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INTRODUCTION

Developments of modern science have confronted Che scientist and the

engineer with a variety of problems which cannot be solved formally. Hence

the widenning interest in numerical analysis, a branch of mathematics which

leads to approximate solutions by repeated application of the four basic

operations of algebra. Numerical analysis has been applied to scientific

and technological problems from the very beginning of applied science, but

has been given new impetus by development of the electronic digital computer.

Many classical numerical analysis techniques are available for engineering

applications to solve differential equations. There is another group of

procedures unique to the engineering literature which generates approximating

recurrence relations from approximate Z-transforms. No matter how different

all these techniques are in terms of their mathematical approaches and the

algebra involved, they all have two things in common; the calculations are

performed with discrete values and on a step-by-step basis. Consequently

the time interval between steps is an Important factor which affects the

accuracy as well as the speed of the computation.

Up to a point, the smaller the step size used, the longer is the solution

time required and the more accurate is the solution obtained. Since signifi-

cant digits are limited in computation, the increased solution accuracy

produced by the reduced step size is lost. This effect is termed, "round-

off error" Therefore there exists an optional step size to be used in

producing the numerical solution of optimal accuracy. In general no single

technique is best in all cases. In fact, the effectiveness of approximate

methods hinges on the type of function in question and the goodness of each



method Is measured by a number of factors, namely, the program set-up time,

the solution speed, and solution accuracy and stability. In other words,

it is a consideration of economy and accuracy and these two quantities are

contradictory in nature. Therefore a brief examination of strong points and

weaknesses of various types of digital techniques and comparisons among them

would provide a guidepost for selection of an optimal technique.

The objective of this report is to review previous methods for digital

.ution of differential equations, and to illustrate their applications for

approximating the solutions of ordinary differential equations.



II. Survey of tethods for Digital Solution of Differential Equations.

Methods for approximating solution of ordinary differential equations

are based on the principle of discretization. These methods have the common

feature that no attempt is made to approximate the exact solution y(t) over

a continuous range of the independent variable. Approximating values are

sought only on a set of discrete points t , t., t
2 » ,,,tn« Generally speak-

ing, a discrete variable method for solving a differential equation consists

of an algorithm which furnishes a number y corresponding to each lattice

point tn. Which is to be regarded as an approximation to the value y(t ) of

the exact solution at the point t .

Discrete variable methods fall into two classes: classical numerical

analysis techniques; and numerical transform techniques. Classical numerical

analysis techniques yield one-step methods and multiple step methods. In

a one-step method the value of y_ can be found if only one initial value is
It

known. In a multiple step method the calculation of y - requires explicit

knowledge of more than one starting value. Oftentimes, a one-step method is

used to start a multiple step method.

The numerical transform techniques were first introduced by Tustin and

were further expanded by Kadwed, Boxer-Thaler, and Halijak. These techniques

generate approximating recurrence relations from approximate z-transform of

l/sn and f/sn.

III. Classical Numerical Analysis Techniques.

1). One -Step Methods



Lat a typical first-order differential equation be given by

dy
-— - f(t,y)
dt

y - yo
at t - t

Q (3.1)

and let it satisfy Lipschitz conditions in soma closed region D. There

exists a single-valued function y(t) continuous in D such that it satisfies

Eq. (3.1), then it can be solved approximately by these methods.

One-step methods are usually divided into two classes; The first class

includes Taylor series method and Picard*s method. In these methods, y in

Eq. (3.1) is approximated by a truncation series, the individual terms of

which are functions of the independent variable t. The second class is re-

presented by the methods of Euler and Runge-Kutta methods.

A. Taylor Series Kathod.

Consider the differential equation (3.1) with the initial condition y-y

at t»t . Lat the required solution be

y - y(t) (3.2)

If t»t is not a singular point of the function, y(t) can be expanded in

Taylor series about this point. Thus with

(m)

o

y
o

d y

dt
m

(3.3)



C ) ^ 2 (2) ^ (3)
y - y

Q
(t-t

Q
)y; + ~<t-t ) yQ + -^oK + " (3 ' 4 >

a power saries in t that converges over some range t <t<t .
o o

The value of y is evaluated by making use of the differential

equation (3.1) which can be written as

y
(1)

- f(t,y) -
gl

(t,y), (3.5)

c-n-ci-jing Eq. (3.5) yields

(2) 2&i 3g
L

/,% q\
y - — — y

u;
- s2

(t,y,y
u;

), (3.6)
at dv

and by repeated differentiation

where

y<ra> - gm (t,y,y<
1 >,y <2)

> ...y<
m- 1 >) m - 1,2-. (3.7)

'm-1 .

m
:
2 agn,-l (1+1)

^t i-0 ^y'

Setting t-t
Q

and y-y , Eq. (3.7) becomes

"VVV^.-','-11
'. -».«••• o.9)



The truncation error after the mth terra is given by

R
m

f
m
<?)

m t

m
(t - t

o ) , where t
Q< ^ < (3.10)

Replacing f (£) with an upper bound M to its value in the interval

(t, t ). The truncation error is then bounded by
o

R <
ra
—

M
(ra)

ra

<t - t
o >

in

(3.11)

In particular, for a convergent Taylor series with alternating sign, the

truncation error after rath term cannot exceed the (m«s-l)th term Eq.(3.11)

becomes

R
I <

ra

f (t )

(t - t )

m
(3.12)

B. 1. Euler's Method.

This method is of very little practical importance, but it illustrates

in simple form the basic idea of those numerical methods which seek to

determine the change of A y in y corresponding to a small increment of the

argument.

Consider Eq.(3.1), the left-hand side of the first part is, by

definition



dy A.y
- lim (3.13)

dC ^t-»0 At

therefore, for small value of t

dy
Ay - -<it

dt

Thus, the increase in y(t) when t increases to t+At is approximately

ym . 1
- y„ - f<t » ym)T (3.14)

...••.. in mm

where

T - Zi t

However, the exact expression for y at t-t ,, using Taylor series formula

z -z + Tf (t , a ) + - T
2
y
<2)

(J) . (3.15)
m+1 m o m+l

\.:.~scj

' < $ i < t
m >m+l m*im-J-1

Subtracting Eq.(3.14) from Eq. (3.15) results in



z
,-s

- y ^ - <z - y ) + T <f <t , z ) - f <c , y ))
m+i m+1 mm mm mm

+ - T y \% V (3.16)
2

m+1

The left-hand side of Eq.(3.16) Is by definition the truncation error of y

at t»t
'm+1

'

Let 6 - z - y (3.17)
m+1 m+1 m+1

f(t , z ) - f(t , y ) ^f(t , z )mm mmw mm /•> io\and k » Vj.IoJ
m z - y ° ymm

Eq. (3.16) becomes

1 o /o\
6 _ -e + Tk ^ +-t y (H ^). (3.19)
m+1 m m m

2
* m+1

For m -

t - (3.20)

m » 1

^
x

- - R
2

y
(2)

(^), V ^< t
x

(3.21)



a = 2

1 o (2) ^ 9 o\
e2 - (t + TK

1
)- T y

V

(^) + - T
Z

y
U;

<%) (3.22)

where

>
t
l
< f2 <t 2 J

proceeding in this manner, the truncation error at nth step is

where

£ - T2n
,1)

n-1
(2)

;.-:

(£> tt (1 + TK ) + - y
v""

(f2 ) tt (1 + TK )

jol J 9 ^«9 JJ-2

+ ... + - y
(2 >

(fn )

2

(3.23)

or
n-1

£_ - T- Z A, a,n
:-G

X i
(3.24)

n-1
A. « TT (1 * TK.)

x i J

A,-l

i * n

i - n

-.'.a a - - y
2

(2)
<n> (3.25)
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Thus errors - y
n
(|

:

i
) introduced at each step because of the inaccuracy of

formula (3.14) are to be multiplied by amplification factors A. before being

summed.

