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Abstract

This report presents an application of convolutional neural networks (also known as

convnets or CNNs) to the video analysis task of detecting risky tackles in American football

via classification of image sequences. The solution approach focuses on fine-tuning of pre-

trained convnets, extraction of spatial features, and using generative adversarial networks

for data augmentation.

American adolescents compete in youth football, one of the riskiest sports in the US

with a large proportion of head injuries like concussions, as reported in the Youth Football

Surveillance System.1 To provide a football team and coaches with more convenient and effi-

cient training, deep learning automatically classifies tackle videos that record tackle actions.

Inflated 3D Convents (I3D) is used for this task; However, I3D does not have ideal per-

formance when the video data was used to train the model because we lack sufficient data

and the label system is complex. Generative adversarial networks (GANs) can efficiently

augment data. In this study, the style-based generator, StyleGAN, was used to solve data

problems. At the same time, three other GAN models were used on the same data set to

horizontally compare StyleGAN’s performance to the performance of other GAN models. In

the end, StyleGAN performed best. Although the training data took longer with this model,

the results were clearer with a higher resolution showing more player detail. The images

generated by StyleGAN were more varied than images from other models.
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Chapter 1

Introduction

This introduction describes how scientists train the SATT system to assess athletes. Deep

learning-based vision research continues to progress from object detection and scene classi-

fication in images to action recognition and analysis in videos; therefore, using video recog-

nition models to detect athlete abnormalities will be explained in detail. This chapter will

also explicate the problem of lack of data and data sets imbalance, proposing solutions to

each that use generative models.

1.1 Overview

Football is a popular sport in the United States; however, it is a risky sport. Football players

are most commonly injured because they use improper form during blocking and tackling,

which results in head injuries, usually concussions. In a 2010-2011 emergency room study,

nearly 20% of head injuries were directly related to football,2, and concussions accounted

for 9.6% of total injuries reported by the Youth Football Surveillance System.1

SATT is a tool developed to reduce improper form in blocking and tackling and thus the

occurrence of unsafe tackles. SATT is a standard used to score the performance and quality

of the six basic elements of an American football tackle. The six elements of a correct tackle

are player control (PC), head-eye and torso position (HET), strike zone (SZ), ascending hit
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(AH); maintained leg drive (LD); and final position (FP). Each element is scored using a

4-point sequential scale (0-3) that evaluates the overall tackle quality based on the total

score (with a maximum of 18 points). The scores can monitor the position of the head and

torso at the contact point during tackle action. If the action is risky, zero (0) points are

assigned. If the component exists but is executed inefficiently or ineffectively, one (1) point

is awarded. Two (2) points are awarded if the component meets only part of the motion

criteria when it appears. If the element meets all criteria, it is awarded three (3) points. A

To detect danger to athletes more conveniently and quickly, deep learning is used to

automatically detect and identify information from collected tackling videos. The videos

are labeled ”risky” or ”safe” based on SATT. Aside from video classification, I used several

GANs to generate more important frames to enrich the imbalance of data sets.

1.2 Motivation

As stated, SATT not only measures player safety, but also evaluates the effectiveness of tack-

ling. Thus, assessing tackling action using SATT is necessary. With the rapid development

of deep learning, researchers have moved beyond detecting static images and have created

several methods that can directly process videos. In the Kansas State University Laboratory

for Knowledge Discovery in Databases (KSU KDD Lab), the video processing model was

applied to tackling videos. Please note, a machine can capture more details than the human

eye as well as reduce human bias. At the same time, a machine saves time and energy. Thus,

the first goal of the research was to classify tagged tackling video data using I3D.

However, if data is insufficient or the data sets unbalanced, the result of classification

and detection will be unsatisfactory. Because we have less risky video data than safe video

data, the accuracy and recall rate of the risky data is very low. Therefore, we must research

effective methods to address data imbalance and to expand data. Thus, for this research,

three questions are posed:

• For data with complex semantics, which GANs model better learns features?
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• For data with complex semantics, which GANs model learns more quickly and effi-

ciently?

• For larger data sizes, which GANs model has higher resolution and produces higher

quality images?

