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Abstract

In this dissertation, we proposed a new robust estimation procedure for two multivariate

mixture regression models and applied this novel method to functional mapping of dynamic

traits. In the first part, a robust estimation procedure for the mixture of classical multivariate

linear regression models is discussed by assuming that the error terms follow a multivariate

Laplace distribution. An EM algorithm is developed based on the fact that the multivariate

Laplace distribution is a scale mixture of the multivariate standard normal distribution.

The performance of the proposed algorithm is thoroughly evaluated by some simulation

and comparison studies. In the second part, the similar idea is extended to the mixture

of linear mixed regression models by assuming that the random effect and the regression

error jointly follow a multivariate Laplace distribution. Compared with the existing robust

t procedure in the literature, simulation studies indicate that the finite sample performance

of the proposed estimation procedure outperforms or is at least comparable to the robust t

procedure. Comparing to t procedure, there is no need to determine the degrees of freedom,

so the new robust estimation procedure is computationally more efficient than the robust t

procedure. The ascent property for both EM algorithms are also proved. In the third part,

the proposed robust method is applied to identify quantitative trait loci (QTL) underlying

a functional mapping framework with dynamic traits of agricultural or biomedical interest.

A robust multivariate Laplace mapping framework was proposed to replace the normality

assumption. Simulation studies show the proposed method is comparable to the robust

multivariate t-distribution developed in literature and outperforms the normal procedure.

As an illustration, the proposed method is also applied to a real data set.
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Chapter 1

Introduction

Among various robust estimation procedures, using heavy-tailed distributions to achieve the

robustness has been received more and more attentions from statisticians and practitioners.

In this thesis, we shall propose a new robust estimation procedures in regression models us-

ing the multivariate Laplace distributions. Due to their natural connection to least absolute

deviation criterion and normal distributions, the proposed estimation procedure enjoys ro-

bustness and the computational efficiency at the same time. We will first consider the robust

estimation procedure in the classical multivariate regression models, then the methodology

will be extended to mixture of the linear mixed models.

1.1 Robust Mixture Multivariate Regression

Finite mixture regression modeling is an efficient tool to investigate the relationship between

a response variable and a set of predictors when the underlying population consists of several

unknown latent homogeneous groups, and it has been already applied for more than a hun-

dred years since ?. More real examples on finite mixture modeling can be found in ?, ?, ?,

? and the references therein. Statistical inferences have been discussed extensively for finite

mixture modeling when the normality is assumed for the regression error in each cluster.

However, since the likelihood function for normal mixture regression models often exhibits
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complicated form, so the maximum likelihood is hard to derive, and the unknown regression

parameters are usually estimated using the expectation and maximization (EM) algorithm.

Due to its unweighted least squares estimation nature, the maximum likelihood estimate

(MLE) of the regression parameters are not robust to the outliers and the data with heavy

tails. Because of its wide application in practice, how to design robust estimation procedures

in the finite mixture regression models has attracted much attention from statisticians.

Extensive research has been done for linear or mixture of linear regression models when

the response variable is a scalar. For examples, ? proposed a trimmed likelihood estimator

(TLE) to robustly estimate the mixtures and the breakdown points of the TLE for the

mixture component parameters is also characterized; Replacing the least square criterion

in the M step of EM algorithm designed for normal mixtures, ? achieved robustness using

Tukey’s bisquare and Huber’s ψ-functions; A class of S-estimators were introduced in ?

which exhibit certain robustness and the parameter estimation is achieved via an expectation-

conditional maximization algorithm. Inspired by ?, ? proposed a new robust estimation

method for mixture of linear regression by assuming that the mixtures have t-distributions,

the EM algorithm is made possible by the fact that t-distribution is a scale mixture of a

normal distribution. Due to the selection of degrees of freedom, the procedure in ? requires

relatively heavy computation although the choice of degrees of freedom provides certain

adaptivity to the data. Realizing that the Laplace distribution is also a scale mixture of

normal distribution, ? proposed an alternative robust estimation procedure by assuming

the random error has a Laplace distribution, which has a natural connection with the least

absolute deviation (LAD) procedure and LAD is a well-known robust estimation procedure,

see ? and ? for more detail on LAD methodology.

Compare to the relatively extensive discussion for the univariate response cases, there

is less work having been done for the multivariate linear regressions. ? designed a robust

estimation procedure using the multivariate skewed t-distribution, which offers a great deal

of flexibility that accommodates asymmetry and heavy tails simultaneously, and ? proposed

a mixture of multivariate t-distribution to fit the multivariate continuous data with a large

number of missing values. Similar to the cases of scalar responses, one has to decide the
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proper degree of freedom in order to apply these methods. Up to now, we haven’t seen

any work on developing robust estimation procedures for the multivariate linear regression

with the multivariate Laplace distribution. We expect a multivariate version of ? procedure

should perform equally well in the multivariate linear regression. In Chapter 2, we discussed

the proposed robust estimation procedure by using multivariate Laplace distribution more

in detail. Following the multivariate mixture regression models, we applied to the mixture

of linear mixed models.

1.2 Robust Mixture of Linear Mixed Models

Mixed-effect modeling is often applied to model the repeated measurements because of its

flexibility to handle both balanced and unbalanced data with heterogeneity, thus it is widely

used in the fields of biology, agriculture, and economics etc.. However, in many applications,

the data may come from different clusters. In such scenarios, mixture modeling of the linear

mixed effect is often considered. See ? for an real data analysis from genetic study.

The classical linear mixed model, proposed by ?, takes the form of Y = Xβ + Zb + ε,

where Y is an m × 1 vector of responses, X is an m × p known design matrix for the fixed

effects, β is an unknown p× 1 vector of the fixed effects, Z is an m× q known design matrix

for the random effects, b is a q× 1 vector of the random effects which is often assumed to be

Nq(0,Φ), the regression error ε is an m×1 vector of experimental errors which is assumed to

be Nm(0,Σ), and ε and b are assumed to be independent. It’s not hard to see that Y follows

multivariate normal distribution with E(Y ) = Xβ and Cov(Y ) = ZΦZT + Σ. Now suppose

we have an experiment in which m subjects come from G groups or clusters, and ni repeated

measurements are collected from each subject. Let Cij = 1 denote the i-th subject from the

j-th group, i = 1, ...,m and j = 1, ..., G. Therefore, if Cij = 1, then the observations from

the i-th subject follow the mixture of linear mixed model proposed by ?,

Yi = Xiβj + Zibij + εij, (1.2.1)

3



where Yi ∈ Rni is the response, Xi ∈ Rni×p and Zi ∈ Rni×q are the known design matrix for

fixed and random effects, respectively. βj ∈ Rp and bij ∈ Rq are the coefficients of the fixed

and random effects, and εij are the regression errors. The traditional mixed effects models

often assume that

bij ∼ Nq(0,Φj) and εij ∼ Nni
(0,Σij), (1.2.2)

where bij, εij are independent for i = 1, ...,m, j = 1, ..., G, and Σij is typically assumed to

depend on i only through their dimensions. For example, an AR(1) covariance structure for

Σij is a usual assumption, see ?. The covariance matrix Φj may be structured or unstruc-

tured. A diagonal structural of Φj is adopted in ?. Alternatively, model (1.2.1) and (1.2.2)

can be written asYi
bij

∣∣∣∣∣
Cij=1

∼ Nni+q


Xiβj

0

 ,

ZiΦjZ
T
i + Σij ZiΦj

ΦjZ
T
i Φj


 ,

where i = 1, . . . ,m and j = 1, . . . , G. In real applications, the latent class variable Cij’s are

not available, thus the conditional distribution of Yi given Xi and Zi can be written as

Yi ∼
G∑
j=1

pjNni
(Xiβj, ZiΦjZ

T
i + Σij), (1.2.3)

where pj = P (Cij = 1), for i = 1, ...,m and j = 1, ..., G.

The normal mixture linear mixed model (1.2.3) can be fitted iteratively by maximum

likelihood via the expectation maximization (EM) algorithm. The general principle and

implementation of the EM algorithm can be found in ?, and an extensive introduction on

this topic can be found in ?. More examples on normal mixtures with EM algorithms can

be found in ?, ?, ?, ? and ? and the references therein. However, the normal mixture

of linear mixed models exhibit non-robustness if the random effects or the regression errors

have longer than normal tails. To robustify the estimation procedure in such important

model, t-distribution, which has a longer tail than the normal distribution, is often used as

the “working” distributions for the random effects and regression errors.
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There are many existing literature on achieving the robustness in various statistical mod-

els using the t distribution. For examples, ?, ?, ?, ? and ?, among others. Motivated by

?, ? proposed a robust estimation procedure using the multivariate t distribution. To be

specific, given Cij = 1, ? assume that

 Yi

bij


∣∣∣∣∣∣∣Cij = 1 ∼ tni+q


 Xiβj

0

 ,

 ZiΦjZ
T
i + Σij ZiΦj

ΦjZ
T
i Φj

 , vj

 , (1.2.4)

where tn(µ,Λ, ν) denotes an n-dimensional multivariate t distribution with mean vector µ,

covariance matrix νΛ/(ν− 2), and degrees of freedom ν. An EM algorithm is designed to fit

the mixture of linear mixed models and simulation studies show that the resulting estimates

possesses robustness. However, to apply ?’s procedure, one has to estimate the degrees of

freedom of the t-distribution. They proposed to apply a numerical optimization method

using the profile likelihood approach, which makes the procedure computationally extensive.

In this proposal, we shall propose a new robust method by replacing the multivari-

ate t-distribution with the multivariate Laplace distribution. Similar to the multivariate

t-distribution, the multivariate Laplace distribution is also a scale mixture of the multivari-

ate normal distribution. This enables us to construct an efficient EM algorithm to estimate

the unknown parameters in the model. Through simulation studies, we shall show that

the proposed estimates are robust against heavy tailed data, also the proposed estimation

procedure is computationally efficient.

1.3 Multivariate Laplace distribution

In this section, the definition and some important properties of the multivariate Laplace

distribution which are directly related to our estimation procedures will be introduced.

There are multiple forms of definitions of the multivariate Laplace distribution. For

example, the bivariate case was introduced by ?, and the first form in larger dimensions

was discussed in ?. Later, the multivariate Laplace was introduced as a special case of the
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multivariate Linnik distribution in ?, and the multivariate power exponential distribution

in ? and ?. ? presented multivariate Laplace distribution as a Gaussian scale mixture.

? presented a version of the multivariate Laplace distribution formally and thoroughly

discussed its properties. The multivariate Laplace distribution is an attractive alternative

to the multivariate normal distribution due to its heavier tails. For its application in image

and speech recognition, ocean engineering and finance, see ?.

Definition 1.3.1. A p-dimensional random vector U is called to have a multivariate Laplace

distribution MLp(µ,Σ), if its density function has the form of

fU(u) =
2

(2π)p/2|Σ|1/2

[
Q(u;µ,Σ)

2

] 1
2

(1− p
2

)

Kp/2−1

(√
2Q(u;µ,Σ)

)
, (1.3.1)

where Q(u;µ,Σ) = (u− µ)′Σ−1(u− µ), µ is p-dimensional location parameter, Σ is a p× p

covariance matrix, and Km(x) is the modified Bessel function of the second kind with order

m, which is defined as

Km(x) =
Γ(m+ 1/2)(2x)m√

π

∫ ∞
0

cos(t)

(t2 + x2)m+1/2
dt.

The modified Bessel function of the second kind is the solution to the modified Bessel

differential equation, and sometimes it is also called the Basset function, the modified Bessel

function of the third kind, or the Macdonald function. See ?, ? for more discussion on the

Bessel functions. In fact, the multivariate Laplace distribution defined in Definition 1 is also

a special case of the symmetric multivariate Bessel distribution defined in ?.

The following lemma provides some important probabilistic properties about the multi-

variate Laplace distribution.

Lemma 1.3.1. Suppose a random vector U ∼MLp(µ,Σ), then

(i) EU = µ and Cov(U) = Σ;

6



(ii) The characteristic function of U is given by

φU(t) =
exp(it′µ)

1 + t′Σt/2
, t ∈ Rp;

(iii) Let V be a scalar random variable with density function fV (v) = e−vI(v > 0), Z be a p-

dimensional standard normal random vector, that is Np(0, I), V and Z are independent.

Then

U =
√
V Σ1/2Z ∼MLp(0,Σ);

(iv) Assume V and U are defined as above. Then

E

(
1

V

∣∣∣∣U = u

)
=

√
2

u′Σ−1u

K−p/2(
√

2u′Σ−1u)

K1−p/2(
√

2u′Σ−1u)
.

For the sake of brevity, these results are only summarized in Lemma 1.3.1 and their

proofs can be founded in relevant literatures mentioned above. From (i) and the density

function of the multivariate Laplace distribution, we can see that the Multivariate Laplace

distribution is uniquely determined by its mean vector and covariance matrix. From (ii)

we can see that the multivariate Laplace distribution defined by (1.3.1) indeed is a natural

extension of univariate Laplace distribution. Similar to the univariate Laplace distribution,

(iii) indicates that the multivariate Laplace distribution is a scale mixture of multivariate

normal distribution, and this property makes it feasible to develop an efficient EM algorithm

to implement the proposed robust estimation procedure. The property (iv) is emphasized

here since it plays a crucial role in the E step of the developed EM algorithm.

7



Chapter 2

Robust Mixture Multivariate

Regression by Multivariate Laplace

Distribution

In this chapter, we first introduce the mixture of multivariate linear regression models in

Section 2.1. The EM algorithm will be developed in Section 2.2 for both multivariate linear

and mixture of multivariate linear regression models. Section 2.3 includes some simulation

studies to evaluate the performance of the proposed methods and comparison studies with

some existing methods will be also made. The proof of the ascent property of the proposed

EM algorithm is deferred to Appendix A.

2.1 Mixture of Multivariate Linear Regression

Let G be a latent class variable such that given G = j, j = 1, 2, . . . , g, g ≥ q, a p-dimensional

response Y and a q-dimensional predictor X are in one of the following multivariate linear

regression models

Y = β′jX + εj, (2.1.1)

8



where, for each j, βj is a q×p unknown regression coefficient matrix, and εj is a p-dimensional

random error. Assume εj’s are independent ofX and it is commonly assumed that the density

functions fj of εj’s are members in a location-scale family with mean 0 and covariance Σj. If

we further suppose P (G = j) = πj, j = 1, ..., g, then conditioning on X, the density function

of Y is given by

f(y|x, θ) =

g∑
j=1

πjfε(y − β′jx, 0,Σj), (2.1.2)

where θ = {π1, β1,Σ1, ..., πg, βg,Σg}. The model (2.1.2) is the so called mixture multivariate

regression models. The unknown parameters could be estimated by the maximum likeli-

hood estimator (MLE), which maximizes the log-likelihood function (2.1.3) based on an

independent sample (Xi, Yi), i = 1, ..., n from (2.1.2),

Ln(θ) =
n∑
i=1

log

[
g∑
j=1

πjfε(Yi, β
′
jXi,Σj)

]
. (2.1.3)

If g = 1, then the mixture linear regression model is simply a multivariate linear regression

model. The proposed robust estimation procedure is applicable for both multivariate linear

regression models and mixture multivariate linear regression models.

The traditional maximum likelihood estimation procedure is based on the normality

assumption. However, no explicit solution is available due to the untractable expression

of (2.1.3), and EM algorithm thus developed to obtain its the maximizer, which is also

evidenced from the simulation results presented in section 2.3. As we mentioned in section

1.1, the MLE based on the normality assumption is sensitive to outliers or heavy-tailed error

distribution, and we shall develop a robust estimation procedure by assuming that the error

distributions are Laplacian.

