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INTRODUCTION ; : ,

The study of operational techniques, especially as applied

to the solution of differential equations, was initiated by the

work of Oliver Heavlside (l850-1925). At the time of its appear-

ance Heavlslde's method invoked considerable criticism from

mathematicians, who were appalled by the lack of rigor in his

procedures. However, within a few years, several investigators,

among them Carson and Bromwlch, found that the operations of

Heavlslde's calculus could be systematically derived through the

use of certain integral equations. The subject of the opera-

tional calculus has now become a study of the properties and

manipulations of these integral equations. The Laplace trans-

form represents one such integral which is applied extensively

in deriving the characteristics of the operational calculus and

several other fields of mathematics and engineering.

There is today a great amount of work done on and with

transformations of functions. The result of a transformation

is usually called a "transform". The first part of the report

deals with the Laplace transformation. Details about definitions,

existence, and Inverse transformation are explained. Various

properties of the Laplace transform are discussed in the begin-

ning. This is one of the most interesting and useful parts of

the study of the transform method, and each property is illus-

trated with examples. Included here are discussions of partial

differential equations, periodic functions, and many other

special applications of the transform method.



The partial differential equations appearing most frequently

in engineering are of the second order. Here a partial differ-

ential equation of the second order, in electrostatics, is de-

rived. This equation is known as Laplace's equation, V ^ = ,

which belongs to the elliptic type of partial differential

I quaequations. Another equation, hyperbolic type, V ^ =

l/c2 , has been derived. The Laplace transform is used to

solve each for specific boundary conditions. The method follows

the following steps in the solution of Laplace's equations and

wave equations:

1. Apply the transform twice to the differential equation.

The first application will result in an ordinary differential

equation, and the second transformation will yield an alge-

braic expression.

2. The algebraic expression is solved for the second

transform.

3. The inverse transformation is performed twice to give

the desired solution.

This report is concerned with the development of a few of

the properties of the Laplace transformation and the applica-

tion of the Laplace transformation to the solution of simple

Laplace's equation and wave equations.

A Table of Operations and a Table of Transforms are in-

cluded at the end of the work. '-'-^



LAPLACE TRANSFORMATION

Definitions

The Laplace transformation is a mathematical operation in-

dicated symbolically by L[f(t) and the operation is indicated

by the equation (1). .. ,

Ll'fCt)] =1 f(t) e"^"^ dt = F(s) • (1)

/o

For the present, s is assumed to be a real variable. The

restrictions on the character of the function f(t) and on the

range of the variable s, such that the integral in equation (1)

converges are discussed. In the Laplace transformation equa-

tion, f(t) is usually called the "object" function and F(s) is

called the "result" function. Equation (l) usually is written

in the form

P(3) = L[f(t)j (2)

where L denotes "the Laplace transformation of".

Inverse Transformation

The transformation back to the time domain may be accom-

plished by evaluating

f(t) =
(f

F(s)e^* ds • (3)
2atj ^

where Q) denotes integration about a closed contour, or sym-

bolically .
,
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f(t)- = L-lp(s) ik)

where L"-"- denotes the inverse transformation process.

The Laplace inversion formula (3) can be derived from the

definition of f (t) : ,
•

•
'•

,

'

,[f(t)J = F{s) = I f( t)e"^^ dt (5)

where s = cT + jw. - •• •

For convergence it is required . that the real part of s be

greater than some number CT-^'

where 0~-^ is such that the integral

-O^

f(t) e -^ dt exists (7)

Now let us multiply both sides of equation (5) by

>st

2iij

and integrate

JC«5

1 P(s)e3*ds = 1 e^^ ds

r03

0-2- j^ '^'^^0-2-
z^ /O

f(T) dT e-^'^ (8)

where cTg > a"-, to ensure convergence. Interchanging the order

of integration, results in

P(s) eS^ds = / f('T:)dT I
es(t-'r) ^jg

= / f(T) 5(t-T)dT:

27tj /cr.j-oo

1/^2-^

s^JVo-g-jo^
P(s) e^^ ds = f(t) (9)



which proves the inversion formula. ' •

Existence of Laplace Transforms

The object function f(t) is said to be of "exponential

order" as t becomes infinite provided some constant ^ exists

such that the product e"'^^|f(t)| is bounded for all t greater

than some finite number T. Thus |f(t)
|

< Me
"^

''^ for t > T,

where M is some constant.

The Laplace transform of a function f(t) exists if f(t) is

sectionally continuous in every finite interval in the range

t = and if f(t) is of exponential order as t—> oo , This

follows from the fact that the integrand of the Laplace trans-

formation is integrable over the finite interval - t = T for

every positive number T, and the inequality (10) holds for some

constant M.

,-ste-st: f(t) cMe-^s- -^)t (10)

If s > -< the integral from zero to infinity of the func-

tion on the right of the inequality in equation (10) exists.

Thus the restrictions placed on f(t) and s for the existence of

a transform of the object function f(t) have been established.

In short, the function f(t) may be Laplace transformed if

the following integral exists:

e" "^^ f(t) dt „
'; (11)

/O ,': '

.

where -< is finite real number. This is equivalent to saying

that the following must be true;



liiti g_^t f(t) =0 (12)
t—> oo

OPERATIONAL PROPERTIES OP LAPLACE TRANSFORMATION

The usefulness of the Laplace transformation in the solu-

tion of Laplace's equation and the wave equations is based on

some important theorems which follow as a consequence of the

fundamental equation (1). In this section interest will be cen-

tered on those relations which are most applicable in this work.

The following objectives will be kept in mind:

1. Obtaining the transforms of functions, which are met

with frequently in Laplace's equation and the wave equations.

