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Abstract
The topic of limits and sequences run through the math syllabi from high
school to graduate school. However rigorous proofs of this concept is not seen
up until a students second year in college or even later. This text is aimed
at presenting proofs of limits of sequences at a level accessible to high school
and undergraduate students who are interested in learning such proofs. The
”ε−N” definition of the limit with proofs using this definition is presented
in the text. We also look at properties of limits of sequences and their proofs
as well as sequences without limits (that is sequences that diverge). We
include some graphical representations of some sequences which can help
one to determine whether a sequence will converge or diverge. Finally, the
text contains a good number of exercises for the reader, some solved and
others with hints to direct the reader in solving them.
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0.0.1 Practice Problems

0.0.2 EXERCISE ON SEQUENCES

� 1. The sequence {xn} is given by the formula xn = 2n+1
n+3

. Find

(a) x10

(b) x25

(c) xn+1 − xn
2. The sequence {bn} is given by the formula {bn} = n

3n
. Find

(a) b3,

(b) b5,

(c) bn+1,

(d) bn+1

bn
.

3. Find the first five terms of the sequence

(a) yn = 1 + 1
2n
,

(b) xn = 2 + 1
2n
,

(c) an = 2 + 3
n
,

(d) bn = 2n+(−1)n
3n

.

4. For what values of n is yn > 200 if yn = 2n− 5 ?

5. For what values of n is yn ≤ 30, if yn = 3n− 100?

6. Find the first five terms of the sequence {xn} and find the formula
for the general term if

(a) x1 = −10, xn+1 = xn + 5 for n ≥ 1

(b) x1 = 4, xn+1 = −xn for n ≥ 1

7. Give an example of a whole number N such that for all n > N
the following inequality holds :

(a) (0.3)n < 0.01;

(b) (0.7)n < 0.01;

(c) (0.99)n < 0.001;

(d) (0.45)n < 0.001;

(e) (0.999)n < 0.001;

v



0.0.3 EXERCISES ON LIMITS OF SEQUENCES

1. Consider the sequence {xn} = 1
2n+1

.

(a) Compute the first several terms and guess the limit of the
sequence.

(b) Find the values of n such that the terms of the sequence lie
in the range of zero within 0.1 (that is, for what values of n
is |xn| ≤ 0.1 ?

(c) Find the values of n such that the terms of the sequence lie
in the range of zero within 0.01 (that is, for what values of n
is |xn| ≤ 0.01) ?

2. (a) Compute the first few terms of the sequence {yn} = 3n−1
n

(n = 1, 2, 3, ...).

(b) Is it true that lim
n→∞

(xn) = 3? For what n is |yn − 3| < 0.01?

3. Let xn = c, where c is some constant number.
Show that lim

n→∞
(xn) = c.

4. Prove

(a) lim
n→∞

n+1
n

= 1,

(b) lim
n→∞

1
n

= 0,

(c) lim
n→∞

5n−2
n

= 5,

(d) lim
n→∞

3n−2
2n

= 1.5,

(e) lim
n→∞

1
n2+1

= 0,

(f) lim
n→∞

1− 1
2n

= 1,

vi



0.1 Introduction

This mini-course is addressed to undergraduate and high school students
who would like to master rigorous proofs of limits of sequences based on the
so-called ”ε − N” definition of a limit. While limits of most examples con-
sidered in standard calculus courses can be guessed intuitively, the accurate
mathematical proof of such limits requires a careful reasoning and good un-
derstanding of the definition and properties of limits.
In this text we provide definitions and detailed proofs of some practice list
problems.

1



Chapter 1

Sequences

1.1 Definition of Sequences

A sequence can informally be thought of as a list of ordered numbers, called
elements of the sequence. Formally we define a sequence of (real) numbers
as a function from the set of natural numbers (N = {1, 2, 3, ...}) to the set of
real numbers (R). It assigns to each n ∈ N some real number xn.

Sometimes people provide only the first few terms of a sequence as shown
below with the assumption that the natural pattern to continue the sequence
is clear :

(a) 1,2,3,4,...

(b) 1,1
2

1
4
,1
8

1
16

,... .

However in mathematics sequences are usually defined by formulas that
would generate an element in the sequence when an integer is substituted
into the formula. The two examples above could be the first terms of the
sequences given by the respective general formulas

(a) xn = n,

(b) xn = 1
2n

.
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Observe that for any integer n substituted into the above formulas an ele-
ment in the sequence is obtained. For xn = 1

2n
by setting n = 2 we get the

element x2 = 1
4
.

