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ABSTRACT

Decentralized sensor networks are collections of individual local sensors that

observe a common phenomenon, quantize their observations, and send this quantized

information to a central processor (fusion center) which then makes a global decision

about the phenomenon. Most of the existing literature in this field consider only the

data fusion aspect of this problem, i.e., the statistical hypothesis testing and optimal

combining of the information obtained by the local sensors. In this thesis, we look

at both the data detection and the data fusion aspects of the decentralized sensor

networks. By data detection, we refer to the communication problem of transmitting

quantized information from the local sensors to the fusion center through a multiple

access channel.

This work first analyzes the data fusion problem in decentralized sensor net-

work when the sensor observations are corrupted by additive white gaussian noise.

We optimize both local decision rules and fusion rule for this case. After that, we

consider same problem when the observations are corrupted by correlated gaussian

noise. We propose a novel parallel genetic algorithm which simultaneously optimizes

both the local decision and fusion rules and show that our algorithm matches the re-

sults from prior work with considerably less computational cost. We also demonstrate

that, irrespective of the fusion rule, the system can provide equivalent performance

with an appropriate choice of local decision rules.

The second part of this work analyzes the data detection problem in dis-

tributed sensor networks. We characterize this problem as a multiple input multiple

output (MIMO) system problem, where the local sensors represent the multiple input

nodes and the fusion center(s) represent the output nodes. This set up, where the

number of input nodes (sensors) is greater than the number of output nodes (fusion

center(s)), is known as an overloaded array in MIMO terminology. We use a genetic

algorithm to solve this overloaded array problem.
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Chapter 1

Introduction

In this thesis, we study the performance of decentralized sensor networks

in the presence of additive white gaussian noise (AWGN) and additive correlated

gaussian noise. Although decentralized networks have been studied extensively in

recent times, the focus of most of the literature in this field has been on the data fusion

aspect of this problem, i.e., the statistical hypothesis testing and optimal combination

of the information from all the sensors. The focus of this work is to study both the

data fusion and the data detection aspects of decentralized sensor networks. We use

the term data detection to refer to the communication problem of transmitting the

quantized information from the local sensors to the fusion center through a multiple-

access channel. In this chapter, we introduce the reader to sensor networks in general

and decentralized sensor networks in particular. We also explain the motivation of

this thesis and our key contributions.

This chapter is organized as follows. In section 1.1, we introduce wireless

sensor networks and their applications and in section 1.2 we describe decentralized

sensor networks. In section 1.3, we present the motivation behind this thesis and

finally, in section 1.4, we present the key contributions of this work.
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1.1 Introduction to Sensor Networks

Sensor networks are collections of individual sensors that observe a common phenom-

enon and collectively produce some globally meaningful information. In other words,

sensor networks are collections of sensing devices (local sensors) that observe some

common phenomenon, gather some information and pass it on to a central processor

(fusion center) that uses this information to either classify or estimate the observa-

tion. This is illustrated in figure 1.1. Here, the circles 1 to N represent the sensing

devices and yi, i = 1 · · ·N are their respective observations, which they transmit to

the fusion center. Depending on the function of the fusion center, the problem of com-

bining the information can be either a detection problem, i.e., deciding among a finite

number of states or, an estimation problem, i.e., where the fusion center estimates the

value of some quantity related to the observation [1]. Due to the low cost of sensors

Figure 1.1: Illustration of a sensor network

and the inherent redundancy in such systems, sensor networks have been attracting a

lot of attention in recent years. Although they were originally used mainly in military
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tracking and control applications, they now have wide array of applications including

scientific, industrial, health-care, agriculture, and domestic applications. Owing to

the commercial availability of low-cost sensors with networking capabilities, wireless

sensor networks have moved over from the research domain into the real world [2].

Some common applications of wireless sensor networks are listed below [3]:

• Industrial control and monitoring [4]

• Home automation and consumer electronics [5]

• Security and military sensing [6]

• Asset tracking and Supply chain management [7]

• Intelligent agriculture and Environmental sensing [8]

• Health monitoring [7]

Traditional multi-sensor systems, where the local sensors do not perform

any preliminary processing of data and the central processor performs the detection

operation, are known as centralized multi-sensor networks. A major hurdle faced

while designing such centralized sensor networks is the communication bandwidth

constraint while transmitting information from the local sensors to the fusion center.

One way of overcoming this hurdle is by performing some preliminary processing of

the data at each local sensor and then sending the condensed information to the

fusion center [9]. Such networks are said to have intelligence at each node [10] and

are called distributed or decentralized sensor networks. In this thesis we study two

aspects of these decentralized sensor networks: data fusion and data detection.

1.2 Decentralized sensor networks

As mentioned in the previous section, decentralized sensor networks have intelligent

local sensors that perform some preliminary processing of data before sending it to
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the fusion center. This is illustrated in figure 1.2. Here the squares represent the

local sensors, with the colored part being the sensing component of the sensors and

the white part being the processing component. The observations are denoted by

yi, i = 1 · · ·N and the processed information sent to the fusion center is denoted

by ui, i = 1 · · ·N . The processing performed by the local sensors is usually some

kind of lossy compression such as quantization. Thus, the fusion center has only

partial information about the phenomenon observed. This results in a loss of perfor-

mance in decentralized networks as compared to centralized networks [11]. However,

this performance loss can be minimized by optimal processing of the information at

the sensors [12]. Moreover, decentralized networks have the advantages of reduced

communication bandwidth requirement, increased reliability, and reduced cost which

make them very attractive. These advantages have lead to significant research activ-

ity in this area [13] -[21]. Although, the common model of distributed sensor networks

Figure 1.2: Illustration of a distributed sensor network

consists of local sensors and a fusion center, there are sensor networks which operate

without a fusion center. One example of such a network would be a sensor network
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with serial topology [9], which is described in chapter 3. Another model for a sen-

sor network without a fusion center, is one in which the sensors use parleying to

collectively reach a decision [22]. However, in this work, we only consider parallel

distributed sensor networks with a fusion center.

1.3 Motivation for thesis

As mentioned in the previous section, distributed sensor networks has been an area

of active research within the wireless research community. However, most of the work

in this field tend to focus on the data fusion aspect of the problem, which consists

of statistical hypothesis testing and combining of the information from all the local

sensors. For instance, in [15], Irving and Tsitsiklis demonstrated that there is no

loss in optimality if the same decision rule is used in both sensors of a two-sensor

distributed network. In [16], the authors analyzed the AND and OR fusion rules for

distributed sensor systems and showed that the choice between the two rules depends

on the desired false alarm rate as well as the parameters of the probability distribu-

tions under both hypotheses. In [14] and [17], the authors have analyzed the constant

false alarm rate (CFAR) models of distributed sensor networks. Chamberland and

Veeravalli demonstrated that having a set of identical binary sensors is asymptoti-

cally optimal as the number of observations goes to infinity [19]. The authors in [21]

presented an adaptive fusion model for distributed sensor networks, which estimates

the probabilities of detection and false alarm by a simple counting rule. While in [20],

the authors investigated the impact of various system parameters on the detection

performance of decentralized sensor networks. In this work, we consider both the

data fusion and data detection aspects of decentralized sensor networks.
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1.3.1 Data Fusion

The data fusion aspect of decentralized sensor network consists of statistical hypoth-

esis testing and optimal combining of the information from all the sensors. In most

decentralized sensor networks, the function of the fusion rule is to decide between one

of two hypotheses. This is known as binary hypothesis testing (see chapter 2). The

main goal of the designer of a such distributed sensor network is to find the optimal

local decision rules and optimum fusion rule for the given network. This problem

can be considered for two cases: (i) when the observations of the local sensors are

conditionally independent when conditioned on the true hypothesis and; (ii) when

the observations are correlated.

The assumption of conditional independence of the sensor observations sim-

plifies the problem and makes it more tractable. This is because in this case, the

optimal local classifiers are likelihood ratio tests characterized by a finite number

of thresholds [23]. However, many works still resort to asymptotic assumptions and

information-theoretic performance measures to further simplify the analysis and de-

sign of sensor networks [18]-[20]. On the other hand, even the few studies, such as [9]

and [24], that do avoid the use of asymptotic assumptions tend to be limited to simple

networks and fail to provide any insight into the structure of the optimal fusion rules.

In [25], Alsodari and Moura have adopted a non-asymptotic approach to optimize

both the local and global decision rules with respect to the probability of error. In

their work, they used a gradient-based approach for optimization of the thresholds of

the local detectors and a genetic algorithm (GA) for optimizing the fusion rule. The

drawback of their method is that it requires the repeated computation of the gradient

of the probability of error along the direction of each of the N(L− 1) variables until

the algorithm converges. Here N is the number of sensors and L is the number of

local decision classes. Such repeated computation of the gradient greatly increases

the computational cost. Thus, there is a need for some computationally efficient al-
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gorithm that optimizes both the fusion rule and the local decision rules of distributed

sensor networks. In chapter 3, we propose such a computationally efficient alternative

to the algorithm in [25], that optimizes both the local and fusion rules with greatly

reduced computational cost. The author presents these results in part in [26].

As mentioned in the previous paragraph, the conditional independence as-

sumption on the sensor observations simplifies the distributed sensor network prob-

lem. However, this assumption is rarely valid in practical situations where the prox-

imity of the sensors to one another will result in correlated observations. Thus, there

is a need to study decentralized sensor networks in the presence of correlated ob-

servations. This problem has been studied in [27]- [33]. Lauer and Sandell studied

the problem of distributed detection in presence of correlated Gaussian noise and

derived suboptimum decision rules based on likelihood ratio tests in [27]. In [29],

Aalo and Vishwanathan considered a similar problem and evaluated the probability

of detection in the Neyman-Pearson (N-P) sense when the fusion rule was fixed to

be one of the standard rules such as AND, OR or Majority Voting rule. In [30], the

authors once again used the N-P rule to derive the optimum fusion rule for a given

set of local decision rules with known correlation among the observations. Aalo and

Viswanathan also studied the asymptotic performances of distributed and centralized

detection systems in the presence of correlated Gaussian noise in [31]. In [32], the

optimal fusion rule is developed for correlated local binary decisions by using the

Bahadur-Lazarsfeld expansion of probability density functions. Blum and Kassam

considered extending the classical locally optimum detection results to the case of

distributed detection with dependent sensor observations in [33]. Thus, most of the

literature has been devoted to deriving the optimal fusion rule for a given set of local

decision rules or vice versa. To the best of this author’s knowledge, no attempt has

been made so far to jointly optimize both the local and fusion rules of a decentralized

sensor network with correlated observations.
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In chapter 4, we demonstrate the simultaneous optimization of both the local

and fusion rules in the sense of minimizing the probability of error at the fusion center.

We do this by using the algorithm that we propose in chapter 3. In [9] it has been

shown that the optimal fusion rule for binary local detectors case with conditionally

independent observations, is a majority voting rule. In [25], the authors showed that

the optimal fusion rule takes the form of a majority-like voting rule even for the

more general case of non-binary detectors. In this work, we show that the optimal

fusion rule converges to the majority-like voting rule even for the case of correlated

observations, provided that the optimal local decision rules can be assumed to be

likelihood ratio tests. The author presents these results in part in [34].

Most of the literature in the field of decentralized sensor networks, including

the those cited in the previous paragraphs, tend to focus on the fusion center. This is

partly justified since the fusion center plays a very important role in the performance

of the distributed sensor network. However, the design of the local decision rules

is equally important. In chapter 4, we study the effect of the local decision rules

on the performance of the distributed sensor network by fixing the fusion rule and

optimizing only the local decision rules. These results were presented in part in [35]

by this author.

1.3.2 Data Detection

The data detection aspect of decentralized sensor network refers to the communication

problem of transmitting the processed information from the local sensors to the fusion

center. This is usually done through a multiple-access channel (MAC). In chapters

3 and 4, we assume that the channel is an error-free MAC. This will not be the

case in real life situations where, there will be external noise in the channel that

corrupts the information transmitted by the sensors. Thus, it is important to study

the communication issues involved in transmitting information from the multiple
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sensors to the fusion center.

In [36], Tong et. al. proposed an architecture for sensor networks called

sensor networks with mobile agents (SENMA). In their architecture, the network

consists of two node: the sensors and mobile agents. The mobile agents could be

aerial or ground vehicles that moved around the network, collecting data from the

sensors, and then transmitting this to the fusion center. Their work focused on the

energy efficiency of this SENMA architecture. On the other hand, Cui, Goldsmith

and Bahai investigated the energy efficiency of cooperative MIMO sensor networks in

[37]. They allowed for cooperation among the sensors when transmitting information

to the fusion center and treated the equivalent system as a MIMO system. In [38], the

authors proposed a new energy efficient sensor network architecture called MIMO-

Sensor networks with mobile agents (M-SENMA), which combined the advantages of

both the SENMA and the cooperative MIMO from [37]. Their work also focused on

the energy efficiency aspect of the sensor network.

In chapter 5, we analyze the communication aspects of transmitting informa-

tion from the sensors through a known channel (i.e., the channel matrix is known),

to the fusion center in the presence of additive white gaussian noise. We consider

that the fusion center receives the transmitted information using Nr receive antennas

where, the subscript t is used to denote the receiving side. Thus, we can model this

problem as a virtual multiple input multiple output (MIMO) with the Nt local sensors

(where the subscript t is used to denote the transmitting side) acting as the multiple

input nodes and the Nr receive antennas as the multiple output nodes. MIMO sys-

tem is the name given to systems that contain multiple input and multiple output

nodes. Such systems have the potential to dramatically increase the channel capacity

of fading channels as compared to single antenna systems [39] and due to this, they

have been studied extensively in literature [40]- [47]. Since, the number of sensors

will be greater than the number of receive antennas at the fusion center we have to
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deal with what is known as an “overloaded” array problem in MIMO terminology.

