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I. INTRODUCTION AND SCOPE

The hyperboloid of revolution can be generated by rotating a hyperbola
about its directrix. Shells of this type are built throughout the world as
cooling towers to lower the temperature of coolants used in electricity
generating plants and chemical plants. This type of shell has proven to be
efficient for use in reinforced concrete natural draught cooling towers for
the conservation and reuse of the coolant (water).

The purpose of this report is to present the solutions for the stress
resultants for the membrane and bending analysis and the corresponding
displacements for cooling towers under dead load and wind load. Numerical
re.sults comparing solutions obtained by membrane theory and bending theory

are presented.



II. REVIEW OF LITERATURE

The first hyperbolic natural draught reinforced concrete cooling tower
was designed by Prof. Van Iterson of the Dutch State Mines and installed at
the Emma Colliery in 1916 (2). Towers of this type were installed at Lister
Drive Power Station in.Liverpool in 1925 and since then have become quite
common and standard practice in Europe power stations where cooling towers
are required. The typical size for old towers is shown Fig. 1. This type
of tower has become a familiar sight in the United States with the first
tower constructed in connection with a power station in Kentucky about
fifteen years ago (1960). These structure sometimes reach over 350 feet
in height and have base diameter oft;n over 200 feet,
Immense quantities of water are required for the condensers of power
 stations, refineries, steel plants, etc. and sites with adequate cooling
water are becoming rarej thus there is a need for the development of
natural draught cooling towers for cooling and reusing large quantities of
water,
The one-sheet hyperboloid is a convenient geometry for cooling towers
with its straight-line generators for both structural and thermal reasons:
1. It has been proven (2) that the shear and vertical stresses are
reduced by over 50% due to the " hyperbolic " shape of the shell
compared with a cylinder of the same height and base diameter.
Also this type stiffens the shell against wind force.

2. The momentum of the alr entering the shell carries it into the

center to form a vena contracta whose diameter depends on the



ratio of tower diameter to height of air inlet.

The other advantages of this hyperbolic concrete tower are (3):

1. Concrete towers are permanent.

2. There are no fans or similar equipment so there is lack of

vibration due to resonance of fans and the tower. Therefore,
the only power consumption is needed for pumping the water to the
distribution pipes.

4, The natural draft towers minimize hazards suchias fire, mist, and

frozen spray.

Rish and Steel (2) discussed the treatment of the hyperboloid_ﬁy
assuming the shell to be made up of two truncted coned with a cyliﬁder in
bptween. MartIﬁ and Scriven (4) and Martin, Maddock, and Scriven (5)
presented numerical solutions for dead load and wind load stresses and
displacements in a particular shell. Gould and Lee (6,7,8,9) presented the
membrane solutions and bending solutions for the stress resultants and
displacements in hyperbolic cooling towers subjected to dead load, earthquake
load, and wind load. The influence of the various shell parameters on the
magnitude of the stress resultants and displacements is studied by these
researchers and design tables are given to facilitate the design of such

structures.
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FIG. 1.

Typical 01d Natural Draught Cooling Tower




III. DISIGN CONSIDERATIONS FOR HYPERBOLIC COOLING TOWERS (11)

1. Size selection

Chilton (10) gave a formula to enable the size of cooling towers

to be determined for a given cooling duty. This was

where
Ay= the base area of the tower measured at pond sill;
H = the height of the tower measured above sill level;

« Cis an ef%iciency factor known as the performance coefficient. In the
past values of this have been in the region of 5.2 where water loadings
were over 750 lb/hr/sq.ft, but new types of packing bring this down to
give a C value of 5.0.

The Duty Coefficient D may be worked out from the formula:

e 3 h L
>— = 90.59 "ﬁz_ (At +0.31240h) % = = = = = = = = = = =~ - - (3.2)
where

Ah = the change in total heat of the air passing through the tower;

AT = the change of temperature of the water passing through the tower;
Wi = the water load in 1lb/hr.

At = the change between the dry bulb air temperature and aspirated wet

bulb air temperature,



General consideration for loading and analysis (11)

The cooling tower shell should be considered to resist forces
resulting from gravity loading, thermal gradient and icing, wind
and earthquake, and foundation settlement. Also, temporary

construction loading should be considered.

When interior or exterior fill is supported on concrete, the effects

of their loading should be considered in the design of the shell.
Adequate stiffening of the top and the base of fhe shell should be
provided.

Cooling towers should be analyzed in accordance with recogqized

theories for thin elastic shell which for concrete are assumed to

be uncracked, homogeneous and isotropic.

The actual geometric profile, thickness variations and support
conditions of the shell should be considered in the structural
analysis.

Equilibrium chacks of internal forces and external loads should be
performed regardless of the analysis method used.

Results from model studies or full-scale tests may be used as a
basis for the design and to check the validity of assumption

involved in a mathematical analysis.

Method of analysis (11)

An analysis which is based on a recognized bending theory for thin
elastic shells is considered to be the most appropriate basis for
the design of the tower and supporting structure. An analysis

based on the membrane theory of thin shells may be satisfactory



for design provided that local bending in critical regions is
accounted for by an appropriate method.
b. Realistic boundary conditions should he considered in the analysis.
¢. Deformations which are computed from the elastic analysis should be
checked to verify that they fall within the assumed limits of the

applied theory.

Stability (11)

a. PFor wind load the critical shell buckling pressure may be estimated
from test results. A wind buckling analysis should be made using
the correct tower geometry and boumdary conditions, and including
the in%iueuce of dead weight. When made, the analysis should
account for the influence 6f any anticipated shell hairline cracking.

b. For dead load alone the critical shell buckling may be estimated
by a simplified procedure which accounts for the dead load stresses
in both the meridional and circumferential directions or by a dead
load buckling analysis using the correct tower geometry and boundary
conditions.

c. Imperfections, which will reduce the buckling capacity are measured
by deviation Wy in thickness over the arc length 1 where buckling
capacity decreases as wtll increases. When imperfections larger
than field tolerances occur, the engineer should make an estimate
of the reduction in q to assure that adequate buckling capacity
remains., The term q, is the critical buckling pressure in psi along

the windward meridian.



From an analysis of the wind tunnel test results reported (11), the
following equation was obtained for estimating the critical shell

buckling pressure.
q, = CEM/a)%C = = = - = - - - o e e oo oo m o (3.3)

in which

Cc = an empirical coefficient taken to be 0.052;

E = the modulus of elasticity of the concrete in psi:
h = the shell thickness at the throat:

the radius of the shell parallel circle at the throat ( the

sghh unit as h )

a an empirical coefficient taken to be 2.3.

c
The value O computed from this equation should be compared to the.
design wind pressure at the top of the tower to insure an adequate

safety factor against buckling.. It is intended that the design of the

tower not be controlled by stability.

Strength and serviceability requirements (11)

The cooling tower should be designed using the Strength Method
according to the provisions of ACI 318-71 (16). Serviceability under
working loads should be considered to insure that neither cracking nor

deflections are excessive under the conditions of unfactored loading.



