/pesign of IDOMSS
Intelligent Data Object Management System

by
Michelle Klaassen Waltmire

B.S. Southwestern Oklshoma State University, 1976

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1986

Approved by:

Major Professor

LD T

avué A1120b k92319

s
1981

Wi 34D
e 2 CON TEN TS

mawer 1 - mmowamuti""'.lIII.I..‘.I."ll..'.l.l.
1.1 maviw-’.‘..".l‘.‘.....I.l.l.l...........'-.-I..I
1.2 OIS mﬂ@ mthodologes..I'I..-I.I.l.'l...'l.l.l..

1.3 Forms Baad SVStms.I...'..l.l'..".I..‘!'-...l.l.'

chapterz-ngsmn OF Imm...'.'...l'l'..ll'lll".l-'.l
2.1 Applications of mm....’..l'l.l.l.l..l.l.'..l.l.l

2.2 Goals and Required CommandS..seseessssvsnsscecscans

mapterB-Imm".....l.......l.'."'...ll.'l.-...l..'
3'1 mmmr at me NOde.'.lI..'.l..l.l...‘l..l.'.....'.

3.2 Node mmmr.I..I..‘.l.."l'..'...."'.l.ll'l..ll.'

chaptern-co“alusmusto.....I.l.l'l..'l'll.l..l.‘.....
n'1 Smnary..lll.l...ll.ll'."I.ll.l.l..l..I.l....l.l.'
4.2 Extensions/Implementation ISSuUeS.ccevsssssncessscns

ul3 mensions of we mm mo“l.....'l.l..l‘.l....l"

15

23

23

25

28

B3

69

69

70

70

u.u Implmentaﬁ.on of me Imm model.ll.....l.l!..'.l. 72

BmLmRAmI‘...I.l...II.C....I.I.‘C....l.ll...‘.'..l... Tu

prndix A.I.'..l!.I'll'...!.I'l.l.l'..l'IOOIOCOOIOI.III 85

- ii =

Figure 2.1.

Figure 2.2,

Figure 3.3.

Figure 3.4.

Figure 3.5.

Figure 3.6,

Figure 3.7.

Figure 3.8.

Figure 3.9.

Figure 3.10.

LIST OF FIGURES

Applicationﬂ Of Imm.-...-.a-.---..--..-.

Goals and Required CommandsS...cseessssscss

Imm Conmptwl via....l..'ll..'l."'.‘.

mmgr At The Nodeﬁ‘..'..'.II.I'I...."I.

Boomepins.'.I....ll.."l.l..l.ll.l."..l

m Instanm &eaﬂon‘.I".l"..".l.....l

Management of IDO InstancesS,.issecvcccees

Utilities.I..‘.I.l..l...‘..'.'...ll'..l..l

No“ mmmr..‘..I."..ll.'l.'-.ll'.'l.l'.

status nemrts.....'l.l.l'....l.l'...'..l’.

- iii -

25

26

28

29

30

40

42

52

53

54

Figure 3,11,

Figure 3.12.

Figure 3.13.

Figure 3.14.

Figure 3.15.

&m@ment w m wms.........l."...l..

Management of ID0O InstanceS..cesscccesecss

Uulities'.l.l‘lI.I"..l.'lllll..'l.l.l'll

Oﬂim Help..‘..I"l.‘....'.l.l.l'.l.."..

mmﬂmToals.l'll'l'll.'.ll..'ll...l.l

- jv =

56

60

63

65

67

TABLE 3.1.

TABLE 3.2.

TABLE 3.3.

TABLE 3.4.

TABLE 3.5.

LIST OF TABLES

Im Inatance..-c..olnc-OIOIliiccu.uluoococ-o

Boomeping Table...-.--o-oo-.-.oq..n-----n-

Im I.nstance Cr'EEtion Tablecouuulllulcollllto

ﬁled IDO Table|ﬂll.ll..'.l.lIl.l'l.l.'...'.

Im TYPQ TableO-o..lniltococlnoc--'nOlucu.ul

31

32

36

46

49

ACKNOWLEDG EMEN TS

I would like to extend my sincere appreciation to all of the
individuals who have supported me during the course of my
studies. They all had faith when, at times, I did not. To my
parents who, to quote my mother, "never dreamed when I was
born that I would do something like this"; to my husband who
kept believing in me; to all my colleagues from work who
have "covered for me"™ for five years; to the supportive
Computer Science faculty of EKansas State University,
particularly Dr. Elizabeth Unger and most of all to all the

other KSU Summer On Campus students.

Chapter 1 - INTRODUCTION

1.1 Overview

In an office enviroment, many types of information must be
communicated among the occupants of that office and to other
persons with whom the office personnel interact, Often that

communication is done through the use of an office form,

Forms have several purposes including serving as information
collection and dissemination instruments, and as audit trail

evidence of a particular transaction of business.

Office forms often are not independent entities since many
individuals have the responsibility for managing forms.
Increasingly, there is the desire and the need to simulate
the behavior of an objeet such as an office form, or an

entire office, in a computer system,

In order to simulate the behavior of an office, a simple
data object is not sufficient, Instead what is needed is an
object which will represent the elements of the form as well
as the operations which are associated with that form. The
object needed is therefore some type of intelligent mobile
object. Office processes and office communication are
characterized, in the main, by well defined operations and

channels of communication. These structured office

processes can by represented within a data structure if that
structure has some capabllity for storing procedural

knowledge and has a facility for daemons,[1]

Previous work at Kansas State University has led to the
definition of a data/program structure named an Intelligent
Data Object.[2] As an informal definmition an Intelligent
Data Object (IDO) may be defined as an instance of an
intelligent abstract data type. An intelligent abstract data
type consists of text (data structures), and the set of
operations or procedures defined on the object encapsulated
in an electromic form which is routed as an active
electromic message from station to station.[3] Given this
informal 1IDO definition, the IDO is a logical choice to use

to represent the behavior of an office or an office form.

Office form management tasks include creation and selection
of the form, input of information on the form - which may be
done in several pieces by different individuals, routing of
the form to the appropriate individuals and verification of
the form's completeness and accuracy. In addition,
individuals are responsible for any duplication and
distribution of completed forms, filing of and access to the

form and the final archiving of old forms.

Since the IDO is to be used to represent the office form's
behavior, an Intelligent Data Object Management
System(IDOMS) is needed to simulate the office form
management tasks by mord toring and correlating the
operations or subsystems of operations performed on the

IDOs.,

The IDOMS provides many advantages over a paper office.[4]
The operations of paper forms such as copy, file, modify and
destroy are supported using a form based system. Office
information may be quickly and automatically validated.
Authorization levels and procedures may be directly
associated with the data, Information may be traced for the
purpose of expedition. Electronmic forms may be automatically
routed or mailed to the proper personnel., Access rights to
information may be restricted. Interaction of data between

components may be accomplished without re-entering data.

In previous work at Kansas State University the IDO has been
formally defined in 1isp.[5] That definition is given in
Appendix A. Generally the IDO has a npame, a set of
processing instructions, a set of routing instructions,
local data and a history of the processing accomplished on

it.

In earlier work at KSU some thought has been given to the
design of an IDOMS.[6], [3], [7], [8], [9] No overall
comprehensive design was formed at that time in order to
avoid the freezing of ideas that often follows the
imposition of a fixed framework., Since the preliminmary work
on the individual IDO components has now been completed, an
overall system design which will manage this object as it is
maneuvered within a network of work stations and other
functional units on a local area network 1s needed.
Presently we are not interested in exploring the system

design for a long haul network.
1.2 OIS Design Methodologies

The research documented in this report is that of
demonstrating the reasib:llity of an IDO via an IDOMS design,
In considering the potential design of an IDOMS the approach
was to evaluate existing design methodologies and models
such as those from information systems and office
information systems research looking for factors which might

be applied to the IDOMS.

This report concentrates on the evaluation process extending
it to the area of the IDO., It contains an information and
control model of the IDOMS design, a functiomal breakdown of

the design, and the ratiomale behind the design. Any unique

characteristics of the IDO are identified along with the

potential impact on the design of the IDOMS.

As no research was found which pertained directly to the
issue of the design of an Intelligent Data Object Management
System, the area of Information System Design in general was
examined, Information Systems Design has been discussed by
such authorities as Constantine, DeMarco, Yourdon and
Jackson,[10] The area of Information Systems Design is
moving toward that of Office Information Systems (0IS)
design.[11] The design phases of OIS are similar to those of
conventional Information Systems (IS) in that both areas
include a requirements analysis phase and a requirements

specifications phase.[11]

Several design methodologies appear in the literature -
Those specific to OIS are: OFFIS[11], OAM - Office Analysis
Methodology[111, and MOBILE=-Burotique[11]. The
methodologies discussed are representative, so say the

authors, of the available 0IS design methodologies.

OFFIS is a software package developed at the University of
Arizoma's Department of Management Information Systems. It
allows the planner/designer of an automated system to enter
the requirements of the office by specifying categories,

such as department, for each element of the office. The

components of the OFFIS model in the OFFIS methodol ogy are
objects, attributes and relations. Objects describe data to
be used and agents which use the data., Attributes describe
qualities related to objects and relations specify
interconnections among objects as well as flow of

information such as: report is routed to accountants,

The output of the OFFIS methodology is a set of requirements
specifications which define a conceptual model of the
office, OFFIS also provides several tools to analyze the

requirements specifications,

QAM (Office Analysis Methodology) was developed by the
Office Automation group of MIT. The methodology

concentrates on identifying the btusiness goals of the
organization and in specifying the work of the office as

functions, activities, information flow, and so on.

