ING-WEN HUANG
B.S.E.E., National Taiwan University, 1963

A MASTER'S REPORT
submitted in partial fulfillment of the
requirement for the degree

MASTER OF SCIENCE

Department of electrical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1966

Approved by:
Charles A. Haljate

TABLE OF CONTENT

I. INTRODUCTION 1
II. SURVEY OF ReThods FOR DIGITAL SOLUTION OF DIFFERENTIAL EQUATION 3
III. CLASSICAL NUMERICAL TECHNIQUES. 3
1). One-Step Mathods 3
A. Taylor Series Method 4
B. Euler Method 6
C. Runge-Kutta Methods 10
2). Multiple Step Vethods 30
A. Adams-Bashforth Nethod 32
B. Adams-Noulton Nathod 36
C. Mine Vathod 40
D. Hamming Nathod 47
3). Comparison between One-Step Nethod and Multiple Step-ivthod. 54
IV. NUILRICAL TRANSFORM TECHNIQUES 54
A. Tustin Program 56
B. Single-Integrator Program 58
C. Maltiple-Integrator Substitution Program 60
V. SUMMARY 62
APPENDIX 1 64
RETERENCES 66
ACKNOWLEDGNENT 68

INTRODUCTION

Developments of modern science have confronted the scientist and the engineer with a variety of problems which cannot be solved formally. Hence the widerning interest in numerical analysis, a branch of mathematics which leads to approximate solutions by repeated application of the four basic operations of algebra. Numerical analysis has been applied to scientific and technological problems from the very beginning of applied science, but has been given new impetus by development of the electronic digital computer. Many classical numarical analysis technicues are available for engineering applications to solve differential equations. There is another group of procedures unique to the engineering literature which generates approximating recurrence relations from approximate Z-transforms. No matter how different all these techniques are in terms of their mathematical approaches and the algebra involved, they all have two things in common; the calculations are performad with discrete values and on a stepmby-step basis. Consequently tho time interval between steps is an important factor which affects the accuracy as well as the speed of the computation.

Up to a point, the smaller the step size used, the longer is the solution Eime required and the more accurate is the solution obtained. Since significant digits are limited in computation, the increased solution accuracy produced by the reduced step size is lost. This effect is termed, "roundoff errorl Therefore there exists an optional step size to be used in producing the numerical solution of optimal accuracy. In general no single tecinique is best in all cases. In fact, the effectiveness of approximate mathods hinges on the type of function in question and the goodness of each
method is measured by a number of factors, namely, the program set-up time, the solution speed, and solution accuracy and stability. In other words, it is a consideration of economy and accuracy and these two quantities are contradictory in nature. Therefore a brief examination of strong points and weaknesses of various types of digital techniques and comparisons among them would provide a guidepost for selection of an optimal technique.

The objective of this report is to review previous methods for digital solution of differential equations, and to illustrate their appications for approximating the solutions of ordinary differential equations.
II. Survey of Nathods for Digital Solution of Differential Equations.

Natiods for approximating solution of ordinary differential equations are based on the principie of discretization. These methods have the common feature that no attempt is made to approximate the exact solution $y(t)$ over a continuous range of the independent variable. Approximating values are sought only on a set of discrete points t_{0}, t_{1}, t_{2}, $\cdots t_{n}$. Generally spealeing, a discrete variable method for solving a differential equation consists of an aigorithm which furnishes a number y_{n} corresponding to each lattice point t_{n}. Which is to be regarcied as an approximation to the value $y\left(t_{n}\right)$ of the exact solution at the point t_{n}.

Discrete variable metnods fall into two classes: classical numerical anciysis vechniques; and rumerical transform techniques. Classical numerical analysis cechnicues yield one-step mathods and mitiple step methods. In a one-step mathod the value of $y_{\text {s }}$ can bo found if only one initial value is knom. In a mutiple step mathod the calculation of y_{n+1} requizes explicit knowlodge of more than one starting value. Oftentimes, a one-step method is used to start a multiple step method.

The mumarical transform techniques were first introduced by Tustin and were furthe expenced by Vadwed, Boxer-Thaler, and Halijak. These techniques generate approximating recurrence relations from approximate z-iransform of $1 / s^{n}$ and \bar{E} / s^{n}.

IIT. Classical Numerical Aralysis Techniques.
1). One-Step Mathods

Let a typical first-order differential equation be given by

$$
\begin{align*}
& \frac{d y}{d t}=f(t, y) \\
& y=y_{0} \quad \text { at } t=t_{0}
\end{align*}
$$

and let it satisfy Lipschitz conditions in soma closed region D. There exists a single-valued function $y(t)$ continuous in D such that it satisfies Eq. (3.1), then it can be solved approximately by these methods.

Onewstep methods are usually divided into two classes; The first class inclucies Taylor series method and Picard's method. In these methods, y in Eq. (3.1) is approximated by a truncation series, the individual terms of which are functions of the independent variable t. The second class is represented by the methods of Euler and Runge-Kutta methods.
A. Taylor Series Method.

Consider the differential equation (3.1) with the initial condition $y=y_{0}$ at toto. Let the required solution be

$$
\begin{equation*}
y=y(t) \tag{3.2}
\end{equation*}
$$

If toto is not a singular point of the function, $y(t)$ can be expanded in Taylor series about this point. Thus with

$$
\begin{equation*}
y_{0}^{(m)}=\left[\frac{d^{m} y}{d t^{m}}\right]_{t=\varepsilon_{0}} \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
y=y_{0}+\left(t-t_{0}\right) y_{0}^{(2)}+\frac{1}{2!}\left(t-t_{0}\right)^{2} y_{0}^{(2)}+\frac{1}{3!}\left(t-t_{0}\right) y_{0}^{(3)}+\cdots \tag{3.4}
\end{equation*}
$$

a power sarles in that converges over some range $t_{0} \leq t \leq t_{b}$.
The vaiue of $y^{(i)}$ is evaluated by making use of the differential equation (3.1) which can be wriťen as

$$
\begin{equation*}
y^{(i)} \oplus f(\tau, y)-g_{1}(\tau, y) \tag{3.5}
\end{equation*}
$$

differentiating Eq. (3.5) yields

$$
\begin{equation*}
y^{(2)}=\frac{\partial g_{1}}{\partial t} \div \frac{\partial \xi_{1}}{\partial y} y^{(1)}=g_{2}\left(\tau, y, y^{(1)}\right), \tag{3.6}
\end{equation*}
$$

ard by zapeated differentiacion

$$
\begin{equation*}
y^{(m)}=g_{i}\left(\tau, y, y^{(1)}, y^{(2)}, \ldots y^{(m-1)}\right) \quad m=1,2 \ldots \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{m} a \frac{\partial g_{m-1}}{\partial t}+\sum_{1=0}^{m-2} \frac{\partial g_{m-1}}{\partial y^{(1)}} y(i \neq 1) \tag{3.8}
\end{equation*}
$$

Seひting tato and yay , Eq. (3.7) becomes

$$
\begin{equation*}
y_{0}^{(m)}=g_{m}\left(t_{0}, y_{0}, y_{0}^{(1)}, \cdots y_{0}^{(m-1)}\right), \quad m=1,2 \ldots \tag{3.9}
\end{equation*}
$$

The eruncation error after the mith term is given by

$$
\begin{equation*}
R_{m}=\frac{\varepsilon^{m}(\xi)}{m!}\left(t-\varepsilon_{0}\right)^{m}, \quad \text { where } \quad \epsilon_{0} \leq \xi \leq t \tag{3.10}
\end{equation*}
$$

Repiacing $E(\xi)$ with an upper bound $M^{(m)}$ to its value in the interval (t, to.) The truncation error is then bounded by

$$
\begin{equation*}
R_{m} \leq\left|\frac{M^{(m)}}{m!}\left(\varepsilon-\varepsilon_{0}\right)^{m}\right| \tag{3.11}
\end{equation*}
$$

In partioular, for a convergent Taylor series with alternating sign, the cruncation orror after meh term cannot exceed the (mol)th term Eq. (3.11) becomes

$$
\begin{equation*}
\left|R_{m}\right| \leq\left|\frac{f^{(m)}\left(\tau_{0}\right)}{m}\left(\tau-\tau_{0}\right)^{m}\right| \tag{3.12}
\end{equation*}
$$

B. 1. Euleris Method.

This method is of very little practical importance, but it illustrates in simple form the basic idea of those numerical methods which seek to determine the change of $\Delta \mathrm{y}$ in y corresponding to a small increment of the argumant.

Consider Eq. (3.1), the left-hand side of the first part is, by dofinition

$$
\begin{equation*}
\frac{d y}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta y}{\Delta t} \tag{3.13}
\end{equation*}
$$

therefore, for small value of t

$$
\Delta y \approx \frac{d y}{d t} \Delta t
$$

Thus, the Increase in $y(t)$ when t increases to $t \rightarrow \Delta t$ is approximately

$$
\begin{equation*}
y_{m \div 1} \bullet y_{m}=f\left(t_{m}, y_{m}\right) T \tag{3.14}
\end{equation*}
$$

where

$$
I=\Delta t
$$

However the exact expression for y at tor, using Taylor series formia is

$$
\begin{equation*}
z_{m+2} m_{m}+\operatorname{Tf}(\tau, z)+\frac{1}{2} T^{2} y^{(2)}(\xi)_{m+1} \tag{3.15}
\end{equation*}
$$

where

$$
\epsilon_{m}<\xi_{\mathrm{m}+1}<t_{\mathrm{m}+1}
$$

Subtracting Eq. (3.14) from Eq. (3.15) results in

$$
\begin{align*}
z_{m \div 1}-y_{m+1}=\left(z_{m}-y_{m}\right) & +T\left(f\left(t_{m}, z_{m}\right)-f\left(t_{m}, y_{m}\right)\right) \\
& +1 T^{2} y^{(2)}\left(\xi_{m+1}\right) \tag{3.16}\\
& 2 \underbrace{(})
\end{align*}
$$

The left-hand side of Eq. (3.16) is by definition the truncation error of y at $t=t_{m * 1}$,

Let $\quad t_{m * 1} a z_{m * 1}-y_{m * 1}$
and $\quad k_{m}=\frac{f\left(\epsilon_{m}, z_{m}\right)-f\left(\varepsilon_{m}, y_{m}\right)}{z_{m}-y_{m}} \approx \frac{\partial f\left(\varepsilon_{m}, z_{m}\right)}{\partial y}$

Eef. (3.15) becomes

$$
\begin{equation*}
\epsilon_{m+1}=\epsilon_{m}+T z_{m} \epsilon_{m}+L_{2}^{1} T^{2} y^{(2)}\left(\xi_{m+1}\right) \tag{3.19}
\end{equation*}
$$

For $\quad m=0$

$$
\begin{equation*}
E_{0}=0 \tag{3.20}
\end{equation*}
$$

$m=1$

$$
\begin{equation*}
\epsilon_{I}=\frac{1}{2}-R^{2} y^{(2)}\left(\xi_{1}\right), \quad t_{0}<\xi_{1}<t_{1} \tag{3.21}
\end{equation*}
$$

$$
m=2
$$

$$
\begin{equation*}
\epsilon_{2}=\left(\epsilon+T R_{1}\right)_{2}^{1} T^{2} y^{(2)}\left(\xi_{1}\right) \div \frac{1}{2} T^{2} y^{(2)}\left(\xi_{2}\right) \tag{3.22}
\end{equation*}
$$

where

$$
\dot{\epsilon}_{1}<\xi_{2}<t_{2} ;
$$

proceeding in this manner, the truncation error at nth step is

$$
\epsilon_{n}=T^{2}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}(2)\left(\xi_{1}\right) \prod_{j=1}^{n-1}\left(1+T K_{j}\right)+\frac{1}{2} y^{(2)}\left(\xi_{2}\right) \prod_{j=2}^{n-1}\left(1+T K_{j}\right)\right.
$$

$$
\begin{equation*}
\left.+\ldots \dot{y}_{2}^{1} y^{(2)}\left(\xi_{n}\right)\right] \tag{3.23}
\end{equation*}
$$

$0=\quad \epsilon_{n}=I^{2} \sum_{i=0}^{n-1} A_{i} a_{i}$
where

$$
\begin{cases}A_{i}=\prod_{j=1}^{n=1}\left(i * T K_{j}\right) & i \neq n \\ A_{i}=1 & i=n\end{cases}
$$

$$
\begin{equation*}
\text { and } \quad a_{i}=\frac{1}{2} y^{(2)}\left(\xi_{i}\right) \tag{3.25}
\end{equation*}
$$

Thus errors $\frac{1}{2} y^{n}\left(\xi_{1}\right)$ introduced at each step because of the inaccuracy of formula (3.14) are to be multiplied by amplification factors A_{i} before being summed.
C. Runge-Kutta Nathod.

This method is an algorithm designed to approximate the Taylor's series solution.