1.3 Problem Statement

Since Goodfellow et al. introduced GANs in 2014,3 research on GAN has been in full

swing. GANs models have evolved from simple, monotonous prototypes to varied, clear,

highly accurate images. DCGAN was an important milestone in GANs research, the first

time a convolutions neural network was used in GAN, producing excellent results. DCGAN

proposed an important architectural change to solve training instability, mode collapse, and

internal co-variate conversion.4 In the process of improving the generation of high-value

and low-variety images, researchers have successively proposed BigGAN, StackGAN, and

CycleGAN, among others.5–7 While improving the quality of generated images, researchers

also wanted to differentiate the target subjects of GAN models. The main improvement of

BigGAN was the orthogonal normalization of the generator.5 StackGAN was used for text to

image synthesis.6 CycleGAN was used for different image-to-image translations.7 In model

evolution, InfoGAN, AC-GAN, and styleGAN came subsequently.

Football tackle images for this study are collected manually so as to assure sufficient

image quantity and quality. This means the issue of imbalance and scarcity of the data set

can be mitigated by using GAN models that generate new examples based on learning from

minority examples. Moreover, among the many GAN models, finding a model suitable for

training this representative data set would be a significant achievement. This work is not a

criticism of any method but takes a step towards better understanding how GANs models

can be used.
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1.4 Objectives

Football tackling classification data sets often lack essential information, so classifying the

correct video architectures is not easy. Most 3-D models result in undesirable performances.

Thus, the Inflated 3D CovNet (I3D) was chosen because it can learn the seamless spatio-

temporal feature because the optical-flow stream is split from traditional frame learning, and

the I3D is a pre-trained model using an image classification model.8 The first objective of the

study is to analyze how much performance improves with these mode training small-scale

benchmarks.

In the next section, the research tests which GAN is suitable for what kind of data set,

how the fundamental internal network of different models works, and which GAN model

best matches our data set. Our research requires a model that can perform the following

operations:

1. Building an image data sets by extracting the important frames from videos and la-

beling them correctly.

2. Training the image data sets on the deep neural network training classifier.

3. Training the image data sets on different GANs network to increase the magnitude of

the image data set.

4. Training newly generated data on the same classifier and comparing it with the baseline

of the original data sets.
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Chapter 2

Background

This chapter surveys extant architectures and training methods for deep learning neural

networks. It first introduces standard convnets and the innovation of 3-D convolution that

allows three-dimensional features to be extracted for solid object recognition. Next, it de-

scribes additional advances in spatiotemporal feature extraction. It then describes the need

for generative adversarial networks (GANs) for data synthesis in data-poor domains, and

finally discusses the type of GANs applied in this work.

2.1 Deep Learning for Classifying Video

In processing images, only static images are convolved, so a 2-D convolutional network

suffices. In video interpretation, however, retaining timing information is necessary to learn

spatiotemporal features at the same time. If 2DCNN is used to process videos, the motion

information encoded between consecutive multiple frames will not be considered. Andrej

proposed Slow Fusion as the first significant achievement of deep learning in the video field.

Slow Fusion extracts the features of each frame and fuses all features as a basic concept.9
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2.1.1 3DCNN

Because convnets were shown to be very effective for object detection, object classification,

and scene classification from images, they were soon applied to motion recognition in videos.

They can extract features from space and time dimensions and then perform 3-D convolution

to capture the motion feature from multiple consecutive frames. A 3DCNN is based on the

3-D convolution feature extractor. This architecture can generate multi-channel information

from consecutive video frames and then separate convolution and down-sampling operations

on each channel. Finally, the information of all channels is combined to get the final feature

description.10;11

Figure 2.1: 2-D10

Figure 2.2: 3DCNN10

3-D convolution forms a cube by stacking multiple consecutive frames and then using a
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3-D convolution kernel in the cube. In this structure, each feature map in the convolutional

layer is connected to multiple adjacent consecutive frames in the previous layer, thus cap-

turing motion information. For example, in Figure 2.2, the value of a certain position of a

convolution map is obtained by convolving the local perception of the same position of three

consecutive frames of the previous layer.10

2.1.2 Inflated 3-D ConvNet

In Figure 2.3, the evolution of I3D is outlined, making the advantages of I3D more easily

understood.

Figure 2.3: I3D8

Since 3DCNN emerged, two-stream networks have also been proposed. This method

divides the entire model into Spatial Stream Convnet, which uses a single frame to capture

features, and Temporal Stream ConvNet, which uses multiple computed optical flow frames.

