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INTRODUCTION

A typical communication system, as shown in Fig. 1, employs

an encoder to improve the efficiency of channel because an en-

coded message is less susceptible to noise in the channel. A

decoder is employed at the receiving end to recover the

original message from the encoded message.

SOURCE ENCODER CHANNEL DECODER RECEIVER

NOISE

Fig. 1. A typical communication system.

The encoding procedures discussed herein are restricted to

binary codes only wherein symbols and 1 form the code alpha-

bet. A letter, symbol, or character is defined as an individ-

ual member of an alphabet set, whereas a message or word is a

finite sequence of its letters. The length of a word is the

number of letters in it.

Encoding or enciphering is a procedure for constructing

words using a finite alphabet to represent a given word of the

original language on a one-to-one basis. The inverse operation

of assigning original words to the encoded words is called de-

coding or deciphering.

The communication channels may be classified as either

noiseless or deterministic. Noiseless channels are characterized



by one and only one nonzero element in each column of their

channel matrix. A noisy channel is shown in Fig. 2.
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Pig. 2. A noisy channel and its matrix.

A channel matrix with one and only one nonzero element in

each row characterizes a deterministic channel. A determinis-

tic channel is shown in Fig. 3»
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Fig. 3' Deterministic channel and its matrix.

Binary symmetric and binary erasure are two widely dis-

cussed channels, and are shown in Figs. l\. and $, respectively.
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Pig. l|.. Binary symmetric channel and its matrix.
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Fig. 5« Binary erasure channel and its matrix.
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Various classes of codes are summarized (Abramson, 1963)

in Fig. 6.

A block code is a code "which maps each of the symbols of

a source alphabet S into a fixed sequence of symbols of the

code alphabet X, as shown in Table 1.

Table 1

Source symbols : Code

Sx
So 11
So 00

% X1

A block code is said to be nonsingular if all' the words of the

code are distinct.

Table 2. Block code.

Source symbols : Code (X±)

Sx
52 11
53 00

% 01

A block code is uniquely decodable if, and only if, the n^h ex-

tension of the code is nonsingular for every finite n. The n^*1

extension of a block code (Table 2) which maps the symbol Sj[_

into code words X-^ is the block code which maps the sequence

of source symbols ( S^-]_S^2 ••• S^n ) into sequences of code

words (XnXi2 ••• ^in) > as shown in Table 3«



Table 3« Second extension of block code (Table 2).

Source symbols Code Source symbols Code

s
1
s1

S1 S2
SlS3
SlSl+

S2S1

S 2 S3
SoS^

00
Oil
000
001

110
1111
1100
1101

SoS
c 3

CDl
So So
St So
33 Sk

Sjjs2
SI4-S3

000
0011
0000
0001

010
0111
0100
0101

A uniquely decodable code is said to be instantaneous if it is

possible to decode each word in a sequence without reference to

succeeding code symbols, as shown below.

Received message 0010110111
Code alphabet 0, 1, 1 1, 1 1 1

Deciphered message 0, 1, 1 1, 1 1 1

Some of the basic binary encoding procedures are Shannon-

Fano coding, Shannon binary encoding, Huffman's minimum re-

dundancy codes, and Gilbert-Moore encoding. These codes can

neither detect nor correct an error introduced during the

transmission of information in a noisy channel. The error-

detecting and error-correcting codes are designed to correct

certain patterns of errors.

Shannon-Fano Encoding

An ensemble of messages (X) = (X]_, X2, ..., Xn ) with prob-

ability (P) = (P]_, P2» •••> Pn) are fi rs k arranged in the order

of decreasing probabilities. This set is then partitioned into
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1

1 1
1 1 1

1 1 1 1

two most nearly equiprobable subsets. Then a "0" is assigned

to each message in one subset, and "1" to each message in the

other subset. The same procedure is repeated until each sub-

set contains only one message as shown in Table i|.

Table l±. Shannon-Fano code.

Message : Probability : Encoded message

Xi .3
X2 .2
X3 .2

Xh .15
X? .1

xi .05

The average length of a code word is defined as

L = c- P(Xj_)nj_, where n-j_ is the length of the code word and

P(Xj_) is the probability of occurrence of message X^. It is

found to be 2.\\$ for the code in Table Ij.. The efficiency of

coding technique is defined as

^i =- (1)
L • log D

where H(X) = - L— p* log p.
I (2)

D = number of symbols in the code alphabet

The source entropy H(X) can be shown to be 2 . Ij.08 bits per

symbol. The efficiency of the above code is 98.5 per cent.

Shannon's Binary Encoding

An ensemble of messages is written in order of decreasing

probabilities and a sequence of 's is computed as shown below.



2 00

.k 2 01

.7 3 101

.9 k 1110

-<1 =

-<2 = P(Xi)

-<
3

= p(x2 ) + P(x1 ) = p(x 2 ) + -<
2 (3)

where X^ Is the message with highest probability. A set of

integers n.j_ is determined using the inequality

P(Xi
)'^ 2" ni for each P(Xi ) (Ij.)

The -< ' s are then expressed in the binary form as shown in

Table 5.

Table 5>. Shannon's binary code.

Message Xj_ : Probability P(X^) :
-<i

: ni : Code

X2 .3
X, .2
x£ .i

For this case, average length, the source entropy, and the code

efficiency are 2.i| bits, 1.814.6 bits per symbol, and 77 per cent,

respectively.

Gilbert-Moore Encoding

A message ensemble is written in the specified order and

a set of integers n^_ is computed using the following inequality:

2
1_ni ^ P(X i ) <2 2 "ni

(5)

A sequence of -<
' s is defined below.

.*! = 1/2 P(Xi)

-< 2 = P(XX ) + 1/2 P(X2 )

± = P(X3_) + P(X2 ) + . . . + 1/2 P(Xi) (6)-<-? =



.05 5 00001

.2 1+ 0011

.w 3 Oil

.0 3 110

a

where X-j_ is the first message, X2 the second, and so on. The

-< ' s thus computed are then written as binary digits of length

n^_ as was done under Shannon's encoding procedure and is shown

in Table 6.

Table 6. Gilbert-Moore encoding.

Message X± : Probability P(Xj_) : -H : n
i

: Code

X1 .1
X2 .2
X^ .3

The average length, source entropy, and efficiency for this

example are 3>k- bits, I.8I4.6 bits per symbol, and £lj..2 per

cent, respectively.