This is the term given to MIMO systems which have greater number of transmitted

signals as compared to the number of elements in the receiving antenna array. In [48],

the authors proposed the use of a genetic algorithm to solve this overloaded array

problem in MIMO systems. In this work, we adopt their approach and apply it our

virtual MIMO decentralized sensor network.

1.4 Key Contributions

The key contributions of this thesis are summarized in this section.

In chapter 3, we propose a novel parallel genetic algorithm (PGA) to opti-

mize a decentralized sensor network when the sensor observations are assumed to be

conditionally independent when conditioned on the true hypothesis. This yielded the

following important findings:

• Our PGA approach converges to the same majority-like fusion rule and min-

imum probability of error as the gradient-based approach of [25] with greatly

reduced computational cost.

• The algorithm converges to the same optimal solution for both homogeneous

(identical) and heterogeneous (non-identical) sensors.

• The convergence of the GA depends on the quality of the initial population. For

proper convergence, we find that the local thresholds have to initialized close

to the region of overlap of the probability distributions of the two hypotheses.

The fusion rule has to be initialized such that the probability of deciding in

favor of hypothesis H1 increases as the number of sensors deciding in favor of

H1 increases.

Next, we analyze decentralized sensor networks in the presence of correlated
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observations. Specifically, we optimize both the local decision rules and fusion rule

of the decentralized network in the presence of additive correlated gaussian noise

by using the PGA from chapter 3. The results of this optimization are provided in

chapter 4. In chapter 4, we also study the impact of the local decision rules on the

performance of the decentralized sensor network. We do this by fixing the fusion

rule to be one of the three common binary decision rules (AND, OR and majority

voting rules) and optimizing only the local decision rules. The key findings from this

research include:

• The optimal fusion rule for both correlated and uncorrelated observations is a

majority-like fusion rule, irrespective of the degree of correlation.

• The local decision rule plays a key role in optimizing the sensor network when

the observations are correlated.

• If the local decisions are assumed to be likelihood ratio tests (LRTs) and are

defined completely by quantization thresholds, we find that these thresholds

drift closer together as the degree of correlation increases.

• Both homogeneous and non-homogeneous sensors provide similar probability of

error performance even with correlated observations

• Systems having different fusion rules can all give equivalent performance pro-

vided the local decision rules are chosen appropriately.

• Contrary to the observation made in [29], the OR and AND rules actually have

comparable performance for the more general case when the false alarm rate is

not fixed and the overall probability of error is minimized.

• Our approach is valid not only for the equicorrelated observations case but also

for any arbitrary positive definite covariance matrix.
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In chapters 3 and 4, we assumed that the channel is error-free and thus, we

did not consider the communication aspects of transmitting the quantized information

from the sensors to the fusion center. We consider this data detection problem in

chapter 5, where we model our decentralized sensor network as a virtual MIMO

system. Our key finding from this include:

• The convergence of the GA to the optimal BER value for a fixed SNR depends

on the population size and the size of the mating pool in the GA.

• For fixed population and mating pool size, the BER value decreases with in-

crease in SNR.

• After a certain SNR value, depending on the number of generations, an error

floor is reached beyond which the BER does not reduce further with increase in

SNR. This can be attributed to the fact that in an overloaded array, the number

of variables is more than the number of equations.

In summary, this thesis studies both the data detection and data fusion as-

pects of decentralized sensor networks in the presence of both additive white gaussian

noise and additive correlated gaussian noise.
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Chapter 2

Hypothesis Testing

In this chapter, we introduce the reader to the basics of hypothesis test-

ing and detection theory. We provide the measures by which optimality is de-

fined in hypothesis testing problems. We also introduce the three most common

tests/formulations - Bayes, minimax, and Neyman-Pearson tests. In addition, we

also provide an example of the Gaussian Location Testing problem.

This chapter is organized as follows. Section 2.1 provides an introduction to

hypothesis testing. Sections 2.2 and 2.3 introduce the reader to the concepts of Null

and Alternative hypotheses, and the different types of errors in hypothesis testing,

respectively. The three common tests - Bayes, minimax, and Neyman-Pearson tests

- are detailed in section 2.4. In section 2.5, we provide the gaussian location testing

example. Finally, in section 2.6, we provide a brief summary of this chapter.

2.1 Introduction

Hypothesis testing, or statistical decision theory, is one of the two broad areas in

statistical inferencing, the other being estimation theory. Hypothesis testing can be

defined as the problem of choosing one among a finite number of states given an

observation y [1]. This observation can be a scalar, a vector or a function. A simple
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example of an application of hypothesis testing is in radar, where an electromagnetic

pulse is sent out and a decision on whether or not the target is present is made based

on the echo of the signal returned from the target. Here, the echo is the observation

and the states to be decided are “Target present” and “Target absent”. Thus, this

problem can be cast as a binary hypothesis testing problem, where the two states

correspond to the two hypotheses. Due to the different kinds of noises present in

this system, including receiver noise, atmospheric noise, spurious reflections from

other objects, etc., the observation will not be completely reliable. Thus, the task

of choosing the one of the two states is not very straight-forward and there is a

need for some technique to make this inference based on some objective function.

This technique, or at least the means for choosing a good technique, is provided by

detection theory, which is the name given to hypothesis testing in the context of

communication theory [9]. Another example of a situation where hypothesis testing

is used is in digital communication system, where one of a set of different waveforms is

transmitted over a channel corresponding to a particular symbol. At the receiver, an

observation of this signal plus the noise is made, and a decision had to be made about

which one of the possible symbols was transmitted. This problem can be modeled as a

M -ary hypothesis testing problem, if there are M possible symbols at the transmitter.

In this thesis, we consider the binary (M = 2) hypothesis problem, where the two

hypotheses are presence and absence of the signal, respectively.

2.2 Null and Alternative Hypotheses

In binary hypothesis testing problem, the two states of nature or hypotheses are

denoted by H0 and H1. The hypothesis H0 is known as the null hypothesis. This is

because it usually represents the absence of the signal or target. The hypothesis H1

is known as the alternative hypothesis and it usually represents the presence of the
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signal or target. If P1 is the probability distribution of the signal plus the noise and

P0 is the probability distribution of just the noise, then the binary hypothesis testing

problem can be expressed as follows

H0 : Y ∼ P0

H1 : Y ∼ P1 (2.1)

where the notation Y ∼ Pi denotes that Y has the distribution Pi. The observation

space is represented by Γ. The purpose of detection theory is to provide a hypothesis

test or decision rule δ which will partition the observation space into Γ0 and Γ1 such

that, we will choose the hypothesis Hi when y ∈ Γi. Thus the decision rule δ can be

written as

δ(y) =





1 if y ∈ Γ1

0 if y ∈ Γ0

(2.2)

In statistics, the binary hypothesis testing problem is defined in terms of the

null hypothesis. The hypothesis test results in either accepting the null hypothesis or

rejecting it. Hence, the region Γ0 is called the acceptance region and the region Γ1 is

known as the rejection or critical region.

The a priori or prior probabilities of the two hypotheses H0 and H1 are

given by π0 and π1, respectively. That is, πj is the probability that hypothesis Hj is

true without any prior knowledge of the observation. Since, the two hypotheses are

mutually exclusive, π1 = 1 − π0. Thus, only π0 is needed to define the prior or true

state of the two hypothesis.

As mentioned earlier, the objective of hypothesis testing is to decide between

the two hypotheses, i.e., choose Γ1 and Γ0 in some optimum manner. In order to do so,

optimality has to be defined in some way. Therefore, we assign costs to our decisions.
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The cost incurred in choosing the hypothesis Hi when the true hypothesis is Hj is

given by a non-negative number Cij, i = 0, 1; j = 0, 1. We use the notation Pj(Γi) to

represent the conditional probability of choosing Hj when the true hypothesis is Hi.

Now, we can define the conditional risk of a decision rule δ(y) under hypothesis Hj

as the average cost incurred by the decision rule δ(y) when the hypothesis Hj is true,

i.e.,

Rj(δ) = C1jPj(Γ1) + C0jPj(Γ0) (2.3)

2.3 Errors - Type I and Type II

In binary hypothesis testing two types of errors can occur. One error occurs when

H0 is true and we decide H1. This error is known as error of the first kind or Type

I error. It is also known as the “False Alarm” error since in radars, this error would

correspond to deciding that a target is present when, in fact, there is no target.

The probability corresponding to this type of error is thus known as the false alarm

probability or false alarm rate. It is given as

PF (δ) = P0(Γ1) (2.4)

The second kind of error in binary hypothesis testing occurs if we decide in

favor of H0 when H1 is true. This error is known as error of the second kind or Type

II error. Again, in accordance with radar terminology it is also known as the “Miss”

probability since, it would correspond to deciding that there is no target when, in

fact, the target is present. The probability corresponding to Type II error is thus

termed the probability of miss and is given by

PM(δ) = P1(Γ0) (2.5)
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However, while discussing this quantity, it is common practice to use the probability

of detection PD instead which is defined as the probability of deciding in favor of H1

when H1 is true. This is given as

PD(δ) = P1(Γ1) = 1− PM(δ) (2.6)

As we can see, the design of a hypothesis test involves a trade-off between

the probability of false alarm and the probability of miss. This is because either

one can be made arbitrarily small at the expense of the other. Depending on the

type of application, the two errors will have different degrees of importance. A simple

example is when the test is used to determine the presence or the absence of a terminal

disease. In such a situation, it is better to err on the right side and have more false

alarm rather than miss the signs and diagnose that there is no disease when the

disease is present. Similarly, there will be situations where it is more important to

curb the false alarm rate at the expense of the probability of detection.

Based on the above definitions, we can now define the average probability

of error involved in a decision as

Pe(δ) = π0PF (δ) + π1PM(δ) (2.7)

The goal of detection theory is to choose an appropriate test or decision rule

that is optimum in some sense: either it should minimize the probability of error, or

it should maximize the probability of detection, or it should minimize the conditional

risk, etc. Therefore, depending on the goal, there are many different ways of choosing

this decision rule. Three of the most common decision rules are - Bayes, minimax,

and Neyman-Pearson tests. We discuss these three rules in detail in the next section.
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2.4 Types of tests

As mentioned in the previous sections, the three most commonly used hypothesis

tests are - Bayes test, Minimax test and the Neyman-Pearson test. Each of these

tests is optimal in some sense. In this section, we will take a closer look at these three

tests.

2.4.1 Bayes Test

In section 2.2, we defined the conditional risk Rj(δ) (see eqn(2.3)). This conditional

risk is simply the cost of choosing H1 when Hj is true times the probability of choosing

thus, plus the cost of choosing H0 when Hj is true times the probability of this

happening. If we have the conditional risks and the prior probabilities of the two

hypotheses, we can define an average or Bayes risk as the overall average cost incurred

by using the decision rule δ(y). This Bayes risk is given by

r(δ) = π0R0(δ) + π1R1(δ)

=
1∑

j=0

πjRj(δ) (2.8)

where π0 and π1 are the a priori probabilities of the two hypotheses H0 and H1 and,

R0(δ) and R1(δ) are the respective conditional risks.

The Bayes rule is the decision rule δ(y) that minimizes this r(y). Thus,

optimality in this case is defined as minimizing the Bayes risk over all decision rules.

This can be done as follows.
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r(δ) =
1∑

j=0

πjRj(δ)

=
1∑

j=0

πj(C1jPj(Γ1) + C0jPj(Γ0))

=
1∑

j=0

πjC0j +
1∑

j=0

πj(C1j − C0j)Pj(Γ1) ∵ Pj(Γ0) = 1− Pj(Γ1)

=
1∑

j=0

πjC0j +

∫

Γ1

[
1∑

j=0

πj(C1j − C0j)pj(y)]µ(dy) (2.9)

where pj(y) is the probability density function corresponding to Pj. In order to

minimize the total risk, the second term in this equation must be ≤ 0. Thus,

Γ1 = {y ∈ Γ|
∑

j

πj(C1j − C0j)pj(y) ≤ 0}

= {y ∈ Γ|π1(C11− C01)p1(y) ≤ −π0(C10− C00)p0(y)}

= {y ∈ Γ|p1(y) ≥ τp0(y)}

= {y ∈ Γ|p1(y)

p0(y)
≥ τ} where τ =

π0(C10− C00)

π1(C01− C11)
(2.10)

We then define the likelihood ratio L(y) as the ratio on the right hand side of the above

inequality, i.e. L(y) is the ratio of the probability densities of the two hypotheses.

L(y) =
p1(y)

p0(y)
(2.11)

Thus, the test reduces to

Γ1 = {y ∈ Γ|L(y) ≥ τ} (2.12)

We can now define the Bayes rule δB(y) as follows

δB(y) =





1 if L(y) ≥ τ

0 if L(y) < τ
(2.13)
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As we can see, the value of the threshold τ depends on the prior probabilities and

the cost values used. One common cost assignment used in practice is the uniform

cost assignment. Here, a cost of 1 is assigned for an error, i.e. C01 = C10 = 1 and

no cost is assigned for correct decision, i.e. C00 = C11 = 0. For such uniform cost

assignment, τ simply becomes the ratio of the two prior probabilities, i.e. τ = π0/π1

and the Bayes risk reduces to the average probability of error given in eqn(3.9). Thus,

the Bayes rule for uniform costs is the rule that minimizes the average probability of

error.

The a posteriori probability πj(y) is defined as the conditional probabil-

ity that Hj is true given that Y = y. This can be written in terms of the prior

probabilities πj, j = 0, 1 and the conditional probabilities Pj(y), j = 0, 1 as

πj(y) =
Pj(y)πj

π0P0(y) + π1P1(y)
(2.14)

We can also define the posterior cost as the average cost incurred by choosing

Hi given Y = y, i.e. Ci0π0(y) + Ci1π1(y). We can the rewrite the Bayes rule in terms

of the a posteriori probabilities as

Γ1 = {y ∈ Γ|C10π0(y) + C11π1(y) ≤ C00π0(y) + C01π1(y)} (2.15)

For the case of uniform costs, this becomes

Γ1 = {y ∈ Γ|π0(y) ≤ π1(y)} (2.16)

Thus, the Bayes rule reduces to

δB(y) =





1 if π1(y) ≥ π0(y)

0 if π1(y) < π0(y)
(2.17)
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In other words, the Bayes test chooses the hypothesis that has the maximum a pos-

teriori probability of having occurred given that Y = y. Therefore, the Bayes rule is

also known as the Maximum A Posteriori (MAP) decision rule.