Reinforcement (11)

a.

C.

d.

The shell reinforcing in each direction should not be less than
0.35% of the cross sectional area of concrete.

It is preferable to provide two layers of reinforcement in each
direction.

The maximum spacing of bars in each layers should not exceed twice
the shell thickness, or no more than 18 inches.

Reinforcement interrupted by openings should be replaced by not less
than one and one half times the interrupted amount of reinforcement
placed adjacent to the opening plus additional diagonal bars at
corners of opening. For larger openings, the designer should take

particilar care to reinforce the opening to resist the design loads.

Splices in reinforcement (11)

Ce.

Splices in reinforcement should be designed according to the
provisions of ACI 318-71 (16) except as provided in following.

In case of a lap splice in tension, care should be taken to ensure
the transfer of the design force without jeopardizing the integrity
of the confining concrete.

Splicing of reinforcing bars above a lewvel not to exceed one-half
the column spacing from the bottom should be distributed around the
shell wall. No more than 1/3 of the vertical reinforcing should be
gpliced at one level,

If splices in reinforcement are designed by a method not covered by

ACI 318-71, the strength of the splices should be ensured.



10

Throat

Base

FIG, 2. Hyperboloid of Revolution



1.

11

IV. ANALYSIS OF HYPERBOLIC SHELL OF REVOLUTION

Surface geometry

The geometry of the shell surface (Fig, 2) is defined by

2 2
i e 2 (4.1a)
a2 b2 i

in which R,= the horizontal radius, y = the vertical coordinate,

a = the throat radius and

aT _ _bs
b AT (4.1b)

in which s = the base radius, t = the top radius, and S and T = the
vertical distances from the throat to the base and the top of the shell
respectively.

The coordinate system is shown in Fig. 2 where the positive
directions of ¢ and -9 as well as the load components per unit area of
middle surface P¢, Py, P, are indicated. The principal radii of

curvature R¢ and Ry are given by

2 2 g5
2.2, Ry
Rg ==-a'b f—;;—-+ —%g—j /2

T2 ;azbz 22 .3/2 (4.1¢)
(a sin ¢ - b cos ¢) >



2.

2
Ry = all + —Y?-(E H Ez)]}é
a
a2
(a25m2¢- b-zzoszf#) *
2
where 3 = b2
a ’
and
2 2
R, = a sin ¢ T— = Rgsind. (4.1e)

(azsiin2 ¢ - bcos? ¢)/2

Membrane theory

The differential equations of equilibrium of a shell of revolution

based on membrane theory are well known (13) and given by

1 MNyp cotg 1 Mg -
R, o +2 Rg Nyg + Rgsind 30 + Pg= 0, (4.2a)
e O .. PR .-, T S RS 0 +p =0 (4.2b)
Ry 3¢ Rg $ 76 Rgsind 30 L )
N
<+ 2 -p, = 0. (4.2¢)
o o

The expressions relating stress resultants, strains and

displacements are
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€4 = g (g - o), | (4.3a-1)
1 ol _ )
R, (oe "W (4.3a-2)
1

= =g G gl (4.3b-1)
1 1 v

"Ry oing Tae * U core - W, (4.3b-2)

w = - Z(éh'l' U) N¢9 (4.3c_1>

Ry 03¢ * Rg v ety = Rgsing 36 0. (4.3c-2)

b
[ ]

Dead weight (12)

For shells of constant thickness, the components of the dead load

are given by
Py =0, Pyp=8 sing, P, = - g cosd, (4.4)

in which g is the dead weight per unit area of the surface. Due to
symmetry of the loads, Nyg= Npy= 0, and all terms involving derivatives
with respect to 8§ vanish. Upon inserting these and Eq. (4.4) into

Eq. (4.2) the following equations of equilibrium will be obtained.

Hen¢cos¢ - _%E_ (N¢R,) = g sin¢ R,R¢, (4.5a)

N N
=g B o @ cosd (4.5b)



Solving the differential equation (4.5a),

'E¢- -—¥a (4.6a)
2ﬂR631n2¢ "

in which Wdis the total vertical load above the level ¢ found by

integration as followed.

Vg g [2mR,Ryd¢ = 2mgap? [ Pr21né do (4.6b)
. (a?sin?$ - b2cos?¢)?
Introducing the auxiliary variable g,
let cos¢ L ;_'_jl_"j;‘ (4.6¢)
(a%+ b2)
Therefore,
. 24 1,2y3/2
(a%= a2+ a2b%- a?2n?E2)2
e ab? 2L 1+ £ £
- = + lp ——=— | (4,64)
(a2+ b2)? 1-¢2 1-¢ & .
_ 2E 1+ £ ’
Let £(£) = Py TWTIEE . (4.6e)
2
Then N, = - 58— - [ £(8) - £(6) 1. (4.66)

1
(a%+ b%)* 2mRgsin?¢

Simplifying,

14



1)

| - g2y
Ng= - B b2 (a2 b2y L= E) [£(8) - £(&0)], (4-68)
4 (a2+ b2- a2£2)
and using Eq. (4.5b),
ga’ £ a? 2
Ng= - + Ny (1 - g2). (4.6h)

1
a2+ b2)% (1 - g% * 2
The displacement components U, V and W are positive as shown in
Fig. 2.
Eliminating W between Eq. (4.3a-2) and Eq. (4.3b-2) and dropping
the term involving V because of symmetry one obtains

=5 ¥ cot$ - Ryey + Rgeg = 07 (4.7a)

Substituting Eqs. (4.3a-1) and (4.3b-1) into (4.7a) and from Eq. (4.2c)

Ng can be written in terms of N, and Eq. (4.7a) becomes

N "RY
al ) 1
—35-- U cotg - En (R¢+ vRg+ —— + uRp) + “Eh (R%+ pR¢Re) g cosd
= 0. (6.7b)

By applying the boundary condition, U= 0 at ¢ = ¢g, the differential

equation (4.7b) can be solved and

2 2
_ _sing o, _(Rgt R+ 2uRyRq) _
U Eh J¢s[ R¢Si‘n¢ N¢ gRe(Re+ UR¢) c0t¢] d¢- (4-7C)
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W= U cot¢ = Rgeg

Rg ,
= U cotop - ~En (Ng- uN¢)

2
- ReNg _ Rpgg cos¢
U cot¢ + RoEh Ryt 1Ry) — — (4.74)

Wind load
The equilibrium equations of the membrane theory, in the case of a

hyperboloid of revolution can be reduced to the form (7),

rgsing DU

T Q¢ + gg = (pycos¢ - p¢sin¢)resin2¢, (4.8a)
" iy oe T - Gesine + T rgrgeins, 4. m)
%*' :2 -Pz =0, (4.8¢c)
in which
V= a¢resin2¢, n= n¢er%sin¢ . (4.9)
and ry= —%—ﬁ—’ rg= —:ﬁ—’
" _:3', 9= :2 T La, (4.10)



In the above,

17

P = a constant reference load intensity per umit area of the middle

surface.