Huffman's Minimum Redundancy Codes

L log D - H(X)
1 - Efficiency = = (7)

L log D

This is the optimum or minimal redundant encoding procedure

for a given source which can be coded as shown in Fig. 7- An

optimum code satisfies the condition L(Xn_^) = ^(X )

.

The average length, source entropy, and efficiency for

the code in Fig. 7 are 3 bits, 2.972 bits per symbol, and

99.06 per cent, respectively.
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CODING FOR NOISY" CHANNEL

Binary codes for the noiseless channels were considered in

the last chapter, whereas those for noisy channels are con-

sidered here. When a sequence of 0's and l's is transmitted

over a noisy channel, some digits will be received in error

and since the source binits are independent, there is no way of

detecting erroneous digits. However, if each message digit is

transmitted an odd number of times and the most often occurring

digits may be selected at the receiver in order to detect the

original transmitted sequence. For instance, if each digit in

0010110 is transmitted three times as 000 000 111 000 111 111

111 000 and the received message is 100 001 101 000 110 111 Oil

010, the original message can be obtained by selecting the digit

occurring more frequently in each sequence of three digits. It

can be seen that 000 indicates that the transmitted digit is 0,

whereas the second sequence 111 indicates 1 as the transmitted

digit, and so on. Using this technique, the original message

00101110 is obtained.

Thus it is obvious that in order to detect and/or to cor-

rect an error, transmission rate has to be sacrificed, or in

other words it is necessary to insert redundant bits in the

message at the transmitter. In codes of length n, m message

bits are encoded by inserting k redundant digits such as

n = m + k, and in the above example m = 1, k = 2, and n = 3.

Codes with all code words of equal length are usually designated

as block codes.

Definitions of some basic terms are summarized below.



11

Memoryless Channel is a channel in which the probability

of error for a received bit is independent of the

receiving bits.

Parity Check Digits in a message are used for detection

and correction of error.

Even Parity Check in a message n digits long with the

first n - 1 information digits and in the n""1 place,

a or 1 is assigned so that the entire message has

an even number of l's.

Odd Parity Check, as in the above case, is an or 1 in

the n place, such that the entire message has an

odd number of l's.

Weight of a Code Word is the number of l's in the word.

Group Code is a binary code having the group property

( see Appendix)

.

Systematic Code is a block code of length n, with m in-

formation digits and k + n - m parity check digits.

Linear Code is a mathematical term for n-ary (binary,

ternary, etc.) code having a specific property. For

binary codes, terms like linear codes and group codes

are synonymous.

Hamming Codes

The first error correcting and detecting codes are due to

Hamming (1950). Some details of these codes follow.

Single Error Detecting Code (SED) is, for instance, an n
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bits long code with even parity check. Any single error would

result in an odd number of l's in the received code words. All

other errors will go undetected.

Single Error Correction Codes (SEC) can correct any single

error occurring within a code word. Consider a code n binits

long, xn of which are information digits and the remaining

k = n - m are parity check digits. The values of the check

digits are determined in the encoding operation by even parity

checks over selected information places. Parity check rules

are assigned as shown later, and then the parity checks are ap-

plied in such a way that every time a parity check agrees with

the value observed in the corresponding check digit, a "0" is

recorded and a "l" is recorded otherwise. This sequence of

"0's" and "l's", k digit long written from right to left is a

binary number giving the position of the error. Since the

number is required to give the position of single error in the

code, any position having a "1" on the right of its binary

representation must cause the parity check to fail. So the

first parity check must be over positions which have "1" as

the first digit in binary numbers, such as 1, 3, 5, 1, 9, ...,

etc. Similarly, the second parity check should be over the

position numbers whose binary representation has "1" as their

second digits, namely, 2, 3, °, 7, •••, etc. Similarly, posi-

tions for the third parity check would be Ij., 5, 6, 7, etc.

See Table 7.

An illustration of Hamming's SEC code for n = 7 is discussed

here. Information positions in the code shown above are 3, 5,

6, 7. If the corresponding information digits are 10 11, the
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Table 7

Parity check : Location of :

number : check digit :
Positions checked

1 1 1,3,5,7,9, ...
2 2 2,3,6,7,10,11, ..

3 k k, 5, 6, 7, 12, ...

t 5 6,9,10,11,12 ...

complete code word would be 0110011 using even party checks,

there are lj. information positions, (2)^" = 16 different se-

quences of the code words are possible. Suppose the received

word is 011011. Using the procedure described above, when first

parity check is applied over positions 1, 3, 5, 7, it is found

that the digit in position 1 should be a 1, but there is a zero

in that position. So the first digit of checking number is 1.

Similarly, the digit in second position agrees and the digit in

fourth position disagrees, so the checking number is 101. Hence

the error is in fifth position as 101 is the binary representa-

tion of 5.

Single Error Correcting and Double Error Detecting Codes

can be obtained from single error correction codes by simply

adding an additional digit in the end, which is an even parity

check over all previous digits. The operation of this code is

summarized in Table 8.

Hamming introduced a geometrical model to specify the re-

quirements for codes which can either detect or correct more

than two errors. This consists of identifying sequences of

0's and l's in each code word with a point in n-dimensional

space. For large n, this concept is difficult to visualize but
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Table 8

Type of error Correction procedure

No error

Single error

Double error

More than two
errors

All parity checks are satisfied and
checking number is 000.

Last parity check fails. Checking num-
ber indicates the position of error. If
checking number is zero, it means an
error in the last check position.

Last parity check is satisfied and the
checking number is obtained but gives no
information about the position of error.

No useful information is obtained and if
the resulting number of errors is odd,
checking number might create an addi-
tional error.

the case of n = 3 can be used to explain the basic concept.

For n = 3, (2)3 = 8 words can be associated with the corners of

a cube as shown in Pig. 8. The distance D(U, V) between two

(001)

Cm)

(100)

Cuo)

*- X

Fig. 8. Three-dimensional cube
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points, U and V, is the number of positions in which they

differ. If U = 100 and V = Oil, then D(U, V) = 3.

This shows that in order to make a transition from 100 to

Oil, or vice versa, three sides of the cube must be traversed.

If all the points are used as code words, the error cannot be

detected. Now if the code words having a minimum distance of

2 units are chosen, a single error can be detected because it

will cause the code point to be moved in only one direction to

a point which is not defined as a code word. One such set of

symbols would be 000, 011, 101, 110.