Consider the Taylor's Series

$$
\begin{equation*}
y_{n+1}=y_{n}+T y_{n}+T_{2}^{2} y_{n}+\cdots \tag{3.26}
\end{equation*}
$$

where

$$
y_{n+1}=y((n+1) T) \quad \text { and } \quad y_{n}=y(n T)
$$

If the Runge-Kutta formula is derived by retainning terms in the Taylor's series expression up to mth power of T, this formula is called the RungeKutta mathod of mith order accuracy or the Runge-Kutta mth order method.
C. 1. Second Order Runge-Kutta Formula.

Consider increments in y defined by the equations

$$
\begin{equation*}
\Delta y=R_{1} \Delta^{\prime} y+R_{2} \Delta^{\prime \prime} y \tag{3.27}
\end{equation*}
$$

where

$$
\Delta^{\prime} y=f\left(t_{n}, y_{n}\right) T
$$

$$
\Delta^{n} y=f\left(\varepsilon_{n}+a T, y_{n}+b T\right) T_{g}
$$

and

$$
R_{2}, R_{2}, a \text { and } b \text { are constants. }
$$

Expanding Eq. (3.27) with respect to Taylor's series of two variables, results in

$$
\begin{equation*}
\Delta y=T\left(R_{I}+R_{2}\right) f_{n}+\left(a\left(E_{t}\right)_{n}+b\left(f_{y}\right)_{n}\right) T^{2} R_{2}+\cdots \tag{3.28}
\end{equation*}
$$

where

$$
f_{n}=f\left(\varepsilon_{n}, y_{n}\right)=y_{n}, \quad\left(\varepsilon_{t}\right)_{n}=\left.\stackrel{(-}{\partial \varepsilon}\right|_{t=\varepsilon_{n}, y=y_{n},}
$$

and

$$
\left(E_{y}\right)_{n}=\left(\left.\stackrel{\partial}{\partial y}\right|_{t=\varepsilon_{n^{0}} y=y_{n}}\right.
$$

Eq. (3.28) will be equal to Eq. (3.26) up to second order of T if its parameters take the vailues

$$
\begin{align*}
& R_{1}+R_{2}=1 \tag{3.29}\\
& R_{2} a=1 / 2 \\
& R_{2} b=1 / 2
\end{align*}
$$

There are four constants to be determined and only three equations. Choose R_{2} as parameter, the constants a, b, and R_{1} can be determined in terms of R_{2}. Thus

$$
\begin{align*}
& a=b=\frac{1}{2 R_{2}} \tag{3.30}\\
& R_{1}=1-R_{2}
\end{align*}
$$

Consequently, an infinite number of forms of Eq. (3.28) can be established. Fozmulas of highez order can be obtained in the similar manner although no formula beyond fifth order has ever been developed.
C. II. Thira Onder Runge-Kutta Forimila.

Again take the differential equation

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) . \tag{3.31}
\end{equation*}
$$

and expand it with respect to $\left(\varepsilon_{n}, y_{n}\right)$ by Taylor series for two variables to obtain

$$
\begin{gather*}
\Delta y=f_{n} T+\frac{1}{2}\left(f_{t}+f_{y} f\right)_{n} T^{2}+\frac{1}{\sigma}\left\{f_{t t}+2 f_{t y} f+f_{y y} f^{2}\right. \\
\left.+\left(f_{t}+f_{y} f\right) f_{y}\right\} n T^{3}+\cdots \tag{3.32}
\end{gather*}
$$

Define the increment of y by

$$
\begin{equation*}
\Delta y=R_{1} \Delta^{\prime} y+R_{2} \Delta^{\prime \prime} y+R_{3} \Delta^{\prime \prime \prime} y \tag{3.33}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Delta^{\prime} y=f\left(\epsilon_{n} \circ y_{n}\right) T \\
& \Delta^{\prime \prime} y=f\left(\epsilon_{n}+\pi T, y_{n} \div m \Delta^{\prime} y\right) T \\
& \Delta^{\prime \prime \prime} y=f\left(t_{n}+\lambda T, y_{0}+p \Delta^{\prime} y+(\lambda-p) \Delta^{\prime} y\right) T
\end{aligned}
$$

The symbols m, λ, and p are constants. Expanding Eq. (3.33) with respect to Taylor's series at $\left(\epsilon_{n}, y_{n}\right)$, results in

$$
\begin{align*}
\Delta^{0} y= & T f_{n} \\
\Delta^{\prime \prime y}= & I\left\{f_{n}+n T\left(f_{t}\right)_{n}+m \Delta^{0} y\left(f_{y}\right)_{n}+\frac{1}{2!}\left[(m T)^{2}\left(f_{t \tau}\right)_{n}+2 m^{2} T \Delta^{\prime} y\left(f_{t y}\right)_{n}\right.\right. \\
& \left.\left.+\left(m \Delta^{0} y\right)^{2}\left(f_{y y^{\prime}}\right)_{n}\right]+\cdots\right\} \\
\Delta^{0!y}= & T\left\{f_{n}+\lambda T\left(f_{t}\right)_{n}+\left[\rho \Delta^{\prime \prime y}+(\lambda-\rho) \Delta^{0} y\right]\left(f_{y}\right)_{n}\right. \\
& +\frac{1}{2!}\left\{(\lambda T)^{2}\left(f_{t \tau}\right)_{n}+2 \lambda T\left[\rho \Delta^{\prime \prime} y+(\lambda-\rho) \Delta^{0} y\right]\left(f_{t y}\right)_{n}\right. \\
& \left.\left.+\left[\rho \Delta \Delta_{y}+(\lambda-\rho) \Delta^{0} y\right]^{2}\left(f_{y y}\right)_{n}\right\}+\cdots\right\} \tag{3.34}
\end{align*}
$$

where

$$
\begin{aligned}
& \left(\varepsilon_{y y}\right)_{n}=\left(\frac{\partial^{2} f}{\partial y^{2}}\right)_{t-t_{n}} y=y_{n} . \quad\left(\varepsilon_{y}\right)_{n}=\stackrel{\partial f}{\partial y} t_{0 t_{n}}, y=y_{n} \\
& \left.\left(E_{t}\right)_{n}=\stackrel{\partial E}{\partial t}\right)_{t=\varepsilon_{n}, y=y_{n}} \quad f_{n}=E\left(\varepsilon_{n}, y_{n}\right)
\end{aligned}
$$

Eliminating $\Delta^{9} y$ and $\Delta^{0 y}$ from the right hand side of the second and third equations of Eq. (3.34) and substiting into Eq. (3.33), the result coincides with Tayloris series expansion up to the third power of 1 provided the following relations hold among the constants

$$
\begin{aligned}
& R_{1}+R_{2}+R_{3}=1 \\
& R_{2} m+R_{3} \lambda=1 \\
& R_{2} m^{2}+R_{3} \lambda^{2}=\frac{1}{3} \\
& R_{3} \rho m=\frac{1}{6}
\end{aligned}
$$

Since there are six constants to be determined, namely, $R_{1}, R_{2}, R_{3}, m, \lambda$, and P, and only four equations, the constants m and λ can be chosen as parameters. The constants R_{1}, R_{2}, R_{3} and P as calculated from Eq. (3.35) are

$$
\begin{equation*}
R_{1}=\frac{6 m \lambda-3(m+\lambda)+2}{6 m \lambda} \tag{3.36}
\end{equation*}
$$

$$
R_{2}=\frac{2-3 \lambda}{6 m(m-\lambda)}
$$

$$
R_{3}=\frac{2-3 m}{\sigma \lambda(\lambda-m)}
$$

$$
\rho=\frac{\lambda(\lambda-m)}{m(2-m)}
$$

From Eq. (3.35), it is clear that R_{3} cannot be zero and R_{1} and R_{2} cannot both zero. If $R_{2}=0$, then by Eq. (3.35)

$$
\begin{equation*}
\lambda=\frac{2}{3} \quad R_{3}=\frac{3}{4} \quad R_{1}=\frac{1}{4} \quad \text { and } \quad \rho_{m}=\frac{2}{3} \tag{3.37}
\end{equation*}
$$

Moreover, assume ρ to be $1 / 3$, then m is equal to $2 / 3$. Therefore

$$
\begin{align*}
& \Delta y=\frac{1}{4}\left(\Delta^{0} y \div 3 \Delta^{0 \prime \prime \prime} y\right) \tag{3.38}\\
& \Delta^{v} y=f\left(\epsilon_{n}, y_{n}\right) T \\
& \Delta^{0 Y y}=E\left(t_{n}+\frac{2}{3} T_{2} y_{n}+\frac{2}{3} \Delta^{0} y\right) T \\
& \Delta^{\theta n y}=E\left[\epsilon_{n}+{ }_{3}^{2}-T_{0} y_{n}+{ }_{3}^{2}\left(\Delta^{0} y+\Delta^{n y}\right)\right] T
\end{align*}
$$

On the other hand, in $\lambda=0$, then

$$
\begin{equation*}
m=\frac{2}{3} \quad R_{2}=\frac{3}{4} \quad R_{3}=\frac{I}{4 \rho} \quad \text { and } \quad R_{1}=\frac{\rho-1}{4 \rho} \tag{3.39}
\end{equation*}
$$

If it is assumed that $\rho=1$, then another form can be constructed from Eq. (3.39) and Eq. (3.33); it is

$$
\begin{equation*}
\Delta y=\frac{1}{4}\left(3 \Delta^{0 i} y+\Delta^{0 \prime \prime} y\right) \tag{3.40}
\end{equation*}
$$

where

$$
\Delta^{\theta} y=f\left(t_{n}, y_{n}\right) T
$$

$$
\begin{aligned}
& \Delta \mathrm{ny}=f\left(\epsilon_{\mathrm{n}}+\frac{2}{-2} \mathrm{~T}_{3} \mathrm{Y}_{\mathrm{n}}+\frac{2}{3} \Delta^{9} \mathrm{y}\right) \mathrm{T} \\
& \Delta^{\theta r \prime y}=E\left(\epsilon_{n} y_{n}+\Delta y^{\prime \prime} y-\Delta^{0} y\right) T
\end{aligned}
$$

C. IV. Fourth Crder Runge -ikuta Formula.

The Runge-kutta fourth order formula has the form

$$
\begin{equation*}
\Delta y=R_{2} \Delta^{0} y+R_{2} \Delta^{p l y}+R_{3} \Delta^{000 y}+R_{4} \Delta^{p r i p y} \tag{3.41}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Delta^{q} y=I\left(t_{n}, y_{n}\right) T \\
& \Delta^{D_{y}}=E\left(\varepsilon_{\mathrm{n}}+m \mathrm{I}_{\theta} y_{\mathrm{n}}+\mathbb{m} \Delta^{0} y\right) \mathrm{T} \\
& \Delta^{00 y} y=E\left(t_{n}+\lambda I_{0} y_{n}+\rho \Delta^{0 y_{n}} y_{n}+(\lambda-\rho) \Delta^{\circ} y\right) T \\
& \Delta^{0 \cdots 9} y=f\left(E_{\mathrm{n}}+\mu \mathrm{T}_{2} \mathrm{y}_{\mathrm{n}}+\sigma \Delta^{m \theta} \mathrm{y}+\tau \Delta^{\prime \prime} \mathrm{y}+(\mu-\sigma-\tau) \Delta^{0} \mathrm{y}\right) \mathrm{T} .
\end{aligned}
$$