The load components may be expressed in the following form with n > 1:

Py p¢n(¢) cos nb, P~ pen(¢) sin n#, P,= pzu(¢) cos no,

and ¢ = ¢'(¢) cos né.

Eliminating n between Eqs. (4.8a) and (4.8b) yields

S AP A -
7k R OR oL FTOVIERAC

in which

d
X1(6) = (2 —2— - 1) cots - L— —¢
re r¢ d¢

2

- nr
X2(¢) - —%_resm s ,

and
X3(¢) = = d [(p__cos¢ - sin¢)r3sinZ¢] - rin(n
3 r3sin¢ d¢ - 'am Pon®1#%g $""Pzn
- peﬂsin¢).

The solution to the homogeneous part of Eq. (4.12) is (7)

(¢) = N(¢) [Cjc05(o B,) + D.sin(p,B,)]

L}
¥ih 1Pyt T Dyminle B,

(4.11a)

(4.11b)

(4.12)

(4.13a)

(4.13b)

(4.13c)

(4.14)
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in which i, j denote the segment designation (see Fig. 2).

Then,

N($) = ( —H-_—r’g{ﬁ—ﬁ@— ), (4.152)

B = /- Go) , (4.15b)

Go) = 1, L oy | (4.15¢)
W= T e - +15¢

p(¢) = v 1 + A($) , ' | ;_77(4.15d)

and .,

ae) = =L [ L €6 __5 . & (4.15¢)
9 =c L 26 a2 8G a6 . -13e

p(¢) will be regarded as a constant T for segment j of the shell

corresponding to the nth harmonic. The value of p, will be taken as

3

the average value for the segment under consideration and

B ,-ﬁ B' () do (4.15£)

] 1

with Cj and Dj being the constants of integration.

The particular solution to Eq. (4.12) by means of the method of
variation of parameter is given by (7)

¢’p' K(4) [Aj(¢) cos(p,B.) + B, (¢) sin(ojB )1, (4.16)

] 3] h| |
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in which
X3(¢) sin(p.B,) d¢

1 ¢ "3 ii
A, (9) = y/ 7 (4.17a)
3 by by B® @,
and
- (¢) _ 1 /~¢ X3(¢) COS(ijj) do (ﬁ.l?b)
j Py ""1_1 H' (¢) N(¢) 5

The integrals in Egs. (4.17a) and (4.17b) generally must be evaluated
numerically due to the complexity of the integrand. Stress resultants

for n > 1 with w5 are determined as the sum of Eqs. (4.14) and (4.16)

0= et wgé_ (4.18)

Substituting back into Eqs. (4.9) and (4.11b) yields

- V' (¢) cos né
n¢n rasin‘¢ ] (4.19)

B¢n; and considering

The expressions for the

Integrating Eq. (4.8a) in view of Eq. (4.9) yields n

Eq. (4.8c) gives the stress resultant Do

stress resultants in segment j for the nth harmonic are

=n' .
n¢n n¢n(¢) cos n#f, (4.20a)
n9¢n- né¢n(¢) sin neo, (4.20b)
and
ng = nén(¢)cos nb. (4.20¢)
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In these equations

' N

n¢n(¢) = ;;g;;za {[(Cj+ AJ(¢)]cOS(ijj) 3 [Dj+ Bj(¢)]sin(pj5j)}.(4-21a)
1 -y r%sin¢ dy!

ne¢n(¢) = ‘E?gEIEZE" [(pzncos¢ - p¢nsin¢)resin e e Eal—] (4.21b)

¢

and

nl
nén = rB(pzn- -—f%— ). (4.21c)

50 Dj are determined from the boundary

conditions, applying the boundary conditions ng= 0g= 0 at ¢ = ¢t for

The integration constants C

the uppermost segment. The calculation of stress resultants proceeds

D, for any

3’73

segment are obtained by equating the values of n&n and né¢n at the upper

down the shell with decreasing ¢, and the constants C

edge of segment j with the wvalues of the corresponding stress resultants
at the lower edge of segment i as shown in Fig. 2.

From Eqs. (4.21b)and (4.21c) and assuming p, and p, are constant

¢n
with respect to ¢ one obtains

A (¢,)) B, (¢,.)
N T e il W . o
¢ [ oy + Qi] °°5[°131(¢1j)] * | o + 0,1 sin[pisi(¢ij)],
(4.22a)
and
A (9,.) B, (4,.)
- 1 Rl b ' ki "

CAH ORI (4.22b)



in which
Y'(¢) = . B cos(p,B8.) - p,NH' sin (p,B,)
h | d¢ 3] ] § R e

YZ"(¢) = %— sin(pjsj) + ojNH' cos (pj-Bj)-

The constants for the uppermost segment t simplify to

Ct = 0,
1 Trpry
D, = i ﬁ.. ST )¢=¢t sing, (Pzn cos¢, - Pyn sing.).

.Take the load component in the form

21

(4,22¢)

(4.22d)

(4.22e)

(4.22€)

(4.23a)

where a, is the Fourier coefficient for a particular pressure function.

Then, Py = i Ppn €OS nf.
n=o

(4.23b)

The wind pressure distribution on a hyperbolic cooling tower is

obtained by R. F. Rish and T. F. Steel from wind tests (2).

recommended formulas are summarized as follows.
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py = - 1.524 cos(1.899), 0° < 8 < 47.6°, (4.23c)
P, = + 0.69 sin[3.61(8 - 47.6)], 47.6° < 8 < 100°, (4.23d)
P, = - 0.21, 100° < 8 < 180°. (4.23e)

The wind pressure is assumed to be constant throughout the height of
the shell.
The solutions for n = 0 and n = 1 are presented for a wind pressure

distribution of the form.

p¢n = 0, o Pen = 0, Pzn =1, (23.£)

For n = 0 the solutions is similar to that of dead load, and for n = 1

to that of seismic load (6).

ng = Og Nyg + fﬁ @p ngn cos nb, (4.24a)
. nS1
[- -]
ng = ey mny, + 3 oo nén cos ng, (4.24Db)
n=1
& L]
nge" nzgluu nism sinn . (4.24c)

The stress resultant - displacement relationship can be given by

i, 7



r2 4+ r2 + 2ur .xr

3L _ 2 By _ _1 [ —2 3 L
T sing 20 sin ¢ T4
g 3 3
Y B
To sin¢ T + 0 2(1 + W) Tlogs
1 v _
Tsimg 9e T U @Etd ¥ W =T, - ny,
in which
u v
¢ = Sins , Y® sty
& 5 VEh w = WEh
Pa? ¥ Pa’ " PaZ .
In these

E = Young's modulus,

h = shell thickness,

and

u = Poisson's ratio.

