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Semianalytical Solution for Dual-Probe Heat-Pulse Applications 1 

that Accounts for Probe Radius and Heat Capacity 2 

 3 

ABSTRACT 4 

The dual-probe heat-pulse (DPHP) method is useful for measuring soil thermal properties. 5 

Measurements are made with a sensor that has two parallel cylindrical probes: one for 6 

introducing a pulse of heat into the soil (heater probe) and one for measuring change in 7 

temperature (temperature probe). We present a semianalytical solution that accounts for the finite 8 

radius and finite heat capacity of the heater and temperature probes. A closed-form expression 9 

for the Laplace transform of the solution is obtained by considering the probes to be cylindrical 10 

perfect conductors. The Laplace-domain solution is inverted numerically. For the case where 11 

both probes have the same radius and heat capacity, we show that their finite properties have 12 

equal influence on the heat-pulse signal received by the temperature probe. The finite radius of 13 

the probes causes the heat-pulse signal to arrive earlier in time. This time-shift increases in 14 

magnitude as probe radius increases. The effect of the finite heat capacity of the probes depends 15 

on the ratio of the heat capacity of the probes (C0) and the heat capacity of the soil (C). 16 

Compared to the case where 10 =CC , the magnitude of the heat-pulse signal decreases (i.e., 17 

smaller change in temperature) and the maximum temperature rise occurs later when 10 >CC . 18 

When 10 <CC , the magnitude of the signal increases and the maximum temperature rise occurs 19 

earlier. The semianalytical solution is appropriate for use in DPHP applications where the ratio 20 

of probe radius (a0) and probe spacing (L) satisfies the condition that 11.00 ≤La . 21 

 22 

 23 
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INTRODUCTION 1 

The dual-probe heat-pulse (DPHP) method is widely used for measuring soil thermal 2 

properties and volumetric water content. Measurements are made with a sensor that consists of 3 

two parallel cylindrical probes. The heater probe contains electrical resistance wire used to 4 

introduce heat at constant rate during a finite time interval (typically 8–12 seconds), and the 5 

temperature probe contains a thermistor or thermocouple to measure change in temperature as a 6 

function of time. If the distance between the probes and the rate and duration of heating are 7 

known, soil thermal properties (i.e., volumetric heat capacity, thermal conductivity, and thermal 8 

diffusivity) can be estimated from the transient temperature response by using an appropriate 9 

solution of the heat conduction equation. Volumetric water content can be determined from the 10 

volumetric heat capacity if the soil bulk density and the specific heat of the soil solid constituents 11 

are known. 12 

The solutions currently used in conjunction with the DPHP method treat the heater probe as 13 

an infinite line source from which heat is released instantaneously (Campbell et al., 1991) or 14 

during a finite time interval (Bristow et al., 1994). These solutions are generally regarded as 15 

appropriate for determining thermal properties and water content, but they do not account for the 16 

finite radius and finite thermal properties of the probes. By using numerical models, Guaraglia 17 

and Pousa (1999) and Hopmans et al. (2002) demonstrated that thermal property estimates may 18 

exhibit significant bias if the finite radius and finite thermal properties of the heater probe are not 19 

taken into account. A growing body of experimental evidence also suggests that the DPHP 20 

method may result in biased estimates of thermal properties and water content (Tarara and Ham, 21 

1997; Song et al., 1998; Bristow et al., 2001; Basinger et. al., 2003; Ochsner et al., 2003; Ham 22 

and Benson, 2004). To our knowledge, no attempt has been made to investigate the effects of the 23 
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finite radius and finite thermal properties of the temperature probe. There is also need for a more 1 

complete treatment of the effects caused by the finite properties of the heater probe. Quantifying 2 

these effects is particularly relevant in light of the shift toward sensors with probes of larger 3 

radius — a shift driven primarily by the need to make the sensor more robust (i.e., to minimize 4 

deflection of the probes when inserted into soil). Campbell et al. (1991) used a sensor with a 5 

probe radius of 0.407 mm. In later work, sensors with a probe radius of 0.635 mm have been 6 

used extensively (e.g., Tarara and Ham, 1997; Ren et al., 1999; Basinger et al., 2003), and results 7 

have been reported for sensors with a probe radius as large as 1.0 mm (Nusier and Abu-Hamdeh, 8 

2003). 9 

We present a semianalytical solution that accounts for the finite radius and finite heat 10 

capacity of the probes of a DPHP sensor. A closed-form expression for the Laplace transform of 11 

the solution is obtained by considering the probes to be cylindrical perfect conductors of infinite 12 

length. The algorithm of Stehfest (1970a,b) is used to invert the Laplace-domain solution 13 

numerically. Precedent for use of the perfect conductor assumption can be found in the work of 14 

Blackwell (1954) and Jaeger (1956), who used it to derive the solution for radial conduction 15 

from a single heated probe in contact with a medium of infinite extent. This assumption seems 16 

reasonable in the context of the DPHP method insofar as the probes of DPHP sensors typically 17 

have a thermal conductivity much greater than that of soil. The solution presented herein is 18 

similar to solutions in the groundwater literature that take into account the finite radius and finite 19 

storage capacity of paired pumping and observation wells (Tongpenyai and Raghavan, 1981; 20 

Ogbe and Brigham, 1984; Novakowski, 1989), but it avoids the need for numerical evaluation of 21 

integrals in the Laplace domain. 22 
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We begin by deriving a general form of the semianalytical solution, and then present a 1 

special case of the solution useful for DPHP applications. The special case of the solution is used 2 

to examine the effects of the finite properties of the probes. Specifically, we present results that 3 

show how the heat-pulse signal received by the temperature probe is modified by the finite 4 

radius and the finite heat capacity of the probes. We then use results from a finite-element model 5 

to check the validity of the semianalytical solution and to assess whether it is appropriate to treat 6 

the probes as perfect conductors. We conclude with a discussion of published data indicating that 7 

thermal property and water content estimates may be biased if the DPHP method is implemented 8 

without accounting for the finite properties of the probes. We also briefly discuss potential 9 

limitations of the semianalytical solution. 10 

 11 

GENERAL SOLUTION 12 

Consider a DPHP sensor with infinitely long heater and temperature probes of finite radius, 13 

finite heat capacity, and infinite thermal conductivity. The heater probe has radius a1 and 14 

volumetric heat capacity C1, and the temperature probe has radius a2 and volumetric heat 15 

capacity C2. The probes, with centerlines a distance L apart and with Laa <+ )( 21 , are 16 

surrounded by soil with volumetric heat capacity C and thermal conductivity λ. We assume the 17 

soil to be homogeneous and isotropic and that C and λ are not functions of temperature. We also 18 

assume that the soil and probes are in perfect thermal contact. Let V1(t) and V2(t) be the 19 

temperatures of the heater and temperature probes, respectively, where t is time. We derive an 20 

analytical solution in the Laplace domain for V2(t), given an arbitrary heating function φ(t) for 21 

the heater probe. The function φ(t) gives the rate per unit length at which heat is released from 22 

the heater probe. 23 
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We begin by deriving an analytical solution in the Laplace domain that accounts only for the 1 

finite radius and finite heat capacity of the heater probe; that is, we ignore the presence of the 2 

temperature probe and consider a heater probe surrounded only by an infinite domain of soil. 3 

This solution yields an expression for the transform of the temperature of the soil at a location 4 

that coincides with the centerline of the temperature probe. That expression is then used to obtain 5 

a solution for V2(t) in the Laplace domain that accounts for the finite radius and finite heat 6 

capacity of the temperature probe. 7 

 8 

Heater Probe with Finite Properties 9 

The solution that accounts for only the heater probe is derived by using a coordinate system 10 