The features extracted from the two networks are fused at the end.12 The features can be

fused by adding a CNN network after the two-branch model, which improves accuracy and

achieves end-to-end training.13

The most critical and significant step of optimizing the model in I3D is next change. First,

researchers used ImageNet on the pre-trained frame while also using 3-D convnets to extract

the temporal feature of the RGB stream. Finally, the optical-flow stream improves network

performance. To turn the temporal dimension from N*N filter into N*N*N, researchers

processed N*N filter N times with a pre-trained 2-D convnett.8
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2.2 The Generative Adversarial Network (GAN)

The basic principle of GAN is actually very simple. In Figure 2.4 are two networks: G

(Generator) and D (Discriminator). In the training process, the goal in generating network

G is to generate real pictures as frequently as possible to deceive discriminating network

D. The goal of network D is to identify the pictures generated by G from the real pictures.

Thus, G and D constitute a dynamic ”adversarial process.”3;14

Generator G continuously strengthens its own capabilities to generate samples more and

more similar to the real sample. That is, discriminator D increasingly fails to distinguish if

the sample is real. At the same time, discriminator D also improves its ability to identify

images. The above process continues until the discriminator cannot distinguish whether the

received sample is real or generated.3;14

Figure 2.4: Structure of GAN15

The mathematical formula is shown below:

min
G
max
D
V (D,G) = min

G
max
D

[Ex∼pdata(x))[logD(x)] + Ez∼pz(z))[log(1−D(G(z)))]] (2.1)

To explain:
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• The formula comprises x, representing the real picture; z, representing the noise input

to the G network; and G(z), representing the picture generated by the G network.

• D(x) represents the probability that the D network judges whether the real picture is

real (because x is real; for D, the closer this value is to 1 the better). D(G(z)) is the

probability that the D network will judge the picture generated by G.

• Purpose of G: As mentioned, D(G(z)) is the probability that the D network will judge

the picture generated by G real, while G hopefully generates a picture closer to the

real image. In other words, G wants D(G(z)) to be as large as possible and V(D, G) to

become smaller at the same time. Therefore, we see that the front mark of the formula

is min G.

• Purpose of D: As the ability of D to recognize a picture as real becomes stronger,

D(x) should become larger while D(G(z)) becomes smaller. That means V(D,G) will

become larger. Therefore, the formula for D is to maximize (max D)

9



Chapter 3

Methodology

3.1 Tackle Video Classification: I3D

Section 2.1.2 describes the basic structure of I3D. This chapter will outline some of the

parameter settings of I3D in this research. As in Carreira’s research8, the I3D used ImageNet

to pre-train the frames. In the headbone of I3D, clip length was set at 32, frame interval set

at 2, and the number of clips set at 1, which means that every time the machine collects 1 clip

to train, there are 32 frames in the clip. Thus, the input shape is [1, 32, 224, 224, 3]. The loss

function is common ”CrossEntropyLoss”. For the backbone of model, we chose ResNet50,

which passes 4 blocks, each block with either a 3, 4, 6, or 3 bottle neck.16 For evaluation,

accuracy was computed from top 1 to top 5 and mean class accuracy was computed for each

iteration.

3.2 Data Augmentation Techniques

For data augmentation,we used the following 4 GANs models, each with different styles and

characteristics:
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3.2.1 DCGAN

The full name of DCGAN is deep convolutional Generative Adversarial Network. It is an

unsupervised representation learning network, as the name implies. DCGAN replaces the

fully connected neural network in the original GAN with a convolutional neural network in

the generator and discriminator feature extraction layer, using the DCEloss function and the

Adam optimizer.4;17

Figure 3.1: Generator structure of DCGAN18

DCGAN differs from the traditional GAN in the following ways: network:4;17

• Both the generator and discriminator of DCGAN abandon the pooling layer of CNN;

the discriminator retains the overall architecture of CNN, and the generator replaces

the convolutional layer with a fractional-strided convolution or convolution transpose.

Please see Figure 3.1.

• The Batch Normalization (BN) layer is used after each layer in the discriminator and

generator.

• The fully connected layer is removed, replaced by the global pooling layer.

