(X 1(4)-X 1(1))$
$A T=P T * X 1 Y 1$ (3)
$X 2 Y 1(3)=X 2 Y 1(3)+(P C-C C) * A T+C C * Q * A T / B T$
$X 2 Y 1(1)=X 2 Y 1(1)-C H T * Q * W A * D T Y 1(1) /(U * T E(1) *(A-X 3(1)+0.5 * D T(2) * * 2)$
$X B 1=X 1(1) *(1 . U / X 1(3)-1.0 / X 1(4)) * H T /(D T(4)-T \in(3)+0.5 * Y 3(4) / S(4))$
$\times 82=-(W * \times 1(1) * X 1 Y 3(3) * V /((X 1(4)-X 1(1)) * * 2)) * X b 1 * C C D / U$
$X=W * X I(1) * X I Y 3(3) * Y A 1 * B * X 1(1) * Y 1(4) /((X 1(4)-X I(1)) * * 2)$
$X 2 Y 3(3)=X 3 Y 2(3)+X 82-C P P * X /(D * X 1(3))$
$\times 2 Y 3(3)=\times 2 Y 3(3)+(P C-C C) * P T * X I Y 3(3)+C C *(Q * P T * X 1 Y 3(\hat{3}) / E T-C T / \Delta T)$
DC $45 \quad I=3,4$
$K=I-2$
$X Q=1.0 * X 1(1) *(T E(I-1)+D T(I) * Y 1(I))$

DTXI（K）$=X Q /(X 1(I-1) *(X 1(I-1)+Y 1(I) * X I(1)))$
$X=(-1 \cdot /(X 1(I-1) * * 2)+1 \cdot /(X 1(I-1) * X 1(1)))$
$X=X /(D T(I)-T E(I-1)+0.5 * Y 3(I) / 5(I))$
$Y A=\operatorname{DTXI}(K) *\left(1.1 X_{1}(I-1)-1 . / X 1(1)\right)$
$Y A=Y A /((D T(I)-T E(I-1)+0.5 * Y 3(I) / S(1)) * * 2)$
$X A=E X P F(-H T /(R * \times 3(I-1)))-E X P F(-H T /(R *(X 3(I-1)+Y 3(1))))$
$Y=-C P P * X 1(1) * Y 1(1) * B * X A * W A /(D * X I(I-1) * * 2)$
$X 2 \times 1(K)=Y+C C D * H T * W A * X 1(1) *(X-Y A) / U$
X5＝EXPF $(-H T /(R * X 3(I-1))) /(X 3(I-1) * * 2)$
$Y A=E X P F\left(-H T /\left(R^{*}(X 3(I-1)+Y 3(I))\right)\right) /((X 3(I-1)+Y 3(I)) * * 2)$
$45 \times 2 \times 3(K)=1.0 * C P P * X 1(1) * Y 1(I) * W A * B * H T *(X 5-Y A) /(R * D * X I(I-1))$
$X B 1=X 1(1) * H T *(1.0 / X 1(3)-1.0 / X 1(4)) /(D T(4)-T E(3)+0.5 * Y(3(4) / S(4))$
$X B 2=W * X 1(1) * X 1(4) /(X 1(3) *(X 1(4)-X 1(1)) * * 2)$
$Y=-(P P * X I(1) * Y 1(4) * B * X B 2 * X A /(D * X I(3))$
$X 2 \times 1(2)=X 2 \times 1(2)+Y-C C D * X B 2 * X B 1 / U$
$\times 2 \times 1(2)=\times 2 \times 1(2)+(P C-C C) * P T * \times 1(4) / \times 1(3)+C C \times Q * P T * \times 1(4) /(\times 1(3) * B T)$
） $2 \times 3(2)=\times 2 \times 3(2)-C C * C T / B T$
213 $=-\times 2 Y 3(3) / X 1 Y 3(3)$
$Z 12=213 * \times 1(4) / \times 1(3)+\times 2 \times 1(2)$
$232=\times 2 \times 3(2)$
$211=212 * \times 1(3) / \times 1(2)+\times 2 \times 1(1)$
$231=\times 2 \times 3(2)$
HIY11 $=211 * \times 1 Y 1(1)+X 2 Y 1(1)$
$H\{Y 31=211 * X 1 Y 3(1)+X 2 Y 3(1)+Z 31$
H2Y12＝Z12＊X1Y1（2）$+X 2 Y 1(2)$
$H_{2} Y 32=212 * X 1 Y 3(2)+X 2 Y 3(2)+Z 32$
H3Y13＝2l3＊XIY1（3）＋X2Y1（3）
IF $(M-1) 56,66,67$
$66 \mathrm{TE}(1)=1 \cdot 01+\left(\left(X_{1}(1)+Y 1(2) * X 1(2)\right) /(1 .+Y 1(2))+X 1(2)\right) / 0.06$
$T E(2)=1.0075+((X 1(2)+Y 1(3) * X 1(3)) /(1 .+Y 1(3))+X 1(3) / / 0.0694$
$T E(3)=0.32+((X 1(3)+Y 1(4) * X 1(4)) /(1 \cdot+Y 1(4))+X 1(4)) / 0.0630$
$M=M+1$
GこTに41
$67 M=1$
IF（ABSF（HIY11）－ER）47，47，51
47 IF（ABSF $(H 1 Y 31)-E R) 48,48,51$
48 IF（ABSF（H2Y12）－ER）49，49，51
49 IF（ABSF（H2Y32）－ER）50，50，51
50 IF（ABSF（H3Y13）－ER）68，68，51
51 IF（H1Y11）137，137，138
$137 \mathrm{TV}(1)=-1$ ．
138 IF（H2Y12）139，139，140
$139 \mathrm{TV}(2)=-1$ ．
140 IF（H3Y13）141，141，142
141 TV（3）$=-1$ ．
142 IF（H1Y31）143，143，144
$143 \mathrm{TV}(4)=-1$ 。
144 IF（H2Y32） $145,145,146$
$145 \mathrm{TV}(5)=-1$ ．
146 IF（WC－X3（4）） $36,36,35$
36 DC $37 \mathrm{I}=1,5$
37 DS（I）$=0.5 * D S(I)$
$Y 1(2)=Y 11 T$
$Y 1(3)=Y 12 T$
$Y 1(4)=Y 13 T$
$Y 3(2)=Y 31 T$
$Y 3(3)=Y 32 T$
GC TO 38