2.2 Robust Estimation Procedure

We start with the simpler case of g = 1. The methodology developed for this case has its

own interest, and moreover, the arguments used in this case can help us understand well the

9



logic of the methodology development in the case of g > 1, without entangling us with the

complexity of the notations.

2.2.1 Robust Estimation in Multivariate Linear Regression Mod-

els

Assume that ε ∼ MLp(0,Σ). and (Y ′i , X
′
i)
′, i = 1, ..., n is a sample of size n from model

(2.1.1) with g = 1. Then the likelihood function of β,Σ has the form of

L(β,Σ; Y,X) =
n∏
i=1

fε(Yi, β
′Xi,Σ),

where Y = (Y ′1 , Y
′

2 , . . . , Y
′
n)′ and X = (X ′1, X

′
2, . . . , X

′
n)′, and fε(·) is defined in (1.3.1). Due

to the non-differentiable nature of the Laplace density function, the likelihood function is

hard to maximize w.r.t. β and Σ. However, based on (iii) of Lemma 1.3.1, if the latent

observation V = (V1, V2, . . . , Vn) is available, then the complete likelihood function becomes

L(β,Σ; Y,X,V)

=
n∏
i=1

1

(2πVi)p/2|Σ|1/2
exp

(
− 1

2Vi
(Yi − β′Xi)

′Σ−1(Yi − β′Xi)− Vi
)
,

and the log-likelihood function therefore can be written as

`(β,Σ; Y,X,V) = logL(β,Σ; Y,X,V)

= −p
2

n∑
i=1

log(2πVi)−
n∑
i=1

1

2Vi
(Yi − β′Xi)

′Σ−1(Yi − β′Xi)−
n∑
i=1

Vi −
n

2
log |Σ|.

Following the two steps in the EM algorithm, assuming that β(m) and Σ(m) are the values of

β and Σ for the m-th iteration, and denote

wi = E

[
1

Vi

∣∣∣∣Yi, Xi, β
(m),Σ(m)

]
,

10



then we have to calculate the conditional expectation

E[`(β,Σ; Y,X,V)|Y,X, β(m),Σ(m)]

= −np
2

log 2π − n

2
log |Σ| − 1

2

n∑
i=1

wi(Yi − β′Xi)
′Σ−1(Yi − β′Xi)

−
n∑
i=1

E[log Vi|Yi, Xi, β
(m),Σ(m)]−

n∑
i=1

E[Vi|Yi, Xi, β
(m),Σ(m)],

and maximize the conditional expectation with respect to β and Σ. Clearly, it is sufficient

to minimize
n

2
log |Σ|+ 1

2

n∑
i=1

wi(Yi − β′Xi)
′Σ−1(Yi − β′Xi), (2.2.1)

with respect to β and Σ. From (iv) in Lemma 1.3.1, and recall the notation Q(u;µ,Σ)

defined in Definition 1, we could obtain

wi =
K−p/2

(√
2Q(Yi; β(m)′Xi,Σ(m))

)
K1−p/2

(√
2Q(Yi; β(m)′Xi,Σ(m))

)√ 2

Q(Yi; β(m)′Xi,Σ(m))
.

If we further denote W = diag(w1, w2, ..., wn), then the minimizer of (2.2.1) has the forms of

β(m+1) = (X′WX)−1X′WY,

Σ(m+1) = n−1Y′[W −WX(X′WX)−1X′W]Y.

In particular, if p = 1, then K−1/2(x) = K1/2(x) = 1, so wi = σ(m)
√

2/|Yi − β(m)Xi|. This

reproduces the result in ?.
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2.2.2 Multivariate Mixture Regression Models

In this section, we shall consider the mixture of multivariate linear regression model. Assume

that εj ∼ML(0,Σj) and
∑g

j=1 πj = 1, g > 1. Define

Gij =


1 if i-th observation (Xi, Yi) is from j-th component;

0 otherwise.

Let (Xi, Yi, Gij), i = 1, 2, ..., n, j = 1, 2, ..., g be a sample from the model (2.1.1). Once again,

recall the notation Q(u;µ,Σ) in Definition 1, and we further denote Qij = Q(Yi; β
′
jXi,Σj) for

the sake of convenience, the complete likelihood function L(θ) of θ = (β1, ..., βg,Σ1, ...,Σg, π1, ..., πg)

can be written as

n∏
i=1

g∏
j=1

{(
2πj

(2π)p/2|Σj|1/2

)[
Qij

2

]1/2−p/4

Kp/2−1

(√
2Qij

)}Gij

.

Based on (iii) in Lemma 1.3.1, similar to the discussion for the case of g = 1, for each (Xi, Yi),

if we can further observe Vi, i = 1, 2, .., n, then the complete log-likelihood function of θ, the

collection of all unknown parameters, will be given by

L(θ) =
n∑
i=1

g∑
j=1

Gij log πj −
p

2

n∑
i=1

g∑
j=1

Gij log(2πVi)−
1

2

n∑
i=1

g∑
j=1

Gij log |Σj|

− 1

2

n∑
i=1

g∑
j=1

Gij

Vi
Qij −

n∑
i=1

g∑
j=1

GijVi.

With the initial values for θ(0) = (π(0), β(0),Σ(0)), we have to calculate

E[L(θ)|θ(0),D] =
n∑
i=1

g∑
j=1

τij log πj −
p

2

n∑
i=1

g∑
j=1

E[Gij log 2πVi|θ(0),D]

− 1

2

n∑
i=1

g∑
j=1

τij log |Σj| −
1

2

n∑
i=1

g∑
j=1

E

[
Gij

Vi
Qij

∣∣∣∣ θ(0),D

]
−

n∑
i=1

g∑
j=1

E(Gij|θ(0),D),
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where we use D to denote the complete data set for the sake of brevity. The above conditional

expectation can be further written as

n∑
i=1

g∑
j=1

τij log πj −
1

2

n∑
i=1

g∑
j=1

τij log |Σj| −
1

2

n∑
i=1

g∑
j=1

τijδijQij + Rn, (2.2.2)

where

τij = E[Gij|θ(0),D], δij = E

[
1

Vi

∣∣∣∣ θ(0),D, Gij = 1

]
,

and the reminder term Rn does not depend on the unknown parameters. In fact, we have

E

[
Gij

Vi

∣∣∣∣ θ(0),D

]
= E

[
1

Vi

∣∣∣∣ θ(0),D, Gij = 1

]
P (Gij = 1|θ(0),D) = τijδij.

Denote Q
(0)
ij = Q(Yi;X

′
iβ

(0)
j ,Σ

(0)
j ), we know that

δij =

√
2K−p/2

(√
2Q

(0)
ij

)
√
Q

(0)
ij K1−p/2

(√
2Q

(0)
ij

) .

One can further show that , by applying Bayesian formula,

τij = P (Gij = 1|θ(0),D)

=

π
(0)
j |Σj|−1/2[Q

(0)
ij ]1/2−p/4Kp/2−1

(√
2Q

(0)
ij

)
∑g

l=1 π
(0)
l |Σl|−1/2[Q

(0)
il ]1/2−p/4Kp/2−1

(√
2Q

(0)
il

) .

Base on the above discussion, the EM algorithm for estimating θ is as follows:

EM Algorithm:

(1) Choosing initial values for β,Σ, π, say β(0),Σ(0), π(0); then at the k + 1-th iteration,

13



(2) E-Step: Calculate τ
(k+1)
ij , δ

(k+1)
ij from above equations with (0) replaced by (k);

(3) M-Step: Update β,Σ, π with

π
(k+1)
j =

1

n

n∑
i=1

τ
(k+1)
ij ,

β
(k+1)
j = (X′WjX)−1(X′WjY),

Σ
(k+1)
j =

Y′(Wj −WjX(X′WjX)−1XWj)Y∑n
i=1 τ

(k+1)
ij

.

where Wj = diag(τ
(k+1)
1j δ

(k+1)
1j , τ

(k+1)
2j δ

(k+1)
2j , . . . , τ

(k+1)
nj δ

(k+1)
nj ).

(4) Repeat (2) and (3) until certain convergence criterion is met.

The ascent property is a very important characteristic possessed by the EM algorithm in

parametric models. It implies that after each iteration, the likelihood at the newly updated

estimate is no less than the likelihoods at the previous estimates. In the following, we will

present a theorem which states that the proposed EM algorithm in the current context also

has this desired property.

Theorem 1. Let θ(k) denote the estimate of θ in the k-th iteration of the EM algorithm,

then for any n,

Ln(θ(k+1)) ≥ Ln(θ(k)),

where Ln(θ) is defined in (2.1.3).

The main proof of Theorem 1 is similar to the proof of Theorem 3 in ?. However, a

nontrivial modification is needed to accommodate both latent variables G and V . If we

further assume that all Σj’s are equal, then the common covariance matrix can be estimated

by

Σ(k+1) = n−1

g∑
j=1

Y′(Wj −WjX(X′WjX)−1XWj)Y.
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One can easily check that if Y is one-dimensional, then all the formulae listed in the M-step

of the above EM algorithm are exactly the same as in ?.

As we mentioned in section 1.1, the robustness of the EM procedure developed in ?

is well aligned with the close connection between the MLE of the regression coefficients

when the error term has a Laplace distribution and the LAD regression, this is also true

for the EM procedure we developed above for the multivariate case. Also, from the M-

step, we can see that the estimate of the regression coefficients βj’s indeed is a weighted

least squares estimate, and the factor δ
(k+1)
ij from the weights w

(k+1)
ij depends on the Q

(k)
ij =

(Yi − (β
(k)
j )′Xi)

′(Σ
(k)
j )−1(Yi − (β

(k)
j )′Xi) in a rather complicated way. However, for each i, j,

δ
(k+1)
ij is indeed a decreasing function of Q

(k)
ij , which indicates that similar to the scalar

response case discussed in ?, less weights will be received for those observations with larger

residuals in the estimation procedure, which guarantees the robustness of the proposed EM

algorithm.

Note that when Qij = 0, δij will be infinite. This creates some difficulties when we

program since very big value of δij would make the computation very unstable. For g = 1

and scalar response case, Phillips (2002) noticed that this problem rarely arises, but this does

occur often in our case. Similar to ?, in our simulation study, we adopt a hard threshold

rule to control the effect of extremely small Qij values in each iteration step. Under this

rule, δ
(k+1)
ij will be assigned a value of 106 if the corresponding Qij equals 0. To see the

effects of different choices of the threshold values, we also tried other threshold values, such

as 108, 1010, and all these choices produce similar results. Therefore, only the results for 106

are reported. Note that numerical instability could also occur if the weights are very small,

to deal with this, we use the another hard threshold rule on the value of τij, if τ k+1
ij > 10−6,

then τ k+1
ij itself will be used for the next iteration; otherwise, 10−6 will be used as the weight

for the next iteration. Same technique is used in ? and ?. For more deep discussion on this

issue in the case of g = 1, see ?.

To conclude this section, we would like to point out that the proposed EM algorithm based

on the multivariate Laplace distribution is robust against outliers along the y-direction, but

not in the x-direction. Therefore, certain modification is needed to equip the proposed
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method with some robustness against the outliers in x-direction. Here we recommend a

pre-screening method. That is, exclude the observations which is deemed to be an outlier in

x-direction before applying the proposed EM algorithm. For this purpose, we first calculate

the leverage value for each observation using the formula hjj = n−1 + (n− 1)−1MDj, where

MDj = (Xj − X̄)′S−1(Xj − X̄), X̄, S are the sample mean and sample covariance matrix

of Xj’s, respectively. The j-th observation will be identified as a high leverage point if

hjj > 2p/n, where p is the dimension of X. Some robust estimation of the population mean

and covariance matrix of X can be used instead of the sample mean and sample covariance.

For example, the minimum covariance determinant (MCD) estimators developed in ?, and

the Stahel-Donoho (SD) estimator from ? and ?. More discussion on this matter can be

found in ? and ?.

2.3 Simulation Studies

To evaluate the performance of the proposed robust estimation procedure, we conduct some

simulation studies in this section. In the first simulation, a comparison study is made between

the prosed method and the MCD-based robust multivariate regression procedure discussed in

?. Note that this study is done only for the non-mixture case, due to the MCD-based robust

estimation procedure does not have a clearly workable extension to the mixture cases. In the

second simulation, a case of g > 1 will be considered. We shall compare the proposed method

with other two methods, the traditional MLE assuming the error has a multivariate normal

density and the robust mixture regression model based on the multivariate t distribution.

2.3.1 Simulation 1: g = 1 case

Among many robust multivariate regression procedures, the one based on the MCD has

been enjoyed great popularity since its introduction by ?. To be specific, let Zi = (Yi, Xi)
′,

and Zn = (Z1, ..., Zn). The MCD regression first looks for the subset (Zi1 , ..., Zih) of size h

of Zn whose covariance matrix has the smallest determinant, then the usual least squared
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estimation procedure (mcdLSE) is applied to the selected subset to obtain the estiamtes

for the regression coefficients. Common choices of h are h ≈ n/2 or 3n/4. To increase the

efficiency, ? proposed three reweighted least squared estimation procedures by reweighting

the location (mcdLoc), the regression (mcdReg), both the location and regression (mcdLR).

In the simulation, the data are generated from the multivariate regression models Y =

β′X + ε, where β is a q × p = 4 × 10 matrix with entries randomly generated from a

uniform distribution on [0, 10], X follows a 4−dimensional multivariate normal distribution

with mean 0 and identity covariance matrix. The regression errors ε are chosen from 6

different distributions: (a) the multivariate standard normal; (b) the multivariate Laplace

distribution with identity covariance matrix; (c) the multivariate t distribution with degrees

of freedom 1; (d) the multivariate t distribution with degrees of freedom 3; (e) the normal

mixture 0.95N(0, I) + 0.05N(0, 50I), and (f) a multivariate normal with 5% x−direction

high leverage outliers, all x−values being 10 and all y−values 2.

Case (a) is often used to evaluate the efficiency of different estimation methods compared

to the traditional MLE when error is exactly multivariate normally distributed and there

are no outliers. Under case (b), the proposed estimation procedure will provide the MLE

of unknown parameters, which, as in the first case, would serve as a baseline to evaluate

the performance of other estimation procedures. Both case (c) and (d) are heavy tailed

distributions and are often used in the literature to mimic the outlier situations. Case (e)

would produce 5% low leverage outliers, and in case (f) 5% of the observations are replicated

serving as the high leverage outliers, which will be used to check the robustness of estimation

procedures against the high leverage outliers.

The sample size of n = 200 is used in the simulation study. For each case, the simulation

is repeated 200 times. the average L2−norm of the differences of the estimated β values

from their true values are used as the criterion to evaluate the performance of the proposed

(L-EM) and MCD based estimation procedures. Table 2.1 is a summary of the simulation

results.

Clearly, one can see the proposed estimation procedure performs better than the MCD-

based estimation procedures for all chosen scenarios (a)-(e), and the MLE based on the
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Error Normal mcdLSE mcdLoc mcdReg mcdLR L-EM
(a) 0.2060 0.2990 0.2424 0.5472 0.3102 0.2517
(b) 0.4097 0.4487 0.3920 0.6791 0.4457 0.3358
(c) 40868.81 0.8786 0.8227 1.0766 0.8419 0.8012
(d) 40869.43 1.2239 1.1637 1.4826 1.2001 1.1172
(e) 40870.17 1.5287 1.4184 2.0247 1.5314 1.4045
(f) 41888.27 1.8193 1.6604 2.5675 1.8476 123.5556

Table 2.1: Simulation 1 results for g = 1.

normal distribution is not resistant to the outliers at all. However, the worse performance

in (f) indicates that the proposed estimate is not robust to the outliers in x−directions.