• The output layer of the generator uses Tanh activation function, and the other layers

use RELU.
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• All layers of the discriminator use LeakyReLU activation function.

3.2.2 LSGAN

LSGAN’s full name is least square generative adversarial networks. The generator network

and the discriminator network of LSGAN use convolution and deconvolution like DCGANs,

and they use the Adam optimizer, but they do not use the fully connected neural network.

The main difference between LSGAN and a traditional GAN is that the cross-entropy loss

function is replaced with a least-squares loss function. The image quality generated by a

traditional GAN is not ideal, and the training process is unstable. Traditional GANs use

sigmoid cross entropy as the loss function of the discriminator. The small square loss function

used by LSGANs penalizes samples that are far from the decision boundary, and the gradient

of these samples is the direction of the gradient descent.19

3.2.3 WGAN-GP

WGAN-GP is a improved model of Wasserstein GANs. It uses convolution and deconvolu-

tion in the generator and discriminator network structure the same as DCGAN, and does not

use a fully connected neural network. WGAN-GP improves on WGAN. In one article,20;21

WGAN-GP exemplifies the problem with WGAN; that is, WGAN directly uses weight clip-

ping when faced with Lipschitz constraints. WGAN checks whether the absolute value of all

parameters of the discriminator exceeds a threshold every time the parameters of the dis-

criminator are updated. Thus, the discriminator cannot discriminate between two samples

with few differences by ensuring that all parameters of the discriminator are bound during

the training process, which means a WGAN indirectly recognizes the Lipschitz restriction.

In actual training, the discriminator loss should enlarge the score difference between true

and false samples as much as possible, but weight clipping independently limits the value

range of each network parameter. In this case, the optimal strategy is to make all parameters

as extreme as possible, either the maximum value or the minimum value, so the parameters

of the discriminator are almost all concentrated on the maximum and minimum. In sum-
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mary, WGAN-GP differs from WGAN in three main ways: 1) weight clipping is replaced by

gradient penalty, 2) Gaussian noise increases on the generated image; 3) the optimizer uses

Adam to replace RMSProp.21

3.2.4 StyleGAN

First, we explain PG-GAN (PROGAN) because it is an important breakthrough in the

structure of GANs models. Then we will introduce StyleGAN.

Figure 3.2: Generator structure of PG-GAN22

PG-GAN can generate samples of 1024 pixels. Obviously, building a mapping network

G from latent code to 1024x1024 pixels samples using pure GAN is difficult. The procedural

training method uses not one step, first trying to generate low-resolution or low-quality

images, and then continuously increase the resolution or details for generated images based

on layers that are incrementally added to G and D. The structure of PG-GAN is shown in

Figure 3.2. This way of changing the network and procedurally generated image is similar to

13



human intuition and easy to understand. However, how PG-GAN can achieve such amazing

effects is inseparable from some of its capabilities and detailed processing.22;23

Next, we discuss the basic structure of StyleGAN (Figure 3.3), its advantages, and how it

achieves style transfer on generated images. StyleGAN has 3 neural networks: G mapping;

G synthesis and discriminator D; G mapping and G synthesis, all of which constitute the

main generator.24

Figure 3.3: Generator Structure of StyleGAN24

Removing Traditional Input and Mapping Network: Traditional models use latent

code as the initial input of the generator, so no more steps for latent code are included in

the following computation. Thus, the latent code will have a weaker effect when the layer
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becomes deeper. In StyleGAN, latent Z is input into G mapping, which is a fully connected

network, and then output W of the mapping network is mapped into each layer of the

synthesis network. The generator starts with a learnable constant input, and the hidden

code adjusts the style of the image in each convolutional layer, thereby directly controlling

the intensity of image features at different scales.24

Style-based (AdaIN): The math function of AdaIN:

AdIN(xi, y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i (3.1)

First, each feature map xi (feature map) is normalized independently (xi−u(xi))/sigma(xi).

Each value in the feature map is subtracted from the mean value of the feature map and

then divided by the variance. Second, a learnable affine transformation A (fully connected

layer) transforms w into the translation and scaling factor of AdaIN in style y = (ys,i , yb,i ).