DTXI（K）$=X Q /(X 1(I-1) *(X 1(I-1)+Y 1(I) * X I(1)))$
$X=(-1 \cdot /(X 1(I-1) * * 2)+1 \cdot /(X 1(I-1) * X 1(1)))$
$X=X /(D T(I)-T E(I-1)+0.5 * Y 3(I) / 5(I))$
$Y A=\operatorname{DTXI}(K) *\left(1.1 X_{1}(I-1)-1 . / X 1(1)\right)$
$Y A=Y A /((D T(I)-T E(I-1)+0.5 * Y 3(I) / S(1)) * * 2)$
$X A=E X P F(-H T /(R * \times 3(I-1)))-E X P F(-H T /(R *(X 3(I-1)+Y 3(1))))$
$Y=-C P P * X 1(1) * Y 1(1) * B * X A * W A /(D * X I(I-1) * * 2)$
$X 2 \times 1(K)=Y+C C D * H T * W A * X 1(1) *(X-Y A) / U$
X5＝EXPF $(-H T /(R * X 3(I-1))) /(X 3(I-1) * * 2)$
$Y A=E X P F\left(-H T /\left(R^{*}(X 3(I-1)+Y 3(I))\right)\right) /((X 3(I-1)+Y 3(I)) * * 2)$
$45 \times 2 \times 3(K)=1.0 * C P P * X 1(1) * Y 1(I) * W A * B * H T *(X 5-Y A) /(R * D * X I(I-1))$
$X B 1=X 1(1) * H T *(1.0 / X 1(3)-1.0 / X 1(4)) /(D T(4)-T E(3)+0.5 * Y(3(4) / S(4))$
$X B 2=W * X 1(1) * X 1(4) /(X 1(3) *(X 1(4)-X 1(1)) * * 2)$
$Y=-(P P * X I(1) * Y 1(4) * B * X B 2 * X A /(D * X I(3))$
$X 2 \times 1(2)=X 2 \times 1(2)+Y-C C D * X B 2 * X B 1 / U$
$\times 2 \times 1(2)=\times 2 \times 1(2)+(P C-C C) * P T * \times 1(4) / \times 1(3)+C C \times Q * P T * \times 1(4) /(\times 1(3) * B T)$
） $2 \times 3(2)=\times 2 \times 3(2)-C C * C T / B T$
213 $=-\times 2 Y 3(3) / X 1 Y 3(3)$
$Z 12=213 * \times 1(4) / \times 1(3)+\times 2 \times 1(2)$
$232=\times 2 \times 3(2)$
$211=212 * \times 1(3) / \times 1(2)+\times 2 \times 1(1)$
$231=\times 2 \times 3(2)$
HIY11 $=211 * \times 1 Y 1(1)+X 2 Y 1(1)$
$H\{Y 31=211 * X 1 Y 3(1)+X 2 Y 3(1)+Z 31$
H2Y12＝Z12＊X1Y1（2）$+X 2 Y 1(2)$
$H_{2} Y 32=212 * X 1 Y 3(2)+X 2 Y 3(2)+Z 32$
H3Y13＝2l3＊XIY1（3）＋X2Y1（3）
IF $(M-1) 56,66,67$
$66 \mathrm{TE}(1)=1 \cdot 01+\left(\left(X_{1}(1)+Y 1(2) * X 1(2)\right) /(1 .+Y 1(2))+X 1(2)\right) / 0.06$
$T E(2)=1.0075+((X 1(2)+Y 1(3) * X 1(3)) /(1 .+Y 1(3))+X 1(3) / / 0.0694$
$T E(3)=0.32+((X 1(3)+Y 1(4) * X 1(4)) /(1 \cdot+Y 1(4))+X 1(4)) / 0.0630$
$M=M+1$
GこTに41
$67 M=1$
IF（ABSF（HIY11）－ER）47，47，51