Expand second, third, fourth and fifth equations of Eq. (3.41) to obtain

$$
\begin{equation*}
\Delta^{\prime} y=f\left(t_{n}, y_{n}\right) T \tag{3.42}
\end{equation*}
$$

$$
\begin{aligned}
& \Delta^{\prime n} y=T\left(E\left(E_{n^{2}} y_{n}\right) \div \operatorname{mT}\left(\varepsilon_{t}\right)_{n} \div m \Delta^{n} y\left(E_{y}\right)_{n}\right. \\
& +\frac{1}{2!}\left((m T)^{2}\left(E_{t t}\right)_{n} * 2(m T)\left(m \Delta^{v} y\right)\left(\varepsilon_{t y}\right)_{n} *\left(m \Delta^{0} y\right)^{2}\left(E_{y y}\right)_{n}\right) \\
& +\frac{1}{3!}\left[(\mathrm{mP})^{3}\left(\varepsilon_{t \tau \tau}\right)_{\mathrm{n}}+3(\mathrm{mT})^{2}\left\langle\mathrm{~m} \Delta^{0} y\right)\left(\varepsilon_{\tau c y}\right)_{\pi}\right. \\
& \left.\left.+3(m \mathrm{~m})\left(\mathrm{m} \Delta^{0} y\right)^{2}\left(E_{\text {eyy }}\right)_{n}+\left(m \Delta^{0} y\right)^{3}\left(E_{\text {yyy }}\right)_{n}\right]+\cdots\right\} \\
& \Delta^{0 n y}=T\left\{E\left(E_{n^{2}} y_{n}\right)+\lambda T\left(E_{\tau}\right)_{n}+\left(\rho \Delta^{\prime \prime} y+(\lambda-\rho) \Delta^{0} y\right)\left(E_{y_{n}}\right.\right. \\
& +\frac{1}{2!}\left[(\lambda T)^{2}\left(E_{\varepsilon \tau}\right)_{\pi}+2(\lambda T)\left(P \Delta^{n} y+(\lambda-\rho) \Delta^{p} y\right)\left(\tilde{E}_{\varepsilon y}\right)_{n}\right. \\
& \left.+\left(\rho \Delta^{0} y+(\lambda-\rho) \Delta^{0} y\right)^{2}\left(\varepsilon_{y y}\right)_{n}\right] \\
& +\frac{1}{3!}\left[(\lambda I)^{3}\left(E_{t c e}\right)_{n}+3(\lambda I)^{2}\left(\rho_{\Delta} x_{y}+(\lambda-P) \Delta^{0} y\right)\left(E_{t \in y}\right)_{\Omega}\right. \\
& +3(\lambda I)\left\langle\rho \Delta^{\prime \prime} y *(\lambda-\rho) \Delta^{\theta} y\right)^{2}\left(\varepsilon_{\text {tyy }}\right)_{n}+\left(\rho \Delta^{\prime \prime} y *\left(\lambda-\rho \Delta^{0} y\right\rangle^{3}\right. \\
& \left.\left.\div\left(\rho \Delta^{n y} \div(\lambda-\rho) \Delta^{0} y\right)^{3}\left(\varepsilon_{\text {yyy }}\right)_{n}\right]+\cdots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2!}\left[(\mu T)^{2}\left(\varepsilon_{t \tau}\right)_{n}+2(\mu T)\left(\sigma \Delta^{(3)_{y}}+\tau \Delta^{(2)_{y}}\right.\right. \\
& \left.+(\mu-\sigma-\tau) \Delta^{0} y\right)\left(\varepsilon_{t y}\right)_{n} *\left((\mu-\sigma-\tau) \Delta^{0} y * \sigma \Delta^{(3)_{y}}\right. \\
& \left.\left.\left.* \tau \Delta(2)_{y}\right)^{2}\left(E_{y y}\right)_{n}\right]+\cdots\right\}
\end{aligned}
$$

Eliminating $\Delta^{0} y, \Delta^{02} y$ and $\Delta^{0 n y}$ from the rightohand side of Eq. (3.42) by successive substitution, putting these results into Eq. (3.4i) and comparing with Tayloris series yield

$$
\begin{align*}
& R_{1} \div R_{2}+R_{3}+R_{4}=1 \tag{3.43}\\
& R_{2} m+R_{3} \lambda+R_{4} \mu=1 \\
& 2 \\
& R_{2} m^{2}+R_{3} \lambda^{2}+R_{4} \mu^{2}=1 \\
& R_{3} m \rho+R_{4}(m \lambda+\lambda)=\frac{1}{6} \\
& R_{2} m^{3}+R_{3} \lambda^{3} \div R_{4} \mu^{3}=1 \\
& R_{3} m \lambda \rho+R_{4} \mu(m \sigma+\lambda \tau)=\frac{1}{4} \\
& R_{3} m^{3} \rho+R_{4}\left(m_{1}^{2} \sigma+\lambda^{2} \tau\right)=\frac{1}{12} \\
& R_{4} m \lambda \tau=\frac{1}{24}
\end{align*}
$$

There is a one-parameter family of solutions derived by Kutca as follows:

$$
\begin{align*}
& R_{1}=\frac{1}{0} \quad R_{2}=\frac{2-t}{3} \quad R_{3}=\frac{t}{3} \quad R_{4}=\frac{1}{\sigma} \tag{3.44}\\
& m=1 / 2, \quad \lambda=1 / 2, \quad \rho=1 / 2 t, \quad \mu=1, \quad \sigma=1-t, \quad \tau=t
\end{align*}
$$

If $t=1$, a Runge-Kutea sourth onde: formila car be constructed as f0¹0ws:

$$
\begin{equation*}
\Delta y={\underset{6}{1}}_{1}^{-}\left(\Delta^{8} y \div 2 \Delta^{n \prime} y \div 2 \Delta^{(3)} y+\Delta^{(4)} y\right) \tag{3.45}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Delta y-y_{n \div 1} \propto Y_{n}{ }^{2} \\
& \Delta^{q} y=T E\left(B_{n^{2}} y_{\Omega^{\prime}}\right)_{2} \\
& \Delta^{(2)} y=T f\left(\varepsilon_{n}+\sum_{2}^{I} T, y+\Delta_{2}^{1} y\right) \\
& 厶^{(3)} y=T f\left(\varepsilon_{n}+T_{2}^{1} Y_{n}+\frac{1}{2} \Delta^{i y} y\right) \\
& \Delta^{(4)_{j}=T E\left(E_{n} \div T_{2} y_{I} \div \Delta n_{y}\right)}
\end{aligned}
$$

4). Fifth Order Runge-Kutea Formula

The 5th order RungeoKutto Eormulas were derived recenily by H. A. juther and H. P. Konen. The derivations are as follows:

$$
\begin{equation*}
\text { Lot } \mathrm{dy} / \mathrm{dt}=E(t, y) \text { together with y }\left(t_{0}\right)=y_{0} \tag{3.46}
\end{equation*}
$$

The Eifth onder Runge-Kutta formilas are phrased as

$$
\Delta y=\div \sum_{1}^{6} R_{1} \Delta^{(1)} y
$$

$$
\begin{aligned}
\Delta^{\theta} y & =T f\left(\varepsilon_{n}, y_{n}\right) \\
\Delta^{(s)_{y}} & =T f\left(c_{n}+a_{s} T_{2} y * \sum_{j=1}^{s=1} b_{s j} \Delta(j)_{y}\right)
\end{aligned}
$$

where $2 \leqslant s \leqslant 6$. and the coefficients R_{i} are the constants to be dotermined. The usual proceciure yields 44 equations involving the various paramaters. Assume that

$$
\begin{equation*}
a_{s}=\sum_{j=1}^{s-1} b_{s j}{ }^{9} \quad 2 \leqslant s \leqslant 6 \tag{3.48}
\end{equation*}
$$

and eiminate easily identifiable combinations to obtain the following 16 relations

$$
\left\{\begin{array}{l}
R_{1}+R_{2}+R_{3}+R_{4}+R_{5}+R_{6}=I_{2} \tag{3.49a}\\
a_{2} R_{2}+a_{3} R_{3}+a_{4} R_{4}+a_{5} R_{5}+a_{6} R_{6}=\frac{1}{2} \\
a_{2}^{2} R_{2}+a_{3}^{2} R_{3}+a_{4}^{2} R_{4}+a_{5}^{2} R_{5}+a_{6}^{2} R_{6}=\frac{1}{3} \\
a_{2}^{3} R_{2}+a_{3}^{3} R_{3}+a_{4}^{3} R_{4}+a_{5}^{3} R_{5}+a_{6}^{3} R_{6}=\frac{1}{4} \\
a_{2}^{4} R_{2}+a_{3}^{4} R_{3}+a_{4}^{4} R_{4}+a_{5}^{4} R_{5}+a_{6}^{4} R_{6}-\frac{1}{5}
\end{array}\right\}
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
c_{1} R_{3}+c_{2} R_{4}+c_{3} R_{5}+c_{4} R_{6}=\frac{1}{6} \\
a_{3} c_{1} R_{3}+a_{4} c_{2} R_{4}+a_{5} c_{3} R_{5}+a_{6} c_{4} R_{6}=1 / 8, \\
a_{3}^{2} c_{1} R_{3}+a_{4}^{2} c_{2} R_{4}+a_{5}^{2} c_{3} R_{5}+a_{6}^{2} c_{4} R_{6}=1 / 10, \\
a_{1} R_{3}+a_{2} R_{4}+d_{3} R_{5}+d_{4} R_{6}=1 / 12, \\
a_{3} d_{1} R_{3}+a_{4} d_{2} R_{4}+a_{5} d_{3} R_{5}+a_{6} d_{4} R_{6}=1 / 15, \\
c_{1}^{2} R_{3}+c_{2}^{2} R_{4}+c_{3}^{2} R_{5}+c_{4}^{2} R_{6}=1 / 2 O_{2},
\end{array}\right\} \tag{3.49a}\\
& \left\{\begin{array}{c}
a_{2}^{3} b_{32} R_{3}+\left(a_{2}^{3} b_{42}+a_{3}^{3} b_{43}\right) R_{4}+\left(a_{2}^{3} b_{52}+a_{3}^{3} b_{53}+a_{4}^{3} b_{54}\right) R_{5} \\
\div\left(a_{2}^{3} b_{62}+a_{3}^{3} b_{63}+a_{4}^{3} b_{64}+a_{5}^{3} b_{65}\right) R=1 / 20 \\
c_{1} b_{32} R_{3}+\left(c_{1} b_{53}+c_{2} b_{54}\right) R_{5}+\left(c_{1} b_{63}+c_{2} b_{64}+c_{3} b_{65}\right) R_{6}=1 / 24_{0} \\
d_{1} b_{43} R_{4}+\left(d_{1} b_{53}+d_{2} b_{54}\right) R_{5}+\left(d_{1} b_{63}+d_{2} b_{64}+d_{3} b_{65}\right) R_{6}=1 / 60, \\
\left(a_{3}+a_{4}\right) c_{1} b_{43} R_{4}+\left[\left(a_{3}+a_{5}\right) c_{1} b_{53}+\left(a_{4}+a_{5}\right) c_{2} b_{54}\right] R_{54} \\
+\left[\left(a_{3}+a_{6} c_{1} b_{63}+\left(a_{4}+a_{6}\right) c_{2} b_{64}+\left(a_{5}+a_{6}\right) c_{3} b_{65}\right] R_{6}=7 / 120\right. \\
c_{1} b_{43} b_{54} R_{5}+\left[c_{1} b_{43} b{ }_{64}+\left(c_{1} b_{53}+c_{2} b_{54}\right) b_{65}\right] R_{6}=1 / 120,
\end{array}\right\}
\end{align*}
$$

where

$$
\begin{equation*}
c_{i}=\sum_{j=2}^{i+1} a_{j} b_{i \nsim 2}, j, \quad d_{i}=\sum_{j=2}^{i+1} a_{j}^{2} b_{i+2, j} \tag{3.49b}
\end{equation*}
$$

simplification requires that

$$
\begin{equation*}
R_{2}=0 \tag{3.50}
\end{equation*}
$$

and $\quad a_{i}^{2}=c_{i-2}, \quad 3 \leqslant i \leqslant 6$
then Eq. $(3.4 .9)$ can be simplified considerably. After oliminating dupiicates and combining some equations solve, in addicion to (3.5I),

$$
\begin{equation*}
R_{1}+R_{3}+R_{4}+R_{5}+R_{6}=I_{2} \tag{3.52a}
\end{equation*}
$$

and

$$
\begin{align*}
& a_{3} R_{3}+a_{4} R_{4}+a_{5} R_{5}+a_{6} R_{6}=1 / 2, \\
& a_{3}^{2} R_{3}+a_{4}^{2} R_{4}+a_{5}^{2} R_{5}+a_{6}^{2} R_{6}=1 / 3, \\
& a_{3}^{3} R_{3}+a_{4}^{3} R_{4}+a_{5}^{3} R_{5}+a_{6}^{3} R_{6}=1 / 4, \tag{3.57b}\\
& a_{3}^{4} R_{3}+a_{4}^{4} R_{4}+a_{5}^{4} R_{5}+a_{6}^{4} R_{6}=1 / 5,
\end{align*}
$$

and

$$
\begin{align*}
& a_{3} b_{43} R_{4} \div\left(a_{3} b_{53}+a_{4} b_{54}\right) R_{5} \div\left(a_{3} b_{63}+a_{4} b_{64}+a_{5} b_{65}\right) R_{6}=1 / 5 \\
& a_{3}^{2} b_{43} R_{4} \div\left(a_{3}^{2} b_{53}+a_{4}^{2} b_{54}\right) R_{5} \div\left(a_{3}^{2} b_{63}+a_{4}^{2} b_{64}+a_{5}^{2} b_{65}\right) R_{6}=1 / 12 \\
& a_{3}^{3} b_{43} R_{4} \div\left(a_{3}^{3} b_{53} \div a_{4}^{3} b_{54}\right) R_{5} \div\left(a_{3}^{3} b_{63}+a_{4}^{3} b_{64}+a_{5}^{3} b_{65}\right) R_{6}=1 / 20_{2} \\
& a_{4} a_{3} b_{43} R_{4} \div a_{5}\left(a_{3} b_{53} a_{4} b_{54}\right) R_{5}+a_{6}\left(a_{3} b_{63} \div a_{4} b_{64}+a_{5} b_{65}\right) R_{6} \\
& =1 / 89 \\
& a_{4} a_{3}^{2} b_{43} R_{4} \div a_{5}\left(a_{4}^{2} b_{53} \div a_{4}^{2} b_{54}\right) R_{5} \div a_{6}\left(a_{3}^{2} b_{63}+a_{4}^{2} b_{64} \div a_{5}^{2} b_{65}\right) R_{6} \\
& =1 / 15, \tag{3.52c}
\end{align*}
$$

and

$$
\begin{align*}
& a_{3} b_{43} b_{54} R_{5} \div\left[a_{3} b_{43} b_{64} \div\left(a_{3} b_{53} \div a_{4} b_{54}\right) b_{65}\right] R_{6}=1 / 24, \\
& a_{3}^{2} b_{4,3} b_{54} R_{5} \div\left[a_{3}^{2} b_{43} b_{64} \div\left(a_{3}^{2} b_{53} \div a_{4} b_{54}\right) b_{65}\right] R_{6}=1 / 60, \tag{3.52d}
\end{align*}
$$