Taking the variable y in the form

Y = v'(¢) sin nd

23

ny = Tlry + wry)p,l,

(4.25a)

(4.25b)

(4.25¢)

(4.26a)

(4.26b)

(4.27)
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and eliminating C between Eqs. (4.25a) and (4.25b) leads to

2,1 '
LI+ 00 Sk ) v = X,

where

r

= $ _jL__ T
Xy (¢) = W [2(1 + w) 3 (1.-61184Dn +
rs(re + ur¢)
8 Pz sing¢ 1-

(4.28a)
’ 2 2
n(r¢ + g + 2ur¢re) iy
r¢_sin¢ ¢n
-(4.28b)

Displacements for n = 0 and n = 1 are similar to that under dead load

and seismic load respectively (6). To obtain the displacements for

n > 1, the same method of variation of parameter on stress analysis

is applied yielding the solution (7).
L 1 + ¥
Y37 Ysn T Yip.

In this,

| - 1 v 1 1
?jh N [Cj cos(ijj) + Dj sin(ijj)],

ij = N [A5(¢) COS(DjEE} + B!(¢) Sin(pjﬁj)]:

3

B! = [° H'(s) ds,
3T %

(4.29)

(4.30a)

(4.30b)

(4.30¢)
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= Xy (9) sin(piﬁjf) d¢

L] - _]_'_ ¢
A Y i O TC) R R308]
. 1 fcb Xy () coS(ijj') d¢
and Cj and D:fl denote the constants of integration. The lower limit
of integration for Bi,.A} and B; is taken.as the angle ¢jm

corresponding the boundary between segments j and m as shown in Fig. 2,
By combining Eqs. (4.25) and (4.29), the displacements for segment j

and the nth harmonic are given by

u = ur:(da.). cos né, " vr'l(tb) sin n#@, v, = wr‘l(ct) cos nb (4.31)
in which,
r2 sin¢  dy! .
_ _~ sind v _ _8 5
w(e) =— = 2@+ ) rgng,, 7, T e (4.32a)

v (¢) = N(¢) ry sin¢ {[Cj + Aj(¢)l CDS(Dij) + [D3 + Bj(¢)] Sin(Dij)},

(4.32b)
and

w‘;('b) - Xy (nén - unm) -n v;l csc¢ - u’:'l cotd. (4.32¢)

The boundary conditions for displacements are u= v =0 at ¢ = ¢B
in which ¢s defines the base of the shell.
The integration constants Cs, Di are determined from the boundary

conditions for the base of the shell. Proceed upward with increasing
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¢ and obtain by equating the values of u; and v; at the lower edge of
segment j with the values of the corresponding displacement components

"at the upper edge of the segment m. Thus from Eqs. (4.30a) and (4.30b),

A'(9, ) B'(¢,. )
v - m _Jm ' 1 m_ jm 1 : '
C:I { o +c] cos{pmﬁm(fbjm)] + [ o + D] 51n{9m5m(¢jm)],
(4.33a)
and
A'(s, ) B'(4, )
" o 1 m Jm ' v m Jm ] "
% Ee sy ey Gl Wl P T Pl B
- cjzj.(.qum)}. : (4.33b)
in which
2! (¢) = . cos(p,B') - p,N H'sin(p,B!) (4.33c)
J d¢ il | h I ‘
and
27(¢) = -2 gin(p,B') + p.N H'cos(o,B8"). (4.33d)
B dé J3 h| i
The constants for the lowest segment s simplify to
C; =0, {4.33e)
and
L]
v 201 + W) T4 o¢n
Ds = o0 { rBH'N )¢=¢scsc¢s. (4.33f)
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The expression for wind load displacements for the loading given by

Eqs. (4.23) are given by (7)

n y

= 1
u=ou + né% a_u' cos ne,  (4.34a)
) i o
v = ;Z; o v sin nd, (4.34b)
and

+ 5 oW 8 ' (4.34
w=ov ng; o w' cos né. B +34c)

Bending theory

o

The equations of equilibrium for the bending of a shell of

revolution are given by (8)

1 : a(re sin¢ n¢) . an9¢ ) a(re sind) i+ q,
r¢r9 sing 3¢ ¢ 3¢ d¢ ) r¢
+p¢,-= 0, (4.35a)
3(r,_ sing n_ ) an 3(r sing)
1 [ 8 04 4 g 8 + 2] a_ ]}
rq)re sing a¢ ¢ 96 3¢ 8¢
qe _
+——+p. =0, (4.35b)
r 8
<]
1 [ B(re sing q¢) N B(r¢q8) > n, ) n, sp =B
r¢rB sing¢ ¢ 96 r¢ Ty z
(4.35c)
1 : a(rB sing m¢e) ‘s 3m¢9 ) a(rB sin¢) 5 1 - -
r¢ra sin¢ 84; ¢ a6 8¢ G q¢ s

' (4.35d)



28

1 : B(resin¢ m¢e) . 3(r¢me) . a(resin¢) o F o
T, T sins 3¢ 36 3¢ o¢! ~ Yo ’
(4.35e)
m m
_ 98 _ T8¢ _
Tyg na¢+ = = 0 (4.35£)
¢ 8
in which
M M M M
__ __® ¢8 _ se
B = "PaZ , T T PaZ , ™8 PaZ , TTe¢ Pa‘ ,
(4.36)
Q¢ Q
9% = Pa , ™49 " TF .,
Equation (4.35f) is identically satisfied for n¢e= ne¢, Moo~ Tog
Using the complex formulation (8)-»
1 m, - umqs
i¢-n¢ — T ’ (4.37a)
m - um
= . [ ]
Ne nﬂ Y 1 - uz s (4-37]3)
a 1 Mo
N9¢= ne¢+ 5 1= . {4.37c)
in which
v = hif (4.374)
v 12(1 = Uu ) ’

and combining Eqs. (4.35a)through (4.35e) and dropping higher order

terms leads to
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N N ~
1 ¢ cotd _ 1 08¢ iv 3N _ _
et e W N eyt Ty Py»(4.38a)
¢ 9 6 é ,
aN, _ N
1 8¢ cotd = 1 8 iv N _ _
r, d¢ 2 r N6¢+ r.sin¢ 38 + Zsing 2o Pa’ (4.38b)
¢ 8 <] 8
N N
—t s e =p (4.38c)
r r z .
L] e
In the above -
N=N¢+Ne, (4.384d)
and .
r,.sing r
- 1 3 0 3 3 ¢
G () r¢resin¢ { o¢ [ r¢ 9¢ ()1 + 36 [ resimb
]
«2— Ol (4. 38¢)
Consider a harmonic n and introduce
nm- n;n((a) cos né, n, = nén(t#) cos n@, ne¢n= né¢n(¢) sin ne,
= ' = 1 = v
m‘hu mw(:ﬁ) cos né, Do men(d:) cos nb, mem m9¢n(¢) sin n8,
9y~ q:bn(rb) cos n8, q, = q; (¢) sin ne, 54.39?