(Fig. 1) with radial coordinate r1 that is centered on the heater probe at )0,0(),( =yx . The 11 

temperature probe is located at )0,(),( Lyx = . The distance from the centerline of the heater 12 

probe to an arbitrary point in the x-y domain is r1, where 222
1 yxr += . The temperature of the 13 

soil, ),( 1 trυ , satisfies the heat equation (Carslaw and Jaeger, 1959) 14 
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where Cλ=κ  is the thermal diffusivity. The boundary and initial conditions to be satisfied are 16 
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Equation [5], the boundary condition for a medium in contact with a perfect conductor (Carslaw 1 

and Jaeger, 1959, p. 22), is obtained by writing an energy balance for the heater probe. The left-2 

hand side of Eq. [5] is the total flux of heat per unit length from the heater probe into the soil at 3 

r1 = a1. This problem is similar to one addressed in §13.7 II of Carslaw and Jaeger (1959), but 4 

considers the more general case of an arbitrary heating function. 5 

The Laplace domain solution for ),( 1 trυ  is obtained by making use of the definition 6 

 ⎮⌡
⌠ −υ≡υ

∞

0
11 )exp(),(),(ˆ dtpttrpr  [7] 7 

where ),(ˆ 1 prυ  is the Laplace transform of ),( 1 trυ  and p is the transform variable. Upon taking 8 

the transforms of Eqs. [1] – [6], we obtain the subsidiary equation 9 
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and the boundary conditions 11 
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where 15 

 κ=μ p  [12] 16 

The radially symmetric solution of Eq. [8] that satisfies Eqs. [9] and [10] is 17 
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where )( ⋅nK  denotes the modified Bessel function of the second kind of order n. The remaining 1 

boundary condition is satisfied by differentiating this expression with respect to r1 and 2 

substituting the result into Eq. [11] to give 3 
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Rearrangement of this expression yields 5 
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where CC11 =β . Now that we have an expression for the temperature of the heater probe in the 7 

transform domain, it can be substituted into Eq. [13] to give 8 
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which is the transform of the temperature field in the soil at a distance r1 from the center of the 10 

heater probe. This solution is the general case (i.e., the case for an arbitrary heating rate) of the 11 

solution for continuous heating given in §13.7 II of Carslaw and Jaeger (1959). 12 

Note that Eq. [16] is the product of the transfer function 13 
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and Eq. [A3], which is the transform of a general line-source solution. Equation [16] can 15 

therefore be written in the form 16 
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It is of interest that the transfer function ),,(ˆ 11 βυ apf  does not depend on the functional form of 18 

φ(t). The Laplace transform of the solution ),( 1 trυ  at a distance r1 = L is 19 
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Heater and Temperature Probes with Finite Properties 3 

We now use Eq. [19] to derive a Laplace-domain solution for V2(t), the temperature of the 4 

temperature probe. The solution is obtained by using an addition theorem for Bessel function 5 

solutions of the heat equation. In implementing this approach, we make the simplifying 6 

assumption that V2(t) is influenced by the heater probe, but that V1(t) is not influenced by the 7 

temperature probe. In other words, we assume that the temperature probe does not alter the radial 8 

symmetry of the temperature distribution around the heater probe. This assumption is appropriate 9 

if the radius of the probes is small relative to their distance of separation. We examine its validity 10 

later by using results from a numerical model that does not impose a radially-symmetric 11 

temperature distribution in the vicinity of the heater probe. 12 

The solution is obtained by using a second coordinate system (Fig. 1) with radial coordinate 13 

r2 that is centered on the temperature probe at )0,(),( Lyx = . The distance from the centerline of 14 

the temperature probe to an arbitrary point in the x-y domain is r2, where 222
2 )( yLxr +−= . In 15 

terms of the new coordinates, the heat equation takes the form 16 
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where the angle θ is such that )sin,cos(),( 22 θθ=− rryLx . The boundary and initial conditions 18 

to be satisfied are 19 
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 0;0)(2 == ttV  [23] 1 

Taking the Laplace transform of these expressions yields the subsidiary equation 2 
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and the boundary conditions 4 
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To obtain the desired solution, we consider the spatial dependence )( 10 rK μ  of the transform 7 

of the heat emitted by the heater probe and use an addition theorem for Bessel function solutions 8 

of Eq. [24] (Carslaw and Jaeger, 1959, p. 377, Eq. [1]) to write )( 10 rK μ  in terms of solutions 9 

)cos()( 2 θμ mrIm  of Eq. [24] centered at the temperature probe, where )( ⋅mI  denotes the 10 

modified Bessel function of the first kind of order m. For m ≠ 0 these solutions are not radially 11 

symmetric. The addition theorem for r2 < L is 12 
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We look for a solution ),,(ˆ 2 pr θυ  of Eq. [24] valid for a2 < r2 < L that satisfies 14 

)(ˆ),,(ˆ 22 pVpr =θυ . That is, we look for a solution of the form 15 
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with coefficients dm to be determined by satisfying Eq. [25]. This requires that 17 
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Upon substituting Eqs. [27] and [29] into Eq. [28], the solution ),,(ˆ 2 pr θυ  takes the form 1 
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To satisfy the remaining boundary condition, we differentiate Eq. [30] with respect to r2 and 3 

substitute the result into Eq. [26]. After evaluating the integral, Eq. [26] becomes 4 
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Comparing this expression with Eq. [30] reveals that the terms periodic in θ make no net 6 

contribution to the total heat flux per unit length at r2 = a2. Equation [31] contains only the 7 

contribution from the terms for m = 0 in Eq. [27]. We now use the Wronskian relation (Olver, 8 

1965, p. 375) 9 

 )(1)()()()( 220212120 aaKaIaKaI μ=μμ+μμ  [32] 10 

to write Eq. [31] in the form  11 
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Rearrangement of this result yields the expression 13 
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where CC22 =β . 15 

The solution in the transform domain for the temperature of the temperature probe is then 16 
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where the transfer functions corresponding to heater and temperature probes have exactly the 1 

same form. Note that Eq. [35] is Eq. [A3], the transform of a general line-source solution, 2 

multiplied by the product of the transfer functions for the heater and temperature probes. With 3 

1),,(ˆ 22 =βυ apf , Eq. [35] is identical to Eq. [19] and gives the transform of the solution for the 4 

case where the heater probe has finite radius and finite heat capacity but the temperature probe 5 

has zero radius. With 1),,(ˆ 11 =βυ apf , Eq. [35] gives the transform of the solution for the case 6 

where the temperature probe has finite radius and finite heat capacity but the heater probe has 7 

zero radius. 8 

In deriving Eq. [35], we assumed that the soil and both probes have a temperature of zero at 9 

time t = 0. Employing this initial condition does not result in a loss of generality. The principle 10 

of superposition permits application of this solution to cases where the soil and both probes have 11 

arbitrary uniform initial temperature υ0, for which we have 0211 )0()0()0,( υ===υ VVr . For such 12 

cases )(2 tV represents the temperature rise above the initial temperature υ0. 13 

 14 

SPECIAL CASE OF SOLUTION FOR DPHP APPLICATIONS 15 

For most applications, the probes of the DPHP sensor have the same radius and the same heat 16 

capacity. If both have radius a0 and heat capacity C0, we have CC00 =β , and the transfer 17 

function for the probes can be written as 18 
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This simplification allows us to write Eq. [35] in the form 20 
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The appropriate heating function for DPHP applications is 1 
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where q′ is the rate per unit length at which heat is released from the heater probe and t0 is the 3 

heating duration. The Laplace transform of Eq. [38] is pptqp )]exp(1[)(ˆ
0−−′=φ . Substituting 4 

this result into Eq. [35] yields 5 
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where the superscript “P” indicates that this expression is the Laplace-domain solution for the 7 

case of pulsed heating. Equation [39] is the product of ),,(ˆ 00
2 βυ apf  and the transform of Eq. 8 