2.3.2 Simulation 2: g > 1 case

For convenience, we will denote N-EM the EM algorithm based on Normal distribution, t-

EM the EM algorithm based on t distribution and L-EM the EM algorithm based on Laplace

distribution. To implement the t−EM procedure, the profile likelihood method discussed in

? is adopted to determine the proper degrees of freedom. The data are generated from the

mixture of multivariate linear regression models with g = 2: Y = β′1X + ε1 if G = 1 and

Y = β′2 + ε2 if G = 2, where G is a component indicator of Y with P (G = 1) = 0.25. The

true regression coefficients are chosen to be

β1 =

 β11 β12 β13

β21 β22 β23

 =

 1 1 1

2 1 3

 , β2 = −β1.

The covariance X ∈ R2 are generated from N2(0, I2×2), the random errors ε1 and ε2 have

the same distribution as ε. We will consider the following six error distributions: (a) ε ∼

N(0, I3×3); (b) ε ∼ 3−dimensional Laplace distribution with mean 0 and identity covariance

matrix; (c) ε ∼ t1, the 3−dimensional t distribution with 1 degrees of freedom, denoted as

MT3(1); (d) ε ∼ t3, the 3−dimensional t distribution with 3 degrees of freedom, denoted as

MT3(3); (e) ε ∼ 0.95N(0, I3×3) + 0.05N(0, 50I3×3); (f) ε ∼ N(0, I3×3) with 5% high leverage

outliers in both x− and y− directions (X1 = X2 = 5, Y = 100); and (g) ε ∼ N(0, I3×3) with
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5% high leverage outliers only in x−direction (X1 = X2 = 5, Y = 0).

The sample size of n = 100 is used in the simulation study. For each case, the simulation

is repeated 200 times. Same criterion as in simulation 1 are used as the criterion to evaluate

the performance of various estimation procedures, except that this is done separately for π,

(β11, β12, β13) and (β21, β22, β23). The simulation results are summarized in Table 2.2.

From the simulation results, we can see that if the true distribution of ε is normal,

the MSEs of traditional MLE procedure are slightly smaller than two robust estimation

procedures, which indicates the proposed estimation procedure and the procedure based

on the multivariate t distribution are as efficient as the traditional MLE. For other cases

when the distribution of ε has heavier tail or there are high leverage outliers in the data set,

traditional MLE fails to provide reasonable estimates. The robust estimation via multivariate

t distribution performs well, except when high leverage outliers are present in the data set.

The computation of robust multivariate t distribution is intensive due to the estimation

of degrees of freedom parameters. The simulation results clearly show that the proposed

method in the paper outperforms or is at least comparable to any other methods except for

some scenarios, for example, when ε has a lighter tail, the MSEs of proposed method are

slightly larger than the traditional MLE method. However, when the ε has a heavier tail, the

MSEs of proposed method are comparable to robust multivariate t distribution, and when

the high leverage outliers are present in both directions, the proposed method outperforms

any other methods. It is also clear that the proposed method and the t-procedures is not

very robust when the outliers appear in the x-direction.

In summary, the simulation results indicate that the performance of the proposed robust

estimation procedure is, in most of cases, comparable to the t−procedure. However, the extra

step for finding a proper degrees of freedom makes the t−procedure is more computationally

extensive than the proposed estimation procedure. Also, when p = 1, the natural connection

between the LAD (least absolute deviation) estimate and the MLE based on Laplace distri-

butions appears more attractive. That said, we do not intend to say the proposed robust

estimation procedure is better than the t−procedure in all aspects. In fact, the extra degrees

of freedom might provide t−procedure an extra adaptivity to the data. Except for propos-
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Error N-EM L-EM t-EM
(a) (0.002, 0.027, 0.015) (0.003, 0.056, 0.022) (0.003, 0.042, 0.022)
(b) (0.002, 0.082, 0.030) (0.002, 0.020, 0.022) (0.002, 0.032, 0.014)
(c) (0.034, 5.054, 2.604) (0.004, 0.190, 0.039) (0.004, 0.062, 0.026)
(d) (0.004, 0.162, 0.077) (0.003, 0.030, 0.042) (0.003, 0.033, 0.019)
(e) (0.003, 0.336, 0.176) (0.002, 0.043, 0.045) (0.002, 0.032, 0.029)
(f) (0.031, 49.362, 3.645) (0.004, 0.073, 0.196) (0.017, 11.409, 0.260)
(g) (0.009, 12.870, 0.075) (0.006, 2.478, 0.992) (0.004, 7.409, 0.016)

Table 2.2: Simulation 2 results for g > 1.

ing a computationally efficient robust estimation procedure for the mixtures of multivariate

linear regression, the significance of this paper is to provide another alternative to robustly

estimate the regression parameters in such models. In real application, collectively using all

the available robust estimation methods might provide us more accurate information on the

data structures.
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Chapter 3

Robust Mixture of Linear Mixed

Models by Multivariate Laplace

Distribution

In last chapter, we have shown that the estimation procedure based on multivariate Laplace

distribution indeed possesses certain robustness in multivariate mixture regression models.

In this chapter, we will extend the similar methodology to the mixture of linear mixed

models. Section 3.1 will introduce the mixture of linear mixed models with multivariate

Laplace distribution. An EM algorithm will be constructed in Section 3.2, together with a

theoretical result on the ascent property of the proposed EM algorithm. The proof of the

ascent property of the proposed EM algorithm is postponed to Appendix B. Finite sample

performance of the proposed robust models will be evaluated through simulation studies ,

as well as a sensitivity study using the proposed method on a real data set in Section 3.3.
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3.1 Mixture Linear Mixed Models with Multivariate

Laplace Distribution

Instead of assuming the random components to have multivariate t-distribution, we assume

that given Cij = 1, the joint distribution of (Yi, bij) is

 Yi

bij


∣∣∣∣∣∣∣
Cij=1

∼MLni+q


 Xiβj

0

 ,

 ZiΦjZ
T
i + Σij ZiΦj

ΦjZ
T
i Φj


 .

For simplicity, we assume the error covariance has a diagonal form Σij = σ2
j Ii, for i = 1, ...,m,

j = 1, ..., G, and Ii is identity matrix throughout the paper. The marginal distribution of Yi

thus can be written as

Yi ∼
G∑
j=1

pjMLni
(Xiβj, ZiΦjZ

T
i + Σij) (3.1.1)

and the log-likelihood function for given observed data is

Lm(θ) =
m∑
i=1

ln

{
G∑
j=1

pjMLni
(Yi −Xiβj, ZiΦjZ

T
i + Σij)

}
, (3.1.2)

where θ denotes the collection of all unknown parameters.

Directly maximizing the above log-likelihood function is infeasible due to its untractable

form. In the following, an EM algorithm is pursued to obtain the MLE, which is made

possible by the fact that the multivariate Laplace distribution is a scale mixture of multi-

variate normal distribution. In fact, from the discussion in section 1.3, for each pair (i, j),

i = 1, 2, . . . ,m and j = 1, 2, . . . , G the following hierarchical model leads to a marginal
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multivariate Laplace distribution of Yi as in (3.1.1).

Yi|bij, Vij ∼
G∑
j=1

pjN(Xiβj + Zibij, VijΣij),

bij|Vij ∼ N(0, VijΦj), Vij ∼ g(v) = e−vI(v > 0). (3.1.3)

Imposing multivariate Laplace distributions on random effects and regression errors si-

multaneously, the robustness can be achieved at both levels of the within subjects errors and

between subjects errors. Similar to the t procedure in ?, we assume that bij ∼ MLq(0,Φj)

and εij ∼MLni
(0,Σij). In the meanwhile, we also assume that given Vij, bij is independent

of εij, then the above hierarchical structure can be expressed as the conventional mixed ef-

fects model Yi = Xiβj + Zibij + εij for i = 1, ...,m, j = 1, . . . , G. On the other hand, we also

can obtain a two level hierarchical structure

Yi|Vij ∼
G∑
j=1

pjN(Xiβj, Vij(ZiΦjZ
T
i + Σij)), Vij ∼ g(v) = e−vI(v > 0).

3.2 EM Algorithm for Robust Mixture Linear Mixed

Models

The complexity of the log-likelihood function (3.1.2) makes it hard to maximize directly.

In this section, we shall develop an efficient EM algorithm to obtain the MLE. The EM

algorithm is made possible by utilizing the information from three missing components, the

latent class variable Cij, the missing scale variable Vij and the random effects bij, i = 1, . . . ,m,

j = 1, . . . , G, as well as the hierarchical structure (3.1.3).

For convenience, denote D as the complete data set including all Xi, Yi, Zi, bij, Cij, Vij,

i = 1, . . . ,m, j = 1, . . . , G. Here we treat {bij, Vij, Cij} as missing data. From the hierarchical

model (3.1.3), the complete likelihood function of Θ =
{

(pj, βj, σ
2
j ,Φj), j = 1, ..., G

}
based
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on D can be written as

m∏
i=1

G∏
j=1

{pjf(Yi;Xiβj + Zibij, VijΣij)f(bij; 0, VijΦj)g(Vij)}Cij .

Therefore the complete log-likelihood function is

L(Θ|D) =
m∑
i=1

G∑
j=1

Cij ln(pj) +
m∑
i=1

G∑
j=1

Cij

{
−1

2
ln |Vijσ2

j Ii| −
1

2
UT
ij (Vijσ

2
j Ii)

−1Uij

}

+
m∑
i=1

G∑
j=1

Cij

{
−1

2
ln|VijΦj| −

1

2
bTij(VijΦj)

−1bij

}
+Rn

=L1(p|D) + L2(β, σ2|D) + L3(Φ|D) +Rn, (3.2.1)

where Uij = Yi−Xiβj−Zibij, Rn is the collection of all terms which do not involve unknown

parameters and hence plays no role in the subsequent EM procedure, and a little bit of abuse

of notations, p, β, σ2,Φ are the collections of all corresponding parameters, respectively. After

some simple algebra, we can rewrite L2(β, σ2|D) and L3(Φ|D) as

L2(β, σ2|D) = −
m∑
i=1

G∑
j=1

niCij
2

ln(σ2
j )

−
m∑
i=1

G∑
j=1

Cij
2Vijσ2

j

tr
{

(Yi − Zibij)(Yi − Zibij)T
}

+
m∑
i=1

G∑
j=1

Cij
Vijσ2

j

βTj X
T
i (Yi − Zibij)−

m∑
i=1

G∑
j=1

Cij
2Vijσ2

j

βTj X
T
i Xiβj,

L3(Φ|D) = −1

2

m∑
i=1

G∑
j=1

Cij ln |Φj| −
1

2
tr

{
Φ−1
j

m∑
i=1

G∑
j=1

CijV
−1
ij bijb

T
ij

}
.

By the EM algorithm protocol, we have to derive the conditional distribution of (3.2.1)

given the observed data set on Y,X,Z and initial estimates for all unknown parameters.

For this purpose, denote Θ(0) as the initial estimate of Θ, and we have to find the following
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expectations

p
(1)
ij = E(Cij = 1|Θ = Θ(0), Y ), (3.2.2)

v
(1)
ij = E

(
1

Vij

∣∣∣∣Θ = Θ(0), Y, Cij = 1

)
, (3.2.3)

b
(1)
ij = E(bij|Θ = Θ(0), Y, Cij, Vij), (3.2.4)

Ω
(1)
ij =

1

Vij
Cov(bij|Θ = Θ(0), Y, Cij, Vij). (3.2.5)

Denote

Q
(0)
ij = (Yi −Xiβ

(0)
j )T (ZiΦ

(0)
j ZT

i + Σ
(0)
ij )−1(Yi −Xiβ

(0)
j ).

(3.2.2) can be calculated using the Bayesian formula,

p
(1)
ij =

p
(0)
j |ZiΦ

(0)
j ZT

i + Σ
(0)
ij |−

1
2 (Q

(0)
ij )

1
2
−ni

4 K(ni/2−1)

(√
2Q

(0)
ij

)
∑G

j=1 p
(0)
j |ZiΦ

(0)
j ZT

i + Σ
(0)
ij |−

1
2 (Q

(0)
ij )

1
2
−ni

4 K(ni/2−1)

(√
2Q

(0)
ij

) . (3.2.6)

The calculation of (3.2.3) follows the similar argument as in ?, and

v
(1)
ij =

√
2K−ni/2

(√
2Q

(0)
ij

)/√
Q

(0)
ij K1−ni/2

(√
2Q

(0)
ij

)
.

Based on the hierarchical structure (3.1.1), given Cij = 1 and Vij, (bij, Yi) are jointly normal,

so given Yi, Cij = 1, Vij, bij follows a q-dimensional normal distribution with mean Γij(Yi −

Xiβj), and covariance matrix Vij(Φj − ΓijZiΦj)), where Γij = ΦjZ
T
i (ZiΦjZ

T
i + σ2

j Ii)
−1,

therefore,

b
(1)
ij = Φ

(0)
j ZT

i (ZiΦ
(0)
j ZT

i + σ2
j Ii)

−1(Yi −Xiβ
(0)
j )

= (Φ
−1(0)
j + σ

−2(0)
j ZT

i I
−1
i Zi)

−1σ
−2(0)
j ZT

i I
−1
i (Yi −Xiβ

(0)
j ), (3.2.7)
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Ω
(1)
ij = Φ

(0)
j − Φ

(0)
j ZT

i (ZiΦ
(0)
j ZT

i + σ
2(0)
j Ii)

−1ZiΦ
(0)
j

=
(

Φ
−1(0)
j + σ

−2(0)
j ZT

i I
−1
i Zi

)−1

. (3.2.8)

Also, we can show that

E
[
Cij/Vij|Θ = Θ(0), Y

]
= E

[
I(Cij = 1)/Vij|Θ = Θ(0), Y

]
=E

[
1/Vij|Θ = Θ(0), Y, Cij = 1

]
P (Cij = 1|Θ = Θ(0), Y ) = v

(1)
ij p

(1)
ij .

Based on all the results above, given the observed data Y and the initial estimate Θ(0), the

conditional expectations of L1(p|D), L2(β, σ2|D) and L3(Φ|D) can be calculated as follows

E(L1(p|D)|Y,Θ(0)) =
m∑
i=1

G∑
j=1

p
(1)
ij ln(pj), (3.2.9)

E(L2(β, σ2|D)|Y,Θ(0)) = −
m∑
i=1

G∑
j=1

p
(1)
ij

ni
2

ln(σ2
j )

−
m∑
i=1

G∑
j=1

p
(1)
ij

1

2σ2
j

tr
[{
ZiΩ

(1)
ij Z

T
i + v

(1)
ij (Yi − Zib(1)

ij )(Yi − Zib(1)
ij )T

}]
+

m∑
i=1

G∑
j=1

p
(1)
ij

1

σ2
j

v
(1)
ij β

T
j X

T
i (Yi − Zib(1)

ij )−
m∑
i=1

G∑
j=1

p
(1)
ij

1

2σ2
j

v
(1)
ij β

T
j X

T
i Xiβj, (3.2.10)

and

E(L3(Φ|D)|Y,Θ(0))

= −1

2

m∑
i=1

G∑
j=1

p
(1)
ij ln |Φj| −

1

2
tr

{
Φ−1
j

m∑
i=1

G∑
j=1

p
(1)
ij

(
v

(1)
ij b

(1)
ij b

(1)T
ij + Ω

(1)
ij

)}
. (3.2.11)

Since L1(p|D), L2(β, σ2|D) and L3(Φ|D) involve separate sets of unknown parameters, thus

to maximize the conditional expectation of the complete log-likelihood function is amount

to maximize the three L-functions with respect to their own unknown parameters. Thus, we
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have the following EM algorithm.