2. Establishing operations and relations by which may be

extended a table of transforms and its utility.

3. Developing certain operation properties of the Laplace

transform which will be applied to the solution of Laplace's

equation and the wave equations.

Linearity Theorem

The Laplace transformation is a linear transformation for

which superposition holds. For instance, when a function of

time is multiplied by a constant C, the transform is multiplied

by the same constant.

L c[f(t)] = C F(s) (13)

Similarly, two time functions may be added as follows:

LffiCt) + f2(t)] = Fi(s) + P2(s) (lif)



Shifting Theorems

In considering the frequency of occurrence of exponential

functions, the following theorems seem to "be of great importance,

Theorem 1. If F(s) is the Laplace transform of f(t), then

F(3 + a) is the Laplace transform of e"^*f(t). This indicates

that the substitution of (s + a) for the variable s in the trans-

form P(s) of f(t) corresponds to the multiplication of the ob-

ject function f(t) by e'®*, that is

F(s + a) e"^^ f(t)] (15)

The proof of this theorem follows immediately from the

definition of the Laplace transform (1).

,[e-st f(t)] =
/'

k
e-2^ |e-«^ f(t) dt

e'
^^+^) f(t) dt = F(s + a) (16)

stant a

Theorem 2. If F(s) = Lf(t), then for any positive con-

> L[fs(t)' = e
-as F(s) , where rfg(t)

|

= when .< t < a.

and [fa(t)~I = f(t - a) when t > a.

Let us find

L^

{fa(t)]

.Q«£?

f(t - a) e -St dt (17)

Make a change of variable, letting t - a = x, be comes

LLfa(t)_

• oo
f(x) e

-s(a+x) dx

/O

= e-s2 f(x) e-sx dx
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L[f(t -
a)J

= e-s2 F(s) a ^ (l8)

where P(s) is the transform of the time function without delay,

and f(t - a) indicates that the function is zero until t = a.

Theorem 3. If f(t) is periodic with the period T and is

sectionally continuous over this period, then

T

p(s) = L__ f e-s^ f(t) dt .
(19)

1- e-T^
/o

• If any function f(t) is periodic of period T, then by defi-

nition f(t) = f(t + T), so that
_,

;..

^oo

F(s) =
I

e-s* f(t) dt '• :

/o

o^ ^(n+l)T ''-

P(s) = ^ )

e-2t f{t) dt , :
(20)

n=0 y^T

now let X = t - nT

then .

" t = X + nT

and f(t) = f(x + nT) '/J^'

'

f(t) = f(x)

These substituted in equation (20)

00 ^(n+l)T

F(s) = Z )
e-3^^+^^) f(x) dx

n=0 y^T

= y e-snT
(

e-sx f(x) dx '.' "

_ .. ,
., fe) Jo •. ;..

p(s) = i-_
f e-^^ f(t) dt ;. (21)

1 - e-^s /q

F(s) = — Fi(s)
1 - e

-^^

where Pi(s) =
J

e'^t f(t) dt .



Change of Scale

~ -1 r n ^ ^

If L[f(t)J =F(s), then L[f(at)J = - F( )

a a

Let us find

L[f(at)] =
J

f(at) e'^^ dt

-^^/^^^^
d(at)

1
f(at) e

a
'O

'

1

a k
f(x) dx . (22)

The integral is the Laplace transform of f(x) with s re-

placed at s/a.

;
. L[f(at)] = - L[f(t)] .;•'

:

If L[f(t)J = F(s), then from the above equation

L[f(at)] = - F(s/a) (23)

a

Transforms of Real and Imaginary Parts

If a time function z(t) is complex, it can be written

z(t) = x(t) + jy(t) .. (21|)

where x(t) is the real part of z(t) and y(t) is the imaginary

part of z(t), which may be denoted by

x(t) = Re[z(t)] (25)

y(t) = Im[z(t)] '; (26)

Now the transform of z(t) is



10

L[z(t)] =
(

z(t) e-s^ dt
^0

,-st
( *..

[
x(t) e-s^ dt + j[ y(t) e"^^ dt (27)

'o /O

from these

and

ReL[z(t)j = L[x("t)] = L|Re[z(t)!]

ImL[z(t)] = Lry(t) = L[lni[z(t)

(28)

(29)

Transformation of Derivatives

The Laplace transform of the derivative of a function is

given by

— f(t)
dt

= s F(s) - f(0+) (30)

where s = transform variable

P(s) = Laplace transform of f(t) - ;

f(0+) = initial value of f(t) evaluated as t—>0 from

positive values.

Let the chosen time function be

[f(t)j = f'(t)
dt

then

{f'(t)] =

.OS

f'(t) e-s^ dtSt (31)

^0

Using the form for integrating by parts, let

f(t) = u and e"^^ dt = dv

then •

.

: i
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f'(t)dt = du and e"^^/-s= v

.CvD

f(t) e-s^dt = f(t) e-^V-s -1/-S j
e-st f'(t)dt

^

from •which.

f '(t) e-^'tdt = s jfit)
'0

e-s^dt -
f(t) e-st

-3

~df(t)'^
T = s

dt _

therefore

L Tf '(t)
— -i

= s

P(s) +
f(0+)

= s F(s) - f(0+)

Similarly, the general expression for an n"'^-'^ order derivative

is

,th

d^f(t)

dtn

^ df
= s^ F(s) - s^-lf(0+) - s^-2 — (0+)

dt

m-l

dtn-1
f(0+) (32)

Transforms of Integrals

The Laplace transform of the integral of a function is

given by

jf(t)dtj =
P(s) f"^(0+)

+ (33)

where f~-'-(0+) = f(t) dt, evaluated as t

—

> cO from positive

values.