N, =N, (4) cos nb, ﬁ'e = Nan(¢) cos nb, ﬁ'e¢ = ﬁ’adm(da) sin né,

N = ffn(f.p) cos nf.
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Also introduce the auxiliary wvariables

= wn(¢) cos nb, (4.40a)
n= ﬁn(¢) sin n8, (4. 40b)
in which

r d¥
Uy () = W rsin2 + iv -fsimp coss d¢“ '- (4.400)
A (e) = ﬁb¢nrésin2¢. . (4.404d)

In view of Eqs. (4.39) and (4.40), Eqs. (4.38a) through (4.38¢c)

b
T

can be expressed in terms of the three dependent wvariables &n, ﬁn and

ﬁ;. Eliminating ﬁn leads to

| 2 _ivk? - I d : o
Gzn(wn) + 0?1 + z, ) ﬁ; r¢rasin¢ { ) [(p; cos¢ p¢nsin¢)
3 2 1 2
rzsin®g] + npenr¢resin o} (4.41a)
and
e 1 1 1 1 . 1
Gzn(ﬁ;) + = ﬁ;+ 5 ¢ r, - T ) sinZ¢ 'n S PL Tos (4.41b)
in which
128111(1) 2
1 d =) d n
Gl ) = r,rpsiné o [ T, a (1 - resin2¢ ). (4s.61c)

Refer to the solution of the governing equation given in reference

(8). The governing Eq. (4.41b) can be shown to be in the following form
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dz-ﬁ > dr dﬁ 2
- _i ) n n ¢

T¢2_+ [@ T, - 1) cotd - L, dé ] dé * | sin®¢ B &
r iyl ir?

_ 2 I + ___L ] ﬁ = _L (n* + D.* ) . (4. [}2)
Ty Tg¥ n Tg¥ #a o

in which n;fn and ngn are used to indicate a stress resultant derived
from the membrane theory. An approximate particular integral to Eg.

(4.42) is obtained by equating the coefficient of 1r%/r8v,

which gives

ﬂ’np = n$n +n . (4.43)

o
P

Using the same technique as that of solving the homogeneous part of

differential equation of membrane theory under wind load (8),

T e i ~ =(1 -1)B =~ _{(1 - 1)8
Nnh Wg&" [A e +A' e 1, (4.44)

in which

-r
—
8 j¢t Wﬁﬁ— de (4.45)

and A and A' are constants of integration. The complex solution is

obtained from Eqs. (4.43) and (4.44) as

ﬁ'n = an? + an. (4.46)
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Seperating the complex resultants into real and imaginary parts
and dropping higher order terms, yieldé the following explicit

expressions for the stress resultants (8).
v - - i
n&n- 64°°t¢\"52;'{Ale [cosa — (82- B5)sina]l - Ase [sino + (83— &5)
- cosa] - AgeB{cosB + (81+ 85)sinB] + A#éB[- sinB + (8;+ 85)cosB]}
+ n* : (4.47a)

¢n,

nén- Su{Ale—a[(l -83)cosa + S3sina] - Aze-u{(l - 83)sina + S3cosal

+ ABEB[(I + 83)cosB + S3sinB] + Aqeﬁ[(l + 63)sinB - 83cosf]l} + n%x ,
(4.47b)

né¢n= n54c5c¢‘/1£%;-{Ale_u{cos& - (82— 8g)sina] - Azetu[sina + (82
- 8g)cosa] - A3eB{cosB + (81+ 8g)sinB] + A“eB[- sinB + (81+ §g)
xcosB]} + LT (4.47¢)

n;n= - v8,[A; e {[1 =(1 - u)djlsina - (1 - w)dy83cosal + Ay e ” 1

= (1 - p)d3zlcosa + (1 - u)éy63sinal ~ Ag ef [1+ (1 - u)s3lsing
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+ (1 - u)8;83cosB} + Ay eB{[l + (1 - u)83]ecosB + (1 - u)S§;83sink}]
+ éa%cp (n¥ +nj) - Soln¥ +n0x), (4.474d)

- vd, A, e_a{ [u+ 83(1 - u)lsina + [8283(1 - u) - 57]51:10--}

B-
u

+ Ay e_a{[u + 83(1 - u)]cosa - [6263(1"- u) - 87)sina} + Ag eB{-[u
- 83(1 - u)]sinB - [6183(1 - u) + §7]cosB} + A, eB{[u - 83(1

u)JeosB + [8183(1 - u) + 67]sinB}] -~ 84 Ty (n$n +ng.) + Gg(ngn

o
o

+ ngn) . (4.47e)

1 = nvﬁq(l - LI) Y

- -a
8¢n aing Y 21,9 {-A1 e "[(L + 8g)sina + Srcosa] + A e [-(1

+ 8g)cosa + Sysina] + Aq eB[— (1 - 8g)sinB + ScosB] + Ay esx

T

[(1 - 8g)cosB + §;sinfl} + nv §7sin¢ _g_dl_ (n$n+ ngn) - nvéycosd

T
(4.47F)

q;m = 5, v-? [A) e %(cosa - §,sina) - A, e Y(sing + §,cosa) - Ajg e?
6

x(cosB + §;sinB) + A, eB(- sing + 81cosB)] '510% (n$n+ nt ),

(4.47g)



nv - - 8 8
qén - r sing [A;j e 'sino + A; e "cosa - A3 e cosB + Ay e cosg]
* *
+ouag, + a5y (4.47h)

In these equations

6, =1 - —= d_ (s vIor

r¢'5‘+ d¢
§o =1 + 1 d (8y) VZor.
2 r¢5'+ d¢ X 8

(=]
w

']
rt
-
[ %]
H|<

D

Sy = _3]“1_12_._

. Ty sin“¢ °

2
n [2v
85 = sin¢ cos¢ ry .
E\J

B = eath f 5 . (4.48)

- Q- uwyv
87 resin ¢ .

2
§10= (1 - W) (—‘l’;;).



35
2
§11= n ( :—) esc?é.

]

The constants of integration A; to A, are related to those defined

in Eq. (4.44) by

Ay = (Re & cosB + Im A sinf) ee,

A = (Im & cosB - Re A sinf) eE,
(4.49a)
Ay =Re &'
AJ., = Im :\-' »
in which
e
B = t = - =
g Jog ;73?:3=—- o - B = constant, (4.49b)

Only two of the four constants A; to A, will be present in any
equation derived from the boundary conditions because for the shell
a =0 at the base and B = 0 at the top.

The complete solutions for the stress resultants for dead load and
earthquake load may be obtained by setting n = 0 and n = 1 respectively.
The solutions for wind load requires a superposition of the expressions

formn = 0, n = 1 and higher harmonics. Also the form of the stress
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* % %
resultants n¢n, nsn, nﬁ¢n

upon the value of n.

obtained from the membrane theory is contigent

The displacement u, v, w would be in terms of the stress resultants

n and n_ .. The derived procedure of solutions is identical with

s* "o 8¢
that followed in earlier studies from the membrane theory under wind
load. Generally, for design purposes the membrane displacements for a

wide range of shell parameter shoud be sufficiently accurate (6, 7, 8).
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FIG, 3, Outline of Specimen Cooling Tower
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V. NUMERICAL SOLUTIONS AND DESIGN EXAMPLE

The hyperbolic cooling tower size used for this example is shown in

Fig. 3.