EM Algorithm

(I) Start with an initial value for Θ(0) = (p
(0)
j , β

(0)
j ,Φ

(0)
j , σ2(0)

j ), for j = 1, ..., G.

(II) E-Step: In the (k + 1)-th iteration, calculate p
(k+1)
ij , v

(k+1)
ij , b

(k+1)
ij and Ω

(k+1)
ij by using

(3.2.2), (3.2.3), (3.2.4) and (3.2.5), for i = 1, ...,m and j = 1, ..., G, with (0) replaced

by (k), and (1) replaced by (k + 1). Subsequently, the constructions of conditional

expected complete log-likelihood functions are based on (3.2.9), (3.2.10) and (3.2.11).

(III) M-Step: Maximize the expected complete log-likelihood functions, orE(L1(p|D)|Y,Θ(k)),

E(L2(β, σ2|D)|Y,Θ(k)) and E(L3(Φ|D)|Y,Θ(k)) with respect to their own unknown pa-

rameters, resulting the following formulas:

(i) Maximizing E(L1(p|D)|Y,Θ(k)) with respect to p leads to p
(k+1)
j

p
(k+1)
j =

1

m

m∑
i=1

p
(k)
ij , j = 1, . . . , G;

(ii) Maximizing E(L2(β, σ2|D)|Y,Θ(k)) with respect to β, σ2 gives

β
(k+1)
j =

(
m∑
i=1

p
(k)
ij v

(k)
ij X

T
i Xi

)−1 m∑
i=1

p
(k)
ij v

(k)
ij X

T
i (Yi − Zib(k)

ij )

and letting U
(k)
ij = Yi −Xiβ

(k+1)
j − Zib(k)

ij , σ2 is updated by

σ
2(k+1)
j =

∑m
i=1 p

(k)
ij

[
v

(k)
ij U

(k)T
ij U

(k)
ij + tr

(
Ω

(k)
ij Z

T
i Zi

)]
∑m

i=1 nip
(k)
ij

;
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(iii) Maximizing E(L3(Φ|D)|Y,Θ(k)) with respect to Φ provides

Φ
(k+1)
j =

∑m
i=1 p

(k)
ij

[
v

(k)
ij b

(k)
ij (b

(k)
ij )T + Ω

(k)
ij

]
∑m

i=1 p
(k)
ij

;

(IV) Repeat steps (II) and (III) until convergence.

One of the desired properties should be possessed for any EM algorithms is the ascent

property, that is, the values of the likelihood function are nondecreasing after each iteration.

This result is summarized in the following theorem.

Theorem 2. Let θ(k) denote the estimate of θ in the kth iteration of the EM algorithm, then

for any m,

Lm(θ(k+1)) > Lm(θ(k)),

where Lm(θ) is the log-likelihood function defined in (3.1.2).

As we mentioned earlier, the major difference of the proposed EM algorithm from ?

EM algorithm is that we don’t have to estimate the degrees of freedom as in multivariate

t-distribution. This has significant effect on the computational aspect, since it is very time-

consuming to search for the right degrees of freedom over a grid of candidate values. Of

course, we must acknowledge that with the degrees of the freedom, the EM algorithm based

on the multivariate t-distribution does have certain flexibility to fit the data in an adaptive

way.

It is well known that the choice of initial values is crucial in the EM algorithms. If

the initial value is not properly chosen, then the updated estimates might converge to the

boundary points where variance is small and log-likelihood function is large. Some recom-

mendations on choosing the initial values can be found in the literature. For example, the

profile likelihood method proposed in ?, the trimmed likelihood estimates suggested in ?,

and the K-means method used in ?. In this paper, we simply adopted some initial values

around true values in the simulation studies for the sake of simplicity.
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3.3 Numerical Studies

To assess the relative performance of the proposed estimation procedure to the exiting proce-

dure based on the multivariate t-distribution, we conducted some simulation studies in this

section, as well as a sensitivity study to the lung function growth study on girls in Topeka,

KS.

3.3.1 Simulation Studies

The simulated data are generated from the following two-components mixture linear mixed

model

Yi =


Xiβ1 + Zibi1 + εi1, if Ci1 = 1,

Xiβ2 + Zibi2 + εi2, if Ci2 = 1.

where i = 1, ...,m, β1 = (1, 1, 0, 0)T , β2 = (0, 0, 1, 1)T , and p1 = P (Ci = 1) = 0.4. The

rows of the covariates Xi ∈ Rni×4 are independently generated from N4(0, I). The rows of

Zi ∈ Rni×2 are independently generated from N2(0, I). The following 4 different scenarios on

the distributions of the random effects and the regression errors are considered. In all cases,

Σij is chosen to be identity matrix and Φj be a diagonal matrix with diagonal elements 1

and off-diagonal elements 0.5.

(1) Normal distribution: εij ∼ Nni
(0,Σij), bij ∼ N2(0,Φj).

(2) t distribution: εij ∼ tni
(0,Σij, ν), bij ∼ t2(0,Φj, ν) with degrees of freedom being 1, 3

and 5.

(3) Laplace distribution: εij ∼MLni
(0,Σij), bij ∼ML2(0,Φj).

(4) Contaminated normal distribution:

εij ∼ 0.95Nni
(0, I) + 0.05Nni

(0, 25I), bij ∼ 0.95N2(0, I) + 0.05N2(0, 25I).

The random errors εi1 and εi2 are chosen to be independent, so are the random effects bi1
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and bi2 for i = 1, ...,m. Each simulation is replicated 200 times for four different cases: (1)

ni = 8, m = 100; (2) ni = 8, m = 200; (3)ni = 6, m = 200; (4)ni = 6, m = 400. The

initial values are chosen to be π1 = 0.5, β1 = (0.5, 0.5, 0, 0)T , and β2 = (0, 0, 0.5, 0.5)T , and

similar to ?, the median squared errors (MedSE) and the relative efficiencies of the proposed

Laplace mixture method, and the t mixture method to the conventional normal mixture

mixed model are reported. The simulation results are presented in Table 3.1-3.4. The values

reported in these tables are the median of standard errors based on 200 simulations, and

the values in the parentheses are the relative efficiency which is defined as the ratio of the

median standard errors from the normal procedure (in the numerator) and the proposed

robust estimation procedure (in the denominator).

Clearly the performance of the proposed method is at least comparable to the robust

t method proposed by ?, and when the random effects and random errors have heavy tail

distributions, both Laplace and t procedures are superior to the normal mixture model.

Interestingly, for the case of the random terms being from t distribution with degrees of

freedom one, the proposed method works even better than the t mixture method. When

the random effects and random errors are normally distributed, the MedSEs from both

robust procedures are slightly larger than those of normal mixtures in general, as expected.

However, the superiority is not significant. When the random effects and random errors

are from the contaminated normal, the t mixture procedures seems better than the Laplace

mixture method, in particular, when the total sample size consisting of the number of subjects

and the repeated measurements from each subjects, get bigger.

We also report the mean square errors (MSEs) for all cases in Table 3.5-3.8, and in these

tables the values in the parentheses are the relative efficiencies which are defined as the

ratio of the MSEs from the normal procedure (in the numerator) and the proposed robust

estimation procedure (in the denominator). Similar patterns are exhibited as in Table 3.1-

3.4.

30



3.3.2 Sensitivity Study

To evaluate how the relevant factors influence the lung function growth, a longitudinal study

of air pollution and health was conducted in six cities across the USA. See ? for a detailed

description. Similar to ?, we only focus on the data collected from 300 female participants

living in Topeka, Kansas. To apply our proposed method, subjects with only one record are

omitted from the model fitting, resulting a data set with 252 subjects aged between 2 and

12.

The response variable Y is chosen to be the logarithmic forced expiratory volume per

second, which is critically important in the diagnosis of obstructive and restrictive diseases

and is a commonly used measure of lung function from the pulmonary function tests. To

model the lung growth pattern over time, the variable age, X, is treated as both the fixed

effect and the random effect. Similar to ?, a three-component mixture of linear mixed model

is chosen to fit the data. In particular, for the i-th subject in the j-th component, the re-

sponse variable and the covariate age are fitted with Yij = β0j + bij0 + (β1j + bij1)Xij + εij.

For comparison purpose, in addition to the estimation results using the proposed Laplace

procedure, the results from the normal mixture and t-mixture proposed in ? are also re-

ported, as seen in the Table 3.9. Besides the estimate of the parameters, the values in the

parentheses are the bootstrap standard deviation of the corresponding estimates based on

100 bootstrap samples.

The first part of Table 3.9 contains the fitting result using the original data set from

the longitudinal study. The degrees of freedom chosen by the t procedure is 28, which

implies that the data are very close to normal and all three methods perform equally well.

To check the robustness of the proposed procedure, we contaminated the data by adding

10 to all the response values in the first subject, and adding 10 to the first two subjects,

respectively, then refit the data using the three procedures. By comparing the estimates

under different cases, we can see that the estimates from both t and Laplace procedures

do not vary too much, indicating that the proposed Laplace estimation procedure and the

t procedure possess certain robustness. However, the normal procedure provides different
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estimates when outliers present. It is noticeable that in most cases the bootstrap standard

deviations from the proposed procedure are smaller than those from t and normal procedures,

which implies the Laplace procedure is much more stable. We also note that the robust t

procedure could adjust the degrees of freedom to achieve robustness, but it takes much time

to find out the right degrees of freedom to fit the data. So, comparing to the t procedure,

the proposed Laplace procedure is more efficient.
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Estimate Method t1 t3 t5 Laplace Normal Contaminated

N-MM 0.0057 0.0031 0.0020 0.0016 0.0011 0.0017

t-MM
0.0045 0.0026 0.0014 0.0018 0.0011 0.0013

π̂1 (1.27) (1.19) (1.43) (0.89) (1.00) (1.31)

L-MM
0.0047 0.0019 0.0011 0.0017 0.0011 0.0014
(1.21) (1.63) (1.82) (0.94) (1.00) (1.21)

N-MM 0.4067 0.1249 0.1290 0.0331 0.0018 0.0899

t-MM
0.0089 0.0039 0.0048 0.0007 0.0014 0.0104

β̂11 (45.67) (32.03) (26.87) (47.29) (1.29) (8.64)

L-MM
0.0057 0.0019 0.0024 0.0003 0.0012 0.0019
(71.35) (65.74) (53.75) (110.33) (1.50) (47.32)

N-MM 0.4354 0.1406 0.1182 0.0299 0.0033 0.0916

t-MM
0.0088 0.0055 0.0032 0.0088 0.0030 0.0093

β̂21 (49.48) (25.56) (36.94) (3.40) (1.10) (9.84)

L-MM
0.0066 0.0054 0.0036 0.0005 0.0032 0.0025
(65.97) (26.04) (32.83) (59.98) (1.03) (36.64)

N-MM 0.3614 0.0782 0.0665 0.0216 0.0026 0.0440

t-MM
0.0050 0.0034 0.0034 0.0007 0.0037 0.0016

β̂31 (72.28) (23.00) (19.56) (30.86) (0.70) (27.5)

L-MM
0.0037 0.0035 0.0022 0.0005 0.0037 0.0026
(97.68) (22.34) (30.23) (43.2) (0.70) (16.92)

N-MM 0.3068 0.0826 0.0627 0.0132 0.0017 0.0459

t-MM
0.0037 0.0054 0.0019 0.0006 0.0016 0.0014

β̂41 (8.29) (15.30) (33.00) (22.00) (1.06) (32.79)

L-MM
0.0045 0.0025 0.0024 0.0005 0.0019 0.0025
(68.18) (33.04) (26.13) (26.40) (0.89) (18.36)

N-MM 0.2036 0.0265 0.0162 0.0047 0.0015 0.0170

t-MM
0.0028 0.0023 0.0011 0.0004 0.0018 0.0014

β̂12 (72.71) (11.52) (14.73) (11.75) (0.83) (12.14)

L-MM
0.0025 0.0021 0.0009 0.0004 0.0018 0.0019
(81.44) (12.61) (18.00) (11.75) (0.83) (8.95)

N-MM 0.1762 0.0245 0.0172 0.0049 0.0012 0.0136

t-MM
0.0035 0.0022 0.0014 0.0005 0.0012 0.0013

β̂22 (50.34) (11.14) (12.29) (9.80) (1.00) (10.46)

L-MM
0.0027 0.0014 0.0011 0.0003 0.0014 0.0017
(65.26) (17.50) (15.64) (16.33) (0.86) (8.00)

N-MM 0.2350 0.0727 0.0600 0.0115 0.0015 0.0437

t-MM
0.0035 0.0033 0.0020 0.0006 0.0020 0.0060

β̂32 (67.14) (22.03) (30.00) (19.17) (0.75) (7.28)

L-MM
0.0029 0.0019 0.0011 0.0004 0.0015 0.0028
(81.03) (38.26) (54.55) (28.75) (1.00) (15.61)

N-MM 0.1655 0.0641 0.0556 0.0171 0.0015 0.0415

t-MM
0.0030 0.0023 0.0013 0.0007 0.0015 0.0046

β̂42 (55.17) (27.87) (42.77) (24.43) (1.00) (9.02)

L-MM
0.0018 0.0022 0.0015 0.0005 0.0019 0.0011
(91.94) (29.14) (37.07) (34.2) (0.79) (37.73)

Table 3.1: MedSE: ni = 8, m = 100
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Estimate Method t1 t3 t5 Laplace Normal Contaminated

N-MM 0.0021 0.0029 0.0019 0.0007 0.0008 0.0013

t-MM
0.0006 0.0011 0.0010 0.0006 0.0009 0.0005

π̂1 (3.50) (2.64) (1.90) (1.17) (0.89) (2.60)

L-MM
0.0006 0.0009 0.0008 0.0005 0.0009 0.0008
(3.50) (3.22) (2.38) (1.40) (0.89) (1.63)

N-MM 0.1345 0.1448 0.1112 0.0426 0.0008 0.0029

t-MM
0.0005 0.0028 0.0023 0.0003 0.0016 0.0015

β̂11 (269.00) (51.71) (48.35) (142.00) (0.50) (1.93)

L-MM
0.0002 0.0013 0.0014 0.0001 0.0015 0.0019
(672.50) (111.38) (79.43) (426.00) (0.53) (1.53)

N-MM 0.1373 0.1369 0.1187 0.0530 0.0008 0.0042

t-MM
0.0007 0.0036 0.0022 0.0003 0.0014 0.0010

β̂21 (196.14) (38.03) (53.95) (176.67) (0.57) (4.20)

L-MM
0.0004 0.0017 0.0013 0.0002 0.0012 0.0015
(343.25) (80.53) (91.31) (265.00) (0.67) (2.80)

N-MM 0.0730 0.0757 0.0686 0.0186 0.0012 0.0021

t-MM
0.0010 0.0022 0.0013 0.0004 0.0011 0.0012

β̂31 (73.00) (34.41) (52.77) (46.50) (1.09) (1.75)