Let the chosen time function be f(t)dt.



12

L rf(t)dt] = /
e-st

I jf(t) dtjdt

Using forms for integrating by parts, let

j
f(t)dt = u and e'^^dt = dv

then f(t)dt = du and e"^'''/-s = v. Therefore

2- -st

jf(t)dtle"^*dt = ff(t)dt

(3i^)

,02?. -^g-St

f(t)dt
+

1

-s
f(t)dt

+ - / f(t)e -st dt

Lrf(t)dt

-1
-T f-^(0+) P(s)

+ (33)

Convolution Integral

; If two tirae functions f]_(t) and f2(t) are given, then they

may be combined in the following way to give a new tirae function

g(t) which is called the convolution of f2(t) and f2(t), often

written f-j_(t) --- f2(t).

g(t) = fi(t) -::- fgCt) =
I

fi(T) f2(t - 'r)dT (35)

By putting X = t - \, and noting that a definite integral

is a function of its limits, and not of the variable of integra-

tion, it can be seen that the convolution integral may be

written in either of two ways:

f-L(t) -;c- f2(t) =
J

f-i_(T) f2(t - T)dT

'o
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'0

f-j_(t - t) f2(i:)dT: (36)

The importance of this operation to us will be apparent

from the following theorem concerning the product of .two trans-

forms. • /,V
^

. V,

. / , Transforms of Product

If y-i(t) and y2(t) have Laplace transforms P2(s) and

F2(s) respectively, then the inverse transform of the product

F-]_(s) • P2(s) is given by the convolution of j^{t) and y2(t).

Therefore

L[yi(t) -::- y2(t)] =Fi(s) • F2(s) (37)

Alternatively, the transform of the convolution of two

functions is equal to the product of their transforms.

A formal derivation is given below.

Lr7i(t) ::- y2(t)"| = L
j Jl^^ - '^)72^'^^'^^

= L [/'
Jo

e"'

yi(t - T)y2(T:)H(t - 'r)|dT

yi(t - T:)y2(T:)H(t - T)dT|dt

Putting t - T = A,



Ill-

L[yi(t) -:c- J2it)] = f 72(1^) [^

.00 _ _^

J

y2('^)e"^'^ [F3_(s)j dT

,CV2>
-so:

yi(t) -;:- y2(t)

Jo

= P^(s) P2(s) (37)

LAPLACE'S EQUATION AND WAVE
EQUATION DERIVATIONS

The partial differential equations appearing most frequently

in engineering are of the second order. These could be grouped

into three main types, elliptic, hyperbolic, and parabolic.

Laplace's' equation, \7 ^^ = ^i , belongs to the elliptic class.

The wave equation, V^^ = ( l/c^) ( ^ ^u/ 3 t ), belongs to the

hyperbolic class. Heat conduction equations belong to parabolic

class. These types of equations arising in physical situations

are derived here and their solutions are done by using Laplace

transformation in the last section of this report.

-.

' Laplace's Equation '.
.

As a first example let us consider a simple partial differ-

ential equation of the second order, arising in electrostatics.

By Gauss' law of electrostatics we know that the flux of the
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electric vector E out of a surface s bounding an arbitrary

voliime V is l|.7t times the charge contained in V. Thus if f Is

the density of electric charge, then ,.

'
• f E . ds = i^Ti /^ /'dT • (38)

Using Green's theorem in the form

I
E • ds = ' div.E dTT ,' (39)

and remembering that the volume V is arbitrary, we see that

Gauss' law is equivalent to the equation
'

-
''

' div E = i| 7t /^
• (^0)

Now it is readily shown that the electrostatic field is

characterized by the fact that the vector E is derivable from a

potential function ^ by the equation

E = -grad jZf (J+D

"'' ' Eliminating E between equations (ij.0) and (ij.1), we find

,
that J2l satisfies the equation

V^jZ! + i^ 01 /= (i^2)

Equation (I4.2) is known as Poisson's equation. In the ab-

sence of charges, /^ is zero, and equation (ij.2) reduces to the

simple form

This equation is known as Laplace's equation. Where ^^

is the Laplacian operator, which in cartesian coordinates takes

the form

2 .2 2

,2 D^ r d

2y? Br 2^^
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If we. are dealing -with a problem in which the potential

2
function ^ does not vary with z, we then find that sj is re-

placed by

and that Laplace's equation becomes

a form which we shall refer to as the two-dimensional Laplace

equation. \

Wave Equation

As a second example we consider the flow of electricity in

a long insulated cable. We shall suppose that the flow is one-

dimensional so that the current i and the voltage at any point

in the cable can be completely specified by one spatial co-

ordinate X and a time variable t. If we consider the fall of

potential in a linear element of length A x situated at the

point X, we find that

^i
-A0 = i RAx + lAx ik-T)

^t

where R is the series resistance per unit length and L is the

inductance per unit length. If there is a capacitance to ground

of C per unit length and a conductance G per unit length, then

3
-A± = G^Ax + CAx ' ik-d)

The relations (1^7) and i^.8) are equivalent to the pair of
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partial differential equations

IJ! + R i + L = ,' • (i^9)

^ X 3 t

ai a^ *

,^^,
+ Q ^ + c — = • . (50)

- Differentiating equation (li9) with respect to x, we obtain

d'^^ ^i ^^ i
, >.,,

+ R + L = (51)

^ x2 ^ X ^ X ^ t

and similarly differentiating equation {$0) with respect to t,

obtains

<^2 1 0^ ^2^ •

+ G + C = (52)

<5x^t ^t <9t2

Eliminating 5i/^x and d^l/dy^d'^ from equations (50),

(51), and (52), it is found that j2S satisfies the second-order

partial differential equation

= LC + (RC + LG) + RGjZf .; (53)

<? x2 ^ t2 dt

Similarly, if we differentiate (1).9) with respect to t,

(50) with respect to x, and eliminate d'^^/d7i3t and 9<^/^yi

from the resulting equations and equation (ij.9) , it is found

that i is also a solution of equation (53).