1.

Loads
Dead wight g = 0,43403 psi,
Wind pressure Pz= 0.35 psi corresponding to a yind velocity of
140 MPH. |
Material parameters
Young's modulus E¢= Eg= 3000000 psi.

Poisson's ratio u¢= Wg= 0.17.

Comparison between long hand membrane solutions and computer bending
solutions for dead load.

The long hand numerical solutions for the membrane theory are based
on Eqs. (4,la), (4.1b), (4.1d), (4.1le), (4.6c), (4.6e), (4.6g) and
(4.6h). The computer program (14) used in this Report calculates the
bending solutions by means of the numerical integration method of
aanlysis given in Reference (15).

The results of the calculation for the force resultants N, and Ne

¢

and the comparisons between long hand membrane solutions and computer

bending solutions are given in Table 1. Figs. 4, 5 and 6 illustrate the

~distribution of the force resultants.

Comments on comparison of these results.

a. The values and variation for N¢ are the same at all cross sections
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between these two solutioms.

b. The values of Ne are different only near the base where the bending
solutions are smaller than membrane solutions,

¢. In the membrane state bending forces are absent, equilibrium of the
shell is maintained by the in-plane forces N¢, Na and N¢e.

d. Due to symmetry of the dead loads, only a small bending moment H¢

occurs at the bottom. The in-plane forces N are all equal to zero.

%0
There is almost no bending ﬁoment My in the structure due to dead
load.

In general, it has been found that the in-plane forces obtained
using a bending theory analysis differ little from those computed
through a gimpler membrane theory analysis, Therefore, the necessary

engineering accuracy could be obtained by membrane solutions for dead

load.

Numerical bending solutions for wind load.

The variations of the internal forces, N¢, Ne, N¢6’ M¢, and Me,
along the meridian of the shell are shown in Figs. 7 through 11, and
the circumferential distribution of maximum wind load force are given
in Figs..12 through 14. All the data for these plots are calculated
based upon the nondimensional numerical wind load stress resultants in
Reference (8) which were obtained by summing Fourier series harmonics
fromn = 0 ton = 20. For design purposes, the quantities of the forces
at some points are taken from Figs. 7 through 11. By using these values

and combining them with those in Table 1, the total forces are tabulated

in Table 2.



TABLE 1.

Vertical Meridional

Computer Bending Solutions for Dead Load

distance angle

Y
(ft)

Base of
shell -270

=260
=240
=220
=200
-180
. =160
=140
-120

-100

- 60

Throat
of shell

20

40

Top of 60
shell

¢

(deg.)

72,344
72.583
73.114
73.731
74,447
75.281
76,250
77.373
78.663
80.140
81.808
83.659
85.671
87.804
90.000
92.196
94,329

96. 341

membrane solutions

N

-1

-1

Long hand

3
(1b/in)
345.33

317.33

=-1260. 41

-1

201.57

-1140,90

-1
-1

077.60
010.24
941.03
868.49
787.79
703.24
613.90
519.24
420,04
317.42
212.37
106.04

0.00

N

-301.61
-295, 30
-282,83
-270.40
-258, 00
~245,35
~232.08
-218.07
-202.93
-185.00
~164. 69
-141,26
~114,33
- 84,08

- 51.38

~ 1715 -

17.25

50.59

Computer bending

solutions

N
Ub/iny)  {1b/in)

-1345.1

-1323.3

-1206.4

-1075.3

937.8
866.3
789.1
701.7
613.5
518.6
420.5
317.2
211.5
106.2

0.0

Comparisons between Long Hand Membrane Solutions and

40

Ng My
(1b/in) (1b-in/in)
-228.66 129,91
-274.02 -22.16
-282.95 0.49
-271,87 -0.24
-257.87 -0.33
-244,80 -0.30
-231.71 0.01
-217.30 -0.30
-202,31 -0.26 ~
-185.18 -0, 35
-164,10 -0.13
-140.97 -0.20
-113.88 -0.03
- 84,01 -0.22
- 51.01 0.16
- 16.52 -0.04
17.58 0.46
50.98 0.85
Kg. = 2.2046 1b.
in., = 2.54 cm.
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60'
0 SCALE 1" = 20001b/in
UNIT 1b/in
8 = 0°
-100°
-200'
-270' \B
=1345.1

FIG. 4. Variation of N¢ Forces due to Dead Load
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60" 50.98
¢
0" X SCALE 1" = 500 1b/in
{ UNIT 1b/in
o = 0°
-80"
-120"
-200"
-255"
\\FEEET;Q\

270 N5, 66

FIG. 5, Variation of NB Forces due to Dead Load
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60'
0 SCALE 1" = 100 1b-in/in
r UNIT 1b-in/in
5 = 0°
..240'

-270'
29,91

FIG, 6, Variation of M¢ Moments due to Dead Load
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60"

0" | SCALE 1" = 2000 1b/in

UNIT 1b/in

8 =0°

-40'

-200"

-240"

-270°

FIG. 7, Variation of N¢ Forces due to Wind Load
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60"
0" SCALE 1" = 500 1b/in
UNIT 1b/in
6 =0°
-40°

-80" \

=120

-200" \\\\

«240" 7
| \M/
\ 5.6

2701

- .FIG. 8, Variation of NB Forces due to Wind Load



60’

oo

0 SCALE 1" = 1000 1b/in
UNIT 1b/in
6 = 45°

-60*

-120"

-200*

-240"

«270"
\La”:T;;;T;f

FIG., 9, Variation of HB¢ Forces due to Wind Load
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60"

0 ' SCALE 1" = 500 1b-in/in

UNIT 1b=in/in

8 = 0°

-60*

- _]OOI

-200'

-240'

-270'

FIG. 10, Variation of M-¢ Moments due to Wind Load
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/ SCALE 1" = 200 1b-in/in
UNIT 1b-in/in
6 = 0°
FIG, 11. Variation of Me Moments due to Wind Load
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Wind direction

SCALE 1" = 4x103 1b/in 0

UNIT  1b/in 15°

452

| 3x103

O\
K

-3x103

g0e / : -*6*103
I -3x103

105° \

0

120°F ‘Ill

3x103
135°
150°
165°
180°

FIG, 12. Circumferential Distribution of N¢
Forces at Base due to Wind Load
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Wind direction
SCALE 3/4" = 5x102 1b/in
UNIT 1b/in

00
15°¢

303

45+
L 5x102

7\

75°

W
2

e

120
5x102
135¢

150

FIG. 13. Circumferential Distribution of N
Forces at Base due to Wind Load



Wind direction

SCALE 3/4" = 103 1b/in

0 a
15¢%
UNIT 1b/fin
30°
45
60° <'l||I.‘l
D.A\,‘
' 4\&\
90° “"";;
‘..F‘1"‘!‘I!iiii|’,4"”{
105¢ \
\\\
120°
135°.
150°
165° 180°
FIG, 14. Circumferential Distribution
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{ -2x103

