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Abstract

Projection-based model reduction offers a physically informed, and mathematically rig-

orous framework to bypass the prohibitive amount of computational resources required by

the direct numerical simulations in fluid dynamics, and enable the recurrent computations

that dominate many-queries applications. Projection of the governing equations onto a low-

dimensional space, however, does not guarantee to naturally inherit the stability properties

of the high-fidelity model. Symmetrization of the Reduced-Order Model (ROM) through a

least squares Petrov-Galerkin projection, or by Galerkin projection using the symmetry inner

product, provides theoretical error bounds, and generates more stable ROMs. This study

shows that besides being more stable, the symmetrized ROMs are more controllable and

robust. The stability guarantees by symmetrization or energy-based inner products, assume

that the subspace constructed for projection, accurately captures the coherent structures that

are the main ingredients in the dynamics of the flow. However, when the high-fidelity simula-

tions contain nonlinear phenomena (e.g. unsteady shock waves, and turbulence), truncation

of the high-frequency modes through dimensionality reduction with a linear approach like

Proper Orthogonal Decomposition (POD), that is biased towards the most energetic modes,

may result in losing structures with critical contributions in the dynamical evolution of the

system. As a result, especially when the governing equations lack any intrinsic dissipative

mechanisms to contain the generated errors (e.g. the Euler equations), symmetrization alone

is not sufficient to preserve stability. Therefore, a complete framework is proposed in this

study for the enhancement of ROMs for compressible flows, through ROM symmetrization,

and post-ROM stabilization.

Two optimization-based non-intrusive stabilization methods are developed here: a Hy-

brid method for the stabilization of ROMs as Linear Time-Invariant (LTI) systems, and an

eigenvalue reassignment method for stabilization of nonlinear ROMs (ERN algorithm). The



Hybrid method is a two-step approach: in step one (efficiency-oriented), the left reduced

order basis of the ROM is minimally modified in a convex optimization problem; in step

two (accuracy-oriented), an eigenvalue reassignment method is used to stabilize the most

energetic eigen-modes. The ERN algorithm, on the other hand, confines the nonlinear ROM

to maintain a negative total power for stability; and the distance between the nonlinear

ROM and Full-Order Model (FOM) attractors is directly minimized as the eigenvalues of

the linear dynamics matrix (control parameters) are reassigned in the complex plane.

A computational bottleneck occurs in strongly nonlinear systems (e.g. advection-dominated

flows), where the slow decay of the projection error requires more base functions to accu-

rately span the high-fidelity solutions with a linear subspace. Hence to sufficiently describe

a strongly nonlinear system, ROMs have higher dimensions intrinsically. Nevertheless, the

truncation of such ROMs may still bring in instability, and their relatively higher dimension

(i.e. large coefficient matrices) leads to a large number of control parameters which may

potentially prevent the stabilization algorithm being feasible in computation. As a remedy,

this study introduces a multi-stage layout for robust stabilization of nonlinear ROMs with

the ERN algorithm, in strongly nonlinear systems, where a linear ROM typically fails to

capture the true dynamics.

The proposed methods are applied on POD-Galerkin ROMs based on the snapshots of two

supersonic flow applications. The high-fidelity simulations are performed with a Weighted

Essentially Non-Oscillatory (WENO) shock capturing scheme, integrated with the immersed

boundary method. The two applications involve strong shock-wake interactions in the down-

stream, where the unsteady shock oscillations as a result of the interaction of shock waves

with vortices, exhibit strong nonlinearities that are not completely resolved in the leading

POD modes. Thus, the missing high-frequency contributions of this phenomenon trigger

strong instabilities in the linear and nonlinear ROMs, and enable a thorough investigation

of the ideas that are developed in this research for the stabilization and enhancement of

ROMs.
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Chapter 1

Introduction

Recurrent simulations of the dynamics for flow control, design and optimization processes

are fueling a large motion towards the development and enhancement of the Reduced-Order

Models (ROM) to facilitate online prediction of the flow field, where fast or real-time ap-

plication of the High-Fidelity Models (HFM) based on the discretization of the governing

partial differential equations are beyond the current capabilities of high performance com-

puting2–5. The competition between the projection-based model reduction techniques and

the more or less black-box models that have been traditionally developed by system iden-

tification and operator inference algorithms, has entered a new phase by the steep growth

in the success factor of machine learning and deep neural architectures. The physically and

mathematically rigorous nature of projection-based ROMs is balanced by the non-intrusive

framework of black-box methods. However, many if not most of the fluid dynamics appli-

cations cannot withstand the slightest deviation of the ROM dynamics from the original

high-dimensional attractor, which magnifies the value of the projection-based ROMs that

contain strong physical and mathematical connections with the Full-Order Model (FOM),

rather than the purely data-driven models with little or no knowledge about the conservation

laws that govern the fluid dynamics6;7. Added to this factor is the computationally intensive

process of training the artificial neural networks that requires prohibitively large number of

high-fidelity snapshots compared to what is consumed for the dimensionality reduction in

1



projection-based model reduction techniques.

Projection-based ROMs are founded over dimensionality reduction, in conjunction with

orthogonal projection or residual minimization8–10. Proper Orthogonal Decomposition (POD)

constructs a linear subspace that spans the space of the high-fidelity snapshots with the

fewest number of modes among the linear dimensionality reduction methods11–13. Being

biased towards the most energetic flow structures, POD fails to capture the high-frequency

signatures that are crucial in the dynamics of nonlinear fluid systems, such as supersonic

flows with unsteady shock waves, turbulent flows, and advection-dominated flows in general.

Thus, subsequent projection of the governing equations onto the POD subspace through

the Galerkin projection, or by residual minimization in Petrov-Galerkin methods results

in unstable or inaccurate ROMs that need closure modeling or post-ROM stabilization to

recover the missing high-frequency modal information14–21. Projection of the governing equa-

tions over nonlinear manifolds has recently gained attention in applications where the POD

subspace comes short in resolving the true dynamics of the flow22;23. However, the computa-

tional overhead that is usually the aftermath of learning a compact nonlinear manifold, and

preserving computational efficiency in model reduction of non-polynomial nonlinear ROMs

has slowed down these nonlinear manifolds in replacing the POD subspace with its powerful

mathematical properties. Thus, post-ROM algorithms are designed in this study to com-

pensate for the limitations of a linear subspace without interfering with the standard model

reduction routine.

Lack of an energy-based inner product definition, evolution of ROMs that do not neces-

sarily satisfy the energy equation, and as a result, the unbounded growth of numerical errors

becomes a challenge in the POD-Galerkin ROMs of compressible flows. Stability is pre-

served through the error bounds provided by energy-conserving inner product definitions8,

as such one that is obtained by symmetrization of the governing equations in the Galerkin

projection24–27. The need for rigorous error bounds is addressed through similar approaches

in other model reduction techniques, for example via the least-squares residual minimization

in the Petrov-Galerkin projection10;28;29, or the balancing transformations in ROMs created

based on the Balanced Proper Orthogonal Decomposition (BPOD), which is equivalent to

2



the POD-Galerkin projection when the observability Gramian is used as the inner product9.

ROMs constructed through these channels, although more stable, they cannot survive the

rather large errors that are generated as a result of the incomplete modal representation

in nonlinear systems14;27. This study exhibits the broader impact of symmetrization on

model reduction. It is shown in this work that symmetrization of ROMs in compressible

flows enhances the controllable space of ROMs, and directly contributes to the robustness

of stabilization.

Post-ROM treatment offers a non-intrusive approach for ROM stabilization once the orig-

inal ROM is already built14;30–34, thus provides an obvious advantage in its independence of

different model order reduction techniques. The most trivial approach towards stabilization

is to use numerical viscosity to attenuate the otherwise unbounded numerical errors. Lucia

and Beran31 used numerical dissipation, along with the Linear Quadratic Regulation (LQR)

method to separately stabilize the low-, and high-frequency modes in the POD-Galerkin

ROM based on the Euler equations. The ad-hoc nature of stabilization with numerical dis-

sipation, and the risk of a high computation cost imposed by solving the Riccati equation

in the LQR method in larger ROMs compromises the robustness of this approach. Closure

modeling via eddy-viscosity models has been used in the POD-based ROMs as a stabilization

and calibration method19;35. Despite the physics-based derivation of these models for incom-

pressible flow ROMs that contain energy-conserving quadratic terms36, it is challenging to

preserve their robustness in compressible flows. Thus, such closure terms usually involve

empirical choices of the structure and parameters that prevent generalization.

Optimization-based ROM stabilization methods are a more robust class of solutions for

control and calibration of the low-dimensional systems. For the linear ROMs with time-

invariant operators, Amsallem and Farhat14 developed a stabilization method that implicitly

modifies the left reduced-order basis of the ROM subject to the Lyapunov stability condition,

where the right reduced-order basis is preserved to maintain accuracy. The stabilization

algorithm is implemented as a convex optimization problem that ensures computational

efficiency. However, since the optimization problem does not have direct access to the ROM

outputs, there is a risk of over-modification of the bases through the stabilization of highly
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unstable ROMs, that may lead to deviation of the dynamics from the FOM response15;37.

This method was further evolved by Balajewicz et al.33;38 for projection-based nonlinear

ROMs of compressible and incompressible flows, where the system operators are modified

by rotation of the subspace in a constrained optimization problem, thus these approaches

also inherit the potential difficulties of the method of Amsallem and Farhat14 in highly

unstable systems, where stabilization with minimal modification or rotation of the bases is

not possible, and a more aggressive alteration of the bases results in large deviations from

the original dynamics15.

In order to keep the ROM on the same attractor as the FOM, a natural objective is to

minimize the deviation of the output of the two systems. This is achieved by transferring the

eigenvalues of the linear ROM to the left half of the complex plain in a stabilization method

developed by Kalashnikova et al.30. Direct monitoring of the ROM accuracy in this method

is an advantage obtained at the cost of the additional computational effort for solving a

nonlinear optimization problem that is not necessarily convex. Thus, the method can become

intractable as the number of unstable modes increases. This has led to the advent of a new

Hybrid stabilization method in this study, that integrates the computational efficiency of

the method of Amsallem and Farhat14 in its first step, with the accuracy of the method of

Kalashnikova et al.30 in a second step to directly monitor the accuracy of ROM through the

stabilization of the most energetically-dominant modes15. Separate calibration of the low-

and high-frequency components in the Hybrid method, reduces the computational burden on

the method of Kalashnikova et al.30, and prevents over-modification of the system through

control, thus contributes to the robustness of the stabilization algorithm, especially in highly

unstable ROMs with a large number of unstable modes.

When the nonlinear dynamical system evolves in close proximity to a fixed point, lin-

earized ROMs are efficient alternatives, with a potential to accurately predict the dynamics of

the HFM. There is also a lot of variability in the stabilization approaches that are developed

for LTI systems. This is in contrast to the nonlinear ROMs that are both mathematically

and computationally more challenging to process and post-process. Thus, when it comes to

the stabilization of the nonlinear ROMs, one is left with only a few methods that are mainly
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developed for a certain type of problems, and fail to respond to a more general category

of applications. The presence of strongly nonlinear phenomena (e.g. turbulence, unsteady

shock waves, chemical reactions, etc.), that compromise accuracy and even the viability

of a linearized model, is a norm rather than exception in the fluid dynamics applications.

Thus, there is a high demand for nonlinear ROM stabilization methods that can satisfy the

requirements of a broader class of problems in this sector.

A new method is proposed in this study for the stabilization of nonlinear ROMs, that is

initially inspired by the method of Kalshnokova et al.30. This approach uses eigenvalue reas-

signment in a nonlinear ROM, therefore named the ERN algorithm, to match the dynamical

response of the nonlinear ROM with that of the FOM. To that end, the eigenvalues of the

linear term in the nonlinear ROM are used as control parameters to drive the nonlinear sys-

tem, while the deviation of the nonlinear ROM output from the FOM is directly monitored

in the objective function, and a negative total power constraint guides the optimization to

ensure the stability of ROM is recovered through the control. The negative total power

constraint, although inspired by the conservation of the turbulent kinetic energy in fluid

dynamics, is compatible with the notion of time-stability in generic nonlinear systems. Thus

the proposed method can be easily extended for the stabilization of ROMs that originate in

other fields of science and engineering.

Solving a constrained nonlinear optimization problem that is not necessarily convex,

requires a global optimization solver, hence the cost of stabilization with the ERN algorithm

grows nonlinearly with the number of unstable modes. Projection over the POD modes,

and other linear subspaces is popular for its computational efficiency and mathematically

rigorous implementation. This practical advantage however is tainted in strongly nonlinear

systems that need a lot of base functions to capture the nonlinearity, while adding the

typically less-accurate higher modes to the system further damages the stability of ROM. In

the meantime, the control space of ROM becomes more complicated as the dimension of the

optimization problem in the stabilization algorithm increases with the number of unstable

modes, which makes it more challenging and even practically impossible at some point to

capture the precise location of the global minimum point. Hence stabilization of the typically
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larger ROMs of the strongly nonlinear systems, with the bare bone ERN algorithm, impairs

the computational efficiency and accuracy of ROM, and may become intractable in the worst

case. It is notable that the other optimization-based ROM stabilization methods that are

discussed here are also prone to failure in such systems, either because of a nonlinear multi-

modal objective function that makes it challenging to preserve accuracy and computational

efficiency in higher dimensions, or due to the lack of a direct control of ROM accuracy that

may result in aggressive modification of the system.

In order to address this challenge and expand the applications of the ERN algorithm,

a multi-stage stabilization layout is proposed in this work, that breaks the problem of the

stabilization of the target ROM into that of a few smaller ROMs, and uses the eigenvalues

of the stabilized smaller ROMs at each stage to guide the higher-dimensional optimization

problem of the larger ROMs, and accelerate convergence. This new layout has improved

the computational efficiency and robustness of the ERN algorithm in the higher-dimensional

ROMs of the strongly nonlinear systems.

Two supersonic flow applications serve as the probe to observe the performance of the

proposed stabilization methods. The first case is the classic problem of the supersonic

flow over a circular cylinder, which is further complicated by shock-vortex interactions that

introduce unsteady shock oscillations and lead to highly unstable POD-Galerkin ROMs. The

second case is the supersonic flow over a triangular prism, with strong shock-wake interactions

and a similar destabilizing effect on the constructed ROMs. This application requires 60 POD

modes to converge to the FOM energy. Using the bare bone ERN algorithm to stabilize the

large number of unstable modes imposes a high computation cost. The proposed multi-stage

configuration has enabled efficient implementation of the ERN algorithm, and allowed the

global optimization solver to accurately capture the global minimum point, which is not

otherwise possible with the complicated control landscape of the 60-dimensional ROM.

Despite ROMs constructed based on the common L2 inner product, and the more promis-

ing symmetry inner product, are both unstable due to the presence of the strongly nonlinear

shock-wake interactions in these applications, the influence of symmetrization on the con-

trollable space of the ROMs and their overall robustness requires further attention. Control-
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lability analysis of the linear ROMs via the controllability Gramian, and sensitivity analysis

of the nonlinear ROMs in this work have revealed that the symmetry ROMs are not only

more stable, but they are also more controllable and more robust, thus feasible to stabilize

without sacrificing the accuracy.