47 IF（ABSF $(H 1 Y 31)-E R) 48,48,51$
48 IF（ABSF（H2Y12）－ER）49，49，51
49 IF（ABSF（H2Y32）－ER）50，50，51
50 IF（ABSF（H3Y13）－ER）68，68，51
51 IF（H1Y11）137，137，138
$137 \mathrm{TV}(1)=-1$ ．
138 IF（H2Y12）139，139，140
$139 \mathrm{TV}(2)=-1$ ．
140 IF（H3Y13）141，141，142
141 TV（3）$=-1$ ．
142 IF（H1Y31）143，143，144
$143 \mathrm{TV}(4)=-1$ 。
144 IF（H2Y32） $145,145,146$
$145 \mathrm{TV}(5)=-1$ ．
146 IF（WC－X3（4）） $36,36,35$
36 DC $37 \mathrm{I}=1,5$
37 DS（I）$=0.5 * D S(I)$
$Y 1(2)=Y 11 T$
$Y 1(3)=Y 12 T$
$Y 1(4)=Y 13 T$
$Y 3(2)=Y 31 T$
$Y 3(3)=Y 32 T$
GC TO 38
$35 W C=X 3(4)$
$38 \mathrm{Y} 11 \mathrm{~T}=\mathrm{Y} 1(2)$
$Y 12 T=Y 1(3)$
Y13T=Y1(4)
$Y 31 T=Y 3(2)$
$Y 32 T=Y 3(3)$
$Y 1(2)=Y(12)-T V(1) * D S(1)$
$Y 1(3)=Y 1(3)-T V(2) * D S(2)$
$Y 1(4)=Y 1(4)-T V(3) * D S(3)$
$Y 3(2)=Y 3(2)-T V(4) * D S(4)$
$Y 3(3)=Y 3(3)-T V(5) * D S(5)$
DC $32 I=1,5$
$32 \operatorname{TV}(I)=1$.
GO TO 41
68 IF(TX-1.) 69,69,63
69 IF(TN-1.) 72,78,79
72 IF(TZ-1.) 150,151,152
150 QF(1)=Q
$X F(1)=X 1(4)$
WCI(1)=X3(4)
$T Z=1$.
GO TO 125
151 QF(2) $=0$
$X F(2)=X 1(4)$
$W C I(2)=X 3(4)$
$T Z=2$ 。
GO TO 125
152 OF $(3)=Q$
$)^{\prime} F(3)=X 1(4)$
$w C I(3)=\times 3(4)$
98 IF(WCI(1)-WCI(2))73,73,74
74 Q=QF(1)
$\times 1(4)=X F(1)$
$\times 3(4)=W C 1(1)$
$Q F(1)=Q F(2)$
$X F(1)=X F(2)$
WCI(1)=WCI(2)
$Q F(2)=0$
$X F(2)=X(4)$
WCI(2) $=\times 3(4)$
73 IF(WCI(2)-WCI(3))75,75,76
$76 \mathrm{Q}=\mathrm{QF}(3)$
$\mathrm{x} 1(4)=\mathrm{XF}(3)$
$X 3(4)=$ WCI (3)
$Q F(3)=Q F(2)$
$X F(3)=X F(2)$
WCI(3)=WCI(2)
$Q F(2)=Q$
$X F(2)=X 1(4)$
WCI (2)=X3(4)
IF(WCI(2)-WCI(1))77,77,75
$77 \mathrm{Q}=\mathrm{CF}(2)$
$X 1(4)=X F(2)$
X3(4) =WにI(2)
$\operatorname{QF}(2)=Q=(1)$
$\mathrm{XF}(2)=\mathrm{XF}(1)$
WCI (2)=WCI(1)
$Q F(1)=Q$
$35 W C=X 3(4)$
$38 \mathrm{Y} 11 \mathrm{~T}=\mathrm{Y} 1(2)$
$Y 12 T=Y 1(3)$
Y13T=Y1(4)
$Y 31 T=Y 3(2)$
$Y 32 T=Y 3(3)$
$Y 1(2)=Y(12)-T V(1) * D S(1)$
$Y 1(3)=Y 1(3)-T V(2) * D S(2)$
$Y 1(4)=Y 1(4)-T V(3) * D S(3)$
$Y 3(2)=Y 3(2)-T V(4) * D S(4)$
$Y 3(3)=Y 3(3)-T V(5) * D S(5)$