[A1], the line-source solution used in the DPHP method of Bristow et al. (1994). This solution 9 

can be inverted numerically to obtain values of )(P
2 tV for times of interest, but better accuracy 10 

can be achieved by performing the numerical inversion for the case of continuous heating, and 11 

then using the principle of superposition in the time domain to account for the finite duration of 12 

heating. This requires that we use qt ′=φ )( , which has the form pqp ′=φ )(ˆ  in the transform 13 

domain. Thus, Eq. [35] becomes 14 
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for the case of continuous heating. Equation [40a] can be inverted numerically to obtain values 16 

of )(C
2 tV  and )( 0

C
2 ttV − for particular times of interest. These values of )(C
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then used to obtain the corresponding pulsed heating results, )(P
2 tV , by using the expression 18 
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Together, Eqs. [40a] and [40b] represent a semianalytical solution for the temperature of the 1 

temperature probe. Hereafter, we refer to Eq. [40] as the identical-cylindrical-perfect-conductors 2 

(ICPC) solution. 3 

An important property of the ICPC solution is that it becomes identical to the line-source 4 

solution of Bristow et al. (1994) when 1),,(ˆ 00 =βυ apf , which corresponds to the case where the 5 

heater probe and temperature probe both have zero radius. Thus, the effects of the finite radius 6 

and finite heat capacity of the probes can be examined by comparing values of )(P
2 tV  from Eq. 7 

[40] with values of ),( tLυ  obtained by evaluating Eq. [A1] with r1 = L. That approach was used 8 

to obtain the results presented in the next section. The ICPC solution and Eq. [A1] were 9 

evaluated using MATLAB (ver. 7.8, The MathWorks, Inc., Natick, MA). The modified Bessel 10 

functions of the second kind and the exponential integral were evaluated using the built-in 11 

functions BESSELK and EXPINT, respectively. Numerical inversion of Eq. [40a] was 12 

performed by using the algorithm of Stehfest (1970a,b) with 16 coefficients. Details of the 13 

numerical inversion procedure are given in Appendix B. A copy of the MATLAB script used to 14 

perform these calculations is available upon request. 15 

 16 

INFLUENCE OF THE PROBES 17 

A key result evident from the functional form of the ICPC solution is that the finite properties 18 

of the heater probe and the finite properties of the temperature probe have equal influence in 19 

modifying the heat-pulse signal received by the temperature probe. This follows from the fact 20 

that both probes have the same transfer function. If one of the probes has zero radius, Eq. [40a] 21 

takes the form 22 



 15
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regardless of whether that probe is the heater probe or the temperature probe. Therefore, having a 2 

heater probe of finite radius and a temperature probe of zero radius produces the same result in 3 

the time domain as having a heater probe of zero radius and a temperature probe of finite radius. 4 

This result is consistent with the spatial sensitivity of the DPHP method worked out by Knight et 5 

al. (2007). They showed that the spatial sensitivity in the vicinity of the temperature probe is 6 

identical to that in the vicinity of the heater probe. If we consider the probes to be heterogeneities 7 

with a heat capacity slightly different from that of the soil, the spatial sensitivity of the DPHP 8 

method indicates that both “heterogeneities” must have equal influence on the heat-pulse signal 9 

received by the temperature probe. Hereafter, we consider only the combined effects of the 10 

heater and temperature probes. Despite the fact that both probes have equal influence, their 11 

combined effect in the time domain is not simply additive because it is the result of convolution 12 

operations. 13 

In the remainder of this section we use the ICPC and line-source solutions to examine the 14 

effect of the finite radius of the probes and the effect of the finite heat capacity of the probes. The 15 

dimensionless quantities that primarily determine the extent of these two effects are La0  and 16 

β0. We first present results for arbitrary values of La0  and β0 to isolate the effects of finite 17 

radius and finite heat capacity. We then present results obtained by using values of La0  and β0 18 

for a typical DPHP sensor. 19 

 20 

Finite Radius 21 

The effect of the finite radius of the probes was examined by evaluating the ICPC solution 22 
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with β0 = 1 and ratios La0  of 0.05, 0.1, and 0.15. By definition, the heat capacity of the probes 1 

is identical to that of the soil when β0 = 1. The calculations were performed using q′ = 100 W 2 

m−1, t0 = 8 s, L = 6.0 × 10−3 m, C = 2.0 MJ m−3 K−1, λ = 0.5 W m−1 K−1, and values for a0 and C0 3 

that yielded the desired values for La0  and β0. The same values for q′, t0, L, C, and λ were used 4 

to evaluate the line-source solution. The results (Fig. 2) are plotted for the case of zero initial 5 

temperature to be consistent our mathematical notation; however, as noted earlier, the results 6 

also hold for the case of an arbitrary uniform temperature υ0. In that case, the curves in Fig. 2 7 

represent the change in temperature from the initial temperature  υ0. 8 

Comparing the curves for the ICPC and line-source solutions (Fig. 2) shows that the finite 9 

radius of the probes causes the heat-pulse signal to arrive at the temperature probe slightly earlier 10 

in time. The magnitude of this time shift increases as the radius of the probes increases. In the 11 

limit as a0 → 0, the effect of finite probe radius vanishes and the ICPC solution becomes 12 

identical to the line-source solution. This is consistent with the fact that 1),,(ˆ 00 →βυ apf  as a0 13 

→ 0. For other combinations of the parameters q′, t0, L, C, and λ there is essentially no change in 14 

the way the effect of finite probe radius is manifested in the results; however, for a given probe 15 

radius, the magnitude of the time shift is influenced by the thermal diffusivity and the probe 16 

spacing. Specifically, the time shift decreases linearly with κ and increases linearly with L2. 17 

The finite radius of the probes causes a time shift because the effective distance traveled by 18 

the heat-pulse signal is smaller for the ICPC solution than for the line-source solution. The line-19 

source solution assumes that the heat pulse originates at the origin and that the temperature rise is 20 

recorded at r1 = L. Thus, the effective travel distance is L. In contrast, the effective travel 21 

distance for the ICPC solution lies somewhere between L and L − 2a0 because the heat pulse 22 
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originates at r1 = a0 and the signal is received at r2 = a0. The effective travel distance clearly 1 

decreases with increasing probe radius. 2 

Although the ICPC solution accounts for the finite radius of the heater and temperature 3 

probes, it does so only approximately because the probes are considered to be perfect conductors. 4 

By not accounting for the finite conductivity of the probes, the ICPC solution overestimates the 5 

time-shift caused by the finite radius of the probes. It follows that this solution will be useful for 6 

DPHP applications only if the overestimation of this time-shift is minimal. In other words, the 7 

ICPC solution will be useful only if it allows the effect of finite probe radius to be approximated 8 

with sufficient accuracy. This will be the case if the thermal conductivity of the probes is 9 

sufficiently large relative to the conductivity of the soil. We examine this issue in detail later by 10 

using results from a numerical model that accounts for the finite conductivity as well as the finite 11 

heat capacity of the probes. 12 

 13 

Finite Heat Capacity 14 

The effect of the finite heat capacity of the probes was examined by evaluating the ICPC 15 

solution with 1.00 =La  and β0 values of 0.5, 1, and 2. Calculations were performed using the 16 

same parameter values that were used in the previous section. The influence of the finite heat 17 

capacity of the probes can be understood by comparing the curves for β0 = 0.5 and β0 = 2 with 18 

the curve for β0 = 1 (Fig. 3). Less energy is needed to raise the temperature of the probes when 19 

β0 < 1. This results in an increase in the magnitude of the heat-pulse signal, and the signal is 20 

positively skewed so the maximum temperature rise occurs earlier. Conversely, when β0 > 1, 21 

more energy is needed to raise the temperature of the probes than for the case where β0 = 1. As a 22 
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result, the magnitude of the heat-pulse signal decreases and the signal is negatively skewed so 1 

the maximum temperature rise occurs later. 2 

To understand why β0 influences the skewness of the heat-pulse signal, it is useful to 3 

consider the time rate of change of the heat flux at the interface between the heater probe and the 4 

soil. The heat flux at r1 = a0 increases rapidly with time following the onset of heating. Because 5 

less energy is needed to raise the temperature of the heater probe when β0 < 1, the heat flux at r1 6 