Sequences however do not always have such nice formulas as we have seen
above, some cannot even be represented by general formulas. Another com-
mon way to define a sequence is by recursion.

1.2 Recursive Process

This is a process that involves defining objects (in our case elements of se-
quences) in terms of preceding objects of the same kind.
It usually has an initial condition and a formula that reduces all other terms
to the initial condition.
For example, given x0 = 0 and xn+1 = xn + 1, we compute the other terms
of the sequence as follows.

x1 = x0 + 1 = 0 + 1 = 1,

x2 = x1 + 1 = 1 + 1 = 2,

x3 = x2 + 1 = 2 + 1 = 3.

And from this we can guess the general formula of the given recursive
sequence to be xn = n.

1.2.1 Exercise Set 1

1. The sequence {xn} is given by the formula xn = 2n+1
n+3

. Find

(a) x10,

(b) x25,

(c) xn+1 − xn.

Solution.
As discussed earlier by substituting an integer n into the general for-
mula we can determine the term in the sequence that corresponds to
it, thus given

3



xn =
2n+ 1

n+ 3
,

we find x10 =
2 · 10 + 1

10 + 3
,

=
20 + 1

13
,

=
21

13
.

Substituting n = 25 in the right side of the equation, just as we did for
x10, gives the solution for x25 = 51

28
. Now to solve for xn+1−xn the first

step would be to write an expression for xn+1, this is done by replacing
n in the formula for xn with n+ 1. Doing this gives

xn+1 =
2(n+ 1) + 1

(n+ 1) + 3
,

=
2n+ 2 + 1

n+ 4
,

=
2n+ 3

n+ 4
.

Thus in solving for xn+1 − xn we end up with

xn+1 − xn =
2n+ 3

n+ 4
− 2n+ 1

n+ 3
=

(n+ 3)(2n+ 3)− (n+ 4)(2n+ 1)

(n+ 4)(n+ 3)
,

=
2n2 + 3n+ 6n+ 9− 2n2 − n− 8n− 4

(n+ 4)(n+ 3)
,

=
5

(n+ 4)(n+ 3)
.

2. The sequence {bn} is given by the formula {bn} = n
3n

. Find

(a) b3,

(b) b5,

(c) bn+1,

4



(d) bn+1

bn
.

Solution.

2(a) This follows the procedure in problem 1(c), which gives

b3 =
3

33
=

1

32
=

1

9
.

2(b) b5 = 5
243
.

2(c) This is similar to problem 1(c) , we get

bn+1 =
n+ 1

3n+1
.

2(d) Dividing our two terms and simplifying we get

bn+1

bn
=

n+1
3n+1

n
3n

,

=
n+ 1

3n+1
· 3n

n
,

=
n+ 1

3n
.

3. Find the first five terms of the sequence

(a) yn = 1 + 1
2n
,

(b) xn = 2 + 1
2n
,

(c) an = 2 + 3
n
,

(d) bn = 2n+(−1)n
3n

.
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Solution.
3(a)

y1 = 1 +
1

21
= 1 +

1

2
=

3

2
,

y2 = 1 +
1

22
= 1 +

1

4
=

5

4
,

y3 = 1 +
1

23
= 1 +

1

8
=

9

8
,

y4 = 1 +
1

24
= 1 +

1

16
=

17

16
,

y5 = 1 +
1

25
= 1 +

1

32
=

33

32
.

(b) 5
2
, 9

4
, 17

8
, 33

16
, 65

32
,

(c) 5, 7
2
, 3, 11

4
, 13

5
,

(d) 1
3
, 2

3
, 5

9
, 2

3
, 9

15
.

4. For what values of n is yn > 200 if yn = 2n− 5?

5. For what values of n is yn ≤ 30, if yn = 3n− 100?

Solution.

4. We show how to solve problem 4, problem 5 is solved similarly.
We want to find n which satisfies

yn = 2n− 5 > 200.

Solve the inequality
2n− 5 > 200

for the value of n. This gives

2n− 5 > 200, which implies 2n > 200 + 5. Hence n >
205

2
= 102.5.
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Thus for all integer values of n > 102.5, we have yn > 200. Hence
n ≥ 103.

5. This holds for n ≤ 43

6. Find the first five terms of the sequence {xn} and find the formula for
the general term if

(a) x1 = −10, xn+1 = xn + 5 for n ≥ 1.

(b) x1 = 4, xn+1 = −xn for n ≥ 1.

Solution.

As discussed in the introduction, some sequences can be expressed by
a general mathematical formula, with which we can find a particular
term in the sequence by inserting the value of a particular integer n.