Finally, for each feature map, the translation and scaling factors learned in style perform

scale and translation transformation. This method results not only in a capture of advanced

attributes (e.g., face, pose), but also randomly changes style (e.g., freckles, hair).24

Blur: A large number of blurring operations, known as blur, are used in StyleGAN’s gen-

erator and discriminator network. Blur uses a convolution kernel to perform convolution

operations on each channel. This differs from normal convolution. StyleGAN uses the

leaky relu function.24
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Chapter 4

Experimental Design

4.1 Tackle Video Classification: I3D

I3D uses two pre-trained (2-D) models through ImageNet and inflates the 2-D network into

a 3-D one by extruding it into a temporal dimension. Of its constituent 2-D models, one is

thus used for RGB data processing and one for optical flow data processing. It can extract

spatial and temporal features from video data for action recognition and capture motion

information in space and time dimensions.

4.1.1 Data Set Preparation

The data set was collected by Dr. Scott Dietrich, who recorded 190 short videos of athletes

completing the tackle action. The action of tackle includes a series of motions: running

towards an object, carrying an object, throwing an object. The environment in the data is

complex, and the semantics are redundant.

To keep the model from failing to grasp the main objective, two methods based on SATT

were used to label the data.

• First, because the strike zone is the most dangerous part of the whole tackle action,

players need to rush towards the object and lift it. In computing linear regression of

6 scores, Strike Zone is revealed as the SATT score component most relevant to the
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overall total. Thus, Strike Zone is the only indicator of labeling, thus simplifying the

model’s task. In this way, 57 videos were labeled risky and 133 videos were labeled

safe.

• Second, to follow the original evaluation criteria of the SATT model, the data was

labeled based on the total SATT (scores over 10 were considered safe). We had 115

safe data samples and 75 risky data samples.

The proportion of training and testing is 7:3.

4.1.2 Data Set Problem

The tackling videos posed some unique challenges for deep learning, as with most sample

data sets taken from real life. First, duration differed greatly from video to video. Some were

around 10 seconds long, and some were a minute long. In addition, the videos had some noise

with people other than players walking around. In addition, due to the angles, an athlete’s

movements could be obscured and misunderstood. For example, when players make contact

with the front of an object, the movement will be labeled incorrect if the player’s head is

tilted at a specific angle.

4.2 GANs

Regardless of the labeling method used, the precision and accuracy of video classification are

thus far poor overall. This result may improve if the model can focus on important frames,

but only a few important frames occur in each video; longer videos had more important

frames than short ones. In addition, the total data set is limited, and the data is imbalanced.

Thus, the most reasonable method is to expand the number of important frames using GANs.
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Figure 4.1: Three data sets of GAN

4.2.1 Data Set Selection

As shown in Figure 4.1, three movements have been designated for GANs research. The

three movements not only can detect whether the athlete’s state is safe, but also whether

players tackle efficiently. In addition, the movements are diverse, including the position of

the athlete’s torso and the relationship between the athlete and the reference object. The

bias of different models can be reduced by using a variety of data sets. GAN models often

require many samples. We used approximately 30 images for each data set.

• In the first action, the player rushes toward the object. If head and torso are up, the

player is safe.

• The second action shows a player making contact with the object. Players who initiate

contact with the head instead of the shoulder are at risk.

• The third action shows the player throwing the object. Players who hold the object

tightly are safe.

4.2.2 Data Set Preparation

The laboratory computer has limited computing power, so the images must be resized from

1024*1024 to 64*64. StyleGAN, however, can process up to 128*128. Blindly shrinking
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images would be unwise because some details would be lost, and it could be difficult for the

model to learn details. In this respect, StyleGAN is better than other GANs.

During training, differently labeled images of the same data sets (data set 1 labeled Risky

and data set 1 labeled Safe) are combined and both treated as original data. In this way,

we could test whether GAN models could capture specific details used to label images. In

addition, we could check GAN models for the ability to generate differently labeled images.

In other words, the user can check the diversity of models.

4.2.3 Model Setting

The original internal network structure and loss function of all models is used. For StyleGAN,

the batch size change with the different layers: 4 : 32, 8 : 32, 16 : 32, 32 : 16, 64 : 8, 128 : 4. For

other the three GANs, the batch size is 4.