= a0 increases more sharply with time than for the case where β0 = 1. This produces a signal that 7 

is positively skewed relative to the signal for the case where β0 = 1. The negatively skewed 8 

signal for the case of β0 > 1 is caused by a similar but opposite effect. 9 

As noted earlier, the ICPC solution only approximately accounts for the effect of finite probe 10 

radius because it does not account for the finite conductivity of the probes; however, it accounts 11 

for the finite heat capacity of the probes in a way that is physically correct. Thus, the potential 12 

utility of the ICPC solution for DPHP applications depends on whether the benefit gained by 13 

accounting for the finite heat capacity of the probes offsets the loss of accuracy caused by 14 

approximating the effect of finite probe radius. 15 

 16 

Results for Typical DPHP Sensor 17 

Here we present results obtained by evaluating the ICPC and line-source solutions using 18 

values of a0 and C0 for the DPHP sensor of Basinger et al. (2003). Figure 4 shows a cross-section 19 

of the probes of their sensor. The probes were fabricated from type 304 stainless-steel tubing 20 

(0.828-mm i.d., 1.27-mm o.d.) that was filled with thermally conductive epoxy (Omegabond 21 

101, Omega Engineering, Inc., Stamford, CT). The volumetric heat capacity of the probes can be 22 

approximated as the weighted average 23 
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where ae is the radius of the epoxy-filled region of the heater and temperature probes, Ce is the 2 

volumetric heat capacity of the thermally conductive epoxy, and Css is the volumetric heat 3 

capacity of the stainless steel. This expression yields C0 = 2.84 MJ m−3 K−1 for the parameter 4 

values in Tables 1 and 2. 5 

Results for the sensor of Basinger et al. (2003) were obtained for air-dried sand, water-6 

saturated sand, and water. The dry and wet sands were chosen because their conductivities bound 7 

the range of conductivities typically encountered in mineral soils. Water was chosen because 8 

sensor calibration (i.e., determination of apparent probe spacing) typically involves a 9 

measurement in water immobilized with agar (Campbell et al., 1991). The volumetric heat 10 

capacities of these media (Table 1) give β0 values of 2.58, 0.93, and 0.68 for the dry sand, wet 11 

sand, and water, respectively. Values for the parameters that remained fixed for these 12 

calculations (Table 2) yield a radius/spacing ratio of 11.00 ≈La . 13 

Consider first the results for wet sand (Fig. 5), where the heat capacity of the probes is only 14 

slightly smaller than that of the soil (β0 = 0.93). Because β0 ≈ 1, the finite heat capacity of the 15 

probes has minimal effect. The difference between the curves for the ICPC and line-source 16 

solutions is primarily due to the finite radius of the probes. Accounting for the finite radius of the 17 

probes produces a heat-pulse signal that arrives approximately 0.35 s earlier. Although the effect 18 

of finite probe radius for the dry sand (β0 = 2.58) and water (β0 = 0.68) cannot be determined by 19 

inspecting results in Fig. 5, it can be estimated by considering the diffusivities of the three media. 20 

The time shift for the dry sand is approximately 0.8 s because the diffusivity of the dry sand is 21 

smaller than that of the wet sand by a factor of about 2.3. Similarly, the time shift for water is 22 

approximately 1.5 s because the diffusivity of water is about 4.4 times smaller than that of the 23 
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wet sand. For the dry sand, the leftward shift caused by the finite radius of the probes is offset by 1 

a substantial effect due to their finite heat capacity (Fig. 5). Combined, the two effects reduce the 2 

maximum temperature rise by about 0.15 K and delay the arrival time of the maximum 3 

temperature rise by approximately 5 s. In contrast, for water, the two effects combine to increase 4 

the maximum temperature rise by about 0.09 K, and they cause the maximum temperature rise to 5 

appear approximately 4 s earlier. 6 

The results presented in Fig. 5 clearly indicate that the DPHP method will yield biased 7 

estimates of thermal properties if the line-source solution is used for thermal property estimation. 8 

To quantify this bias, we determined the thermal properties required to force the line-source 9 

solution into agreement with the curves in Fig. 5 that were generated with the ICPC solution. 10 

This was accomplished by determining the maximum temperature rise, V2(tm), and the time at 11 

which it occurred, tm, for each of the three curves generated with the ICPC solution. These pairs 12 

of V2(tm) and tm values were then substituted into Eq. [8] – [10] of Bristow et al. (1994) to 13 

determine thermal properties using line-source theory. The results for dry sand (Table 3) show 14 

that, if the finite radius and finite heat capacity of the probes are not taken into account, heat 15 

capacity is overestimated by 6.4%, and the conductivity and diffusivity are underestimated by 16 

7.7% and 13.5%, respectively. Ignoring the finite properties of the probes has less of an effect on 17 

the thermal properties of wet sand and water (Table 3), but the errors in the conductivity and 18 

diffusivity of water are sufficiently large to be of concern. Clearly, if the ICPC solution provides 19 

a reasonable approximation of reality, the results presented here for a typical DPHP sensor show 20 

that the effects of the finite radius and finite heat capacity of the probes may be substantial, 21 

especially for the case where there is a large contrast between the heat capacity of the probes and 22 

that of the soil. 23 
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VALIDITY OF THE SOLUTION 1 

In this section we use results from a numerical model to check the validity of the ICPC 2 

solution and to assess whether it is appropriate to treat the probes as perfect conductors. We 3 

begin with a description of the numerical model. 4 

 5 

Numerical Model 6 

In the numerical model, we relax the constraint on thermal conductivity and consider probes 7 

of finite radius that have finite conductivity as well as finite heat capacity. We also account for 8 

the fact that the heater and temperature probes are composite solids that consist of stainless steel 9 

and thermally conductive epoxy (Fig. 4). As in the derivation of the semianalytical solution, we 10 

consider both probes to be infinite in length and we model heat transfer in a plane normal to the 11 

axis of the probes that coincides with the location of the thermistor. The heater probe is centered 12 

at the origin and the temperature probe is centered at )0,(),( Lyx = , as in Fig. 1. Both probes 13 

have radius a0 and epoxy-filled regions of radius ae. We do not account for the finite thermal 14 

properties of the thermistor and electrical resistance wire, effectively assuming that they have 15 

thermal properties identical to those of the epoxy. The problem domain is the semicircular region 16 

defined by b10 ar ≤≤  and π≤θ≤0 . We assume no contact resistance at the material interfaces 17 

within this domain, and that the thermal properties C and λ within each portion of the domain are 18 

homogeneous, isotropic, and independent of temperature. 19 

The temperature ),,( tyxT  in the problem domain satisfies the heat equation 20 
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∂
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where ),,( tyxg  is the rate of heat generation per unit volume and 222
1 yxr += . The heat 1 

equation was solved with a zero initial condition and with temperature T = 0 on the external 2 

boundary at r1 = ab. The radius ab was made sufficiently large that the solution is effectively the 3 

solution for a boundary condition of T → 0 as r → ∞. Owing to symmetry considerations, a zero-4 

flux condition was imposed along the external boundary coincident with the x axis. The solution 5 

of Eq. [43] was also subject to temperature continuity and normal heat flux continuity conditions 6 

at all internal boundaries (i.e., at material interfaces). Because the heater probe is usually 7 

modeled as a line source of infinite length, it is customary to quantify the heat generation for a 8 

DPHP measurement in terms of q′, the rate of energy released per unit length of a line source. 9 