The dissertation is outlined as follows: High-fidelity simulations of the Euler equations

for the two supersonic flow applications that are used to test the performance of the proposed

methods are briefly reviewed in chapter 2. The standard model reduction process through

POD-Galerkin projection, and the form of the governing equations used for construction

of the linear and nonlinear ROMs are discussed in chapter 3. Chapter 4 is dedicated to

the Hybrid method that is developed for the stabilization of ROMs as LTI systems. The

results of application of this method for the stabilization of the linear POD-Galerkin ROM

of the supersonic flow over the circular cylinder are also discussed in this chapter. Nonlinear

ROM stabilization, the ERN stabilization algorithm, and the results of the stabilization of

the nonlinear POD-Galerkin ROM of the same application are addressed in chapter 5. In

chapter 6, the discussion about the ERN algorithm is further expanded by introducing the

multi-stage layout and comparing the performance of the vanilla ERN algorithm against the

multi-stage approach in application to the nonlinear ROM of the supersonic flow over the

triangular prism. At the end, in chapter 7 the influence of the inner product definition is

unfolded. In particular, the impact of symmetrization on the stability, controllability, and

robustness of the linear and nonlinear ROMs is discussed. The highlights of the proposed

methods and their applications are summarized, followed by the final comments, and the

future perspective of the research in chapter 8.
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Chapter 2

High-Fidelity Simulations of the Euler

Equations

The two-dimensional nonlinear Euler equations are solved by a fifth-order Weighted Essen-

tially Non-Oscillatory (WENO) method, which advances in time with a third-order Total

Variation Diminishing (TVD) Runge-Kutta scheme. The shock capturing method works in

conjunction with a positive-preserving finite difference conservative scheme to avoid negative

pressure39;40 in presence of discontinuities. An immersed boundary method by Chaudhury et

al.1 is implemented with three layers of ghost points to define the solid boundary of a circular

cylinder, and a triangular prism, in the supersonic flow applications of this study. Dirichlet

(boundary condition) and outflow conditions are applied at the left and right boundaries

of the domain respectively, along with reflective boundary condition at the top and bot-

tom walls. The high-fidelity numerical algorithm used in this study has been extensively

benchmarked in previous work39;40 including validations against an exact solution for su-

personic flow over a wedge and established numerical solutions41;42 for shock reflections and

interactions of a flow passing a forward facing step.
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2.1 Governing Equations of the Full-Order Model

The WENO scheme solves the conservation form of the nonlinear Euler equations:

∂U

∂t
+
∂F (U)

∂x
+
∂G(U)

∂y
= 0, (2.1)

where,
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,

and ρ, u, v, p, and E are respectively the density, horizontal, and vertical components of

velocity, pressure, and total energy (including internal energy and kinetic energy). The

system of equations is closed with the ideal gas equation of state:

p = (γ − 1)[E − ρ(u2 + v2)

2
], (2.2)

where γ = 1.4 is the ratio of specific heats, which corresponds to air at standard condi-

tions. These equations are solved assuming an impermeable adiabatic condition on the solid

boundaries.

2.2 Supersonic Flow over a Circular Cylinder

Numerical data of snapshots are generated for a Mach 2.8 flow passing a fixed cylinder

in a two-dimensional channel with solid walls at the top and bottom. After 146, 700 time

steps, with step size dt = 5 × 10−4 (non-dimensionalized by the incoming flow speed and

the diameter of the cylinder), of transition from the beginning of simulations for the flow

to reach steady state, a total of 101 snapshots are then collected every 20 time steps over a

grid of 601 × 401 points with dx = dy = 0.02 (non-dimensionalized by the diameter of the
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cylinder). As shown in Figure 2.1, a standing bow shock is formed in front of the cylinder,

and the reflected shock waves from the channel walls exhibit strong interactions with the

a) b)

c) d)

e) f)

Figure 2.1: Numerical Schlieren of evenly spaced snapshots collected from the numerical
simulation of a supersonic flow passing a circular cylinder.

wake structure after the cylinder. The discontinuity of shock waves and the strong shock-

wake interactions all contribute to the challenge for an accurate numerical simulation and
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more important to the numerical instability of a ROM built from the simulation data.

2.3 Supersonic Flow over a Triangular Prism

The two-dimensional Euler equations are solved in a 2000× 500 grid with dx = dy = 5.45×

10−3 (non-dimensionalized with respect to the height of the triangle) in this case, to simulate

the Mach 3.5 flow over a triangular prism depicted in the snapshot in Figure 2.2. The incident

a)

b)

-1

0

1

0 2 4 6 8 10

Figure 2.2: a) Numerical Schlieren of a typical snapshot shown in Chaudhuri et al.1. The
red dash-dotted line shows the theoretical shock angle. b) Numerical Schlieren of a different
snapshot computed with our WENO code. The red dashed line shows the incident shock
angle in the numerical simulation of Chaudhuri et al.1.

shock angle captured by the WENO scheme agrees well with the numerical simulation of

Chaudhuri et al.1, that is validated against the theoretical result. The theoretical shock

angle β shown in this figure is computed by:

tanθ = 2cotβ

[

Ma2sin2β − 1

Ma2(γ + cos2β) + 2

]

, (2.3)
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where Ma is the Mach number, and θ = 20◦ is the deflection angle1.

In order to compute the POD modes in this case, 550 snapshots are collected every 20

time steps, when the flow reaches steady state conditions after 200, 000 time steps with

dt = 2.05×10−4 (non-dimensionalized with respect to the incoming flow velocity and height

a)

b)

c)

d)

Figure 2.3: Numerical Schlieren of evenly spaced snapshots collected from the numerical
simulation of a supersonic flow passing a triangular prism.
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of the triangle). Dirichlet and outflow conditions are implemented at the left and right

boundaries, and reflective conditions are used at the upper and lower walls. Figure 2.3

shows numerical Schlieren of typical evenly spaced snapshots. The shock-wake interactions

in this flow field also trigger large instabilities in the POD-Galerkin ROMs.
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Chapter 3

Reduced-Order Modeling by

POD-Galerkin Projection

Model order reduction techniques, such as POD-Galerkin projection approach, provide a

systematic and mathematically rigorous manner to develop ROMs. By forming a set of

optimal bases suitable for the problem, and projecting the dynamics inherent from the

governing equations onto a lower-dimensional space defined by these base functions, the

constructed ROM is expected to capture the basic dynamics of interest, such as large coherent

flow structures12, at the cost of losing some resolution in less-appealing components. Thus,

dimensionality reduction that serves as the foundation for the projection-based reduced-order

modeling has branched into various methods, such as Proper Orthogonal Decomposition

(POD)12, reduced-basis method43, balanced truncation44, approximate balanced truncation

or balanced POD9, and Dynamic Mode Decomposition (DMD)45 to name a few. Proper

Orthogonal Decomposition (POD) as a popular choice for base functions is attractive due

to the optimality in energy capture when high-order modes are truncated to reduce the

degrees of freedom for computation4;5;11–13;15;24;26;46–48. In other words, the subspace defined

by POD modes captures the most energy compared to any other linear subspace with the

same dimension. Galerkin projection provides a straightforward manner to represent the

governing equations (e.g. Euler equations in the current study) in a low-dimensional space
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defined by chosen bases. This section includes basic formulation of model order reduction

on Euler equations.

3.1 Governing Equations of the Nonlinear ROM

The specific volume form of the nonlinear Euler equations are used to construct the reduced-

order models:
∂q

∂t
= −F1

∂q

∂x
− F2

∂q

∂y
, (3.1)

where,
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.

γ = 1.4 is the ratio of specific heats, and u, v, p, and ς are the horizontal and vertical

components of velocity, pressure, and specific volume, respectively. Using specific volume

instead of the density in the nonlinear Euler equations generates a ROM with quadratic

nonlinearities after projection, for which the operators can be precomputed in an offline

manner, thus facilitates bypassing hyper-reduction techniques. The specific volume form of

the Euler equations is a simple example of a lifted nonlinear model. A systematic framework

has been developed in the literature for efficient model reduction of general nonlinear systems

via the lifting transformations49;50. This is particularly important as directly handling the

nonlinear ROMs in non-polynomial form can easily multiply the cost of stabilization up to

an infeasible point.

3.2 Governing Equations of the Linear ROM

The nonuniform flow field q(x, t) is averaged over time to obtain a steady base flow q̄(x)

for linearization. Knowing that q(x, t) = q̄(x)+q′(x, t), Euler equations are then linearized
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about the mean flow before projection on to the base functions24;37:

∂q′

∂t
= −B1

∂q′

∂x
−B2

∂q′

∂y
−B3q

′, (3.2)

where,
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,

3.3 Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition (POD), also known as Karhunen Loéve Transform, or

Principal Component Analysis (PCA), is an empirical, linear dimensionality reduction method

to obtain the trial bases that optimally span the space of the high-fidelity snapshots:

q′(x, t) =

M
∑

i=1

ai(t)φi(x), (3.3)

where q′ is the state perturbation. In the modal expansion (3.3), M is the number of POD

modes retained after truncation, φi is the ith base function (i.e. mode), and ai is the ith

modal coefficient. These coefficients are obtained by projection of the FOM state onto the

POD subspace, and typically serve as a reference for validation of the ROM solution.

16



Optimality is defined here in the sense of an energy-based inner product definition. Thus,

the PODmodes are obtained by solving the optimization problem that maximizes the average

energy in projection of the high-fidelity snapshots q′(x, t) onto the POD subspace φ(x):

maxφ∈H (Ω)
(〈q′,φ〉2)
‖φ‖2

, (3.4)

subject to ‖φ‖ = 1. Where, ‖.‖ is the inner product norm, (.) is the time or ensemble

average, x ∈ Ω, and H is the Hilbert space that contains the solution snapshots, and is

associated with the inner product 〈., .〉. This optimization problem is identically represented

by an eigenvalue problem on the operator R = (q′ ⊗ q′∗):

Rφ = σφ, (3.5)

that scales with the dimension N of the high-fidelity snapshots, where q′∗ ∈ H ∗ is the dual of

q′. Thus, in order to make this eigenvalue problem tractable, when the number of snapshots

K is smaller than the number of grid points N , the method of snapshots by Sirovich13 is

employed by solving the eigenvalue problem:

Wζ = σζ, (3.6)

where Wij = 〈q′j, q′i〉 is the K × K correlation matrix of the snapshots. The eigenvalues

σ represent the average projection energy, and are arranged in descending order. Thus,

truncation of the eigenvectors corresponding to the eigenvalues with
∑K

i=M+1 σi ≪
∑K

i=1 σi

yields a low-dimensional space that represents most of the flow energy. The POD modes are

then computed:

φ =
K
∑

i=1

ζiq
′

i. (3.7)

The average ensemble energy captured by the first M POD modes is higher than any other

linear subspace. Despite the optimality of the POD subspace in the sense of the average

energy, naive truncation of the high-frequency modal information may result in the loss of
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important dynamical signatures in advection-dominated flows, especially when the HFM

is based on the Euler equations that are the extreme form of such cases22;51. As a result,

construction of ROMs over the POD subspace with insufficient resolution of the nonlinearities

compromises the stability of the low-dimensional system.

3.4 Galerkin Projection

Let R be the residual of the discretized system of the governing PDEs (in this case, the

nonlinear Euler equations):

R =
∂q′

∂t
+ F1

∂q′

∂x
+ F2

∂q′

∂y
. (3.8)

Substituting the POD expansion (3.3) in Equation (3.8) results in a rectangular residual

matrix that represents the over-determined system of equations. Enforcing the residual R

to be orthogonal to the test subspace ψ:

〈R,ψ(x, y)〉 = 0, (3.9)

yields an M ×M system of equations. Where, ψTφ = I, and I is the identity matrix. The

system of equations (3.9) is in general solved in an optimization problem to find the test

subspace that minimizes the residual through the Petrov-Galerkin method. In the special

occasion where the test and trial subspaces are identical (i.e. ψ = φ), this procedure is

called Galerkin projection. Thus, Galerkin projection of the nonlinear Euler equations over

the POD subspace constructs the M-dimensional ROM ODEs:

ȧi = Ci +

M
∑

j=1

Lijaj +

M
∑

j,k=1

Qijkajak, i = 1, . . . ,M. (3.10)

The specific volume form of the Euler equations gives rise to the nonlinear ROM ODEs in

constant-linear-quadratic form, where matrix L, and tensor Q are efficiently precomputed

offline with zero computational overhead in the online stage of the model reduction.
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Similarly, for the linearized Euler equations:

R =
∂q′

∂t
+B1

∂q′

∂x
+B2

∂q′

∂y
+B3q

′, (3.11)

and following the same procedure yields the linear ROM ODEs:

ȧi = Ci +

M
∑

j=1

Lijaj, i = 1, . . . ,M. (3.12)

Equations (3.10), and (3.12) are solved by a time-advancement method, for instance the

fourth-order Runge-Kutta scheme used in this study.

3.5 Choice of Inner Product

Inner product maps the Hilbert space containing flow field solutions to a metric space. The

inner product definition that is used to identify the low-dimensional space and project the

governing equations onto the subspace directly affects the numerical properties of projection-

based ROMs. Energy-based norms provide error bounds that facilitate preserving the sta-

bility of high-fidelity simulations through model reduction. This advantage is naturally

obtained in the model reduction of incompressible flows via the common L2 inner prod-

uct12;52;53. A direct generalization of L2 inner product for compressible flows is:

〈q′1, q′2〉 =
∫

Ω

(u′1u
′

2 + v′1v
′

2 + βp′1p
′

2 + βς ′1ς
′

2)dΩ, (3.13)

where β = 1 is a weighting coefficient. Since the conventional definition of L2 does not

satisfy energy conservation as compressibility effects prevail, compressible flows impose an

additional challenge for defining a physically meaningful inner product that delivers similar

stability guarantees through model reduction. Rowley8;46 suggested physics-based inner

product definitions for compressible flows with application to the isentropic Navier-Stokes

equations. The most predominant effort in deriving a suitable inner product for compressible
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flows is perhaps conducted by Barone et al.24. Inspired by the semibounded operators

in the symmetrized equations, they derived a symmetry inner product for the linearized

Euler equations, and showed that the Galerkin projection with this inner product guarantees

stability bounds for ROMs constructed over the same governing equations.

Linear and nonlinear ROMs of this study are separately constructed by both L2, and

symmetry inner products. It is shown in chapter 7 that compressible flow ROMs based on

the symmetry inner product are more stable, robust, and controllable compared to those

based on the L2 norm27.

Although the nonlinear Euler equations are also symmetrizable, the corresponding sym-

metry inner product contains higher-order perturbation terms that multiply the computa-

tion cost of model reduction60, thus similar to the linear ROMs, the nonlinear POD-Galerkin

ROMs of this work are also constructed by the symmetry inner product of the linearized

Euler equations:

〈q′1, q′2〉H =

∫

Ω

[ρ̄(u′1u
′

2 + v′1v
′

2) +
1 + α2

γp̄
p′1p

′

2 + α2γρ̄2p̄ς ′1ς
′

2 + α2ρ̄(ς ′2p
′

1 + ς ′1p
′

2)]dΩ, (3.14)

where H is the symmetric positive definite matrix that symmetrizes the linearized Euler

equations:

H =



















ρ̄ 0 0 0

0 ρ̄ 0 0

0 0 1+α2

γp̄
ρ̄α2

0 0 ρ̄α2 α2γρ̄2p̄



















, (3.15)

and α =
√
2 is a real nonzero parameter. Tabandeh et al.26 showed that when the symmetry

inner product is used for projection of the linearized Euler equations, the dynamics matrix

of the linear ROM in Equation (3.12) is composed of two matrices:

Lij = −Lji + bij , (3.16)

where, Lji is a skew-symmetric matrix with purely imaginary eigenvalues, and matrix bij is
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identified by the boundary conditions. Thus, as a result of the anti-symmetry of matrix Lji,

when the boundary conditions generate a matrix bij with eigenvalues that are close to the

imaginary axis in the complex plane, eigenvalues of the linear dynamics matrix Lij will also

be close to the imaginary axis. This property, that has been observed in several applications

of the symmetry ROMs in the literature15;24;26;27, carries significant computational benefits

through stabilization and calibration of the ROMs.