Also if the minimum distance between code words is at

least 3, a single error will leave the displaced point nearer

to correct point than to any other code point, and therefore a

single error can be corrected. The above discussion is sum-

marized in Table 9.

Table 9. Hamming's error detecting
and correcting codes.

Minimum
: Correction procedure : Detected : Corrected

distance : : :

1 No error detection or cor-
rection

2 SED 1

3 SEC 11
k. SEC-DED 2 1

5 DEC or (DEC -DEC) 2 2
6 DEC -TED 3 2
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Slepian Group Codes

Slepian (1956) generalized the codes obtained by Hamming

and Reed-Muller. Actually Hamming and Reed-Muller codes form

a subclass of a larger class of codes called Group Codes.

The encoding scheme for these codes is simple because last

K positions in the code word are assigned parity checks and the

decoder, which is a maximum likelihood detector, is optimum

theoretically.

The mathematical definition of group is given in the

appendix. A collection of binary words is said to form a group

if the product of any two members is also a member of this col-

lection, and this collection contains the identity element. As

an example, the 2n possible sequences of n bits form a binary

group. This group is denoted by Bn and contains 2n words or

elements. An n-place group code is defined to be a collection

of 2m(m «==: n) binit. Code words that form a group as defined

above. All such group codes are subgroups of Bn which contains

all 2n possible sequences of n binits.

According to Slepian there are exactly

(2n - 2°)(2n - 2 1 ) ... (2
n - 2m

" 1
)

N(n,m) = — (8)
(2m - 2°)(2m - 2 1 ) ... (2m - 2m

" 1
)

different subgroups of Bn having 2m elements. And these N(n,m)

possible codes are tabulated by Slepian (1956) and many ex-

amples of such codes are also given.

After choosing a (n,m) code and 2m words, the information

is transmitted by selecting blocks of m message digits and

associating these in a one-to-one manner with the 2m code words
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Since the channel Is noisy, some digits in the received code

word will be in error. These errors are then corrected knowing

that transmitted words formed a group.

Slepian has suggested an optimum decoding method which

uses a standard array of code words, which is obtained as fol-

lows. The words of a specific code word A^ = I = 000 .. 0,

A2, A^ ... Am are placed in the top row and the words S2, So

Sv are chosen such that S2 is any code word hot contained in

the first row. S^ is any code word not contained in the first

two rows and so on. The whole array then can be developed as

shown below.

I A 2 A3 A^

S2 S2A2 S 2A3 S 2A^

B =
S3 S3A 2 S3A3 ...... 3^

Sv SVA 2 SVA3 S^
All the rows except the first are called Cosets and the

first words S2 , S3, ..., Sv are called Coset Leaders. The

weight W-j_ a of an element in the array is the number of nonzero

digits in the n binit word located in i
-"1 row and j column.

If the coset leaders are chosen as the elements with the minimum

weight, such an array is called Standard Array. Peterson (19&1)

gives several theorems using the properties of standard array

coset and coset leaders. Slepian (19£6) and Prange (1957)

offered a theorem using properties of coset and coset leader

for detection of group codes. The decoding process is illus-

trated with a .specific example as given below.
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A standard array for (i|,2) code 0000, 1100, 0011, 1111 is

as follows:

0000 1100 0011 1111
0001 1101 0010 1110
0100 1000 0111 1011
0110 1010 0101 1001

It is formed by the method illustrated in the preceding para-

graph. Note that many standard arrays can be formed by choos-

ing different coset leaders having the same "weight. Consider-

ing a BSC, when a word, say A, is sent, the word received can

be any element of Bn . If the received word lies in the i^n

column, the detector will show that word Aj_ has been trans-

mitted. In the above example, 0111 will be produced as 0011,

and 1010 will be produced as 1100. Moreover, considering the

fact that any word in a standard array is at least as close to

the code words at the top of its column as it is to any other

transmitted code word, this scheme gives maximum likelihood de-

tection that is the detected symbol is the one most likely to

have been transmitted. The only drawback of this decoding

scheme is that it requires knowledge of all 2
n possible words.

Hence the detection equipment grows exponentially with the

length of the code word. To overcome this disadvantage, a

simple encoding procedure for the generation of code words by

parity checks is given in the following example. Definitions

of Systematic Code and Equivalent Code are also given below.

In a Systematic Code, all code words have the same in-

formation digit locations and same parity check

digit locations.
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Two group codes are Equivalent if one can be obtained

from the other by permitting the digit locations.

The generation of groups codes by parity check is

explained in the following example.

Consider the same (l+,2) code given by 0000, 1100, 0011,

1111. Positions 2 and 3 &re assumed to be information posi-

tions. If a code word is denoted as X1X2X3X],, the parity check

rules are determined by solving the simultaneous equations

Xl
= A 1X2 ® A 2X3 ( 10 )

\ = A
3
X2 e A

I|.
X
3

(11 )

(Note that © means addition modulo 2.) Substituting values

from third and fourth code words,

1 = Ax . © A2I A2 = 1
1 = A x • 1 © A 2 1 Ai =

1 = A3 • © Ajjl Au = 1

1 = A3 . 1 © Ajl A3 =

so A2 = A[^_ = 1 and A]_ = A3 = 0.

Thus the parity check rules are X]_ = X3 and Xl = X3.

Slepian (195&) has given two important results involving

systematic and equivalent code.

1. Every group code is a systematic code and vice versa.

2. Every (n,m) code is equivalent to a (n,m) code having

first m places as information digits and remaining k = n - m

places as parity check over the first m places. The general

expression for k check digits then becomes

m
Xj_ = ^2" viix i

wnere i = m + 1, ..., n (12)
3=1

(Summation is modulo 2 with the multiplication rules being

0.1=1.0=0-0=0, and 1 • 1=1.) Slepian also lists
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suitable parity check rules for optimum results. For instance,

consider a (6,3) code. In this case number of words = (2)3 = 8

and parity check rules are:

X^ = X-l © X2 (13)

X£ = Xx © X3 (11+)

X6 = X2 © x
3 (15)

resulting in Table 10.