Here we assume that the heat released by the four strands of resistance wire (Fig 4) is uniformly 10 

distributed over the cross-section of the epoxy in the heater probe. Thus, the rate of heat 11 

generation is represented by 12 
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The boundary value problem described above was solved with COMSOL Multiphysics 14 

finite-element software (Version 3.5a, COMSOLAB, Stockholm, Sweden). All simulations were 15 

performed with a domain radius of ab = 6.0 × 10−2 m and a mesh that consisted of 12,246 16 

triangular elements. Element size ranged from approximately 2.4 × 10−6 m2 at the perimeter of 17 

the domain to approximately 4.7 × 10−10 m2 along the interfaces between the thermally 18 

conductive epoxy and the stainless steel tubing (Fig. 6). The temperature ),0,( tLT  at 19 

)0,(),( Lyx =  was taken to represent the temperature rise recorded by thermistor. 20 

 21 
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Validity of the Solution 1 

In deriving the ICPC solution, we assumed that the temperature distribution in the vicinity of 2 

the heater probe is radially symmetric. For this assumption to hold, the ratio La0  must be 3 

sufficiently small that the temperature probe has negligible effect on the temperature distribution 4 

near the heater probe. Obviously, this condition must be satisfied if the ICPC solution is to 5 

provide a good approximation of the temperature probe temperature for the case where the both 6 

probes have infinite conductivity. In a forthcoming paper we will examine the validity of the 7 

solution in greater detail. Here we address the validity of the solution only for the DPHP sensor 8 

of Basinger et al. (2003), for which 11.00 ≈La . 9 

Evaluating the validity of the ICPC solution requires a model that treats the probes as perfect 10 

conductors and allows for a temperature distribution in the vicinity of the heater probe that is not 11 

radially symmetric. This was achieved with our numerical model by assigning an arbitrarily large 12 

value of conductivity for the portions of the domain containing epoxy or stainless steel. Results 13 

were obtained for a conductivity of 1.0 × 105 W m−1 K−1, which is more than 6,700 times greater 14 

than the conductivity of the stainless steel. All simulations were performed using values for Ce 15 

and Css from Table 1 and the values for ae, a0, q′, t0 and L given in Table 2. Results for dry sand, 16 

wet sand, and water were obtained by using the soil thermal properties given Table 1. 17 

For all three media, the numerically simulated temperature rise curves, ),0,( tLT , are nearly 18 

identical to the curves for the ICPC solution shown in Fig. 5. We compare results from the two 19 

solutions by examining the difference ),0,()(P
2 tLTtV −  as a function of time (Fig. 7). Agreement 20 

between the analytical and numerical results was best for the wet sand and water (Fig. 7), with 21 

values for ),0,()(P
2 tLTtV −  no greater than 1.4 × 10−4 K and 8.6 × 10−5 K for the wet sand and 22 
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water, respectively. Thus, for the wet sand and water, it appears that 11.00 ≈La  is sufficiently 1 

small that the ICPC solution provides an excellent approximation of the temperature of the 2 

temperature probe for the case where both probes are perfect conductors. Agreement between the 3 

analytical and numerical solutions was not as good for the dry sand (Fig. 7). The assumption of a 4 

radially symmetric temperature distribution near the heater probe was not satisfied to the same 5 

extent for dry sand as for wet sand and water. Nevertheless, the magnitude of the difference 6 

between the analytical and numerical results (no greater than 7.6 × 10−4 K) suggests that the 7 

ICPC solution approximates the temperature of the temperature probe with sufficient accuracy to 8 

be of use for DPHP applications where 11.00 ≤La . 9 

 10 

Appropriateness of Solution for DPHP Applications 11 

Although the ICPC solution closely approximates the temperature of the temperature probe 12 

for the case where both probes are perfect conductors, it will be appropriate for DPHP 13 

applications only if it is appropriate to treat the probes as perfect conductors. Whereas the ICPC 14 

solution correctly accounts for the finite heat capacity of the probes, it only approximately 15 

accounts for their finite radius because it does not account for their finite conductivity. Thus, its 16 

appropriateness for DPHP applications depends on whether the benefit gained by accounting for 17 

finite heat capacity offsets the loss of accuracy caused by approximating the effect of finite 18 

radius. To examine this issue, we performed simulations for the same three cases described in the 19 

previous section, but with a version of the numerical model in which the probe materials had 20 

finite conductivity as well as finite heat capacity. Simulations were performed using the 21 

conductivities for epoxy and stainless steel given in Table 2. We compared these results to 22 

results obtained with both the ICPC solution and the line-source solution. The appropriateness of 23 
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the ICPC solution is addressed by evaluating its performance relative to that of the line-source 1 

solution, which does not account for the finite properties of the probes. 2 

For all three media, the numerically simulated curves, ),0,( tLT , are nearly identical to the 3 

curves for the ICPC solution shown in Fig. 5. The level of agreement can be seen by examining 4 

the difference ),0,()(P
2 tLTtV −  as a function of time (Fig. 8). The difference curves for all three 5 

media show that the ICPC solution overestimates the temperature of the temperature probe at 6 

relatively early times and underestimates it at relatively late times. The reason for this trend is 7 

addressed later in this section. Here we draw attention to the fact that the numerically simulated 8 

values agree quite well with the values of )(P
2 tV  from the ICPC solution. The magnitude of the 9 

difference ),0,()(P
2 tLTtV −  is no greater than 0.016 K for the dry sand, no greater than 0.012 K 10 

for the wet sand, and no greater than 0.004 K for water. 11 

In contrast, the level of agreement between the numerically simulated curves and the line-12 

source solution is not nearly as good. This can be seen by examining the difference 13 

),0,(),( tLTtd −υ  as a function of time (Fig. 9). The line-source solution overestimates the 14 

temperature of the temperature probe by as much as 0.35 K for the dry sand, and underestimates 15 

it by as much as 0.025 K and 0.056 K for the wet sand and water, respectively. Clearly, the ICPC 16 

solution offers significant improvement over the line-source solution in characterizing the 17 

temperature of the temperature probe. We therefore conclude that it is appropriate to treat the 18 

probes of a DPHP sensor as perfect conductors for applications where 11.00 ≤La . 19 

Further insight regarding the appropriateness of the ICPC solution can be obtained by using 20 

results from the numerical simulation to examine the spatial distribution of temperature radially 21 

outward from the centerline of the heater probe into the medium surrounding it. We show results 22 

for the case where the medium is water (Fig. 10). The labels on the curves denote the time in 23 
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seconds from the onset of heating. The temperature of the heater probe increases rapidly with 1 

time during the interval 0 < t ≤ t0, then gradually decreases after the current to the heater probe is 2 

switched off. Of interest here is the fact that the portion of the heater probe made of stainless 3 

steel remains nearly isothermal for all times. This portion of the heater probe therefore behaves 4 

very much like a perfect conductor. The epoxy-filled portion of the heater probe also behaves 5 

like a perfect conductor for times greater than t0. Only during the heating interval does the 6 

epoxy-filled portion of the probe exhibit behavior inconsistent with that of a perfect conductor. 7 

Clearly, there appears to be good reason for the fact that the ICPC solution provides an excellent 8 

description of the temperature of the temperature probe. 9 

Returning to the results of Fig. 8, we now reconsider the fact that the ICPC solution 10 

overestimates the temperature probe temperature at relatively early times and underestimates it at 11 

relatively late times. Treating the probes as perfect conductors produces this result because the 12 

effect of the finite radius of the probes is overestimated, resulting in underestimation of the 13 

effective distance traveled by the heat-pulse signal. This causes a leftward shift of the signal 14 

received by the temperature probe. The fact that the ICPC solution initially overestimates the 15 

temperature and then later underestimates it is a direct consequence of this leftward shift. Despite 16 

the fact that β0 ≠ 1 for these results (Fig. 8), the finite heat capacity of the probes has no effect on 17 

the differences ),0,()(P
2 tLTtV −  because the ICPC solution and the numerical model both 18 

account for the finite heat capacity of the probes. Interestingly, the leftward shift is small and 19 

relatively similar for all three media, falling somewhere between 0.01 and 0.015 s, which 20 

suggests the possibly of introducing a time offset correction to further improve the accuracy of 21 

the ICPC solution for DPHP applications. 22 

 23 
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DISCUSSION 1 

Having established the validity of the ICPC solution, and having demonstrated its usefulness 2 

for DPHP applications, we now briefly consider experimental evidence suggesting that the 3 