6(a) : Just as in question 3, we find the first five terms of the sequence,
only in this case we are already given the first term which is x1 = −10.
Using the first term and the formula of the (n + 1)st term we derive
the second term through to the fifth term as described below.

xn+1 = xn + 5.

If we substitute n = 1 into xn+1 we get

x1+1 = x1 + 5 which implies x2 = x1 + 5.

We are given x1 = −10, substitute this into the expression for x2. Thus

x2 = −10 + 5 = −5.

Next, if we substitute n = 2 into xn+1 we get

x2+1 = x2 + 5 which implies x3 = x2 + 5.

We determined from our previous calculations that x2 = −5. Substi-
tuting x2 into the expression for x3 gives

x3 = −5 + 5 = 0.

7



Following this procedure for n = 3 and n = 4,

x3+1 = x4 = x3 + 5, which implies x4 = 0 + 5 = 5;

x4+1 = x5 = x4 + 5, which implies x5 = 5 + 5 = 10.

So the first five terms of the sequence for question 6(a) are −10, −5,
0, 5, 10.

Guess : For n ≥ 1
xn = −10 + 5(n− 1).

We show our guess satisfies the base step and recursive formula.
Consider x1. Then for n = 1 our guess gives

x1 = −10 + 5(1− 1) = −10.

So the initial condition for x1 = −10 is satisfied.
We now check xn+1 = xn + 5. From our guess we solve for xn+1 to get

xn+1 = −10 + 5(n+ 1− 1), which implies xn+1 = −10 + 5n.

Finally, we insert our guess into the right hand side of the recursive
formula :

xn+1 = xn + 5,

xn+1 = −10 + 5(n− 1) + 5,

xn+1 = −10 + 5n,

This proves that our guess satisfies both the initial condition and the
recursive formula.

6(b) : The first five terms are : 4, −4, 4, −4, 4
and the formula for the general term is

xn = (−1)n+1 · 4 (n ≥ 1).
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7. Give an example of a whole number N such that for all n > N the
following inequality holds :

(a) (0.3)n < 0.01;

(b) (0.7)n < 0.01;

(c) (0.99)n < 0.001;

(d) (0.45)n < 0.001;

(e) (0.999)n < 0.001.

We state a proposition that will help solve the above problems.The
proof of the proposition is given in Appendix 1

Proposition 1. If |a| < 1 then for n > 0, |a|n < 1
n
· 1
1−|a|

Solution.
We solve problem 7(a), problems 7(b)-7(d) follow in the same manner.

(a) |0.3| = 0.3 < 1, so we can apply Proposition 1. We get

|0.3|n < 1

n
· 1

1− 0.3
,

which implies
1

n
· 1

0.7
< 0.01.

Taking reciprocals gives

0.7n >
1

0.01
,

which implies n >
1

0.7 · 0.01
,

thus n > 142.8571.

So the whole number N that satisfies the inequality is N = 143.

7(b) N = 334;

7(c) N = 100, 001;

7(d) N = 1819;

7(e) N = 1, 000, 001.

9



Chapter 2

Limits of Sequences

2.1 Definition of a Limit of a Sequence

We will now discuss the limit of a sequence {xn} and how to compute it, if
it exists.
The limit of a given sequence {xn}, if it exists, can be roughly described as
the numerical value which the sequence tends to as we take n closer to infin-
ity. If the limit of a sequence exists, we say that the sequence is convergent,
otherwise we say that the sequence is divergent.

Formal Definition :
We say that L is the limit of the sequence {xn} when n→∞, if for any real
number ε > 0 there exists a whole number N such that for any n > N we
have |xn − L| < ε. In this case we write lim

n→∞
{xn} = L or {xn} → L when

n→∞

For example, it is intuitively clear that the sequence {xn} = 1
2n

converges
to 0 as n→∞ : write the first several terms of the sequence and observe that
as n increases, the terms in the sequence keeps getting smaller (approaching
0). However, the rigorous proof that lim

n→∞
1
2n

= 0 must be performed using

the definition provided above. We will use the definition of the limit to show
the number L is the limit of a given sequence {xn} in the examples that follow.

10



Example : Show using the definition that

lim
n→∞

n− 1

n+ 1
= 1.

Solution:
To solve the problem, we first try to determine the value of N that depends
on ε. Then the actual flow of the proof consists of the steps of this preliminary
analysis performed in the ”backward” direction. Fix ε > 0, then to satisfy
the condition |an − 1| < ε we must have∣∣∣∣n− 1

n+ 1
− 1

∣∣∣∣ < ε, for all n > N.