Table 10

Code words Information
: Parity check

: digits :

J

1 000
2 001 11
3 010 10 1

h, 011 110
5 100 110
6 101 10 1

7 110 Oil
8 111

Slepian has described a method of maximum likelihood de-

tection by means of parity checks. In this method for a

specific (n,m) code, parity check rules are applied to any code

word, say T, and check digits resulting from the i^*1 parity

check are compared with the digit in 2nd position of T . If

these agree, a "0" is assigned; otherwise a "1" is assigned.

In this way a parity check sequence denoted by R(T) is thus

formed by writing "1" and "0" from left to right.

If the message received is 101001 = T, and the first three

bits are information digits, namely, 101, then the parity check

word for this code is 001, while (from Table l±) it should be

101. Since i|th parity check is different and 5th and 6th parity



21

checks are the same, the checking number is 100 = R(T) , and

therefore the error is in the i|th position.

Using the parity check rules of the last example,

Let T = (101001)

Xx + X 2 = X^ so assign a "1"

X]_ + Xo = Xt so assign a

X2
+ X

3
= X6 so assiSn a "°"

R(T) = (100)

Slepian has proved the following theorem using this definition

of R(T) . If I, A2, A,, ..., A^ is a (n,m) code and consider

Bn to be developed in this standard array by this code. Let

R(T) be the parity check sequence for a word T which has been

formed in accordance with the parity check rules of the speci-

fied code. Then R(Tq_) = R(T 2 ) if and only if T1 and T 2 lie in

the same row of the standard array.

Consider (ij.,2) code

0000 1011 0101 1110
0010 1001 0111 1100
0100 1111 0001 1010
1000 0011 1101 0110

Parity check rules are Xo = X^ and Xl = X]_ © X 2 .

By definition all words in the first row satisfy parity

check giving a parity check sequence of 00. In the second row,

every word fails the first parity check and satisfies the second

check. Therefore the parity check sequence for this row is 10.

Similarly, parity check sequences for third and fourth row are

01 and 11, respectively. So one can establish the following

correspondence between the parity check sequence and coset

leaders.
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00 —> Si = 0000

10 —> s2 = 0010

01 -> S3 = 0100

11 ^Sl = 0001

Maximum likelihood detection is now obtained as described in

the following paragraph.

Parity check sequence R(T) of the received code word T is

formed, which in turn identifies the coset leader, say S^_. The

product S^ T is produced as the detector output. Suppose

(0001) of (i|,2) code is received. R(0001) = 01 wherein

corresponds to So = 0100. The detected word is therefore

(0100) (0001) = 0101.

Some of the recent and advanced block coding techniques

(Peterson, 19&1) are discussed in this section. Some pertinent

definitions are given here to supplement the material in the

appendix.

Bose-Chaudhuri Codes

These cyclic codes are defined in terms of the roots of a

generator polynomial. A generator polynomial g(x) is defined

as the monic polynomial of the smallest degree, such that g(x)

is in an ideal I (see appendix for definition of an Ideal).

Assume the symbols to be elements of Galois field of q

elements, i.e., GF(q). Let m be an integer and L be any ele-

ment of GF(qin
). Then the code consisting of all vectors (f(x))

over GF(q) for which -<
m
0, *

xn +1
, ..., ^™ +d-2 ape roots of f(x)

is a Bose-Chaudhuri code. For the binary case q = 2 and let
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itiq = 1 and d = 2^+l where' t is any integer. (f(x)) is a code

vector if and only if ^ 1 , u 2
, .<3^ # t # f

^2t are roo -t s f f(x).

The minimum function of any element B in the extension field

(see appendix) is defined as the monic polynomial of the small-

est degree with the coefficients in the ground field F. Let

m]_(x) denote the minimum function of l 1 where 1 is a primitive

element of GF(qm ) then jt, «< , ^ , . .., are roots of m-j_(x) =

m2 (x) ... i%(x) = ms(x) ..., -< J5
, «< , -< ... are roots of

m-a(x) = m£
)

(x), and jy
t

-<
10 are roots of ... m^(x) = m^o(x) ... .

Hence in other words, all the even powers of -< are a root

of the same minimum function of some previous odd powers of «<,

i.e., «< , -o~, -< , . .., are roots of m-^x); «< , -< are roots of

mo(x), and -< is a root of m^(x). Therefore it may be said

.... r> 2 t-lthat (f(x)) is a code vector if and only if -<, -< , •••, •<

are roots of f(x) where t is any integer. Therefore the gen-

erator of code is the Least Common Multiple (L C M) of

(m1 (x) 1113 (x) ... m2 t-l(x)).

The following example illustrates the procedure for con-

structing a Bose-Chaudhuri Code. Let q = 2 and / be a primi-

tive element of GF(2^). Then j^> = 1.

•c
1

, u.^ , -<^, ^° are roots of m^(x) = m2 (x) = m[,(x) = ms(x) degree J4.

•o-
5
, «< , ^x , j? are roots of m3(x) = m^(x) degree I4.

-< , -< are roots of m^(x) = m^otx) degree 2

Therefore g(x) = m^(x)m^(x)mc(x) (16)

If ^ is a root of x^- + x + 1 (see Table 11 in Appendix), then

m]_(x) = x*+ + x + 1. nv^x) and iru;(x) are calculated as shown.

Let 1113 (x) = a + a-^ + a 2x
2

+ a3X^ + x^ (17)
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Substitute

Then

a

,3 . (0001) for x

J> = (0011) for x2

-<9 = (0101) for x3

-<
12= (1111) for x^

1

+ fll

V
+ &2

i
+ a

3

roi
i + ai+

1
I J M .

1
'

ll

1

1

1
=

or a
Q

+ 1 =

a
3

+ 1 =

a 2
+ 1 =

a-[_ + a 2
+ 83 + 1 =

Therefore aQ
= 1

a
3

= 1

ao = 1

*! = 1

Therefore

Similarly

Therefore

iri3(x) = 1 + x + x + x-* + A

m^(x) can be found to be = (

x

2 + x + 1)

g(x) = (1 + x + x^") (1 + x + x + x^ + x^)

(1 + x + x
2

)

= 1 + x + x2 + x^ + x^ + x° + x10

(18)

(19)

The multiplication process is illustrated in the Appendix. The

degree of g(x) = 10 and therefore the dimension of the code is

15 - 10 = 5, which corresponds to the information digits. The

elements are

(g(x)j =1110110010100000
(xg(x)) =01110 11001010000

(x2g(x)) =0011101100101000
(x3g(x)) =0001110110010100
(x^g(x)) =0000111011001010

The generator matrix is
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1110110010100000
0111011001010000
0011101100101000 (20)

0001110110010100
0000111011001010

Bose and Chaudhuri have summarized all the codes generated

by primitive elements of order less than 2° (Peterson, 196l)

.