DC $32 I=1,5$
$32 \operatorname{TV}(I)=1$.
GO TO 41
68 IF(TX-1.) 69,69,63
69 IF(TN-1.) 72,78,79
72 IF(TZ-1.) 150,151,152
150 QF(1)=Q
$X F(1)=X 1(4)$
WCI(1)=X3(4)
$T Z=1$.
GO TO 125
151 QF(2) $=0$
$X F(2)=X 1(4)$
$W C I(2)=X 3(4)$
$T Z=2$ 。
GO TO 125
152 OF $(3)=Q$
$)^{\prime} F(3)=X 1(4)$
$w C I(3)=\times 3(4)$
98 IF(WCI(1)-WCI(2))73,73,74
74 Q=QF(1)
$\times 1(4)=X F(1)$
$\times 3(4)=W C 1(1)$
$Q F(1)=Q F(2)$
$X F(1)=X F(2)$
WCI(1)=WCI(2)
$Q F(2)=0$
$X F(2)=X(4)$
WCI(2) $=\times 3(4)$
73 IF(WCI(2)-WCI(3))75,75,76
$76 \mathrm{Q}=\mathrm{QF}(3)$
$\mathrm{x} 1(4)=\mathrm{XF}(3)$
$X 3(4)=$ WCI (3)
$Q F(3)=Q F(2)$
$X F(3)=X F(2)$
WCI(3)=WCI(2)
$Q F(2)=Q$
$X F(2)=X 1(4)$
WCI (2)=X3(4)
IF(WCI(2)-WCI(1))77,77,75
$77 \mathrm{Q}=\mathrm{CF}(2)$
$X 1(4)=X F(2)$
X3(4) =WにI(2)
$\operatorname{QF}(2)=Q=(1)$
$\mathrm{XF}(2)=\mathrm{XF}(1)$
WCI (2)=WCI(1)
$Q F(1)=Q$
$X F(1)=X 1(4)$
$1 C[(1)=\times 3(4)$
75 1F $(T X-1.1130,130,131$
130 TN＝1．
$Q F(4)=(Q F(1)+Q F(2)) * 0.5$
$X F(4)=(X F(1)+X F(2)) * 0.5$
$Q=Q F(4)$
$X 1(4)=X F(4)$
PRINT 31，X1（4），Q，TN
GS TV 126
78 WCI（4）$=\times 3(4)$
$\mathrm{QF}(5)=\mathrm{QF}(4)+\mathrm{TA})(\mathrm{QF}(4)-\mathrm{QF}(3))$
$X F(5)=X$ C $(4)+T A *(X F(4)-X F(3))$
$\mathrm{Q}=\mathrm{QF}(5)$
$X 1(4)=X F(5)$
$T N=2$ ．
PRINT 31，XI（4），Q，TN
GO Tへ 126
79 IF（TN－3．180，83，90
$80 \mathrm{WCI}(5)=\times 3(4)$
IF（WCI（5）－WCI（1））81，82，82
$81 Q F(6)=Q F(4)+T R *(Q F(5)-Q F(4))$
$X F(6)=Q F(4)+T R *(X F(5)-Q F(4))$
$Q=Q F(6)$
$X 1(4)=X F(6)$
TN＝3．
PRINT 31，X1（4），Q，TN
Gこ Tこ 126
83 WCI $(6)=\times 3(4)$
IF（WCI（6）－WCI（1））84，86，86
$84 Q F(3)=Q F(6)$
$X F(3)=X F(6)$
WCI（3）＝WCI（6）
Gこ T 96
$82 \operatorname{IF}(W C I(5)-W C I(2)) 86,86,87$
$86 Q F(3)=Q F(5)$
$X F(3)=X F(5)$
WCI（3）＝WCI（5）
Gこ Tこ 96
87 IF（WCI（5）－WCI（3）） $88,88,89$
$88(F(3)=Q F(5)$
$\lambda F(3)=X F(5)$
WCI（3）＝WCI（5）
$89 \operatorname{QF}(6)=\mathrm{QF}(4)+T B *(\mathrm{QF}(3)-\mathrm{QF}(4))$
$X F(6)=X F(4)+T B *(X F(3)-X F(4))$
$Q=Q F(6)$
$X 1(4)=X F(6)$