The nonlinear ROMs created based on the symmetry inner product of the linearized

Euler equations do not necessarily follow the error bounds obtained by Barone et al.24,

though they have shown notable improvements over the L2 definition in terms of stability

and robustness27.
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Chapter 4

Stabilization of ROMs as Linear

Time-Invariant Systems

4.1 Motivation and Overview

ROMs developed by POD-Galerkin projection suffer from different instabilities in many

cases30;54;55. Barone et al.24 pointed out that ROM instability may come from the lack of an

energy conserving definition for the inner product used in both the POD computation and

the Galerkin projection, and they suggested to use a symmetry inner product which leads to

a ROM in the form of a symmetric operator being applied to primary variables. Similarly,

using a least-squares Petrov-Galerkin projection method instead of Galerkin projection with

the L2 inner product, theoretically provides a more stable backbone for model reduction of

nonlinear equations, by minimizing the residual in projection of the governing equations28;56.

Galerkin projection with the commonly used L2 inner product is optimal (in minimizing the

residual) when the Jacobians of the system are symmetric positive definite, which is not

generally satisfied in nonlinear problems. Unfortunately, when the flow is highly inviscid

and further complicated by discontinuity and unsteady perturbations, merely changing the

inner product is not sufficient to stabilize a ROM. Numerical errors are inevitably generated

and often amplified quickly when an aggressive truncation of high-order modes happens
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without an appropriate closure model and the system itself lacks intrinsic dissipation.

The computational and theoretical simplifications offered by linearization make linear

ROMs attractive in model reduction of originally nonlinear dynamical systems. To develop

a general approach to stabilize ROMs as a typical linear system, Amsallem and Farhat14

proposed an Implicit Subspace Correction (ISC) method to manipulate linearly the system

dynamics matrices of a larger ROM to obtain a stable but smaller ROM by solving a convex

optimization problem based on the Lyapunov stability condition. The ISC method is effi-

cient in the stabilization of ROMs especially when the number of modes is large, while the

accuracy is partly maintained by preserving the right Reduced-Order Basis (ROB). However,

its accuracy is lower than other approaches that involve an explicit control of ROM accuracy

in cost functions. Focusing on the accuracy, Kalashnikova et al.30 suggested an eigenvalue

reassignment (ER) method to reconfigure positive system eigenvalues to negative ones while

solving an optimization problem to minimize the deviation of the ROM outputs from the

outputs of the original Full-Order Model (FOM). Though the accuracy is controlled by the

optimization process, the cost increases quickly when more modes are included in the ER

process, and the more complicated control space of a larger ROM may eventually fail the

optimization process facing the difficulty to achieve convergence .

The new Hybrid method developed here aims to take the strengths of both the ISC

method14 and the ER method30. Since the ISC method, though being efficient and robust,

tends to excessively alter low-frequency (originally more unstable) modes and reduce the

overall accuracy, the Hybrid approach takes two steps: first, uses the ISC method to stabilize

all modes in an efficient manner; then, applies the ER method to fine tune the eigenvalues

of a small group of low-frequency modes with a cost function defined to directly control

the accuracy of the overall system outputs. With the ER method being applied at the

end to handle a small number of modes despite the total number of modes used in the

ROM, the Hybrid method maintains low cost and robustness (of ISC) and gets an explicit

control of accuracy (via ER) independent of the ROM size. Furthermore, when a symmetry

inner product24;26;27 is implemented in the computation of POD modes and in the Galerkin

projection, the ROM based on this inner product shows clear improvement of stability in
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its comparison to the one based on a conventional L2 inner product. Not to our surprise, a

relatively more stable original ROM using symmetry inner product leads to a more accurate

ROM at the end after stabilization. Thus, it becomes natural to adopt the original ISC and

ER as well as the new Hybrid approaches to apply on a symmetry ROM to reach the ROM’s

full potential in terms of stability and accuracy.

Without physical dissipation, a ROM of an inviscid compressible flow is fundamentally

more vulnerable to instability, and therefore an inviscid ROM is a more suitable and chal-

lenging subject for the study of ROM stabilization14;31;37. The low-dimensional space is here

constructed by Proper Orthogonal Decomposition (POD) with snapshots from the high-

fidelity simulation of the supersonic flow passing a fixed cylinder, and then Galerkin pro-

jection casts the dynamics of the flow field onto a subspace of POD modes. Though the

high-fidelity snapshots are computed by a numerically stable algorithm, the highly unstable

physics from the interaction of shock waves and unsteady vortex shedding often triggers nu-

merical instability in the projected ROM that is not intrinsically formulated to keep the same

stability characteristics as the original high-fidelity model. For the sake of completeness, and

a smooth introduction to the new Hybrid method, the approaches introduced respectively

by Amsallem and Farhat14 and Kalashnikova et al.30 are briefly reviewed here before the

Hybrid method is proposed.

4.2 Implicit Subspace Correction (ISC)

In this method, Amsallem and Farhat14 suggested a minimal modification of the left ROB to

enhance model stability. To provide an adequate search space, a larger ROM of dimension

M + r is initially constructed to generate a stable ROM of a slightly smaller dimension

M . The dynamics of the smaller ROM is built in a convex optimization problem that

ensures the stability of the modified bases by satisfying a Lyapunov equation. The method

is demonstrated for a Linear Time-Invariant (LTI) system as:

E
dx

dt
(t) = Ax(t) +Bu(t), (4.1)
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y(t) = Cx(t),

where x ∈ RN is the vector of states, u ∈ RS is the control input, and y ∈ RG is the

system output. E ∈ RN×N , A ∈ RN×N , B ∈ RN×S and C ∈ RG×N are full-order matrices

that are constant in time. E is the identity matrix due to the non-descriptor form of the

equations in this case, and u is zero.

Following the Lyapunov stability condition, the equilibrium point x0 of the system in

(4.1) is asymptotically stable with stability margin µ if and only if there exists a Symmetric

Positive Definite (SPD) matrix P that satisfies:

ETP (A+ µE) + (A+ µE)TPE = −Q, (4.2)

for any SPD matrix Q. Arranging ROM ODEs in the form of the reduced-order LTI system

we have:

EM

dxM

dt
(t) = AMxM(t) +BMu(t), (4.3)

yM(t) = CMxM(t),

where xM ∈ RM is the solution to the ROM, and yM ∈ RG is the reconstructed flow output

using ROM coefficients. Similarly, EM = ΦT
MEΦM ∈ RM×M , AM = ΦT

MAΦM ∈ RM×M ,

BM = ΦT
MB ∈ RM×S and CM = CΦM ∈ RG×M are constant matrices.

Derivations are expressed in terms of the left and right ROBs, that are the same in

Galerkin projection. However, the method is directly applied to the ROM ODEs rather

than the base functions, and is therefore independent of the projection method. The idea is

to look for the left ROB of a target stable ROM of dimension M in the range of the bases at

the dimension of M + r, keeping the right ROB unchanged to maintain accuracy. Assuming

that Φ̃M is the ROB of dimension M that is being searched for in the range of the ROB of

a larger ROM of dimension M + r, namely ΦM+r, thus Φ̃M can be expressed in terms of a

matrix X ∈ R(M+r)×M of rank M , which identifies the combination towards Φ̃M :

Φ̃M = ΦM+rX. (4.4)
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Since by stabilization of the ROM ODEs we are altering the projected dynamics of the

governing equations, minimum deviation of the stabilized basis from the original basis (i.e.
∥

∥

∥
Φ̃M −ΦM

∥

∥

∥
) will serve as the objective function to prevent a substantial change in the

system through optimization.

In order to make the optimization problem amenable to semidefinite programming, it is

expressed in terms of a SPD matrix P̂ ∈ R(M+r)×(M+r) that satisfies the Lyapunov equation:

min
P̂∈R(M+r)×(M+r)

∥

∥

∥

∥

(

P̂ T
12 P̂22

)∥

∥

∥

∥

F

+ τ
∥

∥

∥
P̂11

∥

∥

∥

F
(4.5)

s.t. MT
E P̂MA +MT

A P̂ME = −Q,

P̂ > 0(M+r)×(M+r),

where τ is a regularization parameter and F represents Ferobenius norm. The equality

constraint in this equation is the Lyapunov stability condition that is rearranged for the

system in (4.3) by expanding EM and AM in terms of the base functions, substituting

the modified left ROB as in Equation (4.4), and defining ME = ΦT
M+rEΦM and MA =

ΦT
M+r(A + µE)ΦM . This minimization problem thus guarantees: a) asymptotic stability

of the reduced order LTI system, b) preserving the originally stable eigendirections of the

system, and c) computational cost in the order of the reduced dimension. For a feasible

solution to the convex problem in (4.5), matrix X is then computed knowing P̂ minors:

X =







P̂11

P̂ T
12






. (4.6)

At the end, the LTI system matrices are modified to stabilize the ROM:

ẼM =XTME, ÃM =XT (MA − µME), B̃M =XTBM+r, C̃M = CM+r. (4.7)

The solution of the optimization problem is computed in MATLAB by the CVX package.

Provided that the optimization solver cannot reach a stable solution in the range of the larger
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ROM, one may change parameter r either by altering dimension M of the target ROM or

expanding the size of the ROM of dimension M+r, and revisit the original system identities

if necessary.

Since the Galerkin system in the current study exhibits strong instability in presence

of unsteady shock interactions, the modification of the system matrix to reach a stable

solution may be large enough to reduce ROM accuracy in a noticeable manner or even

change the dynamics of the system. It is expected that the approach may benefit from

another optimization process to regulate the accuracy of ROM output and prevent deviation

from the original attractor.

4.3 Optimization-based Eigenvalue Reassignment (ER)

Asymptotic stability of an LTI system is identified by the location of its eigenvalues with

respect to the imaginary axis. It is possible to stabilize an originally unstable LTI system

by moving the eigenvalues from the right to the left half of the complex plane passing

the imaginary axis. Kalashnikova et al.30 have used this definition as a constraint on an

optimization problem that reconfigures the eigenvalues of an unstable ROM for maximum

accuracy, which is implemented in the body of an objective function on deviation of the

ROM output from the same output computed by the FOM. The basic concept is similar

to the common practice of using a feedback signal to maintain the accurate output from a

control system. However, instead of an actual feedback signal out of the ROM solution, an

analytical representation of the system response is used for simplicity and low computational

cost. This analytical representation here is the exact solution to the LTI system in (4.3).

Diagonalizing the system dynamics matrix AM using eigenvalue decomposition, we have:

AM = VMDMV
−1
M . (4.8)
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An optimization problem is then defined for the unstable eigenvalues of the Galerkin system:

minλu
j

K
∑

k=1

∥

∥yk − yk
M

∥

∥

2

2
, (4.9)

s.t. Re(λuj ) < 0, j = 1, ..., L,

where y is the output of the FOM provided by the original data snapshots and yM is the

ROM output reconstructed analytically by the exact solution of the LTI system:

yM(t) = CM [VMexp(tD̃M )V −1
M xM(0) +

∫ t

0

VMexp[(t− ǫ)D̃M ]V −1
M BMu(ǫ)dǫ]. (4.10)

It is worth noting that y is a low-order projection of the original dynamics and achieved by

the projection of the data snapshots to the same low-order space defined by the same number

of POD modes used in ROM. Since the ROM solution is in a much lower dimensional space,

instead of using the original dynamics/data in full order, it is only appropriate to use the

projected dynamics of the original FOM in the same low-order space as a reference.

An iterative process between the modification of the eigenvalues and the measurement

of ROM outputs against the reference is required to reach the optimal solution. In Equation

(4.10), the diagonal matrix of eigenvalues DM is substituted by D̃M , which is updated at

each iteration of the optimization problem (4.9). Once the optimization problem converges,

the dynamics matrix is reconstructed by eigenvectors of the original system and the optimal

stable eigenvalues:

ÃM = VMD̃MV
−1
M . (4.11)

The optimization problem defined in (4.9) is a constrained nonlinear problem, which is easily

implemented by the fmincon solver in MATLAB optimization toolbox using the interior-point

algorithm.

According to the discussions on stability of an LTI system at the beginning of this

approach, upper-bound constraints on real parts of eigenvalues are theoretically sufficient

to solve the optimization problem for a stable ROM. Whereas, due to the large parametric
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space dictated by the number of unstable eigenvalues, accuracy concerns may require further

regularization of the search space by introducing lower-bound constraints, which inevitably

increases the computational effort. Such limitations are stressed as more unstable eigenvalues

enter the optimization problem (that is equivalent to further increase of the number of modes

used in the ROM). Even worse, the algorithm may not converge when the control space

becomes more complicated with the increase of control parameters, in this case, the number

of unstable eigenvalues.

4.4 The Hybrid Stabilization Approach

In both of the previous stabilization methods, stable eigenvalues of the LTI system are

preserved in order to maintain dynamics of the original ROM as much as possible for better

accuracy. When most or all modes are stable for a ROM of dimension M + r, ISC provides

a stable ROM of lower dimension M and keeps the accuracy across all M modes14. When

most or all modes are unstable for the original ROM of dimension M + r, such as the

current case, ISC still provides a stable ROM of dimension M , but loses accuracy in some

eigenmodes, which in our symmetry ROM are the modes with lower-frequency response that

are originally more unstable. The smaller modification to higher modes, which are originally

more stable, leads to improved accuracy of dynamics in those modes. In contrast, since the

L2 ROM is initially more unstable than the symmetry ROM, even the minimal change of

the left ROB in the ISC method results in considerably inaccurate time response in the L2

ROM, regardless of the frequency.

On the other hand, ROM accuracy is regulated specifically in the ER approach and is

maintained despite the number of unstable eigenmodes in the original ROM. However, with

an increase in the number of unstable modes, the optimization problem in ER requires con-

siderably higher computational cost to reach convergence, and the computational overhead

may reach a point where optimization becomes infeasible in some cases. The control space

also gets more complicated with larger number of control parameters (i.e. unstable modes),

and it often leads to problems with poor convergence (e.g. converging to a local minimum

29



or not converging at all).

To achieve the best of both worlds, a Hybrid method is proposed to basically let the ISC

approach handle most of the high-frequency modes and leave a few highly unstable modes

at lower frequencies to be handled by the ER method. The goal is to keep the cost low and

the control space smooth enough for convergence. The details are shown in Algorithm 1,

where λuj (0) is the initial value of λuj . η1 and η2 are tolerance values, b and c are small real

numbers to facilitate searching the parameter space for optimal points in a limited range,

and a is defined with respect to the properties of the unstable ROM generated based on

a specific inner product that may naturally result in local clustering of optimal eigenvalues

(e.g. close to the imaginary axis). Imaginary parts of the eigenvalues are fixed at those of the

original system in the Hybrid method, therefore, only the real components of the unstable

eigenvalues are changed through optimization. Generally steps 14 through 18 can be avoided

for a well-behaved optimization problem with a smooth search space.

Integration of the Hybrid method with the energy conserving definition of the symme-

try inner product, instead of the traditional L2 norm, is expected to further improve the

performance and robustness of this approach.
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Algorithm 1 Hybrid Method

Step 1

1. Construct ROMs of dimension M , and M + r

2. Adjust the stability margin µ and regularization parameter τ

3. for i = 1 : r do

4. Obtain ME and MA by the first M columns in AM+i and EM+i

5. Solve the optimization problem (4.5) for P̂ ∈ R(M+i)×(M+i)

6. if a feasible solution is obtained then exit

7. end for

8. Compute X, and modify ROM matrices as in (4.7)

Step 2

9. Compute the diagonal matrix of eigenvalues (DISC) of the ROM stabilized in step 1

10. Diagonalize matrix AM of the original ROM

AM = VMDMV
−1
M

11. Substitute selected eigenvalues of DISC in DM

12. Initialize the diagonal matrix D̃M to DM

13. Solve the optimization problem in Equation (4.9) for λuj

14. if (|λuj | > a) then

15. while (|λuj (0)| > η1), do λ
u
j (0) = b(λuj (0)) and go to 13, or

16. while (|lb| > η2), do lb = lb+ c and go to 13, or

17. Change the stability margin and go to 3

18. end if

19. Rearrange D̃M with the stabilized eigenvalues

20. Compute ÃM

ÃM = VMD̃MV
−1
M
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4.5 Application: Supersonic Flow over a Circular Cylin-

der

Computed from snapshots of the high-fidelity simulation data, the first 16 POD modes

capture 95% and 92% of the flow energy with L2 and symmetry inner products respectively.