The methodology consists of 6 steps:

1. Identify and l1ist, for each function, the function's

resources and tasks

2. Analyze the procedures of the office

3. Examine and attempt to categorize exceptions of the

office

4, Identify office ad hoc decision making processes and

conflict situations

5, Revise the model derived in the above steps using

input form office manager and users

6. Prepare documentation for the system
The output of the OAM methodology is an organizational model

of the office,

The methodology incorporates the Office Specification
Language (OSL) as a tool for formally expressing the office

functions and relationships.

MOBILE-Burotigque was designed by the Organization-
Methodology Group which is part of the KAYAK project at
INRIA (France). It is not so much a methodology as it 1is
the criteria and office evaluation tools which, together aid
in the creation of a design, MOBILE=-Burotique attempts to
blend the human factors involved in an office with the

technical aspects of the design.

As in traditional IS design, the output of an OIS design
methodology is generally a conceptual model. In the case of

0IS design the model is that of the office to be automated.

The advantages of OIS models in system design are

threefold:[12] "First, in addition to aiding in ‘the
management of data, data models promote extensibility and
software integration by separating the specification of the
logical structure of data from the programs accessing the
data, Furthermore, by formulating a description of the
office in data modeling terms, it is possible to use many cof
the techniques and results from database research, Finally,
data model operations can be used as a set of primitives by
systems dealing with the higher level problems of
organizations and individuals = their goals, actions, and

intentions,”

According to Konsynski, "Formal models can be used as tools
in representation, documentation, analysis, design, and
evaluation of office practice. Further, they provide a
basis for communication among the various participants in

the audit of the office."[13]

Traditional IS models and modeling techniques include the
Conceptual Graph, as proposed by Sowa, the Warnier diagram,
the Semantic Data Model, the relatiomal database model, and
dataflow diagrams, The concepts in many of these modeling

technlques have been adapted for OIS models.

OIS models may be classified in many different ways. One

classification[11] is that of 4 categories of models: the

data-based models, the process-based models, the agent-based

models and the mixed models.

Models classified as data-based provide a way to represent
the elements of an office using a set of data types and
operations., The model represents the office in terms of
objects being manipulated by office workers using

operations.

Office-bv-Example (OBE) was developed by M. Zloof as a
data=-based model. OBE is an office specification language
which is an extension of the relational database query
language Query-by=-Example, The 1language contains an
extended set of complex data types, such as time, text and
graphics, and allows the user to defipe its own objects in
order to provide a more robust model of an office. The
language allows the specification of office forms, reports,

documents, organizational structures, menus, ete.[11]

Officetalk-Zero (also known as Officetalk) was developed by
William Newman, Tim Mott and others from the Office Research
Group at the Xerox Palo Alto Research Center (PARC) as an
implementation of the data-based type model.[14] 1In
Officetalk, data objects are single page forms and files of
forms, Communication between the users of the system is via

the forms which are passed among users' work stations. An

- 10 -

electronic form and a computer terminal replaces a paper
form and a worker's in-basket. A single interface which
tied together existing subsystems, such as an editing
package and a graphics system, was created for uniform

presentation to the users,

The ODM (Qbject-Oriented Database Model)[15] 1is an
intentionally simplistic data-based model., It provides a
small set of object primitives, coupled with an object
manipulation and retrieval language. The DODM (Distributed
Object-Oriented Database Model) is an extension of ODM for

the distributed enviroment.

The data-based Qffice Data Modell 12] provides object types

and objects (instances of object types). Object types
specify classes of objects. As a part of the definition of
an object type properties, constituents, mappings and

constraints associated with the class may be specified.

Process-based models represent the office in terms of
activities performed in the office. The process-based model
attempts to allow the concurrent performance of office
activities to be expressed. A key in the process-based
models is the concept of the office as a group of integrated

tasks rather than disjoint operations,

- 11 =

SCOOP (Svstem for Computerization of Offige Processing) was
developed by Michael Zisman.[11] As is characteristic of
process~based models, the focus of SCOOP is that of
representing office procedures, SCOOF uses existing IS
concepts for the analysis of concurrent processes. It is
based upon Petri nets, specifying conditions which trigger
actions, The conditions, actions and a set of production
rules for handling conflicts and providing informaticn to
allow advancement of the actions together form the _JInternal

Representation. The External Representatiopn defines office

procedures as activities and documents.[14]

The Xerox PARC group developed the process-based JICN
(Information Control MNet).[14] Like SCOOP, ICN defines an
office as a set of related procedures, The procedures
consist of activities which use office documents, The
files, forms and other office documents are called
repositories, and the rules for their use are precedence
constraints, Procedures, activities, repositories and
precedence constraints are all a part of office informaticn
flow. Information flow is represented by one o more ICN
diagrams, In its simplest form, an ICN diagram somewhat
resembles a Petri Net using circles for activities and
squares for repositories. Precedence arcs, indicating the

order of activities, are represented by solid lines and the

& 48

input and output of information to and from repositories is
shown using dashed lines., An ICN diagram may be mapped into
a formal office definition using the sets of activities,
repositories, precedence constraints and input=cutput

requirements for a given office,

In addition to the two previously discussed models, Bracchi
and Pernici also briefly reference QSL (Qffice Specification
Language) which they note is an evalution of BDL. BDL
(Business Definition Language) was developed at IBM's Thomas
J. Watson research center, Although not a model, per say,
BDL is a programming language which allows the specification
of business "concepts and algorithms .,,. into instructions

which implement those ideas on a computer®.[14]

There are 3 components to a BDL program: a [Form Definitiop
Compopent, a Document Flow Compopent, and the Document
Translation Compopept. The Form Definition Component
defines forms (templates) which will contain office
documents., The Document Flow component is used to describe
the flow of data using directed graphs. The Document
Transfarmation Component is a high level data processing
language which allows specification of how each output
document is created using one or more input documents and

one o more steps, A step represents a person, division or

= 1% -

function of the office.[16]

The gzent-baged model's elaments consist of data, processes
(as a concatenation of the two previous models) and the set
of office workers (agents) and their <or'ganizational
structure. The office is viewed as workers performing a job
(function) within some predefined domain or set of
condl tions. The relationships between office workers are
also a part of the model. The goal of the agent-based model
is to represent the office in terms of the role of the
office workers, the delegation of those roles, and the

relationships among roles,

In addition to the office data used in a data-based model
and the activities (processes) of a process-based model, the
agents-based Structural 0ffice Model[11] uses a third
component to describe an office. The third element is a set
of agents (office workers) and their <organizational

structure,

While the data-based model focuses on objects of an office
such as letters and files, the process-based model on tasks
to be done and the agent-based model on roles of the office
workers, the mixed model uses elements of two or all three
of the model types. Many of the more recently developed OIS

models are of this type. Some of the older models, while

o T -

originally classified as data, process or agent-based, have

evolved into mixed models.

Bracchi and Pernici developed the S0S (Semantic Qffice
System) in an effort to encompass all of the elements of an
office.[17] It is an example of a mixed model as it uses
elements from all three previously defined model types,
linking the elements together via relationships. S0s8

consists of 3 "submodels”,

The static submodel allows the specification of data
elements, such as documents, and other non-changing and
slowly changing office components, such as agents. Agents
may represent a single office worker, a group of workers
doing the same function or the aggregation of workers in the
same department. The static submodel alsoc allows the

specification of static rules.

The dypamic submodel is concerned with specification of
office activities and dynamic rules, Office activities
specify acceptable data manipulation and changes to the
office system, Dynamic rules specify constraints on the

manipul ation of the static data elements.

The evolutive submodel allows specification of rules

concerming the evolution of office work and on the of fice

- 15 =

enviromment. These rules initiate the handling of exception

cases,[17]

1.3 Forms Based Systems

Several of the OIS Implementation Systems, such as OBE
(Office by Example), OPAS (Office Procedure Automation
System) and OFS (Office Form System), discussed in the
previous paragraphs are implementations based upon the use

of forms.[18]

According to The American Heritage Dictionary of the Epnglish
Language, a form is "a document with blanks for the

insertion of details or information®, This definition does
not restrict the use of the term form to one made of paper.
It is equally applicable to an electronic simulation of a
paper form and will be used throughout this document to

apply to both paper and electromic forms,

There are many advantages to both the user and the designer
in using a form based system in OIS. For the user, form
based systems:
1. Provide a tool to the user for data abstraction -
i,e., a form may contain only necessary information
about a particular task,[4]

2. Provide an easy to understand user interface.[4]

3. Allow an easier transition from a paper system to an
automated system than is provided by non-form based

5.

- 16 -

systems.[1]
Allow retention of many of the semanties and
properties of the manual office based upon paper
forms.[1]

Provide ability for tracing a form's progress.[1]

For the designer, form based systems:

1e

2.

3.