TN＝4．
PRINT 31，XI（4），Q，TN
Gこ Tへ 126
90 IF（TN－5．）91，94，95
91 WCI $(6)=\times 3(4)$
IF（WCI（6）－WCI（3））92，92，93
$92 Q F(3)=Q F(6)$
$X F(3)=X F(6)$
WCI（3）$=$ WCI（6）
GO Tこ 96
$93 \operatorname{QF}(3)=0.5 *(Q F(3)+Q F(1))$
$X F(1)=X 1(4)$
$1 C[(1)=\times 3(4)$
75 1F $(T X-1.1130,130,131$
130 TN＝1．
$Q F(4)=(Q F(1)+Q F(2)) * 0.5$
$X F(4)=(X F(1)+X F(2)) * 0.5$
$Q=Q F(4)$
$X 1(4)=X F(4)$
PRINT 31，X1（4），Q，TN
GS TV 126
78 WCI（4）$=\times 3(4)$
$\mathrm{QF}(5)=\mathrm{QF}(4)+\mathrm{TA})(\mathrm{QF}(4)-\mathrm{QF}(3))$
$X F(5)=X$ C $(4)+T A *(X F(4)-X F(3))$
$\mathrm{Q}=\mathrm{QF}(5)$
$X 1(4)=X F(5)$
$T N=2$ ．
PRINT 31，XI（4），Q，TN
GO Tへ 126
79 IF（TN－3．180，83，90
$80 \mathrm{WCI}(5)=\times 3(4)$
IF（WCI（5）－WCI（1））81，82，82
$81 Q F(6)=Q F(4)+T R *(Q F(5)-Q F(4))$
$X F(6)=Q F(4)+T R *(X F(5)-Q F(4))$
$Q=Q F(6)$
$X 1(4)=X F(6)$
TN＝3．
PRINT 31，X1（4），Q，TN
Gこ Tこ 126
83 WCI $(6)=\times 3(4)$
IF（WCI（6）－WCI（1））84，86，86
$84 Q F(3)=Q F(6)$
$X F(3)=X F(6)$
WCI（3）＝WCI（6）
Gこ T 96
$82 \operatorname{IF}(W C I(5)-W C I(2)) 86,86,87$
$86 Q F(3)=Q F(5)$
$X F(3)=X F(5)$
WCI（3）＝WCI（5）
Gこ Tこ 96
87 IF（WCI（5）－WCI（3）） $88,88,89$
$88(F(3)=Q F(5)$
$\lambda F(3)=X F(5)$
WCI（3）＝WCI（5）
$89 \operatorname{QF}(6)=\mathrm{QF}(4)+T B *(\mathrm{QF}(3)-\mathrm{QF}(4))$
$X F(6)=X F(4)+T B *(X F(3)-X F(4))$
$Q=Q F(6)$
$X 1(4)=X F(6)$
TN＝4．
PRINT 31，XI（4），Q，TN
Gこ Tへ 126
90 IF（TN－5．）91，94，95
91 WCI $(6)=\times 3(4)$
IF（WCI（6）－WCI（3））92，92，93
$92 Q F(3)=Q F(6)$
$X F(3)=X F(6)$
WCI（3）$=$ WCI（6）
GO Tこ 96
$93 \operatorname{QF}(3)=0.5 *(Q F(3)+Q F(1))$

```
    XF(3)=0.5*(XF(3)+XF(1))
    Q=QF(3)
    X1(4)=XF(3)
    TN=5.
    PRINT 31,X1(4),Q,TN
    G气 TS 126
94WCI(3)=X3(4)
    QF(2)=0.5*(QF(2)+QF(1))
    XF(2)=0.5*(XF(2)+XF(1))
    Q=QF(2)
    X1(4)=XF(2)
    TN=6.
    PRINT 31,X1(4),Q,TN
    (こ TS 126
95 WC:(2)= 人3(4)
96 TEST=(((WCI(1)-WCI(4))**2*+(WCI(2)-WCI(4))**2.+(WCI(3)-WCI(4))**2.
    1)/3.)**.5
    PUNCH 33,(XF(I),QF(I),WCI(I),I=1,3)
    IF(TEST-ERROR)97.97.98