C. Runge-Kutta Mathod.

This method is an algorithm designed to approximate the Taylor's series

solution.

Consider the Taylor's Series

T
2

r ., - y + T y + - y + •••, (3.26)
n+l n n « n

where

y ., - y((n+l)T) and y - y(nT).
n+l n

If the Runge-Kutta formula is derived by reta inning terms in the Taylor's

series expression up to mth power of T, this formula is called the Runge-

Kutta method of mth order accuracy or the Runge-Kutta mth order method.

C. 1. Second Order Runge-Kutta Formula,

Consider increments in y defined by the equations

^y - R^'y + R
2
A"y (3.27)

where

^'y - f <t
n , yn ) T,
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A"y - f (t
n + aT, yn

+ bT) T,

and R. , R~> a and b are constants.

Expanding Eq # (3.27) with respect to Taylor's series of two variables,

results in

Ay - T(R
1

+ R^ f
n

+ (a(f
c
)n + b(f )R) T

Z
R
2

+ •• (3.28)

where

and

fn- f(C
n' yn> " *n •

2t
(0„ - (—

)

tat
n* y-v

3f
(f ) - (—

)

y n '

3y tmt
n> y-y

n

Eq. (3.28) will be equal to Eq.(3.26) up to second order of T if its

parameters take the values

R
x

+ R
2

- 1 (3.29)

R
2
a -1/2

R
2
b - 1/2

There are four constants to be determined and only three equations. Choose

R
2

as parameter, the constants a, b, and R, can be determined in terms of

R
2
. Thus
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a - b - (3.30)
2R

2

R
x

- 1 - R
2

Consequently, an infinite number of forms of Eq. (3.28) can be established.

Formulas of higher order can be obtained in the similar manner although no

formula beyond fifth order has ever been developed.

C. II. Third Order Runge-Kutta Formula.

Again take the differential equation

dy
» f(t, y). (3.31)

dt

and expand it with respect to (t , y ) by Taylor series for two variables
n n

to obtain

ay - fnT .+ - Cft
f
y
f)n t

2
* - (f

tt
2f

cy
f + f

yy
f

:

f3
t *y "' *y')n :

Define the increment of y by

Ay - R^'y + R
2
^"y + R

3
^*"y (3.33)
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where

^'y - f <t
n » yn ) T

Any - f(tn + iaT, yn
+ mzQ»y) T

A*"y - fCt,, + XT, y^ + p^"y + (X - p) * »y) Tn o

The symbols m, A > £nd p are constants. Expanding Eq. (3.33) with respect to

Taylor's series at (t , y_)» results in

*'y - Tfn

A -y - T{f
n + nT(f

t )n + B4'y(f
y
)n + — [(mT)

2
(f
tt )n + 2m

2T^'y(f
ty )n

+ M«y) 2
(f
yy

)n ]
+

A'"y - T^ fn +^T(f
fc
)n

+ [/^"y + (X -/*) A<y j
<f )n

1

2

-{ aT) 2
(f
tt

)n
+ 2xt[/> ^»y a -n A'y j <Vn

+ [f*"y + a -/°)^ ,
y

]

2
<f
yy

)
n ) + •••

) <3 - 34 >

where

32 f S>f

<?y
u cn, y yn# y ay t-tn , y«yn

5>f

(f
t
) - <—

)

. f - f(t , y )

at t«t
n , y»yn

n n n
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Eliminating ^ *y and zJ'y from the right hand side of the second and third

equations of Eq. (3.34) and substiting into Eq.(3.33), the result coincides

with Taylor's series expansion up to the third power of T provided the

following relations hold among the constants

R
x

+ Rg + 1*3 - I (3.35)

1

R~m + R3X a -

2

2 9 1
R mz + R \* *> -
*

3

1
>m si

3>
Rofm

Since there are six constants to be determined, namely, R , R , R , m, \ 912 3

and f 9 and only four equations, the constants m and X can be chosen as

parameters. The constants R-, R2 , R, and p as calculated from Eq.(3.35) are

6m\ - 3(m + \) + 2

R
t

- (3.36)
6m\

2 - 3X
R
2

6m(m - \)

2 - 3m
R
3

P

6\(\ - m)

\(\ - m)

m(2 - m)
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From Eq. (3.35), it is clear that R~ cannot be zero and R. and R
2
cannot

both zero. If R
2
«0, then by Eq. (3.35)

1 2

\ - - IL - - R. - - and fm - (3.37)
3

J
4

X
4 3

Itoreover, assume f to be 1/3, then m is equal to 2/3. Therefore

1

Ay » - (^*y + 3^«"y) (3.38)
4

^•y - f(t , y ) T
n n

^"y ° f (t + - T, y + - A*y) T
3

n
3

2 2

At..y -f [t +-I, y +.(A'y+ ^»y) ]

On the other hand, if \«0, then

2 3 1 y>- 1

m = - R - - R« — and R. - (3.39)
3

Z
4

3
4f V

If it is assumed that f-lt then another form can be constructed from

Eq. (3.39) and Eq.(3.33); it is

1

Ay - - O A"y + ^»"y) (3.40)
4

where

^•y - f (t
n , yn ) T
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A,,y«f(t + - T, y + - A *y) T
n

3
n

3

A»»y - f (t , y^ •> a "y - a. «y) T

C. IV, Fourth Order Runge-Kutta Formula.

The Runge-Kutta fourth order formula has the form

A y - Rj 2i
9 y + R

2
^« 8y + R^^'y + R

4 ^
m'y (3.41)

where

<a'y - f <t
n , yn) T

A"y » f (t * mT, y + m -d*y) T

^«»y « f(t
n

+ XT, yn
+ /^"yn + (X -/?)^ c y) T

^imy „ f (t ^Ts y +^^«i y +^^»y + (^/- (^-^)Zi 8 y) T.

Expand second, third, fourth and fifth equations of Eq. (3.41) to obtain

A'y - f (t , y ) T (3.42)n n
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A»y - T(f(t
n , yn) + «nT(f

t
)n

+ m^«y<f
y

>n

+ — ((ml)
2

(f
t|;

)n
+ 2(mT)<ra A«y)(f

ty )n
+ (xn ^»y) 2

(f
yy

)n)

+ — f(mT)
3

(f_^) + 3(mT)
2 (m^ , y)(f t. 4. )

«l l ttt n J tty n

+ 3(EiT)(m^«y)2 (f ) + (n^«y)3
(f ) 1 + •••

)cyy n yyy n j
)

A*"y - T (f(t
n , yn

> + XT(f
t
)n

* (/^"y + a -/> )2i , y)<f
y
)n

+ _ [aT) 2
(f
tc

)n
+ 2aT)<f^"y + a -/°) ^y><f

ty >n

* <fz>"y + a -P)^»y) 2
(f ) ]' ' yy nJ

+ j" aT)
3
(f
ttt)n

+3aT)2
(/^«y + a -/O^yXf,.^

+ 3aT)(/^"y + a -/°)^'y>
2

<ftyy>n + o^"y + & -z^'y)
3

+ (/^"y * (X -/O^'y) (f
yyy

)J—}

^<4)y - T (fn +/vT(f,
c
)n + (<?~A(3 >y + T^i2\ + {// - ^-^O^'yXf >n

+ — [^T)
2
(f
tt )n

+ 2^T)(^3)
y + r^\

<2)
y

w).
+ (/^- ^-^)^'y)(fty )n +(<//- <^ -^)Z f y + <?^

v 'y

^^(2)
y)