L-MM
0.0004 0.0016 0.0014 0.0002 0.0012 0.0014
(182.5) (47.31) (49.00) (93.00) (1.00) (1.50)

N-MM 0.0760 0.0775 0.0627 0.0211 0.0011 0.0033

t-MM
0.0005 0.0027 0.0019 0.0003 0.0013 0.0008

β̂41 (152.00) (28.70) (33.00) (70.33) (0.85) (4.13)

L-MM
0.0003 0.0015 0.0018 0.0001 0.0013 0.0014
(253.33) (51.67) (34.83) (211.00) (0.85) (2.36)

N-MM 0.0166 0.0220 0.0173 0.0055 0.0005 0.0016

t-MM
0.0002 0.0009 0.0014 0.0001 0.0006 0.0009

β̂12 (83.00) (24.44) (12.36) (55.00) (0.83) (1.78)

L-MM
0.0002 0.0012 0.0010 0.0001 0.0008 0.0011
(83.00) (18.33) (17.30) (55.00) (0.63) (1.45)

N-MM 0.0189 0.0240 0.0147 0.0045 0.0003 0.0014

t-MM
0.0005 0.0012 0.0007 0.0002 0.0004 0.0010

β̂22 (37.80) (20.00) (21.00) (22.50) (0.75) (1.40)

L-MM
0.0002 0.0008 0.0008 0.0001 0.0008 0.0012
(94.50) (30.00) (18.38) (45.00) (0.38) (1.17)

N-MM 0.0587 0.0680 0.0561 0.0242 0.0009 0.0016

t-MM
0.0004 0.0019 0.0011 0.0002 0.0013 0.0006

β̂32 (146.75) (35.79) (51.00) (121.00) (0.69) (2.67)

L-MM
0.0002 0.0011 0.0007 0.0001 0.0011 0.0007
(293.50) (61.82) (80.14) (242.00) (0.82) (2.29)

N-MM 0.0562 0.0644 0.0549 0.0237 0.0006 0.0019

t-MM
0.0006 0.0017 0.0014 0.0003 0.0007 0.0010

β̂42 (93,67) (37.88) (39.21) (79.00) (0.86) (1.90)

L-MM
0.0003 0.0010 0.0007 0.0002 0.0008 0.0012
(187.33) (64.40) (78.43) (118.50) (0.75) (1.58)

Table 3.2: MedSE: ni = 8, m = 200
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Estimate Method t1 t3 t5 Laplace Normal Contaminated

N-MM 0.0041 0.0021 0.0010 0.0011 0.0007 0.0029

t-MM
0.0010 0.0009 0.0006 0.0007 0.0007 0.0008

π̂1 (4.10) (2.33) (1.67) (1.57) (1.00) (3.625)

L-MM
0.0013 0.0012 0.0006 0.0007 0.0007 0.0011
(3.15) (1.75) (1.67) (1.57) (1.00) (2.64)

N-MM 0.2751 0.0862 0.0053 0.0015 0.0018 0.0081

t-MM
0.0056 0.0040 0.0018 0.0003 0.0021 0.0017

β̂11 (49.125) (21.55) (2.94) (5.00) (0.86) (4.76)

L-MM
0.0032 0.0025 0.0021 0.0002 0.0024 0.0020
(85.97) (34.48) (2.52) (7.50) (0.75) (4.05)

N-MM 0.3368 0.0853 0.0026 0.0020 0.0017 0.0089

t-MM
0.0060 0.0036 0.0023 0.0004 0.0018 0.0018

β̂21 (56.13) (23.69) (1.13) (5.00) (0.94) (4.94)

L-MM
0.0028 0.0025 0.0023 0.0003 0.0022 0.0024
(120.29) (34.12) (1.13) (6.67) (0.77) (3.71)

N-MM 0.3317 0.0242 0.0060 0.0014 0.0015 0.0050

t-MM
0.0028 0.0018 0.0022 0.0006 0.0018 0.0018

β̂31 (118.46) (13.44) (2.73) (2.33) (0.83) (2.78)

L-MM
0.0024 0.0021 0.0021 0.0002 0.0023 0.0023
(138.21) (11.52) (2.86) (7.00) (0.65) (2.17)

N-MM 0.2323 0.0258 0.0044 0.0015 0.0013 0.0075

t-MM
0.0024 0.0025 0.0014 0.0005 0.0013 0.0022

β̂41 (96.79) (10.32) (3.14) (3.00) (1.00) (3.41)

L-MM
0.0021 0.0027 0.0022 0.0003 0.0018 0.0024
(110.62) (9.56) (2.00) (3.00) (0.72) (3.13)

N-MM 0.1509 0.0054 0.0023 0.0009 0.0009 0.0043

t-MM
0.0013 0.0015 0.0011 0.0003 0.0012 0.0016

β̂12 (116.08) (3.60) (2.09) (3.00) (0.75) (2.69)

L-MM
0.0020 0.0015 0.0012 0.0002 0.0015 0.0017
(75.45) (3.60) (1.92) (4.50) (0.60) (2.53)

N-MM 0.1189 0.0046 0.0017 0.0011 0.0009 0.0074

t-MM
0.0011 0.0012 0.0008 0.0004 0.0010 0.0015

β̂22 (108.09) (3.83) (2.13) (2.75) (0.90) (4.93)

L-MM
0.0014 0.0016 0.0013 0.0002 0.0017 0.0010
(84.93) (2.88) (1.31) (5.50) (0.53) (7.40)

N-MM 0.1785 0.0425 0.0020 0.0015 0.0010 0.0043

t-MM
0.0032 0.0018 0.0014 0.0004 0.0010 0.0012

β̂32 (55.78) (23.61) (1.43) (1.07) (1.00) (3.58)

L-MM
0.0027 0.0013 0.0019 0.0003 0.0012 0.0016
(66.11) (32.69) (1.05) (5.00) (0.83) (2.69)

N-MM 0.1998 0.0378 0.0022 0.0014 0.008 0.0044

t-MM
0.0021 0.0026 0.0013 0.0005 0.0010 0.0013

β̂42 (95.14) (14.54) (1.69) (2.80) (0.80) (3.38)

L-MM
0.0015 0.0017 0.0010 0.0002 0.0013 0.0015
(133.2) (22.24) (2.20) (7.00) (0.62) (2.93)

Table 3.3: MedSE: ni = 6, m = 200
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Estimate Method t1 t3 t5 Laplace Normal Contaminated

N-MM 0.0041 0.0017 0.0006 0.0003 0.0003 0.0026

t-MM
0.0005 0.0005 0.0005 0.0004 0.0003 0.0003

π̂1 (8.20) (3.40) (1.20) (0.75) (1.00) (8.67)

L-MM
0.0006 0.0007 0.0005 0.0004 0.0004 0.0005
(6.83) (2.43) (1.20) (0.75) (0.75) (5.20)

N-MM 0.3392 0.0893 0.0023 0.0009 0.0009 0.0071

t-MM
0.0050 0.0012 0.0008 0.0002 0.0001 0.0010

β̂11 (67.84) (74.42) (2.88) (4.50) (9.00) (7.10)

L-MM
0.0014 0.0014 0.0011 0.0001 0.0009 0.0006
(242.29) (63.79) (2.09) (9.00) (1.00) (11.83)

N-MM 0.4403 0.0815 0.0020 0.0015 0.0007 0.0066

t-MM
0.0058 0.0005 0.0007 0.0002 0.0009 0.0014

β̂21 (75.91) (163.00) (2.86) (7.50) (0.78) (4.71)

L-MM
0.0017 0.0012 0.0010 0.0001 0.0010 0.0011
(259.00) (67.92) (2.00) (15.00) (0.70) (6.00)

N-MM 0.2340 0.0265 0.0034 0.0013 0.0008 0.0082

t-MM
0.0018 0.0011 0.0015 0.0002 0.0007 0.0009

β̂31 (130.00) (24.09) (2.27) (6.50) (1.14) (9.11)

L-MM
0.0013 0.0012 0.0015 0.0001 0.0009 0.0012
(180.00) (22.08) (2.27) (13.00) (0.89) (6.83)

N-MM 0.2751 0.0266 0.0026 0.0012 0.0007 0.0047

t-MM
0.0019 0.0008 0.0015 0.0001 0.0008 0.0009

β̂41 (144.79) (33.25) (1.73) (12.00) (0.88) (5.22)

L-MM
0.0012 0.0007 0.0011 0.0002 0.0009 0.0013
(229.25) (38.00) (2.36) (6.00) (0.78) (3.62)

N-MM 0.1295 0.0052 0.0014 0.0003 0.0006 0.0042

t-MM
0.0011 0.0029 0.0005 0.0002 0.0006 0.0005

β̂12 (117.72) (1.79) (2.80) (1.50) (1.00) (8.40)

L-MM
0.0010 0.0004 0.0006 0.0001 0.0007 0.0008
(129.50) (13.00) (2.33) (3.00) (0.86) (5.25)

N-MM 0.1059 0.0059 0.0011 0.0007 0.0005 0.0030

t-MM
0.0007 0.0005 0.0006 0.0001 0.0004 0.0006

β̂22 (151.29) (11.80) (1.83) (7.00) (1.25) (5.00)

L-MM
0.0008 0.0005 0.0007 0.0001 0.0004 0.0008
(132.38) (11.80) (1.57) (7.00) (1.25) (3.75)

N-MM 0.1600 0.0453 0.0011 0.0005 0.0003 0.0037

t-MM
0.0026 0.0005 0.0007 0.0002 0.0004 0.0009

β̂32 (61.53) (90.60) (1.57) (2.50) (0.75) (4.11)

L-MM
0.0009 0.0008 0.0006 0.0001 0.0004 0.0008
(177.78) (56.63) (1.83) (5.00) (0.75) (4.63)

N-MM 0.1712 0.0456 0.0013 0.0007 0.0004 0.0030

t-MM
0.0025 0.0008 0.0006 0.0002 0.0003 0.0006

β̂42 (68.48) (57.00) (2.17) (3.50) (1.33) (5.00)

L-MM
0.0011 0.0007 0.0007 0.0001 0.0006 0.0004
(155.64) (65.14) (1.86) (7.00) (0.67) (7.50)

Table 3.4: MedSE: ni = 6, m = 400
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Estimate Method t1 t3 t5 Laplace Normal Contaminated

N-MM 0.0061 0.0043 0.0030 0.0035 0.0020 0.0028

t-MM
0.0076 0.0044 0.0033 0.0031 0.0020 0.0025

π̂1 (0.80) (0.98) (0.91) (1.13) (1.00) (1.12)

L-MM
0.0085 0.0035 0.0024 0.0028 0.0020 0.0032
(0.72) (1.23) (1.25) (1.25) (1.00) (0.88)

N-MM 11.5754 0.1379 0.1321 0.0435 0.0037 0.0917

t-MM
0.0218 0.0094 0.0113 0.0015 0.0040 0.0179

β̂11 (530.98) (14.67) (11.69) (33.46) 0.93() (5.12)

L-MM
0.0150 0.0063 0.0083 0.0011 0.0040 0.0071
(771.69) (21.89) (15.92) (39.55) (0.93) (12.92)

N-MM 24.7536 0.1485 0.1218 0.0450 0.0062 0.0945

t-MM
0.0161 0.0106 0.0064 0.0017 0.0070 0.0181

β̂21 (1537.49) (14.01) (19.03) (26.47) (0.88) (5.22)

L-MM
0.0135 0.0081 0.0066 0.0015 0.0074 0.0064

(1833.60) (16.88) (18.45) (30.00) (0.84) (14.77)

N-MM 24.1803 0.0856 0.0693 0.0256 0.0050 0.0566

t-MM
0.0138 0.0092 0.0066 0.0018 0.0051 0.0046

β̂31 (1752.20) (9.30) (10.50) (14.22) (0.98) (12.30)

L-MM
0.0112 0.0079 0.0055 0.0015 0.0056 0.0068

(2158.96) (10.84) (12.60) (17.07) (0.89) (8.32)

N-MM 29.3003 0.0857 0.0717 0.0204 0.0036 0.0541

t-MM
0.0173 0.0108 0.0052 0.0018 0.0038 0.0034

β̂41 (1693.66) (7.94) (13.79) (11.33) (0.95) (15.91)

L-MM
0.0144 0.0070 0.0040 0.0015 0.0043 0.0052

(2034.74) (12.24) (17.93) (13.60) (0.84) (10.40)

N-MM 11.3499 0.0299 0.0195 0.0082 0.0028 0.0150

t-MM
0.0073 0.0043 0.0033 0.0011 0.0029 0.0030

β̂12 (1554.78) (6.95) (5.91) (7.45) (0.97) (5.00)

L-MM
0.0068 0.0036 0.0028 0.0010 0.0033 0.0040

(1669.10) (8.31) (6.96) (8.20) (0.85) (3.75)

N-MM 22.1387 0.0295 0.0212 0.0077 0.0026 0.0162

t-MM
0.0059 0.0047 0.0033 0.0011 0.0027 0.0030

β̂22 (3752.32) (6.28) (6.42) (7.00) (0.96) (5.40)

L-MM
0.0055 0.0047 0.0028 0.0008 0.0030 0.0040

(4025.22) (6.28) (7.57) (9.63) (0.87) (4.05)

N-MM 21.0212 0.0760 0.0621 0.0229 0.0031 0.0468

t-MM
0.0070 0.0051 0.0041 0.0010 0.0035 0.0117

β̂32 (3003.03) (14.90) (15.53) (22.90) (0.89) (4.00)

L-MM
0.0063 0.0040 0.0031 0.0007 0.0033 0.0040

(3336.70) (19.00) (20.03) (32.71) (0.94) (11.70)

N-MM 21.6504 0.0752 0.0564 0.0237 0.0033 0.0471

t-MM
0.0070 0.0059 0.0031 0.0014 0.0031 0.0110

β̂42 (3092.91) (12.75) (18.19) (16.93) (1.06) (4.28)

L-MM
0.0063 0.0045 0.0031 0.0011 0.0035 0.0030

(3436.57) (16.71) (18.19) (21.55) (0.94) (15.70)

Table 3.5: MSE: ni = 8, m = 100
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Estimate Method t1 t3 t5 Laplace Normal Contaminated

N-MM 0.0055 0.0033 0.0028 0.0015 0.0014 0.0180

t-MM
0.0033 0.0019 0.0019 0.0012 0.0015 0.0015

π̂1 (1.67) (1.74) (1.47) (1.25) (0.93) (12.00)

L-MM
0.0038 0.0020 0.0014 0.0012 0.0015 0.0019
(1.45) (1.65) (2.00) (1.25) (0.93) (9.47)

N-MM 17.0682 0.1508 0.1140 0.0461 0.0026 0.0372

t-MM
0.0109 0.0060 0.0045 0.0007 0.0058 0.0032

β̂11 (1565.89) (25.13) (25.33) (65.86) (0.45) (11.63)

L-MM
0.0071 0.0028 0.0030 0.0004 0.0034 0.0034

(2403.97) (53.86) (38.00) (115.25) (0.76) (10.94)

N-MM 18.0848 0.1406 0.1203 0.0487 0.0017 0.0728

t-MM
0.0129 0.0058 0.0044 0.0009 0.0042 0.0022

β̂21 (1401.92) (24.24) (27.34) (54.11) (0.40) (33.09)