The sicuation is now as follows. Equations (3.52b), (3.52c), and (3.52d) are to be soived independently. Then (3.52a) yields R_{I}. Equation (3.51) are used to find $b_{32}, b_{42}, b_{52}, b_{62}$. Then equations (3.48) determine $\mathrm{b}_{21}, \mathrm{~b}_{31}, \mathrm{~b}_{41}, \mathrm{~b}_{51}$ and b_{61}. This, with $\mathbb{R}_{2}=0$, completes the solution. The family of solutions due to Kutta may now be found by taking $b_{65}=0$. From (3.52 d), $a_{3}=2 / 5$. It then develops that the third equation in (3.52c) has the left member equal to $-\hat{a}_{3} a_{4}$ times the left member of the first of
this group, pius a_{3} ta $_{4}$ times the left member of the second of this group. This forces a_{4} to be 1. Equations (3.52c) may now be solved for $b_{64} R_{6}$ and $b_{54} R_{5}$. When the results are substituted in $a_{3} b_{43}\left(b_{54} R_{5}+b_{64} R_{6}\right)=1 / 24$ (the consequence of $(3.52 d)$ and $\left.b_{65} m 0\right)$ it is found that $b_{43} m 15 / 4$. In summary, there results the following description of a family of solutions:

$$
\begin{equation*}
R_{2}=0, \quad b_{65}=0, \quad b_{43}=15 / 4, \quad a_{3}=2 / 5, \quad a_{4}=1 \tag{3.53}
\end{equation*}
$$

with

$$
\begin{align*}
& R_{3}=125\left[10 a_{5} a_{6}-5\left(a_{5}+a_{6}\right) * 3\right] /\left[72\left(2-5 a_{5}\right)\left(2-5 a_{6}\right)\right] \\
& R_{4}=\left[8 a_{5} a_{6}-7\left(a_{5}+a_{6}\right) \div 6\right] /\left[36\left(1-a_{5}\right)\left(1-a_{6}\right)\right] \\
& R_{5}=\left[1-a_{6}\right] /\left[12 a_{5}\left(1-a_{5}\right)\left(5 a_{5}-2\right)\left(a_{5}-a_{6}\right)\right] \tag{3.53}\\
& R_{6}=\left[1-a_{5}\right] /\left[12 a_{6}\left(1-a_{6}\right)\left(5 a_{6}-2\right)\left(a_{6}-a_{5}\right)\right] \\
& R_{2}=1-R_{3}-R_{4}-R_{5}-R_{6}
\end{align*}
$$

and

$$
\begin{align*}
& b_{53}=5\left[7-10 a_{6}-108 R_{4}\left(1-a_{6}\right)\right] /\left[144 R_{5}\left(a_{5}-a_{6}\right)\right], \\
& b_{54}=\left[1-a_{6}\right] /\left[36 R_{5}\left(a_{5}-a_{6}\right)\right], \\
& b_{63}=5\left[7-10 a_{5}-108 R_{4}\left(1-a_{5}\right)\right] /\left[144 R_{6}\left(a_{6}-a_{5}\right)\right], \tag{3.53c}\\
& b_{64}=\left[1-a_{5}\right] /\left[36 R_{6}\left(a_{6}-a_{5}\right)\right],
\end{align*}
$$

$$
\begin{align*}
& b_{32}=2 /\left|25 a_{2}\right| \\
& b_{42}=1 / a_{2} \\
& b_{52}=\left[5 a_{5}^{2}-4 b_{53}-10 b_{54}\right] /\left[10 a_{2}\right] \tag{3.53~d}\\
& b_{62}=\left[5 a_{6}^{2}-4 b_{63}-10 b_{64}\right] /\left[10 a_{2}\right]
\end{align*}
$$

and

$$
\begin{equation*}
b_{j 2}=a_{j}-\sum_{j=2}^{j \infty 1} b_{j i}, \quad 2 \leqslant j \leqslant 6 . \tag{3.53e}
\end{equation*}
$$

It becomes very simple to construct a fifth order Runge-kutta formula based on the coefficients derived from equation (3.53). The result is

$$
\begin{align*}
& y_{n \div 0}=y_{n} \div\left\{4 \Delta^{0} y+(16+\sqrt{6}) \Delta^{(5)} y+(16-\sqrt{5}) \Delta^{(6)} y\right\} / 36, \\
& \Delta^{P} y=\operatorname{TE}\left(t_{n}, y_{n}\right), \\
& \Delta^{0 Y} y=T I\left(t_{n}+4 T / 11, y_{n}+4 \Delta^{9} y / 11\right), \tag{3.54}\\
& \Delta^{0 \prime \prime} y=T E\left(t_{n}+2 T / 5, y_{n}+\left\{9 \Delta^{0} y+11 \Delta^{0 \prime y}\right\} / 50\right), \\
& \Delta^{(4)} y=\operatorname{TE}\left(e_{n}+T_{2} y_{n}+\left\{-11 \Delta^{88} y+15 \Delta^{\prime \prime \prime} y\right\} / 4\right) \text {. } \\
& \left.\Delta^{(5)}\right)_{y}=\operatorname{TE}\left(t_{n}+(6-\sqrt{6}) T / 100_{n}+\left\{(81+9 \sqrt{6}) \Delta^{\prime} y\right.\right. \\
& \left.\left.+(255-55 \sqrt{6}) \Delta^{88 y}+(24-14 \sqrt{6}) \Delta^{(4) y}\right\} / 600\right) \text {, } \\
& \Delta^{(6)} y=\operatorname{TE}\left(\varepsilon_{n} \div(6+\sqrt{6}) T / 10, y_{n}+\left\{(81-3 \sqrt{6}) \Delta^{0} y\right.\right. \\
& \left.\left.\%(255+55 \sqrt{6}) \Delta \cdot 1 y+(24+14 \sqrt{6}) \Delta^{(4)} y\right\} / 0000\right) \text {. }
\end{align*}
$$

```
Iat o }\mp@subsup{4}{3}{}=0\mathrm{ instead of letting b by = O2 then Eqs. 
```

yields

$$
\begin{aligned}
& \left(a_{3} b_{53}+a_{4} b_{54}\right) b_{65} R_{6}=1 / 24_{2} \\
& \left(a_{3} b_{53}+a_{4} b_{54}\right) b_{65} R_{6}=1 / 60,
\end{aligned}
$$

Using these equations in conjunction with the first, second, fourth, and fifth equations of ($3.52 c$), the terms in $b_{63} b_{64}$, and b_{65} can be eliminated and there result two equations:

$$
\begin{aligned}
& R\left(a_{6}-a_{5}\right)=\left(4 a_{6}-3\right) b_{65} R_{6} \\
& R\left(a_{6}-a_{5}\right)=\left(5 a_{6}-4\right) b_{65} R_{6}
\end{aligned}
$$

These lead to a_{6}. Another family of solution occurs with

$$
\begin{equation*}
R_{2}=0_{2} \quad b_{43}=0, \quad a_{6}=I_{2} \tag{3.55a}
\end{equation*}
$$

and

$$
\begin{aligned}
& R_{3}=\left[3-5\left(a_{4}+a_{5}\right)+10 a_{4} a_{5}\right] /\left[60 a_{3}\left(a_{4}-a_{3}\right)\left(a_{3}-a_{5}\right)\left(a_{3}-1\right)\right], \\
& R_{4}=\left[3-5\left(a_{3}+a_{5}\right)+10 a_{3} a_{5}\right] /\left[60 a_{4}\left(a_{3}-a_{4}\right)\left(a_{4}-a_{5}\right)\left(a_{4}-1\right)\right], \\
& R_{5}=\left[3-5\left(a_{3}+a_{4}\right)+10 a_{3} a_{4}\right] /\left[60 a_{5}\left(a_{3}-a_{5}\right)\left(a_{5}-a_{4}\right)\left(a_{5}-1\right)\right], \\
& R_{6}=\left[12-15\left(a_{3}+a_{4}+a_{5}\right)+20\left(a_{3} a_{4}+a_{4} a_{5}+a_{5} a_{3}\right)\right. \\
& \left.-30 a_{3} a_{4} a_{5}\right] /\left[60\left(1-a_{3}\right)\left(1-a_{4}\right)\left(1-a_{5}\right)\right],
\end{aligned}
$$

$$
\begin{equation*}
R_{1}=1-R_{3}-R_{4}-R_{5}-R_{6} \tag{3.55b}
\end{equation*}
$$

and

$$
\begin{align*}
b_{53}= & {\left[2-5 a_{4}\right] /\left[120 R_{5} a_{3}\left(1-a_{5}\right)\left(a_{3}-a_{4}\right)\right], } \\
b_{54}= & {\left[2-5 a_{3}\right] /\left[120 R_{5} a_{4}\left(1-a_{5}\right)\left(a_{4}-a_{3}\right)\right], } \\
b_{63}= & {\left[6-2 a_{3}-10 a_{4}-1 a_{5}+5 a_{3} a_{4}+25 a_{4} a_{5}+10 a_{5}^{2}\right.} \\
& \left.-20 a_{5}^{2}\right] /\left[120 a_{6} a_{3}\left(1-a_{5}\right)\left(a_{3}-a_{4}\right)\left(a_{3}-a_{5}\right)\right], \tag{3.55c}\\
b_{64}= & {\left[6-2 a_{4}-10 a_{3}-14 a_{5}+5 a_{3} a_{4}+25 a_{3} a_{5}+10 a_{5}^{2}\right.} \\
& \left.-20 a_{5}^{2} a_{3}\right] /\left[120 R_{6} a_{4}\left(1-a_{5}\right)\left(a_{4}-a_{3}\right)\left(a_{4}-a_{5}\right)\right], \\
b_{65}= & {\left[3-5 a_{3}-5 a_{4}+10 a_{3} a_{4}\right] /\left[60 R_{6} a_{5}\left(a_{5}-a_{3}\right)\left(a_{5}-a_{4}\right)\right], }
\end{align*}
$$

and

$$
\begin{align*}
& b_{32}=a_{3}^{2} /\left[2 a_{2}\right], \\
& b_{42}=a_{4}^{2} /\left[2 a_{2}\right], \tag{3.55d}\\
& b_{52}=\left[a_{5}^{2}-2 a_{3} b_{35}-2 a_{4} b_{54}\right] /\left[2 a_{2}\right], \\
& b_{52}=\left[1-2 a_{3} b_{63}-2 a_{4} b_{64}-2 a_{5} b_{65}\right] /\left[2 a_{2}\right],
\end{align*}
$$

and

$$
\begin{equation*}
b_{j 1}=a_{j}-\sum_{i-2}^{j-1} b_{j i^{2}} \quad 2 \leqslant j \leqslant 6 \tag{3.55e}
\end{equation*}
$$

Thus $: f_{\sim}$ a can be construceed as follows:

$$
\begin{aligned}
& y_{n \div I}=y_{n} \div\left\{\Delta^{0} y+5 \Delta^{011 y} \div 5 \Delta^{(5)} y \div \Delta^{(5)} y\right\} / 12, \\
& k_{I}=\operatorname{TE}\left(t_{n}, y_{n}\right), \\
& k_{2}=T E\left(E_{\mathrm{n}}+T / 2, y_{\mathrm{n}} \div \mathrm{k}_{2} / 2\right)_{2} \\
& k_{3}=\operatorname{TE}\left(\varepsilon_{n} \div(5-5) T / 10, y_{n}+\left\{2 k_{1}+(3-5) k_{2}\right\} / 10\right), \\
& k_{4}=\operatorname{Tf}\left(\epsilon_{n} \div T / 2, y_{n}+k_{1}+k_{2} / 4\right)_{2} \\
& k_{5}=\operatorname{TE}\left(c_{n} \div(5+\sqrt{5}) T / 10, y_{n} \div\left\{(1-\sqrt{5}) k_{1}-4 k_{2}(5+3 \sqrt{5}) k_{3}\right.\right. \\
& \left.\therefore 8 k_{4}\right\} / 200 \\
& k_{6}=T I\left(E_{n} \div T_{2} Y_{n} \div(5-1) k_{1}+(2 \sqrt{5}-2) k_{2}+(5-\sqrt{5}) k_{3}\right. \\
& -8 k_{4}+(10-2 \sqrt{5}) k_{5} / 4 .
\end{aligned}
$$

This fifth order formila is not in Kutta's family. It belongs to Iobatto quadrature formias mich have errors of order T^{7} rather than T^{6}.