2
(f
yy

)n J
+ ...
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Eliminating ^ 9 y 9 ^"y and ^"»y from the right-hand side of Eq. (3.42) by

successive substitution, putting these results into Eq. (3.41) and comparing

with Taylor's series yield

R
x

+ R
2

* R
3

* R
4

« 1 (3.43)

1

R m + RA * RJA * -

1

R_m2 * RA2
•> RJ? - -

2 3 *
3

1

R„m f R, (mcA* X ) » -34
6

o o *5

R nT * R^X * R /f* - -
1 J 4 4

RrnXf-i- r ^(bkt+ X£) » -
J 4

8

1

R^m3f + R (nj<r-+ X
2
*?) - —

-> * * 12

1

4 24

There is a one -parameter family of solutions derived by Kutta as follows:

1 2 - t t 1

R - - R " R, - - RA - - (3.44)
1

6
2

3
J

3
4

6

m 1/2, X " 1/2, /« l/2t, ^» 1, <?- 1 - t, T> t
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If t-1, a Runge-Kutta fourth order formula can be constructed as bellows:

Ay - - <^'y + 2^»y * 2 A(3)y + ^(4)
y) (3.45)

6

where

n

^« y . T f(t , y ),n n

A* 'y - T f (t + - T, y + - A'y)
2 2

/
3

v l 1

^v
y = T f(t„ + - T 9 y + - ^ f:y)

2
n

2

(4)^v
: - T f <t + T, y * a »y)

n n

4). Fifth Order, Runge-Kutta Formula

The 5th order Runge-Kutta formulas were derived recently by H. A. Luther

and K. P. Konen. The derivations are as follows:

I-t dy/dt » f (t« y) together with y(t ) » y (3.46)
o o

The fifth order Runge-Kutta formulas are phrased as

t (i)
A y « + 2 R. A y

1
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A'y - T f (t
n> yn ) (3.47)

,(s).
s-1

0),^v°'y - T f (tn + a
g
T 9 y * Z b ^ vjy

y).

where 2<s<6. and the coefficients R. are the constants to be determined.

The usual procedure yields 44 equations involving the various parameters.

Assume that

s-1
a " 2 b ,,

j-1
s^

2«s ^ 6 (3.48)

and eliminate easily identifiable combinations to obtain the following 16

relations

R
x

* R
2

* R
3

+ R
4

+ R
5

+ R
6

- 1 9

a
2
R
2 * a

3
R
3 * a

4
R
4 * a

5
R
5

+ a
6
R
6

a
2
R
2

+ a
3
R
3

+ 3
4
R
4

+ a
5
R
5

+ a
6
R
6

3 3 3 3 3
a R + a R + a R + a R + a R
2 2 3 3 4 4 5 5 6 6

2

1

3

1

4

4 4 4 4 4 1
a
o
Ro + a<A + a R + a R + a R - -
22 33 44 55 66 5

(3.49a)
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C
I
R
3

+ C
2
R
4

+ C
3
R
5
+C

4
R
6 "7

o

a.c.R. + a.c.R. + a_c_R_ + a.c.R. » 1/8,
3 i3 424 5 J 5 64o

A * V2R
4

+ a
5
C
3
R
5

+ a
6
c
4
R
6 " 1/10 «

d.R^ + d_R. + d_R_ + d.R, - 1/12,-^ 24 35 46

S
3
d
l
R
3 * V2R

4 * a
5
d
3
R
5

+VA " 1/15 '

CA + SR
/

+ C<A + c
/
r
a " 1/20 »13 24 j> 5 46

(3.49a)

ab„ R * (a b + a b )R, + (a b
rt

+ a b „ + a b ,) R-
2 32 3 2 42 3 43 4 2 52 3 53 4 54 5

3 3 3 3
+ (a b ^ + a b „ + a b , + a_b ) R - 1/20

2 62 3 63 4 64 5 65

°l
b
32

R
3

+ fe
l
b
5S

+ C
2
b
54

) R
5 * <C

l
b
63 * C

2
b
64

+ °3b65
> R

6 " 1/24 '

d.b.^R, +(db +db)R+(db +db +db)R- 1/60,
j 1 43 4 v

l 53 2 54 5 1 63 2 64 3 65 6
*

<a
3 * a

4
)c

l
b
43

R
4

+
[
(a

3
+ a

5
)c

l
b
53

+ (a
4

+ WsJ 54

+
[
(a

3
+a

6
)c

i
b
63

+ (a
4

+ a
6
)c

2
b
64 * (a

5 * a
6
)c

3
b
65 ]

R
6

" 7/12°

C
l
b
43

b
54

R
5

+
[
C
l
b
43

b
64

+ (
°l

b
53

+ C
2
b
54

)b
65 J

R
6 " 1/12 °>

J

(3.49a)
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where

1+1 i+1 2

c
* " 2 a

<
b<^ i

» d. - S a b,
2 . . (3.49b)

1
j-2 J 2 * J j-2

J ' J

simplification requires that

R
2

- (3.50)

2
a

i
and ~»c, „ , 3$i^6 (3.51)

'i-2
f

then Eq. (3.49) can be simplified considerably. After eliminating duplicates

and combining some equations solve , in addition to (3.51),

R, + R + R, + Rc
-2- R, = 1, (3.52a)13 4 5 6

and

a
3
R
3 * a

4
R
4 * a

5
R
5 + a

6
R
6 " 1/2 »

2 2 2 2
a R + a.R, + a^R,. + a,R„ 1/3,33 44 55 oo

3 3 3 3a^ + a
4
R
4

+ a
5
R
5

+ a
&
R
6

» 1/4, (3.57b)

a
3
R
3 * a

4
R
4 * a

5
R
5 * 4R

6 " i/5 >

end
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and

a
3
b
43

R4
+ (a

3
b
53

+ a
4
b
54 ) R5 + (a

3
b
63

+ a^ + a^) R
6

- 1/6

a
3
b
43

R
4 * (a

3
b
53 * a

4
b54> R

5 * (a
3
b
63

+ a
4
b
64

+ a
5
b
65 ) R

6 " l/12

a
3
b
43

R
4 * (a

3
b
53 * a

4
b
54 } R

5 * (a
3
b
63

+ a
4
b
64 * a

5
b
65> R

6 " 1/2 °'

V3b
43

R
4

+ a
5
(a
3
b
53

a
4
b
54

) R
5

+ a
6
(a

3
b
63 * a

4
b
64

+ a
5
b
65

} R
6

- 1/8,

a
4
a
3
b
43

R
4 * a

5
(a
4
b
53 * a

4
b
54 ) R

5 * a
6
(a
3
b
63

+ a4°64 * a
5
b
65

} R
6

- 1/15,

<3.52c)

a
3
b
43

b
54

R
5

+
[
a
3
b
43

b
64 * (a

3
b
53 + a

4
b
54 } b

65 J
R
6 ° l/24 >

2
r

2 2 2
a
3
b
43

b
54

R
5 *

L
a
3
b
43

b
64 + (a

3
b
53 * a

4
b54> b

65 J
R
6 ° l/6°*

(3.52d)

The situation is now as follows. Equations (3.52b), (3.52c), and

(3.52d) are to be solved independently. Then (3.52a) yields R
i#

Equation

(3.51) are used to find b
32 , b,

2 , b<-
2 » ^52* Then equations (3.48)

determine b_,, b_,, b. , , b__ and b._. This, with Ro «»0, completes the solution.
Zl jl <+l jl 01 1

The family of solutions due to Kutta may now be found by taking b^c^O.

From (3.52d), a =2/5. It then develops that the third equation in (3.52c)

has the left member equal to -&
3
a4 times the left member of the first of
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this group, plus a^ +a, times the left member of the second of this group.