-103

103

of Ne¢

Forces at Base due to Wind Load
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3. Design example
(1). Reinforcement ( using elastic method.) (11, 16, 17)
f, = 24000 psi, f = 1800 psi; f, = 60000 psi, £, = 4000 psi.
The shell reinforcing in each direction should not be less than

0.35% of the cross sectional area of concrete (11).
2
AB = 0.0035h in"/in,

for h = 5 in, Ab= 0.21 inzlft.
Also, the maximum spacing of bars in each layer should not axceed
twice the shell thickness, or no more than 18 in. In this design,
it 18.10 in (11).
a. For meridional steel

The steel cross-sectional area can be calculated by the

following formula.

in this, the bar number and the spacing are chosen and given
in the Table 3. based on the maximum values of Ny given in
Table 2.

b. For circumferential steel

The force N, is in tension at the base only and is not big

<]
enough for governing the steel design. Use #4 with spacing

10" bar as circumferential steel for the whole tower.
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c. Steel quantities for the in-plane shear forces

As can be observed from Fig. 14, the maximum shear force N¢e
is at 6 = 42° from the wind direction, but from Figs. 12 and
13 N¢ and Ny are found almost equal to zero at the same
locations. In order to determine the steel necessary to resist
the tensile forces, the principal forces obtained from the

maximum in-plane shear forces must be evaluated. This can be

solved by using the governing equations that

I
= +

B Nso

at 6 = 45°,

1n which

Tb- the principal forces whose values are the same as those

of Nyp (absolute value). The plane on which the first principal
forces act 1is given by § = 45° measured in a clockwise direction
from the force on which Ny acts. With these, suppose the
reinforcement is put in the direction 45° from the meridicn.

The steel cross sectional area Agq for the principal temsile

forces can be calculated by the following equation,

| Ngo |
Agq = T
s -
Por this,bar number and spacing are given in Table 4.

d. Meridional reinforcement for Ny, My

Figs. 7 and 10 indicate the maximum effect for Ng», M¢ being
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in the place 5.5 ft from the bottom on which Ny = 2500 1b/in,
H¢ = -1226.9 1b-in/in. Observi;g Fig. 15a and 15b, the
meridional reinforcement Ast of the maximum effect for Ng, Mp is
calculated as follows

M
The deviation e = —E%- = 0.49 in,

W o ele 3D 2s00(0.49+0.875%2.5)
st - E_3d 24000%0.875X2.5

= 0.1275 inzlin = 1.53 inszt.

In this result, the spacing of the first and second région near
the base shown in Table 3 should be changed to 3" C. C.
Reinforcement for MQ

The maximmm Mh near the middle is equal to 106 1b-in/in. The

reinforcement

A -® _ 106 x12
st ~ £ jd 24000 X 0.875 X 3

= 0.02 inzlft.

The circumferential steel cross—sectional area is much more

than this wvalue.

Steel placement

Figure 17 shows the steel placement of vertical plane.



56

(3). The adequacy of the design with respect to ACI 318-71
requirements (16)

a. The maximum steel area/per foot should be less than

L}
T-2hfe | 7.2 x5 %4000 _, , .,
3 60000 w5 ANy
or
29000h 29000 x 5

E, 20000 2.42 in*, | 0.K.

_The deviation of the diagonal reinforcemeﬁt does not e%ceed

10 degree. _ i 0.K.
b. Thé maximum spacing

Because 4¢sz = 227.68 psi < the computed tensile stresses

due to design load, the maximum spacing allowed could be three

times the thickness, 3h = 15", (capaci;y—reducticn factor ¢=0.9)
¢. The ratio of the minimum reinforcement per foot to the concrete

area is equal to 0.0014.

For #4 @ 10", Ag/ft = 0.24 in?/ft, and

steel area - 0.24
concrete area 12 x 5

= 0.004 > 0.0014. 0.K.

d. The minimum reinforcement ratio in the tensile zone at any
portion shall not be less than 0.0035.
For #4 @ 10", Ag/ft = 0.24 in?/ft,

0.24

Tz—_x—'s_' = 0-004 > 0-0035- ’ 0.K.



TABLE 3,

Region

1

TABLE 4.

Region

1

Bar Number and Spacing for Meridional Reinforcement

corresponding to Ny at 6 = 0°,

Corresponding
Ny (1b/in)

2418.1
2838.9
3049.3
3175.3
2952, 4
2273.2
1343.8
789.1

350.1

A
(?nzlf

1.209
1.419
1.525
1.588
1.476
1.137
2.672
0.396

0.175

Bar No.

t)

Spacing
(in)c.c

4
ki
3
3
3
&
7
10

10

Bar Number and Spacing for Diagonal Reinforcement

corresponding to Ng, at 6 = 45"

Y
(ft)
-270 - -260
-260 - =220
-220 - -180
-180 - -140
-140 - =100
-100 - =60
-60 - =20
-20 - 20
20 - 60
Y
(ft)
-270 - =260
-260 - -220
-220 - -180
=180 - -140
-140 - -100
=100 - =60
-60 - =20
=20 - 20
20 - 60

Corresponding
Ne¢ (lb/in)

-1058.4
- 931..3
- 875.0
- 831.3
- 950.0
-1175.0
-1193.8
- 825.1

Agq
(in2/f

0.529
0.466
0.438
0.416
0.475
0.588
0.597
0.414

0.122

Bar No.

t)

4

4

Spacing
(in)c.c

4
5
5
5
&
4
3
5%
10

1 Kg. = 2.2046 1b

1 in, = 2,54

cm

57
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TABLE 5. Circumferential Wind Pressure and Fourier Coefficients

Angle from windward Wind pressure Fourier harmonic Fourier Coefficient

meridian, @ Coefficient n Pasi

0° 1.0 0 -0,3923
15° 0.8 1 0.2602
30° 0.2 2 0.6024
45° -0.5 3 0.5046
60° -1.2 4 0.1064
75° -1.3 5 -0.0948
90° -0.9 6 -0.0186

105° -0.4 7 0.0468

120° -0.4

135° -0.4

150° -0.4

165° " -0.4

180° -0.4
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- VI. DISCUSSION AND CONCLUSIONS

It has been shown that the maximum values of the in-plane force
resultants are strongly dependent on the circumferential distribution
of wind loading (7). The values in Table 5 and Fig. 16 appear to be
the best available at the present time (11).

The dynamic analysis of the seismic response is beyond the scope of
this Beport. It is known the bending forces due to seismic loads are
significant.

For the thinner shells, the possibility of net tension under wind load
in one or both directions requires careful design consideration.

The analysis and prediction of the buckling capacity of cooling tower
shells with realistic geometry and boundary conditions are not
presented in this report.

The bending solutions for wind load obtained from a computer program
(14) were obtained, and were based upon only the first four Fourier
harmonics. The results were much too inaccurate for design purposes.
From a design standpoint, it is of interest to observe that although
the bending forces are not large, the corresponding hoop forces due to
wind load near the base of the shell are significantly different from
those observed in the membrane analysis.