Allow the grouping of logically related data as one
item to be manipulated.[4]

Allow the routing specification of the data to be
contained as part of the form.[4]

Provide the ability to specify control flow based on
the content of the form at the node during
execution,[18]

Provide the designer a method by which to create an
easy to understand interface,[4]

Allow a simple mechanism (the form itself) for hiding
implementation details and only allowing the user
access to the operations which the designer deems
necessary.[4]

Allow easier application development than non-form
based system at a programmer level,[18]

Allow restrictions/access rights within the user
community. The users may be partioned into groups for
restrictions on form usage. The partition may be as
small as a single user.[4]

The form based model allows for the easy design of
tools to analyze form flow, bottle necks, infinite
form loops and other measures of data flow.[1]

Finally, and most important in my opinion, is the fact
that forms can be made intelligent, preventing the
entry of improper data and providing the user with aid
in entering data of the correct type and, in some
cases, the correct value.[1]

Gehani does not suggest a specific Office Information System

- 17 =

implementation. Instead the focus is on three properties of
forms which, in his opimion, must be considered in the
design of any form management system.[4] These properties

are fields, abstraction, and access rights.

Fields: The importance of examining field types is in
their ability to give the form designer much
power over data entry. Several desirable
field types are defined by Gehani, including

"required”, "unchangeable" and "conditional",

Abstraction: A well designed form, according to Gebani,
will provide to the user only the informaticn
needed for the task at hand, For the designer
the form may be used in a similar manner as
an abstract data type, providing the type and
a specific set of operations to the user.
The implementation details are potentially
hidden not only from the user but from the
application programmer as well, thus
providing non-implementation dependent OIS

applications.

Access Rights: Access rights, in this paper, shall be used
to mean who (or what) can and/or should be

given the privilege of wusing data. Gehani

- 18 -

suggests that access rights should be granted
on a user rather than a work station basis,
as 1s suggested by Tsichritzis.1 The access
rights of the users will be asscociated with
the individual form, M so needing
consideration are the questions of
administration of all access rights and
access rights when applied to a non-human

user such as another computer.

OFS (Qffice Form System), developed by Tsichritzis[19], is
an implementation which, in many respects, follows the
guidelines proposed by Gehani. The set of fields is not as
robust as Gehani's guidelines, allowing only 3 types. The
first field type is used for data which is required at the
time of document creation. Once input the data may not be
changed, The second field type may be populated at initial
creation or left empty until a later time, however once the
field is populated the data may not be modified. The final

field type i1s employed for fields in which data may be

1. Gehani in reference to Tsichritzis in "a Panache of DBMS
Ideas II", F.H. Lochovsky, ed. Computer Science Research
Group, University of Toronto, Toronto, Ontario, Ca, Tech
Rep CSRG-101, 1979, pp53-T1

- 19 -

popul ated and modified at any time during the 1life of the

form,

In OFS all operations on forms are perfoarmed via a specific
work station which may be a PC or a CRT., Each work station
in the system has an assigned signature, This identifier is
retained by any form field which was modified by the
particular work station., This allows accountability of all
field values if a record is kept of which office personal

are authorized to use particular work stations,

Also providing accountability of forms is the unique Lkey
associated with each form., Only particular work stations
are allowed to perform certain types of form operations. The
form operations proposed emulate those of paper forms. They
include the ability to copy, route, file print and trace the
status of forms, A dossier consisting of a group of forms
may be created, Depending on the status of the work station
a copy of a form may be "bonded" as an official copy. Waste

station work stations are allowed to "shred" forms.

The operations of the work stations are tied together wusing
office procedures which consist of a condition, an action
and a notification. Activities fall into 3 classes, desk
activity, mail activity and coordination activity. Either

one or several activities may be needed to define a

- 20 =

procedure which will, in turn, define an office task.

FORMANAGER: Ap Office Forms Mapagement System is a database
oriented forms system which has SQL (Structured Query
Language) as a basis and allows interactive specification of

form design.[18]

Three field types, search field - used for the query of the
database, display field =~ used for data displayed as the
result of a query using a search field, and entry field -~

used for initial population and update of data values, are

provided.

Field actions specify operations which a user may perform on
the specified field and are restricted to input and update,

No delete action is allowed via the FORMANAGER interface.

FORMANAGER allows a cross referencing of multiple database
files from a single form. In the update or input mode, a
form created for cross reference purposes allows input to
multiple database files., It is possible to implement this
concept using join operations in any of a number of database
query languages. FORMAN AG ER designers chose to use
implication rules to allow specification of conditions
between a form field and the underlying relational database

table o tables.

- 3 =

Form linking provides the office procedural control in
FORMAN AGER. The control of forms is contained within the
individual form rather than in a separate program or by user
intervention via a menu or command driven system., Menus may
be provided to the user if needed. The specifications for
procedural control are specified by the system designer as a
part of the original form specification. Both conditional
and unconditionmal 1linking are supported. Unconditional
links allow a series of forms to be displayed with no user
intervention between forms, Unconditional links are always
executed, Conditional links allow interactive form display.

Links are triggered based on pre-set conditionms.

The remainder of this report concentrates on the design and
functions of the IDOMS model. The existing IS and OIS
design methodologies are not sufficiently robust for an
IDOMS model, In the current methodologies no provision is
made for the mobility or the intelligence of a data object.
Individual components of the IDOMS are modeled using
existing 0IS modeling concepts. These include the notion of
an intelligent form as referenced by Ellis and Nutt[14], the
idea of a trace facility from Officetalk[14] and the use aof

forms and form templates from Gehani[4].

Chapter 2 of the report discusses the mature of IDOMS model

- 39w

applications. Also discussed are the goals and required
operations of the model. Chapter 3 describes the components
of the IDOMS model. A summary of the research and possible

extensions to the model are presented in Chapter Y.

- 23 -

Chapter 2 - DESIGN OF IDOMS

Before defining the requirement specifications for the
IDOMS, probable uses of an IDOMS were considered in order to
design a more user oriented system, Some of the possible

uses of the IDOMS are enumerated in Figure 2.1.
2.1 Applications of IDOMS

The office enviromment is a matural application of an IDOMS.
An office can be viewed as a set of forms and associated
actions upon those forms, Actions on forms include
validation of content and circulation of a form. An IDO can
be used to simulate the form and its behavior, An IDOMS can

then be applied to the management of the office IDOs,

A publishing enviroment is a specialized office
enviroment, In addition to regular office forms such as a
memo, the IDO may represent a document. Incorporated into
the IDO could be proofreading instructions, approval levels,
and security controls on approval fields, The IDO could
also contain printer information which varied based upon the

level of individual for whom the output is intended.

Another application for an IDOMS is a software production
enviromment, The software to be installed on a machine in a

distributed enviromment could be combined with knowledge of

- 24 -

whether 1t is to be installed on this particular node. The
IDO has knowledge of whether the software is to be installed
on a given node, based on conditions at the node. The
sof tuare may not exist on this node, or it may be a newer
version than the one currently on the node. The software
enviroment might also include the knowledge of machine
protocols as a part of the IDO. The sending and receiving
protocols could be sent along with the data to ease data

transfer problems,

In a manufacturing enviromment, the IDO might monitor
production at various nodes, Based on test results at each
node the IDO and the IDOMS could change production
quantities or fine tune component parts of a manufactured
product, The IDO could cause a valve to be opened. The
opening of the valve could change the amount of a particular
chemical included in a product based on varying weather

conditions which impact on the chemical processes.

In each of the potential applications of an IDOMS there is a
common element, The application needs a data object which
has the capability to represent data, to know where it
should take that data, and what actions to take once it

arrives at the node.

- P -

1. Office Situation

2. Publishing Enviromsent

3. Software Production Enviroment
4, Manufacturing Enviroment

Figure 2.1. Applications of IDOMS

2.2 Goals and Required Commands

The outline in Figure 2.2 provides an enumeration of all of

the goals and associated commands required for the IDOMS.

- 26 -

1. Friendly user/programmer interfaces including several
forms of addressing
A, Direct Addressing-
I. By User Name
II. By Work Station or Printer Name
B. Indirect Addressing-

I. By Gemeric Work Station Type- such as
printer o one of a printer class, waste
station or user station.

II. By Group Name - such as department name or
user created group list.

2. Non=-procedural operations
Set of operations for
A, IDO Type
I. Create
II. Copy/Modify
III. Destroy
B. IDO Instance

I. Create
II. Modify
III. Copy
IV. Destroy

V. Send/Receive
YI. Trace
VII. Print Hard Copy
VIII. View on screen
IX. Interface with other tools
X. Interface with other systems
C. IDO Routing
I. Create routing specification
II. Modify routing specification
3. Security of operations -
Permissions for creation, modifications and
destruction of
I. Instances
II. Types
III. Routing specifications

Figure 2.2. Goals and Required Commands

- 27 -

Chapter 3 = IDOMS

The IDOMS consists of 2 major sub-systems: The Manager at
the Node, and the Node Manager, A node is defined to be a
logical entity with the capability to perform the necessary
functions for a particular application, The Node Manager
and Manager at The Node sub-systems provide the management

capabilities for any type of node.

anager
at
Node

Node
Manager

anager
at
MNode

Figure 3.3. IDOMS Conceptual View

3.1 Manager at the Node

The Manager at the Node(MAN) is, in general, responsible for
all actions which occur at a particular node of the syst,.
and consists of four sub-systems: Bookkeeping, IDO Instance

Creation, Management of IDO instances and Otilities.