Equation (53), which is called the telegraphy equation,

reduces to a simple form in two special cases. If the leakage

to ground is small, so that G and L may be taken to be zero,

equation ($3), reduces to the form •

^2^ 1 ^^
. ^ = i^k)

<^ x2 k ^ t .
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where k = l/RC is a constant. This equation is known as the

one-dimensional diffusion equation.

When dealing with high-frequency phenomena in a cable, the

terms involving the time derivations predominate. Prom equa-

tion (1^9) and equation (50) it is seen that this is equivalent

to taking G and R to be zero in equation (53), in which case it

reduces to

. d^ 1 d^
^ x2 c2 ^ t2

kS^)

where c = / l/LC . ,

The equation {S^) is known as the one-dimensional wave

equation.

GENERAL PRINCIPLE IN THE APPLICATION OP THE
LAPLACE TRANSFORMATION TO PARTIAL

DIFFERENTIAL EQUATIONS

The Laplace transformation is a very powerful tool for the

solution of transient problems. It is also useful in many other

problems involving solution of linear differential equations.

Here it will be shown how the Laplace method can be applied to

partial differential equations. .

:

In a partial differential equation the unknown is a func-

tion of two or more independent variables. In case of two var-

iables X and t, the unknown" function is denoted by u(x, t) . In

a partial differential equation a certain domain in the xt-plane

is given at the outset, and it is within this domain that the

unknown is to be determined. In the determination of the
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solution of partial differential equations, the boundary condi-

tions and initial conditions are essential, so that a unique

solution can be found. '

When a partial differential equation is to be solved, the

Laplace transform may be used for one variable, leaving an

ordinary or partial differential equation to be solved by other

means for the other variables, or the inverse transformation

process may be employed sequentially so that solutions in all

independent variables are obtained by transformation. .

In general, the following steps are essential to solve

partial differential equations by using the Laplace transforma-

tion technique.

First apply the Laplace transformation to the function

u(x, t) and to the derivatives which occur. Because the trans-

formation represents an integration with respect to a single

variable, so it is essential to undertake the Laplace transforma-

tion relative to one of the variables in u, while the other is

not involved. If the function u(x, t) transforms with respect

to t, then by application of Laplace transformation definition,

the transform form will be •

' '

Lt[u(x, t)] =
[

e-s^ u(x, t)dt

Lt|u(x, t)J = U(x, s) •

,
• (56)

where L^ denotes the Laplace transform with respect to t for a

given function u(x, t) . -

By using the transforms of derivatives theorem ^tiCx, t)/^t

can be obtained by considering x constant.
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dn{x,t)

and

drt

d ^u(x,t)

= sU(x, s) - u(x, 0"^) (57)

d^'

s%(x, s) - su(x, 0^) - u^(x, 0"^) (58)

where u^ =
3u

To use this method for derivations with respect to x it

must be assumed that the order of the differentiation and the

integration in the Laplace integral can be interchanged. As

an example,

5u(x, t)
I

<?
<yO

^x
e-2* u(x, t)dt

27U(x, s;

(59)

dy^

and

p2u(x, t)

^x^t

9

^x

d r

71J

^^u(x, t)

3 t

U(x, s) - u(x, 0+) (60)

'" From these equations it is seen that the values u(x, ),

Pu/^t (x, 0"^) are required when derivatives are transformed.

These values may be obtained from given initial conditions and

the given equation can be transformed by the Differentiation

theorem, incorporating initial conditions to give an ordinary

differential equation in the transform U(x, s) . Then the

transformed equation can be solved for U(x, s) by introducing
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the boundary conditions. As an example, consider a function

u(x, t) = A(t) having boundary conditions at x = a. Then,

u(a, t) = A(t) '
. /

i.e., • lira

x-H^a+ u(x, t) = A(t)

If it is assumed that the limit x->a+ is interchangeable

with the Laplace integral, then

/i:,. „(., 3) -^]^^^ L,[u(x, t)J

. .'.
. =Lt[^^,^ u(x, t)j=Lt[A(t)] (61)

and therefore - - f .. ,:,,,

x^a+ U(xt s)'= A(s) ' ; ;'* (62)

Equations (6l) and (62) 'indicate that the transform of the

boundary value A(t) is taken as the boundary value of the trans-

form U(x, s)etx=a.

It is seen that the transform of a partial differential

equation has one less independent variable than the original.

Equations with more than two independent variables (e.g., time

and three space coordinates) can be reduced to ordinary differ-

ential equations by repeated transformation. It is important

when successive transformations are made to choose a new trans-

form variable each time. Choice of the order in which inde-

pendent variables are transformed generally depends on the

nature, of the problem.



22

ILLUSTRATIVE PROBLEMS

Problem 1. Laplace's Equation

As an illustration of Laplace's equation, consider the

electric potential distribution in a metal strip of uniform

thickness and of constant width a, Fig. 1. The strip extends

from y = to j—^ oo. The sides are kept at ground potential,

while an arbitrary distribution ^ = f(x) is applied at the end

y = 0. The thickness 1 of the strip does not affect the poten-

tial distribution. Thus Laplace's equation is

V^^l = + =

^2$2f(x, y)

^x^ J

+ LX

^2^(x, y)
=

d2 J{s, y)

dx2

(63)

with the boundary conditions

1. (0, y) =
. ,

.
v',-

,

,

2. (a, y) = .