DPHP method may result in biased thermal property and water content estimates if the finite 4 

properties of the probes are not taken into account. We also examine potential limitations of the 5 

ICPC solution for situations where 11.00 >La . 6 

 7 

Experimental Evidence for Probe Effects 8 

Perhaps the strongest evidence for the aforementioned probe effects is found in the results of 9 

Ham and Benson (2004), who calibrated DPHP sensors (i.e., measured apparent probe spacing) 10 

in media with a range of known volumetric heat capacities. Apparent spacing was determined 11 

from measured values of maximum temperature rise using infinite line source theory. Their 12 

results showed that apparent spacing increased significantly as the heat capacity of the 13 

calibration media decreased. Furthermore, they showed that apparent spacing was greater than 14 

the physical probe spacing for calibration in dry glass beads whereas apparent spacing was 15 

smaller than the physical spacing for calibration in saturated glass beads and agar-immobilized 16 

water. These results are entirely consistent with the differences between the maximum 17 

temperature rise of the ICPC and line-source solutions (Fig. 5). The results in Fig. 5 show that 18 

apparent spacing will be overestimated when β0 > 1 (as for calibration in dry glass beads) and 19 

underestimated when β0 < 1 (as for calibration in saturated glass beads and agar-immobilized 20 

water). Although the results of Ham and Benson (2004) cannot be explained entirely by the finite 21 

radius and finite heat capacity of the probes, these probe effects likely contributed to the 22 

observed trends. Clearly, there is a need for experimental work to determine if use of the ICPC 23 
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solution might minimize the dependence of apparent spacing on the heat capacity of the 1 

calibration medium, or perhaps even eliminate the need to determine apparent spacing. 2 

Further evidence for probe effects can be found in the fact that many have reported 3 

saturation-dependent bias in water content estimates (derived from heat capacity estimates) when 4 

infinite line source theory is used for parameter estimation (Tarara and Ham, 1997; Song et al., 5 

1998; Bristow et al., 2001; Basinger et. al., 2003; Ochsner et al., 2003). The bias reported in 6 

these investigations is consistent with the results of Fig. 5 in that overestimation of water content 7 

was greatest at smaller water contents (i.e. for smaller values of heat capacity) when the contrast 8 

between the heat capacity of the probes and that of the soil would be greatest. Clearly, there is 9 

also scope for experimental work to determine if use of the ICPC solution might reduce 10 

saturation-dependent bias in heat capacity and water content estimates. 11 

 12 

Potential Limitations of the Solution 13 

The validity of the ICPC solution and its appropriateness for DPHP applications were 14 

established using results for the case where 11.00 ≈La . It follows, of course, that the solution 15 

will be valid and appropriate for applications where 11.00 <La , but there are potential 16 

limitations for applications where 11.00 >La . Additional investigation is required to determine 17 

the extent to which La0  can be increased before the ICPC solution fails to provide a good 18 

approximation of the temperature probe temperature for the case where both probes have infinite 19 

conductivity. Also required is analysis to determine the extent to which La0  can be increased 20 

before the appropriateness of the perfect conductor assumption begins to fail. 21 

Notwithstanding these potential limitations of the theory, it is natural to consider whether use 22 

of the ICPC solution might make it feasible to implement the DPHP method with sensors that 23 
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have probes of larger radius. This possibility certainly merits consideration, but words of caution 1 

are in order. The ICPC solution accounts for the finite radius of the probes, but it does not 2 

account for their finite length or for the possibility of axial conduction in the probes. These 3 

issues are not generally regarded to be of major concern for sensors with probe spacing and 4 

probe geometry (i.e., radius and length) similar to that of the Campbell et al. (1991) and Basinger 5 

et al. (2003) sensors, but they may become significant if probe radius is increased without a 6 

corresponding increase in probe length. Thus, it is not a given that the radius of the probes can be 7 

increased simply by using theory that accounts for their finite radius and finite heat capacity. 8 

Experimental work as well as additional analysis will be required. 9 

Finally, we emphasize that the ICPC solution does not allow for the possibility of imperfect 10 

contact between the soil and the probes. In this regard, the ICPC solution is no better than the 11 

line source solution. The importance of contact resistance was not addressed in this investigation, 12 

but it certainly merits further consideration. It has been shown contact resistance causes minimal 13 

error in heat capacity estimates (Noborio et al., 1996; Liu and Si, 2010), but Noborio et al. 14 

(1996) also showed that a 0.1-mm air gap between the soil and the probes may cause error as 15 

large as 10% in estimates of thermal conductivity. 16 

 17 

SUMMARY AND CONCLUSIONS 18 

We have derived a semianalytical solution that accounts for the finite radius and finite heat 19 

capacity of the probes of a DPHP sensor. The solution consists of a closed-form expression in 20 

the Laplace domain that is inverted numerically using the Stehfest algorithm. Equation [35] is 21 

the Laplace-domain expression for the temperature of the temperature probe for the general case 22 

where the heater and temperature probes have different radius and heat capacity. This result was 23 
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used to derive Eq. [40], which gives the temperature of the temperature probe for the special case 1 

where both probes of the DPHP sensor have the same radius and the same heat capacity. 2 

Equation [40], which we refer to as the ICPC solution, was used to investigate the effects of 3 

the finite radius and finite heat capacity of the probes. An important result revealed by the 4 

functional form of Eq. [40] is that the finite properties of the heater probe and the finite 5 

properties of the temperature probe have equal effects on the temperature of the temperature 6 

probe. We also have shown that the finite radius of the probes causes the heat-pulse signal to 7 

arrive at the temperature probe slightly earlier in time. The magnitude of this time shift depends 8 

primarily on the magnitude of the ratio La0 . For a sensor with fixed probe spacing L, the 9 

magnitude of the time shift increases as the radius of the probes increases. The effect of the finite 10 

heat capacity of the probes depends on the parameter β0, which is the ratio of the heat capacity of 11 

the probes and the heat capacity of the soil. Relative to the case where β0 = 1, less energy is 12 

needed to raise the temperature of the probes when β0 < 1. This causes an increase in the 13 

magnitude of the heat-pulse signal, and the signal is positively skewed so the maximum 14 

temperature rise occurs earlier in time. When β0 > 1, the magnitude of the heat-pulse signal is 15 

decreased and the signal is negatively skewed so the maximum temperature rise occurs later. 16 

Results obtained with the ICPC solution for a typical DPHP sensor showed that the effects of 17 

the finite radius and finite heat capacity of the probes are not insignificant. This is particularly 18 

true when β0 is large, which occurs when measurements are made in relatively dry soil. The large 19 

contrast between the heat capacity of the probes and that of the soil has a substantial effect on the 20 

heat-pulse signal received by the temperature probe. Our results for a typical sensor are 21 

consistent with published experimental data suggesting that the DPHP method may result in 22 
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biased thermal property and water content estimates if the finite properties of the probes are not 1 

taken into account. 2 

Several simplifying assumptions were made in deriving the semianalytical solution: (i) that 3 

the probes are perfect conductors, (ii) that the temperature probe does not alter the radial 4 

symmetry of the temperature distribution around the heater probe, and (iii) that there is no 5 

contact resistance at the soil-probe interfaces. The validity of the first two assumptions was 6 

investigated with a finite-element model that accounted for the finite conductivity as well as the 7 

finite heat capacity of the probes. The results showed that both of these assumptions are valid for 8 