L-MM
0.0078 0.0039 0.0029 0.0005 0.0023 0.0027

(2318.56) (36.05) (41.48) (97.40) (0.74) (26.96)

N-MM 76.7101 0.0813 0.0713 0.0227 0.0023 0.0626

t-MM
0.0099 0.0063 0.0046 0.0008 0.0025 0.0026

β̂31 (7748.49) (12.90) (15.50) (28.38) (0.92) (24.08)

L-MM
0.0067 0.0034 0.0029 0.0005 0.0031 0.0030

(11449.27) (23.91) (24.59) (45.40) (0.74) (20.87)

N-MM 11.7916 0.0815 0.0670 0.0228 0.0022 0.0278

t-MM
0.0099 0.0056 0.0047 0.0007 0.0023 0.0024

β̂41 (1191.07) (14.55) (14.26) (32.57) (0.96) (11.58)

L-MM
0.0062 0.0039 0.0034 0.0006 0.0025 0.0028

(1901.87) (20.90) (19.71) (38.00) (0.88) (9.93)

N-MM 15.0488 0.0237 0.0203 0.0065 0.0014 0.0333

t-MM
0.0045 0.0027 0.0029 0.0003 0.0015 0.0013

β̂12 (3344.18) (8.78) (7.00) (21.67) (0.93) (25.62)

L-MM
0.0040 0.0021 0.0021 0.0002 0.0018 0.0015

(3762.20) (11.29) (9.67) (32.50) (0.78) (22.20)

N-MM 14.8460 0.0266 0.0181 0.0060 0.0011 0.0230

t-MM
0.0038 0.0028 0.0021 0.0004 0.0012 0.0017

β̂22 (3906.84) (9.50) (8.62) (15.00) (0.92) (13.53)

L-MM
0.0038 0.0020 0.0016 0.0003 0.0016 0.0019

(3906.84) (13.30) (11.31) (20.00) (0.69) (12.11)

N-MM 67.5758 0.0703 0.0569 0.0231 0.0017 0.0204

t-MM
0.0034 0.0033 0.0023 0.0004 0.0042 0.0017

β̂32 (19875.24) (21.30) (24.74) (57.75) (0.40) (12.00)

L-MM
0.0031 0.0020 0.0018 0.0002 0.0020 0.0020

(21798.65) (35.15) (31.61) (115.50) (0.85) (10.20)

N-MM 8.8716 0.0682 0.0567 0.0241 0.0011 0.0149

t-MM
0.0040 0.0033 0.0026 0.0006 0.0036 0.0022

β̂42 (2217.90) (20.67) (21.81) (40.17) (0.31) (6.77)

L-MM
0.0033 0.0022 0.0021 0.0004 0.0013 0.0025

(2688.36) (31.00) (27.00) (60.25) (0.85) (5.96)

Table 3.6: MSE: ni = 8, m = 200
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Estimate Method t1 t3 t5 Laplace Normal Contaminated

N-MM 0.0045 0.0027 0.0017 0.0017 0.0013 0.0409

t-MM
0.0022 0.0020 0.0013 0.0014 0.0013 0.0018

π̂1 (2.05) (1.35) (1.31) (1.21) (1.00) (22.72)

L-MM
0.0026 0.0028 0.0014 0.0013 0.0014 0.0026
(1.73) (0.96) (1.21) (1.31) (0.93) (15.73)

N-MM 10.9291 0.0901 0.0160 0.0032 0.0034 0.0605

t-MM
0.0130 0.0149 0.0043 0.0009 0.0040 0.0038

β̂11 (840.70) (6.05) (3.72) (3.56) (0.85) (15.92)

L-MM
0.0083 0.0049 0.0043 0.0007 0.0045 0.0040

(1316.76) (18.39) (3.72) (4.57) (0.76) (15.12)

N-MM 15.2047 0.0895 0.0128 0.0043 0.0039 0.1025

t-MM
0.0122 0.0136 0.0042 0.0010 0.0046 0.0043

β̂21 (1246.99) (6.58) (3.05) (4.30) (0.85) (23.84)

L-MM
0.0063 0.0053 0.0047 0.0008 0.0055 0.0058

(2413.44) (16.89) (2.72) (5.38) (0.71) (17.67)

N-MM 62.8445 0.0310 0.0104 0.0038 0.0036 0.1495

t-MM
0.0058 0.0032 0.0045 0.0013 0.0039 0.0043

β̂31 (10835.26) (9.69) (2.31) (2.92) (0.92) (34.77)

L-MM
0.0052 0.0043 0.0054 0.0008 0.0049 0.0052

(12085.48) (7.21) (1.93) (4.75) (0.73) (28.75)

N-MM 16.9928 0.0303 0.0082 0.0027 0.0031 0.1346

t-MM
0.0064 0.0047 0.0040 0.0012 0.0031 0.0047

β̂41 (2655.12) (6.45) (2.05) (2.25) (1.00) (28.64)

L-MM
0.0066 0.0058 0.0049 0.0009 0.0036 0.0060

(2574.67) (5.22) (1.67) (3.00) (0.86) (22.43)

N-MM 8.5129 0.0084 0.0043 0.0019 0.0020 0.0594

t-MM
0.0029 0.0028 0.0025 0.0006 0.0022 0.0029

β̂12 (2935.48) (3.00) (1.72) (3.17) (0.91) (20.48)

L-MM
0.0037 0.0036 0.0030 0.0005 0.0027 0.0036

(2300.78) (2.33) (1.43) (3.80) (0.74) (16.50)

N-MM 11.3715 0.0078 0.0035 0.0022 0.0027 0.0610

t-MM
0.0032 0.0030 0.0019 0.0008 0.0027 0.0030

β̂22 (3553.59) (2.60) (1.84) (2.75) (1.00) (20.33)

L-MM
0.0039 0.0036 0.0023 0.0006 0.0032 0.0033

(2915.77) (2.17) (1.52) (3.67) (0.84) (18.48)

N-MM 43.6165 0.0447 0.0083 0.0027 0.0022 0.0869

t-MM
0.0076 0.0086 0.0032 0.0009 0.0023 0.0024

β̂32 (5739.01) (5.20) (2.59) (3.00) (0.96) (36.21)

L-MM
0.0055 0.0031 0.0038 0.0006 0.0026 0.0029

(7930.27) (14.42) (2.18) (4.50) (0.85) (29.97)

N-MM 12.3743 0.0454 0.0077 0.0025 0.0021 0.0473

t-MM
0.0057 0.0095 0.0028 0.0009 0.0025 0.0024

β̂42 (2170.93) (4.78) (2.75) (2.78) (0.84) (19.71)

L-MM
0.0040 0.0041 0.0028 0.0005 0.0028 0.0028

(3093.57) (11.07) (2.75) (5.00) (0.75) (16.89)

Table 3.7: MSE: ni = 6, m = 200
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Estimate Method t1 t3 t5 Laplace Normal Contaminated

N-MM 0.0045 0.0020 0.0009 0.0009 0.0009 0.0401

t-MM
0.0015 0.0010 0.0008 0.0008 0.0009 0.0008

π̂1 (3.00) (2.00) (1.12) (1.12) (1.00) (50.12)

L-MM
0.0016 0.0012 0.0008 0.0008 0.0010 0.0012
(2.81) (1.67) (1.12) (1.12) (0.90) (33.42)

N-MM 20.8041 0.0909 0.0058 0.0025 0.0016 0.1288

t-MM
0.0080 0.0030 0.0018 0.0006 0.0017 0.0058

β̂11 (2600.51) (30.30) (3.22) (4.17) (0.94) (22.21)

L-MM
0.0033 0.0028 0.0022 0.0004 0.0019 0.0020

(6304.27) (32.46) (2.64) (6.25) (0.84) (64.40)

N-MM 29.8189 0.0853 0.0056 0.0030 0.0015 0.0871

t-MM
0.0087 0.0018 0.0017 0.0005 0.0019 0.0062

β̂21 (3427.46) (47.39) (3.29) (6.00) (0.79) (14.05)

L-MM
0.0036 0.0023 0.0020 0.0003 0.0021 0.0029

(8283.03) (37.09) (2.80) (10.00) (0.71) (30.03)

N-MM 21.8550 0.0291 0.0057 0.0025 0.0018 0.0936

t-MM
0.0035 0.0019 0.0025 0.0005 0.0019 0.0020

β̂31 (6244.29) (15.32) (2.28) (5.00) (0.95) (46.80)

L-MM
0.0030 0.0027 0.0028 0.0004 0.0023 0.0030

(7285.00) (10.78) (2.04) (6.25) (0.78) (31.20)

N-MM 23.7552 0.0291 0.0054 0.0023 0.0018 0.1139

t-MM
0.0038 0.0023 0.0023 0.0005 0.0020 0.0020

β̂41 (6251.37) (12.65) (2.35) (4.60) (0.90) (56.95)

L-MM
0.0029 0.0023 0.0024 0.0004 0.0022 0.0025

(8191.45) (12.65) (2.25) (5.75) (0.82) (45.56)

N-MM 18.5801 0.0071 0.0020 0.0011 0.0011 0.0383

t-MM
0.0019 0.0012 0.0012 0.0003 0.0012 0.0012

β̂12 (9779.00) (5.92) (1.67) (3.67) (0.92) (31.92)

L-MM
0.0021 0.0012 0.0013 0.0002 0.0015 0.0015

(8847.67) (5.92) (1.54) (5.50) (0.73) (25.53)

N-MM 27.4140 0.0070 0.0020 0.0016 0.0012 0.0405

t-MM
0.0017 0.0013 0.0015 0.0004 0.0013 0.0014

β̂22 (16125.88) (5.38) (1.33) (4.00) (0.92) (28.93)

L-MM
0.0019 0.0016 0.0016 0.0003 0.0015 0.0015

(14428.42) (4.38) (1.25) (5.33) (0.80) (27.00)

N-MM 20.2915 0.0458 0.0025 0.0015 0.0008 0.0404

t-MM
0.0039 0.0013 0.0016 0.0004 0.0010 0.0036

β̂32 (5202.95) (35.23) (1.56) (3.75) (0.80) (11.22)

L-MM
0.0020 0.0016 0.0016 0.0003 0.0010 0.0015

(10145.75) (28.62) (1.56) (5.00) (0.80) (26.93)

N-MM 19.1017 0.0460 0.0032 0.0016 0.0009 0.0407

t-MM
0.0040 0.0015 0.0015 0.0003 0.0009 0.0033

β̂42 (4775.43) (30.67) (2.13) (5.33) (1.00) (12.33)

L-MM
0.0021 0.0015 0.0016 0.0003 0.0012 0.0011

(9096.05) (30.67) (2.00) (5.33) (0.75) (37.00)

Table 3.8: MSE: ni = 6, m = 400
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Original Data
Laplace t28 Normal

π̂1 0.279(0.120) 0.248(0.081) 0.235(0.045)
π̂2 0.707(0.120) 0.688(0.077) 0.704(0.040)

β̂01 -0.038(0.081) -0.010(0.328) -0.010(0.129)

β̂11 0.075(0.006) 0.074(0.028) 0.074(0.010)

β̂02 -0.362(0.043) -0.350(0.090) -0.341(0.080)

β̂12 0.091(0.003) 0.092(0.010) 0.091(0.008)

β̂03 -0.624(0.137) -0.307(0.093) -0.296(0.074)

β̂13 0.085(0.011) 0.074(0.010) 0.073(0.007)

One outlier
Laplace t9 Normal

π̂1 0.338(0.166) 0.281(0.015) 0.569(0.178)
π̂2 0.649(0.163) 0.652(0.195) 0.402(0.136)

β̂01 -0.054(0.081) -0.041(0.673) -0.126(0.566)

β̂11 0.074(0.005) 0.074(0.062) 0.083(0.030)

β̂02 -0.376(0.051) -0.361(0.369) -0.336(0.228)

β̂12 0.093(0.004) 0.093(0.042) 0.090(0.028)

β̂03 -0.537(0.151) -0.293(0.477) -0.418(0.229)

β̂13 0.076(0.012) 0.074(0.050) 0.090(0.025)

Two outliers
Laplace t6 Normal

π̂1 0.311(0.182) 0.297(0.178) 0.196(0.148)
π̂2 0.684(0.177) 0.630(0.249) 0.765(0.194)

β̂01 -0.059(0.109) -0.056(0.553) -0.175(0.305)

β̂11 0.073(0.008) 0.075(0.048) 0.083(0.011)

β̂02 -0.368(0.057) -0.368(0.389) -0.274(0.288)

β̂12 0.093(0.005) 0.093(0.044) 0.087(0.032)

β̂03 -0.095(0.136) -0.279(0.540) -0.335(0.362)

β̂13 0.066(0.011) 0.075(0.055) 0.088(0.045)

Table 3.9: Lung growth data analysis
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Chapter 4

Application: Functional Mapping of

Dynamic Traits with Multivariate

Laplace Distribution

In previous chapters, we have shown that multivariate Laplace distribution can achieve

certain robustness in multivariate mixture regression models and mixture of linear mixed

models . In this chapter, we apply the proposed methodology to the functional mapping for

detecting quantitative trait loci (QTL).

4.1 Introduction

Traits are complex in biological, biomedical and agricultural studies. Identifying quantitative

traits has been one of the most important topics in the biology history. There are several

quaitntatitative genetic models serving as instruments for predicting developmental events,

see ?. With genetic markers information and statistics, ? proposed a quantitative trait loci

(QTL) to analyze a various quantitative traits of interest. Since then, there are numbers of

literatures discussing on the development of statical methods for mapping complex traits. For

example, ?, ?, ?, ? and ?. However, traditional statistical methods of QTL mapping neglect
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the developmental characteristic of trait. For example, body height and weight change with

time. Genetic control should be represented as a function of time. ? proposed a functional

mapping approach to model developmental mean function of a dynamic trait. Identification

of QTL can be resolved by testing mean differences of different QTL genotype categories.

For conventional functional mapping of development traits, normality assumption is as-

sumed for the random error distribution. However, in many applied researches such as

agricultural studies, the data distribution may have longer tails than normal distribution.

The presence of extreme observations can make a huge impact on statistical inferences. A

robust functional mapping becomes aspiration for identifying QTLs underlying dynamics

traits.

In this chapter, we extend the proposed robust method by assuming Laplace distribution

for random errors. Motivated by ?, the proposed robust method should obtain certain

robustness as t-distribution does to the QTL setup, but computationally more efficient than

the t-procedure.

Since the purpose of this study is to compare the robustness of estimation procedure based

on normal, Laplace, and t-distributions, we simply adopt the same mean and covariance

functions as in ?. The real data set used in ? is reanalysed for identifying genes underlying

the variation of rice tiller numbers.

In section 4.2, we shall discuss how to apply the robust procedure to a two component

mixture model. An efficient EM algorithm is developed with non-parametric B-spline mean

function and first order structured antedependence (SAD(1)) covariance function. The per-

formance of the proposed method is evaluated through some simulation studies in section

4.3. A real data analysis is presented in section 4.4.
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4.2 Statistical Methods

4.2.1 The Mixture Model with Multivariate Laplace Distribution

For a backcross population with n observations, each one is measured over n time points. The

phenotypic vector y = [y(t1), ..., y(tn)]T follows a multivariate distribution with a location-

scale density function f(y;α, β), where α and β denote location and scale parameters, re-

spectively.