This forces a, to be 1. Equations (3,52c) may now be solved for h^/Rg and

b54R5* Wnen the results are substituted in a^b^ ^54% + b64R6^
" 1/24

(the consequence of (3.52d) and h
65

°0) it is found that b^ "IS/A. In

summary, there results the following description of a family of solutions:

R
2 " °» b

65 " °» b43 " 15/4
»

a
3 " 2/5

»
a
4 " ls

»
(3 * 53 >

with

R
3

- 125 [lOa
5
a
6

- 5(a
s

* a
fi

) +3] / [ 72(2 - 5a
5
>(2 - 5a

fi
) ] ,

R
4

» [ 8a
5
a
6

- 7<a
5

+ a
fi
) + 6 ] / [ 36(1 - a

5
)(l - a

fi
) ] ,

R5 " [ l " a
6 ] / [

12a
5
(1 " a

5
)<5a5 - 2 ><a

5
" a

6 >] » (3.53)

R
6 "

[
l ' a

5 ] ' [
I2a

6
(1 - a

6
)(5a

6 " 2)(a
6 " a

5
}

]
•

R
l

" l * R
3 " R

4 " R
5 - R6»

cs.d

b
53

- 5 [7 - 10a
6

- 108R
4
(1 - a

6
) ] / [ 144R

5
(a

5
- a

&
) ] ,

b
54 °

I
1 -*6M 36R5<a5

- a6>] •

b
63 " 5

[
7 " 10a

5 " 1°8R
4 <1 " a

5 } J f
i
144R

6
(a

6 " V] » (3.53c)

b
64 "

f
1 - a

5M 36R6<a 6
- a5>] »

and
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b
32

" 2/
I

25a
2 | ,

b
42 " 1/a

2'

b
52 "

[

5a
5

" 4t
53 " 10b

54] ' ^^ ^ ^^
b
6,

*
t
5^- 4^- 10^]^^].

and

b - a - 2 b , 2^j< 6. (3.53e)

It becomes very simple to construct a fifth order Runge-ICutta formula

based on the coefficients derived froa equation (3.53). The result is

y = y +( 4A B y + (16 +76) A(5)
y + (16 - /6) ^(6)

y ) /36,
r.vl n I J

A'y - Tf(t , y ),
n n

A s,y » Tf (tn + 4T/11, yn + 4a 'y/ll), (3.54)

4'"y - Tf(tn + 2T/5, yn + | 9Vy + llA"y } /50),

A( ;
y - Tf(t + T, y + { -llA s'y + 15A ,s,y }/4).n n

A(5)y „ Tf (tn + (6 - /6)T/10 9 yn
+ { (81 + 9s/6) A*y

+ (255 - 55v/6)z}'"y + (24 - 14/6) A(4>y]/600),

A(6
'y . Tf(tn + (6 + /6)T/10, yn

+ { (81 - 9^6) A 'y

+ (255 + 55^6) a «"y + (24 + 14/6) z^4) y
"J

/6000)

,
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Let b = instead of letting b _ « 0, then Eqs. (3.5 2d)

yields

(a
3
b
53 * a

4
b
54>

b
65

R
6 " 1/24 >

<a
3
b
53 * a

4
b
54 ) b

65
R
6 " l/60 >

Using these equations in conjunction with the first, second, fourth, and

fifth equations of (3.52c), the terms in b
63 , b

64 , and b65 catl ba e * ira *nated

and there result two equations:

R (a
6

- a
5
> - (4a

6
- 3) ^^R^

R (a - a ) «» (5a - 4) b R ,v
6 5 6 65 6

These lead to a >=1. Another family of solution occurs with
6

& - 0> b
7

. =0, a - 1, (3.55a)
i. 43 6

and

R -
|

3 - 5(a
4

+ a
5
) + iOa^ ']/ |60a

3
(a
4

- a
3
)(a

3
- a

5
)(a

3
- 1)],

R
4

-
[ 3 - 5(a

3
+ a

5
) + 10a

3aJ / [ 60a
4
(a
3

- a
4 ) (a

4
- a

5
)(a

4
- 1)] ,

R
5

- [ 3 - 5(a
3

+ a
4
) + lOa^

] / [60a
5
(a

3
- a

5
)(a

5
- a

4
)(a

5
- 1) ] ,

R - f 12 - 15 (a_ + a. + a,.) + 20(ao a. + a.a_ + a.a.)
6 L 3 4 5 34 45 53

- 30a
3
a
4
a
5 ] / [ 60(1 - a

3
)(l - a

4 ) (1 - a
5
> ] ,
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R, - 1 - R, - R, - R- -
1 3 4 5

(3.55b)

arid

'53

J

54

63

[ 2 - 5a
4 ] / [ 120R

5
a
3
(l - a,.)^ - «

4 > ] .

[ 2 - 5a
3 ]

/ [ 120R
5
a
4
(l - a

5
>(a

4
- a^] ,

6 - 2a, - 10a, - 14a_ + 5a_
L 3 4 5 3

a, + 25a, a_ + 10a
4 5

'64

65

- 20a
5
a
4 J/[l20R6

a
3
(l - ^^^

3
- a

4
)(a

3
- a^], (3.55c)

r 2
6 - 2a. - 10a„ - 14a- + 5a_a, * 25a a_ + 10a.

L 4 j 5 34 35 5

~ 20a
5
a
3 ]' [

120R
6
a
4
(1 " a

5
)(a

4 " a
3
)(a

4 " a
5

}
] '

[ 3 - 5a
3

- 5a
4

+ lOa^
] / [ 60R

6
a
5
(a

5
- a

3
)(a

5
- a

4 > ] ,

c\c

'32

42

'52

3 / [
2a

2 1 »

4 '[ 2a
2 ]'

r 2

L
a
5 - 2a

3
b

3 "35 " 2%h5^ f l
2a

l\ •

b
62

" t
l " 2a

3
b
63 * 2a

4
b
64 " 2a

5
b
65 J ' i

2*2 1
•

(3.55d)

add

j-l
b - a - 2 b ,
Jl J i-2

jl
2^j ^6 (3.55e)
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Thus i t can be constructed as follows:

y
n+l

" Yn
5^ 8 "y + 5^ (5)

y + ^(6)
y

k, Tf (t , y ),
1 n' Jn *

k
2

« Tf(tn + T/2, yn
+ 1^/2),

k
3

- Tf(tn + (5 - 5)T/10, yn +
[

2k
1

+ (3 - 5)k
2 J/10),

k
4

- Tf (tn + T/2,yn + k
x

+ k
2
/4),

k
5

- Tf (t
n

+ (5 + /F)T/10, yn
+ f (1 -

1

/5)k
1

- 4k
2
(5 -J- 375)k

3

+ 81«
4 ]

/20,

k
6

» Tf <tn
-> T, yn + ( 5 - l)k

1
* (2/J - 2)k

2
-J- (5 - /5)k

3

- 8k
4

* (10 - 2/5)k
5
/4.

This fifth order formula is not in Kutta's family. It belongs to

Lobatto quadrature formulas which have errors of order T rather than T .

The accumulated truncation error of Runge-Kutta's method can be

calculated as follows:

Ijjc

Z
n+1

" Zn *^z<t
n , \ J T) (3.57)

be the exact solution of Eq, (3.46),
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and y - y + T*y(t , y ; T) (3.58)
n*l n n n

be the calculated value of the solution

Subowi- citing licuj-c.cn (3.57) :rv;. ^u^;.c:. w„S3) yields

e
nl+1

°* e
n * T i^ (t

n> ^n >
T) ' <* z(V a

n '> T)i (3 ' 59)

by application of the triangle inequality, Equation (3,59) becomes

e
n+li^ I

S
nl +T IUy<V yn ; T) " * 2

<V 2
n J T)

H

+ T |Uz(tn , z
n ; T) - Aa(tn , z

n ; T)
||

(3.60)

The Lipschitz condition yields

^y(t , y ; T) - 4z(t , z ; T)|l^ Lily - z
n' n ' n' n ' U II n n

-L||e
||

(3.61)

and |j^ z<V zn ; T) - ^s(tn , zn ; T)|U N(TP ) (3.62)

where

(p)
N - Max

||
f (y)

(P + 1) !

and p is the order of the Runge-Kutta formula
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Hence from Equation (3.60) the required truncation error is

•»! II
^ U * LT)

'I
en H + T**" I- 0.63)

The value of L can be determined from a Runge-Kutta formula and different

formulas correspond to different values of L. All L's have upper bounds.