The accumilated Eruncation error of Runge-Kutta's method can be calculated as follows:

Lat

$$
\begin{equation*}
z_{n \div 1}=z_{n} \div T \bar{\Delta} z\left(\varepsilon_{n}, z_{n} ; T\right) \tag{3.57}
\end{equation*}
$$

be the exact solution of Eq. (3.46),
and

$$
\begin{equation*}
y_{n+1}=y_{n} \div T \Delta y\left(t_{n}, y_{n} ; T\right) \tag{3.58}
\end{equation*}
$$

be the calculated value of the solution
Substituting Equation (3.57) from Equation (3.58) yields

$$
\begin{equation*}
e_{n * 1}=e_{n} \div T\left[\Delta y\left(t_{n} \cdot y_{n} ; T\right)-\bar{\Delta} z\left(t_{n}, z_{n} ; T\right)\right] \tag{3.59}
\end{equation*}
$$

by application of the triangle inequality, Equation (3.59) becomes

$$
\begin{align*}
& \left\|e _ { n + 1 } \left|\leqslant\left|e_{n}\right| \div T\left\|\Delta y\left(\epsilon_{n} 2 y_{n} ; T\right)-\Delta z\left(t_{n} 2 z_{n} ; T\right)\right\|\right.\right. \\
& \quad \% T\left\|\Delta z\left(\tau_{n^{2}} z_{n} ; T\right)-\bar{\Delta} z\left(\tau_{n}, z_{n} ; T\right)\right\| \tag{3.60}
\end{align*}
$$

The Lipschiez condition yields

$$
\begin{gather*}
\left\|\Delta y\left(t_{n}, Y_{n} ; T\right)-\Delta z\left(t_{n}, z_{n} ; T\right)\right\| \leqslant I\left\|y_{n}-z_{n}\right\| \\
=I\left\|e_{n}\right\| \tag{3.61}\\
\left\|\Delta z\left(t_{n}, z_{n} ; T\right)-\bar{\Delta} z\left(\tau_{n}, z_{n} ; T\right)\right\| \leqslant N\left(T^{p}\right) \tag{3.62}
\end{gather*}
$$

where

$$
N=\frac{1}{(p \div 1)!} \quad N=x\left\|E^{(p)}(y)\right\|
$$

and

$$
P \text { is the order of the Runge-Kutta formula }
$$

Hence from Equation (3.60) the required truncation error is

$$
\begin{equation*}
\left\|e_{n+1}\right\| \leqslant(1 \div L T)\left\|e_{n}\right\|+I^{(p * 1)} L \tag{3.63}
\end{equation*}
$$

The value of I can be dotermined from a Rungemituta formula and different formuas corresponi to difeerent values of i. All I's have upper bounds. The Rungediutta method seems to be tedious because values of $f(t, y)$ have to be calculated a number of cimes per time increrent. However, the formulas are systematic and hence can be easily programmed on an automatic machine. No special starting procedure is required and calculations can often be checked by repetition using a different step size. Furthermore, such a method is particularly useful if certain coafficients in the differenEial equation are empirical formulas for which analytical expressions are not known. The step sizo can be aleered as desired. It should be understood that the derivatives as evaluated by Runge-kutta process axe not the actual derivatives at the various points within the step as commonly assumed.
2). Nulesple step Methods.

The one-step mothods are necessary for obtainaing initial values in the solution of a differential equation. However, they involve too much laboz to be used for obtaining a numerical solution over an extended range. This can be offset by using multiple step methods.

Multiple step methods are always expressed in the difference-differential equation Form

$$
\begin{align*}
& \alpha_{k} y_{n+k} \div \alpha_{n-1} y_{n+k-1} \div \cdots \div \alpha_{0} y_{n}=T\left\{\beta_{k} f_{n * k} \div \beta_{k-1} f_{n+1-1}\right. \\
& \left.\star \cdots \div B_{0} f_{n}\right\} \\
& \therefore=0,1,2, \ldots \tag{3.64}
\end{align*}
$$

whera k is a fired integer, $f_{m} \in E\left(E_{m} y_{m}\right)(m=0,1,3, \cdots)$, and where α_{μ} and $\beta_{\mu}(\mu=0,2,2, \cdots)$ are real consemnts minch do not cepend on no Any a_{k} is always assumed unequal to zero. Equation (3.64) defines the general Inear kestep mothod. If $\beta_{k}=0$, the fommia (3.64) is called "closed"; otherwise it is called open.

Unlite onewsep mathods, maltiple step methods are not self-starting; if
 Srich is the case at the toginning of the computation, whero the initial condition Eumbishes only one of the required $k+1$ values, of at places where the step I Es charged.

Seability and convergence are two important factors that affect the aveliability of a maitiple step method. To insure its stable and convergance, two rules muse be fulfilled;
2. The characteristic poiynomial

$$
\alpha_{k z} s^{k} \div \alpha_{1 k-1} s^{k-1} \div \ldots \div \alpha_{0}=0
$$

of Equation (3.75) has no root with modulus exceeding 1. and the root of rodulus 1 mast be simple.
II. The order of the associated difference operator be at least 1 . A. Adams-Bashforth Nathod

$$
\begin{align*}
& \text { Consider the initial value problem } \\
& \qquad y^{8}=f(t, y) \quad y\left(t_{0}\right)=y_{0} \tag{3.65}
\end{align*}
$$

An exact solution of the differential equation (3.65) by definition satisfies the identity

$$
\begin{equation*}
y(t+k)-y(t)=\int_{t}^{t+k} f(t, y) d t \tag{3.66}
\end{equation*}
$$

for any two values of t in the interval $[a, b]$. Replace $f(t, y)$ in the righthand side of Equation (3.66) by an interpolating polynomial on a set of points t_{n} where y_{n} has aiready been computed or is just about to be computed. Equate the intergral and accept its value as the increment of the approximate values y_{n} between t and $t+k$. If it is assumed that the interpolating pointes are $t_{p}, t_{p-1}, t_{p-2}, \cdots t_{p-q}$, then the polynomial replacing $f(t, y)$ is given by

$$
\begin{aligned}
& P(t)=\sum_{m=0}^{q}(-1)^{m}(-s) \nabla_{m}^{m_{f}}{ }_{p} \\
& s=\frac{t-t_{p}}{T}
\end{aligned}
$$

where Q is an arbitrary integer. This formula is devalopad in Appendix. Equation (3.67) can be substituted into Equation (3.66) to yield

$$
\begin{equation*}
y_{p+1}-y_{p} \tilde{\sim} \int_{t_{p}}^{\Sigma_{p+1}} p(t) d t-T \sum_{m=0}^{q} S_{m} \nabla^{m_{e}} \hat{f}_{p} \tag{3.68}
\end{equation*}
$$

Where $\quad r_{m}=(-1)^{m} \frac{1}{T} \int_{t_{p}}^{t_{p+1}}(-s) d s$
and

$$
y_{p}=y\left(\varepsilon_{p}\right)
$$

Construct a generating function $G(k)$ as follows

$$
\begin{align*}
G(k) & =\sum_{m=0}^{\infty} r^{m_{k}^{m}}=\sum_{m=0}^{\infty}(-1)^{m} \int_{E_{p}}^{E_{p+1}}\left(_{m}^{-s}\right) d s \\
& =\int_{\tau_{p}}^{t_{p+1}} \Sigma(-1)^{m}\left({ }^{-s}\right) d s=\int_{m}^{t_{p+1}}(1-k)^{-s} d s \tag{3.70}
\end{align*}
$$

The identity $(1-k)^{-s}=\exp (-s \log (1-k))$ causes Eq. (3.70) to become

$$
G(k)=-\frac{k}{(1-k) \log (1-k)}
$$

this may bo writcen as

$$
-G(k) \frac{\log (1-k)}{k}=\frac{1}{1-k} .
$$

Since $\quad \frac{1}{1-k}=1+k+k^{2}+\cdots$
and $\quad-\frac{\log (1-k)}{k}=1+\frac{1}{2} k+\frac{1}{3} k^{2}+\cdots$
one can conclude that

$$
\left(r_{0}+r_{1} k+r_{2} k^{2}+\cdots\right)\left(1+\frac{1}{2} k+\frac{1}{3} k^{2}+\cdots\right)=1+k+k^{2}+\cdots
$$

By comparing the coefficients of corresponding powers of k, a relation can be found

$$
\begin{equation*}
r_{m} \div \frac{1}{2} r_{m-1}+\frac{1}{3} r_{m-2}+\cdots+\frac{1}{m+1} r=1 \tag{3.71}
\end{equation*}
$$

thus it is possible to calculate r_{m} recursively. Some values of r_{m} calculated from Eq. (3.71) are

m	0	1	2	3	4	5	6
m_{m}	1	$\frac{1}{2}$	$\frac{5}{12}$	$\frac{3}{8}$	$\frac{251}{720}$	$\frac{95}{288}$	$\frac{19087}{60480}$

In $y^{(q+2)}(t)$ is continuous in $[a, b]$, then $y^{0}(t)$ can be expressed as

$$
y^{\prime}=\sum_{m=0}^{q}(-1)^{m}\left(\begin{array}{c}
-5 \\
m
\end{array} m_{y^{0}}\left(t_{p}\right)+(-1)^{(q+1)}\left({\underset{q}{q+1}}_{-s}\right) T^{q+1} y^{(q+2)}(\xi)\right.
$$

where ξ is a point between the largest and the smallest of the values $t_{,} t_{p}$, and t_{p-q}. Integrating y^{p} between t_{p} and t_{p+1}, we get

$$
\begin{equation*}
y\left(\epsilon_{p+1}\right)-y\left(\epsilon_{p}\right)=T \sum_{m:=0}^{q} r_{m} \nabla^{m_{f}}{ }_{p}+R_{q}^{A B} \tag{3.72}
\end{equation*}
$$

where
since $\binom{-s}{q+1}$ is a constant sign in the interval $t_{p}<t\left\langle t_{p+1}\right.$ and $y^{(q+2)}$ (ξ) is a continuous function of t, apply the second mean value theorem of the integral calculus
where $t_{p-q}<\xi^{0}<t_{p+1}$. By definition of r_{q+1}, this may be written

$$
\begin{equation*}
R_{Q}^{A B}=I^{(q+2)} y^{(q+2)}\left(\xi^{0}\right) r_{q+1} \tag{3.73}
\end{equation*}
$$

This is the desired expression for the remainder of the Adams-Bashforth formula.
B. Adams -Moulton Method.

This method uses the form

$$
\begin{equation*}
y_{p}-y_{p-1}=\int_{t_{p=1}}^{t} p(t) d t=T \sum_{m=0}^{q} r_{m}^{*} \nabla^{m} \tag{3.74}
\end{equation*}
$$

Where

$$
I_{m}^{*}=(-1)^{m} \frac{1}{T} \int_{t}^{i} \int_{p-1}^{i}\left(\begin{array}{c}
-s \tag{3.75}\\
m
\end{array} d t=(-1)^{m} \frac{1}{T} \int_{-1}^{0}\left(\begin{array}{c}
-s \\
m
\end{array} d s\right.\right.
$$

the generating function of the coefficients is determined as follows:

$$
\begin{equation*}
G^{*}(k)=\sum_{m=0} r_{m}^{\dot{x}} k^{m}=-\frac{k}{\log (1-k)} \tag{3.76}
\end{equation*}
$$

or

$$
\begin{equation*}
-\frac{\log (1-k)}{k} G^{*}(k)=1 \tag{3.77}
\end{equation*}
$$

Expand the left-hand side of Iq. (3.77) to yower sezies

$$
\begin{equation*}
\left(I+\frac{1}{2}-k+\frac{1}{3} k+\cdots\right)\left(r_{0}^{\dot{*}}+r_{1}^{*} k+\Sigma_{2}^{*} k+\cdots\right)=I \tag{3.78}
\end{equation*}
$$

It follows that

$$
x_{m}^{x}+\frac{1}{-} \sum_{m-1}^{x}+\frac{1}{3} x_{m-2}^{x}+\cdots+\frac{1}{m+1} z_{0}^{*}=\left\{\begin{array}{l}
1, \quad m=0 \tag{3.79}\\
0,
\end{array}\right.
$$

The rumerical values of r_{m}^{*} are easily found from this recurrence relation. Some values of I_{m} calculated from Eq. (3.79) are

m	0	1	2	3	4	5	6
\cdots	1	$-\frac{1}{2}$	$-\frac{1}{12}$	$-\frac{1}{24}$	$-\frac{19}{720}$	$-\frac{3}{260}$	$-\frac{863}{60480}$

Since y_{p} occurs as an argument in $f_{p} \otimes f\left(t_{p}, y_{p}\right)$ in the right hand sice term of Eq. (3.74), it will not be possible to solve this equation explicitly. A better approach to this solution is by means of an iterative procedure.