2.4.2 Minimax Test

The Bayes test, as we have seen in the previous section, requires the knowledge of the

prior probabilities π0 and π1 in order to determine the Bayes risk. This knowledge

may frequently be unavailable to the designer of the rule in practical situations. In

such cases, the minimax rule provides an good alternative. In Bayes rule, we optimize

the decision rule for a single distribution. This decision rule will not necessarily be

optimum for every possible prior distribution. In the case of minimax formulation,

we try to minimize the maximum conditional risk over all possible decision rules i.e.,

min max{R0(δ), R1(δ)} . Hence, the name minimax rule. The minimax criterion is

the average risk expressed as a function of the prior probability π0,

r(π0, δ) = π0R0(δ) + π1R1(δ)

= {R0(δ)−R1(δ)}π0 + R1(δ) (2.18)

Thus, the minimax rule can now be re-written in terms of this risk function as

min
δ

max
π0

r(π0, δ)

For each prior probability π0, we have Bayes test δπ0 that minimizes the

Bayes risk given in eqn(2.8). Let V (π0) = r(π0), δpi0) denote this minimum possible

Bayes risk for the π0. It can easily be shown that V (π0) is a continuous concave

function of π0. Figure 2.1 shows the plot of the average risk r(π0, δ) and the minimum

Bayes risk V (π0) versus the prior probability π0 for different rules when V (π0) has

an interior maximum. As we can see from this figure, if we fix the Bayes rule for a
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particular prior, say π′0, and then plot the average risk for this Bayes decision rule

as a function of the prior probability π0, we obtain a tangent to the V (π0) curve at

that particular prior π′0. From this, we notice that the Bayes rule which minimizes

the Bayes risk for a given prior probability, will not necessarily minimize the risk at a

different prior probability. In fact, the risk will not even remain constant for different

values of π0. But, if we find the Bayes rule for the prior probability of πL and plot the

Bayes risk for this rule, we find that it is horizontal . In this case, the value of the risk

remains constant regardless of the value of πL. In other words, for this rule, we are

guaranteed that the risk will at least not exceed this value for any value of π0. This

prior πL is called the least favorable prior as it corresponds to the maximum value of

the minimum Bayes risk V (π0) and the Bayes decision rule for this prior corresponds

to the minimax rule.

Figure 2.1: Illustration of minimax rule when V has an interior maximum

Thus, the minimax rule is the decision rule that minimizes the risk for the

worst case and guarantees that the risk at any other prior will be equal to the risk at

that least favorable prior.
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2.4.3 Neyman Pearson Test

In Bayes formulation, it is necessary to have knowledge of the prior probabilities and

also to be able to make suitable cost assignments. The minimax formulation requires

no knowledge of the prior probabilities, but still we have to be able to assign costs to

the different decision possibilities. In many situations of practical interest, not only

is the knowledge of prior probabilities not available to the designer, even the cost

assignments may be difficult to make. In some cases, it may even be undesirable to

impose a specific cost structure to the problem. In such situations, Neyman-Pearson

criterion provides a feasible alternative.

As discussed in section 2.3, there are two types of errors that can be made

in binary hypothesis testing - False alarm and Miss. As explained in that section,

the design of a hypothesis test involves a trade-off between the probabilities of these

two errors i.e., probability of false alarm (PF ) and probability of miss (PM), since

either one can be made arbitrarily small at the expense of the other. Neyman-

Pearson criterion places a bound on the false-alarm probability and then minimizes

the probability of miss. In other words, the Neyman-Pearson rule maximizes the

probability of detection (PD = 1− PM) for a fixed false-alarm probability, i.e.,

max
δ

PD(δ) subject to PF (δ) ≤ α

where α is the bound on PF . This value α is known as the significance or level of the

Neyman-Pearson test. The probability of detection PD is known as the power of the

test. Thus, the goal of the Neyman-Pearson test is to find the most powerful α-level

test of H0 versus H1.

The Neyman-Pearson lemma which specifies the general solution to problem

of finding the most powerful α-level test is summarized as follows [1]

1. Optimality: Let δ̃ be any decision rule that satisfies PF (δ̃) ≤ α, and let δ̃′ be
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any decision rule of the form

δ̃′(y) =





1 if p1(y) > ηp0(y)

γ(y) if p1(y) = ηpo(y)

0 if p1(y) < ηp0(y)

(2.19)

where η ≥ 0 and 0 ≤ γ(y) ≤ 1 are such that PF (δ̃) = α. Then, PF (δ̃′) ≥ PF (δ̃).

In other words, any decision rule of the form of eqn(2.19) and size α is a Neyman-

Pearson rule.

2. Existence: For every α ∈ (0, 1) there is a decision rule ˜δNP , of the form of

eqn(2.19) with γ(y) = γ0 (a constant) for which PF ( ˜δNP ) = α.

3. Uniqueness: If δ̃′′ is any α-level Neyman-Pearson decision rule, then δ̃′′ must be

of the form of eqn(2.19) except possibly on a subset of Γ having zero probability

under H0 and H1.

2.5 Example of Gaussian Location Testing

We will now provide an example of the gaussian location testing problem to better

illustrate the different tests described in the previous section. Since, we have used the

Additive Gaussian noise model throughout this thesis, it is important for the reader

to understand how the different hypothesis testing schemes work for this model.

Consider the following two hypotheses about the real-valued observation Y :

H0 : y = ε + µ0

H1 : y = ε + µ1 (2.20)

where ε is a Gaussian random variable with zero mean and variance σ2, and µ0

and µ1 are fixed numbers with µ1 > µ0. The addition of µ0 or µ1 to the Gaussian
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random variable results in shifting the mean of the random variable to one of those two

values. Thus, this hypothesis testing problem is essentially one where we are trying to

determine the mean or “location” about which the observation is distributed. Hence

the name, Gaussian location testing. The problem can now be re-written as follows

H0 : Y ∼ N(µ0, σ
2)

H1 : Y ∼ N(µ1, σ
2) (2.21)

where N(µ, σ2) denotes normal distribution with mean µ and variance σ2.

We will now derive the optimum decision rules for this hypothesis testing

problem using the three criteria that we have described in the previous section.

2.5.1 Bayes rule

The Bayes rule involves the testing of the likelihood ratio L(y) against the threshold

τ as given in eqn(2.13). The likelihood ratio for this problem can be evaluated as

follows:

L(y) =
p1(y)

p0(y)
=

1
σ
√

2π
exp(− (y−µ1)2

2σ2 )

1
σ
√

2π
exp(− (y−µ0)2

2σ2 )

= exp{µ1 − µ0

σ2
(y − µ0 + µ1

2
)} (2.22)

If we assume uniform costs, the threshold τ is just the ratio of the two prior proba-

bilities i.e.,

τ =
π0

π1

(2.23)

Thus, the Bayes rule for the Gaussian location testing problem is

δB(y) =





1 if exp{µ1−µ0

σ2 (y − µ0+µ1

2
)} ≥ τ

0 otherwise
(2.24)
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Instead of calculating the exponent term in the previous equation and then comparing

it to τ , we can evaluate the threshold with which to compare y as follows:

exp{µ1 − µ0

σ2
(y − µ0 + µ1

2
)} ≥ τ

y ≥ σ2

µ1 − µ0

log τ +
µ0 + µ1

2
= τ ′ (2.25)

The Bayes rule can now be written as a comparison of the observation y to this new

threshold τ ′

δB(y) =





1 if y ≥ τ ′

0 if y < τ ′
(2.26)

If we assume that the two hypotheses have equal a priori probabilities, the original

threshold τ = 1 and therefore, the new threshold simply becomes the average of the

two means:

τ ′ =
µ0 + µ1

2
(2.27)

The Bayes risk for this decision rule can be calculated as follows

r(δB) =
1

2
R0(δB) +

1

2
R1(δB)

=
1

2
P0(Γ1) +

1

2
P1(Γ0)

=
1

2
PF (δ) +

1

2
PM(δ)

=
1

2
PF (δ) +

1

2
(1− PD(δ))

=
1

2
+

1

2
(PF (δ)− PD(δ)) (2.28)

To find this, we need to evaluate the value of Pj(Γ1), j = 0, 1 as follows

Pj(Γ1) =

∫ ∞

τ ′
Pj(y)dy = 1− Φ(

τ ′ − µj

σ
)

=





1− Φ( log τ
d

+ d
2
) if j = 0

1− Φ( log τ
d
− d

2
) if j = 1

(2.29)
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where Φ(x) is the cumulative distributive function (CDF) of N(0, 1) and,

d =
µ1 − µ0

σ
(2.30)

is a simple version of the signal to noise ratio (SNR). Thus, the Bayes risk in eqn(2.28)

can now be simplified as

r(δB) =
1

2
+

1

2
(P0(Γ1)− P1(Γ1))

= 1− Φ(
d

2
) (2.31)

2.5.2 Minimax rule

To derive the minimax decision rule, we once again assume uniform costs. The

minimum Bayes risk V (π0) can therefore be written as

V (π0) = π0R0(δ) + (1− π0)R1(δ) (2.32)

where R0(δ) and R1(δ) are the conditional risks due to hypotheses H0 and H1, re-

spectively. These can be evaluated as follows

R0(δ) = C10P0(Γ1) + C00P0(Γ0) = P0(Γ1) = 1− Φ(
τ ′ − µ0

σ
) (2.33)

and

R1(δ) = P1(Γ0) = 1− P1(Γ1)

= 1− [1− Φ(
τ ′ − µ1

σ
)]

= Φ(
τ ′ − µ1

σ
) (2.34)

where, we have used eqn(2.29) to get the expression for Pj(Γ1). Thus, V (π0) can be

written as

V (π0) = π0(1− Φ(
τ ′ − µ0

σ
)) + (1− π0)Φ(

τ ′ − µ1

σ
) (2.35)
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For all the above equations, τ ′ is given by

τ ′ =
σ2

µ1 − µ0

log(
π0

1− π0

) +
µ0 + µ1

2
(2.36)

As explained in section 2.4.2, the objective of the minimax rule is to minimize

the maximum risk over all possible priors. Or, alternatively, we can also find the prior

π0 which maximizes the minimum Bayes risk V (π0). We can do this by finding the

slope of V (π0), equating it to zero and solving for τ ′, i.e.,

Set
∂V (π0)

∂π0

= 0 and solve for τ ′

which results in the equation

1− Φ(
τ ′ − µ0

σ
) = Φ(

τ ′ − µ1

σ
) (2.37)

Solving this equation for τ ′ we get the following unique solution

τ ′L =
µ0 + µ1

2
(2.38)

This is shown diagrammatically in figure 2.2. Thus, the minimax decision rule for

the gaussian location testing problem is given by

δB(y) =





1 if y ≥ τ ′L

0 if y < τ ′L
(2.39)

Substituting for τ ′ from eqn(2.38) into eqn(2.36) and solving for π0, we get

the least favorable prior as πL = 1/2. The minimum Bayes risk corresponding to this

least favorable prior, i.e. the minimax risk, is given by

V (1/2) = 1− Φ(
µ1 − µ0

2σ
) (2.40)

2.5.3 Neyman-Pearson rule

The first step in the process of determining the Neyman-Pearson rule for any hy-

pothesis testing problem is to find the threshold η which will result in a false alarm
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Figure 2.2: Plot of the conditional risks for gaussian location testing problem

rate of α. We do this for the gaussian location testing problem as follows. Let the

Neyman-Pearson decision rule be of the form

δNP (y) =





1 if L(y) ≥ η

0 if L(y) < η
(2.41)

Then, the probability of false alarm can be obtained as

PF (δ) = P0(Γ1) = P0(L(y) > η)

= P0(y > L−1(η))

= P0(y > η′)

= 1− Φ(
η′ − µ0

σ
) (2.42)

where, the likelihood ration L(y) is as given by eqn.(2.22) and we have used eqn(2.29)

to obtain the expression for P0(Γ1). The expression for η′ can be found by taking the

inverse of the likelihood ratio, which results in

η′ =
σ2

µ1 − µ0

log η +
µ0 + µ1

2
(2.43)
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We equate the expression for false alarm rate given in eqn(2.42) to the

constant α and solve for η′ as follows.

1− Φ(
η′0 − µ0

σ
) = α

η′0 = σΦ−1(1− α) + µ0 (2.44)

Thus, the Neyman-Pearson decision rule is now given as a threshold com-

parison of the observation

δNP (y) =





1 if y ≥ η′0

0 if y < η′0
(2.45)

where, η′0 is as given in eqn(2.44)

The detection probability of the δNP is given by

PD(δNP ) = P1(Γ1) = P1(y ≥ η′0)

= 1− Φ(
η′0 − µ1

σ
)

= 1− Φ(Φ−1(1− α)− d) (2.46)

where, d is the SNR ratio defined in eqn(2.30). For a fixed α, eqn(2.46) gives the prob-

ability of detection as a function of d for the Neyman-Pearson test. This relationship,

which is known as the power function of the test, is shown in figure 2.3.

For a fixed value of d, eqn(2.46) gives the detection probability as a function

of the false alarm rate. The plot of this relationship, which is known as the receiver

operating characteristics (ROCs), is shown in figure 2.4.