Thus we have:
n− 1

n+ 1
− 1 =

n− 1− n− 1

n+ 1
=
−2

n+ 1
,

giving us ∣∣∣∣n− 1

n+ 1
− 1

∣∣∣∣ =
2

n+ 1
.

Our definition implies that an → 1 for n > N we must have

2

n+ 1
< ε, which implies

2

ε
< n+ 1, or

2

ε
− 1 < n

Therefore, we must take N to be the smallest positive integer such that
N > 2

ε
− 1. For example, taking ε = 0.1 gives

2

ε
− 1 =

2

0.1
− 1 = 20− 1 = 19.

So N > 2
0.1
− 1 = 19 and we can set N = 20. Similarly for ε = 0.001,

we can set N = 2000. So for any value of ε we can find N to satisfy our
condition |an − 1| < ε for all n > N.

Now we are ready to write the argument of the actual proof that

lim
n→∞

n− 1

n+ 1
= 1.
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Indeed, suppose we choose some ε > 0. Let us take N− the smallest
whole number that is greater than 2

ε
− 1. That is

N >
2

ε
− 1.

Then if n > N , we have

n > N >
2

ε
− 1.

This implies 2
n+1

< ε. Since∣∣∣∣n− 1

n+ 1
− 1

∣∣∣∣ =
2

n+ 1

we get ∣∣∣∣n− 1

n+ 1
− 1

∣∣∣∣ < ε ∀ n > N.

Thus, by the definition of the limit,

lim
n→∞

n− 1

n+ 1
= 1.

2.1.1 Exercise Set 2

.

1. Consider the sequence {xn} = 1
2n+1

.

(a) Compute the first several terms and guess the limit of the se-
quence.

(b) Find the values of n such that the terms of the sequence lie in the
range of zero within 0.1 (that is, for what values of n is |xn| ≤ 0.1?)

(c) Find the values of n such that the terms of the sequence lie in
the range of zero within 0.01 (that is, for what values of n is
|xn| ≤ 0.01)?)

12



Solution: The first few terms of the sequence are

1,
1

3
,
1

5
,
1

7
,

1

11
,

1

13
,

1

15
,

1

17
,

1

19
, ... .

Observe that the terms in the sequence keep decreasing. Our guess is
that lim

n→∞
(xn) = 0.

(b) We will find values of n for which terms xn are in the range |xn| ≤ ε
for general ε. Then for any values of n we use that result to find such
a particular ε.
Consider N > 0 such that for ε > 0∣∣∣∣ 1

2N + 1

∣∣∣∣ ≤ ε.

Then∣∣∣∣ 1

2N + 1

∣∣∣∣ =
1

2N + 1
≤ ε, which is equivallent to 2N + 1 ≥ 1

ε
,

hence we have

N ≥ 1− ε
2ε

.

Now taking ε = 0.1, we get

N ≥ 1− 0.1

2 · 0.1
= 4.5 .

So for ε = 0.1, and N = 5, taking n ≥ N gives∣∣∣∣ 1

2n+ 1

∣∣∣∣ ≤ 0.1 .

Thus the solution to problem (b) is all n such that n > 5. By a similar
computation the solution to problem (c) is all n such that n > 50.

Remark:
Note that our work in (b) and (c) proves that lim

n→∞
(xn) = 0.

2. (a) Compute the first few terms of the sequence {yn} = 3n−1
n

(n =
1, 2, 3, ...).

13



(b) Is it true that lim
n→∞

(xn) = 3? For what n is |yn − 3| < 0.01?

Solution:

(a) Some terms of the sequence are :

2,
5

2
,
8

3
,
11

4
,
14

5
,
17

6
,
20

7
, ... .

(b) For lim
n→∞

(yn) = 3 to hold, for any ε > 0 there should exist

N > 0 such that for all n > N we have∣∣∣∣3n− 1

n
− 3

∣∣∣∣ < ε, which can be modified to

∣∣∣∣3n− 1− 3n

n

∣∣∣∣ =

∣∣∣∣−1

n

∣∣∣∣ =
1

n
< ε.

Equivalently written as 1
ε
< n.

So for any ε > 0 taking N >
1

ε

and for any n > N ,

since

∣∣∣∣3n− 1

n
− 3

∣∣∣∣ =
1

n
, we have

∣∣∣∣3n− 1

n
− 3

∣∣∣∣ < ε.

Hence it follows that lim
n→∞

∣∣3n−1
n

∣∣ = 3 by the definition. The

graph of the sequence is shown below.
For the final part we want to find n such that∣∣∣∣3n− 1

n
− 3

∣∣∣∣ < 0.01.