Assuming an approximation of a solution of Eq. (3.74) has been obtained to be $y_{p}^{(0)}$, calculate $f(0)=f\left(t_{p}, y_{p}^{(0)}\right.$) and form the difference $\nabla f_{p}^{(0)}=f_{p}^{(0)}-f_{p-1}, \nabla_{p}^{2} f_{p}^{(0)}=\nabla f_{p}^{(0)}-\nabla f_{p-1}, \cdots$. A betcer approximation is then obtained from

$$
\begin{equation*}
y_{p}^{(1)}=y_{p-1}+T \sum_{m=0}^{q} F_{m} \nabla^{m} F_{p}^{(0)} \tag{3.80}
\end{equation*}
$$

Calculating $f_{p}^{(1)}=f\left(\varepsilon_{p}, y_{p}^{(I)}\right.$, and re-evaluating the differences, a still betcer value $\mathrm{y}_{\mathrm{p}}^{(2)}$ is

$$
\begin{equation*}
y_{p}^{(2)}=y_{p-1}+T \sum_{m=0}^{q} r_{m}^{*} \nabla^{m} f_{p}^{(1)} \tag{3.81}
\end{equation*}
$$

Generally a sequence $y^{(x)}(x=0,1,2,3 \cdots)$ of approximations is obtained recursively from the relation

$$
\begin{equation*}
y_{p}^{(r)}=y_{p-1}+T \sum_{m=0}^{q} r_{m}^{*} \nabla^{m} f_{p}^{(r-1)} \tag{3.82}
\end{equation*}
$$

Since

$$
\begin{equation*}
\nabla^{m} F_{p}^{(i)}=\nabla^{m-1} F_{p}^{(i)}-\nabla^{m-1} f_{p}, \quad(m=1,2 \cdot \cdots) \tag{3.83}
\end{equation*}
$$

15 follows that

$$
\begin{equation*}
\nabla^{m} f_{p}^{(I)}-\nabla^{m} f_{p}^{(r-1)}=f_{p}^{(r)}-f_{p}^{(I-1)} \tag{3.84}
\end{equation*}
$$

Thus

$$
\begin{aligned}
y_{p}^{(r+1)}-y_{p}^{(r)} & =T \sum_{m=0}^{q} r_{m}^{*}\left(\nabla^{m} f_{p}^{(r)}-\nabla^{m} \varepsilon_{p}^{(r-1)}\right) \\
& =T \sum_{m=0}^{q} r_{m}^{*}\left(f_{p}^{(r)}-f_{p}^{(r-1)}\right)
\end{aligned}
$$

The Lipschite condition yields

$$
\begin{equation*}
\left|f_{p}^{(r)}-f_{p}^{(r-1)}\right| \leqslant L\left|y_{p}^{r}-y_{p}^{r-1}\right| \tag{3.86}
\end{equation*}
$$

Equation (3.85) becomes

$$
\begin{equation*}
y_{p}^{(r \times 1)}-y_{p}^{(r)} \leqslant T \sum_{m=0}^{q} I_{m}^{\infty} L\left|y_{p}^{(I)}-y_{p}^{(I-1)}\right| \tag{3.87}
\end{equation*}
$$

02

$$
\begin{equation*}
y_{p}^{(2+1)}-y_{p}^{(2)} \leqslant(T L A)^{r}\left|y_{p}^{(1)}-y_{p}^{(0)}\right| \tag{3.88}
\end{equation*}
$$

where

$$
A=\sum_{m=0}^{q} \Sigma_{m}^{*}
$$

The solution of y_{p} of Eq. (3.74) is now obtained by summing terms of the series

$$
\begin{align*}
y_{p}^{*}-y_{p}^{(0)}+\left(y_{p}^{(1)}-y_{p}^{(0)}\right) & +\left(y_{p}^{(0)}-y_{p}^{(1)}\right)+\cdots \\
& +\left(y_{p}^{(n)}-y_{p}^{(n-1)}\right)+\ldots \tag{3.89}
\end{align*}
$$

The series on the right-hand side of Eq. (3.89) will converge absolutely provided $0 \leq|T L A|<1$. In this case the solution y_{p}^{*} will exist and be unique.

The local truncation error is

$$
\begin{equation*}
R_{q}^{A M}=T^{(q+2)} y^{(q * 2)}(\xi) r_{q+1}^{*} \tag{3.90}
\end{equation*}
$$

where

$$
t_{p-q}<\xi<\epsilon_{p} .
$$

C. Milne 's Method

Mine ${ }^{\text {s }}$ method requires predictor and corrector formulas. The predictor formula is of the form

$$
y_{n+1}-y_{n-3}=\int_{E_{n-3}}^{t_{n * i}} f(t, y) d t: \frac{4 T}{3}\left(2 f_{n-2}-E_{n-1}+2 E_{n}\right) \quad \text { (3.91) }
$$

$$
\begin{equation*}
y_{n+1}-y_{n-1}=\int_{t_{n-1}}^{t_{n+1}} f(t, y) d t \dot{=} \frac{T}{3}\left(f_{n-1} \div 4 E_{n}+f_{n+1}\right) \tag{3.92}
\end{equation*}
$$

The predictcr formila has truncation error

$$
\begin{equation*}
\text { Truncation arror }=\frac{14}{45} \mathrm{~T}^{5} \mathrm{y}^{(5)}(\xi,) \tag{3.93}
\end{equation*}
$$

where

$$
\xi_{n}<\xi_{1}<t_{n+1}
$$

The cornector Eomula has Eruncation error

$$
\begin{equation*}
\text { Truncation error }=\frac{T^{5}}{90} y^{(5)}\left(\xi_{2}\right) \tag{3.94}
\end{equation*}
$$

wisere

$$
t_{n-1}<\xi_{2}<\epsilon_{n+1}
$$

The procedure is as foilows:
Step 1; Takes T small enough to insure that the remainder term ininvolving is small in the predictor formula, then find out y_{n+1} from this formula.

Step 2; Obeain a first approximation to $y_{n \rightarrow 1}^{0}$ by substituting the vaiue of $y_{n * 1}$ obtained from step 1 into the following equation

$$
y^{8}=f(t, y) \quad y=y_{0} \text { at } t=t_{0}
$$

Step 3; Obtain a better approximation of y_{n+1} by means of the corrector formula Eq. (3.94).

After repeating step 2 and step 3 , the value of y_{n+1} becomes very accurate. When values of y_{n+1} and f_{n+1} have negiigible error, the next pair of values $y_{n * 2}$ and f_{n+2} may be obtained by a repetieion of the process.

Let $y_{n+1}^{(0)}$ be the value of y_{n+1} obtained from step $1, y_{n+1}^{(1)}$ be the value of y_{n+1} introduced by the corrector at first time, and $y_{n+1}^{(m)}$ be the value of y_{n+1} after introducing the corrector m times, then

$$
\begin{equation*}
f_{n \div 1}^{(1)}-f_{n \div 1}^{(0)}=k\left(y_{n \div 1}^{(1)}-y_{n+1}^{(0)}\right) \tag{3.95}
\end{equation*}
$$

Where

$$
\begin{equation*}
k=\frac{E_{n+1}^{(1)}-f_{n \div 1}^{(0)}}{y_{n+1}^{(I)}-y_{n+1}^{(0)}} \tag{3.96}
\end{equation*}
$$

and $\quad f_{n+1}^{(0)}=E\left(t_{n+1}, y_{n+1}^{(0)}\right), \quad f_{n \div 1}^{(1)}=E\left(t_{n+1}, y_{n+1}^{(1)}\right)$,

If $E(t, y)$ possesses a continuous first derivative $E_{y}(t, y)$ with respect to y, then by the mean-value theorem

$$
\begin{equation*}
k=f\left(t_{n \div 1}, \eta_{n+1}\right) \tag{3.98}
\end{equation*}
$$

where

$$
\eta_{n \div 1} \text { lies between } y_{n+1}^{(0)} \text { and } y_{n \div 1}^{(1)}
$$

Equation (3.92) together with Equation (3.95) yield

$$
\begin{equation*}
y_{n \div 1}^{(2)}-y_{n \div 1}^{(1)}=\frac{T}{3}-\left[f_{n \div 1}^{(i)}-f_{n+1}^{(0)}\right]=\left[k\left(y_{n \div 1}^{(1)}-y_{n+1}^{(0)}\right)\right] \tag{3.99}
\end{equation*}
$$

By the same method

$$
y_{n \div 1}^{(3)}-y_{n \div 1}^{(2)}=\underset{3}{T} \underset{3}{(-k)(-k)\left(y_{n \div 1}^{(1)}-y_{n \div 1}^{(0)}\right)}
$$

where the change of k is negitigible.
Proceeding in this fashion a sequence
is obtained.
Thus

$$
\begin{align*}
y_{n+1}^{*} & =y_{n+1}^{(0)}+\left(y_{n+1}^{(1)}-y_{n+1}^{(0)}\right) \div\left(y_{n \div 1}^{(2)}-y_{n+1}^{(1)}\right)+\cdots \\
& =y_{n+1}^{(0)}+\left(y_{n \div 1}^{(1)}-y_{n+1}^{(0)}\right)\left[1+\frac{T}{1}-k+(-k)^{2}+\cdots\right] \tag{3.100}
\end{align*}
$$

Provided that T is sufficiently smail, the value of $\frac{T}{3} k$ can be chosen so that $0 \leqslant\left|\frac{T}{3} k\right|<I$ to insure convergence of the power series on the righthand side of Eq. (3.200).

If iterations are finite, the value of \tilde{y}_{n+1} obtained will differ from y_{n+1}^{*} by

$$
\begin{equation*}
y_{n+1}^{*}-\tilde{y}_{n+1}=\left(y_{n+1}^{(1)}-y_{n * 1}^{(0)}\right)\left(\frac{T}{3} k\right)^{n * 1}\left(\frac{3}{3-T k}\right) \tag{3.101}
\end{equation*}
$$

where n is the number of steps in the finite step process.
Let the true values of the \widetilde{y}_{i} and \widetilde{y}_{i}^{0} be $z_{\frac{1}{2}}$ and z_{i}^{0} respectively. Define errors in the \tilde{y}_{i} and \tilde{y}_{i} by the equations

$$
\begin{align*}
& z_{i}=\tilde{y}_{i} * e_{i} \tag{3.102}\\
& z_{i}^{0}=\widetilde{y}_{i}^{0} \div e_{i}^{\theta}
\end{align*}
$$

From the differential equation (3.64)

$$
\begin{equation*}
e_{i}^{0}=z_{i}^{0}-\tilde{y}_{i}^{0}=f\left(\varepsilon_{i}, z_{i}\right)-f\left(\varepsilon_{i}, \tilde{y}_{i}\right)=k_{i}\left(z_{i}-\tilde{y}_{i}\right) \tag{3.103}
\end{equation*}
$$

where

$$
k_{i}=f\left(\varepsilon_{i}, \eta_{i}\right) \quad \text { and } \quad y_{i}<\eta_{i}<z_{i}
$$

The z_{i} and z_{i} satisfy the equation

$$
z_{n+1}-z_{n-1}=\frac{T}{3}\left(z_{n-1}^{0}+4 z_{n}^{0} \div z_{n+1}^{0}\right)-T^{5} z^{(5)}\left(\xi_{n+1}\right) / 90
$$

where

$$
\begin{equation*}
t_{n}<\xi_{n+1}<t_{n+1} \tag{3.104}
\end{equation*}
$$

Subtracting Equation (3.94) from Equation (3.104) results in

$$
\begin{equation*}
e_{n+1}-e_{n-1}=\frac{T}{3}\left(e_{n-1}^{0}+4 e_{n}^{1}+e_{n+1}^{p}\right)-T^{5} A_{n+1} \tag{3.105}
\end{equation*}
$$

whore

$$
2^{(5)}\left(\xi_{n+1}\right) / 90=A_{n \div 1} \quad t_{n}<\xi<t_{n \div 1}
$$

On making use of Equation (3.103), this difference equation may be written

$$
\left(1-\frac{1}{3} T k_{n \div 1}\right) e_{n \div 1}-\left(\frac{4}{3} T k_{n}\right) e_{n}+\left(1+\frac{1}{3} T k_{n-1}\right) e_{n-1}-T^{5} A_{n \div 1}
$$