Similar to ? and ? functional mapping framework, we apply a mixture multivariate

Laplace model to estimate unknown parameters of interest. The missing data problem can

be overcome by modeling the observed phenotypic data with a two-component mixture model

yi ∼ p(yi;α, β) =
1∑
j=0

πi|jfj(yi;αj, β)

where fj(yi;α0, β) is the probability density function with the location parameters αj corre-

sponding to QTL genotype j (=1 for QQ and =0 for Qq); β contains the scale parameters

common to all components; and πi|j is the mixture proportion of individual i given the QTL

genotype j.

Now we assume that y follows a multivariate Laplace distribution. To be specific, the

multivariate Laplace density function for individual i given genotype j is given by

fj(yi; Ωj) = 2
(2π)n/2|Σj |1/2

[
(yi−µj)′Σ−1

j (yi−µj)

2

] 1
2

(1−n
2

)

Kn/2−1

(√
2(yi − µj)′Σ−1

j (yi − µj)
)

where for genotype j (=0, 1), µj = [µj(t1), ..., µj(tn)] denotes the mean vector, Σj is a positive

definite covariance matrix, Km(x) is the modified Bessel Function of the second kind with

order m, and Ωj = (µj,Σj) contains all the parameter of interest from the genotype j.

At a specific time point t, the relationship between the observation and the mean func-

tional mapping can be expressed by a linear model

yi(t) = ziµ1(t) + (1− zi)µ0(t) + ei(t)
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where zi =0 or 1 if the QTL genotype is Qq or QQ; and ei(t) is the error term following

a Laplace distribution with mean zero and variance σ2(t). The errors at two different time

points tn1 and tn2 are correlated with correlation coefficient ρ(tn1 , tn2). Similar to ?, we apply

a more flexible developmental mean function by a non-parametric B-spline technique. An

antedependence covariance model is adopted for the non-stationary covariance structure.

Assuming independence among individuals, the joint likelihood function can be expressed

as

L(Ω) =
N∏
i=1

[πi|0f0(yi|Ω0) + πi|1f1(yi|Ω1)]

where πi|j = P (zi|j = 1), and πi|0 + πi|1 = 1. According to ?, the mixture proportions can

be solved by the conditional probabilities of QTL genotypes given the marker information

in a backcross design. We define Ω as the collection of all unknown parameters. In the

meanwhile, we use Ωl to denote the locations of the QTL with respect to markers, and

denote Ωg = (Ωm,Ωc) the multivariate Laplace distribution mean vectors and covariance

matrices. Since the complexity of the log-likelihood function makes it hard to maximize

directly, we develop an efficient EM algorithm in the next section.

4.2.2 EM Algorithm

Define zi = 0 or 1 if the QTL genotype is Qq or QQ, respectively. The n-dimensional random

observations yi, (i = 1, ..., N) are generated independently from a two-component mixture

of multivariate Laplace distribution with proportions πi|0 and πi|1

f(yi; Ω) = πi|0f0(yi; Ω0) + πi|1f1(yi; Ω1)

45



where πi|j = P (zi|j = 1), Ω = (Ω0,Ω1) and Ωj = (µj,Σj). By the property of the multivariate

Laplace distribution, we have

yi|vi, zi|j = 1 ∼ Nn(µj, viΣj), for i = 1, ..., N, j = 0, 1

vi|zi|j = 1 ∼ fvi(v) = e−vI(v > 0)

The complete data log-likelihood function can be expressed as `(Ω) = `0(π) + `1(µ,Σ|y, v),

where

`0(π) =
N∑
i=1

1∑
j=0

zi|jlog(πi|j)

`1(µ,Σ|y, v) =
N∑
i=1

1∑
j=0

zi|j

{
−n

2
log(2π)− 1

2
log|Σj| −

1

2vi
(yi − µj)′Σ−1

j (yi − µj)− vi
}

Assume the two multivariate Laplace components to have the same covariance structure, i.e.,

Σ1 = Σ2 = Σ. Since we adopt same frame modeling framework as ?, a uniform quadratic

B-spline with degree 5 is adopted to model the time-dependent mean function. Additionally,

the normalized basis matrix B is following

B =



1 0 0 0 0

0.3906 0.5391 0.0703 0 0

0.0625 0.6563 0.2813 0 0

0 0.3828 0.6094 0.0078 0

0 0.1250 0.7500 0.1250 0

0 0.0078 0.6094 0.3828 0

0 0 0.2813 0.6563 0.0625

0 0 0.0703 0.5391 0.3906

0 0 0 0 1



46



and ηj as the base genotypic vector for genotype j

ηj = [η1j η2j η3j η4j η5j]
′

whose entries are the mean parameters to be estimated with the mean vector given by

µj = Bηj. For the SAD(1) covariance structure with constant innovation variance σ2
t = σ2,

one can easily show that Σ−1 = 1
σ2L

TL, |Σ| = (σ2)n, and

(yi − µj)TΣ−1(yi − µj) =
1

σ2
(yi − µj)TΓ(ψ)(yi − µj)

=
1

σ2

{
−2ψ

n−1∑
m=2

[yi(tm)− µj(tm)] [yi(tm+1)− µj(tm+1)]

+ (ψ2 + 1)
n−1∑
m=1

[yi(tm)− µj(tm)]2 − [yi(tn)− µj(tn)]2
}

where L is a lower triangular matrix with 1’s on the diagonal and with the negative of the

antedependence coefficient ψ as the off-diagonal entries,

L =



1 0 0 · · · · · · 0

−ψ 1 0 0 · · · 0

0 −ψ 1 0 · · · 0

...
...

...
...

...
...

0 · · · 0 −ψ 1 0

0 · · · · · · 0 −ψ 1


,Γ(ψ) =



1 + ψ2 −ψ 0 · · · · · · 0

−ψ 1 + ψ2 −ψ 0 · · · 0

0 −ψ 1 + ψ2 −ψ · · · 0

...
...

...
...

...
...

0 · · · 0 −ψ 1 + ψ2 −ψ

0 · · · · · · 0 −ψ 1


The maximum likelihood estimator of the unknown parameters can be obtained by using

the following EM algorithm. At kth iteration in the E-step, the posterior probability of the

observed trait vector yi belonging to the genotype j can be expressed as

ẑ
(k)
i|j = E(zi|j = 1|yi, Ω̂(k)) =

πi|jfj(yi; Ω̂
(k)
j )∑1

j=0 πi|jfj(yi; Ω̂
(k)
j )
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where Ω̂j = (η̂j, σ̂
2, ψ̂), , and j = 0, 1. The conditional expectation of 1/vi given zi|j = 1 is

calculated by lemma 1.3.1 as follows,

v̂
(k)
ij = E

(
1

vi

∣∣∣∣yi, zi|j = 1, Ω̂(k)

)
=

K−n/2

(√
2Q̂ij(yi; Ω̂

(k)
j )

)
K1−n/2

(√
2Q̂ij(yi; Ω̂

(k)
j )

)√ 2

Q̂ij(yi; Ω̂
(k)
j )

where Q̂ij(yi; Ω̂
(k)
j ) = 1

σ̂2 (yi −Bη̂j)
TLTL(yi −Bη̂j).

In the M-step, the updates for ηj, σ
2 and ψ are obtained as:

η̂
(k+1)
j =

{
N∑
i=1

1∑
j=0

ẑ
(k)
i|j v̂

(k)
ij B

TLTLB

}−1{ N∑
i=1

1∑
j=0

ẑ
(k)
i|j v̂

(k)
ij B

TLTLyi

}

σ̂2(k+1)

=

∑N
i=1

∑1
j=0 ẑ

(k)
i|j v̂

(k)
ij (yi −Bη̂

(k+1)
j )TLTL(yi −Bη̂

(k+1)
j )

Nn

ψ̂(k+1) =

∑N
i=1

∑1
j=0 ẑ

(k)
i|j v̂

(k)
ij

∑n−1
m=2

[
yi(tm)−BT

mη̂
(k+1)
j

] [
yi(tm+1)−BT

m+1η̂
(k+1)
j

]
∑N

i=1

∑1
j=0 ẑ

(k)
i|j v̂

(k)
ij

∑n−1
m=1

[
yi(tm)−BT

mη̂
(k+1)
j

]2

where Bm and Bm+1 are the mth and (m + 1)th row of the design matrix B. The above

procedures are iterated until certain convergence criterion is achieved. The converged values

are the MLEs of the parameters.

In the QTL mapping studies, it’s complicated and inefficient to estimate location pa-

rameter directly. Instead, people commonly use a grid search method to estimate the QTL

location by searching for a putative QTL at every 2cM on an interval by two flanking mark-

ers, see ?. Then a log-likelihood ratio test is performed to test QTL location for each marker

interval. The hypothesis test can be designed in the following way


H0 : Ωm0 = Ωm1

H1 : Ωm0 6= Ωm1

(4.2.1)

where H0 is the reduced model, which can be fit by a single model, and H1 is the full model,
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which there exists different models to fit the data. The test statistics can be calculated as

log-likelihood ratio (LR) of the reduced to the full model. The critical threshold is based

on permutation tests proposed by ?. We summarize the log-likelihood ratio test statistics

for each testing position of QTL in a graph, which is called LR profile plot. The location of

QTL can be determined by the peak of the profile plot which is the MLE.

4.3 Simulation Studies

In this section, we conduct a preliminary simulation study to evaluate the performance of

the proposed robust estimation procedure. The design of simulation studies is similar to ?.

Data is generated from a backcross population with 100cM long linkage group, composed

of 6 equidistant markers, under the assumption that QTL governs the whole developmental

process. We assume that a putative QTL which affects a development process to be located

at 48cM away from the first marker on the linkage group, where it’s between the 3rd and

4th markers.

The recombination fraction is calculated based on the map distance that is converted

by the Haldane map function. We simulated our data by a developmental trait with nine

equally spaced time points under a 0.4 heritability level (H2 = 0.4). The sample size of

n = 100 is used in the simulation study. For each case, the simulation is repeated 100 times.

Then we consider four different error distribution cases: (1) ε ∼ t3, t distribution with 3

degrees of freedom; (2) ε ∼ t5, t distribution with 5 degrees of freedom; (3) ε ∼ Laplace

distribution with mean 0 and covariance I; (4) ε ∼ N(0, I).

Both case (1) and (2) are heavy tailed distributions and are often used in the literatures to

mimic the outlier situations. Under case (3), the procedure will provide the MLE of unknown

parameters, which would serve as a baseline to evaluate the performance of other estimation

procedures. Case (4) is often used to evaluate the efficiency of different estimation methods

compared to the traditional MLE when error is exactly multivariate normally distributed

and there are no outliers.

The performance of using multivariate Laplace distribution (MVL), multivariate t distri-
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bution (MVT) and multivariate normal distribution (MVN), is compared via the likelihood

ratio (LR) statistics across the simulated genetic linkage group in Figure 4.1 and the esti-

mates of model parameters are reported in Table 4.1, 4.2, 4.3 and 4.4.

In real application, the LR is used as the indicator of a QTL signal. The larger the LR

value at a genomic position, the stronger the evidence of a QTL at that position. Figure

4.1 explicitly displays the difference in LR values by applying different distribution methods.

Clearly, one can see the proposed method performs better than the others when the error

distribution has heavy tail. The normal distribution method cannot indicate QTL position

easily when there’re many outliers existing. As the data gets close to normal data, the

proposed method performs closely well as the multivariate t distribution method. If the

error distribution is multivariate normal, all three methods can detect the QTL position,

which indicates the proposed method and the multivariate t distribution are as efficient as

the traditional normal distribution method.

On the other hand, we also report the MLEs and standard errors of the model parameters

and the QTL position by applying different distribution methods under four different error

distribution cases. The results are similar to LR plots. The proposed method outperforms

or is at least comparable to any other methods except for multivariate normal distribution

error, which the proposed method’s estimates are slightly larger than the true values. How-

ever, when the error distribution has heavier tail, the proposed method are comparable to

multivariate t distribution method.
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Figure 4.1: The LR profile plots
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Error distribution is multivariate T distribution with degrees of freedom 3.

MVL method MVT method MVN method
QTL position l 47.91(3.03) 48.32(3.55) 48.24(4.17)

η̂10 1.15(0.03) 1.16(0.07) 1.19(0.11)
η̂20 6.80(0.17) 6.91(0.14) 7.28(0.19)

Qq parameters η̂30 12.59(0.23) 12.61(0.25) 12.77(0.26)
η̂40 7.03(0.24) 7.05(0.20) 7.20(0.38)
η̂50 7.02(0.13) 7.05(0.18) 7.15(0.38)
η̂11 1.18(0.03) 1.21(0.06) 1.24(0.10)
η̂21 7.20(0.14) 7.46(0.14) 7.69(0.17)

QQ parameters η̂31 11.61(0.21) 11.25(0.25) 11.81(0.24)
η̂41 6.57(0.16) 6.41(0.18) 6.73(0.23)
η̂51 6.66(0.17) 6.55(0.17) 6.79(0.24)

Covariance ψ̂ 0.94(0.01) 0.95(0.02) 0.94(0.04)
parameters σ̂2 0.36(0.01) 0.21(0.02) 0.56(0.67)

Table 4.1: The MLEs and standard errors (in the parenthesis) of the model parameters and
the QTL position.

Error distribution is multivariate T distribution with degrees of freedom 5.

MVL method MVT method MVN method
QTL position l 46.66(2.66) 47.68(2.72) 47.82(2.43)

η̂10 1.15(0.07) 1.17(0.06) 1.20(0.07)
η̂20 6.82(0.11) 6.94(0.15) 7.26(0.16)

Qq parameters η̂30 12.53(0.26) 12.54(0.24) 12.75(0.22)
η̂40 7.00(0.23) 7.01(0.20) 7.16(0.21)
η̂50 7.03(0.13) 7.05(0.17) 7.14(0.20)
η̂11 1.18(0.03) 1.20(0.06) 1.22(0.07)
η̂21 7.20(0.14) 7.42(0.14) 7.66(0.14)

QQ parameters η̂31 11.58(1.20) 11.32(0.26) 11.81(0.25)
η̂41 6.55(0.20) 6.43(0.20) 6.72(0.20)
η̂51 6.65(0.16) 6.57(0.16) 6.79(0.18)

Covariance ψ̂ 0.93(0.01) 0.94(0.02) 0.94(0.02)
parameters σ̂2 0.28(0.03) 0.21(0.02) 0.32(0.04)

Table 4.2: The MLEs and standard errors (in the parenthesis) of the model parameters and
the QTL position.
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Error distribution is multivariate Laplace distribution.

MVL method MVT method MVN method
QTL position l 47.24(2.32) 47.96(2.62) 48.18(2.43)

η̂10 1.14(0.02) 1.16(0.04) 1.19(0.06)
η̂20 6.71(0.10) 6.83(0.12) 7.27(0.13)

Qq parameters η̂30 12.82(0.27) 12.81(0.31) 12.75(0.24)
η̂40 7.13(0.16) 7.14(0.17) 7.16(0.16)
η̂50 7.10(0.14) 7.12(0.15) 7.12(0.15)
η̂11 1.17(0.02) 1.22(0.04) 1.24(0.05)
η̂21 7.05(0.04) 7.57(0.10) 7.71(0.12)

QQ parameters η̂31 11.97(0.23) 10.98(0.24) 11.77(0.20)
η̂41 6.74(0.12) 6.28(0.15) 6.73(016)
η̂51 6.80(0.11) 6.45(0.13) 6.80(0.14)

Covariance ψ̂ 0.93(0.01) 0.94(0.02) 0.93(0.02)
parameters σ̂2 0.21(0.03) 0.10(0.03) 0.22(0.02)

Table 4.3: The MLEs and standard errors (in the parenthesis) of the model parameters and
the QTL position.