Replace ε in the above proof with 0.01. Thus we get

n >
1

0.01
= 100.

So for n = 101, 102, 103, ... one has |yn − 3| < 0.01.

14



Figure 2.1: Graph showing that lim
n→∞

∣∣3n−1
n

∣∣ = 3

3. Let xn = c, where c is some constant number. Show that lim
n→∞

(xn) = c.

Solution:
By definition of the limit of a sequence, for any ε > 0 there should exist
N > 0, such that for every n > N we have |c− c| = 0 < ε. However,
this holds for any value of N . Thus, by our definition it follows trivially
that lim

n→∞
c = c.

4. Prove

(a) lim
n→∞

n+1
n

= 1,

(b) lim
n→∞

1
n

= 0,

(c) lim
n→∞

5n−2
n

= 5,

(d) lim
n→∞

3n−2
2n

= 1.5,

(e) lim
n→∞

1
n2+1

= 0,
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(f) lim
n→∞

1− 1
2n

= 1.

Solution:
We solve problem 4(a), problems 4(c) through 4(f) follow similarly.

4(a) To solve for the limit we first rewrite the sequence in an equivalent
form by dividing the numerator by the highest power of n in the
sequence. Thus

xn =
n+ 1

n
= 1 ≡

1 + 1
n

1
= 1 +

1

n
.

Now we prove using the definition of the limit that lim
n→∞

(
1 + 1

n

)
=

1.
Take ε > 0. Write∣∣∣∣1 +

1

n
− 1

∣∣∣∣ < ε, which is equivalent to

∣∣∣∣ 1n
∣∣∣∣ =

1

n
< ε.

So for any ε > 0 taking N > 1
ε

gives that for any n > N > 1
ε
, one

has∣∣∣∣n+ 1

n
− 1

∣∣∣∣ =

∣∣∣∣ 1n
∣∣∣∣ < 1

N
< ε. Hence by the definition of the limit

lim
n→∞

n+ 1

n
= 1.

The graph of the sequence is shown below.

4(b) Take ε > 0 we want to show that∣∣∣∣ 1n − 0

∣∣∣∣ < ε,

this gives ∣∣∣∣ 1n
∣∣∣∣ < ε,

which we from problem 4(a) holds for any n > N > 1
ε
. Hence by

the definition of the limit lim
n→∞

1
n

= 0.
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Figure 2.2: Graph showing that lim
n→∞

∣∣1 + 1
n

∣∣ = 1

4(c) Hint : Rewrite 5n−2
n

as 5− 2
n
.

4(d) Hint : Rewrite 3n−2
2n

as 3
2
− 1

n
.

4(e) Hint : n >
√

1
ε
− 1.

4(f) Hint : Since
∣∣1
2

∣∣ < 1, we can use Proposition 1 on page 9 to find

N that will satisfy
∣∣1
2

∣∣n < ε. Let ε > 0, take N = 2
ε

then for any
n > N , ∣∣∣∣1− 1

2n
− 1

∣∣∣∣ =

∣∣∣∣−1

2

∣∣∣∣n =<
2

n
< ε.

Hence it follows from the definition of the limit that

lim
n→∞

1− 1

2n
= 1.
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2.2 Properties of Limits

In practice one can find limits of many sequences by reducing them to simple
ones. This is based on the properties of limits which we prove in this section.
Let c be any constant and suppose {xn} and {yn} are two sequences such that
their limits exist and lim

n→∞
(xn) = L and lim

n→∞
(yn) = K. Then the following

properties hold.

1. Multiplication by Constant :
lim
n→∞

(c · xn) = c · lim
n→∞

(xn) = c · L.

2. Sum and Difference rule :
lim
n→∞

(xn ± yn) = lim
n→∞

(xn)± lim
n→∞

(yn) = L±K.

3. Product rule :
lim
n→∞

(xn · yn) = lim
n→∞

(xn) · lim
n→∞

(yn) = LK.

4. Quotient rule :

Suppose K 6= 0 and yn 6= 0 for all n. Then lim
n→∞

(
xn
yn

)
=

lim
n→∞

(xn)

lim
n→∞

(yn)
= L

K
.

5. Power rule :
Suppose m is a whole number and m ≥ 2.
Then lim

n→∞
(xn)m = ( lim

n→∞
xmn ) = Lm.

6. Square root property :
Suppose xn ≥ 0 for all n ≥ 0 and L ≥ 0.
Then lim

n→∞

√
(xn) =

√
lim
n→∞

(xn) =
√
L.