4.2.4 Evaluation

Because the test results were complex, during data collection, only data set 3 was used to

calculate various indicators. Data set 3 was chosen because it is a representative data set, and

its performance was better than the other two data sets for every GAN model. Furthermore,

we ignored DCGAN’s data calculation because the results were vague.

Observing Detail with the Naked Eye: The easiest and fastest evaluation method is to

observe the generated images with the naked eye and compare images generated by different

models in the same time iteration. Execution time is another indicator for judging GAN

models.

Inspection Details by Image Classifier: An image classification model can objectively

judge the clarity of the generated image. First, the model is trained using the labeled

original images from resnet50. Then, testing the images generated on the resnet50 model
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can represent clarity. The generated images are clearer, and testing accuracy is higher.

SSIM: To compare two images for structure similarity required three aspects: luminance

I (x, y), contrast c (x, y), and structure s(x, y). The final similarity between x and y is a

function of these three aspects: S(x,y) = f(l(x,y),c(x,y),s(x,y)).25

• Calculation of Luminance:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

• Calculation of Contrast:

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

• Calculation of Structure:

s(x, y) =
σxy + C3

σx + σy + C3

FID: The Frechet Inception Distance Score (FID) is used to calculate the distance be-

tween the feature vector of the real image and the generated image. FID measures the

similarity of two groups of images using their statistical similarity to the computer vision

features of the original image. This visual feature is calculated using the Inception v3 image

classification model. A lower score means the two sets of images are more similar, or the

more similar the statistics of the two the lower the score; the FID score in the best case is 0.0,

which means that the two sets of images are the same. FID scores are used to evaluate the

quality of images generated by generative adversarial networks, and lower scores correlate

with higher quality images.26–28

FID(x, g) = ‖µx − µg‖+ Tr(Σx + Σg − 2
√

ΣxΣg) (4.1)

In general, the FID sends the samples from the generator and the samples from the

discriminator to the classifier (Inception Net-V3 or other CNN). Then, the FID extracts

the abstract features of the middle layer of the classifier and assumes the abstract features

conform to the multivariate Gaussian distribution. Finally, FID estimates the mean ug
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and variance sumg of Gaussian distribution of generated samples, as well as the training

sample udata and variance sumdata and calculates the Freche distance of the two Gaussian

distributions. This value is the FID.26–28

21



Chapter 5

Results

In this chapter, the results of the research will be presented. The two parts comprise the

results for I3D and the GANs.

5.1 I3D

Because of the inadequacy of the data sets, the accuracy peak came at the third epoch.

After the third epoch, although the accuracy of the top 1 improved, the mean class accuracy

did not, and the resulting value was approximately 0.5. Whatever the label used, the I3D

performance was not ideal. For the first label, Strike Zone, the accuracy increased from

0.4986 to 0.70175. For the second label, based on total SATT score, the accuracy increased

from 0.4521 to 0.6892 (see Table 5.1).

Table 5.1: Accuracy of I3D
Labeling by Strike Zone Labeling by Total SATT

1 0.4986 0.4521
2 0.54386 0.5287
3 0.70175 0.6892
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5.2 GANs

Among four GANs, a style-based generator has special advanced structure, it modifies the

input for each level without changing other layers, thus controlling the visual features rep-

resented by the level. Hereby, the result of StyleGAN is significantly greater than the result

of other three GANs.

5.2.1 Observed Detail with the Naked Eye

DCGAN:

For Data Sets 1 and 3, the athlete’s torso generated in the images can be identified after

200 epochs, but the images are blurred. For Data Set 3, the model showed relatively better

results after 800 epochs.

Figure 5.1: Results of DCGAN

In Figure 5.1, each result from the three data sets have learned the features of the original

images, even though the images are blurred. The athlete’s general actions and the reference

object can be identified, but details like face and hands are obscured.

LSGAN:

Many noise points show up in the results of LSGAN before 370 epochs, so the generated

images are very blurry. After 800 epochs, the results are clearer.

In Figure 5.2, the images generated by LSGAN are blurry, and most of the semantics in

the images have been lost. The naked eye cannot identify the athlete’s body parts. However,
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Figure 5.2: Results of LSGAN

the background of generated images is similar to the background of original images.

WGAN-GP:

For Data Sets 1 and 2, the results of WGAN-GP is definitely better than the results

of either LSGAN or DCGAN. In the picture, you can see not only the athlete’s torso and

limbs, but also the details of the movement. The leftmost picture is labeled risky because

it is apparent that the player’s head and eyes are angled down. The results show less noise.