97 TX=2.
    Gへ Tへ 98
131 Q=QF(1)
    X1(4)=XF(1)
    PRINT 3I,XI(4),Q,TX
    G^ TO 126
6 3 \text { PUNCH } 5
    PUNCH 25,X1(4),Q,X2(4)
    PUNCH 6,Yl(2),Yl(3),Y1(4)
    PUNCH 7,Y3(2),Y3(3),Y3(4)
    PUNCH 8,X1(1),X1(2),X1(3)
    PUNCH 9,DT(2),DT(3),DT(4)
    DS 64 I=2,4
64 X3(I)= \3(I)-460.
    PUNCH 10, X2(1),X2(2),X2(3)
    PUNCH 11,X3(1),X3(2),X3(3)
    PUNCH 12,H1Y11,H2Y12,H3Y13
    PUNCH 13,H1Y31,H2Y32,WPR(4)
    PUNCH }1
    PUNCH 15,Cl,PCl
    PUNCH lS,C2,PC2
    PUNCH 17,AR(1),PC3
    PUNCH 18,PU(1),PC4
    PUNCH 19,C5,PC5
    PUNCH 20,C6,PC6
    PUNCH 21
    PUNCH 22,TD1,TD2,TD3
    PUNCH 23,WPR(1),WPR(2),WPR(3)
    PUNCH 27,AR(2),AR(3),AR(4)
    PUNCH 28,PU(2),PU(3),PU(4)
    PUNCH 29,TE(1),TE(2),TE(3)
    PUNCH }2
    G气 TS 7l
    END
```

```
    XF(3)=0.5*(XF(3)+XF(1))
    Q=QF(3)
    X1(4)=XF(3)
    TN=5.
    PRINT 31,X1(4),Q,TN
    G气 TS 126
94WCI(3)=X3(4)
    QF(2)=0.5*(QF(2)+QF(1))
    XF(2)=0.5*(XF(2)+XF(1))
    Q=QF(2)
    X1(4)=XF(2)
    TN=6.
    PRINT 31,X1(4),Q,TN
    (こ TS 126
95 WC:(2)= 人3(4)
96 TEST=(((WCI(1)-WCI(4))**2*+(WCI(2)-WCI(4))**2.+(WCI(3)-WCI(4))**2.
    1)/3.)**.5
    PUNCH 33,(XF(I),QF(I),WCI(I),I=1,3)
    IF(TEST-ERROR)97.97.98
97 TX=2.
    Gへ Tへ 98
131 Q=QF(1)
    X1(4)=XF(1)
    PRINT 3I,XI(4),Q,TX
    G^ TO 126
6 3 \text { PUNCH } 5
    PUNCH 25,X1(4),Q,X2(4)
    PUNCH 6,Yl(2),Yl(3),Y1(4)
    PUNCH 7,Y3(2),Y3(3),Y3(4)
    PUNCH 8,X1(1),X1(2),X1(3)
    PUNCH 9,DT(2),DT(3),DT(4)
    DS 64 I=2,4
64 X3(I)= \3(I)-460.
    PUNCH 10, X2(1),X2(2),X2(3)
    PUNCH 11,X3(1),X3(2),X3(3)
    PUNCH 12,H1Y11,H2Y12,H3Y13
    PUNCH 13,H1Y31,H2Y32,WPR(4)
    PUNCH }1
    PUNCH 15,Cl,PCl
    PUNCH lS,C2,PC2
    PUNCH 17,AR(1),PC3
    PUNCH 18,PU(1),PC4
    PUNCH 19,C5,PC5
    PUNCH 20,C6,PC6
    PUNCH 21
    PUNCH 22,TD1,TD2,TD3
    PUNCH 23,WPR(1),WPR(2),WPR(3)
    PUNCH 27,AR(2),AR(3),AR(4)
    PUNCH 28,PU(2),PU(3),PU(4)
    PUNCH 29,TE(1),TE(2),TE(3)
    PUNCH }2
    G气 TS 7l
    END
```