- 96 =

Manager

Management
Bookkeeping of IDO
Instances
IDO
Instance Utilities
Creation

Figure 3.4, Manager At The Node

3.1.1 Bookkeeping

The MAN bookkeeping sub-system has six functions

- 30 -

Manager

Bookkeeping

Manage Close

Maintain Boxes e

Table

Respond Track Current

to Reports Action
Node Manager Statement
All IDQs
Activity At
Node

Figure 3.5. Bookkeeping

1. Allow entry:

The MAN's bookkeeping system verifies that an arriving
IDO instance is intended for this node by checking the

destimtion 1in the Ino instance's routing

-31 -

specification,

IDO INSTANCE IDENTIFIER:
Type
Creator Identifier
Creation Time Stamp
Priority | None
IDO Instance External Name

PERMISSIONS ON INSTANCE:
Duplicate Instance
Modify Instance Data Content
Modify Instance Action Statements
Modify Instance Routing Specification
Recall Filed Instance
Destroy IDO Instance

APPLIES TO:
Creator |
Creator + Group|
Creator + All|
None

TABLE 3.1. IDO Instance

It then updates the bookkeeping table with the arrival
time of the IDO instance, the IDO instance identifier

and IDO instance's status,

2.

- 85

IDO INSTANCE IDENTIFIER:
Type
Creator Identifier
Creation Time Stamp
Priority | None
IDO Instance External Name

IDO Time of Arrival ! Time of Creation
IDO Time of Destruction

IDO STATUS / DESTINATION:
In Box |
Here |
Out Box|
Waste Box |
Time Out |
Filed |
Fiml |
Destroyed |
Recalled |
Node Name of
Next Destination

OPEN FILES
Associated With IDO Instance

TABLE 3.2. Bookkeeping Table

This table contains an IDO identifier field, a time of
arrival field and a <destinmation field. The
destimation field contains the next node's address if
the IDO instance has been routed omward by the MAN, or

a status word,

Reports:

The bookkeeping system's reporting capabilities

3-

- 33 =

consist of

I. Reporting the current IDO activity to the Node
Manager, The report includes a 1list of the
IDO's present in the in box, out box, waste box,
and old IDO instances., An old IDO instance 1s
one whose status is "in box" and whose time of
arrival is older than 1 day. The reporting will
be performed when requested by the Node Manager,
or on a time basis such as Weekly, or Daily, or

Hourly.

II. Reporting current IDO's present at the node to
the Node Manager ar the user, The reporting to
the user is done each time the user signs on to

the system or on a time basis.

Manage in/out and waste boxes:

The bookkeeping system monitors the various boxes. It
sends messages waiting in the out box on to next node,
requests the removal of instances which have been
placed in the waste box, and checks the status of IDO
instances in the in box to determine old IDO
instances. The bookkeeping system of the MAN first

uses the IDO instance's action statements to determine

- B

what action is to be taken. The action statements
also determine the time span within which the receiver
has to respond after the receipt of the IDO instance.

Possible actions are:

I. Change the IDO instance's status to "time out"

and send the IDO instance to the pext node
II. Place the IDO instance in the waste box
III. Send a message to the user at the current node

IV. Route the IDO instance to the mext higher level

of management

The IDO instance creatar may alter, via priorities,
the order in which the handling of IDO instances
occurs. Without priorities, the user receives the IDO
instances from the in box in first in, first out
order, unless the action statements of the IDO
instance indicate a critical ordering which must be
observed. The receiver may wish to alter the order of
handling of IDO instances from the in box. 1In this
case, the user may request a list of all IDO instances
in the in box and specify, by number, the IDO instance

to presented for attention,

- 35 -

4, Close files:

The bookkeeping system closes any files opened but not
closed by the IDO instance once the IDO instance has

left this node,

5. Respond to Node Manager:

The bookkeeping system receives, acknowledges and
handles any Node Manager reports, requests for MAN
reports and the addition or deletion of IDO types as

specified by the Node Manager,

6. Track current action statement:

The bookkeeping system tracks the current action
statement in each IDO instance present at this node.
This is done each time a new action statement is
executed. This is a similar concept to that of the
management of a current instruction pointer in a

sof tiare program.

3.1.2 IDO Instance Creation

When the MAN is requested to create an instance of an IDO it
uses a template of the IDO type which is created at the Node
Manager level and the permission to create an instance of

the type which is granted by the creator of the IDO type.

- 36 -

There are three choices for access to the contents of the

varicus type templates by each MAN.

1.

One is to provide each MAN a copy of the template (or
a pointer to a template) for each type of IDO instance
which the MAN has permission to create. The type name
and template or pointer are passed to the MAN by the
Node Manager when a new type is created. The MAN then

updates an IDO instance creation table with an entry

for the pew type.

IDO Type Name

IDO Type Template / Location

This table consists of coples of the HNode Manager's

ID0O Type Table Entries

TABLE 3.3. IDO Instance Creation Table

The system is very fast in creating IDO instances,
since no searching for templates takes place, but a
lot of redundant data in the form of IDO type

templates or pointers is maintained by each MAN,

II.

II1I,

- 37 =

The second choice is for the Node Mamager to maintain
a single copy of each IDO type's template, This
eliminates redundant data storage but could cause
traffic problems during those times when many IDO
instances are being created. The MAN requests a copy
of the proper template from the Node Manager which
sends the template to the MAN, This may slow down
response time to the user and create potential bottle

necks,

The third choice is a compromise between the first
two, The MAN maintains a copy of only the most
recently requested templates or a pointer to where the
template resides. The number of templates maintained
at the node is a tunable parameter., If the parameter
is exceeded, the least recently accessed template's

copy is removed from this node.

The third alternative was used in the IDOMS design.

Associated with an IDO instance are several types of

permissions, Permissions may be granted by the IDO instance

creator for the duplication of the instance, the

modification of the content of the instance text, the

modification of the instance action statements, the

modification of the routing specification, the retrieval of

w 38 =

a filed IDO instance, and the destruction of an 1IDO
instance, These permissions may be granted either only to
the creator of the IDO instance, to the creator and all
receivers of the IDO, to the creator and a specified group
(which may or may not include all receivers), or to no one
including the creator. The last option creates a read only

ID0 instance,

The MAN allows an optionmal priority to be associated with a
particular IDO instance as a part of the IDO instance
identifier. This priority is chosen from a list of possible
priorities associated with the IDO type. The list of
possible priorities is supplied as a part of the IDO
template at the time of the creation of the IDO type. If no
priority is associated with an IDO instance, then the 1IDO
instance is handled by the MAN on a first come, first serve

basis,

The content of an IDO instance will vary for each
implementation of the IDOMS model. In every case, the IDO
instance contains a data portion, an action statement

section and a routing specification.

The data portion contains such information as the values for
fields of a form, software code to be installed at specific

nodes, the text of a memo to be modified and approved, ete,

w G

This is the type of information which is ordimarily

contained in a simple data object.

The IDO type creator defines the possible action statements
for the given type. The following action statements are the
mirimum which are supported:

I. A definition of a procedure including any conditional
actions of the IDO instance,

II. Compile commands and dependency statements for the
compilation of software for use of the model in a
sof tuare enviromment,

TII. Protocol specification statements, indicating node
specific information needed in routing or compiling
sof tware at a given node,

IV. An override action statement which allows the IDO
instance to be destroyed before it has completed its
routing, The override aids in the management of IDO
instances which contain dated material,

V. An action statement which specifies the length of time
an IDO instance may stay in the in box without being
acted upon before the bookkeeping sub-system takes
some action., The time may be specified in terms of the
mmber of days/hours or as a specific date.

VI. An action statement specifying the action the
bookkeeping sub-system should take if the IDO instance
becomes an old IDO instance. Actions were discussed
earlier in the description of the bookkeeping system.

VII. An action statement defining how often to repeat an
action statement if it 1is not successful the first
time. This may be specified as a number of ftrys, or
the number of minutes, hours,days between trys.

The routing specification identifies the receivers of the

IDO instance and the ordering of the receipt.

- 40 -

Manager

IDO
Instance
Creation

Create Help

Figure 3.6. IDO Instance Creation

Help in the creation of IDO instances is avallable to the

user in two forms.

1. A list of the types of IDO's which this MAN is allowed
to create 1is avallable upon request. It is also
displayed when an attempt is made to coreate an

instance of a type which is not allowed.
2. A sample of a skeletal form of each IDO type.

When a request to create an instance of an IDO takes place,

the permission to execute the request is verified by the MAN

- 41 -

using the IDO instance creation table (See Table 3.3). The
IDO instance oreation operation is defined in both command
line and menu driven forms. In the menu driven form the
creator is prompted for the IDO type and a unique IDO
instance external name, The proper template is then located
and displayed. The creator fills in the permissions, data
portion, action statements, and routing specification for
the particular IDO instance. A unique instance identifier
is created and placed in the IDO instance, This identifier
consists of the IDO instance type, the creator's identifier,
a time stamp for creation time, and the external name. (See
Table 3.1). The MAN's bookkeeping table is updated when an
IDO instance is created, The table contains an entry which
is the same as that of a newly arrived IDO instance, except
that the time of creation is placed in the time of arrival
field. At this point the IDO instance identifier and the
entry in the bookkeeping table are very simil ar. This
duplicate bookkeeping is necessary for the trace of an IDO

instance,

3.,1.3 Management of IDO Instances

The Management of IDO Instances sub-system provides the
capabilities to duplicate, destroy, file, recall and modify

IDO instances.