DPHP applications where the probes satisfy the condition that 11.00 ≤La . Additional 9 

investigation is required to determine the extent to which La0  can be increased before these 10 

assumptions become inappropriate. If the ICPC solution remains valid for larger values of La0 , 11 

it may be feasible to implement the DPHP method with sensors that have probes of larger radius. 12 

This would be desirable from the standpoint of increasing the rigidity of the probes, but it is not a 13 

given that the radius of the probes can be increased by simply using theory that accounts for their 14 

finite radius and finite heat capacity. Other effects (e.g., axial conduction) may become 15 

significant as probe radius is increased. Experimental work as well as additional analysis will be 16 

required to determine whether other effects may offset the benefit gained by accounting for the 17 

finite radius and finite heat capacity of the probes. 18 

 19 

NOMENCLATURE 20 

a0 – radius of the probes for the case where they both have the same radius (m) 21 

a1 – radius of the heater probe (m) 22 

a2 – radius of the temperature probe (m) 23 
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ae – radius of the epoxy-filled region in the probes (m) 1 

ab – radius of the semicircular domain for numerical model (m)  2 

g – rate of heat generation per unit volume for numerical model (W m−3) 3 

p – Laplace transform variable (s−1) 4 

q′ – rate of heat per unit length released from the heater probe or line heat source (W m−1) 5 

r1 – radial coordinate for coordinate system centered on the heater probe (m) 6 

r2 – radial coordinate for coordinate system centered on temperature probe (m) 7 

t – time (s) 8 

t0 – heating duration (s) 9 

x – Cartesian coordinate (m) 10 

y – Cartesian coordinate (m) 11 

C – volumetric heat capacity of the soil (J m−3 K−1) 12 

C0 – volumetric heat capacity of the probes for the case where they both have the same heat 13 

capacity (J m−3 K−1) 14 

C1 – volumetric heat capacity of the heater probe (J m−3 K−1) 15 

C2 – volumetric heat capacity of the temperature probe (J m−3 K−1) 16 

Ce – volumetric heat capacity of the thermally-conductivity epoxy (J m−3 K−1) 17 

Css – volumetric heat capacity of the stainless-steel tubing (J m−3 K−1) 18 

Im – modified Bessel function of the first kind of order m 19 

Kn – modified Bessel function of the second kind of order n 20 

L – distance between the centerlines of the heater and temperature probes (m) 21 

T  – temperature of the soil and probes in the numerical simulations (K) 22 

V1 – temperature of the heater probe in the semianalytical solution (K) 23 
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V2 – temperature of the temperature probe in the semianalytical solution (K) 1 

β0 – ratio of the volumetric heat capacity of the probes and the volumetric heat capacity of the 2 

soil for the case where both probes have the same heat capacity (dimensionless) 3 

β1 – ratio of the volumetric heat capacity of the heater probe and the volumetric heat capacity of 4 

the soil (dimensionless) 5 

β2 – ratio of the volumetric heat capacity of the temperature probe and the volumetric heat 6 

capacity of the soil (dimensionless) 7 

θ – angular coordinate for coordinate system centered on temperature probe (radians) 8 

φ – arbitrary heating function 9 

κ – thermal diffusivity of the soil (m2 s−1) 10 

λ – thermal conductivity of the soil (W m−1 K−1) 11 

υ  – temperature of the soil in the semianalytical solution (K) 12 

 13 

APPENDIX A 14 

The line-source solution of Bristow et al. (1994) is widely used for DPHP applications. Here 15 

we show that their solution is a special case of a general line-source solution. We also give the 16 

Laplace transform of that solution. The transform of the general line-source solution is of interest 17 

because it appears in the derivation of the semianalytical solution. 18 

Consider a line source of infinite length that releases heat into an infinite medium initially at 19 

zero temperature. The line source is located at )0,0(),( =yx , so the radial distance from the line 20 

source in the x-y plane is r1, where 222
1 yxr += . If heat is released at constant rate during the 21 

time interval 0 < t ≤ t0, the solution of the heat equation is (de Vries, 1952) 22 
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where q′ is the rate per unit length at which heat is released, t0 is the heating duration, and –Ei(–2 

x) is the exponential integral of argument x. This is the solution employed in the DPHP method 3 

of Bristow et al. (1994).  4 

It is easily shown that Eq. [A1] is a special case of the general solution (Carslaw and Jaeger, 5 

1959, p. 261) 6 
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For pulsed heating, the general line-source solution yields Eq. [A1] by using the form for φ(t) 8 

given in Eq. [38]. By making use of Duhamel’s theorem (Carslaw and Jaeger, 1995, p. 301), it 9 

can be shown that the Laplace transform of the general line-source solution is 10 

 )(
2

)(ˆ
),(ˆ 101 rKppr μ

πλ
φ

=υ  [A3] 11 

In the body of the text, we refer to Eq. [A3] in discussing the form of Eq. [18]. We also use Eq. 12 

[A3] with r1 = L in discussing the form of Eq. [35]. 13 

 14 

APPENDIX B 15 

The Stehfest algorithm for inverting Eq. [40a] can be written in the form  16 

 ∑
= μβμ+μμ

μω
πλ
′

≈
N

i iiii

ii

aKaaKa
LK

i
qtV

1
2

0000010

0C
2 )]}()2()([{

)(
2

)(  [B1] 17 

where  18 
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 Nii
ti ,,2,1;)2ln(

K=
κ

=μ  [B2] 1 

All inversion calculations were performed by evaluating Eq. [B1] with N = 16 and the Stehfest 2 

weighting coefficients, ωi, given in Table B1. Upon replacing t with t – t0 in Eq. [B1] and [B2], 3 

the same algorithm can be used to obtain values of )( 0
C

2 ttV −  for times greater than t0. Inasmuch 4 

as Eq. [B1] is a function of time, it must be evaluated at each time t for which a value of )(C
2 tV  is 5 

desired. It must also be evaluated at each time t – t0 for which a value of )( 0
C

2 ttV −  is desired.  6 

The values of )(C
2 tV  and )( 0

C
2 ttV −  obtained in this way were used to evaluate Eq. [40b]. 7 

We used N = 16 for our calculations because (i) MATLAB’s double precision floating-point 8 

arithmetic yields results with approximately 16 significant decimal digits, and (ii) the function 9 

BESSELK evaluates the Bessel functions )(0 ⋅K  and )(1 ⋅K  to an accuracy of about 16 decimal 10 

places. Optimal results are generally obtained when N is about equal to the number of significant 11 

decimal digits used in the calculations (Knight and Raiche, 1982). 12 
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FIGURE CAPTIONS 18 

Fig. 1. Coordinate systems used in deriving the semianalytical solution. The heater probe has 19 

radius a1, the temperature probe has radius a2, and the centerlines of the probes are a distance 20 

L apart. The polar coordinate system centered on the heater probe at )0,0(),( =yx  has radial 21 

coordinate r1, where 222
1 yxr += . The polar coordinate system centered on the temperature  22 
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probe at )0,(),( Lyx =  has coordinates r2 and θ that satisfy the conditions 222
2 )( yLxr +−=  1 

and )sin,cos(),( 22 θθ=− rryLx . 2 

Fig. 2. Temperature (or change in temperature) of the temperature probe as a function of time. 3 

Results for the ICPC solution are from Eq. [40] with β0 = 1 and dimensionless probe sizes 4 

La0  of 0.05, 0.10, and 0.15. Results for the line-source solution are from Eq. [A1] with r1 = 5 

L. The ICPC solution is identical to the line-source solution for the limiting case where a0 → 6 

0. Both solutions were evaluated using q′ = 100 W m−1, t0 = 8 s, L = 6.0 × 10−3 m, C = 2.0 MJ 7 

m−3 K−1, and λ = 0.5 W m−1 K−1. 8 

Fig. 3. Temperature (or change in temperature) of the temperature probe as a function of time. 9 