2.6 Summary

In this chapter, we have seen a brief introduction to hypothesis testing. We introduce

the reader to the different measures by which optimality is defined in hypothesis test-

ing, such as the conditional and average risks. We define the two types of errors that

30



Figure 2.3: Power function plot for the Neyman-Pearson rule for Gaussian location

testing

Figure 2.4: Receiver operating characteristics (ROCs) of Neyman-Pearson test for

gaussian location testing
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occur in hypothesis testing. We also describe the three common binary hypothesis

testing schemes: Bayes rule, minimax rule and Neyman-Pearson rule. Finally, we

illustrate each of these rules by using the Gaussian location testing example. In the

chapters to follow, we will describe how hypothesis testing is applicable to sensor net-

works, specifically distributed sensor networks. We will detail an alternative method,

other than the three rules described in this chapter, for choosing the optimum decision

rules for such sensors.
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Chapter 3

Decentralized detection -

Uncorrelated Case

In this chapter, we introduce the reader to distributed or decentralized de-

tection networks. Specifically, we look at detection and data fusion in distributed

sensor networks. We explain the reasons for the popularity of such systems and out-

line some common areas for their application. We also introduce some of the popular

topologies for distributed detection networks, including the parallel topology which

is the scheme used throughout this thesis. We then describe the system model and

optimization problem that we will be focusing on in this work. We also detail the

algorithms used for the optimization. Finally, we present our results and conclusions.

The organization of this chapter is as follows. In section 3.1, we provide

an introduction to distributed detection networks and decentralized sensor networks.

Section 3.2 contains the description of the system model for the parallel decentralized

sensor network analyzed in this thesis and details the optimization problem considered

herein. The two kinds of optimization algorithms used in this work, i.e., the Genetic

Algorithm-Stochastic Gradient-based Algorithm (GA-SGA) and the Parallel Genetic

Algorithm (PGA) are detailed in section 3.3. Section 3.4 contains the analysis of the
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results obtained using the two algorithms and, Section 3.5 contains the conclusions

and summary of this chapter.

3.1 Introduction

Distributed detection networks are detection schemes where group-decision making

is employed. In other words, a number of entities are collectively used in the decision

making process. The obvious advantage of such a scheme would be the increased

reliability and the redundancy inherent in it. One area where distributed detection

is widely used is in sensor networks.

Sensor networks are collections of individual or local sensors that observe a

common phenomenon and collectively produce some globally meaningful information.

Sensor networks have wide array of applications including military, scientific, indus-

trial, health-care, agriculture, and domestic applications. Traditionally, multi-sensor

systems consisted of a number of local sensors which sense the common observation

and communicate all their data to a central processor, which then performs opti-

mal decision making using some conventional technique. Such a system is known

as a centralized multi-sensor network. One of the challenges faced in the design of

such centralized sensor networks is the limited power available in the sensors and the

communication bandwidth constraints. One way of reducing the bandwidth require-

ment is to perform some preliminary processing of the data at each local sensor and

then send the condensed information to the central processor (fusion center). De-

centralized sensor networks is the name given to such networks which are becoming

increasingly popular. The reasons for this popularity are the relatively low cost of

sensors, the redundancy inherent in multiple sensors, the availability of high speed

communication networks, and increased computational capability [9]. These advan-

tages have lead to significant research activity in this area[13].
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The three major topologies used for distributed signal processing are the

parallel, serial and tree topologies [9]. Figure 3.1 shows the general structure of a

distributed sensor network with parallel topology. Here, H is the phenomenon that is

being observed by the sensors S1 through SN . The observation of sensor si is denoted

by yi and ui is the local decision that it makes based on the information in yi. The

local decisions of all the N sensors are transmitted to the fusion center which then

makes the global decision u0 based on the information from all the sensors.

Figure 3.1: Distributed sensor network - Parallel topology

Throughout this thesis, we consider a distributed sensor network having this

parallel topology.

Figure 3.2 shows the general form of a distributed sensor network having

serial topology. Here, we have used the same notation as in the case of the parallel

topology. In serial topology, there is no fusion center as in the case of the parallel

network scheme. Here, each sensor generates its decision or quantized information

based on its own observation and the quantized information received from the previous

sensor, i.e., the ith sensor uses its observation yi and the information ui−1 from the

35



i−1th sensor to generate its quantized information ui. The first sensor in the network,

S1, uses only its observation to generate its quantized information. The decision of

the last sensor SN is taken as the global decision about which of the two hypotheses

is true.

Figure 3.2: Distributed sensor network - Serial topology

Figure 3.3 shows an example of a distributed sensor network with tree topol-

ogy. As we can see, the tree topology resembles a directed acyclic graph with the

fusion center as the root of the tree. The information from all the sensors flows

through a unique path to the fusion center.

As mentioned earlier, unlike the fusion center in centralized sensor networks,

the fusion center in decentralized networks has only partial information about the ob-

servations. This results in a loss of performance in decentralized networks as compared

to centralized networks [11]. Thus, one of the major challenges in the design of de-

centralized systems is to make this performance loss as small as possible by optimally

processing the information at the sensors. This involves developing computationally

efficient algorithms for processing the information at the sensors and for combining
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Figure 3.3: Distributed sensor network - Tree topology

the information at the fusion center. Thus, one of the main objectives in the design

of decentralized sensor networks is to find the optimal local and global decision rules.

Most of the literature in the field of distributed sensor networks turn to

asymptotic assumptions and information-theoretic performance measures to simplify

the analysis and design of sensor networks [19]-[18]. This results in the abstraction of

important details of the problem such as the structure of the fusion rule. Although

there are a few studies that avoid the use of asymptotic assumptions (e.g., [9, 24]),

these are mostly limited to simple networks and fail to provide an insight into the

structure of the optimal fusion rules. In [25], Alsodari and Moura have adopted a

non-asymptotic approach to optimize both the sensing and fusion side with respect

to probability of error. Their work uses a gradient-based approach for optimizing

the thresholds of the local detectors and a genetic algorithm (GA) for optimizing the

fusion rule. This method requires the repeated computation of the gradient along the

direction of each of the N(L − 1) variables (N being the number of sensors and L

being the number of local decision classes), until the algorithm converges. This leads
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to high computational cost.

In this chapter, we propose a computationally efficient alternative to the

method proposed in [25] using a Parallel Genetic Algorithm(PGA). In our algorithm,

both the local thresholds as well as the fusion rule are simultaneously optimized

within a single GA. We consider a parallel topology for the decentralized sensor

network where there is no communication among the local sensors, and the local

detectors feed their quantized decisions to a single fusion center (figure 3.4). In

this chapter, we concentrate on the design of the fusion center, i.e., the fusion rule

that will be optimal in a probability of detection sense. We compare our results

to those obtained using the gradient-based approach outlined in [25]. Unlike [25],

where only heterogeneous sensors are considered, we optimize the fusion rule for the

case of both heterogeneous and homogeneous sensors. We show that both the cases

of homogeneous and heterogeneous sensors converge to the same fusion rule and the

same minimum probability of error. We also analyze the effect of the quality of initial

solution on the convergence of the GA. Our results show that our PGA approach

converges to the same majority-like fusion rule as the gradient-based approach of [25].

The advantage of our approach is a great reduction in the computational complexity.

In the next section, we describe our decentralized sensor network model in detail and

define the optimization problem that we consider in this chapter.

3.2 Network Model and Optimization Problem

We consider a parallel fusion network shown in figure 3.4, which has N local sensors

and a single fusion center. The local sensors gather the measurements yn, make a local

decision un per sensor, and transmit these decisions to the fusion center γ0 through an

error-free multiple access channel (MAC). The fusion center makes a global decision

H̃ about the true state H based on the set of the local decisions obtained from all
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sensors. Here, we assume that the fusion center itself does not sense the measurements

directly.

Figure 3.4: Parallel fusion network

We consider the binary detection problem in this decentralized sensor net-

work with hypotheses H0 and H1, with known prior probabilities π0 and π1, respec-

tively. In this chapter, we assume that the observations yn : n = 1, 2, ..., N are

independent and identically distributed when conditioned on Hi, i ∈ {0, 1}. The case

when the observations are not conditionally independent is considered in the next

chapter.

The final output of the fusion center is binary, i.e., either H0 or H1. However,

the local sensors are not restricted to binary outputs. Each local sensor classifies its

observation yn into one of L = 2b classes, where b is the number of transmitted bits
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per sensor. Thus, each sensor maps the observation space into a classification space

that contains L classes, and, the fusion center maps the N local decisions into one of

two classes, corresponding to the two hypotheses.

Each possible combination of local decisions are represented by a vector of

N integers as follows

u = ( u1 u2 · · · uN ), un ∈ {0, 1, · · · , L− 1}. (3.1)

Assuming L = 2b, u can be represented as a string of bN bits as follows

u = ( u1
1u

2
1 · · ·ub

1 u1
2u

2
2 · · ·ub

2 · · · u1
Nu2

N · · · ub
N

), uj
n ∈ {0, 1} (3.2)

Thus, the space of all possible local decisions is spanned by a single bN -bit integer q,

whose value ranges from 0 to 2bN − 1. For a particular combination of the local deci-

sions represented by q, the individual values of the local decisions un, n = 1, 2, · · · , N ,

can be extracted by using a reverse mapping function Ψn(q), which is defined as

Ψn(q) =
q

2b(N−n)
mod L, (3.3)

where mod is the modulo operation and all operations are carried out in integer mode.

We adopt the binary representation described in [25] to represent the fusion

rules. This representation accounts for the output of the fusion rule under every

possible combination of the local decisions. Since there are N sensors and each sensor

classifies its measurement into L classes, each fusion rule should account for LN local

decision possibilities and, is therefore represented as a string of LN bits as follows:

h = ( h0 h1 · · · hLN−2 hLN−1
),

hq ∈ {0, 1}, q = 0, 1, · · · , LN − 1 (3.4)

In order to optimize this decentralized sensor network, the optimization has

to be performed over all possible local classification rules and all possible fusion rules.
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Problem Definition: Determine the optimum fusion rule h and the opti-

mum local decision rules, where optimality is defined in the sense of minimizing the

probability of error (Pe) at the fusion center.

The conditional independence assumption on the observations, simplifies

the problem since, in this case, the optimal local classifiers are likelihood ratio tests

characterized by a finite number of thresholds [49],[23]. Further, if the likelihood ratio

f1(y)/f0(y) is monotonic in y [50], we can quantize the measurements themselves

directly rather than their likelihood ratios. For the case where the observations are

Gaussian, at most L(L−1)/2 quantization thresholds per local sensor are required to

preserve the global optimality of the sensor network [15]. According to [25], numerical

results conducted for b = 2 on the asymptotic regime show that optimizing a network

with L(L− 1)/2 thresholds per local sensor always converges to a simpler one having

only L − 1 thresholds per local sensor. Hence, for the sake of simplicity, we assume

that the local quantizers are characterized by L− 1 thresholds as follows

un =





0 if yn ≤ λn,1

1 if λn,1 ≤ yn ≤ λn,2

...
...

L− 1 if yn > λn,L−1

(3.5)

where, yn is the local measurement at the nth sensor, un is the corresponding

local decision, and λn,1, λn,2, · · · , λn,L−1, are the L−1 quantization thresholds of that

sensor.

Thus, the second part of the problem, namely, finding the optimum local

decision rules, boils down to finding the optimum set of L− 1 thresholds.
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3.3 Optimization Algorithm

The problem of optimizing the decentralized sensor network over all possible fusion

rules and local decision rules is an NP-complete optimization problem when a discrete

observation space is assumed, i.e., the solution cannot be determined in polynomial

time [25]. The problem cannot be any easier if we consider a continuous observa-

tion space [13]. Thus, this problem has a computational complexity that increases

exponentially with the number of users and, hence, it is impractical to implement

an exhaustive search. Evolutionary algorithms, such as genetic algorithms (GAs) are

one among the many techniques that have been investigated to overcome this lim-

itation. These GAs have been effective in finding approximate solutions for many

NP-complete problems. A GA uses evolution and survival-of-the-fittest mechanisms

to guide the search toward the fittest candidates [51].

In the following two sub-sections, we present two different algorithms that

can be used to solve the optimization problem at hand. The first method outlined

here is the approach used in [25]. After that, we detail the algorithm that we are

proposing as a computationally efficient alternative to the former.

3.3.1 GA-Stochastic Gradient (GA-SG) Approach

The GA-SG approach uses a GA to search for the optimal fusion rule and a gradient-

based algorithm for optimizing the local thresholds. Each chromosome in the popu-

lation of the GA represents a candidate fusion rule h, which is represented as a string

of LN bits. A random initial population of such chromosomes is generated. The

fitness of every chromosome is then calculated by optimizing the local thresholds for

that particular fusion rule, and then evaluating the objective function Pe(λ, h). A

mating pool of parents are selected to undergo cross-over and obtain the offspring

population. Once an offspring population is assembled, the fitness of each offspring
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is evaluated as before and the process is repeated till the search converges to the

optimal solution. The optimization of the local thresholds for a particular fusion rule

h is implemented by using a gradient-based approach [25]. For each fusion rule, there

is a set of N(L − 1) thresholds to be optimized with respect to the probability of

error, which is a function of both the local thresholds λ, and the fusion rule h. This is

a [N(L − 1)]-dimensional nonlinear constrained optimization problem. But, instead

of moving in the direction of the N(L − 1)-dimensional gradient, each optimization

step involves moving along the direction of the one-dimensional gradient with respect

to one of the variables as long as the constraints are satisfied. The optimization is

then carried out cyclically over all the variables.

Although the GA-SG performs well and converges to the optimal solution

(see [25]), it is computationally expensive. This is due to the repeated evaluation of

the gradient with respect to the N(L− 1) variables for each candidate fusion rule in

each generation of the GA. The gradient with respect to one variable λν,τ is evaluated

using the following expressions [25]

∂

∂λν,τ

Pe(λ, h) =
1∑

k=0

πk
∂

∂λν,τ

P 0
k (k̄, λ, h) (3.6)

∂

∂λν,τ

P 0
k (k̄, λ, h) =

LN−1∑

q = 0

hq = k

∂P ν
k (Ψν(q), λ)

∂λν,τ

N∏

n = 1

n 6= ν

P n
k (Ψn(q), λ) (3.7)

∂P n
k (m,λ)

∂λn,τ

=





−fk(λn,τ ) if m = τ

fk(λn,τ ) if m = τ − 1

0 otherwise

(3.8)

where πk is the prior probability of hypothesis Hk, P 0
k (k̄, λ, h) = Pr(u0 = k̄|Hk),

P n
k (m, λ) is the probability that the nth sensor decided m when Hk is present and
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fk(y) is the probability density function of y conditioned on Hk.