Manager

Management
of IDO
Instances

Copy Destroy

Recall

Action
Statement

Data
Content

Figure 3.7. Management of IDO Instances

3.1.3.1 Duplication of IDO Instances

Routing
Spec.

The copy command allows a duplicate of an IDO instance to be

created, The duplicate may be modified and is treated as a

new IDO instance with a unique identifier. This command is

- 3 -

useful for creating a form similar to an existing form, such
as a Purchase Order to be used to repeat an order of an

of ten ordered item.

In the execution of the copy command, the MAN performs
several functions. First, it examines the bookkeeping table
to verify that the IDO instance to be duplicated resides at
this node and that that the requester has permission to
duplicate the IDO instance. If both of the conditions are
met, the MAN creates and uniquely identifies the duplicate
instance as a new IDO instance. The new IDO instance
identifier and other related information is entered in the

bookkeeping table in the same manner as a new IDO instance.

3.1.3.2 Destruction of ID0O Instances

All IDO instances to be destroyed are placed in a special
out box known as the waste box, Periodically, such as daily
at 1 AM, or as local needs dictate via a tunable parameter,
the MAN examines the waste box for IDO instances to be
destroyed. Several conditions must be met before an IDO

instance in the waste box is removed from the system.

1. The requester must have permission, as specified in
the IDO instance identifier, to destroy the IDO

instance,

- Bl =

2., The IDO instance must have completed its routing
specification. A status of "final™ in a MAN's
bookkeeping table indicates this condition. No IDO
instance may be destroyed before it has completed its
routing specification, except in the case of an

override action statement.

3. An override placed in the action statements by the
creator of the IDO instance specifies that the IDO may
be destroyed in a specified pumber of days/hours

regardless of the status of the routing specification.

If the conditions for destruction are met, the MAN's
bookkeeping table is updated. The entry for the IDO
instance has the status/destinmation field updated to
ndestroyed" and the time of destruction is entered in the
table, The creator of the IDO instance is notified of the
ID0 instance's demise. Since an IDO instance cannot exist
at more than one node at any point in time, there is no need
to verify that the instance resides at the node before

destroying it.

Accidentally destroyed IDO instances, i,e., instances
unintentionally placed in the waste box, may be retrieved if
the rescue attempt is made before the MAN has examined the

waste box. The contents of the waste box, as well as those

- 5 -

of the in box and out box, may be listed. If an IDO instance
is still in the waste box's list, the user may request that
it be retrieved, When an IDO instance is retrieved, it is
placed in the in box and treated as a newly arriving IDO

instance and the appropriate table entries are made,

3.1.3.3 Filing of IDO Instances

In a paper office, when an item such as an inner-office memo
has been routed to all persons on the routing slip, it is
generally elther thrown away or filed scmewhere in the
office filing system. The same is true for an instance of
an IDO. If the IDO instance is to be "thrown away", it will
be automatically destroyed by the MAN in the same manner as
any other IDO instance placed in a waste box, If it is to
be filed it is given to the Node Manager to be filed as a
system resource, as the IDO instance is not associated with
a particular MAN once it has completed its routing
specification. Before giving the IDO instance to the Node
Manager, the MAN updates the bookkeeping table changing the
status of the IDO instance to "filed". The Node Mapager 1s
requested by the MAN to file the instance of the ID0O. The
Node Manager updates the Filed IDO Table with an entry
containing the IDO instance identifier, the retrieval

permissions, from the IDO instance, and the status. The

- 46 =

IDO instance's status in the Filed IDO Table is "in",

IDO INSTANCE IDENTIFIER:
Type
Creator Identifier
Creation Time Stamp
Priority | None
ID0 Instance External Name

IDO INSTANCE RETRIEVAL PERMISSIONS:
Recall Filed Instance |
No Retrieval Permission Granted

IDO INSTANCE STATUS:
In| :
Identifier of Requester

ID0O INSTANCE TIME STAMP:
Null |
Check out time (if status not "In")

TABLE 3.4, Filed IDO Table

3.1.3.4 Recalling of IDO Instances

In order to examine a filed IDO instance, the instance must
be recalled fram the Filed IDO table. The recall is
accomplished either by specifying the IDO instance's
external meme in a command driven mode or by selecting the
name from a list., The list is maintained by the Node Manager

and may be requested in several formats:

1. By type - listing all filed instances of the type

- 47 -

specified

2. By type = listing only the instances of the type

specified which this user has permigsion to recall

3. All instances of all types filed

4, A catalogue of IDO type names

When the MAN requests the recall of an IDO instance, the
Node Manmager is notified of the request. The requested
filed IDO instance is retrieved by the Node Manager and
given to the requesting MAN after verification of permission
to retrieve the IDO instance has been completed. The Node
Manager updates the Filed IDO table changing the 1IDO
instance's status in the table to the requester's identifier
and populates the time stamp field, The Node Manager

manages the notification for overdue IDO instances,

When the MAN receives a copy of the filed IDO instance it is
placed in the regquester's in box, The requester is
responsible for re-filing the IDO instance. If the MAN does
not return the recalled IDO instance within a given period
of time, the MAN is requested by the Node Manager to remove
the recalled instance from the node. The Node Manager then
updates the Filed IDO table's status field for the filed

instance to "in",

o BB -

In some circumstances, it may be necessary to re-circulate
or modify and re-circulate a recalled IDO instance. In this
case, the recalled IDO instance should be returned to the
MAN's 1list of current IDO instances. It is possible,
however, that the IDO type has been removed after the IDO
instance was filed therefore, the MAN requests that the Node
Manager verify that the IDO type still exists, Af ter
checking the Node Manager's IDO type table (See Table 3.5)
the Node Mamager returns a message. The message will be

either:

a, Type exists, Reactivate

b. Type removed, Do not reactivate

c. Type removed, Addendum type exists, Reactivate as

addendum type

An addendum type is created for the specific purpose
of re-routing filed IDO 1instances, It is a
geperalization of the concept of re=routing an office

form with an attached addendum.

-.!;g-

IDO Type Name
IDO Type Template / Location

PERMISSIONS:

Copy Type
Remove Type

Create Instance of Type

TABLE 3.5. IDO Type Table

If the IDO type is still active, the Node Manager 1s
notified by the MAN to remove the filed IDO instance from
its Filed IDO table, The recalled IDO instance 1is re-
activated by updating the MAN's bookkeeping table in the
same manner as is done for a newly arrived IDO instance.
The recalling node is identified as the creator. The
requester of the recalled IDO instance is prompted to define
a routing specification. At this point the newly activated
IDO instance is treated in the same manper as any other

current IDO instance.

If the IDO type has been removed but an addendum type exists
and the requester has permission to create an IDO instance
of the addendum type, the recalled IDO instance may be made
active as a pew IDO instance of the type addendum. The IDO
instance is identified and entered in all tables in the same

manner as a newly created IDO instance. The IDO instance's

- 50 -

creator is that of the reactivator of the recalled IDO
instance. If no addendum type exists, and the origimal IDO
type is no longer valid, the requester is notified and the

recalled IDO instance may not be made active again.

3.1.3.5 Modification of the IDO instance

Once an instance of an IDO has been created a receiver may
desire to modify the data content, action statements or
routing specification. All three operations are permitted,
assuming the ocreator of the IDO instance granted the

receiver permission to perform the operation.

The modification of the IDO instance's data coptent will, in
many cases, be the most frequently used (and permitted) of
the three modification operations. Depending on the
application, the data content modification needs themselves
will vary. A form's content is often intended to be
modified by each receiver, Textual material such as that in
a memo may be static and thus routed without being modified.
It is possible that the memo content should not be changed,
but a note may be added by the receiver, If this is the
case o the memo is being routed for the purpose of being
proof-read, the creator of the IDO instance is notified each
time a modification takes place. This is controlled by the

action statements,

- 51 =

Once an instance is coreated, the actiop statements will
often remain fixed, If modification is needed the ability to
modify the action statements of an IDO instance is based on
the permissions associated with the IDO instance at the time
of its creation. Verification of the permission to modify

the IDO instance is done by the MAN.

As with the action statements, the routing specification
will generally remain fixed, however, the IDOMS model doces
not prevent the changes to take place thus providing greater
flexibility in the application of the model. The user, if
given permission, may change the routing specification to

add or delete receivers,

3.1.4 Utilities

The Utilities sub-system provides access by the MAN to
devices and tools which are not resident at the requester's
node. Each user is allowed to access all system resources
without being concerned about the location of the resource.
In the MAN sub-system, the Utilities sub-system requests

resources fram the Node Manager.

- 52 -

Manager

Utilities

Access
Tools

Figure 3.8. Utilities

3.1.4.1 Print Hard Copy

The ability to access printers or other peripherals is
handled as a request by the MAN to the Node Manager for
peripheral access, The Node Manager handles the request,

notifying the MAN of the success or failure of the request.

3.1.4.2 Access tools not resident at the node

Access to other tools such as spreadsheets or database
management systems is handled as a request by the MAN to the
Node Manager unless the tool is resident at the requesting

node, In that case, the MAN is solely responsible for

handling the request, The request is handled by the Node

Manager in a similar manner to that for peripheral devices.