On the other hand, adding more of the higher modes gets diminished return in its captured

energy while high-frequency components from extra high modes largely reduce the efficiency

of the optimization process and often lead to a less accurate ROM though at higher order.

Thus, the three stabilization methods are applied to the 16 mode linear ROMs.

To compare the performance of ROMs using different stabilization methods, a relative

error is defined to measure the difference between Ek
POD, the energy of POD modes directly

from the projection, and Ek
ROM , the energy represented in ROM:

e =

∑K

k=1

∥

∥Ek
POD −Ek

ROM

∥

∥

2

2
∑K

k=1

∥

∥Ek
POD

∥

∥

2

2

, (4.12)

where energy is defined by E(·) =
∑M

i=1 a
2
i (t) with coefficients ai from respectively the POD or

ROM. Notice that this is a sensitive error metric that is only defined based on the fluctuating

dynamics, while many of the flow structures are captured by the mean flow that when added

to the modal approximation through reconstruction of the flow field makes it more difficult

to visually recognize the order of discrepancy between the ROMs stabilized by different

methods.

4.5.1 Stabilization approaches on the L2 ROM

The horizontal velocity at a downstream probe point (x, y) = (3, 2) is used as the system

output in ER. In the case of L2 ROM with 16 modes, it becomes challenging for the ER

method to converge to a solution with reasonable accuracy due to the large and presumably

complex parametric space. Table 4.1 shows the poor accuracy of a typical ER stabilization for

the 16 mode L2 ROM, marked by ER(1), which is most likely trapped at some local optimum
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Table 4.1: Performance of the stabilization methods in the 16 mode L2 ROM.

ER(1) ER(2) ISC Hybrid
Number of variables 16 16 153 153 + 3
Upper-bound constraints 8 8 NA 3
Lower-bound constraints 0 8 NA 3
τ NA NA 1.00e− 05 1.00e− 05
µ NA NA 5.00e-01 5.00e-01
Number of ER function evaluations 204 1539 NA 72
Wall-clock time (sec) 1.04 7.78 1.97 2.66
Relative error e (%) 7.76e+01 1.30e+01 4.0e+091 1.51e+01

Re(λ)

I
m
(λ
)

Figure 4.1: Eigenvalues of the 16 mode L2 ROMs.

with terrible accuracy. One ad-hoc fix is to introduce empirical lower-bound constraints,

which may limit the chance of being trapped by unreasonable local optima at the expense of

1CVX solver status shown in Matlab is “Inaccurate” for convergence, and choosing different ROM di-

mensions makes no improvement in this case.
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Figure 4.2: The a) first, and b) second temporal coefficients for the 16 mode L2 ROM
stabilized by ISC ( ), ER(1) ( ), ER(2) ( ), and Hybrid ( ) methods compared
against the POD coefficients ( ).

increased computational cost. At the same time, the appropriate lower-bound constraint for

each eigenvalue is not well defined and may be challenging to identify in practice. The case

ER(2) in Table 4.1 shows a typical example of ER with ad-hoc lower-bound constraints for

convergence to reasonable solutions. Figure 4.1 shows the new stable position of eigenvalues

from ER(1) and ER(2). Apparently, ER(2) is less aggressive in modifying the eigenvalues and

leads to better accuracy. In Figure 4.2, the POD coefficients are obtained by the projection

of FOM state onto the POD modes, and used as a reference for evaluation of the accuracy of

ROM coefficients that are computed by projection of the governing equations onto the POD

subspace. Thus the time evolution of coefficients in this figure shows a more clear picture for

the different levels of accuracy delivered by ER(1) and ER(2). It is worth noting that ER(2)

has benefited from an empirical fix and is much more expensive than the Hybrid method

though it provides similar accuracy.

ISC, as a computationally efficient method, is applied with r = 1 for comparison. Fig-

ure 4.1 shows that the ROM stabilized by ISC has characteristic eigenvalues in the stable

half of the complex plane as expected. However, despite its computational efficiency, the

performance of the ROM stabilized by ISC in Figure 4.2, where the time history of POD

coefficients are shown for reference, is far worse than other approaches in the current case.
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This is also confirmed by the poor convergence with the large relative error shown in Ta-

ble 4.1. In fact, it has been pointed out by Amsallem and Farhat in the original work14 that

there is no guarantee for the convergence of the CVX solver in a complicated control space

with increased control parameters. Choosing different ROM dimensions may help, but it

does not work for the current L2 case. Note that the number of variables shown in Table 4.1

for the convex optimization problem of the ISC method is the total number of independent

components of the SPD matrix P̂ ∈ R17×17 for stabilization of our 16-mode ROM with

r = 1.

In order to improve the computational efficiency of ER and its reliability in stabilization of

the dominant modes, the new Hybrid method stabilizes most of the high-frequency responses

using the ISC method, and solves the optimization problem of the ER method for a few

remaining eigenvalues controlling mostly energetic low-frequency responses, while preserving

the eigenvectors of the original ROM in all directions. It is indicated by the locations

of eigenvalues in Figure 4.1 that the Hybrid approach has only modified three pairs of

eigenvalues (i.e. the six eigenvalues with the lowest frequencies) in its ER step on top of the

initial ISC stabilization. The accuracy achieved by the Hybrid approach is about the same as

ER(2) method, but with only a fractional cost as shown in Table 4.1 as well as in Figure 4.2.

In fact, with a larger number of modes entering ROM stabilization, the control space gets

more complicated and leads to situations where the ER(2) method fails to reach any optimal

solutions at all. On the other hand, the Hybrid method limits the non-convex optimization

process to only a small number of low-frequency modes, thus ensures the convergence of its

ER step.

4.5.2 Stabilization approaches on the symmetrical ROM

Using a symmetry inner product, rather than a regular L2 inner product, in the model

order reduction of compressible flows has shown clear advantages, both theoretically and

practically, in improving ROM stability24;26;27.

The original ISC method is adopted and applied to a 16 mode symmetry ROM with
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r = 1. As shown in Figure 4.3, all the eigenvalues are moved to the stable region when ISC

is applied to the originally unstable symmetry ROM. It is actually more obvious in this case

that the low-frequency modes, that are originally more unstable, may be “over-killed” by

moving too deep into the stable region. Such over-stabilization leads to inaccuracy in the

same way as it is described before for the L2 ROM and shown again now for the symmetry

ROM in Figure 4.4. Essentially, ISC shows improved performance on a symmetry ROM, but

the problem of lower accuracy in low-frequency modes persists.

Re(λ)

I
m
(λ
)

Figure 4.3: Eigenvalues of the 16 mode symmetry ROMs.

When ER is applied to the symmetry ROM, the eigenvalues are moved to the stable

region, but less aggressively as shown in Figure 4.3, and according to Figure 4.4 accuracy

of the ROM coefficients is also improved in comparison to the regular L2 ROM. With the

improvement in both the ISC and ER methods when being adopted for a symmetry ROM, it

is not surprising to see a larger improvement in the performance of the Hybrid method. The
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new eigenvalues of the ROM stabilized by the Hybrid method appear to take the features,

and be a good combination of the eigenvalues of ISC and ER as shown in Figure 4.3.

a) T ime

a
1

b) T ime

a
2

Figure 4.4: The a) first, and b) second temporal coefficients for the 16 mode symmetry ROM
stabilized by ISC ( ), ER ( ), and Hybrid ( ) methods compared against the POD
coefficients ( ).

Table 4.2: Performance of the stabilization methods in the 16 mode symmetry ROM.

ER ISC Hybrid
Number of Variables 16 153 153 + 3
Upper-bound constraints 8 NA 3
Lower-bound constraints 0 NA 3
τ NA 1.00e-05. 1.00e-05
µ NA 2.00e-01 2.00e-01
Number of ER function evaluations 1837 NA 12
Wall-clock time (sec) 8.87 1.37 1.53
Relative error e (%) 2.76e+00 3.05e+02 3.23e+00

It is worth noting that despite the accuracy shown in the symmetry ROM, ER stabiliza-

tion faces the same challenges computationally. The computational cost of the ER method

is much higher than the Hybrid method, though they offer similar accuracy. Table 4.2 shows

details of the computational performance of the stabilization methods for a 16 mode ROM.

The advantage of the Hybrid approach in terms of computational savings is shown by the

significantly smaller wall-clock time for almost the same level of accuracy obtained by the
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ER method. The difference in the computational cost gets only larger when the number of

modes increases. At some point with larger number of modes, the ER method may fail to

converge.

Although both L2 and symmetry ROMs are originally unstable, the maximum growth

rate, measured by the real component of eigenvalues Re(λ), is 11.48 for the L2 ROM, which

is much larger than the maximum value of 2.38 for the symmetry ROM before stabilization.

The stabilization methods also perform better for the symmetry ROM. The L2 ROM stabi-

lized by the ER method without lower-bound constraints (i.e. ER(1)) has a poor accuracy

with a relative error of 77.61%, while the symmetry ROM stabilized by the ER method with

the same configuration reduces the error to only 2.76%. It is shown in chapter 7 that these

observations are directly connected to the properties of the controllable space of the ROMs

constructed based on the two inner products.

For a direct comparison of the flows, Figure 4.5 shows the stream-wise velocity of the

reconstructed flow fields computed by different ROMs, compared against the original FOM

(i.e. DNS) data. The flow computed by the ROMs stabilized by the Hybrid and ER methods

reveals more details of the vortex shedding structures, while all stabilized ROMs capture the

shock locations well. When a particular space-time location, at x = 5 (for all y locations)

and t = 0.65, is chosen, a more quantitative comparison of ROMs is shown in Figure 4.6 for

the stream-wise velocity and pressure profiles. The ROMs stabilized by the Hybrid and ER

methods clearly out-perform the one stabilized by the ISC method in the comparison for

both velocity and pressure profiles, though the Hybrid method is more efficient and robust

than ER.
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Figure 4.5: Stream-wise velocity contours of the snapshot at t = 0.65 computed by a) FOM,
and the 16 mode symmetry ROM stabilized by b) ISC, c) ER, and d) Hybrid approaches.
Velocity at the locations marked by red asterisks is used in the ER objective function for
both the ER and Hybrid methods.
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Figure 4.6: Profiles of a) horizontal component of velocity and b) pressure at x = 5, computed
by FOM ( ), and the 16 mode symmetry ROM stabilized by ISC ( ), ER ( ) and the
Hybrid method ( ).
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Chapter 5

Stabilization of Nonlinear ROMs

The systematic and physics-infused construction of a projection-based Reduced-Order Model

(ROM) shows the capability to replicate the dynamical evolution of the original high-

dimensional system but with fractional computational cost. However, certain nonlinear

features and high-frequency contributions may be lost throughout the aggressive order re-

duction. Thus, ROMs in a large category of fluid dynamics applications require stabilization

and model closure methods to compensate key contributions missed from the model order

reduction14–17;19–21;30.

Despite the predominance of the applications that do not lend themselves to linearization,

there are only a few stabilization methods that have been rigorously designed to control the

nonlinear ROMs. Following the approach by Amsallem and Farhat14, Balajewicz et al.33;38

applied a minimal rotation of the subspace and modified the reduced-order representation at

the kinematic level to obtain stabilized nonlinear ROMs for both compressible and incom-

pressible flows. However, similar to the ISC approach, when dealing with highly unstable

ROMs such as those in the current study involving strong shock-vortex interactions, the

large rotation of a subspace often leads to substantial deviation of the stabilized ROM from

the original dynamics and reduces the accuracy.

Inspired by the approach of Kalashnikova et al.30, a global eigenvalue reassignment

method for the stabilization of nonlinear ROMs (ERN algorithm) is developed in this chap-
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ter. Using the growth rates (i.e. eigenvalues) of the linear dynamics as the control parame-

ters, this method learns a linear control law to drive the nonlinear ROM towards maximum

agreement with the Full-Order Model (FOM), where the stability of the nonlinear ROM is

guaranteed by a total power constraint. Global optimization is used to improve the robust-

ness of the method, and a multi-stage stabilization layout is developed in the next chapter to

facilitate computationally efficient implementation of the ERN algorithm in strongly nonlin-

ear applications that need a higher-dimensional linear subspace to resolve the true dynamics.

Thus, the global aspect of the eigenvalue reassignment is achieved by both defining a stabil-

ity condition suitable for a generic nonlinear system, and using a global optimization solver

to locate the eigenvalues in the control space.

The stabilization method proposed in this work can be applied to the reduced-order

models that are either constructed by projection of the governing equations onto a low-

dimensional space8;10, or discovered by system identification2;57, and operator inference

techniques58. The mathematically rigorous and physically informative structure of the

projection-based model reduction have prompted us to use POD-Galerkin ROMs as the

test-bed for implementation of the ERN algorithm. Using a symmetry inner product has

improved overall stability, controllability, and robustness of compressible flow ROMs in dif-

ferent applications, which has turned it into a standard component of the model reduction

process in this study24;26;27.

This new stabilization approach achieves both the stability and the accuracy for the

nonlinear Proper Orthogonal Decomposition (POD)-Galerkin ROM of the application with

strong shock-vortex interactions and unsteady oscillations that trigger large instabilities in

the original ROM before the stabilization.

The ERN algorithm is introduced in this chapter along with the details for its implemen-

tation. Then the results of applying this method for stabilization of the POD-Galerkin ROM

constructed by the symmetry inner product are discussed. The nonlinear ROM is created

based on the snapshots of the supersonic flow over the circular cylinder.
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5.1 Power Balance and the Notion of Time-Stability

Net conservation of the Turbulent Kinetic Energy (TKE) has inspired the use of power

balance as a constraint for closure and stabilization of incompressible flow ROMs based on

the Navier-Stokes equations17;38. Noack and Niven17 suggested several closure strategies

based on the constraints that arise from the Galerkin system. Balajewicz et al.38 used the

total power balance as a constraint for the stabilization of incompressible flow ROMs that

possess energy-preserving quadratic terms.

For an orthogonal subspace as POD, the total TKE is represented by:

E =
‖q′‖2
2

=

M
∑

i=1

a2i
2
. (5.1)

Power is defined as the variation of TKE over time, where for a ROM with constant, linear,

and quadratic terms yields:

dE

dt
=

M
∑

i=1

Ciai +

M
∑

i,j=1

Lijaiaj +

M
∑

i,j,k=1

Qijkaiajak. (5.2)

Net conservation of the fluctuation energy requires the total power to be balanced on the

attractor in an average sense17:

(
dE

dt
) = 0, (5.3)

where,

(
dE

dt
) =

M
∑

i,j=1

Lij(aiaj) +
M
∑

i,j,k=1

Qijk(aiajak), (5.4)

knowing that for the POD subspace (ai) = 0. The invariance in Equation (5.3) is itself

a consequence of a modal power balance at every mode. However, this condition is only

satisfied by the HFM that involves the full modal interactions of the energy cascade. It

is known that ignoring the multi-frequency effects due to the modal cut-off in POD-based

ROMs results in accumulation of power in the system that makes ROMs unstable in turbulent

flows38;59. Rempfer and Fasel59 showed that the interrupted modal interactions in POD may
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lead to positive, or negative modal powers at different mode numbers.

The above notion of the total power balance in turbulent flows is closely tied to the

definition of exponential stability in a generic dynamical system. Exponential stability in

nonlinear systems is equivalent to the time-stability, which requires a non-increasing ampli-

tude in the dynamic response of the system. In other words, for a system to be time-stable,

it has to maintain a non-positive numerical power at an arbitrary time step60;61:

dE

dt
≤ 0. (5.5)

In order to prevent dramatic system modifications through control, the weak form of this

constraint is favored, which requires the total power to be non-positive in the average sense.