For this typical shell, the bending forces are small compared to the

direct forces.

Since the wind direction is arbitrary, only the maximum force resultants

are of design interest
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It is of interest to note that at the points 6 = 42°, where Ngg is
maximum, the values of N¢ and NB are relatively small. Also the
maximum positive Ny and Ng occur at 8 = 0° where Ngy = 0. For design

purpose, the maximum and minimum principal forces should be checked

at these locations.
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APPENDIX.- NOTATION

The following symbols are used in this report:

A, A", Ay,
AZ: AB: Ay =
A, A'=

A1(8), A5(9)
Ay =

Ag, Agds Agt
a =

By (4), BJ (8
b =

C=

G(¢4) =

Gl( ); Gzn( )=

constants of integration;

complex constants of integrétion;

variables defined by Eqs. (4.17a) and (4. 30d);

the base area of the tower measured at pond sill;
the reinforcement steel cross-sectional area;
throat radius;

variables defined by Eqs. (4.17b) and (4.30e);
shell parameter defined by Eq. (4.1b);

an efficiency factor as the performance coefficient
for tower size selection;

an empirical coefficient taken to be 0.052;

constants of integration in segment j;

Duty Coefficient for size selection;

Young's modulus;

compressive working strength of concrete, 0.45 f};
compressive strength of concrete;

working strength of steel, 0.4 fy;

ultimate strength of steel;

variable defined by Eq. (4.15¢);

operators defined by Eqs. (4.38e) and (4.4lc);
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g = gravity load per unit area of the surface;
H = the height of the tower measured above sill level;
H'(4) = variable defined by Eq. (4.15b);
h = shell thickness;
Ah = the change in total heat of the air passing through
the tower;
) i, j, m = segment designation;
1 = arc length;
H¢, Mg = mericional, and circumferential bending moment
resultants, respectively;
Msg> Mpy = twisting moment resultants;
Eé = nondimensional meridional bending moment resultant;
g, = Mg for nth harmbnic;
mg = nondimensional circumferential bending moment resultant;
mgp = my for nth harmonic;
Dyg s me¢ = pnondimensional twisting moment resultants;
Mg4n = Mgy for nth harmonic;
N¢, Ng = meridional, and circumferential stress resultants,
respectively;
Ngos NB¢ = ghearing stress resultant;
N(¢) = variable defined by Eq. (4.15a);
N= ﬂ¢ + ﬁe;
Nn=ﬂ¢n+ﬂen;

homogeneous part of ﬂﬁ;
particular part of N;

complex stress resultants defined by Eqs. (4.37);



B ¢n

n4n (9)
n¥, (¢)
Ng

Dgn
nin(9)
ngy (6
20> 6o
“g¢n
04 ()
MO
Py, Py, By

N¢/cos no;

Ny/cos né;

N9¢/ sin no;

harmonic number;

nondimensional meridional stress resultant;
Dy for nth harmonic;

ng,/cos n8;

n&n obtained in membrane analysis;
nondimensional circumferential stress resultant;
ng for nth harmonic;

ng,/ cos nb;

nén obtained in membrane analysis;
nond%gggsionalrshearing stress resultant;
ngy for nth harmonic;

ne¢nfsiﬁ nd;

né¢nobtained in membrane analysis;
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meridional, circumferential, and normal load component,

respectively;

constant reference load intensity per unit area of

middle surface;

nondimensional meridional load component;

Py for nth harmonic;

nondimensional circumferential load component;
Py for nth harmonic;

nondimensional normal load component;

p, for nth harmonic;



At =

‘.&1-
ul(4) =

meridional transverse shear;

circumferential transverse shear;
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critical buckling pressure along the windward meridian.

nondimensional meridional transverse shear;

4y for nth harmonic;

nondimensional circumferential transverse shear;

g for nth harmonic;

horizontal radiusg

meridional, and circumferential radius of curvature,
respectively;

nondimensional meridional, and circumferential radius
of curvature, re;pectively;

vertical distance from throat to base of shell;

base radius;

vertical distance from throat to top of shell;
Principal fcrce;

the change of temperature of the water passing through
the tower;

top radius;

the change between the dry bulb air temperature and
aspirated wet bulb air temperature;

meridional displacements;

nondimensional meridional displacement;

u for nth harmonic;

u,/ cos né;



wn ™
wli - el ™ (=18

R =

¥'(¢)

circumferential displacements;

nondimensional circumferential displacements;
v for nth harmonic;

vn/ sin ne;

normal displacement;

total vertical load above the level ¢;

water load;

nondimensional normal displacement;

w for nth harmonic;

w,/ cos ne;

deviation in thicknessj

variables defined_by Eqs. (4.22¢) and (4.22d);
vertical coordinate;

variables defined by Eqs. ( 4.33¢c) and (4.33d);

normal coordinate;

variable defined by last equation in Eq. (4.48);
an empirical coefficient taken to be 2,3;
Fourier coefficient for harmonic nj

b2/a?;

variable defined by Eq. (4.45);

variable defined by Eq. (4.15f);

variable defined by Eq. (4.30c);

variable defined by Eq. (4.49b);

variable defined by first equation in Eq. (4.9);

¥/ cos nb;
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d¢ =

E¢,€e =

p{(4)
(¢)

Py

v' (¢)
75(¢)

$'(¢) in segment j;

j;

particular part of ¢!;

3

homogeneous part of ¢

¥n($) cos no;
variable defined by Eq. (4.40c);

meridional coordinate;

= angle locating junction of segments 1 and j;

angle locating junction of segments j and m;
angle locating base of shell;
angle locating top of shell

strains;

variable defined by second equation in Eq. (4.9);

M, (¢) sin ng;

variable defined by Eq. (4.40d);
shear straing

Poisson's ratio;

variable defined by Eq. (4.37d);
variable defined by Eq. (4.15d);
average value of p In segment j;
v/rgsing;

Y/sin ng;

y' in segment j3
homogeneous part of Yi;

)

R

circumferential coordinate;

auxiliary variable defined by Eq. (4.6c);

particular part of y
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8 - &1y
Xp» X2» X3
Xy

4

A(¢)

variables defined by Eqs. (4.48);

variables defined-by Eqs. (4.13a) through (4.13c);

variable defined by Eq. (4.28b);
u/sing;

variable defined by &q. (4.15e);
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ABSTRACT

This report deals with the analysis and design of hyperbolic cooling

towers., The purpose of the study may be summarized as follows:

1. Formulae are given to enable the size of cooling towers to be
determined for a given cooling duty.

2, The membrane solutions and bending solutions for the stress
resultants and displacements in hyperbolic cooling towers
subjected to dead load and wind load are presented.

3. Numerical examples are presented to provide a comparison between
the results of the long hand membrane solutions and computer
bending solutions.

4. Design tables and force variations by numerical bending solutions
under dead load and wind load are given to facilitate the design
of this structure,.

5. Design considerations basedAupon the ACI-ASCE report (11) and

ACI 318-71 (16) are expressed for the design example.