3. (x, oo) =

]+. (x, 0) = f(x) .^-
-

"

Now transform the equation (63), with respect to x. By an

application of equation (58), the transform will be:

= - [s2 J(s, y) - sj2f(x, 0) - ^^{Qi, y)] (6k)

where 0"^ = 3<^/ ^tl. .

'

By substituting the first boundary conditions into equa-

tion (6I|.), it becomes
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d2 (|)(s, y)

dx'

= -s2 |(s, y) + ^^,{0, y) (65)

Now transform equation (6^) again, letting

then

\{3, y)] = $(s, p)

d^ (j)(s, y)
= p2 J(s, p) - p |(s, 0) - fy(s, 0)

nd substituting the value of L^^d^ ^(s, y)/dx^J in equationa

(65),

then

p2|(s, p) - pf(s, 0) - |y(s, 0) + s2|(s, p) =^x^°' y^

..v.- ' ^ (66)

^(s, p) =
p ^(s, 0) + |y(s, 0) + 0^{O, y)

(67)

(p2 + s2)

By application of equation (62), the transform of boundary

conditions (3) and (J4.) will be:

Lx [^(x, 00
)J

= 5(s,c^) = •

and Lx p(x, 0)j = J(s, 0) = F(s)

By substituting the values of ^(s, oo) and J(s, 0) in the

equation (67) becomes

pP(s) + 5y(s, 0) + 0^{O, y)

i(s, P) =
/ ? ?^(p2 + s2) ,

for this case, the partial fraction expansion is

A A"

(68)

f(s, p) = (69)

(p + js) (p - js) ''' '

where A'"' is the complex conjugate of A. In other words, when

the roots are conjugates, so are the partial fraction expansion

coefficients, which may be evaluated as follows:
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P = -J3

-jsF(s) + Jy(s, 0) + ^y{^, y)

therefore

A =
F(s) '|y(s, 0) ^x(o. y)

(70)

J2s J2s

and

jsF(s) + Jy(s, 0) + ^^{^, y)

P = +js
j2s

therefore

A-;;- =
P(s) |y(s, 0) ^y{(^, y)

(71)

2 j2s j2s •
.

Substituting value of A and A-::- in equation (69),

F(S) $y(s,0) ^yX^,l) F(S) fy(s,0) ^yi^,l)

|(s,p) =
J2s j2s 2 J2s j2s

(p + js: (p - js)
, ^

(72)

then the inverse Laplace transformation of equation (72),

P(3) Jy(s,0) j^x^O^y)
^(s,y)

J2s J2s J

e-Jsy

+
p(s) $y(s,o) i2^x(o>y:

e-*-jsy (73)

2 j2s j2s

Now from the boundary condition (3), jZ?(x, o^) = and

application of equation (62),

Lx [!2^(x, o^)] = J(s, oo) =

As ^(s, oo) = 0, so the coefficient of the second term of

the equation (73) becomes zero; i.e.,

F(s) |y(s, 0) $2fx(0. y)
=

.12 s J2s
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Then
P(s) 1

$^(s, 0) + 0y,{O, y)
-y

{Ik)

2 j2s L

By substituting the value of F(s)/2 in equation (73),

"fCs). F(s)
'

(s, y) = e-Jys ^ p(3) Q-jy: (75)

2 2 J

The inverse Laplace transformation of L^(s, y) by using

shifting theorem (2),

$2f(x, y) = L/1 P(s) e-J^"

^(x, y) = f(x - jy)u(x - jy) (76)

' Also Laplace's equation (63) can be solved by the classical

method known as separation of variables. We now assume that

0'(x, y) is expressible as the product of two quantities X and Y,

^(x, y) = X(3,) Y(y) .
(77)

where X is a function of x alone and Y is a function of y alone.

Substituting equation (77) into equation (63) results in

X"Y + XY" =

or X". Y" .

^

X Y "
' >

where the primes on the functions X and Y represent differentia-

tion with respect to the only variable present. Now the left-

hand side of this equation is independent of y, and the right-

hand side is independent of x; therefore their value is constant,

say \. Thus ' . . .

X" - XX = 0"
^

^

and Y" + XY =

We shall assume that X = -(3 <- and show that a negative
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value of \ allows the satisfaction of all the boundary condi-

tions. With X = -p , the general solution of '
,^. ,

X" + p^x = .... ••

is X(^) = A cos(px) + B sin([3x)

- From the first boundary condition

$2^(0, y) = X(o) Y(y) = :

and since Y(y) f^ 0, it is found that
_ :

X(o) = 0, or X(o) = A = .

Similarly from the second boundary condition

J2f(a, y) = = X(a) Y(y) ^-'V

implies .
':.',_

X(a) =0 or X(a) = B sin(pa) =

Since B = would imply 0{y:, y) = 0, one must have

sin(pa) =0, or [3a = rat, p = rat/a, n = 1, 2, ... .

With these values of (3,

^n(x) ~ -^n sin(rai/a)x

The solution of the equation for Y(y) yields

Yn(y) = Cne-^^'^/^^y + D^e-^^^^/^^y

From the third boundary condition „ :.

^{x, oo) = X(^) Y(^) =0 •.

and X(3^) ^ 0, ^{c?o) ^'^st vanish.