At the ROM level however, the POD subspace is not complete, and partial resolution of

the nonlinearities necessarily leaves a total power residual in the low-dimensional system. A

positive residual corresponds to spurious accumulation of power in the system that eventually

blows up the ROM response. Enforcing the reduced-order system to satisfy the average total

power balance is too strong a condition, that may lead to bad or insufficient convergence in

the stabilization algorithm. Thus, a less restrictive approach to guarantee the stability of

the nonlinear ROM is to make the system satisfy time-stability by maintaining a negative

total power residual on the average:

M
∑

i,j=1

Lij(aiaj) +
M
∑

i,j,k=1

Qijk(aiajak) = −ǫ, (5.6)

where ǫ is a small positive number. The exact value of the total power that leads to the most

accurate ROM response is not known a priori, and has to be identified numerically in the

course of optimization. While enforcing negativity to guarantee the stability of ROM through

control, the influence of the magnitude of the total power residual on the optimization needs

to be regulated to prioritize accuracy. This is facilitated by the specific choice of the objective

function in the stabilization algorithm that is proposed in the rest of this section. Note that

the total power is derived for a ROM in constant-linear-quadratic form here. Extension of
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this formulation to higher-order systems is straightforward.

5.2 The ERN Stabilization Algorithm

Linearization of the nonlinear dynamical systems has long been employed as a bridge to

access the mathematically rich and computationally efficient tools of the classic control

theory to stabilize nonlinear systems that operate in close proximity to the fixed points. Fluid

dynamics applications though more often than not involve strong nonlinearities (e.g. shock

interactions, chemical reactions, turbulence, etc.) that void the reliability of the linearized

counterpart of the system as a probe to model the evolution of the original nonlinear system.

The stabilization method that is proposed in this study uses the eigenvalues of the linear

term of the nonlinear ROM as control parameters to drive the nonlinear system towards

the desired dynamics that is stable, and accurately represents the dynamics of the HFM.

The eigenvalues are relocated in the complex plain via a global optimization solver until

the nonlinear ROM output closely matches that of the FOM, while stability of the solution

is guaranteed by enforcing the nonlinear ROM to maintain a negative total power on the

average. Consider the following nonlinear system that represents a nonlinear ROM in its

general form:

EM ẋM = AMxM + f (xM) +BMu(t), (5.7)

yM(t) = CMxM(t),

where xM ∈ RM is the state variable, ẋM = dxM

dt
is the state derivative, u ∈ RL is the

control input, and yM ∈ RS is the reconstructed output using ROM coefficients. Similarly,

EM = ΦT
MEΦM ∈ RM×M , AM = ΦT

MAΦM ∈ RM×M , BM = ΦT
MB ∈ RM×L, and CM =

CΦM ∈ RS×M are constant matrices, and E, A, B, and C are the matrices of the N -

dimensional FOM. We have EM = I for the system in non-descriptor form, CM = 1 for

full-state output, and u = 0 (no physical control inputs) in the applications discussed in

this paper, where I ∈ RM×M is the identity matrix. Finally, f (xM) is a general nonlinear

function that represents the nonlinear terms in the ROM equation, which in the case of
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non-polynomial ROMs is obtained after lifting transformations49, or by hyper-reduction62

in order to keep the stabilization algorithm tractable.

The linear dynamics matrix AM is diagonalized:

AM = VMDMV
−1
M . (5.8)

Eigenvectors of AM are the columns of matrix VM , and are preserved through the stabiliza-

tion. The diagonal matrix DM contains the eigenvalues of AM . Unstable eigenvalues λu

of this matrix are the control parameters that are reassigned in the following optimization

problem to stabilize the nonlinear system:

minλu

K
∑

k=1

∥

∥yk − yk
M

∥

∥

2

2
, (5.9)

s.t. (
dẼ

dt
) < 0,

where (.) represents time average, K is the total number of snapshots, y is the Quantity

of Interest (QoI) in the FOM output that is provided by the high-fidelity snapshots, and

yM is the same QoI in the ROM output that is computed by numerical integration of the

ROM ODEs. However, in the case of full-state output when the simulations are not focused

on a specific QoI (e.g. drag force or Mach number at a specific location), computing the

objective function in (5.9) becomes prohibitively expensive. Therefore, the objective function

is modified in the following optimization problem for the stabilization of ROMs in systems

with full-state output:

minλu

K
∑

k=1

∥

∥ak
(POD) − ak

(ROM)

∥

∥

2

2
, (5.10)

s.t. (
dẼ

dt
) < 0,

where a(.) =
∑M

i=1 ai(t), a(POD) is computed by the POD coefficients that are obtained by

projection of the FOM state onto the POD modes, and a(ROM) is determined by the ROM
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coefficients that are computed by integration of the nonlinear ROM ODEs at each iteration

of the optimization. For ROMs with the constant-linear-quadratic form shown in Equation

(3.10), the average total power (dẼ
dt
) is given by Equation (5.4), where the tilde sign shows

that its value is updated at each iteration of the optimization according to the newly assigned

eigenvalues.

The linear dynamics matrix ÃM is also reconstructed at each iteration by the original

eigenvectors and the modified eigenvalues contained in the diagonal matrix D̃M :

ÃM = VMD̃MV
−1
M . (5.11)

At the onset of the optimization, the diagonal entries of matrix D̃M are initialized either

randomly, with the eigenvalues in matrix DM , or with a combination of different strategies

that is discussed in the multi-stage configuration in chapter 6. Regardless of the existence of

an actual control input in the FOM, the ERN algorithm modifies the linear dynamics matrix

by numerically applying a linear actuation of the form uM = −KMxM in the algorithmic

level, so that ÃM = AM −BMKM , where KM is the gain matrix.

The average total power constraint is implemented as a penalty term:

minλu{
K
∑

k=1

∥

∥ak
(POD) − ak

(ROM)

∥

∥

2

2
+ τ [(

dẼ

dt
) + ǫ]}, (5.12)

where, ǫ is a small positive number, and τ is a regularization parameter. ǫ, and τ are hy-

perparameters that are easily identified by trial and error here, though they can be adjusted

by grid or random search in systems with more complicated control landscapes. In the case

of ROMs with complex eigenvalues, the imaginary parts of the eigenvalues can be preserved

through the stabilization to improve computational efficiency and accuracy. The optimiza-

tion problems (5.9) and (5.10) are not necessarily convex, thus using a global optimization

solver is recommended to enhance the robustness of the algorithm. Particle Swarm Optimiza-

tion (PSO) is used in this work for its computational efficiency. The optimization problem

can also be easily solved by the global optimization toolbox in MATLAB. Implementation
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of the stabilization method is explained in Algorithm 2 for a system with full-state output.

Algorithm 2 ERN stabilization algorithm

Input: POD temporal coefficients a(POD), matrix AM , nonlinear ROM tensor(s) (tensor
Q in the case of quadratic nonlinearity), regularization parameter τ , and penalty param-
eter ǫ.
Output: Modified matrix ÃM that stabilizes the nonlinear ROM.

1. Diagonalize matrix AM :

AM = VMDMV
−1
M .

2. Initialize a diagonal matrix D̃M .

3. Solve the optimization problem:

minλu{∑K
k=1

∥

∥

∥
ak
(POD) − ak

(ROM)

∥

∥

∥

2

2
+ τ [(dẼ

dt
) + ǫ]}.

4. Construct the modified matrix ÃM :

ÃM = VMD̃MV
−1
M .
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5.3 Particle Swarm Intelligence

The nonlinear optimization problem (5.9) that is not necessarily convex, along with the non-

analytical nature of the objective function motivated us to use an optimization algorithm that

can deal with a broader range of problem types than this particular application. Meanwhile,

with the big picture of ultimate application of ROMs in many-queries applications, the

computational efficiency of the global optimization method becomes more important.

Developed by Kennedy and Eberhart63, Particle Swarm Intelligence, also known as Par-

ticle Swarm Optimization (PSO), attains a stochastic approach to model the adaptation

of social behavior in morphing for the optimal swarm dynamics, and uses this model for

solving optimization problems. PSO initially scatters a given number of particles in random

positions in the search space. Assuming that r particles are initialized in an L-dimensional

space, then it uses an inertia-based formulation to populate the group of agents about the

optimal points from one iteration to the next. Each particle is characterized by a position

vector (i.e. the L unstable eigenvalues) and a velocity vector, which represents the step size

in modification of the eigenvalues towards the next iteration. Typically, larger population

and step size values are required in a larger domain in order to accurately capture the global

minimum point. The basic form of this algorithm updates the step size and the position of

each particle as follows:

∆λi+1 = ∆λi +U(0, ψ1)(λp − λi) +U(0, ψ2)(λg − λi), (5.13)

λi+1 = λi +∆λi+1, (5.14)

where i is the iteration index, and λp is the vector that contains the best position of a particle

in its own history. In other words, each particle keeps track of its best function value through

iterations, by marking the position at which the smallest cost function is obtained. Whereas,

λg is the position of the particle with the least cost function value among the population.

In this formulation, U is a vector of random numbers in the range of (0, ψ1) for the second

term, and (0, ψ2) for the third term, where ψ1 and ψ2 are acceleration coefficients. These
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coefficients act like weighting factors that respectively attract the population towards the

local, and global best solutions. Therefore, the global optimization algorithm maintains a

stable behavior if there is a balance between the values of these two parameters64;65.

Many studies are conducted on further improvement of PSO in various perspectives.

In order to control smoothness of the search, a relaxation factor (ω < 1) is introduced in

Equation (5.13). Larger values of this factor encourage a global swarm attribute, and smaller

values motivate a local attribute:

∆λi+1 = ω∆λi +U(0, ψ1)(λp − λi) +U(0, ψ2)(λg − λi). (5.15)

Clerk and Kennedy64 proposed a formulation with constriction coefficients, that con-

tributes in reducing the sensitivity of the algorithm to the step size, and therefore improving

its stability and robustness:

∆λi+1 = χ(∆λi +U(0, ψ1)(λp − λi) +U(0, ψ2)(λg − λi)), (5.16)

where the constriction coefficient χ is obtained by:

χ =
2

ψ − 2 +
√

ψ2 − 4ψ
, (5.17)

and ψ = ψ1 + ψ2, where ψ > 4.

Parameters χ, ψ1 and ψ2 are optimally adjusted in their study64. Based on the promising

behavior of this formulation, it is adopted here for implementation of PSO, with the values

of χ = 0.7298, and ψ1 = ψ2 = 2.0564.

Defining topology as the architecture adopted for communication among the particles in

the population, the topology in the above algorithm is known as“gbest”, which stems from

the fact that besides its own best position, each particle is also communicating with the global

best member of the population. Various architectures are designed for implementation of

PSO, that also affect local and global search attributes according to the number of the
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neighborhoods each particle in the population interacts with66–68. The results obtained

by the current topology are quite convincing in the applications of this study. However,

flexibility of PSO in working with various topologies encourages parallelization in more

expensive optimization problems.

5.4 Application: Supersonic Flow over a Circular Cylin-

der

The nonlinear ROM is constructed by projection of the nonlinear Euler equations onto the

POD subspace computed by 101 snapshots in this case. The first 16 POD modes capture 92

percent of the flow energy, and are used to construct the subspace for projection.

Similar to the linear ROM, the nonlinear ROM of this case is highly unstable, with the

temporal coefficients shown in Figure 5.1. The POD coefficients are computed by projection

of the FOM state onto the low-dimensional space, and the ROM coefficients are computed

by numerical integration of the ROM ODEs. The ERN algorithm is then used to stabilize

the nonlinear ROM, with ǫ = 10−5, and τ = 0.001. The optimization parameters and results

are reported in Table 5.1, where ∆λmax is the maximum step size (velocity), and population

represents the number of particles in PSO. The difference between two consecutive best

objective function values (among all particles) is chosen as the stopping criterion. The

stabilized ROM results shown in this application are obtained by optimization in Domain 1.

The problem is also implemented with larger bounds (Domain 2) to exhibit the robustness

of the ERN algorithm with respect to the bound constraints. The relative error of 0.31%

percent, and the agreement between the POD and ROM coefficients in Figure 5.1 show

that this method has successfully stabilized the system and recovered accuracy to match

the dynamics of the FOM. Despite the original system is highly unstable, the stabilization

algorithm only appends a small computational overhead to the model reduction process.

The wall-clock time of the offline stage of model reduction in Table 5.1 includes the time

required for constructing the POD modes and construction of the ROM matrices.
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Figure 5.1: Modal coefficients of the 16 mode stabilized nonlinear ROM ( ) compared
against the POD coefficients ( ), and the unstable nonlinear ROM ( ).
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Table 5.1: Performance of the ERN algorithm in stabilization of the 16 mode ROM.

Domain 1 Domain 2
Bound constraints [-2, 2] [-100, 50]
∆λmax 1.0 1.0
Population 15 15
Iterations 78 394
Minimum function value 1.71e-02 1.69e-02
Wall-clock time (Sec): Stabilization: 1.18e+00 Stabilization: 7.1e+00
ROM (offline): 8.95e+01
ROM (online): 3.30e-03

Relative error e% 0.31 0.29

Indeed, solving the optimization problem in a larger domain takes more computational

effort as reflected by the larger wall-clock time in Domain 2, and may need further adjustment

of the population and ∆λmax. It is the advantage of the symmetrization that has enabled

us to implement the stabilization algorithm within the smaller bounds of Domain 1. ROMs

constructed based on the symmetry inner product with certain boundary conditions are

known to maintain eigenvalues in the vicinity of the imaginary axis, thus prevent exhausting

computational resources for optimization in an excessively large domain27.

Eigenvalues of the linear term of the nonlinear ROM are shown in Figure 5.2 for the

unstable and stabilized POD-Galerkin ROMs. These eigenvalues are the control parame-

ters that are adjusted through the stabilization to reach maximum agreement between the

ROM and FOM outputs, or the temporal coefficients in the case of full-state output. Note

that there is an eigenvalue pair with a positive real component in the stabilized nonlinear

system. Transferring this eigenvalue pair to the left half of the complex plane attenuates

the corresponding low-frequency modes, therefore the linear matrix needs to be unstable for

the nonlinear ROM to accurately follow the FOM attractor in this case. This could not be

captured by linearization, or using a linear stability condition in the optimization problem

of the ERN algorithm.

In order to obtain a visual perception of the accuracy in the stabilized ROM, Figure 5.3

shows the stream-wise velocity contours of the FOM and ROM reconstruction at a specific
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Figure 5.2: Eigenvalues of the linear term in the 16 mode unstable (�), and stabilized (N)
ROMs.

time instant. The agreement between the stabilized ROM and the high-fidelity simulations

is a result of the direct monitoring of accuracy in the stabilization method.

The ultimate goal in constructing ROMs is to facilitate accurate replication of the dy-

namics of the FOM almost independently of the high-fidelity snapshots. One way to discover

the ability of ROMs to stand alone in a flow control or optimization setup is to observe the

predictive performance of the model, that is, to track the dynamics predicted by the ROM

beyond the interval of the snapshots that have been originally used to construct the low-

dimensional space. Figure 5.4 compares the temporal coefficients predicted by the stabilized

ROM beyond the interval of the 101 snapshots that are used to construct the subspace. The

POD coefficients in this figure serve as the reference, and are computed by projection of

the FOM state in the reconstruction and prediction interval (i.e. 601 snapshots) onto the
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Figure 5.3: Stream-wise velocity contours of the snapshot at t = 0.65, computed by a) FOM,
and b) the 16 mode nonlinear ROM stabilized with the ERN algorithm. Non-dimensional
time is computed from the beginning of the snapshot collection for model reduction. Contour
lines are plotted within the range of −2.5 to 5.5.