The results from Data Set 2 are generally blurrier than Data Set 1.

The results for Data Set 3 are ambiguous; it is difficult to see where the player is. The

results of WGAN-GP are shown in Figure 5.3.

Figure 5.3: Results of WGAN-GP
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StyleGAN:

Of the four GANs, StyleGAN performed the best. Although it took a long time to train,

StyleGAN generated the clearest images with the most detailed content. The samples it

generated are more realistic that for the other GANs, and the images are more diverse and

interesting. In the results, different backgrounds, different poses of athletes, different colors

of clothes and helmets, and even different patterns on the cloth appeared.

Figure 5.4: Results of StyleGAN

The results generated by StyleGAN can capture the details to be labeled. In the Fig-

ure 5.4, the label for the first image is risky because the player’s head and eyes are down, but

the second image is labeled safe because the player uses his shoulder to contact the object

and the third image is labeled safe because the player’s arm holds object.

5.2.2 Inspection Details by Image Classifier

Image classifiers are better at objectively detecting the clarity of generated images than

human eyes. Thus, this detection method was used in the model trained on the original data

to test data generated by the different models. The results are in Table 5.2.

The data in this table is unconvincing because the accuracy and F1 score of StyleGAN

should be the highest based on its clear images, but such unreasonable results occur for

several reasons. On one hand, the test data of LSGAN and WGAN-GP were limited because
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Table 5.2: Results of Different GANs
ACCURACY F1

Original data 0.818 0.811
LSGAN data 0.7619 0.7826
WGAN-GP 0.8071 0.79
StyleGAN 0.65 0.78

their batch size was 4 with only 4 images generated for each training. On the other hand,

their generated images are not clear enough to be properly labeled.

To obtain data with representative clarity, we need another feasible test method. We

suggest, as part of the first step, the generated images should be added to the original data

and training the model again. The next step would be to check whether expanding the data

sets improves the accuracy of the new data sets.

Figure 5.5: Accuracy Change

This change improved the accuracy of the new dataset; adding StyleGAN generated

images improved accuracy from 0.8636 to 0.9545 (see Figure 5.5). In addition, the F1 score

of new data sets improved from 0.823 to 0.947 with added images generated by StyleGAN

(see Figure 5.6). However, the performance of other three GANs was worse after adding
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Figure 5.6: F1 Change

images generated by each GAN. In conclusion, the images generated by StyleGAN are clear

enough to be identified by image classifier, and models learned the most important feature in

the images, which could then be labeled correctly. The performance of the model improved

by expanding the data set. However, adding images with unclear label features will reduce

the performance of the model.

5.2.3 SSIM

Figure 5.7 shows the maximum SSIM value of all three GANs, which are all lower than 0.2,

indicating that the images are all generated by GANs, not by changing the original images.

Of the three scores, the highest SSIM score was for StyleGAN, partly because the images

generated by StyleGAN are clear. The images from StyleGAN also can keep most of the

features of the original images.

Because SSIM is a calculation value based on each pixel, to reduce deviation, the mean

SSIM value was compared. Figure 5.8 shows the highest mean SSIM score is still StyleGAN

at 0.1799.
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Figure 5.7: Min SSIM scores and Max SSIM scores

5.2.4 FID

For common distributions (such as Gaussian distribution), when the distribution type is

determined, as long as the mean and variance are known, the distribution can be determined.

We assume that the generated image and the real image also obey a similar distribution. If

the mean and variance between them are similar, the generated image is likely to appear more

real. A lower FID means the generated distribution is closer to the real image distribution.

The FID of StyleGAN is the lowest at only 260 (Figure 5.9). This means the images

generated by StyleGANs are the most realistic of those for the three GANs.
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Figure 5.8: Mean SSIM Scores

Figure 5.9: FID Scores
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

Research on athlete safety is constantly evolving, particularly in research focusing on finding

ways to avoid head injury and prevent potential adverse contact coming at the start of

development. The technical accuracy of screening player tackles may be an important step

in keeping athletes safe. Therefore, because tackling is a source of many injuries, accurately

identifying and correcting risky tackle techniques is imperative. Though Schussler SATT

assessment comprehensively monitors an athlete’s body parts to detect the quality of a

tackle, limited research exists on deep learning focusing on tackling behaviors.29

In this experiment, deep learning used to model football safety was researched. The

main task was to identify risky and safe tackle actions. I3D, a resend video classification

model, was selected as the model for supervised learning. Both labeling methods are based

on SATT.