3.2 Node Manager

The Node Manager is the facilitator of communication and
overall controller of the MANs, IDO instance trace requests,
overdue IDO instances, and the management of IDO types

including the type creation, copy and removal operations,

Node
Manager

M t
Rset;;:tss o Utilities

Types

Management DO
of IDO Design
Instances Tools

Online
Help

Figure 3.9. Node Manager

.

3.2.1 Status Reports

The Node Manager functions much in the same manner as a
department head over departmental employees. It may request

a status report from any of the Manager's at the Node (MAN).

Node
Manager

Status
Report
Activity All
by Node
Node Activity

Figure 3.10, Status Reports

The status reports are:

1. The summary of activity at a particular MAN. This
includes the identifiers of any IDO instances which
are present in the in box, the out box and the waste

box, and the identifiers of any old IDO instances.

2. The summary of all MAN activity including which IDO

instances are present at each node, which are between

nodes and any M"lost® IDO instances.

The identity of IDO instances which are between nodes
may be determined by examining the bookkeeping table
of each MAN. Any of the IDO instances for which the
destimtion field is a node name rather than one of
the status words is between nodes. The identity of
lost IDO instances may be determined by evaluating two
consecutive "between node" lists, Any IDO instances
which appear on two consecutive reports and which have

the same intended destination are considered lost,

The Node Manager is responsible for routing, analyzing and
removing any periodic status reports generated by the

individual MAN's bookkeeping system.

3.2.2 Management of IDO Types

Three operations are defined for IDO types: IDO type

creation, IDO type removal and IDO type copy.

u Ef -

Node
Manager

Management
of IDO
Types
Create Remove
Copy

Figure 3.11, Management of IDO Types

Note that there is not IDO type modification operation.
Once an IDO type is defiped it may not be changed except via

the copy operation.

Typically an application will allow only a select few
individuals to perform the IDO type operations. The
permission to execute the commands is granted either by
login ID and operations are perfoarmed by certain
individuals, by specific workstation ID and operations are
performed at certain workstations, or by specific job

function and operations are performed by individuals of a

- 57 =

particul ar title, such as system administrator, The
permission to execute the type commands are maintained by

the Node Manager,

3.2.2.1 IDO type creation

The IDO type creation operation is provided in both a
command line and a menu driven manner., The type creation
command displays the basic structure of an IDO type and
allows the creator to fill in the details for a new type.
The new type is not limited to forms., It may defipe an

entire procedure involving other types.

The creator first names the new IDO type, having the system
verify that no type already exists by that name. The
creator then provides the general framework for the data
portion of the IDO type. This may be a form template, a
program skeleton, a memo outline, etec. The remaining
information is provided when an instance of the type is
created by a MAN. The oreator then lists the action
statements which are permitted for the new type. These may
be in the form of specific statements or general rule
categories, If rule categories are specified, an instance
creator chooses applicable actions rather than being glven a
set of fixed action statements for the IDO instance. The

menu driven type creation command provides a list of system

- 58 =

supported action statements from which to select. Finally,
the <creation operation regquests specification of
permissions, The permissions specify which individual MAN's
are permitted to create an instance of the newly definped
type, as well as who is allowed to copy or remove the type
definition. In most applications the type creator restricts
the last two operations to himself. The permissions are
stored in the Node Manager's IDO type table, along with the
type mame and the location of the new IDO type's template,

(See Table 3.5)

The Node Manager notifies those MANs given permission to
create instances of the newly defined IDO type about the new
type's existence and provides a copy (or the location) of

the template for the new IDO type.
3.2.2.2 IDO type copy

The ability to copy an existing IDO type and modify it to
create a new IDO type is provided in order to allow a secure
way to modify an existing IDO type. The existing IDO type is
not destroyed as would be the case with a type modification
operation. The Node Manager checks the IDO type table to
verify the permission to copy the specified type. The mame
of the copied type is specified. The changes to the copy are

specified and the copy is stored in the same manner as a new

- 59 -

ID0 type.
3.2.2.3 ID0O type removal

When a request to remove an IDO type is made to the Node
Manager, the Node Manager first verifies, using the IDO type
table, that the requester is allowed to destroy the type. It
then traces and reports the status of each current instance
of the type and any filed instances of the type. A current
instance of an IDO is one which is in a MAN's in box, out
box, waste box, being processed by the npode, or between
nodes., The Node Manager then analyzes the reports on the
status of all instances of the type requested to be deleted.
The implementation may either allow the type to be destroyed
only if there are no current or no filed instances of t!he
type, which allows removed types to later be recreated, or
allow an IDO type to be destroyed if there are no current
instances of the type but filed instances exist. The second
alternative prevents any filed instances of the removed type

from being recalled other than as an addendum type.

If the criteria for removal of the type are met, the Node
Mapager's IDO type table is updated and the IDO type entry
for the type to be removed is deleted. All MANs allowed to
create instances of the removed IDO type are notified of the

removal of the IDO type.

- 60 -

3.2.3 Management of IDO Instances

The Node Manager sSub-system manages ID0O instances as
directed by the individual MANs. Four operations- file
instance, recall instance, overdue instance and trace

instance are defined.

Node
Manager

Management
of IDO
Instances
/ -\
File Recall
Trace Overdue

Figure 3.12. Management of IDO Instances

3.2.3.1 Filing IDO instances

Upon request fram a MAN to file an instance of an IDO, the
Node Mamager checks the Filed IDO table to see if the IDO

instance being filed is the return of a recalled ID0O or a

- B =

pewly filed instance, If this is a newly filed IDO instance
an entry containing the IDO instance's identifier, retrieval
permissions and the status of the instance is created in the
Filed IDO table, The status field of the filed instance is
marked as "in", If this is a return of an earlier filed IDO
instance, the status is changed to "in" and the time stamp

field is made null.
3.2.3.2 HRecall of filed IDO Instances

When a request is made by a MAN to recall a filed IDO
instance, the Node Manager verifies the requester's
permission, It then updates the entry for the filed 1IDO
instance in the Filed IDO table placing the requester's
identifier in the status field and records a time stamp.
The Node Manager sends a copy of the recalled IDO instance

to the requester's in box.
3.2.3.3 Overdue IDO Instances

The Node Manager periodically examines the time stamp field
for all entries in the Filed IDO table with a status other
than ™ n". Any filed IDO instance whose time stamp is older
than some specified length of time is considered "overdue®,
MANS with "overdue” recalled IDO instances are notified.

When the filed instance is returned the Filed IDO table is

- 62 -

updated by the Node Manager.

3.2.3.4 Trace IDO Instance

The Node Manager handles any request from a MAN to trace a
"missing® IDO instance, The first step in the trace of an
IDO instance is to determine the origin of the missing IDO
instance, If the creator of the IDO instance requests the
trace, the creator's bookkeeping table is examined to
determine the IDO instance's next destination and the
complete IDO instance identifier., The bookkeeping table of
the node specificed as the next destinmation is then
examined, looking for the missing IDO instance's identifier.
This procedure is followed until the missing IDO instance is
located or determined lost, It will be declared lost if the
node specified as the destination in the bookkeeping table
does not contain an entry for the missing IDO instance. The
requester of the IDO instance trace must identify himself as
the creator and provide the external mme o the IDO

instance at the time of the trace request.

If any MAN other than the creator of the missing IDO
instance requests a trace, only the external mme is
required, The Node Manager requests a query of each MAN's
bookkeeping table until an entry for the IDO instance is

found, At that time the procedure progresses in the same

- 63 -

manner as described above.
3.2.4 UOtilities

The Node Manager sub-system handles all requests from the
individual MANs for access to system wide resources through

the Utilities sub-system,

Node
- Manager

Utilities

~

Access
Tools

Print
Hard
Copy

Figure 3.13. OUtilities

3.2.4.1 Print Hard Copy

When a request for a hard copy of an IDO instance comes fram
the MAN to the Node Manager, the Node Manmager notes the
identifier of the requester and acknowledges the request
after determining the availability of the the desired output

device. If the device is not available, the MAN is

notified, If a class of device (such a letter quality
printer) rather than a specific device (such as pr1) 1is
requested, the Node Manager checks for the availability of
any resource of the class specified before sending an
acikmowledgement to the MAN. After the acknowledgement of

the request, the hard copy output is produced.
3.2.,4,2 Access tools not resident at the node

When the Node Manager receives a request from a MAN to
access a sSystem tool, such as a database management system
or a graphies utility, the identifier of the requester 1is
noted and the requester is sent an acknowledgement of the
request, The request is executed and the results are
returned, If the request cannot be executed, the MAN is

notified,
3.2.5 Online Help

In addition to the menu driven commands, help is provided
online to the user of an IDOMS application, This help is in
the form of a pop-up menus or a similar myser-friendly"

facility.

- G5 -

Node
Manager

Online
Help
Type Type
List List DlSDlag
All Al
of All Recallable
Type

Figure 3.14., Online Help

For IDO type creation, a menu listing the tools available
for type creation and a short online help message providing

instructions are provided by the Node Manager.

For IDO instance creation and recall, a Help Menu is

accessible from more than one point in the system. The menu

provides

- Bl

1. A list of all of the types of which this MAN may

create instances.

2, The ability to view a sample (selectable by a mouse,
an item number on a menu, a touch sensitive screen,
etc,) of each of the IDO instance types in order to
decide which type to create. This viewing is allowed
to take place before an IDO instance type is specified

for creation.