Reed-Muller Codes

These codes are a subclass of Slepian codes and cover a

wide range of rate and minimum distance. These are different

from Slepian codes in that a specific procedure is available

for determining a set of code words when the following rela-

tions hold:

n = 2m

,xn, ,m,
k = 1 + ( 1 ) + ... + ( r )

m, mn-k=l+
(J)

+ ... + ( ^ )

(21)

(22)

(23)

(2k)d = 2rn~ r = minimum weight

r = order of the code

Consider the set of vectors Vq, V^, V2 , • • • > ^m> over ^he

field of two elements. Let V be the vector whose 2m components

are all l's and V-]_, V2 , • ••, Vm be the rows of a matrix that

has all possible m- tuples, i.e., 1.2 .. 2m as columns. Define

the vector product of two vectors as follows.

U = {a±, a 2 , 83, , an ) (2£)

V = (b
x , b

2 , b
3

, ..., bn ) (26)

(27)UV = (a]^, a 2b 2 , 83^3, ..., a nbn )
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The collection of vectors formed by multiplying vectors Vj_ two

at a time, three at a time, ... m at a time, gives us the basis

for Reed-Muller codes.

Consider the case of m = 3, r = 1. Then length of code

n = 23 = 8. k = 1 + (

3
) = ij..

This is an (8,1|) code.

Vq = (11111111)
V3 = (0 1 1 1 1)

V2 = (0 1 1 1 1)

Vi = (0 1 1 1 1)

v
3
v2 =(00000011)

V^ =(0000010 1)

V2V! =(0001000 1)

VJV2V2. = (00000001)
These eight vectors are then the basis of a first-order Reed-

Muller code. In a way these are equivalent to the generator

matrix as in the Bose-Chaudhuri case.

Fire Codes

These codes with symbols from GF(q) are best defined in

terms of the generator polynomial.

g(x) = p(x)(xc - 1) (28)

where p(x) is an irreducible polynomial of degree m over GF(q)

whose roots have order c, and is not divisible by c. The num-

ber of parity checks is ( c + m) , and therefore the number of

information symbols k = n - c - m.

For instance, consider the fire code generated by
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(x^ + x + Dix1 + 1) . In this, m = 7, c = 16, order of

roots = 27 - l = 127, and n = 16 x 127 = 2032. Parity check

symbols =c+m=7+l6=23. Information symbols = 2032 - 23

= 2009.

Fire codes are capable of correcting any single burst of

length b ^ m or less, and of simultaneously detecting any burst

of length d >b or less if c^ b + d - 1. In the example above,

the code can correct all bursts of length 7 or less and simul-

taneously detect all bursts of length 10 or less. It can detect

any burst of length 23 or less and the combination of two bursts

in which the shorter has length no greater than 7 and the longer

has length no greater than 17.

The procedure for constructing a code is illustrated below.

Let g(x) = (x3 + x2 + l)(x^ + 1) (29)

Then m = 3, c = 5- Order of roots of x3 + x
2

+ 1 = 2 3 - 1 = 7.

Therefore length n = 7 x 5 = 2>5> Parity check symbols = c + m

=5+3=8. Information symbols = 35 - 8 = 27.

g(x) = 1 + x2 + x3 + x^ + x? +
:

8

35th digit
f

(g(x)) = (10 110 10 110 0)

(xg(x)) =(010110 10 1100 0)

(x2 g(xj) =(001011010110 0)

. .

(x?g(x)) =(000000010110101 1...6)

Therefore the generator matrix G is then
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G =

101101011000
010110101100
001011010110

o

35th digit

(30)

00000001011010
This fire code is capable of correcting a burst of length

3 or less and simultaneously detecting a burst of length 3 or

less. For detection alone it can detect a burst of length no

greater than 8 and a combination of two bursts in which the

shorter burst is no greater than 3 and the longer burst is no

greater than 6.

Reed-Solomon Codes

These codes are capable of correcting more than one burst

of error. Peterson defines this as a code with symbols in GF(qr )

that corrects all bursts of t or fewer errors on a channel.

The elements of GF(qr ) are encoded into blocks of r symbols of

GF(q). Then the burst of length (t - l)r + 1 or less can af-

fect at most t excessive blocks, and hence can be corrected.

For example, consider a Reed-Solomon code with symbols from

GF(2?) and t = 1}., r = 7, t = l+. This could correct all bursts

of length (t - l)r + 1, i.e., (l\. - 1)7 + 1 = 22 or less. The

number of blocks required = 2 x 1+ = 8, the number of parity

checks =8x7= 5&, and the length of code is 7 x 2' - 1 =

7 x 127 = 889. The length of Fire code to correct the same
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burst of length, i.e., 22, would be ,? 22 - 1) y I4.3 = 160 mil-

lion binary digits. Thus it is clear that the length of Reed-

Solomon code compared with the Pire code will be much less for

correcting the burst of the same length.

Summa ry

Hancock (1962) has summarized the relationship between the

various encoding procedures considered in the previous sections

b;y means of a block diagram, shown in Fig. 9. He compares the

various encoding procedures for the noisy channels giving the

advantages and disadvantages of each.

BIT LOSS AND GAIN CORRECTION CODE

The first single bit loss or gain correction code has been

suggested by Sellers (1962). In digital communication systems

a message may be received with a different number of bits than

those in the transmitted message. In other words, a message

may gain or lose bits due to the loss of synchronization between

the transmitter and the receiver among other causes. The syn-

chronization systems may be classified, (Wier, 196l) , as syn-

chronous and asynchronous. In the synchronous system, each

data bit takes the same time for transmission, while in asyn-

conous system data bits may take unequal times for transmis-

sion. In the synchronous system a clock at the transmitter times

the bits and the blocks rior to transmission and thus determiner.

the • t. of the dats sou *ce. At th< receii r end a c] ck or an
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31

oscillator pulled into proper phase, or a shock-excited ringing

circuit of proper phase is used to record each data bit once

and only once.