POD modes obtained by the 101 snapshots of the reconstruction interval alone. The stabi-

lized ROM coefficients remain in good agreement with the true dynamics in the prediction

window.
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Figure 5.4: Prediction of the temporal coefficients by the 16 mode stabilized ROM ( ),
compared against the POD coefficients ( ) obtained by projection of 601 snapshots onto
the POD modes of the first 101 snapshots.
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Chapter 6

Stabilization of ROMs in Strongly

Nonlinear Systems

The standard model order reduction procedure by POD-Galerkin projection does not guar-

antee the closure of reduced-order dynamical systems, thus the stability and accuracy of the

models may be compromised when the dynamically observable signatures are not populated

in low-frequency responses. The situation is further complicated in advection-dominated

flows, and in general strongly nonlinear systems, where capturing the nonlinearity with a

linear subspace requires a lot of base functions22;29;51. Thus the typically larger dimension

of ROMs in these systems makes stabilization expensive, and even intractable in higher di-

mensions. Efficient stabilization algorithms are therefore essential to the projection-based

model reduction procedure.

Supersonic flows governed by the Euler equations, that ignore any physical dissipation

mechanism by the viscous effects, are the extreme example for advection-dominated flows.

When strong unsteady shock-wake interactions, a highly nonlinear phenomenon, are present

in the flow, a linearized ROM is not accurate even after stabilization. A nonlinear ROM on

the other hand may keep the accuracy after stabilization, but requires a fairly large number

of bases for convergence. Despite its computational efficiency in smaller ROMs, the ERN

algorithm becomes computationally more expensive and may fail as the number of unstable
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modes increases in ROMs with larger number of bases. The importance of this aspect

culminates as the large number of control parameters (i.e. unstable modes) also complicates

the optimization landscape and impairs accuracy.

To solve this problem in the stabilization of relatively large-size nonlinear ROMs, a multi-

stage approach is proposed to divide the optimization process of the ERN algorithm into a

few stages, where each stage contains only a small number of unstable modes for an overall

more efficient and robust algorithm. It is shown that the computational cost and accuracy

of the ERN algorithm significantly benefits from the new stabilization layout. This chapter

explains the framework of the multi-stage layout, and the results of its application to the

nonlinear ROM created from the snapshots of supersonic flows over the triangular prism,

and the circular cylinder.

6.1 The Multi-Stage Stabilization Layout

Global optimization of the objective function that is computed by integration of the non-

linear ROM ODEs in the ERN algorithm can become expensive as the number of modes

increases. It is shown in previous studies that robustness of the symmetry ROMs makes

them amenable to local optimization27. Nevertheless, the computation cost of the stabiliza-

tion methods typically rises nonlinearly with the number of unstable modes15;34. POD-based

model reduction of highly nonlinear systems on the other hand is challenged by demand-

ing a large number of POD modes to sufficiently describe the flow field. This is a direct

consequence of the linearity of the POD subspace, and is recently addressed by using non-

linear manifolds instead, which introduce other sources of computational and theoretical

complications (e.g. in computing the manifold itself, projection, and hyper-reduction over

the generally non-orthogonal manifold)22;23.

A multi-stage layout is proposed in this work that facilitates robust stabilization with the

ERN algorithm, in strongly nonlinear systems that require a larger linear subspace for the

ROM to accurately replicate the dynamics of the high-dimensional system. This is achieved

by constructing and stabilizing a few smaller ROMs, and using their eigenvalues to accelerate
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stabilization of the larger ROM.

Assuming that a stable ROM of dimension M is the final target of the multi-stage stabi-

lization method, P ROMs of dimensions r1, r2, . . . , rP are constructed, where r(·) < M . The

ERN method shown in Algorithm 1 is used to stabilize the smallest ROM (of dimension r1).

In the next stage, the ROM of dimension r2 is stabilized with the same method. However,

this time the first r1 eigenvalues of the ROM are frozen at the values obtained by stabilization

of the smaller (r1-dimensional) ROM, and the remaining (r2− r1) eigenvalues are reassigned

by Algorithm 1 using global optimization. This process is repeated up to the last stage (i.e.

stabilization of the target M-dimensional ROM). Unlike the previous stages, the first rP

eigenvalues of the M-dimensional ROM are not frozen at the values obtained by stabilization

of the rP -dimensional ROM, which are instead used to initialize local optimization of the

first rP eigenvalues in the M-dimensional ROM for further calibration, while the remaining

(M − rP ) eigenvalues are obtained by global optimization. At each stage, the eigenvalues

entering global optimization are initialized randomly. Implementation of this stabilization

layout is described in Algorithm 3.

Local optimization is here approximated by enhancing exploitation, and damping explo-

ration in the optimization solver. This can be easily achieved by controlling the optimization

parameters in any global optimization solver. In the case of PSO, this adjustment is applied

by reducing the upper-limit on the step size (∆λmax).

The procedure can therefore be parameterized based on the step size as shown in Figure

6.1. Stages with global optimization are characterized by a larger step size that allows for

Figure 6.1: Schematic of the multi-stage stabilization layout.
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exploration, the local optimization of the first rP eigenvalues in the last stage is achieved by

a relatively smaller step size that facilitates exploitation, and the frozen eigenvalues in the

intermediate stages are referenced with zero step size.
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Algorithm 3 Multi-stage stabilization algorithm

Input: POD temporal coefficients a(POD), matrix A(·), and tensor(s) of the unstable
ROMs of dimensions r1, . . . , rP ,M .
Output: Modified matrix ÃM that stabilizes the nonlinear M-dimensional ROM.

1. for m = 1, . . . , P do

2. Diagonalize matrix Arm:

Arm = VrmDrmV
−1
rm

.

3. if m = 1 then

4. Use Algorithm 1 (steps 2 to 4) to stabilize the ROM with global optimization.

5. else

6. for i = 1, . . . , rm−1 do

7. λ̃rmi = λ̃
rm−1

i , where i is the eigenvalue index, and the superscript shows
the dimension of the ROM the eigenvalue belongs to.

8. end for

9. Use Algorithm 1 (steps 2 to 4) to reassign the remaining (rm−rm−1) eigenvalues
with global optimization.

10. end if

11. end for

12. Diagonalize matrix AM .

13. for i = 1, . . . , rP do

14. Initialize λ̃Mi = λ̃rPi .

15. end for

16. Use Algorithm 1 (steps 2 to 4) to calibrate the first rP eigenvalues of the M-
dimensional ROM with local optimization, and reassign the remaining (M − rP )
eigenvalues with global optimization.
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6.2 Application I: Supersonic Flow over a Triangular

Prism

The unsteady shock-wake interactions in this case are not properly resolved by the lead-

ing POD modes. Under inviscid flow assumptions, this aspect creates highly unstable

ROMs15;34;37. Unlike the diffusion-dominated flows, energy accumulation by the POD modes

is rather slow here in converging to the energy of the FOM, thus demanding a larger number

of modes (in this case 60). In the mean time, a linear ROM is not capable of accurately

representing the flow field as a result of the strongly nonlinear nature of the shock-wake

interactions. Therefore, an efficient stabilization method is required that can recover the

rather large nonlinear ROM of this problem.

According to the normalized cumulative energy shown in Figure 6.2, at least 28 modes

are required to capture above 90 percent of the flow energy. The POD-Galerkin ROM of

this case is constructed based on the first 60 POD modes that capture nearly 96 percent of

the energy.

Mode number (m)

∑

m i
=
1
σ
i

∑

M i
=
1
σ
i

Figure 6.2: Normalized cumulative energy of the POD modes computed with the symmetry
inner product.
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Figure 6.3: Modal coefficients of the 60 mode nonlinear ROM stabilized by the multi-stage
layout ( ), compared against the POD coefficients ( ), and the unstable ROM ( ).

The temporal coefficients of the originally unstable ROM is shown in Figure 6.3, that also

compares the ROM coefficients against the POD coefficients obtained by projection of the

state onto the POD subspace. Applying the bare bone ERN algorithm for the stabilization

of the 60 mode ROM of this case becomes expensive. Thus, the multi-stage configuration is

implemented to reduce the computational cost of the stabilization.

Table 6.1 lists the optimization parameters and the results obtained by the vanilla ERN

algorithm, and those by the multi-stage configuration, both applied with ǫ = 10−8, and

τ = 0.02. In the multi-stage configuration, P = 3, and ROMs of dimensions r1 = 16, r2 = 30,

and r3 = 50 are constructed for the stabilization of the 60 mode ROM. Local optimization
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of the first 50 eigenvalues is in this method achieved with a smaller upper-bound on the step

size (i.e. ∆λmax = 1.0), and the larger upper-bound of ∆λmax = 10.0 encourages a global

search attribute in reassigning the remaining eigenvalues. Using global optimization for the

reassignment of all 60 eigenvalues in the vanilla ERN algorithm requires a larger population,

which eventually adds up to a high computational cost that is in the same order as the offline

phase of the model reduction. Thus, the vanilla ERN algorithm can become intractable in

larger ROMs, that commonly arise in fluid flows with strong nonlinearities. Implementation

of this algorithm with the multi-stage layout has reduced the wall-clock time by one order

of magnitude. The small relative error and the temporal coefficients in Figure 6.3 show that

the stabilized system is evolving on the same attractor as the FOM, and closely follows the

original dynamics. The ROM results shown in this application are obtained by the multi-

stage layout, and the details of the vanilla ERN algorithm are merely discussed in Table 6.1

for the matter of comparison.

Table 6.1: Performance of the ERN and multi-stage ERN algorithms in stabilization of the
60 mode ROM. In the multi-stage layout, only the values of the last stage of optimization
are reported, unless otherwise noted.

Vanilla ERN Multi-stage ERN
Bound constraints [-120, 2] [-120, 2]
Population 50 15
∆λmax 5.0 1.0 (local),

10.0 (global)
Iterations 583 106
Minimum function value 5.42e-02 4.16e-02
Wall-clock time (Sec)
Stabilization: 1.76e+04 1.32e+03 (4 stages)
ROM (offline): 2.08e+04 3.19e+04 (4 stages)
ROM (online): 6.55e-01 6.55e-01

Relative error e% 3.12 0.47

Figure 6.4 shows the distribution of the eigenvalues of the linear term in the unstable

and stabilized nonlinear ROMs. Similar to the previous application, some of the eigenvalue

pairs in the stabilized system have taken a positive real component. Likewise, a negative

real component in the eigenvalues of the original system do not necessarily mean that those
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eigenmodes are originally stable. The location of the eigenvalues of the linear term in a

strongly nonlinear system cannot be used to identify the stability or instability of the non-

linear system, but they are merely treated as the control parameters in the ERN algorithm

to facilitate the modification of the nonlinear ROM in order to guide the system towards

maintaining a negative total power (that guarantees the stability of the nonlinear ROM),

and maximum agreement with the FOM dynamics.
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Figure 6.4: Eigenvalues of the 60 mode a) unstable, and b) stabilized ROMs.

Stream-wise velocity contours of the snapshot at t = 1.02 in Figure 6.5 visualize the

similarity between the flow structures captured by the FOM, and those reconstructed by the

stabilized nonlinear ROM.

Performance of the stabilized ROM in the prediction window is shown in Figure 6.6, where

the ROM coefficients are compared against the POD coefficients obtained by projection of

1650 snapshots of the FOM onto the POD subspace constructed based on the first 550

snapshots. Despite the large number of control parameters, the stabilized ROM predicts the

dynamics of the flow with reasonable accuracy.
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a)

b)

Figure 6.5: Stream-wise velocity contours of the snapshot at t = 1.02, computed by a) FOM,
and b) 60 mode nonlinear ROM. Non-dimensional time is computed from the beginning of
the snapshot collection for model reduction. Contour lines are plotted within the range of
−2.5 to 4.5.
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Figure 6.6: Prediction of the a) first, and b) second temporal coefficients by the 60 mode sta-
bilized ROM ( ) and compared against the POD coefficients ( ) obtained by projection
of 1650 snapshots onto the POD modes of the first 550 snapshots.
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6.3 Application II: Supersonic Flow over a Circular

Cylinder

According to the results shown in the previous chapters, the first 16 POD modes are sufficient

in this application to capture most of the flow energy, and stabilization of the 16 mode ROM

with the ERN algorithm has recovered the stability and accuracy within a small computation

cost, when compared to the offline phase of model reduction. In the meantime, the linear

ROM of this case that is constructed based on the linearized Euler equations, has more or less

recovered the accuracy of the FOM. This is not surprising, as the unsteady shock oscillations

caused by the shock-vortex interactions in this case maintain smaller amplitudes compared

to the case of supersonic flow over the triangular prism. Large-amplitude oscillations of the

reflected shock waves in the latter, intensify the nonlinearity, that on one hand requires a

much larger number of POD modes to capture the true physics of the flow, and on the other

hand degrades accuracy in a linear ROM.

Knowing that the existence of strong nonlinearities is the norm rather than exception

in practical applications, it is important to probe the performance of the stabilization algo-

rithm as the number of unstable modes increases, and the optimization landscape becomes

more complicated. Theoretically, as the dimension of ROM increases, the additional infor-

mation that is absorbed in the low-dimensional space is expected to improve the stability

and accuracy of the model. In practice however, it is often the case that the numerical errors

encountered with the high-frequency modes contaminate the subspace and trigger larger

instabilities in the ROM. A similar situation occurs in this application. Thus, the more

complicated, and more unstable control landscape of an 80 mode ROM is used to challenge

the ERN algorithm, and investigate the potential of the multi-stage layout to deliver robust

stabilization.

The multi-stage layout is implemented with P = 3, and ROMs of dimensions r1 = 16,

r2 = 30, and r3 = 50, are constructed and stabilized to guide the optimization solver through

the stabilization of the 80 mode ROM using algorithm 3. Table 6.2 shows the performance
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of the vanilla, and multi-stage ERN algorithms. The penalty term is applied with ǫ = 10−5,

and τ = 0.001. Population, and ∆λmax are the hyper-parameters that facilitate adjusting

the search attribute in PSO. In the multi-stage layout, the smaller value of ∆λmax enhances

exploitation towards modeling a local behavior for fine-tuning the eigenvalues corresponding

to the low-frequency response, and the larger ∆λmax belongs to the remaining 30 eigenvalues

that are reassigned with global optimization. Similarly, a larger population is adopted in the

vanilla ERN algorithm to improve the global search in the absence of the guidance from the

smaller ROMs.

Table 6.2: Performance of the ERN and multi-stage ERN algorithms in stabilization of the
80 mode ROM. In the multi-stage layout, only the values of the last stage of optimization
are reported, unless otherwise noted.

Vanilla ERN Multi-stage ERN
Bound constraints [-120, 5] [-120, 5]
Population 30 15
∆λmax 10.0 1.0 (local),

10.0 (global)
Iterations 949 326
Minimum function value 3.51e-02 3.42e-02
Wall-clock time (Sec)
Stabilization: 1.30e+04 2.32e+03 (4 stages)
ROM (offline): 6.32e+03 8.29e+03 (4 stages)
ROM (online): 4.55e-01 4.55e-01

Relative error e% 0.26 0.28

According to the values of the relative error, accuracy has been recovered by both al-

gorithms, though the wall-clock time shows that the multi-stage approach has reduced the

cost of stabilization by one order of magnitude, and the computational saving delivered by

this layout dominates the additional offline cost of constructing the smaller ROMs. Thus,

the multi-stage approach has provided a robust framework for the stabilization of the 80-

dimensional nonlinear ROM with the ERN algorithm. Figure 6.7 shows that stabilization

has recovered the accuracy in the originally unstable 80 mode ROM coefficients. Perfor-

mance of the linear and nonlinear ROMs of this case are visualized in the previous chapters,

hence repeating the illustration of the reconstructed flow field is avoided here for the 80 mode
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ROM that is merely constructed for the purpose of comparing the computational efficiency

of the vanilla and multi-stage ERN algorithms.
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Figure 6.7: Modal coefficients of the 80 mode nonlinear ROM stabilized by the multi-stage
layout ( ), compared against the POD coefficients ( ), and the unstable ROM ( ).
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Chapter 7

Impact of Symmetrization on the

Robustness of ROMs

Proper Orthogonal Decomposition (POD) retains the most energetic modes for construction

of the low-dimensional space. POD is popular for its computational efficiency as it captures

the most energy by the fewest number of modes among linear dimensionality reduction meth-

ods. However, the most energetic structures are not always the only principal components

that drive the flow dynamics. Turbulent flows and compressible flows with unsteady shock

waves are examples in which an energy-based metric is not merely sufficient for identification

of the most informative low-dimensional space14;15;31;34;37;69;70. This issue has been addressed

to some degree in the dimensionality reduction methods with balancing transformations, such

as Balanced Truncation44 and Balanced Proper Orthogonal Decomposition (BPOD)9;71, by

transforming the system to the coordinates in which the leading modes correspond to the

most observable directions that are also the most controllable.