Error distribution is multivariate normal distribution.

MVL method MVT method MVN method
QTL position l 46.76(7.64) 48.11(2.83) 48.06(2.78)

η̂10 1.16(0.13) 1.18(0.05) 1.21(0.05)
η̂20 6.85(0.70) 6.99(0.11) 7.27(0.11)

Qq parameters η̂30 12.53(1.29) 12.47(0.23) 12.79(0.22)
η̂40 7.01(0.73) 6.99(0.17) 7.19(0.16)
η̂50 7.01(0.73) 7.01(0.17) 7.15(0.16)
η̂11 1.18(0.13) 1.20(0.06) 1.23(0.06)
η̂21 7.20(0.74) 7.38(0.12) 7.67(0.12)

QQ parameters η̂31 11.56(1.19) 11.41(0.23) 11.80(0.21)
η̂41 6.54(0.69) 6.47(0.19) 6.71(0.18)
η̂51 6.64(0.69) 6.59(0.15) 6.78(0.15)

Covariance ψ̂ 0.93(0.10) 0.94(0.02) 0.94(0.02)
parameters σ̂2 0.20(0.03) 0.20(0.01) 0.22(0.01)

Table 4.4: The MLEs and standard errors (in the parenthesis) of the model parameters and
the QTL position.
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4.4 Real Data Analysis

In this section, we applied the proposed method to a real data to identify QTLs position of

rice tiller number development over 10 days. The detailed description of the study and data

set can be found in ? and ?. There are two inbred lines, semidwarf IR64 and tall Azucena,

crossing to generate an F1 progeny population. In summary, there are 40 isozyme and RAPD

markers, and 135 RFLP markers constructing a genetic linkage map of total length 2005cM

across 12 rice chromosomes. The observations of tiller numbers were measured every 10 days

and there are nine developmental measurements were recorded for each rice.

We used the LR as the indicator of a QTL signal and performed a genome-wide linkage

scan at every 2cM across 12 rice chromosomes. Figure 4.2 shows the LR profile plots, where

the results obtained with the multivariate Laplace distribution method and the multivariate t

distribution method. A 5% genome-wide permutation threshold indicated by the horizontal

dashed lines based on 1,000 permutations. The results show that those two distribution

methods are comparable, but multivariate Laplace distribution can generate higher LR values

in many positions. Both methods indicate one QTL location in chromosome 3 between

marker RZ519 and Pgi-1, which is identical to the results reported in existing studies, ?, ?,

and ?.

However, the estimate of degrees of freedom with multivariate t distribution is around

10. That indicates the original data distribution is close to normal. For comparison purpose,

we did a sensitivity study to check the robustness of using multivariate Laplace distribution,

multivariate t distribution, and multivariate normal distribution by adding two same artifi-

cial extreme values, (4, 14, 27, 33, 30, 28, 27, 20, 19)′, into the first two observations. We also

provide a boxplot of original data and artificial extreme values, where those values are five

standard deviation away from the mean. From Figure 4.3 and Figure 4.4 (Pooled Chromo-

somes Graphs), we can see that the LR profile plots do not vary too much from both t and

Laplace distribution methods, indicating that those two methods possess certain robustness.

On the other hand, the normal distribution method provides different LR profile plot when

outliers present. We can observe the same conclusion from the parameters estimates in ta-
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ble 4.5 and table 4.6. It’s also worth mentioning that the multivariate Laplace distribution

method is comparable to multivariate t distribution method in most of cases, but it takes

more time to estimate the degrees of freedom for t distribution to fit the data and brings

more computations during the process. Thus, multivariate Laplace distribution can be more

applicable as a new robust method in practical problems.

Figure 4.2: The LR profile plot across 12 chromosomes. The proposed multivariate Laplace
distribution method is solid curve and the multivariate t distribution method is dash-dotted
curve. The 5% genome-wide threshold value for claiming the existence of a QTL is given as
the horizontal dotted line.
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Figure 4.3: Pooled graph for real data: the LR profile plot across 12 chromosomes.
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Figure 4.4: Pooled graph for sensitivity studies: the LR profile plot across 12 chromosomes
with 10 artificial extreme observations.
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MVL method MVT method MVN method
QTL position l 264cM 264cM 264cM

η̂10 1.166 1.177 1.221
η̂20 6.959 7.115 7.549

Qq parameters η̂30 12.029 12.202 12.692
η̂40 6.219 6.375 6.696
η̂50 6.477 6.551 6.761
η̂11 1.157 1.171 1.206
η̂21 7.062 7.264 7.520

QQ parameters η̂31 10.759 11.041 11.505
η̂41 6.372 6.515 6.824
η̂51 6.505 6.611 6.835

Covariance ψ̂ 0.788 0.782 0.808
parameters σ̂2 1.483 1.034 1.324

Table 4.5: QTL location and MLEs of estimated parameters with SAD(1) covariance struc-
ture

MVL method MVT method MVN method
QTL position l 266cM 266cM 86cM

η̂10 1.166 1.173 1.223
η̂20 6.946 7.063 7.531

Qq parameters η̂30 12.018 12.147 12.682
η̂40 6.216 6.332 6.705
η̂50 6.470 6.527 6.763
η̂11 1.169 1.176 1.266
η̂21 7.166 7.304 7.855

QQ parameters η̂31 10.900 11.089 12.000
η̂41 6.480 6.564 7.164
η̂51 6.084 6.660 7.115

Covariance ψ̂ 0.793 0.788 0.890
parameters σ̂2 1.677 1.034 1.636

Table 4.6: Sensitivity Studies: replace first two observations by artificial extreme values.
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Figure 4.5: Boxplot of original data and artificial extreme values.
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Chapter 5

Discussion

5.1 Summary

In this dissertation, we proposed a robust estimation procedure for two mixture multivari-

ate regression models, the classic multivariate linear regression and the mixed effect linear

regression models, by assuming a multivariate Laplace distributions for the regression errors

and the random effects. Similar to t-distribution, the multivariate Laplace distribution is

a scale mixture of the multivariate normal distribution, which enables us to construct an

efficient EM algorithm to estimate the unknown parameters in the model.

On theoretical side, the ascent properties are proved for the proposed EM estimation

procedures, and the performance of the proposed robust estimation procedures is evaluated

by extensive simulation studies and sensitivity studies in both statistical models. Simulation

results show that the proposed estimation procedures outperforms the estimation proce-

dures based on the normality assumption. Comparing to the existing robust multivariate

t-estimation procedure, the proposed method maintains robustness, and is computationally

more efficient.

Finally, the proposed robust estimation procedure is applied to identify the QTL un-

derlying a functional mapping framework with dynamic traits of agricultural or biomedical

interest. Both simulation studies and real data analysis indicates that the proposed method
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performs better than the t and the normal based method when the data follow heavy-tailed

distributions.

5.2 Future Work

The only concern raised in implementing the proposed robust estimation procedure is the

unboundedness of the multivariate Laplace density function at the origin. In fact, for p > 1,

fU(u) → ∞ as u → µ. This unboundedness makes the proposed EM algorithm potentially

unstable since the weights, such as δij, τij, might become very volatile when Qij values are

close to 0.

Recently we have identified some alternative definitions of the multivariate Laplace dis-

tribution which might be free from this issue. For example, the multivariate Laplace distri-

bution defined in ? has the density function

fU(u) =
|Σ|−1/2

2pπ(p−1)/2Γ(p+1
2

)
exp

{
−
√
Q(u;µ,Σ)

}
.

It is easy to see that the above density function is bounded at the origin. More importantly,

the density function can be also written as a scale mixture of multivariate normal distribution

with a inverse gamma scalar random variable, which is the key feature for designing an

EM algorithm. This multivariate Laplace distribution certainly presents us some hope to

remove the computational instability as seen in the proposed estimation procedures in this

dissertation. This will be one of the topics in our future research along with this direction.
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Appendix A

Proof of The Ascent Property:

Theorem 1

Proof. Suppose the latent class variable G has probability mass function P (G = j) = πj, j =

1, 2, . . . , g. Let ψ(v) be the density function of the exponential variable V . ψ(v|y, x; θ) as the

conditional density function of V given Y = y,X = x, and w(j, v|y, x, θ) as the conditional

joint mass-density function of G and V given Y = y,X = x, and θ. Then we have

w(j, v|y, x, θ) = πjφ(y|β′jx, vΣj)ψ(v)/f(y|x, θ),

where f(y|x, θ) is defined in (2.1.2).

Note that for given θ(k), we have
∑g

j=1

∫
w(j, v|Yi, Xi, θ

(k))dv = 1, therefore,

Ln(θ) =
n∑
i=1

log

[
g∑
j=1

πjfε(Yi − β′jXi, 0,Σj)

]
=

n∑
i=1

[
g∑
j=1

∫
log f(Yi|Xi, θ)w(j, v|Yi, Xi, θ

(k))dv

]

=
n∑
i=1

[
g∑
j=1

∫
log
[
πjφ(Yi|β′jXi, vΣj)ψ(v)

]
w(j, v|Yi, Xi, θ

(k))dv

]

−
n∑
i=1

[
g∑
j=1

∫
logw(j, v|Yi, Xi, θ)w(j, v|Yi, Xi, θ

(k))dv

]
=̂ Ln1(θ)− Ln2(θ).
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Recall the definition τ
(k+1)
ij in the E-step, and note that for any i, j, k,

φ(Yi|β(k)′

j Xi, vΣ
(k)
j )ψ(v) = ψ(v|Yi, Xi, θ

(k)
j )fε(Yi − β(k)′

j Xi, 0,Σ
(k)
j ),

we have
π

(k)
j φ(Yi|β(k)′

j Xi, vΣ
(k)
j )ψ(v)

f(Yi|Xi, θ(k))
= τ

(k+1)
ij ψ(v|Yi, Xi; θ

(k)
j ).

Then by the definition of w(j, v|y, x, θ), we can show that Ln1(θ) is exactly the expression in

(2.2.2). Therefore, the M-step in the proposed EM algorithm implies that n−1Ln1(θ(k+1)) ≥

n−1Ln1(θ(k)).

Therefore, it suffices to show that in probability, Ln2(θ(k+1)) ≤ Ln2(θ(k)). Note that the

difference Ln2(θ(k+1))− Ln2(θ(k)) is equivalent to

n∑
i=1

[
g∑
j=1

∫
log

w(j, v|Yi, Xi, θ
(k+1))

w(j, v|Yi, Xi, θ(k))
w(j, v|Yi, Xi, θ

(k))dv

]

=
n∑
i=1

[
g∑
j=1

πj

∫
log

w(v|Yi, G = j,Xi, θ
(k+1))

w(v|Yi, G = j,Xi, θ(k))
w(v|Yi, G = j,Xi, θ

(k))dv

]

which is less than 0 by the Kullback-Leibler information inequality applied to the conditional

density function w(v|Yi, G = j,Xi, θ
(k)) for each i, j, k. 2

62



Appendix B

Proof of The Ascent Property:

Theorem 2

Proof. Suppose latent class variable C has probability mass function P (C = j) = pj, j =

1, 2, ..., G. Let ψ(v) denote the density function of exponential variable V and ψ(v|y, x, z, θ)

as the conditional density function of V given Y = y,X = x, Z = z and θ, h(v|y, x) the

conditional density function of V given Y = y,X = x. Then the conditional density functions

of G, V, b, denoted by w(j, v, b|y, x, z, θ) given Y = y,X = x, Z = z, θ, has the form of

w(j, v, b|y, x, z, θ) =
f(C = j, v, b, y, x, z, θ)

f(y|x, z, θ)
=
P (C = j)f(v|C = j)f(y, b|v, C = j)

f(y|x, z, θ)

=
P (C = j)f(v|C = j)f(y|b, v, C = j)f(b|v, C = j)

f(y|x, z, θ)

=
pjψ(v)φ(y|xβj + zbj, vΣj)φ(bj|0, vΦj)

f(y|x, z, θ)
,

where f(y|x, z, θ) =
∑G

j=1 pjfML(y − xβj, zΦjz
T + Σj). Note that for given θ(k), we have∑G

j=1

∫∫
w(j, v, b|y, x, z, θ)dvdbj = 1, therefore,

Lm(θ) =
m∑
i=1

log

[
G∑
j=1

pjfML(yi − xiβj, ziΦjz
T
i + Σj)

]
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=
m∑
i=1

log f(yi|xi, zi, θ)
G∑
j=1

∫∫
w(j, b, v|yi, xi, zi, θ(k))dvdbj

=
m∑
i=1

G∑
j=1

[∫∫
log f(yi|xi, zi, θ)w(j, b, v|yi, xi, zi, θ(k))dvdbj

]

=
m∑
i=1

{
G∑
j=1

∫∫
log [pjφ(yi|xiβj + zibj, vΣj)φ(bj|0, vΨj)ψ(v)]

× w(j, b, v|yi, xi, zi, θ(k))dvdbj
}

−
m∑
i=1

{
G∑
j=1

∫∫
[logw(j, b, v|yi, xi, zi, θ)]w(j, b, v|yi, xi, zi, θ(k))dvdbj

}

=̂Lm1(θ)− Lm2(θ).

Recall the definition of p
(k+1)
ij in the E-step, and note that for any i, j, k,

φ(yi|xiβ(k)
j + zibj, vΣ

(k)
j )φ(bj|0, vΨ

(k)
j )ψ(v)

= φ(bj|v)ψ(v|yi, xi, zi)fML(yi − xiβ(k)
j , ziΨ

(k)
j zTi + Σ

(k)
j ),

we have

p
(k)
j φ(yi|xiβ(k)

j + zibj, vΣ
(k)
j )φ(bj|0, vΨ

(k)
j )ψ(v)

f(yi|xi, θ(k))
= p

(k+1)
ij φ(bj|v, yi)ψ(v|yi, xi, zi).

Therefore, Lm1(θ) can be written as

m∑
i=1

G∑
j=1

p
(k+1)
ij

∫∫
log [pjφ(yi|xiβj + zibj, vΣj)φ(bj|0, vΨj)ψ(v)] ·

φ(bj|v, yi)ψ(v|yi, xi, zi)dvdbj.

Then by the definition of w(j, v, b|y, x, z, θ) we can show that Lm1(θ) is exactly the ex-

pression of the conditional expectation of the complete log-likelihood function given the

observed data and θ(k). Therefore, the M-step in the proposed EM algorithm implies that
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Lm1(θ
(k+1)) > Lm1(θ

(k)). Therefore, it suffices to show that in probability, Lm2(θ
(k+1)) 6

Lm2(θ
(k)). Note that the difference Lm2(θ

(k+1))− Lm2(θ
(k)) is equal to

m∑
i=1

[
G∑
j=1

∫∫
log

w(j, b, v|yi, xi, zi, θ(k+1))

w(j, b, v|yi, xi, zi, θ(k))
w(j, b, v|yi, xi, zi, θ(k))dvdbj

]
,

which can be written as

m∑
i=1

[
G∑
j=1

pj

∫∫
log

w(b, v|yi, xi, zi, C = j, θ(k+1))

w(b, v|yi, xi, zi, C = j, θ(k))
w(b, v|yi, xi, zi, C = j, θ(k))dvdbj

]
.

Clearly, this expression is non-positive by applying the Kullback-Leibler information inequal-

ity to the conditional density function w(b, v|yi, C = j, xi, zi, θ
(k)) for each i, j, k.
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