THE FOLLOW：DU ARE INPUT OATA
かごい

$$
\begin{aligned}
& \therefore!-i=0 \cdot \text { こびひことーごて }
\end{aligned}
$$

$0=2.7000 し た ゙ \rightarrow 02$
$Y Z(B)=2 \cdot \approx 757 シ=-$ -

> x1:2) = 4.:922~E-02
> $D T(3)=8.05599$-00
> 火ニ12: = - . $27: 205$-0.
> XE:31=2.4?9:9E-02
> $12 y: 2=2.8044^{4}$ ごご05
> H2Y32 = - 7028 U

```
ス3:ー.= 2vもこう7?ミー0
Yこ:4.i= ま.も゙こここミーご心
```



```
~2゙ジ= ごこ?7そーミーご
め゙イん:= -.ごミジミーご
Mシソ:シ= ..シミこ7こごーご
```

COSTに：アERCENTAここ

－－：：－
ここここニミ：NC ムREA
－＂．$=$ ： 5

ここ．．．
シッド ここらす
ミ．き．ご．

2 ST EFテミCT
シ．40゙402Еー0：
2．รこうしいごこのう
2．77395 -02

2．37：4ム5－0

2 ND EFこミC：
ム・ジャロ2ミーゴ

2．シこここここーここ
2．がごらこージき
2．4ヶ7シ7ミージ。

3 ふン ミごミここ
ー・ンシこアアミーシ

2．こここシミシーここ
ワ．こういこここーこー
2．こうフフラミーべ

THE FOLLOW：DU ARE INPUT OATA
かごい

$$
\begin{aligned}
& \therefore!-i=0 \cdot \text { こびひことーごて }
\end{aligned}
$$

$0=2.7000 し た ゙ \rightarrow 02$
$Y Z(B)=2 \cdot \approx 757 シ=-$ -

> x1:2) = 4.:922~E-02
> $D T(3)=8.05599$-00
> 火ニ12: = - . $27: 205$-0.
> XE:31=2.4?9:9E-02
> $12 y: 2=2.8044^{4}$ ごご05
> H2Y32 = - 7028 U

```
ス3:ー.= 2vもこう7?ミー0
Yこ:4.i= ま.も゙こここミーご心
```



```
~2゙ジ= ごこ?7そーミーご
め゙イん:= -.ごミジミーご
Mシソ:シ= ..シミこ7こごーご
```