Y(oc^) = C^e-^^Va)^ + D^e^^Va)^ =

implies

Y(c>o) = or Dn =

and the functions

9l^{x, y) = Xn(x)Yn(y)
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9!n^x, j) = Bn sin(nVa)x • C^ e'^W^^^

0n^^' y) =
^°n sin(nVa)x •

e'^Wa)!
' (78)

where b^ = BnCn- Equation (78) satisfies the partial differ-
.

ential equation of the wave equation (63) and the first three

boundary conditions, whatever the constants b^. Since equation

(63) is linear, any linear combination of ^^, such as

j^(x, y) = Z bn sin(nVa)x e-(Wa)y
n=l

is also a formal solution of equation (63) satisfying three of

the boundary conditions. In order that 0{x, y) satisfy the

fourth boundary condition, one must choose the bn such that

gfix, 0) = f(x)X b^e-^W^^^O^ sin(nVa)x
n=l

and hence bj,^ are the Fourier sine coefficients of f (x) :

2
f^

bn = -
1 f(x) sin(nVa)x dx - '

a
{) .

'•

and the final solution of the problem is

jZ5(x,y) = - T. j
^^x) sin(nVa)x dx

j

sin(n7t/a)x • e-^^^/^^^

a n=l ''0
"*

Problem 2. Wave Equation

As an illustration of the wave equation, consider a trans-

mission line of length ^ with R = G = 0, is initially charged

to a voltage 0q through its length ^ at t = 0. The end x =

is short-circuited, and the voltage on the line at subsequent

time t is required. As we are considering G and R to be zero.
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the voltage 0{x, t) in a transmission line satisfies the wave

equation (55) ,

... ^^L -£!^ - "
(5^)

5x2 k2 ^t2 .

•

_; :

where k2 = l/LC '
'

and the boundary conditions

1. ^{x, 0) = 0Q (constant) <x < ^

2. ^(0, t) =

Now, letting

L^i^l, t) = J_(x, s)

Equation {^S) becomes an ordinary differential equation

^^'^^""''^
= l_ L2lu,s) - s^(x,0) - ^^U,0)] i (78a)

dx2 k2 L

Introducing proper boundary conditions equation (78a)

becomes

l!li±^. !!$(,, 3).= - ff ./' (79)

dx2 k2
-

k2 •
-

The short circuit gives ?!{x, t) =0, and the open circuit

at X = ^ means that i{£, t) = 0, for the boundary conditions.

Applying equations (14-9) and (50) and by letting

L^ [i(x, t)] = I(x, s), and i(x, 0) = C ..'.

';^
. d$(x, s) :

^-
^''

. . dx

Thus the general solution of equation (80) is

• |(x, s) = A e(V^)^ + B e-(V^)^ + — (8l)

Now when x = 0, ^(0, s) = 0. Substituting into equation (8l),
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A + B + — = ' (82)

s

When X = i, !{£, s) = 0, and 0^ = 0. Differentiating equation

(8l) with respect to x and substituting x = ^ in the result,

one has . . .

.

^l^^' '^ ^ ^ ! e(s/k)i _ 3 ^ ^(s/k)/ ^ Q

dx k k

Therefore

A e^^A)^ = B e-^^A^-^ (83)

Solving equations (82) and (83) as simultaneous equations

in A and B, we have

-^0 e-<=^A> -1^0-''^/'
A = — and B =

^;

s
'^£ s/

2s cosh 2s cosh
k

,

k

Substituting these values in equation (8I) gives

0Q 00 cosh[s/k(l - x)]

J(x, s) . iok)
3 s cosh(s//k)

The inversion can be carried out by

$^(x,t) = 00 -

1 /+j^est cosh[s/k(l - x)]
•" — ds

2^j/-joo s cosh(s//k)

the second term will have no simple poles at the origin due to

the s in the denominator because the origin is a zero of the

numerator, but will have a simple pole at each point which makes

cosh(s//k) equal to zero; i.e., at each root of

Cosh(si'/k) = cos(jsi/k) =0

or at jsi/k = ±%/2, +3^2, ..., ± ( 2n + l)7i/2 .

Simple poles are therefore located at

s = +j(2n + l)7tk/2/ ; ,
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therefore the sum of the residue of

eSt ^Q cosh {s/k(l - x)j

s cosh( s/A) •
.

at the points s = ±j(2n + l)Tik/2i, n = 0, 1, 2,

Vo e^^coshTs/kd - x)J

. Thus

[__ Residue = ^

^I

3=+j(2n+l)Tik/2/

— fs cosh(si/k)[
ds '^

^0 e-^^ [(coshCsi/k) • cosh(sx/k)}

- [slnh(si/k) . sinh ( sx/k)}
J

s//k . sinh(s//k) + cosh(si/k)
j s=+ j(2n+l)7rk/2i

Now cosh(si/k) = at each of the poles, and

Slnh( si/k) = j sin[(2n + 1)11/2] = (-D^'j

(2n + l)7rk

s = +j
2i

and

Sinh(si/k) = -J sm

(2n + l)aik

[(2n + 1)71/2] = -(-l)''j

s = -J
2i

so that

£_ Residue = / •

^0
-j(2n+l) kt/2jf r ^

-J(2n+lhrk x'

.-e (-D^jjsinii ^ • -
( 2I k;

j(2n+l)Ttk 1
• ._ •

2I
(-1)

n

K

$2^0
. .e^.^^2^-^^)^^^/<(-l)-J Sinh/.