As can be seen, the evaluation of the gradient is computationally expensive

due to the need to iteratively calculate the summation and product terms. In the

next subsection, we propose a Parallel GA approach that does not involve any such

gradient evaluation.

3.3.2 Parallel GA Approach

The parallel GA that we propose is essentially one in which we optimize both the

fusion rule and the local thresholds simultaneously. Each chromosome in the GA is

divided into two parts:

• the fusion rule, and,

• a set of local thresholds.

A random population is generated consisting of a group of such chromosomes. The

fitness of each chromosome of the population is calculated as the probability of error

Pe(λ, h), which is evaluated using the following expressions [25]:

Pe(λ, h) =
1∑

k=0

πk

LN−1∑

q = 0

hq = k̄

N∏
n=1

P n
k (Ψn(q), λ) (3.9)

P n
k (m,λ) =

∫ λn,m+1

λn,m

fk(y)dy = Fk(λn,m+1)− Fk(λn,m) (3.10)

where Fk(y) is the cumulative density function of y conditioned on Hk, and πk,

P n
k (m, λ) and fk(y) are as described previously. After evaluating the fitness, both the

fusion rule part and the thresholds part of the chromosomes, undergo cross-over and

mutation individually to produce an offspring population. Elitism is also introduced

to ensure that the best solutions in each generation are carried over without any
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change into the next generation. Once an offspring population is assembled, the

fitness is again evaluated and the process continues till a desired termination criterion

is reached. Roulette wheel selection scheme is used for selecting parents for cross-over

and cross-over of the non-binary thresholds part is performed as follows:

λoffspring = xλparent1 + (1− x)λparent2 (3.11)

where x is a uniformly distributed random number between 0 and 1.

The advantage of this algorithm is that it greatly reduces the computational

complexity, as the gradient calculations have been eliminated. Although, this means

that it takes our parallel GA more number of generations to converge to the optimal

solution, it must be kept in mind that each generation only involves the GA processes

of cross-over and mutation unlike the GA-SG algorithm where, each generation also

involves a complex gradient-based sub-process to optimize the local thresholds, in

addition to the GA processes. Therefore, per-generation computation of the parallel

GA is much lower than that in the GA-SG algorithm.

Another key point to be noted is that, for both the GA with gradient-based

threshold optimization and the parallel GA, the initialization of the local thresholds

plays a crucial part in the convergence of the algorithms. The local thresholds have to

be initialized close to the region of overlap between f0(y) and f1(y), which is intuitively

reasonable since this is the region where it is hardest to discriminate between the two

hypotheses. The initialization of the fusion rule is also equally important. Both the

algorithms are found to converge to the optimal solution sooner when the fusion rule

is initialized such that the probability of getting a 1 in the rule (corresponding to

deciding in favor of H1) increases as we move from left to right along the fusion rule,

i.e., the probability of the first bit (MSB) of the fusion rule being a 1 is 0 while the

probability of the last bit (LSB) being a 1 is 1. This is because the first bit of the

fusion rule corresponds to the case when all the sensors classify the observation as
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belonging to level L (highly in favor of H1). Similarly, the last bit of the fusion rule

corresponds to the case when all the sensors classify the observation as belonging to

level 0 (highly in favor of H0).

3.4 Results

In this section, we present the results obtained by using both the GA-SG algorithm

and our PGA approach. We consider a parallel decentralized sensor network with N

sensors, each making a single measurement, quantizing it into b bits per measurement

and transmitting these b bits to a central fusion center via an error-free multiple

access channel. The fusion center then makes the global decision. We use an additive

noise model y = mi + n, where mi is the signal mean under Hi and n is a zero-

mean, unit variance Gaussian noise. The signal means m0 and m1 are assumed to

be 0 and 1 under H0 and H1, respectively. We consider 2 cases: one where the

sensors use identical quantizers (homogeneous sensors) and one where the sensors

use non-identical quantizers (non-homogeneous sensors). The local observations are

assumed to be conditionally independent and identically distributed. We consider

sensor networks with 4 sensors, each transmitting 2 bits per measurement. Thus,

each sensor quantizes its measurement into one of 4 classes using 3 thresholds. The 3

local thresholds for each sensor are initialized close to -0.5, 0.5 and 1.5, respectively.

This corresponds to the region of overlap of the distributions under the 2 hypotheses.

The initial population of fusion rules is initialized such that the probability of getting

a 1 in the fusion rule increases from 0 to 1 as we move from the least significant bit

(LSB) to the most significant bit (MSB). The prior probability π0 is assumed to be

0.6 for all the cases.

Figure 3.5 shows the evolution of the global probability of error of the sensor

network over 100 generations using the GA-SG algorithm. The sensors for this case
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Figure 3.5: Evolution of probability of error using GA-SG Algorithm for non-

homogeneous sensors (N = 4, L = 4, π0 = 0.6)

are assumed to be heterogeneous, i.e., they have non-identical thresholds. As in [25],

the population size is set at 1000 chromosomes while the crossover and mutation rates

are 0.45 and 0.01, respectively. The algorithm for this case is found to converge after

45 generations.

Figure 3.6 shows the evolution of the probability of error for the same het-

erogeneous sensor case using the PGA approach over 4000 generations. The algorithm

converges to a minimum after 2500 generations. Although this is a much large number

of generations as compared to that in the GA-SG algorithm, we must recall that the

per generation computational complexity of the PGA algorithm is lower than that of

the GA-SG by a large degree. As explained in section 3.3, this is due to the absence

of the complex gradient-based sub-process in the PGA approach. The crossover and

mutation rates for the PGA are set at 0.45 and 0.03 for the fusion center binary GA.

For the local thresholds which are non-binary, the mutation rate is 0.05.
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Figure 3.6: Evolution of probability of error using PGA for non-homogeneous sensors

(N = 4, L = 4, π0 = 0.6)

It should be noted that both the GA-SG algorithm and the PGA converge

to the majority-like fusion rule described in [25], where the integer sum of all the local

decisions is compared to a threshold given by

λ0 ' 1

2
N(L− 1) (3.12)

where N is the number of sensors and L is the number of quantization levels per

sensor. The fusion center decides in favor of hypothesis H1 if the sum is greater than

this threshold and in favor of H0 otherwise.

Figure 3.7 shows the convergence of the probability of error for the homo-

geneous sensor case using the GA-SG algorithm over 500 generations. The algorithm

is found to converge to the minimum after about 360 generations as opposed to the

50 generations in the case of heterogeneous sensors. Thus, it may seem that it is

better to use heterogeneous sensors as the convergence is much faster in that case.
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Figure 3.7: Evolution of probability of error using GA-SG Algorithm for homogeneous

sensors (N = 4, L = 4, π0 = 0.6)

But, we must bear in mind that the per generation computational complexity is much

lower in the homogeneous sensor case as there are only L thresholds to optimize us-

ing the gradient-based sub-algorithm as opposed to the N(L − 1) thresholds in the

heterogeneous sensor case.

Figure 3.8 shows the convergence plot of the probability of error for the

same homogeneous case using the PGA approach over 8000 generations. Similar to

the heterogeneous sensors case, both the PGA and GA-SG algorithms converge to

the same majority-like fusion rule for the homogeneous case also. The PGA for this

case is found to converge to a minimum after 6000 generations as compared to the

2500 generations in the case of optimizing heterogeneous sensors using the PGA. Even

though the algorithm converges slower for homogeneous sensors as in the case of the

GA-SG algorithm, the difference is not as pronounced in this case as in the GA-SG

case. This is because, the per generation computational complexity is not affected
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Figure 3.8: Evolution of probability of error using PGA for homogeneous sensors

(N = 4, L = 4, π0 = 0.6)

much by the number of local thresholds in the case of the PGA as the thresholds are

also optimized using the GA and not by a separate sub-process.

Figures 3.9 and 3.10, show the evolution of the probability of error plots for

the GA-SG and PGA algorithms, respectively, when the fusion rule is not initialized

properly, as explained earlier. For both cases, we considered homogeneous sensors and

all other parameters are the same as before. The only difference from the previous

simulations is that we used a completely random population for the fusion rule. As

we can see, both the algorithms converge to an error probability of around 0.2 and do

not reach the optimal minimum probability of error of 0.16, that was obtained in the

previous simulations (with proper initial populations). Thus, choosing a good initial

population for the GA plays an important role in the proper convergence of the GA.
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Figure 3.9: Evolution of probability of error using GA-SG Algorithm for homogeneous

sensors without proper initialization of fusion rule
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Figure 3.10: Evolution of probability of error using PGA for homogeneous sensors

without proper initialization of fusion rule
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3.5 Summary

In this chapter, we propose a Parallel Genetic Algorithm approach for optimizing

both the fusion rule and local decision rules simultaneously in a probability of global

detection error sense. We compare our results to those obtained using the gradient-

based approach outlined in [25]. Our results show that our PGA approach converges

to the same majority-like fusion rule and minimum probability of error as the gradient-

based approach of [25] with greatly reduced computational cost. We optimize the

fusion rule for the case of both heterogeneous and homogeneous sensors and show

that our algorithm converges to the same optimal solution for both cases. We also

analyze the effect of the quality of initial solution on the convergence of the GA. We

conclude that the algorithm converges to the optimal solution if the initial population

of the GA is selected appropriately. The local thresholds have to be initialized close

to the region of overlap of the two hypotheses and the fusion rule has to be initialized

such that the probability of deciding in favor of hypothesis H1 increases as the number

of sensors deciding in favor of H1 increases.
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Chapter 4

Decentralized detection -

Correlated Case

In this chapter, we study the performance of a decentralized sensor network

in the presence of correlated additive Gaussian noise. We first use the Parallel Genetic

Algorithm (PGA) approach proposed in the previous chapter to simultaneously opti-

mize both the fusion rule and the local decision rules in the sense of minimizing the

probability of error. We show, with the support of our results, that the algorithm con-

verges to a majority-like fusion rule irrespective of the degree of correlation and that

the local decision rules play a key role in determining the performance of the overall

system in the case of correlated observations. We also show that the performance of

the system degrades with increase in the correlation between the observations. We

consider both homogeneous (identical) and heterogeneous (non-identical) sensors for

this purpose. Next, we analyze the impact of the local decision rules on the per-

formance of a distributed sensor network. We do this by fixing the fusion rule to

be one of the three common binary decision rules: majority voting, AND and OR

rules, and optimizing the local decision rules with respect to the probability of error

at the fusion center. For this analysis, we consider the general case of heterogeneous
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sensors. We show that systems having different fusion rules can all provide similar

performance if the local decision rules are chosen appropriately.

The organization of this chapter is as follows: Section 4.1 introduces the

reader to distributed detection with correlated sensor observations and lists some of

the prior work done in this area. We provide the model of the system that we are

considering in this work in section 4.2 . In section 4.3 we describe how the average

probability of error at the fusion center is evaluated for the correlated observation

case and describe our optimization algorithms. In section 4.4, we present our results,

and in section 4.5 we give our conclusions.

4.1 Introduction

As explained in the previous chapter, decentralized processing, wherein the local

sensors perform some preliminary processing of data and then send the compressed

information to a central processor (fusion center), has the advantages of reduced

communication bandwidth requirement, reduced cost and increased reliability. The

fundamental problem in decentralized processing is to optimize the performance of the

system with respect to the probability of detection at the fusion center by determining

the optimal local and global decision rules. This problem has been studied extensively

based on the assumption that the observations of the local sensors are conditionally

independent when conditioned on the hypothesis [19]-[25]. This assumption simplifies

the problem and makes it more tractable since, in this case, the optimal local classifiers

are likelihood ratio tests characterized by a finite number of thresholds [23]. However,

this assumption of conditional independence is not always valid in practice [27]. This

is intuitively true in cases where the physical proximities of the local sensors to each

other results in the noise on each sensor being dependent. Hence, there is a need to

investigate the problem of distributed detection with correlated sensor observations.
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This problem, although less tractable, has also been studied [27]-[30]. However, the

focus of most of the literature in this field has been on the design of the fusion center

[16]- [23]. While the fusion center does play a very important role in the performance

of the distributed sensor network, the design of the local decision rules is equally

important.

The analysis of different detector structures in the presence of dependent

noise has been carried out for centralized detection scenario [52]-[54]. In [27], Lauer

and Sandell analyzed the problem of distributed detection in presence of correlated

Gaussian noise and derived suboptimum decision rules based on likelihood ratio tests.

Aalo and Vishwanathan considered a similar problem in [29] assuming that the local

sensors make binary decisions with all of them operating at the same threshold.

Their study involved the evaluation of the probability of detection in the Neyman-

Pearson (N-P) sense when the fusion rule was fixed to be one of the standard rules

such as AND, OR or Majority Voting rule. In [30], Drakopolous and Lee derived

the optimum decision rule in the N-P sense when the local decision rules and the

correlations between the local observations are given. Thus, most of the literature

has been devoted to deriving the optimal fusion rule for a given set of local decision

rules or vice versa. The problem of simultaneously optimizing both the fusion and

local decision rules has not been tackled for the dependent noise case. We use the

Parallel Genetic Algorithm (PGA) approach outlined in the previous chapter for

optimizing both the local and global decision rules simultaneously. We analyze the

performance of distributed sensor networks in the presence of correlated Gaussian

noise for the case when the local classifiers are assumed to be likelihood ratio tests

characterized by a finite number of thresholds. Unlike most of the prior work in

this field, we consider non-binary local decision rules. As in [29], we consider both

positively and negatively correlated symmetric multidimensional noise distributions

which can be completely characterized by a single correlation coefficient ρ. However,
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our approach can be extended for any arbitrary positive definite noise covariance

matrix structure as shown in section 4.4. Furthermore, we present the results for

the case when the sensor thresholds are non-homogeneous (non-identical) as well as

for the homogeneous (identical) case. Our results show that the performance of the

decentralized network degrades as the correlation between the sensors increases. This

is intuitively correct as we would expect the distributed system to become equivalent

to the single sensor system when the correlation coefficient is equal to 1. In addition

to presenting all these results for the two sensor case, we also show the convergence of

our algorithm for the three sensor case. Our results show that the algorithm converges

to a majority-like fusion rule for all the cases irrespective of the degree of correlation.