When a message is received with more or fewer bits than

were transmitted, it may be corrected by approximately locating

the error and removing or inserting bits, respectively. The

approximate location of the bit loss or gain is found by the

use of a special character which is inserted into the code at

periodic intervals. The special character has the property

that when shifted left or right or when a bit is gained or lost

in it, it gives an indication of what has happened and thus

determines the corrective action.

Special character 001 will be used for the following two

examples which indicate the procedure for the case of a single

bit loss or gain. Let the encoded message be 001a2, a 2i-l> •••;

a .+ -j_001 a i ... a2a-j_, where a^ is the first bit to be sent into

the channel. On receipt of a count j bits from an, one ex-

amines for the special character.

The length is corrected accordingly if a bit is lost or

gained. It is possible that either an incorrect bit may be in-

serted or removed, or a bit may be inserted or removed from the

wrong position. This results in a burst of errors, which is

then corrected by a burst error correcting code.

The size of burst of errors is limited by the fact that in

order to correct any burst of length b or less, a linear code

must have at least 2b parity check symbols (Peterson, 196l)

.

It can be generalized as follows.
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J = length of block b = length of burst possible

J + 1

1 1 =
2

2 2 = J/2 + 1, or 1 = J - 1

J + 1 J - 1

3 3 = J, or 2 = , or 1 =
2 2

J J J-2
If If = J, or 3 = — + 1* or 2 = — , or 1 =

2 2 2

J-l J+l J-l
5 5 = J> or i+ = or 3 = , or 2 =

2 2 2

J-3
or 1 =

2

In the case of even J the only terra occurring for all even

values is J/2 + 1 and it is also the maximum length of burst

which can be corrected, according to the 'theorem stated above'.

So

b<C J/2 + 1 (3D

Similarly, for odd J the only term occurring for all odd values
J + l

is and it is also the maximum length of burst of errors
2

which can be corrected. So

J + l
b^ (32)

2

An additive error is defined as a change of "1" to "0" or

vice versa. When the length correction is applied by examining

just one special character without reference to any other special

character, the process is called independent decoding . This is

not capable of correcting an additive error because if such an

error is allowed, the error may occur in the special character
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and thus result in a wrong correction procedure. On the other

hand, if dependent decoding which includes checking two con-

secutive special characters and the information contained in

these characters is used for taking the corrective action, the

additive errors can be corrected. In this case also

b < J/2 + 1

J + 1
b^

for j even

for j odd

First case

<
Shifted left

?
Shifted right'

Additive errors

Independent decoding

1

10
1° X X

-> Gain of a bit

10 -> Loss of a bit

10 1

110
111

-> fLoss of a bit
physically in error
in special char-
acter

-> Impossible

Consider an example of J = 5>« Let the encoded message be

11110011100100111011
i 1 i 1

and the message received be

1100111001001110111
i t i i

whereas the special character is received as Oil.

There is gain of one bit and so one bit has to be removed.

The requirement is to remove that bit such that if it causes a

burst of errors, it should not exceed the permissible length of
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5 + i

burst of error, in this particular case = = 3-
2

Hagelberger (1959) defines the length of a burst as the

length of a binary word which .describes the error pattern and

is formed by putting a "1" for each erroneous digit and a "0"

for each correct digit. One essential requirement is that the

first and last digit of such a binary word be "1" because

there is no point in including correct digits which are outside

the burst.

So if a, is removed and it may be incorrect and if sl and

a^ are also in error, we will get a burst of length 5 which

cannot be corrected. If a^ is removed no matter where the burst

started in the block, the burst will never exceed the length 3

and so can always be corrected. It is shown below that for all

odd J and for a single bit gain, the bit to be removed would be

a (J+l/2) and similarly for even J, a(j/2+l) Similarly, if a

loss of a bit occurs, then the message received will be

11111001110010011101
L I i L

The rule governing the place to insert the bit is also

formulated in accordance with the theorem on the size of burst.

In this case the only appropriate place to insert a bit is be-

tween a2 and ao. If the new bit which would be in position a-^

is in error, the burst still cannot exceed a length of 3, and

hence can be corrected. It can be generalized that a bit be

inserted between a(j/2-l/2) and a (j/2+l/2) ^or a -^ oc^ ^*

Similarly for even J, the bit will have to be inserted between

a (J/2-1) and a j/2-

The rules for dependent decoding are essentially the same
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except as stated above. Additive errors can be corrected and

also the information contained in two consecutive special char-

acters is used to determine the correction procedure.

Summary of the Above Discussion (Sellers, 1962)

Special
character
received

Correction procedure

001 No error or error
in special char-
acter

Do nothing this time; (if
there is an error, it will
be caught by next special
character)

.

010
Oil

Gain of a bit Take out received bit
a (j/2+l) ^or ^ even

J + 1
a( ) for J odd

100
101

Loss of a bit Insert a bit between
a

( J/2-1) and a j/2 for J

even. a (j/2-l/2) and

a
( J/2+1/2) for J odd -

101 Gain or loss in
special character

Do nothing this time. It
will be caught by the next
special, character.

000
110
111

Additive errors Impossible
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After a
k

After ak+1

<

Shifted left

1

Shifted right

Additive errors

10

Oil
1 X

10 1

1
]

X

10

Oil
10

10 1

111

1 X

X

Gain of 1 bit

Loss of a bit

Gain of 1 bit
and error in special
character

Loss of 1 bit and
error in special
character

The correction procedure is essentially the same as for

independent decoding.
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Summary of Above Discussion (Sellers, 1962)

Special character
After a^- : After a^+i

Diagnosis . Correction procedure

001 Any error An error oc- Wait for next special
curred between

100

111

a^ and a^+l character

01X 01X Gain of a bit Take out received bit.
a k-( J/2+1) for J even

ak-(j/2+l/2) for J odd

000 01X Error in Take out a bit in
100 special char- special character
101 acter and bit after a^.

Ill gained

X00 X00 A bit lost Add a bit between
ak-( J/2-1) and

ak-j/2 f°r even.

ak-( J/2-1/2) and

8k- (J/2-1/2) for
J odd.

Oil X00 Error in Insert a bit in
010 special char- special character
100 acter and after a^
101 bit lost

K = J 2 J

X = or 1
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The Special Character

The length of a special character for multiple bit loss

arid gain should be greater than or equal to 2b + 1, where b is

the burst of length to be corrected, and for multiple bit loss

or gain it should be greater than or equal to b + 1.

Take a synchronizing character of length 2b, say 0001. It

can be written as two adjacent characters of length b each.