j(2n+l)atk x

k2i
+

2^ k ,

"^
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+ j(2n+l)iik

-<^r. e 2/ j sin
t [

(2n + 1)tix

2/

j(2n + 1)ti/2

+ I

-.l(2n+l)7ik ^

-<^Q e
^

j sin
'(2n + 1)tcx

2i

j(2n + 1)V2

-2j2$

sm
'(2n+l)Ttx

- '^^ y__i__
at i— (2n + 1

((2n+l)7ix
Sin{ ;r

j(2n+l)TXk
, 2:^

^
+ e

j(2n+l)atk

2I
J

'0

% L
f[2n + l)7tk

cos (

(2n + 1) 2i
- t

• Substituting- the value of k = fl/hC = iZ/lc", the final

solution of equation (55) becomes

(2n+l)

jZ^(x,t) = $2^0

•c^

n n=0,l,2,

sin
2I

oixl

(2n+l)
cos(2n+l)

2£f^]^

Thus the solution is obtained as a Poiirier series. How-

ever, this form is not the most informative from a physical point

of view, and an alternative approach is to expand the transform

in a series of exponentials, following Heaviside, obtaining the

voltage as a series of step functions. This shows clearly the

physical concept of successive reflections, and we will obtain
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this from the voltage whose transform is given by

0Q <^Q cosh/s/k(/ - x)j-

$(x, s) =
s s cosh(s//k)

^0 ^0 e-3xA^i H. e-2s(^ - x)/k|

J + e-2s/As . s

00 00

a s

00 00

3 3

00 00

'' i^l + e" 2s/A

g-sxA /i + e-^^^^- ^^A]fl - e-2s^A + e'^^^^A

s

,-sxA - e-s(x+2i)A + e-s(x-2i^A + Q-ix+kI)A

_ --s(x-i;i)A _c « • «

Inverting term by term using the shifting theorem

0iy. t) = ^0 - 00^1} - V^l + ^o^[t - (x + 2i)Aj

- 0Quh - (x - 2i)A] - ^O^Tt - (x + i|.i)A]

+ 0QVi^ - ( X - l|i) a] - . • .

This form gives the voltage at any point as the sum of an

infinite number of step waves, each of velocity k = l/'/ LC.

Also the wave equation (55) can be solved by the classical

method known as separation of variables. We now assume that

0ix, t) is expressible as the product of two quantities X and T,

0{x, t) = Xn(x) Tn(t) • •-
-

(85)

where X is a function of x alone and Y is a function of y alone.

If we substitute equation (85) into equation (55) one obtains
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1 X" T"

X" T = — T" X or
k2 X k^T

where the primes on the functions X and T represent differentia-

tion with respect to the only variable present. Now the right-

hand side of the above equation is independent of x and the left-

hand side is independent of t. Since they are equal, their

common value cannot be a function of t or x, and must therefore

be a constant, say \: .

_
.

X" - T" -.
'

— = X and = "^

X k2T ; : -

Hence X" - XX = 0, T" - Xk^T =

The partial differential equation of equation (55) has thus been

reduced to two ordinary differential equations.

Assume X = -p^ < 0, so that given boundary conditions can

be satisfied, where p is a real number. In this case the

general solution of

X" + p^X = is X(y) = A cos(px) + B sin( (3x)

and the general solution of the equation on T(t)^

T" + p2ij2rp = is T(^) = C cos(pkt) + D sin((3kt)

Prom the given boundary conditions (2)

^{0, t) = = X(o)T(t) = A cos(po) + B sin((30)J T(t)

= A .. V;

and differentiating (with respect to x and using proper boundary

condition) ^ .
- •"'^'*> -'

00iJ2, t)
= X •(i)T(t)

<9 X 1

/_. = = [-A(3 sin(pi) + Bp cos(p/)
J
T(t)

= = Bp cos (pi) :.
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Since B ^ 0, it is concluded that cos (pi) should be zero;

i.e. , cos (pi) = 0, or ;.^.

(3i = (2n + 1)V2, [3
= (2n + Dit/s/, n = 0, 1, 2, 3, ...,

with these values of p

^n(x) ~ -^n

(2n + l)7t

B^ sin i y.
X

2.1 J

Again by using the proper boundary condition

d^U, 0)
= = X/^\T'

3^
(x)^'(O)

• = -Cpk sin(O) + D cos(O) •'

"
= D -,

Since p = (2n + \)%/2 2„ we have a solution Tn(t) ^o^ ®a<^^

integral value of n:

f(2n + \)%
kt

md for every integral value of n, n = 0, 1, 2,

A2n+l):i A2n+l)7i ]

Xn(x)Tn(t) = ^n sin ^'—^- xj cos

j ^^
kt

where b^ = CnBn.n 'n^n-

Now equation (55) is linear, and any linear combination of

solutions is a solution represented by Fourier series expansion

of j2f(x, t) in the form ,,•'

oO
(2n+l)it

^(x,t) = — + ^ bn sin
2 1^0 1 2i

A2n+l)7i:
X ? cos \

-J
— kt

C

by introducing boundary condition (l), aQ =
2{2^o*

^'^^

^n = -

(2n + 1)01

, and the final solution of the problem is
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(2n+l)
Ttkt;

2/ I
I, 2i

\^Q y- 1 r(2n+l)7ix) Z'

^U, t) = $2^0 ^ 2i^
1 :;— f

'^°^ r
Ti: n=0 (2n+l)

CONCLUSION .

The problems wiiich have been considered are intended to

show that Laplace transformation provides a clear and standard

method of dealing with boundary and initial value problems in

certain partial differential equations. It reduces those which

contain two independent variables with constant coefficients to

boundary value problems of ordinary differential equations. In

general, these are easy to solve. The most difficult part of

the transformation method is in transforming the solution back

to original space. Since direct inverse Laplace transformation

operations tables are not available for transforming the solu-

tion back to original space in the case of wave equations, the

auxiliary method for doing this has been by use of the complex

inversion formula (9). Also along with operational methods,

each problem is solved by the classical method known as the

separation of variables method. By this method, the partial

differential equations are broken down into ordinary differen-

tial equations, and the final solution is built up from particu-

lar solutions of these ordinary differential equations.