Remark: In general, it can be proved that if the condition xn ≥ 0 for all n
holds, then it implies that the limit L = lim

n→∞
xn ≥ 0 if it exists.
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Proof of the Properties

We will now prove the above properties using the definition of the limit. We
first state important facts which we will use in some of the proofs.

1. Multiplication by Constant :
Suppose lim

n→∞
(xn) = L. If c = 0 then it holds trivially since

lim
n→∞

0 · xn = lim
n→∞

0.

But since 0 is a constant it follows from Exercise 2 problem 3 that
lim
n→∞

0 · xn = 0 = 0 · xn. Assume c 6= 0. Now fix ε > 0. Then by the

definition of the limit there exist an N > 0 such that for n > N

|xn − L| <
ε

|c|
.

Then for all n > N

|cxn − cL| = |c| |xn − L| < |c| ·
ε

|c|
= ε.

So lim
n→∞

cxn = cL by definition.

2. Sum and Difference rule :
We prove the sum rule, the proof of the difference rule follows similarly.
We are given that lim

n→∞
(xn) = L and lim

n→∞
(yn) = K.

Let ε > 0, by the definition of the limit there is N1 > 0 such that for
all n > N1

|xn − L| <
ε

2
,

and there is an N2 > 0 such that for all n > N2

|yn −K| <
ε

2
.

We want to show that given ε > 0 there is N > 0 such that for all
n > N

|(xn + yn)− (L+K)| < ε.

To prove the sum and difference rules, we need the following proposi-
tion.
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Proposition 2. Let x and y be two real numbers. Then the triangle
holds :

|x+ y| ≤ |x|+ |y| .

Choose N = max (N1, N2) (i.e the largest of N1 and N2). Then for all
n > N

|xn + yn − L−K| = |(xn − L) + (yn −K)|
≤ |xn − L|+ |yn −K| by triangle inequality

<
ε

2
+
ε

2
= ε.

3. Product rule :
We are given that lim

n→∞
(xn) = L and lim

n→∞
(yn) = K.

Let ε > 0, by the definition of the limit this implies that there is N1 > 0
such that for all n > N1,

|xn − L| <
√
ε.

And there is N2 > 0 such that for all n > N2,

|yn −K| <
√
ε.

Choosing N = max(N1, N2) for n > N gives

|(xn − L) · (yn −K)− 0| = |(xn − L)| · |(yn −K)|
<
√
ε
√
ε

= ε.

Hence we have that

lim
n→∞

[(xn − L)(yn −K)] = 0 .

Next consider

(xn − L) · (yn −K) = xnyn −Kxn − Lyn +KL,
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From which we get

(xn − L) · (yn −K) +Kxn + Lyn −KL = xnyn.

Finally, taking

lim
n→∞

(xnyn) = lim
n→∞

[(xn − L) · (yn −K) + xnK + ynL−KL]

= lim
n→∞

[(xn − L) · (yn −K)] + lim
n→∞

(xnK) + lim
n→∞

(ynL) + lim
n→∞

(−KL)

= 0 + LK +KL−KL
= LK

4. Quotient rule :
For this we first prove that lim

n→∞
1
yn

= 1
K

and apply rule 3 to show that

lim
n→∞

(xn) · lim
n→∞

(
1
yn

)
= L

K
. Let ε > 0. We want to show that there is

N > 0 such that for all n > N∣∣∣∣ 1

yn
− 1

K

∣∣∣∣ < ε.

Since lim
n→∞

(yn) = K, by the definition of the limit we know

|yn −K| < ε̃. for big enough n

Now consider

|K| = |K − yn + yn|
≤ |K − yn|+ |yn| by the triangle inequality

< ε̃+ |yn|.

Thus we have

|K|−ε̃ < |yn| which implies
1

|yn|
<

1

|K| − ε̃
, which gives a bound for

1

|yn|
.
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Hence for big enough n,

∣∣∣∣ 1

yn
− 1

K

∣∣∣∣ =

∣∣∣∣K − ynKyn

∣∣∣∣
=

∣∣∣∣ 1

Kyn

∣∣∣∣ · |K − yn|
<

|K − yn|
|K| · (|K| − ε̃)

using the bound above

<
ε̃

|K| · (|K| − ε̃)
(2.1)

Thus we proved that for any ε̃ > 0 there exists N such that for n > N∣∣∣∣ 1

yn
− 1

k

∣∣∣∣ <
ε̃

|K|(|K| − ε̃)
.

But we need to show that for any ε > 0∣∣∣∣ 1

yn
− 1

K

∣∣∣∣ < ε for big enough n.