The Runge-Kutta method seems to be tedious because values of f(t,y)

have to be calculated a number of times per time increment. However 9 the

formulas are systematic and hence can be easily programmed on an automatic

machine. No special starting procedure is required and calculations can

often be checked by repetition using a different step size. Furthermore,

such a method is particularly useful if certain coefficients in the differen-

tial equation are empirical formulas for which analytical expressions are

not known. The step sis© can be altered as desired. It should be understood

that the derivatives as evaluated by Runge-Kutta process are not the actual

derivatives at the various points within the step as commonly assumed.

2). Multiple step Methods.

The one-step methods are necessary for obtainning initial values in

the solution of a differential equation. However 9 they involve too much

labor to be used for obtaining a numerical solution over an extended range.

This can be offset by using multiple step methods.

Multiple step methods are always expressed in the difference-differential

equation form
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°kW * afc-I ^--: -•••
* % yn - T [h f

n+k
+
*k-l

f
n,:cl

+ • • • + 3 f
o n

n - 0, 1, 2, •»• (3.64)

where k is a fixed integer, f « f(t , y )(m » 0,1,3,»««), and where expand

g (//» 0,1,2, •••) are real constants which do not depend on n. Any a. is

always assumed unequal to zero. Equation (3,64) defines the general linear

k-step method. If B^O, the formula (3,64) is called "closed"; otherwise it

is called open.

Unlike one-step methods, multiple step methods are not self-starting; if

some values y-^ijy.,. o> ,,# y are r*ot known* these methods break down.

Such is the case at the beginning of the computation, where the initial

condition furnishes only one of the required k+1 values, or at places where

the step T is changed.

Stability and convergence are two important factors that affect the

availability of a multiple step method. To insure its stable and convergence,

two rules must be fulfilled;

1. The characteristic polynomial

,k
. _ Je-1

+ • • • + c
o

CL s + 0L , s" +••• <x_ - <

of Equation (3,75) has no root with modulus exceeding 1, and the root of

modulus 1 must be simple.
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II. The order of Che associated difference operator be at least 1.

A. Adams-Bashforth Mathod

Consider the initial value problem

y f - f(t, y) y(t
o
) - yQ

(3.65)

An exact solution of the differential equation (3.65) by definition

satisfies the identity

y(t + k) - y(t) -
f
t-Hc

f(t, y) dt (3.66)

t

for any two values of t in the interval £a,b]. Replace f (t,y) in the right-

hand side of Equation (3,66) by an interpolating polynomial on a set of

points t where y has already been computed or is just about to be computed.

Equate the intergral and accept its value as the increment of the approximate

values y between t and t-tic. If it is assumed that the interpolating

points are t , t ,, t «> '*' tn-a» ^en tiie polynomial replacing f (t,y)

is given by

P(t) - L (-I)* ("S)vra
f (3.67)

m-0 ra p

c - c
p

s « '



33

where q is an arbitrary integer. This formula is developed in Appendix.

Equation (3.67) can be substituted into Equation (3.66) to yield

?- yp-
/^p+l

p(t)dt - r_ vmf -

::.-0
m v P

(3.63)

m *

where r - (-1)
( P+l

("S )ds
m

(3.69)

and y - y(t )

P P

Construct a generating function G(k) as follows

G(k)
CO

2 rV 2 (-1)

m«0

t
f P+l

("S )ds
m

p+l

K
L(-i)

ffirs
)ds -

m

/
C
p+1

(1 - k)"" ds (3.70)

The identity (l-k)"
S

- exp(-slog(l-k)) causes Eq.(3.70) to become

G(k)
(1 - k) log(l - k)



this may be written as

- G(k)
log(l - k) 1

1 - k

Since

1 - k
- 1 + k + k +

34

and
log(l - k)

1 1 2-1 + - k + - k + ...

2 3

one can conclude that

2 1 * 2
(r + r k + r

9
k §•••)(! +-k+-k + •••)» 1+k+k + •••

2 3

By comparing the coefficients of corresponding powers of k, a relation can

be found

m m-1 _ m-2 ,,2 3 m-j-1

(3.71)

thus it is possible to calculate r recursively. Some values of rm ni

calculated from Eq. (3.71) are

m 1 2 3 4 5 6

r
m 1

1

2

5

12

3

8

251

720

95

288

19087

60480
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If y^ ' (t) is continuous in [a,b], then y* (t) can be expressed as

y . . I (.!)»(-«) V<0 + (-l)
(q+1) (-S

) T
q+1

y
(«*2)

(g)

m-0
m P q +1

where ^ is a point between the largest and the smallest of the values

t,t , and t . Integrating y
f between t and t

+1 , we get

y(t ,) - y(t ) - T 2 r v mt + R
.AB

P+l
;..-0

m p q
(3.72)

v/^cre

AB (q*D (q+1)
I - (-1) T

f P+l
(-s ) y

<s+2)
<$> dt

q+1 '

"s (q+2)
since ( ) is a constant sign in the interval t ^t <t

+1
and y (§) is

a continuous function of t, apply the second mean value theorem of the

integral calculus

R - (-1)

q

(q+1) (q+D (q+2) , f
P+1 .

V (
'

) dt

J ,.
<1 +1

where t _ _ s p* y t .. By definition of r ,. this may be written
p-q < ^ < p+l

J
q+l' J
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AB (q+2) (q+2)
R - T y (?•) r
a 7 q+1

(3.73)

This is the desired expression for the remainder of the Adams -Bashforth

formula.

B. Adams -Moulton tethod.

This method uses the form

P P-l
p(t) dt

M * m
T 2 r v f

m-0 m

'p-l

where

(3.74)

* m

m

1 f P

T
y

Cs
) dt - <.»» 1

m T
rs

) ds
m

p-l
-1

(3.75)

the generating function of the coefficients is determined as follows:

* * m
G (k) - 2 r k

m-0 m log(l - k)
(3.76)

or

log(l - k) *
G (k) - 1 (3.77)



Expand the left-hand side of Eq. (3.77) to power series
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* * * it it

(l+-k+-k +•••)(*" + r,k + r„l< + ••• ) « 1

2 3
o 1 2

(3.78)

It follows that

1 it *
r +-r ,+-r _+•••+ r
m ^ m-l „ m-Z ,, o

2 3 m*l

1, in-0

0, n-l,2,3,<
(3.79)

The numerical values of r are easily found from this recurrence relation.
m

Some values of r calculated from Eq. (3.79) are

m 1 2 3 4 5 6

*
1

1 1 1 19 3 863

m
2 12 24 720 160 60480

Since y occurs as an argument in f » f (t , y )in the right hand
p P P P

side term of Eq.(3.74), it will not be possible to solve this equation

explicitly. A better approach to this solution is by means of an iterative

procedure.