The Laplace transform, which has aroused so much interest

in electric circuit theory, is applicable also to field problems,

Here is a good field for further study.
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TABULATION OP LAPLACE TRANSFORMS

Table 1 contains the operation pairs which are derived in

the previous sections. '
'

,•,,':'

Tahle 1. Laplace transforms of operations and functions.

f(t) : F(s)

f(t) f(t)e-stdt (1)

cf(t)
' - ., cF(s) (13)

f^(t) + f2(t) Pi(s) + P2(s) (1^)

f(t) e"^^ P(s + a) (15)

f(t - a) e-asF(s) a > (l8)

f(t) Periodic, with Fl(s)
f ^t^

a period T ^ . F^Cs) = e f(t)dt
l-e-^3 /o

(21)

f(at)
.

.

' 1/a P(s/a) (23)

Re f(t) ' Re P(s) (28)

Im f(t) • ' Im P(s) • „ (29)

df/dt sP(s) - f(0+) (30)

d^f/dt^ .
-

,
s^P(s)-sn-lf(0+) - ... - dn-l/dtn-lf(0+)

f(t)dt . p(s)/s + f-i(o+)/s ^;^'..: -:. (33)

fl(t) -::- f2(t) Fi(s) P2(s) - • •

; (37)

u(x, t) e-stu(x, t)dt=U(x, s) ; (56)

[5'u(x, t)/^t] sU(x, s) - u(x, 0+) (57)

[^2u(x, t)/^t2] -:,,' s2u(x,s) - su(x,0+) - ut(x,0+) (58)

5u(x, t)/?xl ^/^x / e-3tu(x,t)dt=U(x,s)/x (59)
: ^ -, ''O

[t?2u(x,t)/^x^tj ...

^
^/?x [sU(x, s) - u(x,0+)J (60)

y}^^ + Viix,t)=A(t) ^^^^ + U(x,s) = A(s) (62)

i ' \il V ' - ? ^
.

' .

"-
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Table 2. Direct Laplace transforms of some specific functions

f(t)

5(t)= Unit impulse

u( t) or 1 unit step

t^~^/(n-l)J n = integer

,-at

te -at

t^-V(n-l).' e-s*

l/co sin(cot)

sin(a3t)

cos(wt)

1 - cos(cot)

sin(a)t + 9)
'

cos(cot + 0)

,-at sin(cot)

e~^* cos(a)t)

t sin(a)t)

t cos (oot)

t e-a^ sin(wt)

t e"^* cos(ocit)

sinh(at)

l/a [sinh(at)J '

cosh(at)

l/a2 rcosh(at) - ij

F(s)

1

i/s^ ,;

l/(s + a)

l/(s + a)
2

l/(s + a)^

l/s2 + w^

a)/s2 + 0)2 •_

s/s^ + 0)2

0)2/3 ( s2 + 0)2)

(s sin e + 0) cos 9)/(s2 + o)2)

(s cos e - 0) sin 0)/(s2 + o)2)

0)/(s + a) 2 + 0)2

(s + a)/(s + a)2 + o)2

2o)s/(s2 + 0)2)2

s2 - o)2/(s^ + "^)

2o) ( s + a ) / [( s + a ) 2 + o)2_

(s + a)2 - 0)2/

a/(s2 - a2)

l/(s2 - a2)

s/(s2 - a2)

l/s(s2 - a2)

(s + a)2 + 0)2

1 .
'-..
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The main purpose of the paper is the solution of the prob-

lems which have been considered to show the operational method

of the Laplace transformation. The Laplace transform provides

a clear and standard technique of dealing with boundary and

initial value problems in certain partial differential equations.

The first part of the report deals with the Laplace trans-

formation. Details about definitions, existence, and inverse

transformation are explained via the exponential form of the

Fourier integral theorem. In order to construct a Laplace

transform for a given function of time f(t), first multiply f(t)

by e"^'^, where s is a complex number, s - CT + jw, and then the

product is integrated with respect to time over the interval

zero to infinity. The result is the Laplace transform of f(t),

which is designated as P(s). Thus the Laplace transform of

f(t) is given as •

.

f(t)- = I f(t)e~^''^ dt = P(s)

.; ^

where f(t) =0, t <0. The inverse Laplace transformation is

given by the complex inversion integral

If +.

f(t) = F(s)e2'^ ds
. , .

where cr2 is a constant. This integral is used in transforming

the solution back to original space in the problem of the wave

equation. Various properties of the Laplace transform are dis-

cussed in the second section.

Laplace's equation, \7^j2f = 0, arising in electrostatics and

the wave equation, V -^ ~ lA (^ $2>/^t ) , arising in a long
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insulated cable have been derived. The Laplace transform is

used to solve for specific boundary conditions. The method fol-

lows the folio-wing scheme in the solution of Laplace's equations

and wave eauation.

Original

space

:

Scheme

Partial differential equation

+ initial conditions

+ boundary conditions

L - transformation

Soluti on

T

L"-^- transformation

Image space:

Ordinary differential equation

+ boundary conditions

-> Solution

Thus it reduces the partial differential equation which contains

two independent variables with constant coefficients to boundary

value problems of ordinary differential equations. The most

difficult part of the transformation method is in transforming

the solution back to original space. Also along with opera-

tional methods, each problem is solved by the classical method

known as separation of variables. A table of operations and a

table of transforms are included at the end of the work.