Denote the left character as L ' and right character as L", i.e.,

1.

Let the message transmitted be

L'
|

L"
|

01000111011
Note that the information following the special character is L".

If a loss of 2 bits occurs, the message received would be

L" L'
|010001011

showing that L"L' has replaced L'L". Similarly, if the loss of

2 bits occurs and the information to the right of L" is L',

L'L" is received in the position of special character,- and hence

the error cannot be located.

For the case of bit loss or gain, if the special character

was of length ij. and the information following it was a dupli-

cate of special character, say

L» L"
r 1 i r0001000111011

and a loss of ij. bits occurs, the message received will be

L'
t

L"
t000100011.
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In this case the synchronizing character seems to be un-

disturbed whereas the loss of l\. bits has occurred. Therefore

the synchronizing character is of length greater than or equal

to 2b + 1 for bit loss and gain of 1 bit, and greater than or

equal to b + 1 for bit loss or gain of 1 bit.

Error Correcting Codes for Use with Bit Loss and Gain Code

The choice of error correcting code would depend on

whether the channel introduces other errors besides bit loss

and gain or not, such as additive errors. A burst error cor-

recting code is used, in case the transmission channel intro-

duces even bursts. In case of the former, the special charac-

ter locates the approximate position of error and the only

requirement is to send in enough redundancy for determining the

error pattern. Bits of redundancy are sufficient for the cor-

rection of errors caused by length correction. A parity check

word called longitudinal redundancy check (LRC) is formed and

is used for error detection. When the information is received,

length correction is applied and its location in the block is

noted. An LRC is calculated on the information and compared

with the one received with information. A binary word is formed

having '1' where received and calculated LRC differ and '0'

where they agree. This is the error pattern.

The number of redundant bits on a message with k informa-

tion digits is

k/j(2L + 1) + J (32a)

where ( 2L + 1) is the length of the synchronizing character.

In this equation (2L + 1) will always be odd, i.e., 1, 3, $, 7,
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. .., and since the expression k/j(2L + 1) cannot be a fraction

of a bit, this will be equal to 1 bit which means there will be

(j + 1) bits of redundancy. The redundant bit in addition to

j bits of redundancy required to detect the error pattern is

the parity check on the information digits.

In order to obtain the optimum value of j or minimum re-

dundancy, Eq.32a is differentiated and equated to zero as

below.

.

d/dj[k/j(2L + 1) + j] = (33)

-k/j 2 (2L +1) +1=0

j
2 = k(2L + 1), or j =/k(2L + 1) (M

This gives the minimum amount of redundancy. For in-

stance, 100 information digits are to be coded into a code

capable of correcting bursts of up to ]+ bits.

j = /k(2L + 1) = /l00(2 x k. + 1) = ^900

= 30 bits

This code will not meet the objective if the additive

errors are not in the vicinity of bit loss and gain. If the

additive errors occur in the vicinity of bit loss and gain,

then a burst error correcting code must be used such as Fire

code and Hagelberger code. The Fire code is a cyclic burst

error correcting code while Hagelberger code is a recurrent

error correcting code. Fire codes have the disadvantage that

these require a k-stage buffer storage at the receiver to hold

the message to be corrected. With the Hagelberger code this

problem is eliminated but complexity of electronic hardware

required is directly proportional to the length of bursts to

be corrected.



kl

In order to correct a burst of b or fewer bits in a mes-

sage with k-information digits, Fire code has (2b - 1) +

log(n + 1) bits of redundancy where n is equal to k plus number

of bits of redundancy; i.e.,

n = k + (2b - 1) + log(n + 1) (35)

A good approximation for the value of j may be obtained

by minimizing the numbers of redundancy bits, including

special characters. Assume that it is desired to correct all

bits of length j - 1 or less.

= d/dj[n/j(2L +1) + 2(j - 1) - 1 + log(n + 1)] (36)

Substituting n = k + (2b - 1) + log(n + 1)

and b =
( j - 1)

d
= — "k + 2(j-l) - 1 + log(n+l)

= [-k/j 2 + 2/j 2 + l/j 2 - log(n+l)/j 2

- [k - 3 + log(n + 1)]( 2L + 1)

(2L+1) + 2(j-l) - 1

+ log(n+l)
—

(2L+1) + 2 (37)

,2
+ 2=0

or j =
[(k - 3) + log(n + Dj(_2L + D_

(38)

This is the optimum value of j or minimum redundancy.
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Some of the pertinent definitions and rules of algebra of

rings and fields (Peterson, 19&1) as used in the study of Error

Correcting Codes are reviewed.

A group is a system with one operation and its inverse,

such as addition and subtraction, or multiplication and divi-

sion. A group obeys the laws of closure, associativity, and

has an identity element as well as inverse of each element.

A group which satisfies Commutative law is called an Abelian

group. A ring has two operations with the inverse for the

first operation only. A ring is an Abelian group under addi-

tion and the product of its two elements is defined. It obeys

Associative and Distributive laws. A ring is called Commuta-

tive if its multiplication operation is Commutative, i.e., for

any two elements "a" and "b", ab = ba. A field has two opera-

tions both with inverses and is a Commutative ring with a unit

element in which every nonzero element ha s a multiplication

inverse.

A set "V" of elements is a vector space over a field "F"

if it satisfies the Distributive and Associative laws. It is

an Abelian group under addition and the product of the vector

"V" and any field element is defined. A set of elements is

called a linear associative algebra A, it is a vector space over

field F and for any two elements u and v of A, product uv is

defined in A. It also satisfies the Associative law and Bi-

linear law, for any three elements u, v, and w of Z (uv)w =

u(vw) (Associative law) . If c and d are scalars in F and u,

v, and w are vectors in A, then u(cv + dw) = ( cuv + duw) and

( cv + dw)u = (cvu + dwu) (Bilinear law). Row space of an n x m



matrix (aij) Is the set of all linear combinations of row

vectors ar.d the dimension of the row space is called the row

rank. Similarly, column space of a matrix is the linear com-

bination of column vectors of a matrix and Is called the column

rank.

Example
r

Row rank = 3

Column rank = 5

10 11

10 10

10 1

Elementary row operations consist of interchange of any

two rows, multiplication of any row by a nonzero field element,

and addition of any multiple of any row to another.