Assuming an approximation of a solution of Eq. (3.74) has been obtained

to be y
(o

', calculate f ^°' - f(t , y^) and form the difference
P P P

Vf
n
01

" f„ " f„ i» "V f " S7f
(0)

- s7f ,»•'•. A better approxima.
P P P-l p p p-1

tion is then obtained from
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y
(1) -y + T I rvn t™ (3.80)
P P-1 m«0

m p

(1 \ (1 \

Calculating f«f(t,y ) and re -evaluating the differences, a
P P P

still better value y^2 ' is

(2) q * m (1)
y -y +T S r V f (3.81)
P P" 1 m»0

m P

(r)
Generally a sequence y (r » 0,1,2,3«««) of approximations is

obtained recursively from the relation

y
(r) -y *T I r*v

m
f
(T" l)

(3.82)
P P"1 m-0

m p

S ince

a (i) Jn-1 (i) m-1 (a " 1 »
2#, ->

P P P (i - 1,2»«0
(3.83)

it follows that

m (r) id (r-1) (r) (r-1)
v* f - F f - f - f (3.84)

P P P P

Thus



The Lipschitz condition yields

Equation (3.85) becomes

or

where

39

y
(r+1

> - y
(r)

- T I r*(^f<r)
. /f^l)

) (3.85)
P P m-0

m P P

T 2 r (f - f )
n m P Pm=0

f
(r>

_ f
(r-l). . r r-1 ,

(3 _ 86)
P P '

' P P '

<r*l> (r)
J r

*
L

, <r) _ y(l>1)
(3>87)

P P m-0 P P

Orrt)
. y

<r)
< (IL A)

r . <l) _ (o)
|

(388)
P P ' P P

<5 *
A - £ r

m-0 m

The solution of y of Eq. (3.74) is now obtained by summing terms of

the series
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y
(0) + (ytt) . yfe), + „(•) . /I),

+ ...y
p p

* (y
(n)

- y^) +... (3.89)
P P

The series on the right-hand side of Eq # (3.89) will converge absolutely

i
.

&
provided ^

| TLA < 1. In this case the solution y will exist and be
P

unique.

The local truncation error is

Rq - T
« +^

y
W'«

(J) r
q+1

(3.90)

wnere

p-q > p

C. Milne's Method

Milne's method requires predictor and corrector formulas. The

predictor formula is of the form

y - y
nvl n-3

t
( n+1 4T

f(t, y) dt = T <2f
n_2

-f
n-1

+2f
n) (3.91)

n-3

and the corrector is of the form
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y - y
n+: n-l

f
fc

n+l

Cn-1

f (t, y) dt i - (f , + 4f + f Al ) (3.92)
o n-l n n+1

The predictor formula has truncation error

14
5 (5

)

Truncation error - T y (£) (3.93)
45

?
'

where

The corrector formula has truncation error

T
5

Truncation error » y^ '
(f ) (3.94)

90
l

where

n-l ^2 ** "n+1
t ^§r ^ t

The procedure is as follows:

Step 1; Takes T small enough to insure that the remainder term

ininvolving is small in the predictor formula, then find out y from this

formula.

Step 2; Obtain a first approximation to y* by substituting the
n+1

value of y obtained from step 1 into the following equation

y ? = f (t, y) y-yatt-t.
o o
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Step 3; Obtain a better approximation of y by means of the corrector
n+1

formula Eq. (3.94).

After repeating step 2 and step 3, the value of y . becomes very

accurate. When values of y , and f have negligible error, the next
n+1 n+1

pair of values y _ and f _ may be obtained by a repetition of the process.

let y^ ' be the value of y obtained from step 1, y be the value
n+1 n+1 n+1

On)
of y introduced by the corrector at first time, and y be the value of

n+1 n+1

y after introducing the corrector m times, then
n+1

(1) <o) , (1) (o)
f - f - k(y - y ) (3.95)
n+1 n+1 n+1 n+1

V7here

(1) (o)
f . - f
n+x n+1

n+1 n+l

(3.96)

(o) (o) (1) (1)
-i_id f .,

ra f<t ., y ,), f , - f(t ,, y ,) (3.97)
n+1 n+1' 'n+l n+1 n+1 n+1

If f(t, y) possesses a continuous first derivative f (t, y) with respect

to y, then by the mean-value theorem

lc - f(t ,y ) (3.98)
n+1 i n+1

wnere
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<o> (1)
;/ lies between y and y
(n+1 r.-;-l n+1

Equation (3.92) together with Equation (3.95) yield

(2) (1) T (I) (o) (1) (o)

n+1 n+1 <*
n+1 n+l J L n+1 n+1 J

By the same method

(3) (2) ,
T

.

T
(1) (o)

y , - y , - (- k)(- k)(y - y )

where the change of k is negligible.

Proceeding in this fashion a sequence

n+1 nvl 3 n+1 n+1

is obtained.

Thus

(o) (1) (o) (2) (1)
y A -y+(y-.y-)+(y - y ) + •••
n+. n+1 n+1 n+1 n+1 n+1

T T

y : + <y - y ) I" 1 + - k + (- k)
2

+ ...] (3.100)
r.v. n+1 n+1 L ~ ~ Jn+1 n+1 n+1
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T
Provided that T is sufficiently small, the value of - k can. be chosen so

3
T

that ^1" l<\<£ 1 to insure convergence of the power series on the right-
3

hand side of Eq. (3.100).

If iterations are finite, the value of y , obtained will differ from
n+1

y by
n*l

* ^ (I) (o) T n+1 3

y -y - (y - y )(- k> ( ) (3.101)
n-M n+1 n+1 n+1 3 3 - Tk

where n is the number of steps in the finite step process.

Let the true values of the y and y.8 be z. and z. respectively. Defineiiii
errors in the y and y by the equations

i i

z
i

- y. + q
%

(3.102)

z <=> y v e
i i i

From the differential equation (3.64)

e° - z\ - y] - f(t , z ) - f(t , y ) - k te - y ) (3.103)iii ii ii iii

where k - f (t , *[ ) and y.<'f,^z

The z and z satisfy the equation
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5 - z - - (z* + 4z' + s' ) - T^ z
(;f;

( £ }/ 90
r.vi n-1 3

n-1 n n+1 -'n+l'

where

(3.104)

t < £ < t
n >n+i n+1

Subtracting Equation (3.94) from Equation (3.104) results in

e - e m - (e» + 4e» + e» ) - T A (3.105)
/v-.-_ n-1 o n-1 n ;v.-l. n+1

where

_<5) (^ ,)/90»A , t < £ < t
,>n+r n+1 n > n+1

On making use of Equation (3.103) s this difference equation may be written

1 4 1
5

(1 - - Tk ,) e - (- Tk ) e + (1 + - Tk ,) e , - T A _

3
n+1 n+1 n' n n-1 n-1 n+1

(3.106)

Assume . k - k,

I for i 1,2,«»* n, over a sufficiently restricted
^ A. - A

range.

Solving the difference equation yields

T
5
A

e -CA% Ci? + (3.107)a l l 2 2 <6l Tk)
3
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v;^oro

2 f~ 1 2 2
- Tk + /l + - T k 3e

X «= — - - i + Tk - e (3.108)
i 1 - - Tk

3

2 / 1 2 2
- Tk - ,/l + - T k Tk

fi

x m J J 3 ~ m (1 ) S- . e
y

(3.109)
2 1 3

1 - - Tk '

3

1
G « - Tk .

3

Expressing the constants c„ and c,. in terms of e. and e and setting12 1 o

e to be zero 9 Equation (3.107) becomes
o

n n T A n
sA, - X_) + • (1 - A..e £f -i- a" - C) + ' (1 - C - - 9^) (3.110)

As an approximation setting <?
1
a

!>
Eq,(3.110) can be replaced by

5 . .2
T A ^n-V ,

,,n+l ! " 3
k(tn ' ^1

e » I 1 - e _ + (-1) - Tke J

n 2k "" 2

(3.111)

If k is positive, the last term decreases as t increases. In this
n

case the error is always of the same sign and is multiplied by 10 each time

t increases by 2.3/k. This case corresponds to a differential equation in
n
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which the plots of the solutions for various boundary conditions, in the

neighborhood of the desired solution, diverge to the right, and the accumu-

lated relative error may decrease even though the accumulated error in-

creases exponentially. Milne's method is thus applicable.