The local decision rules, on the other hand, are different for the different cases. Thus,

it is the local decision rules that play a major role in determining the performance

of the decentralized sensor network when the sensor observations are correlated. The

PGA approach proposed in this thesis is effective in determining the optimal local

decision rules for the correlated observations case.

In [9] and [25], it has been shown that the optimal fusion rule for the case

when the sensor observations are assumed to be conditionally independent, when

conditioned on the hypothesis, is either a majority voting rule (in the case of binary

local detectors) or a majority-like voting rule (for the more general case of non-

binary detectors) respectively. In this work, we show that the optimal fusion rule

converges to the majority-like voting rule even for the case of correlated observations,

if the optimal local decision rules are assumed to be likelihood ratio tests. Other

common fusion rules found in literature for the binary local detector case include

the AND and the OR rules. In order to investigate the importance of local decision

rules, we study the effect of these local decision rules on the performance of the

distributed sensor network when the fusion rule is fixed to be one of the 3 rules

(majority voting, AND, and OR rules) mentioned above. We assume that the sensors
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are all binary sensors for this analysis in order to implement the binary fusion rules.

In [29], Aalo and Viswanathan have provided numerical examples illustrating the

relative performance of the AND, OR and majority rules for a fixed false alarm rate

with Neyman-Pearson test. The authors in [29] consider equicorrelated observations

with homogeneous (identical) sensors. In this work, we consider a more general case of

heterogeneous (non-identical) sensors. We use a genetic algorithm (GA) to optimize

the local decision rules with respect to the global probability of detection for a fixed

fusion rule without fixing the false alarm or miss probabilities. Also, unlike [29], we

show that our approach is valid not only for the equicorrelated observations case but

also for any arbitrary positive definite covariance matrix (see section 4.4).

In [29], Aalo and Viswanathan show that the majority voting rule is the

best fusion rule only when the false alarm probability is low and, also that the OR

rule is inferior to the other two at high false alarm probabilities. This is intuitively

true as we would expect the OR rule, which chooses hypothesis 1 under all conditions

except when all the sensors decide in favor of hypothesis 0, to have the worst prob-

ability of false alarm performance. We show that the OR and AND rules actually

have comparable performance for the more general case when the false alarm rate is

not fixed and the overall probability of error at the fusion center is minimized. We

also show that systems having different fusion rules can all give practically the same

performance provided the local decision rules are optimized properly. Thus, we show-

case the impact that the local decision rules have on the overall system performance

of the distributed sensor network.

In the sections to follow, we provide the system model that we have used

for our analysis and explain how we have adapted the PGA from chapter 3 for the

correlated observations case. We also provide the derivation of the average probability

of error for at the fusion center for the case when the observations are correlated.
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4.2 System Model

The system model that we have used for the analysis of distributed sensor networks

with correlated observations is essentially the same model that we have used for the

uncorrelated case in chapter 3. Here, we have N local sensors gathering observations

yn, making a local decision un per sensor, and transmitting these decisions to a single

fusion rule γ0 through an error-free multiple access channel (see Figure 3.4). Again,

we consider the binary detection problem in such a system, (i.e.) we are testing the

two hypotheses H1 (signal present) and H0 (no signal). The two hypotheses have prior

probabilities π1 and π0, respectively. The observation, yi, at each sensor is given by,

yi =





si + ni under H1

ni under H0

i = 1, 2, . . . , N (4.1)

As before, the local detectors map these observations into one of L = 2b

classes, where b is the number of bits transmitted to the fusion center by each sensor.

The fusion center then makes a global decision H̃ about the true state H based on

the set of local decisions from all N sensors.

We assume that the noise on the sensors is additive Gaussian dependent

noise. As in [29], we first consider symmetric noise densities which can be completely

described by a single correlation coefficient. Thus, for a three sensor system, the

covariance matrix for a zero mean Gaussian noise with unit variance has the following

form,

Λ =




1 ρ ρ

ρ 1 ρ

ρ ρ 1




(4.2)

However, we our approach and results are equally valid for any arbitrary

positive definite covariance matrix as we show in section 4.4.
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The optimum local classifiers are assumed to be likelihood ratio tests. While

likelihood ratio tests have been shown to be optimal only for uncorrelated sensor ob-

servations ([49],[23]), it is still widely used as the local decision rule for the correlated

observation case(see [27]-[32]). As in chapter 3, for the additive Gaussian noise case,

the local sensors are assumed to be quantizers with L levels, i.e., L − 1 thresholds

[25]. Thus, the local decision rule corresponds to

un =





0 if yn ≤ λn,1

1 if λn,1 ≤ yn ≤ λn,2

...
...

L− 1 if yn > λn,L−1

(4.3)

where, yn is the local measurement at the nth sensor, un is the corresponding

local decision, and λn,1, λn,2, · · · , λn,L−1, are the L−1 quantization thresholds of that

sensor.

We use the same notations as in chapter 3 for the local decisions vector and

the fusion rule (See eqns. (3.1),( 3.2), (3.3) & (3.4))

4.3 Optimization algorithm

We divide our analysis of the correlated observations case into two parts. First, we

simultaneously optimize both the local thresholds and the fusion rule with respect

to the probability of error. For this purpose, we use the PGA approach detailed in

chapter 3. The algorithm remains essentially the same, with the only change being

in the evaluation of the fitness function, i.e., the probability of error. For the second

part of our analysis, we fix the fusion rule to be one of the three common binary

rules (majority-voting rule, AND rule, and OR rule), and optimize only the local

thresholds. Once again, the optimization is carried out in the sense of minimizing

the average probability of error at the fusion center. In order to do this, we assume
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that the local sensors make binary decisions and we employ a single objective genetic

algorithm (GA) for the optimization.

For both the problems, the optimization of the decentralized sensor network

has to be performed over all possible local thresholds and, in the first case, it has to

be performed over all possible fusion rules also. The resulting optimization problem

in either case is NP-complete, i.e., the solution cannot be determined in polynomial

time. The complexity of the problem increases exponentially with the number of

sensors. Thus, an exhaustive search becomes impractical. As explained in the previ-

ous chapter, one approach commonly used with this kind of a problem is the use of

evolutionary algorithms such as genetic algorithms (GAs).

As mentioned earlier, for the first part of the problem, we use the PGA that

we detailed in section 3.3. This is essentially an algorithm which optimizes both the

fusion rule and the local thresholds in parallel. Each chromosome in the GA consists

of two parts:

• the fusion rule, and,

• a set of local thresholds.

A random initial population is generated which consists of a fixed number of such

chromosomes. The fitness of each chromosome is evaluated as the average probability

of error at the fusion center for that particular combination of fusion rule and local

thresholds. After evaluating the fitness, the chromosomes undergo selection, crossover

and mutation. These processes are carried out for both parts of the chromosome in

parallel. As before, elitism is also used to ensure that the best solutions from each

generation are carried over to the subsequent generation without any mutation. Once

an offspring population is assembled with the required number of candidate solutions,

the fitness is again evaluated and the whole process continues till a desired termination

criterion is reached.
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Thus, the PGA is essentially the same as for the uncorrelated case. It is

in the evaluation of the probability of error that the correlated case differs from

the uncorrelated case. We can no longer simply multiply the probability density

functions of the observations of the different sensor as when they were considered to

be conditionally independent. Therefore, we need to derive the average probability

of error for the correlated observations case. This is done as follows.

The average probability of error at the fusion center is given by the weighted

sum of type-I and type-II errors,

Pe(λ, h) =
1∑

k=0

πkP
0
k (k̄, λ, h) (4.4)

where πk is the prior probability of hypothesis Hk, P 0
k (k̄, λ, h) = Pr(u0 = k̄|Hk) is

the probability of false alarm if k = 0 or the probability of miss if k = 1, and k̄ is

the binary NOT operation. Out of the LN mutually exclusive possible local decision

combinations, we sum over those that results in u0 = k̄ decision at the fusion center

as follows

Pe(λ, h) =
1∑

k=0

πk

LN−1∑

q = 0

hq = k̄

P r(u1 = Ψ1(q), · · · , uN = Ψn(q)) (4.5)

where Pr(u1 = Ψ1(q), · · · , uN = Ψn(q)) is the joint probability of sensor 1 deciding

Ψ1(q), sensor 2 deciding Ψ2(q), and so on. Since, the local sensors act as quantizers,

this joint probability can be evaluated as the following set of multiple integrals

Pr(u1 = Ψ1(q), · · · , uN = Ψn(q)) =

∫ λΨ1+1

λΨ1

· · ·
∫ λΨN +1

λΨN

fk(y1, · · · , yN)dy1 · · · dyN

(4.6)

where fk(y1, · · · , yN) is the joint probability density of the observations y1, · · · , yN .

Thus, we use a multiple iterated integral of the joint probability density function for
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the evaluation of the average probability of error for the correlated observations case.

For the second part of the analysis, we consider only binary sensors, i.e.,

sensors with L = 2 which map their observation into one of two classes. The fusion

rule is fixed to be one of the three common binary decision rules: (i) Majority voting

rule, (ii) AND rule, or (iii) OR rule. As the name implies majority voting rule decides

in favor of the majority of the sensors. AND fusion rule chooses hypothesis H1 only

if all the sensors decide in favor of H1, and OR rule chooses hypothesis H0 only if

all the sensors decide in favor of H0. We attempt to determine the optimal local

thresholds for each fixed fusion rule by using a GA. Each chromosome of the GA

consists of a set of local thresholds. We use the probability of error evaluation, with

the multiple integrals of the joint probability density function, which was derived

above. The usual GA processes of selection, cross-over and mutation are performed

on these chromosomes till the algorithm converges to the optimum set of thresholds.

In the selection process, the fitness of each chromosome is evaluated as the average

probability of error at the fusion center for the combination of the fixed fusion rule

and the set of local thresholds associated with the chromosome.

The initialization of the local thresholds, once again, plays a crucial part

in the convergence of both the PGA and the GA. The local thresholds have to be

initialized close to the region of overlap between f0(y) and f1(y) for proper convergence

of the algorithms. This makes intuitive sense since this is the region where it would

be hardest to discriminate between the two hypotheses.

4.4 Results

In this section, we present the simulation results obtained by using our PGA for the

simultaneous optimization problem and, the GA for the fixed fusion rule problem. We

consider a parallel decentralized sensor network, where the global decision is made
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solely by one fusion center to which all the local sensors transmit their individual

decisions through a error-free multiple access channel. The local observations are

assumed to follow the additive noise model y = mi + n, where mi is the signal mean

under Hi, i = 0, 1 and n is the correlated Gaussian noise with zero-mean and the

symmetric covariance matrix given in eqn (4.2). The signal means m0 and m1 are

assumed to be 0 and 1 under H0 and H1, respectively.

4.4.1 PGA results

For this problem, we consider both the homogenous and heterogeneous sensor cases,

i.e., the cases where the sensors have identical and non-identical thresholds, respec-

tively. We only consider sensor networks consisting of 2 and 3 local sensors since, the

order of integration increases with the number of sensors and increases the computa-

tional complexity. But, our approach is equally valid for larger number of sensors as

well. The number of bits per sensor is assumed to be 2. Thus, each sensor classifies

its observation into one of 4 classes. In other words, we consider non-binary local

decision rules. The prior probability π0 is 0.5 for all the cases. The simulations were

run for different values of ρ in the covariance matrix. The 3 local thresholds for each

sensor are initialized as Gaussian distributed random values with means -0.5, 0.5 and

1.5, respectively. These correspond to the region of overlap of f0(y) and f1(y). The

variance of all the 3 local thresholds is set to be 0.0025.

Figure 4.1 shows the convergence of the probability of error over 90 genera-

tions for different positive values of the correlation coefficient ρ (ρ = 0, 0.2, 0.5, 0.9).

The local sensors for this case are assumed to be heterogeneous. ρ = 0 represents

the uncorrelated case, where all the sensor observations are conditionally indepen-

dent when conditioned on the hypothesis Hi. For this case, the minimum global

probability of error goes down to 0.248 after 70 generations. For the case where

ρ = 0.2, the minimum probability of error is 0.263 after 60 generations. Similarly, for
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Figure 4.1: Evolution of probability of error - Positive correlation - Non-Homogenous

sensors(N = 2, L = 4, π0 = 0.5)

ρ = 0.5 and ρ = 0.9, the minimum probability of error converges to 0.284 and 0.305

after 30 and 15 generations, respectively. From this, we can see that the probability

of error decreases with decrease in the correlation between the local sensors. This

is expected as increasing ρ increases the correlation among the sensor observations,

thereby eventually reducing the distributed sensor network to a single sensor system

as the correlation coefficient becomes 1. Also, we note that the cases with lower value

of the correlation coefficient ρ take longer to converge to the optimum solution as

compared to the cases with higher ρ values. This is once again because the higher the

correlation, the closer the network becomes to a single sensor system. The optimal

local thresholds for heterogenous sensors scenario are listed in Table. 4.1

Figure 4.2 shows a similar plot for different negative correlation coefficient

values over 100 generations. Once again, the sensors are heterogeneous quantizers.