Let us see how ε̃ and ε could be related; assume that

ε̃

|K|(|K| − ε̃)
= ε

Then

ε̃ = ε|K|2 − |K|εε̃

ε̃ =
ε|K|2

(1 + |K|ε)

This analysis allows us to proceed to fix ε > 0. Consider ε̃ = ε|K|2
1+|K|ε .

Note that ε̃ > 0. Then there exists N such that for all n > N .∣∣∣∣ 1

yn
− 1

K

∣∣∣∣ <
ε̃

|K|(|K| − ε̃)
.
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But

ε̃

|K|(|K| − ε̃)
=

ε|K|2

|K|(1 + |K|ε)(|K| − ε|K|2
1+|K|ε)

=
ε|K|2(1 + |K|ε)
|K|(1 + |K|ε)|K|

= ε,

So ∣∣∣∣ 1

yn
− 1

K

∣∣∣∣ < ε for n > N

Hence by our definition lim
n→∞

1
yn

= 1
K

. Finally using rule 3 we get

lim
n→∞

(
xn
yn

)
= lim

n→∞
(xn) · lim

n→∞

(
1

yn

)
= L · 1

K

=
L

K

5. Power rule :
To prove this we use a method of proof known as induction. We first
consider a base case where our hypothesis holds. In this case m = 2 is
our base case since it breaks it down to product property. Thus

lim
n→∞

(x2n) = lim
n→∞

(xn · xn) = lim
n→∞

(xn) · lim
n→∞

(xn) = L · L = L2.

Now assume the power rule holds for m− 1. Then we have

lim
n→∞

(xm−1n ) = Lm−1.

Thus applying rule 3 we have

lim
n→∞

(xmn ) = lim
n→∞

(xm−1n · xn)

= lim
n→∞

(xm−1n ) lim
n→∞

(xn)

= Lm−1 · L
= Lm.

23



6. Root rule :
Since lim

n→∞
xn = L, then by the definition of the limit, for every ε > 0,

there is N > 0 such that for all n > N we have

|xn − L| < ε
√
L.

Notice that

|
√
xn +

√
L| ≥

√
L so

1

|√xn +
√
L|
≤ 1√

L
.

Thus we have

|
√
xn −

√
L| =

∣∣∣∣∣(
√
xn −

√
L) · (√xn +

√
L)

(
√
xn +

√
L)

∣∣∣∣∣
=

|xn − L|
|√xn +

√
L|

≤ |xn − L|√
L

<
ε
√
L√
L

= ε.

Thus by the definition of the limit lim
n→∞

√
xn =

√
L.

Examples

We now look at some examples where we make use of the properties discussed
above.

1. Prove that lim
n→∞

n+1
n

= 1.

Solution: First rewrite n+1
n

as 1 + 1
n

and take the limit of the new
expression. This gives

lim
n→∞

(
1 +

1

n

)
.
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Applying rules 1 and 2 we get

lim
n→∞

(
1 +

1

n

)
= lim

n→∞
1 + lim

n→∞
(
1

n
)

= 1 + 0

= 1.

2. Prove that lim
n→∞

1
n2 = 0.

Solution: We rewrite the sequence 1
n2 as

(
1
n
· 1
n

)
. Applying rule 3 on

page 18 then gives

lim
n→∞

1

n2
= lim

n→∞

(
1

n
· 1

n

)
= lim

n→∞

1

n
· lim
n→∞

1

n
= 0 · 0 = 0.

3. Prove that lim
n→∞

4n2+n−1
n2+n

= 4.

We prove the limit in two ways. Solution 1 :
Note that the above sequence is the sum of n−1

n+1
and 3n−1

n
. That is

n− 1

n+ 1
+

3n− 1

n
=
n2 − n+ 3n2 + 3n− n− 1

n2 + n
=

4n2 + n− 1

n2 + n
.

Applying rule 2 on page 18 to
(
n−1
n+1

+ 3n−1
n+1

)
gives

lim
n→∞

(
n− 1

n+ 1
+

3n− 1

n

)
= lim

n→∞

n− 1

n+ 1
+ lim

n→∞

3n− 1

n

= lim
n→inf

1− 1
n

1 + 1
n

+ lim
n→∞

3n− 1

n

= 1 + 3

= 4

Solution 2 : Assuming we had no idea that 4n2+n−1
n2+n

is the sum of n−1
n+1

and 3n−1
n

, then using the limit definition to prove the above might be
quiet cumbersome. However, rewriting the sequence and applying the
rules, we get
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lim
n→∞

4n2 + n− 1

n2 + n
= lim

n→∞

4 + 1
n
− 1

n2

1 + 1
n

=
lim
n→∞

(
4 + 1

n
− 1

n2

)
lim
n→∞

(
1 + 1

n

) by rule 4 page 18

=
lim
n→∞

4 + lim
n→∞

1
n

+ lim
n→∞

1
n2

lim
n→∞

1 + lim
n→∞

1
n

by rule 2 page 18

=
4 + 0 + 0

1 + 0
using rule 1 and the known limits

= 4.