At the conclusion of the experiment, it was clear that the I3D does not perform well in

handling tackle videos, no matter what kind of labeling method was used. The model did

not improve after three epochs of training, but a possible explanation of this unsatisfactory

result is the limited data quantity. However, this is an easily solved problem. We need more

data sets. The more difficult problem of the I3D is the complexity of the video and the
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excess of semantics in the video. Unless the video focuses specifically on capturing a series

of actions, a single label only can be attached to a video. This label is a threshold for the

total score as based on 6 actions. Because of this complexity and because the models could

not learn many semantics with a small data set, we can understand less than ideal results.

This problem can be addressed by creating a much larger data set that covers all possible

samples of each total score.

Manipulating the video data is difficult, so one possible solution is to focus on important

frames. This can solve the problem of inadequate data and ensure the model can grasp key

points. The first step is to expand the data derived from important frames and solve the

data imbalance. Therefore, in the second part of the experiment, we used GANs to generate

further images. DCGAN, LSGAN, WGAN-GP, and StyleGAN were chosen to expand three

different data sets.

By comparing these expanded data sets, see 4.2.4, whether with the naked eye or with

a classifier, we concluded the images generated by StyleGAN are clearer than the generated

images of other models with less noise. The accuracy of image classification improved from

0.86 to 0.95 when StyleGAN-generated images were added. In addition, the FID score of

StyleGANs was the lowest, which means that the images generated by StyleGAN are more

realistic. The SSIM score of the StyleGAN was highest of those for the three types of GANs

I applied but still less than 0.2, which means the images generated by StyleGAN are clearer

and keep the features of the original image. Lastly, StyleGAN1 recognizes style migration on

the dataset. The images it generated were diverse, no longer limited to realizing generating

images with different labels, but generating a collection of different clothes and different

helmets that do not appear in the original images.

Overall, StyleGAN performed excellently on the tackle data. StyleGAN is more suited

to this dataset than other GANs because of the large image size and the complexity of the

image semantics. The generated data can be adequately prepared for further experiments

in the future. The image size of StyleGAN, 128*128, dominates in machine recognition.
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6.2 Future Work

In this experiment, the video classifier I3D performed poorly on the tackle data set. However,

its performance should improve if long videos can be cut to 6 judgment standards and

semantically clear videos that retain only one judgement standard for each small video.

Thus, the next task is to work on short videos with I3D. If I work on this way, another

important question would be raise up: automatically video-trimming. Trimming video to

short videos would be increase the user’s workload and destroy the automatic function of

deep learning.

Another possibility for future research is to apply generated images to video recognition.

Adding the generated images without destroying the sequence of video frames is an important

prerequisite because the advantage of video recognition that can learn temporal features must

be preserved. There is another way to use generated images that changing video classification

question into image classification question. The first step is to choose the important images

from frames and augment images data set by adding generated images, then classify and

detect those important image based on SATT criteria.

As the result shown in SSIM result 5.2.3, the SSIM scores of StyleGAN result are higher

than other SSIM scores of other models whatever Min SSIM, Max SSIM, or Mean SSIM. Dr.

Hsu remarked that for this application, ‘the idea that SSIM could be ”too high” suggests

that an orthogonal diversity score might be useful’. He suggested using multi-objective

optimization. In the future, I will work on it and understand the problem.

For the result of video classification, Dr. Munir mentioned that Resnet 50 and multilayer

LSTM got 87% accuracy on some football tasks and he sent me some references about other

soccer events classifications. Many effective methods that segment videos and identify the

major soccer or football events showed in papers. Hidden Markov models (HMMs) are used

to segment long video into small semantic units,30 which inspired me on trimming tackle

videos. C3D is used to learn spacial and temporal features of soccer events, and its result

has high efficiency.31 Learning the advantages of those papers can improve the performance

of tackle video classification.
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Appendix A

SATT

Figure A.1:
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