3. Alist of all IDO instances at the MAN and their

status,

L, A list of all filed IDO instances which the user may

recall,

5. A list of all filed IDO instances.

3.2.6 IDO Design tools

- 67 -

Node
Manager
IDO
Design
Tools
Editors Graphic
IDO Tools
Compilers

Figure 3.15. IDO Design Tools

Tools to aid the design of IDO types are provided in the

form

1.

This

of :

Compiler(s) for action statements in programming
1anguage(s).

Digitizer/graphies tools for IDO types which
incorporate graphics in the data portion's template,
Visual syntax editors for IDO type creation and IDO
instance creation.

chapter has presented the IDOMS model which 1is

w 5B =

comprised of the Node Manager and individual Manager's at

the Node,

- 69 =

Chapter 4 - CONCLUSIONS

4.1 Summary

This report discusses the IDOMS model as a solution to the
problem of how to momitor and correlate the operations
performed on Intelligent Data Objects. While mobility and
intelligence are properties which allow the IDO to represent
certain real world behaviors, it is those very properties
which make the design of the IDOMS model unique,
Traditional methodologies and models are not sufficiently
robust for the IDOMS design., There is no provision for a
data object that is mobile and has the power to alter
itself, other data objects and/or its enviroment. This

research work produced the overall design for the IDOMS.

The IDOMS model contains 2 major sub-systems - the Node
Manager and the Manager at the Node. The Node Mapager sub-
system's main function is system administration. The
Mapager at the MNode sub-system's major function is the
management of IDO instances including routing (via the
bookkeeping sub-system) creation, duplication, destruction,

filing, recalling and modification of an instance.

The IDOMS model is intentionally defined at an abstract

level in order that it may be used to represent a number of

- 70 =

enviroments including that of an office or a volatile
manufacturing process, However, the individual functions are
specified in terms of the characteristics and capabilities
they must have and in terms of the communication

requirements with other functions in the system.
4,2 Extensions/Implementation Issues

A number of extensions to the IDOMS model could be made.
These extensions include modifications to allow multiple
users to be serviced by a single MAN, to move some of the
administration of IDO instances from the MAN to the Node
Manager, to explicitly provide the capability for an IDO
instance to interface with other tools or systems, and an

implementation of the model.
4,3 Extensions of the IDOMS model
4.3.1 Multiple Users at a MAN

The IDOMS model uses the MAN to represent a single user. An
extension to the model could allow a MAN to provide service
to more than ope user, This extension would necessitate
additionmal levels of addressing for the in boxes since the
user and the MAN would not be equivalent. Either one in box
per MAN with an additionmal level of permissions or one in

box per user would be needed.

- TY =

4.3.2 Node Manager Responsibilities

In the IDOMS model, each MAN maintains a bookkeeping table
which maintains a history of all IDO instances that have
visited the node, An alternmative design could incorporate
all the individual MAN bookkeeping tables into a single
table which is maintained by the Node Manager., An advantage
to this alternmative is the fact that only one table must be
maintained., This means no duplication of bookkeeping data
and therefare less system storage space used, It also
simplifies the trace oﬁeration since the Node Manager's
table always contains the current location, One
disadvantage is an increased number of messages from the
MANs to the Node Manager. Each time an IDO instance leaves a
MAN, a message to update the Node Mamager's table 1s sent.
Another disadvantage is the loss of the IDO instance history

which is provided by the bookkeeping table at each MAN.
4,3.3 IDO Instance Interface

The ability of an IDO instance to interface with other tools
or systems is not explicitly incorporated into the IDOMS
model. Since IDO instances and types contain action
statements, there is nothing in the IDOMS model which
prevents an action statement from accessing a tool or

another system., The explicit specification of the interface

-T2 =

could be added to the model to make the use of the interface

feature more self-documenting,

4,4 Implementation of the IDOMS model

An obvious extension to the design of the IDOMS model is an
implementation of the model. In the design of the model a
conscious decision was made not to implement the model at
this point in time. That decision was made for several
reasons. The primary reason was a desire to remain
absolutely free to consider every aspect of the design of
the model, 1In this way the design was not inadvertently
influenced by any constraints of hardware, system response
time, storage requirements, etc. This freedom alded in the
IDOMS model being applicable to a wide range of
applications, Additionally, ongoing work at Kansas State
University may be used to implement components of the IDO
and which possibly could be used to implement some of the

functions of the IDOMS.

When an implementation of the IDOMS model is accomplished,
some consideration must be made of the IDO's special
properties of mobility and intelligence. Selection of the
application's supported action statements should be made
carefully, Chapter 3 of this report 1lists other

considerations including a choice concerning the allowable

- T3 =

destruction of IDO types, the access of IDO type templates
by the MAN, and the content of the IDO type. Other
implementation dependent decisions include the choice of
routing algorithms, queueing mechanisms, priority schemes
and application specific features such as the lockdng of

field values in a form driven system,

- 74 =

BIBLIOGRAPHY

Ahlsen, Matts and Bjornerstedt, Anders and Britts, Stefan
and Hulten, Christer and Soderlund, Lars, "An Architecture
for Object Management in OIS", ACM Transactions on Office

Information Systems, Vol. 2, No, 3, July 1984, pp. 173=196

Bracchi, Giampio and Pernici, Barbara "The Design
Requirements of Office Systems", ACM Transactions on Office

Information Systems, Vol. 2, No. 2, April 1984, pp. 151-170

Bracchi, Giampio and Pernici, Barbara "SOS: A conceptual
Model for Office Information Systems", DATA BASE, Winter

Busack, Nancy Long "The Intelligent Data Object and It's
Data Base Interface", Summer 1985 Masters Report, Kansas

State Oniversity

Cox, dJames F,, Ledbetter, William and Snyder, Charles
"Methodol ogy Identifies Networking Requirements for
Implementing An Office Automation System", Industrial

Engimeering, Vol. 16, No. 12, December 1984, pp. 52-56

-T5 =

Croft, W. Bruce and Lefkowitz, Lawrence S, "Task Support in
an Office System", ACM Transactions on Office Information

Culman, Mary J., "The Dimensions of Accessibility to Onlire
Information: Implications for Implementing Office
Information Systems", ACM Transactions on Office Information

Systems, Vol, 2, No. 2, April 1984, pp. 141-150

Ellis, Clarence A, and Nutt, Gary J. "office Information
Systems and Computer Science”, Computing Surveys, Vol. 12,

No. 1, March 1980, pp. 27=60

Faloutsos, Chris and Christodoulakis, Stavros, "Signature
Files: An Access Method for Documents and its Analytical
Performance Evaluation®, ACM Transactions on Office
Information Systems, Vol. 2, No. 4, October 1984, pp. 267~

288

Gantt, Dorothy M., "Management of An Intelligent Data

Object", Summer 1985 Masters Report, Kansas State University

Gehani, N.H,, "High Level Form Definition in Office

Information Systems", The Computer Journal, Vol. 26, No, 1,

- 76 -

1983, pp. 52-59

Gehani, N.H., "The Potential of Forms in Office Automation”,
IEEE Transactions on Communications, Vol. COM-30, No. 1,

January 1982, pp. 120-125

Gibbs, Simon, and Tsichritzis, Dionysis, "A Data Modeling
Approach for Office Information Systems®, ACM Transactions
on Office Information Systems, Vol. 1, No. 4, October 1983,

ppP. 299-319

'Gould, John D. and Boles, Stephen J. "Human Factors
Challenges in Creating a Principal Support Office System-
The Speech Filing System Approach®, ACM Transactions on
Office Information Systems, Vol. 1, No. 4, October 1983, ppP.

273-298

Habn, Randy "A KNOWLEIGE ENGINEERING APPROACH TO ACM",

Spring 1986 Masters Thesis, Kansas State University

Huml, Kathy Pederson "Intelligent Data Object Mamagement
System (IDOMS)", Summer 1985 Masters Report, Kansas State

University

-17 -

Hammer, Michael, Howe, W. Gerry, Kruskal, Vincent J., and
Wladawsky, Irving (IBM Thomas J. Watson Research Center) "A
Very High Level Programming Language for Data Processing
Applications®, Communications of the ACM, Vol. 20, No, 11,

November 1977, pp. 832-840

Konsynski, Benn R., Bracker, Lynne C, and Bracker, William
E. Jr "A Model for Specification of Office Communications",
IEEE Transactions on Communications, Vol, COM-30, No. 1,

January 1982, pp. 27=36

Lyngbaek, Peter and McLeod, Dennis, "Object Management in
Distributed Information Systems", ACM Transactions on Office

Information Systems, Vol. 2, No, 2, April 1984, pp. 96-122

Martin, Merle P, and Fuerst, Dr. William "Communications
Framework for Systems Design”, Journal of Systems

Management, Vol. 35, No. 3, March 1984, pp 18-25
McBride, R.A. and Unger, E.A., "Modeling Jobs in a
Distributed System”, 1983 ACM Conference on Persomal and

Small Computers SIGPC Notes, Vol. 6, Number 2, pp. 32-35

McQuillan, J. "0ffice Automation Strategies: Designing Your

- 78 -

Office Automation Architecture", Business Communications

Review, Vol. 13, No. 6, Nov./Dec. 1983, pp. 41-42

Mazer, Murray S. and Lochovsky, Frederick, "Logical Routing
Specification in Office Information Systems", ACM
Transactions on Office Information Systems, Vol. 2, No. 4,