The influence of the inner product definition is taken for granted in BPOD, where the

observability Gramian of the snapshot data naturally arises as the inner product in the model

reduction routine. On the other hand, better stability properties of the symmetrized equa-

tions has inspired the use of a symmetrizing matrix to derive inner products in POD-Galerkin

ROMs. Previous studies have shown that when the governing equations are symmetrizable,
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using the symmetry inner product in construction of ROMs preserves the stability of the

high-fidelity numerical simulations through model reduction24;26. Similar stability bounds

are also guaranteed in the least-squares Petrov-Galerkin projection by optimal projection in

a least-squares problem that minimizes the residual in the low-dimensional representation of

the original nonlinear system10;28. This research pushes the horizons of the impact of sym-

metrization farther by showing that using the symmetry inner product in the POD-Galerkin

ROMs of compressible flows not only improves their stability properties, but makes them

more controllable, and enhances their robustness27.

In this chapter, the eigenvalue reassignment method of Kalashnikova et al.30 (ER), and

the ERN algorithm27;72 are used for the stabilization of the linear and nonlinear ROMs

that are separately constructed by L2 or symmetry inner products. The ER method also is

implemented here with a global optimization algorithm (PSO) in order to ensure that the

solver is not trapped in local minima that compromise the comparison of the influence of

the inner product definition on the performance of ROMs. The results show that although

both models are originally unstable, the symmetry ROM is more stable than the L2 ROM.

After stabilization, an analysis of the controllability Gramians of the stabilized linear ROMs

shows that the symmetry ROM has a larger controllable space, which facilitates feasible

and efficient placement of the system poles for maximum resemblance with the original

full-order system. On the other hand, the small controllable space and complicated control

landscape of the L2 ROM prevents optimal modification of the eigenvalues, and increases the

optimization cost. Decomposition of the controllability Gramians shows that the symmetry

ROM is more controllable than the L2 ROM in most directions. Similarly, the smooth control

landscape of the nonlinear symmetry ROM has substantially enhanced its robustness with

respect to sub-optimal control laws, which results in the accuracy of the dynamics predicted

by the symmetry ROM, regardless of the type of the optimization solver implemented for

stabilization.

The controllability and sensitivity approaches adopted to examine the control space of

the L2 and symmetry ROMs are explained in this chapter. Then the L2 and symmetry

ROMs based on the snapshots of the two supersonic flow applications are compared before
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and after stabilization.

7.1 Controllability Analysis in the Linear ROMs

The main objective in control and stabilization of ROMs is to drive the system towards

maximum agreement with the FOM, which is implemented in the ER and Hybrid methods

through an optimization process that minimizes the deviation of the ROM output from

the FOM output. A full-ranked controllability matrix in an LTI system indicates that

the system is controllable in all directions. However, the extent to which one succeeds in

keeping the controlled (stabilized) ROM close to the FOM, and how challenging it is to do

so through solving the optimization problem is the matter of the degree of controllability.

This is a criterion that cannot be determined merely by the rank of the controllability

matrix, and is rather defined by the controllability Gramian of the stabilized system. The

controllability Gramian is a hermitian matrix with real eigenvalues, that provides a relative

measure of the required actuation energy at each direction to drive the system towards any

state. The determinant of this Gramian represents the volume of the controllable space,

which if consistent in all directions, it can explain the smooth or otherwise difficult behavior

of the system in being controlled towards the desired state; in this case maximum agreement

with the FOM.

Kalashnikova et al.30 have shown that for the LTI system in (4.3), ER is equivalent to

full-state feedback control with control input u = −KxM and the specific choice of BM and

K matrices:

BM =

[

V1 V2 . . . VM

]

, (7.1)

K =



















λu1 − λ̃1 0 0 . . . 0

0 λu2 − λ̃2 0 . . . 0

...
...

. . .
...

...

0 0 0 λuM − λ̃M 0



















V −1, (7.2)
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where λu is the unstable eigenvalue and λ̃ is the new eigenvalue assigned by ER. This

definition, that is not immediately available for the ISC and therefore Hybrid methods, has

made it possible to compute the controllability matrix and Gramian for the L2 and symmetry

ROMs that are stabilized by ER in this study. The analysis is then used to explain certain

similar behavior observed in stabilization of ROMs by ISC and Hybrid methods as well. To

that end, the controllability matrix C is computed for the LTI system (4.3) with the control

matrix BM shown in Equation (7.1):

C =

[

B AB A2B . . . AM−1B

]

. (7.3)

The subscripts M of the reduced-order matrices are dropped for simplicity. Matrix C is

full-rank for all of our ROMs and the systems are controllable regardless of the definition of

the inner product. Therefore, the controllability Gramian WC of the stabilized ROMs is:

WC =

∫

∞

0

e(Aǫ)BBT e(A
T ǫ)dǫ. (7.4)

The determinant of this Gramian is then used to reveal the connection between the volume of

the controllable space in the L2 or symmetry ROMs and the performance of the stabilization

algorithms in driving the ROMs towards the desired state. It should be noted that since

the optimization problem in the ER method is not necessarily convex, global optimization

(PSO) is used in this chapter for the stabilization of the linear ROM also, to improve the

robustness of the stabilization, and enable a more accurate comparison of the controllable

space in the L2 and symmetry ROMs.

7.2 Sensitivity Analysis in the Nonlinear ROMs

One way of quantifying the robustness of the nonlinear ROMs is to observe the sensitivity

of these models to sub-optimal control laws through the stabilization. The choice of a

population-based global optimization solver allows us to easily achieve this by variation of the
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number of optimization agents. Thus, by decreasing the number of particles in PSO, search

attribute gradually changes from global to local, where the local search results deliver the

desired sub-optimality for the sensitivity study. In order to clear the analysis from the effects

of random initialization of the particles, and the random coefficients in the PSO formulation,

each population is tested through five trials with constant and consistent hyperparameters

(i.e. bound constraints and ∆λmax). This factor prevents contamination of the results

with the influence of multiple hyperparameters, and enhances sub-optimality of the local

search results without the help of hyperparameter adjustments. The upper limit on the step

size (∆λmax) in PSO is adjusted for the largest population through the sensitivity analysis

in each application. In order to accurately capture the global minimum point (i.e. the

optimal control law) as the population decreases, this hyperparameter has to be re-adjusted

(increased) to allow for adequate exploration of the search space by the smaller population.

Therefore, keeping ∆λmax constant while decreasing the population, introduces the desired

sub-optimality for the sensitivity study.

7.3 Application I: Supersonic Flow over a Circular Cylin-

der

In order to study the influence of the inner product definition on the performance of the

linear and nonlinear ROMs of this case, L2 and symmetry inner products are separately

used to construct the POD modes that serve as the low-dimensional space for both linear

and nonlinear ROMs. Figure 7.1 shows the cumulative energy captured at each mode number

using each of the inner product definitions. The energy captured by both sets of POD modes

converges to more than 99 percent of the total energy at 38 modes for the L2 inner product,

and 49 modes for the symmetry inner product. The first 16 POD modes that are used to

build the linear and nonlinear ROMs capture about 90 percent of the flow energy with the

L2, and 84 percent with the symmetry inner product. Figures 7.2, and 7.3 demonstrate

the first eight POD modes of the vertical component of velocity, computed by the L2 and
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symmetry inner products.
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Figure 7.1: Normalized cumulative energy of the POD modes computed by L2 and symmetry
inner products.

The linear ROM is constructed first using L2 and symmetry inner products separately

to project the linearized Euler equations onto the subspace generated by the same inner

product definition. Note that each reduced-order modeling procedure involves only one inner

product definition through both dimensionality reduction, and projection steps, resulting in

two ROMs: an L2 ROM, and a symmetry ROM. Both of these ROMs are initially unstable,

with eigenvalues shown in Figure 7.4. The eigenvalue configurations in this figure agree

with the analysis of Tabandeh et al.26 in Equation (3.16), showing that for the symmetry

ROM, the eigenvalues of the linear matrix Lij are close to the imaginary axis. According to

Figure 7.4, the maximum real part (Remax) among the eigenvalues of the unstable symmetry

ROM is 2.4, while in the L2 ROM, Remax(λ
u) = 11.5. Thus, the original symmetry ROM is

more stable than the L2 ROM.

In the next step, the ER method is implemented with PSO to stabilize the two linear

ROMs. Table 7.1 shows the global optimization parameters and results. According to this
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a) Mode 1 b) Mode 2

c) Mode 3 d) Mode 4

e) Mode 5 f) Mode 6

g) Mode 7 h) Mode 8

Figure 7.2: POD modes of the vertical component of velocity constructed by the L2 inner
product.

table, compared to the L2 ROM, the symmetry ROM is more accurate, with almost the same

computation cost. Eigenvalues of the stabilized ROMs in Figure 7.4 however show that in

the symmetry ROM, with the eigenvalues that are fairly close to the imaginary axis, the
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a) Mode 1 b) Mode 2

c) Mode 3 d) Mode 4

e) Mode 5 f) Mode 6

g) Mode 7 h) Mode 8

Figure 7.3: POD modes of the vertical component of velocity constructed by the symmetry
inner product.

global optimization solver can be operated as well in a smaller area (e.g. bounded within

[-10, 0]) to reduce the computation cost. The same cannot be achieved in the L2 ROM with

the stabilized eigenvalues that are scattered in a large area in the left half of the complex
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Figure 7.4: Eigenvalues of the 16 mode linear L2 and symmetry ROMs.

plane (as far as Remin(λ) = −98.29), thus making it impossible to predict the approximate

location of the optimal eigenvalues, and shrink the search space.

Table 7.1: Stabilization of the 16 mode linear L2 and symmetry ROMs

L2 ROM Symmetry ROM
Bound Constraints [-100, 0] [-100, 0]
Population 60 55
∆λmax 2.0 2.0
Iterations 123 160
Minimum function value 0.400 0.182
Wall-clock time (Sec) 2.233 2.657

Figure 7.5 that compares the ROM coefficients with the POD temporal coefficients, agrees

with the smaller objective function value of the symmetry ROM that is captured by the global

optimization in Table 7.1. Both ROMs are originally unstable, but after stabilization, the
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symmetry ROM shows a better resemblance with the POD coefficients. The small phase

shift in the first, and second coefficients is further amplified in higher modes. This phase

shift and the amplitude deviations in the stabilized ROM coefficients are a result of the

approximation of the nonlinear FOM with a linear ROM, and have been removed in the

nonlinear symmetry ROM.
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Figure 7.5: Modal coefficients of the 16 mode stabilized linear ROMs ( ), compared
against the POD coefficients ( ), and the unstable ROM coefficients ( ), based on the
L2 (a, b), and symmetry (c, d) inner products.

An analysis of the controllability Gramians of the two ROMs shows that the complicated

eigenvalue configuration and lower accuracy in the stabilized L2 ROM is in fact connected

to the properties of its controllable space. Degrees of controllability corresponding to each

eigen-mode, and the volume of the controllable space are shown in Table 7.2. The symmetry
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ROM is more controllable than the L2 ROM in most directions, with a controllable space

that is orders of magnitude larger. The immediate consequence of a large controllable space

is that the system can be easily controlled towards the desired state, where in the current

application is interpreted as the computation cost the global optimization solver spends on

finding the optimal solution, and how close to the desired state that optimal solution can

get. Apparently the small controllable space in the L2 ROM means that it is very difficult

to drive the system towards maximum resemblance with the FOM, thus, stabilization in a

complicated control landscape has led to an eigenvalue configuration that is not necessarily

optimal in terms of accuracy. This was also observed through the stabilization of the linear

L2 ROM with the ISC and Hybrid methods in chapter 4.

In the mean time, proximity of the stabilized eigenvalues to the imaginary axis in the

symmetry ROM shows that the problem of stabilization of a linear symmetry ROM can be

handled with a local optimizer within an acceptable tolerance. In other words, the symmetry

ROM is robust with respect to the search attribute, which is also shown for the nonlinear

ROMs in the remainder of this chapter.

Table 7.2: Degree of controllability (‖V ∗WCV ‖) corresponding to each pair of eigen-modes,
and volume of the controllable space (det(WC )) in the 16 mode L2 and symmetry ROMs.

L2 ROM Symmetry ROM
Mode 1, 2 1.170e+ 01 4.896e+ 03
Mode 3, 4 5.038e+ 01 4.915e+ 03
Mode 5, 6 3.201e+ 01 4.924e+ 03
Mode 7, 8 1.662e+ 01 1.565e+ 02
Mode 9, 10 6.017e+ 02 2.263e+ 01
Mode 11, 12 1.844e+ 03 5.194e+ 03
Mode 13, 14 4.975e+ 03 1.656e+ 01
Mode 15, 16 3.816e+ 02 4.190e+ 00
det(WC ) 1.666e− 11 6.929e+ 26

Although the controllability analysis is merely applied to the linear system here, it re-

motely explains some of the challenges in the stabilization of the nonlinear L2 ROM. Eigen-

values of the linear matrix Lij of the nonlinear ROM in Equation (3.10) are the control

parameters in the ERN algorithm. Figure 7.6 shows these eigenvalues for the nonlinear
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ROMs before and after stabilization. Note that since it is the nonlinear system that is being

controlled here, the optimal eigenvalues do not necessarily need to be on the left half of the

complex plane for the system to be stable. The eigenvalue configurations in the L2 and sym-

metry ROMs follow a pattern similar to that in the linear ROMs. In the stabilized L2 ROM,

the reassigned eigenvalues are distributed between Remin(λ) = −25.92 and Remax(λ) = 1.10,

while this range is reduced to −2.0 to 0.59 in the stabilized symmetry ROM. Thus, the op-

timization problem in the symmetry ROM can be efficiently solved in a smaller area. This

is shown in Table 7.3, where the wall-clock time of 8.32 seconds for the stabilization of the

L2 ROM has decreased to 0.45 seconds in the symmetry ROM.

By reducing the number of modes from 16 to 8, eigenvalues of the stabilized L2 ROM in

Figure 7.6 exhibit an abnormal distribution with Remin(λ) = −216.92. This is an indication

of an ill-behaved optimization problem, potentially due to a very small controllable space,

and a complicated control landscape when the ROM is built with this specific mode number.

The situation goes back to normal by further reducing the number of modes from 8 to 4.

The eigenvalues of the 4 mode stabilized L2 ROM are not shown in Figure 7.6, but their real

parts are distributed in the smaller range of −7.88 to 0.75.

Re(λ)

I
m
(λ
)

a) Re(λ)

I
m
(λ
)

b)

Figure 7.6: Eigenvalues of the nonlinear a) L2 and b) symmetry ROMs.

Table 7.3 shows that the symmetry ROM allows for consistent optimization hyperparam-
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eters through the stabilization of nonlinear ROMs of different dimensions. This consistency

is a direct consequence of the robustness of the symmetry ROM, that facilitates easy and

reliable implementation of the stabilization algorithm. The L2 ROM on the other hand, is

not gifted with this property as the optimization hyperparameters have to be readjusted for

every mode number according to the complicated optimization landscape that affects the

behavior of the optimization problem as the dimension of the subspace changes.