COSTに：アERCENTAここ

－－：：－
ここここニミ：NC ムREA
－＂．$=$ ： 5

ここ．．．
シッド ここらす
ミ．き．ご．

2 ST EFテミCT
シ．40゙402Еー0：
2．รこうしいごこのう
2．77395 -02

2．37：4ム5－0

2 ND EFこミC：
ム・ジャロ2ミーゴ

2．シこここここーここ
2．がごらこージき
2．4ヶ7シ7ミージ。

3 ふン ミごミここ
ー・ンシこアアミーシ

2．こここシミシーここ
ワ．こういこここーこー
2．こうフフラミーべ

ANALYSIS AND OPMIMIZATION ON TAE MULTIEFAECT-YULTISTAGE FLASH DIS'TLLATION AND REVERSE OBVCSIS DESALIMATIOR PHOCESSES

\author{
by
 KIANG, KCII-DON
 B. ふ., National Taiwan University, 1963
 AN ABSTRACT OR A MASTER'S MEDEIS
 submitted in partial fulfillment of
 ```
requirements for the dogree

``` \\ MASTER Of SCIENGE \\ Department of cromical chaineurito
}
```

KANSAS STA'LE UNIV\&'N?M
Manhattan, innsas
1968

```

\title{
ANALYSIS AND OPMIMIZATION ON TAE MULTIEFAECT-YULTISTAGE FLASH DIS'TLLATION AND REVERSE OBVCSIS DESALIMATIOR PHOCESSES
}

\author{
by \\ KIANG, KCII-DON \\ B. ふ., National Taiwan University, 1963 \\ AN ABSTRACT OR A MASTER'S MEDEIS \\ submitted in partial fulfillment of \\ ```
requirements for the dogree
``` \\ MASTER Of SCIENGE \\ Department of cromical chaineurito
}
```

KANSAS STA'LE UNIV\&'N?M
Manhattan, innsas
1968

```


\section*{by}

KOH－DON KIANG

submitued in partial flufi゙izmomit 0 ：
```

requirements ユ゚om the degree

```
```

NASRER OR SCIENOE

```


```

    Naniattai., ínnsas
        29́6
    ```


\section*{KOH－DON KIANG}

B．S．，Natiorcil ！aiwan Jnivezeity，この日？

submittod in partial ニ゙uユざえユさmert of

\author{
requirements for the degree
}
NASTER OR SCEENOE

\[
\begin{aligned}
& 2960
\end{aligned}
\]

In PART ONE a dctailed analysis of a MEMS proccss is madc and a mathematical model of the process is devcloned. An optimization study of such a model is carried out by a discretc analog of the maximum principle in conjunction with two search techniques: the parametric search and the simplex method. Both methods lead to the same optimal results. In contrast to the parametric search, the simpiex method gives rise directly to the optimum point. The parametric search, however, fives detailed information about the influences of the individual parameters on the water cost and the other operating variables. In PART TWO a general mathematical model of a sequential multistage reverse osmosis process is developed. This modcl is obtained under the assumption of plug flow inside the tubular osmosis unit to take into account the brinc concentration changes along the membrane tube. Several simplified versions of this model are also proposed.

In PART ONE a dctailed analysis of a MEMS proccss is madc and a mathematical model of the process is devcloned. An optimization study of such a model is carried out by a discretc analog of the maximum principle in conjunction with two search techniques: the parametric search and the simplex method. Both methods lead to the same optimal results. In contrast to the parametric search, the simpiex method gives rise directly to the optimum point. The parametric search, however, fives detailed information about the influences of the individual parameters on the water cost and the other operating variables. In PART TWO a general mathematical model of a sequential multistage reverse osmosis process is developed. This modcl is obtained under the assumption of plug flow inside the tubular osmosis unit to take into account the brinc concentration changes along the membrane tube. Several simplified versions of this model are also proposed.```

[^0]: *Remark: Basis, 1000 gallon/hr. of fresh water production

[^1]: *Remark: Basis, 1000 gallon/hr. of fresh water production