Assume

$$
\begin{cases}k_{i}=k_{\theta} \\ A_{i}=A & \text { for } i=1,2, \ldots n, \text { over a sufficiently restricted } \\ \text { range. }\end{cases}
$$

Solving the difference equation yields

$$
\begin{equation*}
e_{n}=c_{1} \lambda_{1} \pi+c_{2} \lambda_{2}^{n}+\frac{T^{5} A}{\left(6 \frac{1}{3} T k\right)} \tag{3.107}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda_{2}=\frac{2 \mathrm{BTk}-\sqrt{1+\frac{1}{3} T^{2} k^{2}}}{1-\frac{1}{3} \mathrm{Tk}} \approx-\left(1-\frac{\mathrm{Tk}}{3}\right) \approx-e^{\theta} \\
& \theta=\frac{1}{3} M K .
\end{aligned}
$$

Expressing the constants c_{1} and c_{2} in terms of e_{1} and e_{0} and setting e ¿o be zero, Equation (3.107) becomes

$$
\begin{equation*}
e_{n} \cong \frac{e_{1}}{2}\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right) \div \frac{\Gamma^{5} A}{6 \theta}\left(1-\lambda_{1}^{n_{0}}-\frac{3}{2} \theta \lambda_{2}^{n}\right) \tag{3.110}
\end{equation*}
$$

As an approximation setting $\epsilon_{1}=0$, Eq. (3.inO) can be replaced by

$$
e_{n} \approx \frac{T^{5} A}{2 k}\left[1-e^{k\left(\tau_{n}-\tau_{0}\right)}+(-1)^{n+1}-\operatorname{Tke}-3^{2} k\left(\tau_{n}-\tau_{0}\right)\right]
$$

If k is positive, the last cerm decreases as t_{n} increases. In this case the error is always of the same sign and is muitiplied by 10 each time $t_{\text {in }}$ increases by $2.3 / \%$. This case corresponds to a differential equation in
which the plots of the solutzons for various boundary conditions, fin the neighboriood of the desired solution, diverge to the right, and the accumuiated relative ercor may decrease even though the accumalated error increases exponentially. Mine's method is thus applicable.

If k is negative, the second term vanishes, and the error is alternately positive and negative. This case corresponds to a differential equation in which the plots of the solutions for various boundary conditions converge to the right. The accumilated relative error increases rapicly without bound. This shows that Mine's method is unstable, and cannot be used. Milne ${ }^{\circ}$ mathod has two vǐtues: it supplies a muming check that tine mathod and interval size are suitable and that the computation is locally accurate enough to warrant going on. Noreover. oniy two evaluations of the dezivatives per scep formurd are req̧ired.
D. Harming Vathod

Mine's method is always unstable, because it has two rooes with modulus one in the characteristic equation of les comector foumuia. Hamning has removed unstability by eliminating one of these roots and thus modified the corrector formula without changing the predictor formia.
D.I. Third Ozder Eommia

The third order formula is of the form

$$
\begin{equation*}
y_{n \div 1} \infty a y_{n} \div b y_{n-1} \div T\left(c y_{n+1}^{0}+d y_{n}^{0} \div e y_{n-1}^{i}\right) \tag{3.112}
\end{equation*}
$$

Exparding both sides with respect to y_{n} by Taylor series expansion and
requiring exact fit for I, T, T^{2}, T^{3}, the coefficients a, b, c, d, and e can be determined to be

$$
\begin{array}{ll}
a=-4 \div 12 c & d=4-8 c \\
b=5-12 c & e=2-5 c \tag{3.113}\\
c=c &
\end{array}
$$

The truncation error has the value

$$
\text { Truncation error }=\frac{I-3 c}{6} T^{4} y^{(6)}
$$

The characteristic equation is

$$
\begin{equation*}
\rho^{2}+(4-12 c) \rho-(5 * 12 c)=0 \tag{3.114}
\end{equation*}
$$

Solving this equation yields

$$
\begin{aligned}
& \rho_{1}=1 \\
& \rho_{2}=-5 \div 12 c
\end{aligned}
$$

Stability requiras

$$
\begin{aligned}
& 0 \leqslant\left|\rho_{2}\right|<1 \\
& 1 \\
& ->c>-1 \\
& 2
\end{aligned}
$$

Setting c a 5/12, Equation (3.112) becomes

$$
\begin{equation*}
y_{n \div 1}=y_{n}+\frac{T}{12}\left(5 y_{n \div 1}^{0} \div 8 y_{n}^{0}-y_{n \div 1}^{0}\right) \tag{3.115}
\end{equation*}
$$

D. II. Fourth Order Fommias

This mathod generalizes Milne's corrector formila to the form

$$
\begin{equation*}
y_{n+1}=a y_{n} \div b y_{n-1}+c y_{n-2} \div T\left[d y_{n+1}^{0}+e y_{n}^{0} \div f y_{n-1}^{\prime}\right] \tag{3.116}
\end{equation*}
$$

and then stabilizes this formia by choosing suitable values of the ccefficients to minimize one of the characteristic rocts with modulus one in Minters Eormula.

Expanding Equation (3.116) with respect y_{n} by Taylor series expansion, and recquining exact fic for $I, T, T^{2}, T^{3}, T^{4}$, yieic
$2=\frac{27(1-3)}{24}$
$b=b$
$c=\frac{-3(1-b)}{24}$
$e=\frac{18 \div 14 b}{24}$
$c=\frac{9-b}{24}$

$f=\frac{-9 \div 17 b}{24}$

In this caso the truncation error is found to be

$$
\begin{equation*}
k T^{5} y^{(5)}=\frac{-9+5 b}{360} T^{5} y^{(5)} \tag{3.118}
\end{equation*}
$$

The characteristic equation of Equation (3.116), using Equation (3.117), is

$$
\begin{equation*}
8 \rho^{3}-9(1-b) \rho^{2}-8 b \rho+(1-b)=0 \tag{3.119}
\end{equation*}
$$

The roct loci of ρ with respect to b are shown in Fig. 2. For stable operation b should lie in the range $-0.6<b<1$ to insure that no characteristic root exceeds one and that the root with modulus one is simple. Milne's formula is a special case of Equation (3.116) with b=i. it is easily seen from Fig. 2 that in this case there are two characteristic roots with moduius one.

For the case bmo, a stable predictor-corrector formula can be constructed as follows:
predictor $\quad p_{n+1}=y_{n-3}+\frac{4 T}{3}\left(2 y_{n}^{0}-y_{n-1}^{0}+2 y_{n-2}^{0}\right)$
modify $\quad m_{n+1}=p_{n+1}-\frac{112}{121}\left(p_{n}-c_{n}\right)$
corrector

$$
\begin{equation*}
c_{n+1}=\frac{1}{3}\left(9 y_{n}-y_{n-2}\right)+3 T\left(f_{n+1}^{\prime}-2 y_{n}^{\prime}-y_{n-1}^{\prime}\right) \tag{3.120}
\end{equation*}
$$

final value $\quad y_{n+1}=c_{n+1}+\frac{9}{121}\left(p_{n+1}-c_{n+1}\right)$.

Truncation error of corrector formia in this case is

$$
\text { truncation error }=-\frac{1}{40} T^{5} y^{(5)} \text {. }
$$

as compared with that of Milne's corrector formula, there is a 125% increment.

In lamming methods predictor formulas are always the sane as Mine's formia because if the predictor is generalized by the same mothod used above, it would be unstible.

From the above discussion it is easily seen that to gain stability in a predictor-corrector method one must lose some accuracy. This loss in accuracy can be compensated by shortening the interval of integration.

Fig. 1. Root ioci of Eq. (3.114)

$$
\rho^{2}+(4-12 c) \rho-(5+12 c)=0
$$

Fig. 2. Root Loci of Eq. (3.119)

$$
8 \rho^{3}-9(1-b) \rho^{2}-8 b \rho+(1-b)=0
$$

C. Comparison Between Cne-Step Nathods and Naltiple Step Nethods

One-step methods are useful for obtaining the first few of the solution of a differcntial equation, but invoive too mach labor to be used for obtaining a numarical solution over an extended range. However, multiple step methods require special starting procedures which are furnished by one-step methods.
IV. Numerical Transform Techniques.

Part of the solution of a linear differential equation with constant coefficients has the form of a convolution. The digital computer must approximate convolution on a denumerable set of equally spaced points. The tranpezoidal approximation is the commonly used quadrature method. Trapezoidal approximation proceeds as follows. Iet $g(x)$ be a function defined and continuous in a closed interval containning $x=0$, and let its first four derivatives be continuous in the same interval, the Taylor series representation of the function with remainder is

$$
\begin{align*}
g(x)=g(0) \div x g^{(1)}(0) & \div \frac{x^{2}}{2!} g^{(2)}(0)+\frac{x^{3}}{3!} g^{(3)}(0) \\
& +\int_{0}^{x} \frac{(x-\mu)^{3}}{3!} g^{(0)}(\mu) d \mu \tag{4.1}
\end{align*}
$$

Integrating the given function results in

$$
\begin{equation*}
\frac{1}{h} \int_{0}^{h} g(x) d x=\frac{\left(g_{0} \div g_{1}\right)}{2}-\frac{h^{2}}{12}\left(\frac{g_{0}^{(2)}}{2} \div \frac{g_{1}^{(2)}}{2}\right)+R(h) \tag{4.2}
\end{equation*}
$$

The remainder $R(h)$ is given by

$$
\begin{align*}
R(h) & =\frac{h^{4}}{4!} \int_{0}^{1}\left(\lambda-2 \lambda^{3}+\lambda^{4}\right) g^{(4)}(\lambda h) d \lambda \tag{4.3}\\
& \leqslant \frac{h^{4}}{120} g^{(4)}(\theta h) \quad 0<\theta<1
\end{align*}
$$

A convolution can be approximated by dividing its interval into a finite rumber of subinteivals each with same width T as follow:

$$
\int_{0}^{t} f(\tau) g(t-\tau) d \tau=\sum_{k=0}^{n-1} \int_{k T}^{(k+1) T} f(\tau) g(t-\tau) d \tau
$$

Trapezoidal approximation yields

$$
\begin{equation*}
\int_{0}^{t} f(\tau) g(\tau-\tau) d \tau=\frac{T}{2}\left(\sum_{k=0}^{n-1} E_{k} g_{n-k}+f_{k+1} g_{n-k-1}\right) \tag{4.5}
\end{equation*}
$$

Taking z-transform of both sides of Equation (4.4) results in

$$
\begin{equation*}
Z[\overline{\mathrm{f}} \bar{g}]=T[Z f][Z \bar{g}]-\frac{T}{2}\left[\tilde{f}_{0} Z \bar{g}+g_{0} Z \overline{\mathrm{f}}\right] \tag{4.6}
\end{equation*}
$$

There are many ways of ueilizing trapezoidal convoiution to solve a given differential equation. Each of these is called a program. Three classes of programs are discernible; The multiple integration substitution program, the Tustin integrator program, and the single integrator program. Differences among them are at the transitions from integration to multiple incegration.
A. Tustin Program

This method solves an noth order differential equation by the statespace spproach. A Tustin-1ike program is demonstrated as follows:

Let an noth order differential equation of the form

$$
\begin{equation*}
D^{n} y=x(t) \tag{4.7}
\end{equation*}
$$

Define the row vectors

$$
\begin{align*}
& w^{v}=\left(y, y^{0}, \cdots y^{(n-1)},\right. \\
& v^{v}=(D, 0, \cdots x(\tau)) \tag{4.8}
\end{align*}
$$

Then

$$
D W+\left(\begin{array}{cc}
0 & -I \tag{4.9}\\
0 & 0
\end{array}\right) W=V
$$

is equivalent to an nth order differential equation. Take the Laplace Eransform and divided by s to obtain

Employing the sampling operation and trapezoidal integration yields

$$
\begin{equation*}
Z \bar{W} \div A Z \bar{W}-A H_{0}=\alpha Z \bar{v}-\beta v_{0}+\frac{2}{T} \beta W_{0} \tag{4.11}
\end{equation*}
$$

where

$$
\alpha=\frac{T}{2} \frac{I \div z}{1-z}, \quad \beta=\frac{I}{2(1-z)}, \quad \underset{(n \times n)}{A}=\left(\begin{array}{ll}
0 & -I \\
0 & 0
\end{array}\right)
$$

Since $A^{\text {a }}=0$, it follows that

$$
\left(I+\alpha A^{n}\right)=I \quad \text { or } \quad(I+\alpha A)\left[I-(\alpha A) \div(\alpha A)^{2}+\cdots(-\alpha A)^{n-1}\right]
$$

- I

Then the desired solution can be written as

$$
\begin{align*}
2 \bar{y}= & \alpha^{n} 2 \bar{x}-\varepsilon \alpha^{n-1} x_{0}+\frac{1}{1-z} y_{0}^{(n-1)} \\
& +\frac{T^{2} z}{(1-z)^{2}} \sum_{k=2}^{n} \alpha^{k-2} y_{0}^{(n-k)} \quad \text { for } n=1,2,3 \cdots \tag{4.13}
\end{align*}
$$

The above equation is the Tustin program, if all initial conditions are zero.