If k is negative, the second term vanishes, and the error is alternately

positive and negative. This case corresponds to a differential equation

in which the plots of the solutions for various boundary conditions converge

to the right. The accumulated relative error increases rapidly without

bound. This shows that Milne's method is unstable, and cannot be used.

Milne's method has two virtues: It supplies a running check that the

method and interval size are suitable and that the computation is locally

accurate enough to warrant going on. Moreover, only two evaluations of the

derivatives per step forward are required.

D. Hamming Method

Milne's method is always unstable, because it has two roots with modulus

one in the characteristic equation of its corrector foumula. Hamming has

removed unstability by eliminating one of these roots and thus modified

the corrector formula without changing the predictor formula.

D.I. Third Order formula

The third order formula is of the form

y - ay + by + T(cy' + dy* + ey« ) (3.112)
n+i n n-1 n+1 n n-1

Expanding both sides with respect to y by Taylor series expansion and
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2 3
requiring exact fit for 1 9 T,T ,T , the coefficients a,b 9c 9d, and e can be

determined to be

a <=> -4 + 12c d = 4 - 8c

b « 5 - 12c e - 2 - 5c (3.113)

c ™ c

The truncation error has the value

1 " 3c 4 (4)
Truncation error « T y

The characteristic equation is

j>
2 * (4 - 12c)/ - (5 * 12c) - (3.114)

Solving this equation yields

f2
a ~5+ 12c

Stability requires

OSlftU 1

1 1

or - > C> -

2 3
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Setting c - 5/12, Equation (3.112) becomes

7 m y + __
(5y » + 8y» - yt ) (3.115)

-v.-_ n 22 n+* R "'•'-

D. II. Fourth Order Formulas

This method generalises Milne's corrector formula to the form

y » ay * by _ + cy _ + T [dy« + ey« + fy' ] (3.116)
n+1 n n-1 n-2 l n*l n n-1

and then stabilizes this formula by choosing suitable values of the

coefficients to minimize one of the characteristic roots with modulus one

in Milne*s formula.

Expanding Equation (3.116) with respect y by Taylor series expansion,

and requiring exact fit for 1, T, T2 , T3 , T4 , yield

27(1 - b) 9 - b
£ C ' £ E> -^—

—

—

•

24 24

b - b e (3.117)

-3(1 - b)

c -

e

18 + 14b

24

-9 + 17b
.c
£

2424

In this case the truncation error is found to be
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5 (5) "9 * 5b
5 (5)

kT
D

y^ ; r y^D\ (3.118)
360

The characteristic equation of Equation (3.116), using Equation (3.117),

is

zf - 9(1 - b)f
2

- 8bf + (1 - b) - 0. (3.119)

The root loci of f with respect to b are shown in Fig. 2. For stable

operation b should lie in the range -0.6<b<l to insure that no charac-

teristic root exceeds one and that the root with modulus one is simple.

Milne*s formula is a special case of Equation (3.116) with b-1. It is

easily seen from Fig. 2 that in this case there are two characteristic roots

with modulus one.

For the case b«0, a stable predictor-corrector formula can be con-

structed as follows:

4T
predictor p - y „ + — (2y* - y« + 2y» „)

n+1 n-3
3

n n-1 n-2

112
modify m - p - (p - c )

n+1 n+1 12 ^ n n

1
corrector c » - (9y - y ) + 3T(f» - 2y» - y* ) (3.120)

n+1
8 n n-2 n+1 n n-1

final value y « c + (p - c ).
n+1 n+1 121 n+1 n+1
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Truncation error of corrector formula in this case is

1
5 (5)

truncation error - - — T y
40

as compared with that of Milne's corrector formula, there is a 125%

increment.

In Hamming methods predictor formulas are always the same as Milne's

formula because if the predictor is generalized by the same method used

above, it would be unstable.

From the above discussion it is easily seen that to gain stability in

a predictor-corrector method one must lose some accuracy. This loss in

accuracy can be compensated by shortening the interval of integration.
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/
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- -OS
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<

Fig. 1. Root Loci of Eq. (3.114)

f
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+ (4 - 12c)j°- (5 + 12c) -
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Fig. 2. Root Loci of Eq. (3.119)
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C. Comparison Between One-Step Methods and Multiple Step Methods

One -step methods are useful for obtaining the first few of the solution

of a differential equation* but involve too much labor to be used for

obtaining a numerical solution over an extended range. However, multiple

step methods require special starting procedures which are furnished by

one-step methods.

IV. Numerical Transform Techniques.

Part of the solution of a linear differential equation with constant

coefficients has the form of a convolution. The digital computer must

approximate convolution on a denuraerable set of equally spaced points.

The tranpezoidal approximation is the commonly used quadrature method.

Trapezoidal approximation proceeds as follows. Let g(x) be a function

defined and continuous in a closed interval conta inning x«»0, and let its

first four derivatives be continuous in the same interval, the Taylor series

representation of the function with remainder is

2
x
3

g(x) -g(0) +xg (1)
(0) + —

g

(2)
(0) + —

g

(3)
(0)

2| 3i

V
<* -^)

3
(o)

-g (/<) d/f (4.1)

J
3 -'

Integrating the given function results in
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h

g(x) dx
<g + g

x
)

(2)

o
h

12 2

(2)

) + R(h)

(4.2)

The remainder R(h) is given by

h* r

1

R(h) (X - 2X
3

+ X
4

) g
(4)

(Xh) dX (4.3)

120
0<G<1

A convolution can be approximated by dividing its interval into a

finite number of subintervals each with same width T as follow:

: n-1

fOrt g(t -^) dt» 2

o k-o ;

(k+l)T

kT

f(T) g(t -?) d^ (4.4)

Trapezoidal approximation yields

f(f) «(t -*> dr-
| ( T f

k Sn.k
f
k+1 gn.k.,)

(4.5)
2 k raU

Taking z-transform of both sides of Equation (4.4) results in

2 [fg ] » T [ Zf ][ Zg ] - -
[ f Zg + g Zf

]
(4.6)
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There are many ways of utilizing trapezoidal convolution to solve a

given differential equation. Each of these is called a program. Three

classes of programs are discernible; The multiple integration substitution

program, the Tustin integrator program, and the single integrator program.

Differences among them are at the transitions from integration to multiple

integration.

A. Tustin Program

This method solves an n-th order differential equation by the state-

space spproach, A Tustin-like program is demonstrated as follows:

Let an n-th order differential equation of the form

D
n
y » x(t) (4.7)

Define the row vectors

9 / i
(n-l\

w» - (y, y«, ••• y )

v 9 - (D 9 0, ... x(t)) (4.8)

Then

-I
Dw + / ) w » v (4.9)

( )-
K J

is equivalent to an nth order differentia! equation. Take the Laplace

transform and divided by s to obtain
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111
w + -Aw»-v+-w (4.10)

o
s s s

Employing Che sampling operation and trapezoidal integration yields

2
Zw + AZw - Aw » a2v - 3v + - 8w (4.11)

o o o

where

T 1 + z T /0 -I

a - » " » a -
(

2 1 - z 2(1 - z) (nxn) v

Since A -0
f it follows that

(I + aA
n

) -i or (I * aA) fi - (aA) * (aA) + -«.(-aA)

- r (4.12)

Then the desired solution can be written as

v- n7. n-1
L (n-D

Zy » a Zx - £a x + y
° 1 - z o

2
T Z n v o fn k^

+ 5- 2T a "
y for n - 1»2,3"< (4.13)

(1 - zT k-2 °

The above equation is the Tustin program, if all initial conditions are

zero.