Here again, we can see the same trend with more negative values of ρ resulting in
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lower probability of error. The minimum probability of error for the 3 correlated

observation cases where ρ = −0.2,−0.5 and− 0.9 goes down to 0.23, 0.19 and 0.075,

respectively. Thus, we find that there is a drastic improvement in the performance

of the sensor network as the negative correlation between the observations increases.

An increase in the negative correlation essentially means that if the noise on one

sensor is pushes the observation towards the wrong hypothesis, then the noise on the

other sensor will push it toward the correct hypothesis. Thus, if one sensor makes

an erroneous decision, the chances for the other sensor making the right decision are

more. The worst case would be when the magnitude of noise on both the sensors is

small. In this case, the performance would be equivalent to the uncorrelated case.

Thus, negative correlation on the observations would cause the network to always

perform better than or at least equal to the uncorrelated case. Table. 4.2 lists

the optimal local thresholds for this case of heterogeneous sensor with negatively

correlated observations.

Figure 4.3 shows the convergence plot of the probability of error for the case

where the sensors are all homogeneous, i.e., having the same thresholds. We find

that the results are similar to the heterogeneous case. But, the algorithm is found to

converge much faster in this case. This due to the low complexity of problem since,

for the homogeneous case, we need to optimize only one set of common thresholds for

the whole network instead of a set of thresholds for each sensor. The GA converges

in 35 generations here as opposed to the 90 generations in the heterogeneous case.

Table. 4.3 lists the local thresholds for different cases of this scenario.

Figure 4.4 shows the evolution of the probability of error for the 3 sensor

heterogeneous case with ρ = 0.5. The GA for this case converges after 150 generations

and the minimum global probability of error at the end of 150 generations is 0.273,

which is less than the minimum probability of error for the 2 sensor case with the

same value of ρ. Due to the computational complexity of the 3 sensor case which
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involves a triple integral, we only provide the results for one value of ρ.

The optimal fusion rule in all the above cases was found to converge to a

majority-like fusion rule, where the integer sum of all the local decisions is compared

to a threshold given by

λ0 ' 1

2
N(L− 1) (4.7)

where N is the number of sensors and L is the number of quantization levels per sensor.

Although, all the cases converge to the same fusion rule, there is a degradation in

the performance with increasing correlation. The only difference between the cases

with varying degrees of correlation is in the local thresholds. Thus, we find that the

local thresholds play a major role in determining the performance of the decentralized

sensor network when the observations are correlated. We can see from Tables 4.1,

4.2 and 4.3 that as the correlation coefficient increases, the 3 local thresholds of each
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Sensor 1 Sensor 2

ρ λ1,1 λ1,2 λ1,3 λ2,1 λ2,2 λ2,3

0 -0.0329 0.2177 1.1636 -0.7661 0.4617 1.6683

0.2 -0.0942 0.7001 1.6162 -0.1284 0.6458 1.6397

0.5 -0.1513 0.6462 1.7067 -0.1436 0.7152 1.6469

0.9 0.1989 0.7523 1.6695 -0.6167 0.5248 1.6571

Table 4.1: Table of optimum local thresholds for different values of ρ for non-

homogeneous sensors case with positively correlated observation

Sensor 1 Sensor 2

ρ λ1,1 λ1,2 λ1,3 λ2,1 λ2,2 λ2,3

0 -0.0329 0.2177 1.1636 -0.7661 0.4617 1.6683

-0.2 -0.1658 0.7673 1.8580 -0.2652 0.7204 1.8023

-0.5 -0.2989 0.6892 1.9470 -0.2724 0.7702 1.9656

-0.9 -1.0056 0.3437 1.6285 -0.5272 0.0991 1.3754

Table 4.2: Table of optimum local thresholds for different values of ρ for non-

homogeneous sensors case with negatively correlated observations

sensor drift closer to each other.

4.4.2 Fixed rule results

In this section, we present the results obtained by optimizing the local thresholds of

the parallel distributed sensor network, shown in Figure 3.4, when the fusion rule

is kept fixed. The sensors are assumed to be binary (L = 2), heterogeneous (non-

identical thresholds) sensors. As mentioned in Section 4.3, we fix the fusion rule to

be one of the three common binary fusion rules: (i) Majority voting rule, (ii) AND

rule, or (iii) OR rule. We only consider networks consisting of 3 sensors (N = 3)

since, the order of integration increases with the number of sensors and increases the
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ρ λ1 λ2 λ3

0 -0.5232 0.4906 1.3661

0.2 -0.3809 0.5445 1.3514

0.5 -0.0867 0.6615 1.2830

0.9 -0.8301 0.7861 1.2114

Table 4.3: Table of optimum local thresholds for different values of ρ for homogeneous

sensors case

computational complexity. However, the proposed approach is valid for any number

of sensors. We use a GA to perform the optimization of the local thresholds. Each

chromosome in the GA consists of 3 real threshold values, one corresponding to each

sensor. The initial population of the GA is chosen such that all the thresholds are

close to the region of overlap between f0(y) and f1(y). In our case, this corresponds

to a value of 0.5 where the pdf curves of H0 and H1 overlap. Roulette wheel selection

is used to select parents for cross-over and the cross-over is performed in accordance

with eqn (3.11). The mutation rate for the GA is fixed at 0.05.

Figure 4.5, shows the convergence of the probability of error at the fusion

center over 200 generations for the three different fusion rules, when the prior prob-

ability π0 = 0.5 and the correlation coefficient ρ = 0.5. We can see from this figure,

that the minimum probability of error converges to almost the same value (0.28) for

all 3 fusion rules. The majority voting rule, being the best rule, starts out at its

minimum and shows no further convergence, while the AND and OR rules converge

more slowly after about 150 generations.

Figure 4.6, shows a similar convergence plot of the probability of error at

the fusion center over 200 generations for the three different fixed fusion rules, when

the prior probability π0 = 0.6 and correlation coefficient ρ = 0.5. Once again, all

three cases converge to almost the same minimum probability of error. However, the
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Figure 4.5: Evolution of probability of error with fixed fusion rule(N = 3, L = 2, ρ =

0.5, π0 = 0.5)
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0.6)

difference between the optimal majority voting rule and, the AND and OR rules is

slightly more pronounced in this case. Also, we observe that in this case, the majority

voting rule does converge to a lower minimum Pe value than its initial starting point

unlike the previous case. This is because the majority voting fusion rule with all the

thresholds close to 0.5 is the best combination of fusion rule and local thresholds for

π0 = 0.5 case, if the optimal local decision rules are assumed to be LRTs, due to the

symmetry of the problem. On the other hand, for π0 = 0.6, the thresholds have to

be moved a little away from the initial 0.5 to minimize the Pe.

Figure 4.7 shows the convergence plot of the probability of error over 200

generations for same prior probability of π0 = 0.6, but unlike the equicorrelated

noise structure considered in the previous two cases, we have the following covariance

matrix
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Λ =




1 0.7 0.2

0.7 1 −0.4

0.2 −0.4 1




(4.8)

Once again we observe similar trends with all 3 fusion rules converging to

the nearly the same minimum probability of error value. Also, the majority voting

rule shows more convergence in this case than in the previous cases.

All the above results serve to illustrate that the local decision rules play a

very important role in the overall performance of the distributed sensor network with

respect to minimizing the probability of error.

Figure 4.8 shows the plot of the maximum probability of detection, corre-

sponding to the minimum probability of error, with respect to the correlation coeffi-

cient ρ for values of ρ ranging from -0.3 to 0.9. The covariance matrix in this case is of
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the form given in eqn(4.2). From this figure, we can see that the majority voting rule

gives the best probability of detection performance, i.e., the least probability of error

if the local decision rules are assumed to be LRTs regardless of the value of ρ. But, we

also observe that the AND and the OR rules get progressively closer to the majority

voting rule as the correlation between the sensor observations increases, with all three

rules providing same performance at ρ = 0.9. This is to be expected as increasing

ρ increases the correlation among the sensor observations, eventually reducing the

distributed sensor network to a single sensor system as the correlation coefficient be-

comes 1. Thus, all the three rules provide similar performance at higher correlation

since the system then starts to approximate a single sensor network. Another im-

portant observation is that the AND and the OR rules give equivalent performances

for all values of ρ. This is contrary to the conjecture made in [29] that the OR rule

is inferior to both AND and majority voting rules and is relatively insensitive to

changes in the correlation coefficient. Although this may be true if the false alarm

probability is fixed at large values, in the more general case, we find that the OR

rule is in fact comparable to the AND rule. Our analysis thus demonstrates that, by

appropriately choosing the local decision rules, we can obtain equivalent performance

from any fusion rule.

4.5 Summary

In this chapter, we analyze the performance of a decentralized sensor network with

parallel fusion architecture in the presence of correlated noise. We study this problem

in two parts: (i) we simultaneously optimize both the local threshold and the fusion

rule using the Parallel Genetic Algorithm approach proposed in chapter 3, (ii) we fix

the fusion rule to be one of the three common binary rules (majority voting, AND,

and OR rules) and optimize only the local thresholds using a GA. In both cases,
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the optimization is performed with respect to the average probability of error at the

fusion center.

Our results show that the optimal fusion rule for both correlated and un-

correlated observations is a majority-like fusion rule, irrespective of the degree of

correlation. We also illustrate that the local decision rule plays a key role in opti-

mizing the sensor network when the observations are correlated. If the local deci-

sions are assumed to be likelihood ratio tests (LRTs) and are defined completely by

quantization thresholds, we show that these thresholds drift closer together as the

degree of correlation increases. We also demonstrate that both homogeneous and

non-homogeneous sensors provide similar probability of error performance. Using the

results from the fixed rule analysis, we show that systems having different fusion rules

can all give practically the same performance provided the local decision rules are op-

timized properly. We also show that, contrary to the observation made in [29], the

OR and AND rules actually have comparable performance for the more general case

when the false alarm rate is not fixed and the overall probability of error is minimized.

Also, unlike [29], we show that our approach is valid not only for the equicorrelated

observations case but also for any arbitrary positive definite covariance matrix.
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Chapter 5

Virtual MIMO Sensor Network

So far in this thesis, we have only considered the data fusion aspects of the

decentralized sensor networks. In this chapter, we will analyze the data detection

problem in distributed sensor networks, i.e, the problem of communicating the quan-

tized information from the local sensors to the fusion center. We characterize this

problem as a virtual multiple input multiple output (MIMO) problem. Specifically,

the problem turns out to be an overloaded array problem. We use a genetic algorithm

to solve this overloaded array problem.

The organization of this chapter is as follows. In section 5.1, we introduce

the reader to MIMO systems and their applications. Section 5.2 details how the

distributed sensor network can be characterized as a virtual MIMO system. We

present the system model that we use for simulating the virtual MIMO system in

section 5.3. In section 5.4 we present our simulation results. Finally, in section 5.5,

we present the summary of this chapter .

5.1 Introduction to MIMO systems

Multiple input multiple output (MIMO) systems, as the name suggests, are commu-

nication systems with multiple input nodes and multiple output nodes. As shown in
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figure 5.1, the input and output nodes are generally antennas and thus, these systems

are also known as multi-antenna systems. MIMO systems have been shown to sup-

port higher data rates under the same power budget and bit error rate constraints.

Specifically, they have the potential to dramatically increase the channel capacity of

fading channels [39]. Due to this, there has been a lot of interest in these systems

and they have been studied extensively in literature [40]- [47]. MIMO systems also

offer very high reliability because they exploit spatial diversity.

Figure 5.1: Multiple-Antenna MIMO system

Traditionally, spatial diversity has been implemented in wireless communi-

cation systems by using antenna arrays on the receiving side and only one transmitter

[55]. Such systems are known as single input multiple output or SIMO systems. These

systems perform relatively better as compared to single input single output (SISO)

systems. However, more recently, MIMO systems where multiple input as well as mul-

tiple output nodes are present have been studied extensively. These MIMO systems

provide even higher gains and are, therefore, becoming increasingly more popular.

MIMO system techniques have also been incorporated into wireless multiple access
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networks and sensor networks [36]-[38]. In the following section, we will describe how

sensor networks can be regarded as virtual MIMO systems.

5.2 Sensor Network as Virtual MIMO

In [36], Tong, et.al. proposed the SENMA (SEnsor Networks with Mobile Agents)

architecture, which was a network architecture for low power and large scale sensor

networks. These SENMA had two types of nodes: sensors and mobile agents. The

mobile agents in SENMA are aerial or ground vehicles that collect data from the

sensor nodes and then transmit this data to the fusion center, which could be located

miles away from the sensors.

On the other hand, Cui, Goldsmith and Bahai, considered cooperative MIMO

techniques in sensor networks in [37]. In such a scheme, the sensors cooperate amongst

themselves while transmitting their information to the fusion center or a relay node.

This is essentially a MISO (multiple input single output) system. In their work, they

analyzed the energy efficiency of such cooperative sensor networks for the MISO,

SIMO and the general case of multiple input and multiple output nodes (MIMO).

In [38], Xiao and Xiao proposed a new kind of energy efficient sensor net-

work called the MIMO-Sensor Networks with Mobile Agents (M-SENMA). Like the

SENMA system, this system also contains two types of nodes: the local sensors, which

are the input nodes and the mobile agents, which are the output nodes. The mobile

agents are assumed to be helicopters with Nr receive antennas The sensor nodes are

divided into virtual cells and the antennas from Nt sensor nodes in each cell are used

to cooperatively transmit the same amount of information to the Nr antennas of the

mobile agents. Thus, the transmission for each cell can be viewed as an Nt × Nr

MIMO system. The analysis in [38] was also based on energy efficiency.

Other ways of modeling sensor networks as virtual MIMO systems include
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considering that the Nt local sensors of the distributed sensor network are the input

nodes and, there are Nr intermediate nodes which act as the output nodes. These

intermediate nodes could be either relay nodes or mobile agents which then convey

the information from the sensors to the fusion center. If there are no intermediate

nodes, the system reduces to a MISO system. Alternatively, we could have multiple

fusion centers and no intermediate nodes, which again results in a MIMO system.