This progranis great advantage is that it finds the solution and its

Enrsi (nul) dealvatives in one srieep.
B. Singiemintegrato program。

Halijals has derived a singlemintegrator program winich uses a secquence of ascending order differential cquations derived from the given differenfial equation to solve the same equation. Consider the differentiai equation.

$$
\begin{equation*}
\left[D^{n} \div a_{2} D^{n-1} \div \cdots \div a_{n=1} D \div a_{n}\right] y(\tau)=x(\tau) \tag{4,14}
\end{equation*}
$$

Fhast, set up the difforancial cguation

$$
\begin{equation*}
\left(D \div a_{1}\right) y_{1}(\leftarrow)=1 \quad y_{I}(0)=0 \tag{4.15}
\end{equation*}
$$

Whe Laplace transform of this diEfexential equation yields after division By s

$$
\begin{equation*}
\left(1 \div \frac{a_{1}}{s}\right) \bar{y}_{1}(s)=\frac{2}{s^{2}} \tag{4.16}
\end{equation*}
$$

Taking Z-transfozm of both sudes and employing approximate trapezoddai convolution, yields

$$
Z \bar{y}_{I}=\frac{2 T z}{[1-i z][(2+a T)-(2-\alpha T) z]} \div Z\left(\frac{2}{s(s+a)}\right)
$$

$$
\begin{equation*}
\left(D^{2} \div a_{1} D \div a_{2}\right) y_{2}(t)=I, \quad y_{2}(0)=y_{2}(0)=0 \tag{4.18}
\end{equation*}
$$

taking Laplace Eransiform of both sides ard divicing by $s(s+a)$ yield

$$
\begin{equation*}
\left(1 \div \frac{a^{2}}{s(s+a)}\right) \bar{y}(s)=\frac{1}{s^{2}(s+a)} \tag{4.19}
\end{equation*}
$$

taking Z-transfoam yields

$$
2 \bar{y}(s) \div \mathrm{Ta}_{2}\left[Z\left(\frac{1}{s\left(s \div a_{1}\right)}\right)\right][Z \bar{y}(s)]=[2(-)]\left[2\left(\frac{1}{s}\right)\right]
$$

Substitutang equation (4.17) into equation (4.20) yields

$$
\begin{align*}
2 y_{2}(s) & =\frac{T}{2} \frac{(1+z)}{(1-z)} \cdot \frac{2 T z}{\left(2+a_{1} T\right)-\left(4-2 a_{2} T^{2}\right) z+\left(2-a_{1} T\right) z^{2}} \\
& =z\left(\frac{1}{s\left(s^{2}+a_{2} s+a_{2}\right)}\right) \tag{4.21}
\end{align*}
$$

Poceeding in this mancr, let a neh ordcr differential equation be of the form

$$
\left(D^{n-1}+a_{1} D^{n-2}+\cdots+a_{n-1}\right) y_{n-1}(t)=1
$$

$$
\begin{equation*}
y_{n-1}(0)=y_{n-1}(0)=\cdots=y_{n=1}^{(n-2)}(0)=0 \tag{4.22}
\end{equation*}
$$

A recurrance relatzon can be constructec to be

$$
\begin{equation*}
z \bar{y}_{i}(s)=\frac{1}{2}\left(\frac{1 \div z}{1-2}\right) Z \bar{y}_{i-1}(s) /\left[2 \div a_{i} T 2 \bar{y}_{1-1}(s)\right] \tag{4.23}
\end{equation*}
$$

$$
2 \leqslant i<\pi
$$

EOT fW

$$
\begin{align*}
Z \bar{y}_{n}(s)\left[1 * a_{n} T\left(Z\left(\bar{y}_{n-1}(s)\right)\right]=\right. & I[Z x(s)]\left[Z y_{n-1}(s)\right] \\
& -\frac{T}{2}\left\{x_{0} Z \bar{y}_{n-1}(s)\right\} \tag{4.24}
\end{align*}
$$

Intitai conditions othor than zezo can be intaoducec at the last step.
C. MaitiplemIncegraco Substitution Program。

The multiple integrator substitution program casts the Iaplace transFozm of the Eiven disfarential equation irto inverse pomers of s by a Sifitable division and substitunes for them definite functions of z defined to be $e^{-\mathrm{Ts}}$

こ. I. Halzjak's Integrator SubstituEion Program.

This mothod uses trapazoidai convolution to generate z-transform of
(I/sis) and (I/s)E. Tho p=occcure is as follows:

EOE $n=12 \quad Z(1 / 5)=I /(I-2)_{2}$

EO: $\quad \mathrm{I}=2$,
$2\left(i / s^{2}\right)=2(I / s) 2(i / s) I-2 Z(I / s) \cdot$

$$
\begin{equation*}
=I=/(1-z)^{2} \tag{4.25}
\end{equation*}
$$

ECT $\quad \therefore$ ล2,

$$
Z\left(I / s^{n}\right)=Z\left(1 / s^{n-1}\right) Z(I / s) I-Z\left(I / s^{n}\right) T / 2
$$

$$
=2\left(\frac{1}{s^{\pi-1}}\right) \frac{T(1 \div 3)}{2(1-3)} .
$$

$$
=z\left(\frac{1}{s^{2}}\right) \frac{T}{2}\left[\frac{(1 \therefore z)}{(1-z)}\right]^{n-2}
$$

$$
\begin{equation*}
2(-z) \therefore\left[T^{2} z /(I-z)^{2}\left[\frac{1}{s^{n}}[(1 \div z)]^{n-2}\left(2 \bar{E}-0.5 f_{0}\right)\right.\right. \tag{4,26}
\end{equation*}
$$

Thiz mathod yicids modezate accuracy approxinations and is the basis o: piyysicalyy smal? computers.

Abstract

The ごasult of an appronimate computation of the solution of differential cquation is affoced by errors. These criors arise from different causes mat affect Einal resule in different trays.

Three types of exrozs that are most important are truncation error, roundmoty orroze and accumulated erroz. Round-cff ergor usually affects the last retained digit of the decimal fepresentation; les effect can be minimized by retaining ackitional digits. Truncation erroz is due to discaicied temis in un infinite seaies. Sometimes the remainder exceeds the cum of tezins retained, thus making the calculated result manningless. ThereEoze, an estimate of truncation erroz is essential. The imporeance of accuminated errozs depands on rate of accumration. If the accumilation crrox is unbounded. the solution becomes maningiess. the mothod given in this report in deriving coefficients of Runge-Kutta Eormilas ean ba appiied to investigate six and higher oider fozminas.

Trapazoidal convolution using the integral of the first two terms of Taylor serios coincides with the avarage of zight and ioft Rioman sum approzimations. The truncation erroz is of order T^{2}. Improved trapezoidal corvolution using higher order Taylor Series terns seems worthy of further Suvestigation.

Accuracy is mot the only consideration for evaluating a computation process. The step size affects the solution accuracy as weil as the cost; the more accurate solution is generally the more expensive. Frecuently it is desirod to have a solution within a certain accuracy with most conomical
computation. The selection of optmal size depends on the method used and the problem solved.

A number of numerical Eransform techniques have been developed in the Z-transform language. Many of these exnibit diffictities for the solution of differential equetion with non-zero initial conditions. The prograns generated by Halijak have shown that proper reintroduction of initial conditions is required for better approximation.

APPENDIX 1

Error Formias for an Interpolating Polynomial

Let the function $z(x)$ be defined on an interval containing the $q+1$ distinct points $x, x, \ldots x$. it is well knom that among all polynomials in x of degree not exceeding q there exists exactly one polynomial $P(x)$ which satisfies the relations

$$
\begin{equation*}
P\left(x_{i}\right)=z\left(x_{i}\right) \quad i=0,1,2, \cdots q \tag{I-1}
\end{equation*}
$$

The uniqueness of this interpolating polynomial follows from the fact that the difference of any two such polynomials is a polynomial of degree q which has orl zeros and therefore vanishes identically. Existence can be proved by exhibiting the polynomial explicitiy, in the form

$$
\begin{equation*}
P(x)=L(x) \sum_{i=0}^{q} \frac{z\left(x_{i}\right)}{L^{0}\left(x_{i}\right)\left(x-x_{i}\right)} \tag{I-2}
\end{equation*}
$$

where

$$
L(x) \propto\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{q}\right)
$$

The error comitted in this approximation can be estimated from the followIng Lemmas.

Lemma 1. Iat $z(x)$ have a continuous derivative of order $q+1$ in J. Then for every point x in J there exists a point ξ in the smallest interval 1 containing both x and the points $x_{i}(\{=1,2, \cdots q)$ such that

$$
\begin{equation*}
z(x)-P(x)=\frac{1}{(q+1)!} L(x) z^{(q+1)}(\xi) \tag{I-3}
\end{equation*}
$$

Lemma II. Let $z(x)$ satisfies the same hypothesis as in Lemma 1. Then for every $x_{k}(k=0,1,2, \ldots q)$ there exists a number ξ such that

$$
z^{\prime}\left(x_{k}\right)-p^{\prime}\left(x_{k}\right)-\frac{1}{(q+1)!} z^{(q+1)}(\xi) L^{\prime}\left(x_{k}\right) \quad(I-4)
$$

1. Tustin A.

A method of analysing the behavior of linear systems in terms of time series, Journal IEE, proceeding at the Convention on Automatic Regulators and Servomechanisms, vol, 94, part II-A, pp 130́f, May, 1947.
2. Madwed A.

Number Series Mathod of solving linear and non-linear Differential Equations, Rep. No. 6445-T-26, Instrumentation Lab., MIT; April, 1950.
3. Boxer R. and Thaler S.

A Simplified Method of Solving Linear and Nonlinear Systems, Proceedings IRE, vol. 44, no. 1, Pp. 84-101, Jan. 1956.
4. Armarel S., Lambert L_{0} and Miliman J.

A Transformation Calculus for Obtaining Approximation Solutions to Linear Integro-Differential Equations with Constant Coefficients, Technical Report T-7/c, Columbia University Electronics Research Laboratory, August, 1955.
5. Halijak C. A.

Digital Approximation of the Solutions of Differential Equations Using trapexoidal Convolution, ITM=64, Bendix Systems Division, The Bendix Corporation, Ann Arbor, Michigan, August 26, 1960.
6. Halijak C. A.

Algebraic Nethods in Numerical Analysis of Ordinary Differential Equations, Special Report No. 37 , Kansas State University Bulletin.
7. Henrici P.

Discrete Variable Methods in Ordinary Differential Equations, John Wiley \& Sons, Inc., New York. 1962
8. Kunz K. S.

Numerical analysis, McGraw-Hill Book Company, Inc., New York. 1942
9. Boxer R.

A Note on Numerical Transform Calculus, Proceeding IRE, vol. 45, pp. 1401-1406; October, 1957.
10. Kwan R. K.

On the Analysis of Closed-Loop systems by Means of Digital Computing Techniques. Master Thesis, McGill University, Montreal, Canada. 1963.
11. Hamming R. W. Numerical methods for scientists and engineers, McGraw-Hill book Company, 1962.

ACKNOWLEDGMENT

The author wishes to express his appreciation to Dr. Charles
A. Halljak and Dr. Floyd W. Harris of the Department of Electrical Engineering for their tutelage and guidance which have implicitly contributed to this report.

SURVEY OF DIGITAL SOLUTION

 OF DIFFERENTIAL EQUATIONS
by

ING-INEN HWANG
B.S.E.E., National Taiwan University, 1963

AN ABSTRACT OF A MASTER'S REPORT
submitted in partial fulfillmant of the
requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Marhattan, Kansas

There are a number of numerical methods for approximating solution of a differential equation. These methods have two things in common; the calculations are performed with discrete values and on a step-by-step basis. The purpose of this report is to review those methods that are frequently used on digital computers. All these methods are divided into two classes; the classical numerical techniques and the numerical transform techniques. Classical numerical techniques yield two types; one-step methods and multipie step methods. In one-step methods the value of y_{n} is solved from its previous step. In maltiple step methods the value of y_{n} is solved from its several previous steps $y_{n-1}, y_{n-2}, \cdots y_{n-q}$. The virtue of one-step methods is that they are self starting whereas multiple step methods require more than one starting point that they are not self starting. However, multiple step methods are more easier in continuing a solution than one-step methods. The numerical transform techniques were developed recently by Tustin, Madwed, Boxer-Thaler, and Halijak. These methods use z-transform as a language. Three classes are discernable; Tustin program, single integration program, and multiple integration substitution program. Differences among them are the transition from integration to multiple integration. Truncation error and accumulated relative error are important factors that affect availability of a method. It is necessary to estimate these errors so as not to make computation meaningless.