2.3 Non-Existing Limits

We defined the limit of the sequence to be the numerical value L that the
sequence tends to as n approaches infinity. This value may exist or not.
Here we look at two of such examples and observe how they behave graphi-
cally.

1. Consider the sequence {xn} = (−1)n. Investigate the existence of the
limit of this sequence as n→∞.

Solution:
We start by writing the first few terms of the sequence.
{xn} = 1,−1, 1,−1, 1,−1, 1,−1, ... (n = 1, 2, 3, ...) .

Thus the terms of the sequence takes values between these two numbers
infinitely many times as n → ∞ (thus it fails to tend to a particular
value L). In this case we say the sequence oscillates and hence it di-
verges.

Next we would show that this sequence indeed fails to satisfy the defi-
nition of the limit. Recall that by definition, a sequence xn converges
to the limit L, if for every ε > 0 there exists N > 0, such that for all
n ≥ N we have |xn − L| < ε. Since the inequality holds for every ε in
the definition of the limit, it will be enough to show that the definition
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Figure 2.3: Graph of the sequence {xn} = (−1)n

is violated if we can find ε > 0 such that for any N > 0 there exist
n ≥ N such that |xn − L| ≥ ε.
Now fix ε = 1

2
. It is clear that if the limit of xn = (−1)n exists, it would

either be L = 1 or L = −1.

|−1−1| = |−2| = 2 >
1

2
for infinitely many values of n (n = 1, 3, 5, ...).

Hence, it fails to satisfy the conditions of the definition of the limit.

Suppose the limit for the sequence is -1. Then we have

|1−(−1)| = |2| = 2 >
1

2
for infinitely many values of n (n = 0, 2, 4, 6, ...).

2. Consider the sequence {xn} = n2. investigate the existence of the limit
of this sequence as n→∞.

Solution: The first few terms of the sequence are

{xn} = 0, 1, 4, 9, 16, ... .
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We observe that the terms keep increasing without upper bound as we
increase n. This indicates that this sequence does not posses a finite
limit.

Now we show that no number indeed satisfies the definition of the limit
of this sequence.
Suppose L is the limit of the sequence. Then for all ε > 0 there exists
N > 0 such that for every n > N we have |n2 − L| < ε. Now observe
that for n > L+ 1

|n2 − L| > |L+ 1− L| = 1.

Taking ε = 1
2

we get |n2 − L| > 1 > 1
2
, which violates the definition of

the limit.

Figure 2.4: Graph of the sequence {xn} = n2
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Appendix A

Proof of Proposition 1.

Proposition 1 : If |a| < 1 then for n > 0, |a|n < 1
n
· 1
1−|a| .

Proof :
Suppose a = 0. Then we have

|0|n = 0 <
1

n
· 1

1− 0
=

1

n
,

thus the inequality holds for a = 0.
Now suppose a > 0 and consider the following expression:

(1 + a+ a2 + ...+ an−1) · (1− a).

Expanding the above product we get

(1 + a+ a2 + ...+ an−1) · (1− a) = (1 + a+ a2 + ...+ an−1)− (a+ a2 + a3 + ...+ an−1 + an)

= 1− an.

So for |a| < 1 we have

n|a|n = |a|n + |a|n + |a|n + ...+ |a|n ( sum) n times

≤ 1 + |a|+ |a|2 + ...+ |a|n−1

=
1− |a|n

1− |a|

<
1

1− |a|
.
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Combining the inequalities above we get

n|a|n <
1

1− |a|
which implies

|a|n <
1

n
· 1

1− |a|
.
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Appendix B

Proof of Proposition 2

Proposition 2 : Let x and y be two real numbers then the triangle inequality
holds

|x+ y| ≤ |x|+ |y| .

Proof :
By definition

|x| =
{
x if x ≥ 0;
−x if x < 0.

Thus |x| ≥ ±x. This implies that

x+ y ≤ |x|+ y ≤ |x|+ |y|

and

−x− y ≤ |x| − y ≤ |x|+ |y|

Combining the two results above we get

|x+ y| ≤ |x|+ |y|.
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