This program's great advantage is that it finds the solution and its
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first (n-1) derivatives in one sweep.

3. Single -integrator program.

Halijak has derived a single -integrator program which uses a sequence

of ascending order differential equations derived from the given differen-

tial equation to solve the same equation. Consider the differential

equation.

n :\ -,

D v a, D * • * • * a , D + a
1 n-1 n

y(t) x(t) 9 (4. 14)

First 9 S£ '

c UP the differential equation

(D + a
x
) yL

(t) - 1 y (0) - (4.15)

The Laplace transform of this differential equation yields after division

by s

(I + _±
) y (s) (4.16)

Taking Z-transform of both sides and employing approximate trapezoidal

convolution, yields

2Ts
Zy i Z(-

1

L
1 " z J[ <2 + aT > - (2 - -T) z] s(s + a)

(4.17)
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Set up r differential equation of the form;

(D + a
x
D + a

2
) y

2
(t) - 1, y^O) - y

2
(0) - (4.18)

taking Laplace transform of both sides and dividing by s(s+a) yield

(I + ) y(s ) - —

£

(4.19)

s (s + a) s (s + a)

taking Z-transform yields

Zy(s) + Ta, Z(
s (s + a )

[ Zy(s)] = [ Z(-)][Z<
s(s + a)

•>]

(A. 20)

Substituting equation (4.17) into equation (4.20) yields

T (1 + z) 2Ta

2y
2
(s) - -

2 (1 - z) (2 + aT) - (4 - 2a T
2
)z + (2 - a^z 2

s(s + a s + a
9 )

(4.21)

Proceeding in this manner, let a nth order differential equation be of the

form

(D + a D + ••• * a
n_ x ) y

n>>1
(t) - 1
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y (0) » y , (0) = ••• - y
<n"2 ) (o) - (4.22)

n-i n-1 n-1

T 2 -> z

Zy, (s) - - ( -) Zy, (s) / [l + a TZy.
, (s)J (4.23)

1 o i 1-1 L
1 1-1 J

2<£i<n

for i«n,

Zy (s)f 1 + a T(Z(y
t
(s)) 1 - T[ Zx(s) If" Zy , (s)

]n L n ..->_ J L JL n-1 J

T

2

x Zy (s)
}o n-1 J

(4.24)

Initial conditions other than zero can be introduced at the last

step.

C. Multiple-Integrator Substitution Program.

The multiple integrator substitution program casts the Laplace trans-

form of the given differential equation into inverse powers of s by a

suitable division and substitutes for them definite functions of z defined

to oe e „

C. I. Kalijak's Integrator Substitution Program.

This method uses trapezoidal convolution to generate z-transform of
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(1/s ) and (1/s )f. The procedure is as follows:

for Z(l/s) « 1/(1 - z),

n «= 2, Z(l/s
Z
) - Z(i/s)Z(l/s)T - TZ(l/s),

5/(1 - 2) , (4.25)

for n » 2, Z(l/s
n
) = Z(l/s

n"1
)Z(i/s)T - Z(l/s

n
)T/2,

T (1 +

(—T") -
n-1

1 T

Z<—s-) -

s
Z

2

2 (1 - z)

(1 + z)

L a - z>

n-2

fci :ion (4.25) into Equation (4.6) yields

1 r , U T(l + 2) 1
n"2

Z( - f) i T z/(i - z) I (Zf - 0.5f ) (4.26)
L ' U 2(1 - z) J

This method yields moderate accuracy approximations and is the basis

of physically small computers.
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SUMMARY

The result of an approximate computation of the solution of differen-

tial equation is affected by errors. These errors arise from different

causes and affect final result in different ways.

Three types of errors that are most important are truncation error,

round-off error, and accumulated error. Round-off error usually affects

the last retained digit of the decimal representation; its effect can be

minimized by retaining additional digits. Truncation error is due to

discarded terms in an infinite series. Sometimes the remainder exceeds the

sum of terms retained, thus making the calculated result meaningless. There-

- -. , ... _/.: _..... ce cf truncation error is essential. The importance of

accumulated errors depends on rate of accumulation. If the accumulation

error is unbounded, the solution becomes meaningless.

The search for Runge-Kutta type formulas is important. It seems that

the method given in this report in deriving coefficients of Runge-Kutta

formulas can be applied to investigate six and higher order formulas.

Trapezoidal convolution using the integral of the first two terms of

Taylor series coincides with the average of right and left Riemann sum

2
approximations. The truncation error is of order T . Improved trapezoidal

convolution using higher order Taylor Series terms seems worthy of further

investigation.

Accuracy is not the only consideration for evaluating a computation

process. The step size affects the solution accuracy as well as the cost;

the more accurate solution is generally the more expensive. Frequently it

is desired to have a solution within a certain accuracy with most economical
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computation. The selection of optimal size depends on the method used and

the problem solved.

A number of numerical transform techniques have been developed in the

Z-transform language. Many of these exhibit difficulties for the solution

of differential equation with non-zero initial conditions. The programs

generated by Halijak have shown that proper re introduction of initial con-

ditions is required for better approximation.
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APPENDIX 1

Error Formulas for an Interpolating Polynomial

Let the function z (x) be defined on an interval containing the q+1

distinct points x,x,«». x. It is well known that among all poly-

nomials in x of degree not exceeding q there exists exactly one polynomial

P(x) which satisfies the relations

P(x ) - z(x„) i - 0,1,2,. ..q (I - 1)

The uniqueness of this interpolating polynomial follows from the fact that

the difference of any two such polynomials is a polynomial of degree q

which has q+1 zeros and therefore vanishes identically. Existence can be

proved by exhibiting the polynomial explicitly, in the form

q z(x )

?(x) - L(x) 2 - (I - 2)

i»0 L 8 (x ) (x - x )

where L(x) » (x - x )<x - x, ) ••• (x - x )
o 1 q

The error committed in this approximation can be estimated from the follow-

ing Lemmas.

Lemma 1. Let z(x) have a continuous derivative of order q+1 in J.

Then for every point x in J there exists a point £ in the smallest interval 1

containing both x and the points x. (i«=l,2,«»»q) such that
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1 (q+D >
z(x) - P(x) L(x) z

H

(J) (I - 3)

(q + Di

Lemma II. Let z(x) satisfies the same hypothesis as in Lemma 1. Then

for every x. (k-0,l,2,«« «q) there exists a number £ such that

z'(x, ) - p»<x, ) - z
(q+1

(p L»(x. ) (I - 4)
k k (q+D!

' k
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There are a number of numerical methods for approximating solution

of a differential equation. These methods have two things in common; the

calculations are performed with discrete values and on a step-by-step

basis. The purpose of this report is to review those methods that are fre-

quently used on digital computers. All these methods are divided into two

classes; the classical numerical techniques and the numerical transform

techniques. Classical numerical techniques yield two types; one-step methods

and multiple step methods. In one-step methods the value of y is solved

from its previous step. In multiple step methods the value of y is solved

from its several previous steps y , , y , ••• y • The virtue of one-step
n-1* ^n-2* •'n-q K

methods is that they are self starting whereas multiple step methods require

more than one starting point that they are not self starting. However,

multiple step methods are more easier in continuing a solution than one-step

methods. The numerical transform techniques were developed recently by

Tustin, Madwed, Boxer-Thaler, and Halijak. These methods use z-transform

as a language. Three classes are discernable; Tustin program, single inte-

gration program, and multiple integration substitution program. Differences

among them are the transition from integration to multiple integration.

Truncation error and accumulated relative error are important factors

that affect availability of a method. It is necessary to estimate these

errors so as not to make computation meaningless.