Polynomials . A polynomial f(x) = fq + f]_x + ... + fnx
n

is of degree n. It is called monic if the coefficient of high-

est power of x is 1. A polynomial p(x) of degree n which is

not divisable by any polynomial of degree less than n but

greater than zero is called Irreducible . The greatest common

divisor of two polynomials is their common polynomial of great-

est degree. Two polynomials are said to be relatively prime

if their greatest common divisor is 1.

Galois Field . If p(x) is an irreducible polynomial with

coefficient in a field P, then the algebra of polynomials over

F modulo p(x) is a field. The original field is called a ground

field. The field polynomials over GF(p) modulo an irreducible

polynomial of degree m is called the Galois Field of p^elements

and denoted as GFCp10
) . For any number q = p

m that is a power

o^ a prime number, there is a field GF(q) which as q elements.

T] polynomial has as root3 all the (q - 1) nonzero elements of



GF(q) and the polynomial (

x

m - 1) is divisible by (xn - 1) if

and only if m is divisible by n. In G-F(q) there is a primitive

element, i.e., an element of order1 (q - 1). Even a nonzero

element can be expressed as a power of «<, that is multiplica-

tive group of GF(q) is cyclic. A cyclic group consists of all

the powers of one of its elements. For instance, GF(2*+) and

its representation are illustrated in Table 11.

This is a cyclic operation repeated after every three ele-

ments and note that addition is modulo 2 here.

-<3 = J
A = -<° + *1

£ =
.
^ + -<

2

J> = # + J

jc = j^ + j? = 1 + .-< + *, + -<
2

li

= 1 + -<
2 and so on

Every polynomial p(x) of degree n irreducible over GF(q)

is a factor of ( xq
m - m) and also all the roots of an irreduc-

ible polynomial are of the same order.

Polynomial Representation of Binary Information

Consider a code n long in which k are information digits

and remaining n - k are parity checks. The message correspond-

ing to the polynomial ( 1 + x + 7? + x^) is 110101. These poly-

nomials obey all polynomial laws except addition which is
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Table 11

Elements of GP(2^4-) : Representation

-<n = 1 (1000)

(0100)

(0010)

(0001)

(1100)

(0110)

(0011)

(1101)

(1010)

(0101)

(1110)

(0111)

(1111)

(1011)

(1001)

(1000)

modulo 2, that is

iei = o®o = o

o$i = ieo = i

Addition, multiplication, and division of these poly-

nomials are given below.

*! = -<

^ = ^
<3 = *3

A = l + Jk

+5 = -< + *a

6
-< = -<

2 + J
J = l + -< + J
J = l + jfi

^ = -< + J
*io= l + Js + J?

-*
11- J, + J + A

*12= l + -< + ^ + J
^= l + -<

2 + J
*U»- l + J
^15= l



hi

Addition

1 + x

x + x<

1 + X '
+ X'

+ x3 + x^

+ x^

+ x1k

+ XJ + x^

Multiplication

1 + x

1 + x

+ x3 + rA

1 + x + X3 + x^

+ X + X + y^ + x^

2 3+ x + xJ + x5

Division

1.x-

1 • x^ + • x + 1 l«x^ + 1-x^ + 1-x3 + 0-x2 + l»x +

l-x£ + Q.x^ + l-x3

1-x^ + 0-x3 + 0.x2 + 1-x +

1-xh + 0.x3 + l. x2

0-x3 + l«x2 + 1-x +

Q.x3 + l»x2 + Q.x

1-x + 1

It is interesting to note that if only the coefficient

of the above polynomial is divided, the result is the binary

representation, as follows.



w

110
101 111 10

10 1

1

1 1

110
10 1

1 1

In modulo 2 operations, -1 = +1 and addition and subtraction

are equivalent.
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In a communication system which usually consists of a

source, encoder, channel, decoder, and a receiver, an encoder

is used to improve the efficiency of the channel by increasing

the immunity of transmitted message, whereas a decoder decodes

the received signal to recover the original message. Communi-

cation channels are either noiseless or noisy, such as binary

symmetric, binary erasure, and cascaded channel. A noiseless

channel has one and only one nonzero element in each column of

its channel matrix. A deterministic channel has one and only

one nonzero element in each row of its channel matrix. This

report covers binary codes for memoryless discrete sources

using noiseless and noisy channels.

Binary encoding procedures for discrete memoryless sources

and the noiseless channels by Shannon-Fano, Shannon, Gilbert-

Moore, and Huffman are not devised to detect or correct any

errors in a received message but instead to optimize the coding

efficiency. Shannon-Pano codes are 100 per cent efficient when

the probability of occurrence of each message Xk is of the form

P(Xk ) = 2"nk

where n^ is any positive integer. Shannon's binary codes

exist for such sources if the inequality

t.
2_nk ^ 1

k-1

is satisfied, whereas Gilbert-Moore encoding exists for source

alphabets which satisfy the following inequality:

2
!- nk ^ P (xk ) sc 2

2 "nk, k = 1, 2, . .
.

, N

Huffman's minimum redundancy code is the most efficient code



for a specified source, where minimum redundancy implies an

optimum code defined as a code with minimum average word

length for a given source probability matrix.

Slepian (1956) generalized the error detecting and cor-

recting codes introduced by Hamming (1950) and Reed-Muller.

These codes now form a subclass of a larger class of codes

called Group Codes. Bose-Chaudhuri codes are the general form

of all these codes and their existence theorem states that,

"for any m and t, there exists a Bose-Chaudhuri code of length

2in" 1 which corrects all combinations of t or fewer errors and

has no more than mt parity check symbols" (Peterson, 196l)

.

Reed-Muller codes cover a wide range of rate and minimum dis-

tance. Fire codes can be used for correcting a single burst of

error while Reed-Solomon code is capable of correcting more than

one burst of errors.- The average length of the latter is

shorter than that of the former for correcting the same length

of burst.

Sellers (1962) introduced a block code that can correct an

error caused by gain or loss of a bit within the block. This

code is constructed by inserting a special character into a

burst error correcting code at periodic intervals. This special

character locates the approximate position of the bit loss or

gain. Prom that location, a bit is inserted or removed from

the block depending on whether a loss or a gain has occurred.

The error correcting code then corrects the erroneous bits

between where the error occurred and where the correction took



place. This code can be generalized to correct the loss or

gain of a burst of bits. Since no bounds have been derived,

the efficiency of this method is not known as compared to

other possible codes.




