

Effects of antimicrobials on broiler chicken performance

Introduction

- There is a strong consumer push for poultry producers to use less antimicrobials in broiler diets
- Feed diets that increase digestibility without using antimicrobials are needed by producers
- Xylanase is a replacement for the antimicrobials, yet it is unknown if it will have the same effects

Objectives

• To evaluate the digestibility of several diets at different fiber levels, when xylanase is replaced by monensin sodium

- Feed intake, BW and FCR were all impacted by the experimental diets
- use of battery cages

D.L. Schmidt*, C.J. Delfelder, R.S. Beyer, C.R. Stark, C.E. Evans, A.D. Yoder, and C.K. Jones

Department of Animal Sciences and Industry, Kansas State University, Manhattan

Experimental Procedures

- **21-day experiment with 216 Cobb broiler chicks that** were housed in battery cages with 6 birds per cage
- **Treatments were randomly assigned and there were 6** different treatments
- The experimental unit was the cage and there were 36 cages total
- Feed intake, BW and FCR were measured by collecting pen weights and feed consumption weekly
- **GLIMMIX procedure of SAS was used to evaluate this** experiment

Experimental

- The treatments included:
- 1) Corn-based with no monensin sodium or xylanase
- 2) wheat-based with no monensin sodium or xylanase
- 3) corn-based with monensin sodium but no xylanase
- 4) wheat-based with monensin sodium but no xylanase
- 5) corn-based with xylanase but no monensin sodium

Conclusions

• Corn-based diet and wheat-based diet with xylanase are comparable when conclusions are drawn using FCR • The conclusion is drawn that the added xylanase to the wheat-based diet increases carbohydrate digestibility

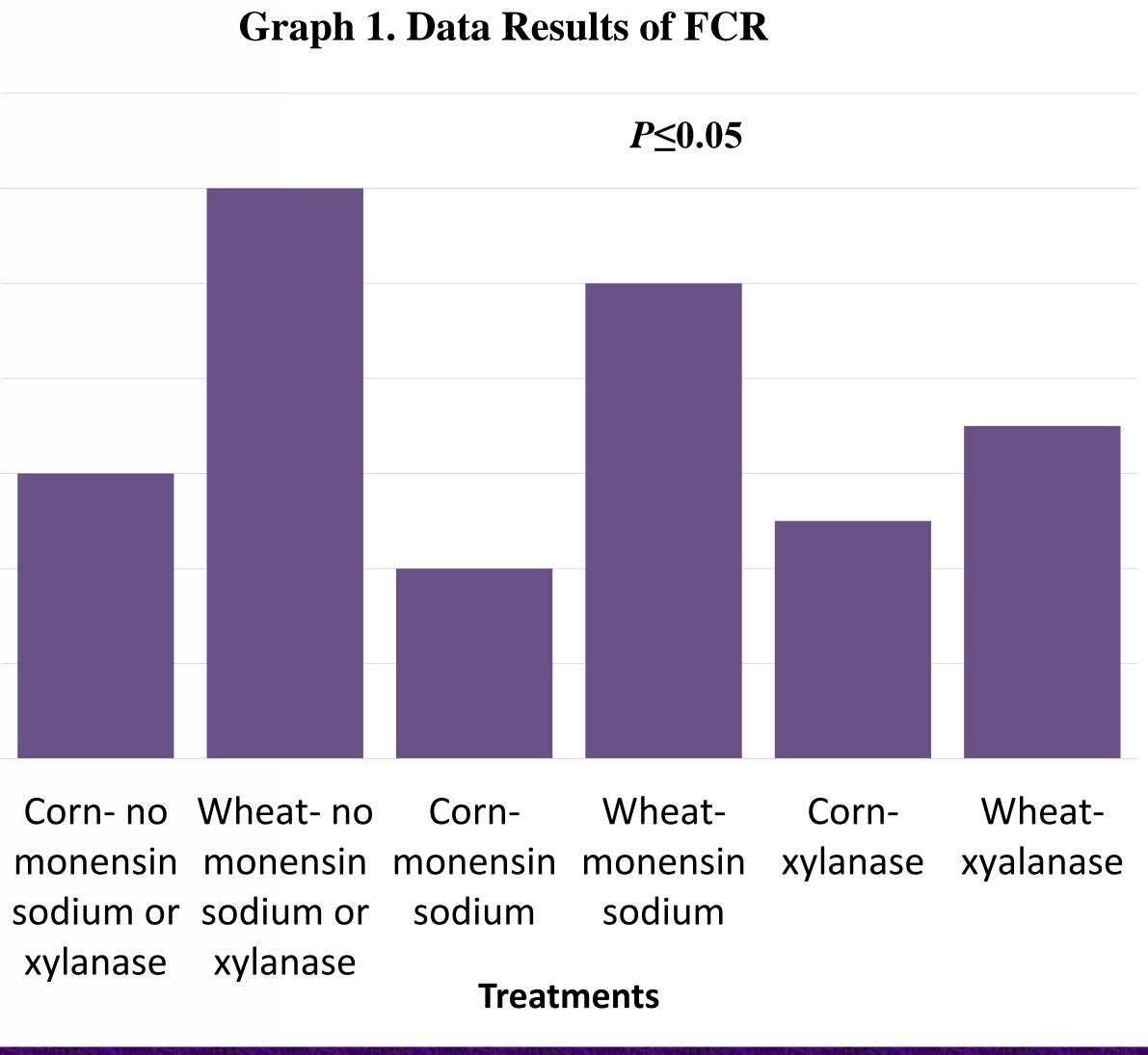
• More research will need to be done considering there was little to no need for the antimicrobial considering the

e	16		

Table 1. Formulas of Dietary Treatment									
		Trt 2 –		Trt 4 –					
		Wheat	Trt 3 – Corn	Wheat		Trt 6 –			
	Trt 1 – Corn	Negative	Positive	Positive	Trt 5 – Corn	Wheat +			
Ingredient, lbs	Negative Control	Control	Control	Control	+ Xylanase	Xylanase			
Wheat	0	165	0	165	0	165			
Corn	147	0	147	0	147	0			
Soybean meal	88	68.4	88	68.4	88	68.4			
Soy oil	4.45	6.83	4.45	6.83	4.45	6.83			
Dical	5.43	5.08	5.43	5.08	5.43	5.08			
Limestone	1.95	0.85	1.95	0.85	1.95	0.85			
Salt	0.58	0.35	0.58	0.35	0.58	0.35			
L-Lys	0.45	0.85	0.45	0.85	0.45	0.85			
DL-Met	0.63	0.60	0.63	0.60	0.63	0.60			
L-Thr	0.075	0.30	0.075	0.30	0.075	0.30			
Sodium bicarb	0.45	0.90	0.45	0.90	0.45	0.90			
Poultry VTM	0.75	0.75	0.75	0.75	0.75	0.75			
Econase XT	0	0	0	0	12.5 g	12.5 g			
Coban 90	0	0	0.125	0.125	0	0			
Total	250	250	250	250	250	250			

1.54

1.52


1.5

1.44

1.42

FCR (g/g)

- impact (*P*>0.05) FCR
- wheat-based diet in the control diets

Special thanks to Koch Industries, Inc. for their support of this project

Experimental Diets Cont.

Results

Corn-based diets with monensin sodium or xylanase and the wheat-based diet with monensin sodium did not

The corn-based diet improved (*P*>0.05) compared to the

Support