Thus, there are many ways of modeling sensor networks as virtual MIMO

systems. In this work, we consider a distributed sensor network with Nt local sensors

which transmit their quantized information to a fusion center, which has Nr receive

antennas. This is a virtual MIMO with Nt input nodes and Nr output nodes. We

will take a closer look at this model and the algorithm that we use at the receiver

(fusion center) to detect the information from the Nt transmitters (sensors) in the

next section.

5.3 System Model and Algorithm Description

As mentioned in the previous section, we model our distributed sensor network as a

virtual MIMO system with the Nt local sensors acting as the input nodes and, the

Nr receive antennas at the fusion center acting as the output nodes (see figure 5.2).

We analyze the bit error rate (BER) performance of this virtual MIMO system. We

assume that there is perfect cooperation among the sensors while transmitting their

quantized information to the intermediate nodes allowing us to treat them as multiple

antennas to the destination nodes. We do not concern ourselves with the power or

delay considerations in our system. We can thus ignore the loss in power and delay

that may result due to such cooperation.

The local sensors transmit their decisions after appropriate coding to the

fusion center. If the local decisions are binary, binary phase shift keying (BPSK)
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Figure 5.2: Virtual MIMO sensor network

scheme can be used for coding. If the local sensors classify their decisions into 4

classes, then quadrature phase shift keying (QPSK) could be used, and so on. The

signals from the Nt local sensors are received by the Nr receive antennas at the

fusion center with no additional interference except for the interference among the

transmitted signals. The vector of transmitted signals is denoted by s(k) and the

narrow-band complex channel between the sensors and the fusion center is given by

the known Nr × Nt channel matrix H(k). The vector of the received signal at the

fusion center, sampled at intervals kT , can then be written as

x(k) = H(k)s(k) + n(k) (5.1)

where n(k) represents the sampled complex noise vector. We assume that the en-

tries of the channel matrix are independent identically distributed complex gaussian

random variables.

The spatial filter that maximizes the signal to noise ration (SNR) at it output
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is given by

ŝ(k) = WH(k)x(k) (5.2)

where W(k) is the pseudo-inverse of H(k) and the superscript H represents the Her-

mitian transpose. In our model, the number of input nodes (sensors) Nt is greater

than the number of intermediate nodes Nr. In such a case, spatial filtering will not

remove all the interfering signals and results in very high error floors. This is because

the number of variables is greater than the number of equations. In MIMO termi-

nology, such a condition is known as an overloaded array problem [48]. The optimal

receiver for such an overloaded system would be a maximum likelihood joint detector

(MLJD) receiver. Unfortunately, the MLJD receiver has complexity on the order of

O(2Nt log2 M), where M represents the constellation size. Thus, the complexity of

the MLJD receiver increases manifold with an increase in the number of sensors Nt.

In [48], Colman and Willink proposed the use of genetic algorithms (GAs)

to solve the problem of overloaded arrays. In this work, we adopt their genetic

algorithm to our virtual MIMO sensor network in order to find a good estimate of the

transmitted signal vector, s̃(k) at the fusion center. This is done as follows. First, we

generate a random initial population consisting of a fixed number (P ) of candidate

solutions (chromosomes), ŝ(i), where i is the index of each solution. Then we evaluate

the fitness of each chromosome using the fitness function

f(k) = ‖x(k)−H(k)s̃(k)‖ (5.3)

where x(k) is the received signal vector and ‖ represents norm of the vector. The

good solutions are the ones with low value of this f(k), since it represents the distance

between the candidate solution and the actual solution. After evaluating the fitness

of all the chromosomes, T% of the chromosomes having the least fitness values are

selected for crossover. From this ‘mating pool’, we pick two parents at a time using

roulette wheel selection and perform crossover. Crossover is performed by generating
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a random crossover mask and exchanging bits between the two parents in the places

that correspond to 1 in the mask. Thus, each crossover generates two offsprings.

These offspring form part of the next generation. Also, in each generation, we mutate

each bit in each solution with probability Pm. Mutation is defined here as flipping

the sign of the symbol in the case of QPSK and flipping between 0 and 1 in the

case of BPSK. Elitism is also introduced to ensure that the best solutions from each

generation survive to the next generation. We do this as follows. The best Te%

of chromosomes from each generation are passed on to the next generation without

any mutation. Once, the population for the next generation is assembled, the same

process continues. The GA is terminated after a fixed number of generations. We

present the results obtained from the GA in the next section.

5.4 Results

We consider a virtual MIMO system consisting of Nt input nodes and Nr output

nodes (figure 5.2). We consider that the transmitted vector s(k) consists of QPSK

symbols. We assume perfect knowledge of the channel matrix H(k). We also assume

that the noise is i.i.d complex gaussian. We use a genetic algorithm to get the best

estimate of the transmitted signal vector s(k) at the receiver. The mutation rate was

chosen to be 0.1 for all the simulations. The Nt and Nr values were set at 8 and 5

respectively.

For the first set of simulations, we plot the bit error rate (BER) versus the

number of fitness evaluations. In order to do this, we evaluate the BER after every

generation and consider the number of fitness evaluations in each generation to be

equal to the population size. Thus, we place a marker of each BER value in the

position corresponding to population size on the X axis.

Figure 5.3 shows the plot of BER versus the number of fitness evaluations
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Figure 5.3: BER versus number of fitness evaluations for GA with T = 50%

for the GA with mating pool containing T = 50% of the population, for population

sizes of P = 800,1600 and 3200 at an SNR of 33.8 dB. The elite size was set at

Te = 5% of the population size. Thus, best 5% of the total population in each

generation survives to the next generation. For these particular parameters, the best

performance is obtained for P = 800 populations size and the minimum BER value

is around 4× 10−3.

Figure 5.4 shows the BER versus number of fitness evaluations plot for GA

with mating pool containing T = 25% of the population, once again for population

sizes of P = 800,1600 and 3200. All other parameters are the same as in the previous

simulation. Now, we observe that the population size of P = 1600 gives the best

performance with a BER value of 1 × 10−3. Also, we notice that the performance

with P = 3200 has also improved compared to the previous simulation.

Figure 5.5 shows the same BER vs. number of fitness evaluations plot for

mating pool size of T = 15% of the population size. As before, the rest of the
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Figure 5.4: BER versus number of fitness evaluations for GA with T = 25%

parameters are kept fixed at the same values as in the first simulation. For this case,

we find that both the P = 1600 and P = 3200 population sizes result in nearly the

same performance with the BER going down to 9 × 10−4. The population size of

800 chromosomes, on the other hand, stays the same as in the previous case. Thus,

decreasing the size of the mating pool affects the performance of the GA. But, the

population size is also a factor in determining the effect on the performance.

Finally, in last simulation in this set, we set the mating pool size to be

T = 5% of the population size. For this case, we chose only one elite chromosome

from each generation to survive on to the next generation. All other parameters are

the same as before. The results of this simulation are shown in figure 5.6. In this

case, we observe that the population size of P = 3200 performs best and the GA for

this case converges to 9×10−4 as in the previous case. We find that there is a pattern

among the four simulations that we run. As the mating pool size is decreased, the

GAs with bigger population sizes perform better. But, we find that T = 15% and
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Figure 5.5: BER versus number of fitness evaluations for GA with T = 15%

T = 5% mating pool sizes give the best performance with the algorithm in both cases

converging to the same BER value of 9× 10−4.

For the next set of simulations, we fix the mating pool size to be T = 15%

since, we found this to be optimal from the previous set of simulations. We now

plot the BER versus the signal to noise ratio (SNR) curves for different number of

generations. The population size is fixed at P = 1600 and the elite size is set to be

Te = 5% of the population size. Figure 5.7 show this BER vs. SNR plot for two

different generations: G = 4 and G = 8. From this, we can see that as expected the

BER performance of the system improves with increasing SNR. However, the BER

curve hits an error floor after a certain value of SNR and the BER performance of the

system does not improve significantly after this value os SNR. For the G = 4 case,

the error floor is reached very early around SNR of 12 dB and BER of the order of

10−2. On the other hand, the G = 8 case performs better as expected and the error

floor for this case is reached after 18 dB SNR and BER of the order of 10−3.
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Figure 5.6: BER versus number of fitness evaluations for GA with T = 5% and only

one elite
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Figure 5.7: BER versus SNR for GA with T = 15% and P = 1600
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5.5 Summary

In this chapter, we analyze the data detection aspect of decentralized sensor networks,

which is the communication problem of transmitting the quantized information from

the local sensors to the fusion center. We model our decentralized sensor network as a

virtual MIMO system with Nt local sensors on the transmitting side and a Nr receive

antenna array at the fusion center. Due to the greater number of sensors as compared

to receive antennas, our virtual MIMO system turns out to be an overloaded MIMO

system. We use a genetic algorithm to solve this overloaded array problem. We show

that the convergence of the GA to the optimal BER value for a fixed SNR depends on

the size of the mating pool and the population size of our GA. For fixed population

and mating pool size, we show that the BER value reduces with increase in SNR. But,

after a certain SNR value (18dB for GA with 8 generations and 12dB for GA with

4 generations), the BER does not decrease further and we hit an error floor. This is

due to the overloaded nature of the MIMO problem. Thus, we demonstrate that a

decentralized sensor network can be modeled as a virtual MIMO system and that a

genetic algorithm can be used to estimate the quantized information transmitted by

the local sensors at the fusion center.
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Chapter 6

Conclusion

This chapter concludes this thesis by summarizing and highlighting the key

contributions of this research. We also present areas of potential future work.

6.1 Summary of Key Contributions

In this thesis, we analyzed decentralized sensor networks in the presence of additive

white gaussian noise and additive correlated gaussian noise. Traditionally, most of

the research on decentralized sensor networks tend to focus only on the statistical

hypothesis testing and optimal combining of the information from all the sensors. In

this work, we study both this data fusion aspect and also the communication or data

detection aspect of the problem.

This work first investigated decentralized sensor networks when the sensor

observations are assumed to be conditionally independent when conditioned on the

true hypothesis. A novel parallel genetic algorithm (PGA) was proposed which op-

timizes both the local decision rules and the fusion rule simultaneously. The results

obtained using this approach were compared to those obtained using the GA-SG

approach in [25]. We demonstrated that our PGA approach converges to the same

optimal majority-like fusion rule and minimum probability of error as the GA-SG
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algorithm with greatly reduced computational cost. Our results also show that our

algorithm converges to the same optimal solution for networks with homogeneous as

well as those with heterogeneous sensors. We also demonstrated the importance of

the initial population of the GA in the convergence of the algorithm. Our results

show that the local thresholds have to be initialized close to the region of overlap of

the distributions of the two hypotheses for proper convergence of the algorithm. Sim-

ilarly, the initial population of fusion rules must be chosen such that the probability

of getting a 1 in the rule increases as we move from the least significant bit to the

most significant bit.

Next, we considered decentralized sensor networks in the presence of corre-

lated observations. We first optimized both the local decision rules and fusion rule

of the decentralized network in the presence of additive correlated gaussian noise by

using the PGA approach that we proposed earlier. Our results show that the optimal

fusion rule for the decentralized sensor network in the presence of additive gaussian

noise is a majority-like fusion rule irrespective of the degree of correlation of the noise.

Another important finding is that the local decision rules play an important role in

the performance of the sensor network. When the local decisions were assumed to

be likelihood ratio tests (LRTs) and were defined completely by quantization thresh-

olds, we found that these thresholds drift closer together as the degree of correlation

increases. Also, we observed that the performance of both homogeneous and het-

erogeneous sensors is identical even for the case of correlated observations. We also

studied the impact of the local decision rules on the performance of the decentralized

sensor network. In order to do this, we fixed the fusion rule to be one of the three

common binary decision rules (AND, OR and majority voting rules) and optimized

only the local decision rules using a GA. This provided us with the interesting result

that systems having different fusion rules can all give equivalent performance pro-

vided the local decision rules are chosen appropriately. Also, we demonstrate that,

88



contrary to the observation made in [29], the OR and AND rules provide comparable

performance for the more general case when the false alarm rate is not fixed and the

overall probability of error is minimized. We also show that our approach is valid for

any arbitrary positive definite covariance matrix and not just for the equicorrelated

observations case.

Finally, we considered the data detection problem in decentralized sensor

network, i.e., the communication aspect of transmitting the quantized information

from the sensors to the fusion center. We modeled our decentralized sensor network

as a virtual MIMO system where the sensors represent the input nodes and the

receive antenna array at the fusion center represent the output nodes. This modeling

resulted in an overloaded array problem which we solved using a genetic algorithm.

We demonstrated that the convergence of the GA to the optimal BER value for a

fixed SNR depends on the population size and the mating pool size in the GA. We

also illustrated that although the BER decreases with increase in SNR, for a fixed

population and mating pool size, this BER vs. SNR curve hits an error floor after

a certain value of SNR. The BER performance of the system does not improve any

further with increase in SNR. This is due to the overloading of the MIMO system.

6.2 Future Work

Some possible future work based on the work in this thesis is provided in this section.

• In this work, we have considered both the data detection and data fusion aspects

of decentralized sensor networks. However, our analysis of these two problems

has been carried out independent of each other. In future, these two aspects can

be integrated to form one model which incorporates the communication aspect

into the data fusion problem.

• In this thesis, we only considered the gaussian location testing problem for
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the data fusion analysis. It would be an interesting exercise to consider other

common detection problems (for instance, problems with exponentially distrib-

uted observations) and determine the optimal fusion and local rules for such

problems.

• For the data detection problem, we have used a Rayleigh channel model with

no multi-path. It would be instructive to assume a multi-path fading channel

and check if the GA still provides good results.

• In this work, we have assumed synchronous transmission from the sensors. It

is a natural extension to use an asynchronous model and evaluate the system

performance under such conditions.

• Another interesting study would be to compare the performance results ob-

tained with the PGA and the theoretical results obtained under asymptotic

assumptions (i.e., when the number of sensors N →∞).
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