Table 7.3: Stabilization of the nonlinear L2 and symmetry ROMs

L2 ROM Symmetry ROM
ROM dimension 16 mode 8 mode 4 mode 16 mode 8 mode 4 mode
Bound constraints [-50, 50] [-250, 250] [-50, 50] [-2, 2] [-2, 2] [-2, 2]
Population 75 300 25 5 5 5
∆λmax 1 8 1 1 1 1
Iterations 144 58 87 115 66 60
Minimum function value 9.60e-2 0.24 0.25 1.76e-2 1.54e-2 3.17e-2
Wall-clock time (Sec) 8.32 1.7 4.0e-2 0.45 4.6e-2 9.3e-3

Reconstruction of the stream-wise velocity contours by the stabilized nonlinear ROMs at

t = 0.65 in Figure 7.7 shows a noticeable improvement in the accuracy of ROM when the

symmetry inner product is used through the model reduction process.

The robustness of the nonlinear ROMs with respect to sub-optimal control is studied

by observing the variations of the captured minimum objective function value with the

population, where each of the tested populations includes five trials with different random

initialization of the particle locations. All optimization hyperparameters are constant, except

for the number of particles that is changed from 5 to 55 in 10 intervals. Figure 7.8 shows

the best, and the mean of the minimum objective function values captured by the five trials

at each target population. Starting with the local searches in the left side of the plot and

moving in the direction of increasing the number of particles, the symmetry ROM shows

almost no sensitivity to the search attribute, thus the local search results are almost as good

as the global results. Agreement of the best and mean values shows that all trials have

converged within the same level of accuracy. This property is a consequence of the smooth

control landscape and better controllability of the symmetry ROM that is directly studied
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a)

b)

c)

Figure 7.7: Stream-wise velocity contours of the snapshot at t = 0.65, computed by a) FOM,
and 16 mode nonlinear b) L2 and c) symmetry ROMs. Non-dimensional time is computed
from the beginning of snapshot collection for model reduction. Contour lines are plotted
within the range of −2.5 to 5.5.
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in the linear system.

The L2 ROM shows a very different behavior with most of its trials deviating from the

best value captured, which is itself an order of magnitude larger than the optimal solutions

in the symmetry ROM. Similar to the properties observed in the linear L2 ROM, variations

of the mean value, and failure of most trials in finding the minimum point in the nonlinear

ROM are the indications of a complicated control space.
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Figure 7.8: Sensitivity of the 16 mode nonlinear L2 and symmetry ROMs with respect to
the search attribute. From left to right, search attribute changes from local to global by
increasing the number of global optimization agents. Each point corresponds to the best, or
mean of the objective function values of five trials with different random initializations. L2

and Sym stand for ROMs built by L2 and symmetry inner products.
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7.4 Application II: Supersonic Flow over a Triangular

Prism

The influence of the inner product definition on the stability, controllability, and robustness

of ROMs is also studied for the linear and nonlinear ROMs created based on the snapshots of

the Mach 3.5 flow over the triangular prism. Figure 7.9 shows convergence of the POD modes

computed based on the L2 and symmetry inner products, where 262 modes are required to

capture precisely 100 percent of the total energy with the L2 inner product, and 314 modes

with the symmetry inner product. The first 16 modes that capture 89 percent of the energy

with the L2 and 83 percent with the symmetry inner product are used as the bases for

construction of the linear and nonlinear ROMs. Figures 7.10, and 7.11 show the first eight

POD modes of pressure computed based on the L2, and symmetry inner products.
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Figure 7.9: Normalized cumulative energy of the POD modes computed by L2 and symmetry
inner products.

The linearized Euler equations are projected onto the POD modes to build the linear

ROMs with eigenvalues shown in Figure 7.12. The L2 ROM has 12 unstable eigenvalues with
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a) Model 1 b) Mode 2

c) Mode 3 d) Mode 4

e) Mode 5 f) Mode 6

g) Mode 7 h) Mode 8

Figure 7.10: POD modes of pressure computed by the L2 inner product.

Remax(λ
u) = 1.08, and the symmetry ROM has 14 unstable eigenvalues with Remax(λ

u) =

0.88. Eigenvalues in both ROMs are originally close to the imaginary axis in this case with a

slightly more compact distribution in the symmetry ROM, which is not surprising according

to the properties of the symmetry ROM.

After stabilizing the two ROMs with the ER method, the eigenvalues of the symmetry

ROM remain in the vicinity of the imaginary axis with Remin(λ) = −6.6, while the eigen-

values of the stabilized L2 ROM spread out with an eigenvalue pair that is located as far

as Remin(λ) = −44.49. Consequently, the optimization problem in the L2 ROM has to be

solved in a large area that necessarily imposes additional computation cost. This is shown

in Table 7.4 that includes the global optimization parameters and results. The stabilized
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c) Mode 3 d) Mode 4

e) Mode 5 f) Mode 6

g) Mode 7 h) Mode 8

Figure 7.11: POD modes of pressure computed by the symmetry inner product.

Table 7.4: Stabilization of the 16 mode linear L2 and symmetry ROMs

L2 ROM Symmetry ROM
Bound Constraints [-100, 0] [-20, 0]
Population 100 30
∆λmax 5.0 3.0
Iterations 871 100
Minimum function value 0.364 0.308
Wall-clock time (Sec) 794.92 4.78

eigenvalues in Figure 7.12 are obtained by global optimization within a range of [−100, 0] for

the L2 ROM, which converges in about 13.25 minutes of wall-clock time. The optimization

problem for the symmetry ROM on the other hand is solved within the smaller bounds of
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Figure 7.12: Eigenvalues of the 16 mode linear L2 and symmetry ROMs.

[−20, 0], that apparently result in a lower computation cost. This operational advantage is

provided by the compact distribution of the eigenvalues in the symmetry ROM.

Temporal coefficients of the two linear ROMs are also compared against the original

unstable ROMs, and the POD coefficients in Figure 7.13. The stabilized L2 and symmetry

ROMs of this case are very similar in terms of accuracy, as also suggested by the minimum

objective function values reported in Table 7.4.

Analysis of the controllability Gramian shows the connection between the smooth, low-

cost optimization problem of the symmetry ROM, and the properties of the controllable

space of this model as a linear system. Table 7.5 lists the degrees of controllability in all

eigen-directions, and the volume of the controllable space for the L2 and symmetry ROMs.

The symmetry ROM is more controllable than the L2 ROM in most directions, and the

volume of the controllable space of the symmetry ROM, that is 4 orders of magnitude larger
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Figure 7.13: Modal coefficients of the 16 mode stabilized linear ROMs ( ), compared
against POD coefficients ( ), and the unstable ROMs ( ), based on the L2 (a, b), and
symmetry (c, d) inner products.

than the L2 ROM, explains the better properties of the optimization problem in both linear

and nonlinear symmetry ROMs.

The unstable nonlinear ROMs are next stabilized by the ERN algorithm. The original,

and reassigned eigenvalues of the linear matrix in the nonlinear L2 and symmetry ROMs are

shown in Figure 7.14. Similar observations are also made in the nonlinear ROMs. The eigen-

values of the stabilized L2 ROM are distributed in a large region with Remin(λ) = −24.40 and

Remax(λ) = 0.52, which in the stabilized symmetry ROM is reduced to Remin(λ) = −8.07

to Remax(λ) = 0.61.

The compact distribution of the eigenvalues in the symmetry ROM allows for global
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Table 7.5: Degree of controllability (‖V ∗WCV ‖) corresponding to each pair of eigen-modes,
and volume of the controllable space (det(WC )) in the 16 mode L2 and symmetry ROMs.

L2 ROM Symmetry ROM
Mode 1, 2 1.079e− 01 2.891e+ 00
Mode 3, 4 9.732e− 01 2.338e+ 00
Mode 5, 6 2.496e+ 00 7.243e+ 00
Mode 7, 8 7.327e+ 00 6.887e+ 00
Mode 9, 10 4.143e+ 00 8.408e+ 01
Mode 11, 12 4.699e− 01 5.079e+ 03
Mode 13, 14 3.907e− 01 7.531e+ 01
Mode 15, 16 1.695e+ 01 1.047e+ 01
det(WC ) 3.660e− 02 1.188e+ 03

Re(λ)

I
m
(λ
)

a) Re(λ)

I
m
(λ
)

b)

Figure 7.14: Eigenvalues of the 16 mode nonlinear a) L2 and b) symmetry ROMs.

search within smaller bounds, that according to Table 7.6 leads to slightly better computa-

tional performance. Note that based on the information in Table 7.5, the contrast between

the volume of the controllable spaces in the linear L2 and symmetry ROMs is not as large as

in the case of the supersonic flow over the cylinder. Consistently, controllability of the two

systems, thus the accuracy of the optimal solutions captured through the stabilization of the

L2 and symmetry ROMs (linear and nonlinear) do not deviate as much as in the cylinder

case. Nevertheless, better accuracy of the symmetry ROM is evident in Figure 7.15, that
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shows the stream-wise velocity contours reconstructed by the 16 mode L2 and symmetry

ROMs at t = 1.02, compared against the same snapshot computed by the FOM.

Table 7.6: Stabilization of the 16 mode nonlinear L2 and symmetry ROMs

L2 ROM Symmetry ROM
Bound Constraints [-50, 5] [-20, 5]
Population 60 25
∆λmax 3.0 2.0
Iterations 101 203
Minimum function value 6.959e-2 2.572e-2
Wall-clock time (Sec) 25.547 21.28

Sensitivity of ROMs with respect to sub-optimal control laws is studied by changing the

population in PSO, where the influence of random initialization and parameters is eliminated

by averaging between five different trials at each population. The best and mean values of the

minimum objective function captured by each group of the trials are plotted in Figure 7.16

for the 16 mode L2 and symmetry ROMs, as the population of particles is changed between

5 to 60 in 11 intervals. Besides the test with five particles, the symmetry ROM shows a very

small sensitivity to sub-optimal eigenvalue locations. Large variations of the mean values

in the L2 ROM, that considerably deviate from the captured best objective function value

in all of the tested populations, show that most of the trials have failed to find the global

minimum point, and the system is very sensitive to sub-optimal eigenvalue configurations.

These observations are also consistent with the results delivered by controllability analysis

of the linear ROMs.
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a)

b)

c)

Figure 7.15: Stream-wise velocity contours of the snapshot at t = 1.02, computed by a)
FOM, and 16 mode nonlinear b) L2 and c) symmetry ROMs. Contour lines are plotted
within the range of −2.5 to 5.18.

92



Population

M
in
im

u
m

F
u
n
ct
io
n
V
al
u
e

Figure 7.16: Sensitivity of the 16 mode nonlinear L2 and symmetry ROMs with respect to
the search attribute. From left to right, search attribute changes from local to global by
increasing the number of global optimization agents. Each point corresponds to the best, or
mean of the objective function values of five trials with different random initializations. L2

and Sym stand for ROMs built by L2 and symmetry inner products.
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Chapter 8

Summary and Conclusion

Since the advent of ROMs, model reduction procedure has been modified and enhanced

to stand alone in prediction of the dynamics beyond the jurisdiction of the high-fidelity

simulations. The computational speed-up delivered by ROMs that makes them an indis-

pensable component of fast or real-time control and optimization, comes with additional

challenges that have paced down their implementation in practical applications. POD-based

ROMs regularly suffer from instabilities when the flow field involves dynamically critical

high-frequency signatures that are naturally truncated through the construction of the POD

subspace. This difficulty is commonly observed in flows with unsteady moving shock waves,

and in turbulent flows that are characterized with multi-frequency interactions. In the lat-

ter case, inadequate resolution of the multi-scale interactions leads to the so-called POD

closure problem that compromises the accuracy and stability of ROM. Thus, the simplicity,

mathematical power, and computational savings that accompany the orthogonal linear POD

subspace may be compromised by the incomplete representation of the strongly nonlinear

structures as to produce ROMs that are unstable, or barely replicate the behavior of the

original high-dimensional attractor. Recent studies have shown that the transition to a non-

linear subspace is not a process free of theoretical and computational complexities. This

study attempts to generate viable ROMs, while still benefiting from the mathematical and

computational advantages of POD in the model reduction routine.
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In the two applications discussed in this work, the two-dimensional Euler equations are

solved to simulate the supersonic flow over a circular cylinder, and a triangular prism. Both

flow fields involve unsteady shock-wake interactions. Galerkin projection over the POD

subspace that is computed based on the high-fidelity snapshots of these flows, invoke severe

instabilities in the constructed ROMs. The influence of symmetrization on the improvement

of stability in hyperbolic equations has fostered the evolution of the symmetry inner product

for POD-Galerkin ROMs of compressible flows. However, large instabilities as a result of

the unresolved dynamics, similar to those in the supersonic flow applications of this study,

cannot be contained within the error bounds provided by the symmetrization. Thus, even

the symmetric ROMs need further stabilization and calibration, which opens a new path to

study the controllability and robustness of ROMs created based on different inner product

definitions. With the aid of the controllability analysis conducted in this work via the

controllability Gramian, and a sensitivity analysis, it is shown that the advantage of using a

symmetry inner product, instead of the common L2 inner product, is not merely limited to the

improvement of stability. Symmetrization leads to ROMs with better controllability: models

that easily lend themselves to post-process stabilization and calibration. Thus, not only

the symmetry ROMs allow accurate control towards maximum agreement with the FOM,

but they are also robust against potentially imperfect hyperparameters of the stabilization

method that may lead to sub-optimal control laws.

For the linear ROMs, two different stabilization algorithms, the ISC method proposed by

Amsallem and Farhat14 and the ER method proposed by Kalashnikova et al.30 are compared.

ISC appears to be computationally efficient but it fails to generate accurate results when

the original ROM is highly unstable. ER on the other hand directly monitors accuracy

through the objective function that constructs a feedback signal of the ROM output, but its

computational efficiency and robustness are challenged when the number of unstable modes

grows. In this work, a new Hybrid approach is proposed to integrate the computational

efficiency of ISC with the accuracy of ER. The three stabilization methods are tested on

numerical simulation data, where a Mach 2.8 flow passes a fixed cylinder and the flow

is featured by shock waves and their interaction with shedding vortices. The eigenvalues
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of the linear matrices are compared for ROMs before and after stabilization. Though all

stabilization approaches work to some degree, the Hybrid method shows clear advantages by

keeping both efficiency and accuracy for ROMs with a large number of unstable eigenvalues.

Presence of strongly nonlinear phenomena, like turbulence, unsteady shock waves, and

chemical reactions, can render linear models inaccurate, or even invalid. This aspect high-

lights the importance of the development of stabilization methods for nonlinear ROMs, that

can also respond to a broader class of applications. A second stabilization method (the ERN

algorithm) is proposed in this study, that uses global optimization to modify the eigenvalues

of the linear term of the nonlinear ROM to control the nonlinear system dynamics, while

stability is guaranteed by enforcing the ROM to maintain a negative total power residual.

The proposed method has effectively recovered stability and accuracy in the applications. In

the mean time, a multi-stage stabilization layout is proposed to facilitate computationally

efficient implementation of this method in strongly nonlinear systems. Such applications

usually require a large number of POD modes to resolve the nonlinearities, thus leaving the

bare bone stabilization techniques often intractable. The designed multi-stage configuration

has reduced the computation cost of the ERN algorithm by an order of magnitude, and im-

proved its robustness through the stabilization of the large nonlinear ROMs of the supersonic

flow applications.

This study seeks a complete framework for POD-based model reduction in compressible

flows. However, the proposed stabilization methods are founded over global principles, and

can be readily adopted for the stabilization of ROMs in other applications that do not neces-

sarily relate to fluid dynamics. The proposed algorithms are non-intrusive, thus they do not

depend on the dimensionality reduction method, neither do they rely on a specific projection

type, and in general, model reduction technique. Therefore, the suggested approaches can

be easily applied to the ROMs constructed by system identification and operator inference

techniques. In this light, the future line of research is directed towards evaluation of the

performance of the proposed methods for the stabilization and enhancement of ROMs cre-

ated through other channels, and for different, more complicated dynamical systems (e.g.

turbulent flows).
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