Results for the ICPC solution are from Eq. [40] with 1.00 =La  and β0 values of 0.5, 1.0, 10 

and 2.0. Results for the line-source solution are from Eq. [A1] with r1 = L. The ICPC solution 11 

is identical to the line-source solution for the limiting case where a0 → 0. Both solutions 12 

were evaluated using q′ = 100 W m−1, t0 = 8 s, L = 6.0 × 10−3 m, C = 2.0 MJ m−3 K−1, and λ = 13 

0.5 W m−1 K−1. 14 

Fig. 4. Cross-section of the heater probe (left) and temperature probe (right) of the dual-probe 15 

heat-pulse sensor of Basinger et al. (2003). The cross-section is for a plane normal to the axes 16 

of the probes that coincides with the location of the thermistor. The heating element in the 17 

heater probe consists of four strands of resistance wire. The portions of the probes filled with 18 

thermally conductive epoxy are shown in white. 19 

Fig. 5. Temperature (or change in temperature) of the temperature probe as a function of time for 20 

dry sand (β0 = 2.58), wet sand (β0 = 0.93), and water (β0 = 0.68). Results for the ICPC 21 

solution are from Eq. [40] with 11.00 ≈La . Results for the line-source solution are from Eq. 22 
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[A1] with r1 = L. Both solutions were evaluated using media thermal properties from Table 1 1 

and the parameter values given in Table 2. 2 

Fig. 6. Mesh of triangular elements used for the numerical model. (A) Mesh for the heater and 3 

temperature probes and a portion of the soil surrounding them. The x axis coincides with the 4 

horizontal line that passes through the center of the probes. (B) Expanded view of the mesh 5 

for the temperature probe and a portion of the soil surrounding it. The small circle identifies 6 

the node at )0,(),( Lyx = . The temperature at this node was taken to represent the 7 

temperature recorded by the thermistor. 8 

Fig. 7. Difference between the temperature of the temperature probe determined using the ICPC 9 

solution, )(P
2 tV , and the temperature of the temperature probe determined using the 10 

numerical model, ),0,( tLT . The difference ),0,()(P
2 tLTtV −  is shown as a function of time 11 

for dry sand, wet sand, and water. Results for the ICPC solution are from Eq. [40]. Results 12 

from the numerical model are for the case where both probes were assigned an arbitrarily 13 

large value of conductivity so they were effectively perfect conductors. The ICPC solution 14 

and the numerical model were both evaluated using media thermal properties from Table 1 15 

and the parameter values given in Table 2. Values for Ce and Css in the numerical model were 16 

from Table 1. 17 

Fig. 8. Difference between the temperature of the temperature probe determined using the ICPC 18 

solution, )(P
2 tV , and the temperature of the temperature probe determined using the 19 

numerical model, ),0,( tLT . The difference ),0,()(P
2 tLTtV −  is shown as a function of time 20 

for dry sand, wet sand, and water. Results for the ICPC solution are from Eq. [40]. Results 21 

from the numerical model are for the case where the probes had finite conductivity as well as 22 

finite heat capacity. Both solutions were evaluated using media thermal properties from 23 
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Table 1 and the parameter values given in Table 2. For the numerical model, values from 1 

Table 1 were used for the thermal properties of the probe materials. 2 

Fig. 9. Difference between the temperature of the temperature probe determined using the line-3 

source solution, ),( tLυ , and the temperature of the temperature probe determined using the 4 

numerical model, ),0,( tLT . The difference ),0,(),( tLTtL −υ  is shown as a function of time 5 

for dry sand, wet sand, and water. Results for the line-source solution are from Eq. [A1] with 6 

r1 = L. Results from the numerical model are for the case where the probes had finite 7 

conductivity as well as finite heat capacity. Both solutions were evaluated using media 8 

thermal properties from Table 1 and the parameter values given in Table 2. For the numerical 9 

model, values from Table 1 were used for the thermal properties of the probe materials. 10 

Fig. 10. Spatial distribution of temperature radially outwards from the centerline of the heater 11 

probe into water. The labels on the curves denote the time in seconds from the onset of 12 

heating. The open triangle shows the location of the interface between the epoxy and 13 

stainless steel at r1 = ae. The filled triangle shows the location of the interface between the 14 

stainless steel and water at r1 = a0. Results from the numerical model are for the case where 15 

the probes had finite conductivity as well as finite heat capacity. The model was evaluated 16 

using media thermal properties from Table 1 and the parameter values given in Table 2. 17 

Values from Table 1 were used for the thermal properties of the probe materials. 18 

 19 
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Table 1. Volumetric heat capacity (C), thermal conductivity (λ), and 
thermal diffusivity (κ) of the materials used in this investigation. The 
relationship Cλ=κ  was used to calculate diffusivity values. 

Material C λ κ 

 MJ m−3 K−1 W m−1 K−1 m2 s−1 
Type 304 stainless steel 3.77† 14.9† 3.95 × 10−6 
Omegabond 101 epoxy 1.64‡ 1.04‡ 6.34 × 10−7 
Air-dried Clayton sand 1.1§ 0.3§ 2.73 × 10−7 
Saturated Hanlon sand 3.07¶ 1.95¶ 6.35 × 10−7 

Water 4.18 0.60 1.44 × 10−7 

† Values from Table A.1 of Incropera and De Witt (1996). 
‡ Values from Table 1 of Kamai et al. (2009). 
§ Values adapted from Table 2 of Bristow et al. (1994). 
¶ Values from Table 2 of Ren et al. (2000). 

 

 

 

 

Table 2. Parameter values corresponding to the 
DPHP sensor of Basinger et al. (2003). 

Parameter Value Units 

ae 4.19 × 10−4 m 
a0 6.35 × 10−4 m 
L 6.00 × 10−3 m 
C0 2.84 MJ m−3 K−1 
q′ 100 W m−1 
t0 8 s 
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Table 3. Estimates of volumetric heat capacity (C), thermal conductivity (λ), and 
thermal diffusivity (κ) determined by using the method of Bristow et al. (1994) to 
fit the line-source solution to the curves for the ICPC solution in Fig. 5. The values 
in parentheses give the relative errors (%) in the estimated thermal properties (i.e. 
the errors in estimated thermal properties expressed as a percent of the original 
values in Table 1). 

Material C λ κ 

 MJ m−3 K−1 W m−1 K−1 m2 s−1 
Air-dried Clayton sand 1.17 (6.4) 0.28 (−7.7) 2.36 × 10−7 (−13.5) 
Saturated Hanlon sand 3.06 (−0.3) 2.01 (3.0) 6.57 × 10−7 (3.4) 

Water 4.12 (−1.4) 0.63 (5.0) 1.53 × 10−7 (6.6) 
 

 

 

 

Table B1. Weighting coefficients ωi for the algorithm of 
Stehfest (1970a,b) for the case where N = 16. 

i ωi 
1 −3.96825396825396825 × 10−4 
2 2.13373015873016 
3 −551.01666666666667 
4 33500.161111111111 
5 −812665.11111111111111 
6 10076183.766666667 
7 −73241382.977777778 
8 339059632.073016 
9 −1052539536.278571 
10 2259013328.5833333 
11 −3399701984.4333333 
12 3582450461.7 
13 −2591494081.3666667 
14 1227049828.7666667 
15 −342734555.42857143 
16 42841819.428571428 
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 Figure 1 
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 Figure 2 
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 Figure 3 
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 Figure 4 
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 Figure 5 
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 Figure 6a 
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Heater 
probe 

Temperature 
probe 

Soil 

(A) 

Epoxy 

Stainless 
steel tubing 

Soil 

(B) 



 50

 Figure 7 
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 Figure 8 
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 Figure 9 
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 Figure 10 
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