October 1984, pp. 303-330

ODell, Peter ™esign: Do-it-Yourself Systems", Computer

mdﬂonﬂ, Vol. 17, No. 9, HBY 7’ 1985, PP haguur ua-hg

Olive, Antoni "Analysis of Conceptual and Logical Models in
Information Systems Design Methodologies", Facultat
d'Informatica, Universitat Politecnica de Barcelona,
Barceloma, Spain, Olle, T.W.; Sol, H.G.; Tully, C. J.
(Editors), Information Systems Design Methodologies: A
Feature Analysis. Proceedings of the IFIP WG 8.1 Working

Conference, July 1983, pp. 63=85

Paddock, Charles E. and Scamell, Richard, "0ffice Automation
Projects and Their Impact on Organization, Flanning and
Control, ACM Transactions on Office Information Systems,

Vol, 2, No. 4, October 1984, pp. 289-302

- T9 =

Panko, Raymond, "38 Offices: Analyzing Needs in Individual
Offices", ACM Transactions on Office Information Systems,

VO].. 2’ No. 3, July 193“, pp. 226‘23“

Pressman, Roger S., Software Epgineering: A [Practitioper's
Approach, McGraw-Hill, Inc., 1982

Rykowski, Ronna Wynne "Design of the IDO for the Intelligent
Data Object Management System (IDOMS) Project™, Summer 1985

Masters Report, Kansas State University

Sewezwicz, Richard P, "Form Definition Language for
Intelligent Data Objects", Summer 1985 Masters Report,

Kansas State University

Suchman, Lucy A., "Office Procedure as Practical Action:
Models of Work and System Design", ACM Transactions on
Office Information Systems, Vol. 1, No. 4, October 1983, pp.

320-328

Tsichritzis, D., "Form Management", Communications of the

AQ{, Jul? 1932. VO].. 251 RO. 7’ PP 1'-53-"73

Tsichritzis, D., "OFS: An Integrated Form Management

- 80 -

System”, Proceedings of the ACM International Conference on

Very Large Data Bases, 1980

Yao, S. Bing and Hevner, Alan R. and Shi, Zhongzhi and Luo,
Dawel "FORMANAGER: An Office Forms Management System®™, ACM
Transactions on Office Information Systems, Vol. 2, No. 3,

July 1984, pp. 235=262

4.

Te

- 81 -

Gehani, N.H., "High Level Form Definition in Office
Information Systems", The Computer Journal, Vel. 26, No,

1, 1983, pp. 52-59

McBride, R.A. and Unger, E.A., "Modeling Jobs in a
Distributed System™, 1983 ACM Conference on Persomal and

Small Computers SIGPC Notes, Vol. 6, Number 2, pp. 32-35

Gantt, Dorothy M., "Management of An Intelligent Data
Object™, Summer 1985 Masters Report, Kansas State

University

Gehani, N.H., "The Potential o Forms in Office
Automation", IEEE Transactions on Communications, Vol.

COM=-30, No. 1, January 1982, pp. 120-125

Hahn, Randy "A ENOWLEDGE ENGINEERING APPROACH TO ACM",

Spring 1986 Masters Thesis, Kansas State University

Busack, Nancy Long "The Intelligent Data Object and It's
Data Base Interface", Summer 1985 Masters Report, Kansas

State UOniversity

Huml, Kathy Pederson "Intelligent Data Object Management

System (IDOMS)", Summer 1985 Masters Report, Kansas

10.

1.

12.

13.

State University

Rykowskd, Ronna Wynne "Design of the IDO for the
Intelligent Data Object Management System (IDOMS)
Project™, Summer 1985 Masters Report, Kansas State

University

Sewezwicz, Richard P. "Form Definition Language for
Intelligent Data Objects®, Summer 1985 Masters Report,

Kansas State University

Presaman, Roger Sss Software Enzineering: A
Practitioner's Approach, McGraw-Eill, Inc., 1982

Bracchi, Giampio and Pernici, Barbara "The Design
Requirements of O0ffice Systems", ACM Transactions on
0ffice Information Systems, Vol. 2, No. 2, April 1984,

pPP. 151=170

Gibbs, Simon, and Tsichritzis, Dionysis, "A Data
Modeling Approach for Office Information Systems", ACM
Transactions on Office Information Systems, Vol. 1, No.

4, October 1983, pp. 299-319

Konsynski, Benn R., Bracker, Lynne C. and Bracker,
William E, Jr "A Model for Specification of Office

Communications", IEEE Transactions on Communi ca tions,

14,

15.

16.

17.

18.

19.

- B3 =

Vol. COM=-30, No. 1, January 1982, pp. 27-36

Ellis, Clarence A. and Nutt, Gary J. nOffice
Information Systems and Computer Science®", Computing

Surveys, Vol. 12, No., 1, March 1980, pp. 27-60

Lyngbaek, Peter and McLeod, Dennis, "Object Management
in Distributed Information Systems", ACM Transactions on
Office Information Systems, Vol. 2, No, 2, April 1984,

pp. 96-122

Hammer, Michael, Howe, W. Gerry, Kruskal, Vincent J.,
and Wladawsky, Irving (IBM Thomas J. Watson Research
Center) "A Very High Level Programming Language for Data
Processing Applications", Communications of the ACM,

Vol. 20, No, 11, November 1977, pp. 832-840

Bracchi, Giampio and Pernici, Barbara "S0S: A conceptual
Model for Office Information Systems", DATA BASE, Winter

1984, Vol. 15, No, 2 pp. 11-18

Yao, S. Bing and Hevner, Alan R. and Shi, Zhongzhi and

Luo, Dawel "FORMANAGER: An Office Forms Management
System", ACM Transactions on Office Information Systems,

Vol, 2, No. 3, July 1984, pp. 235-262

Tsichritzis, D., "OFS: An Integrated Form Mamagement

-8y -

System", Proceedings of the ACM International Conference

on Very Large Data Bases, 1980

- 85 -

Appendix A

Definition for the ACM model data object

;Object Definition ==w=

;This 1s the definmition for the ACM model data object

;Designator tuple definitione==——e—==

(eb Instance
(Spatial int)
(Time int)
(0 int))

(eb Designator
(Context 1isp)
(User lisp)
(Instance struct)
(Alias lisp))

send Designator

-——— - - -

sAttribute tuple definition-

(eb Attribute

(Type symbol)
(Obj=struct set of struct)
(Relationship 1lisp))

;end Attribute-

:Representation tuple definition-

(eb Representation

(Location lisp)
(Coding-scheme 1isp)
(Packing struct))

;Packing structure refers to a
;network implemetation not yet
;def ined

;end Representation-

;Coporality tuple definition-

(cb Longevity
(Static 1lisp) |
(Fixed 1lisp) |

(Cc

(dynamic lisp) |
(fluid 1lisp))

(eb Authorization
(Security 1lisp))

(ecb Corporality
(1 struct Longevity)
(e struct Authorization))

send Corporality

;Value tuple definition====w=

(cb Value ,
(Information set of struct)

(Actual=value lisp))

;Set of structures includes Boolean,

;integer, real, characters, and the
;jaggregation structure

jend Valuewwe=

;Data-Object Definition-

(eb Objects

(N struct Designator)

(A struct Attribute)

(R struct Representation)
struet Corporality)

(V struct Value))

;end Data=-Object Definition-

;Action definitions -

{eb Kernal
(Operation struct))

{cb Action

;Functional Frame which will carry
;out the actual operation on the
;data object.

- 87 =

(Stimul ation lisp)

(Material 1lisp) ;List of needed data-objects to fire
; operation,
(Action struct Kernal) ;Operations to be preformed on Materia

; in Actions material list,
(Request lisp)
(Termination lisp)
(Path lisp))

send Action- - e e

The Action definitions were not considered in the IDOMS

design.

Design of IDOMS:

Intelligent Data Object Management System

by

Michelle Klaassen Waltmire

B.S. Southwestern Oklahoma State Unmiversity, 1976

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1986

In an office enviromment, many types of information must be

communicated among the occupants of that office and to other
persons with whom the office personrel interact. Often that

communication is done through the use of an office form.

Forms have several purposes including serving as information
collection and disseminmation instruments, and as audit trail

evidence of a particular transaction of business.

Office forms of ten are not independent entities since many
individuals have the responsibility for managing forms,
Tnereasingly, there is the desire and the need to simulate
the behavior of an object such as an office form, or an

entire office, in a computer system.

In order to simulate the behavior of an office, a simple
data object is not sufficient. Instead what is needed is an
object which will represent the elements of the form as well
as the operations which are associated with that form. The
object needed is therefore some type of intelligent mobile
object. That intelligent mobile object has, in previous
work at Kansas State University, been defined as an

Intelligent Data Object (IDO).

Since the IDO is to be used to represent the aoffice form's
behavior, an Intelligent Data Object Management
System(IDOMS) is mneeded to simulate the office form

management tasks by momtoring and correlating the

operations or subsystems of operations performed on the

IDOs.

The research documented in this report is that of
demonstrating the feasibility of an IDO via an IDOMS design.
This report contains a data flow model of the IDOMS design,
a functional breakdown of the design, and the ratiomale
behind the design. Any unique characteristies of the 1IDO
are identified along with the potential impact on the design

of the IDOMS.

